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Abstract 

PERFORMANCE COMPARISION OF SPATIAL INDEXING STRUCTURES FOR 

DIFFERENT QUERY TYPES 

 

Neelabh Pant, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Ramez Elmasri 

R-Trees are among the most popular multidimensional access methods suitable 

for indexing two dimensional spatial data and point data. R-Trees are found in most of the 

spatial database systems for indexing the spatial data. The data include points, lines and 

polygons which are retrieved and stored efficiently. There are many Spatial Database 

Systems which have incorporated R-Trees, for example, IBM Informix, Oracle Spatial, 

PostgreSQL and many others. 

Another version of R-Tree is R*-Tree which is also used for the same purpose 

i.e. indexing spatial data. R*-Tree has also been incorporated in an open source software 

SQLite with an extension of Spatialite.  

Several techniques have been proposed to improve the performance of spatial 

indexes, but none showed the comparative studies in their performance with the different 

categories of spatial and non-spatial queries.  

In this work, we compare the performance of three spatial indexing techniques: 

R-Tree (Rectangle Tree), GiST (Generalized Search Tree) and R*-Tree (A variant of R-

Tree). 

We have five categories of spatial and non-spatial queries, namely, Simple SQL, 

Geometry, Spatial Relationship, Spatial Join and Nearest Neighbor  search. We perform 

extensive experiments in all these five categories and record the execution time.  



vi 

The spatial data that are used for the experiments is the set of a benchmark data 

of New York City that include Point data: Subway stations, Line data: Streets and 

Subway lines, Polygon data: Boroughs and Neighborhoods plus non-spatial data such as 

Population data: Racially categorized. 

The comparison done in the experiments will give the reader performance criteria 

for selecting the most suitable index structure depending on the types of queries in the 

application. 
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Chapter 1  

INTRODUCTION 

 
The most utilized application in today’s time is the Global Positioning System or 

GPS. A user through such a device views spatial objects like roads, gas stations, cities or 

continents. Information about the real world data objects are represented spatially in the 

form of polygons, lines and points which are stored and retrieved from a database. The 

real world data objects have spatial attributes which are nearly impossible to store in a 

traditional database, like RDBMS, which are complex and inefficient as the objects are 

multi-dimensional in nature. Spatial databases are used in location based services, 

Geographic Information Systems (GIS), environmental modeling and impact assessment, 

resource management, decision support, data quality and integrity enforcement.  

All this information is accessed from the Spatial Database Management System 

(SDBMS). We need an index to store any data in a database for efficient retrieval. Spatial 

Database Management Systems make use of spatial indexing structures for fast and 

efficient access to the data. There are several spatial indexing structures proposed and 

each of them are good for certain purposes. We in this thesis present three spatial index 

structures which are compared based upon their performance in different conditions.  

We make use of R-Trees (Rectangle Trees), GiST (Generalized Search Tree) 

and R*-Tree (variant of R-Tree) on two different Spatial Database Management Systems, 

PostgreSQL and SQLite, which are extended with PostGIS and SQLite respectively 

which allow them to perform location queries on geographic data. We make use of 

geographic data in form of shapefile. The shapefile is benchmark data of New York City, 

of 58,505 records that consists of points, lines, polygons and multipolygons represented 

by x-y geometry.  
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The major objective of this thesis is to compare the index performance based 

upon different categories of queries like simple SQL, spatial relationship, nearest 

neighbor search, spatial joins and geometry queries. Till now none of the research has 

shown comparison of the indexes based upon different categories of queries. 

 The thesis is organized as follows: chapter 2 presents the spatial indexes which 

include R-Tree, GiST and R*-Tree. Chapter 3 discusses the Spatial Database 

Management Systems and gives an overview of SDBMS like PostgreSQL with PostGIS 

and SQLite with SpatiaLite. Chapter 4 explains the spatial queries. We categorize this 

research in several areas. Section 4.1 presents areas of spatial-models, section 4.2 

discusses spatial query language, section 4.3 defines the conceptual design of the 

database, section 4.4 defines the queries used in performance evaluation along with the 

spatial functions used. Chapter 5 presents the experimental results and finally chapter 6 

concludes the research.  
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Chapter 2  

OVERVIEW OF THE INDEXING STRUCTURES 

 
2.1 Spatial Indexing 

With the advancement in computer science and especially in the field of GIS 

there has been a vast necessity for the abstraction of the spatial data in the form of 

spatial objects (points, lines and polygons etc.). The efficient storage of and access to 

this data is the highest priority and is done by using sophisticated data structures. 

However, traditional indexing methods are not efficient for such purpose, so we will study 

about R-Tree (Rectangle Tree) which is capable of handling and managing multi-

dimensional objects, GiST (Generalized Search Tree) a data structure and an API which 

is used to  build varieties of indexing structures and R*-Tree which is the advanced 

version and variant of R-Tree which works in the same manner as an R - Tree but has 

some differences in the method of indexing. 

2.2 R-Tree 

R-Trees are the extension of B-Trees. They are height balanced and store the 

objects so that the main intentions, like the rage queries, point queries, nearest neighbor, 

etc. can be executed efficiently. Spatial objects are stored in such a way that the queries 

such as e.g. Find all the restaurants within 20 miles from current position are executed 

within fraction of seconds.  

Data sets are often too large to fit in the primary memory of the computer and 

secondary storage access time is several orders of magnitude slower than the main 

memory. This is a performance bottleneck because data has to be shipped back and 

forth from the primary memory to the secondary storage. Thus the goal of good physical 

database design is to keep this amount of data transfer to an absolute minimum.[1] 
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Indexes are important for the multidimensional objects to store. The classical 

indexing structures cannot be used to store them. B-Trees and ISAM cannot be used as 

the search space is multi-dimensional. Hash table (exact matching) cannot also be used 

because a range search is required. 

2.2.1 R-Tree Index Structure 

R-Tree is a height balanced tree just like the B-Tree. It consists of nodes 

connected to each other where the leaf nodes consist the index records containing 

pointers to the data objects and the node corresponds to the disk pages. 

It stores multi-dimensional rectangles and doesn’t transform them to higher 

dimensional points and also not performs clipping. 

 

Figure 1: The R-Tree Structure 
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Spatial Databases have tuples which represent different spatial objects which are 

identified by a unique tuple-identifier. The purpose of the unique-identifier is to uniquely 

identify the spatial object stored in there and can be retrieved easily. The leaf nodes of 

the R-tree contain index record entries of the form (I, tuple-identifier) where I is the 

Minimum Bounding Rectangle (MBR) which is the bounding box of the spatial object 

indexed and tuple-identifier is the unique identity of the tuple stored in the database.[2] 

 

2.2.2 R-Tree Properties 

Lets consider M  to be the maximum number of objects that can be stored in a 

node and let m <= M/2 be a parameter specifying the minimum number of entries in a 

node. An R-Tree satisfies the following properties.  

1. Every leaf node contains between m and M index records unless it is the root. 

2. For each index record (I, tuple-identifier) in a leaf node, I is the smallest rectangle 

that spatially contains the n-dimensional data object represented by the indicated 

tuple. 

3. Every non-leaf node has between m and M children, unless it is the root. 

4. For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle that 

spatially contains the rectangles in the child node. 

5. The root nodes have at least two children unless it is a leaf. 

6. All leaves appear on the same level [1] 

 

2.2.3 Operations on R-Tree 

An R-Tree has multiple operations that include Insertion, Search, Deletion. The 

following will discuss the algorithm for each of the mentioned operations. 
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Insert: Unlike B-Trees where the new element is to be inserted into the last node 

of the tree here in R-Tree the new data (object) is inserted in any leaf which has the room 

to install it. If the node exceeds the given order limit, then the node splits and the tree 

height and node size are adjusted accordingly. 

Algorithm: 

Choose subtree 

a. Set N to be the root 

b. If N is a leaf  

return N 

else  

Choose the entry in N which requires the least area enlargement to 

include the new data. If ties occur, then resolve ties by selecting a 

rectangle of the smallest area.  

end 

c. The chosen entry, then points to the N (childnode) by the child pointer. 

 
 

Search: Search in R-Tree is unlike B-Tree. Minimum Bounding Rectangles of the 

internal nodes intersecting with the search rectangle are visited during a search.  

Consider an example where the user of GIS wants to know the sushi restaurant in a 

range of 5 miles to his current location. In such queries the R-Tree looks for the person’s 

current location (parent, node) and covers its area within 5miles of radius and looks for 

the sushi restaurant (object). 

Algorithm: 

Search Subtree 

a. Set N to be the root 
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b. If N is a leaf  

do if entry E in N overlaps the search rectangle 

  return E 

else  

Each entry E in N,  

if E overlaps the search rectangle then search subtree until the 

entry found which overlaps the search rectangle. 

return E 

end 

  

Delete: Deletion is a simple and straightforward operation where it removes the 

index record from an R-Tree. The algorithm looks for the node carrying the object which 

needs to be deleted. Once found, it removes the element and if required condenses the 

tree. 

Algorithm: 

a. Find the leaf 

If leaf is null 

return 

b. If leaf found with entry to be deleted 

remove entry from the leaf 

c. Condense tree 

d. If root node has only one child  

Make the child the new root 
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2.3 GiST (Generalized Search Tree) 

GiST is a balanced, tree structure template access method which encapsulates 

basic access methods search and update functions. GiST is used to emulate varieties of 

tree-structure access methods by providing a small set of custom functions. It is used to 

navigate the tree by providing a template algorithm. Various functions like delete and 

node splits are performed in order to modify the structure of the tree [3]. The GiST 

provides the luxuries of basic search tree logic for a database system. In a single piece of 

code it encapsulates different tree structures like B+-Tree and R-Tree.  

GiST are the third direction for extending the search tree technology. It allows the 

new data types to be indexed in a manner that supports the queries natural to the type 

[4]. B+-Trees and R-Trees can be implemented as an extension of the GiST. Single code 

base yet indexes multiple dissimilar application.  

The leaf entry in GiST is of the format (key, RID) where RID refers to the 

corresponding records on the data pages. For a non-leaf node, (p, ptr) where p is true if it 

returns the desired values of the tuples reachable from ptr. It is as similar to B+-Trees 

where it refers to the values representing ranges which bound values of keys in the 

leaves of the respective subtrees. Another example is the R-Tree which represents 

MBRs (Minimum Bounding Rectangle) as predicates in the internal nodes.[3] 
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Figure 2: GiST structure. 

 
2.3.1 GiST structure 

It is a balanced tree of variable fanout between kM and M where k is the 

minimum fill factor of the tree, 2/M <= k <= ½. The exception is the root which may have 

a fanout between 2 and M. The non-leaf nodes are represented as (p, ptr) where p is the 

predicate that is used as a search key and ptr is a pointer to another tree node. The leaf 

nodes (p, ptr) where key is used as a search key and ptr as an identifier of some tuple 

(indexed datum) in the database. 

2.3.2 GiST properties 

The following are the properties of a GiST: 

1. Unless the node is the root, every node contains between kM and M entries. 

2. The root if not a leaf has at least two children.  

3. Entries in the leaf node represented by (p, ptr), p is true when instantiated with 

the values from the indicated tuple. In other words key holds for the tuple if 

pointed by the childpointer of the indicating parent node.  
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4. Entries in the non-leaf node (p, ptr) p is true if the values of any tuple is 

reachable from ptr.  

5. All leaves are on the same level. 

 

2.3.3 GiST key methods 

1. Search 

Consistent (E, q): Consider an entry E = (p, ptr) and a query q. The 

consistent key method asks E.p^q whether it satisfies or not, false if 

unsatisfied otherwise true. 

2. Characterization 

Union (P): It returns a new predicate that holds for all tuples in P. For 

example, given a set P of entries (p’, ptr’), … ,(p’’, ptr’’), returns a 

predicate r that holds for all the tuples from ptr’ through ptr’’. 

3. Categorization 

Penalty (E1, E2): Describes the penalty for inserting entry E2 into entry 

E1. A penalty is basically described as the difference in the enlargement 

of the area. Thus, area(Union({E1, E2}) - area(E1.p1) = penalty. 

4. Compression 

Compress (E): If given an entry E = (p, ptr) it returns an entry (π, ptr) 

where π is the compressed representation of p. 

5. Decompress (E):  

If a compressed representation is given  E = (π, ptr), it will return as 

decompressed entry (r, ptr) such that  p� r. This is a “lossy” compression. It 

is because each document is represented in the index by a fixed signature. 

When two words hash to the same bit position there will be a false match.  
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2.3.4 Operations on GiST 

In this section we will describe the different operations GiST method is capable 

of. Operations like Search, Insert, Delete are almost similar to the R-Tree Index 

operations with some differences. 

1. Search: The search technique is analogous to R-Tree where it takes a query 

predicate to search any dataset. It traverses the tree until it statisfies the 

query. 

Algorithm: 

Input: A query predicate q, and GiST with the root node N. 

Output: Set of tuples satisfying the query q. 

Sketch:  Traverse the tree and follow the path until all the tuples satisfying 

the predicate are found.  

Step 1: [Subtree] If R is not leaf, check all the entries E in R to find 

whether it is consistent with q, i.e. Consistent (E, q). Consistent 

entries are invoked Search on the subtree whose root node is 

referenced by E.ptr. 

If R is leaf node, check each entry E in R if Consistent (E, q). If 

consistent return the entry and the ptr fetches the actual tuple 

from the database. 

 

2. Insert: Insertion is very similar to the operation insert on R-Trees. In GiST the 

operation Insert makes sure that it doesn’t violate the balanced nature of the 

GiST tree. The insertion in GiST allows specification of the level at which to 

insert. The level number increases as on ascends the tree. Thus, the leaf 

nodes are at level 0. The new entries will be inserted at level l = 0.  
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Algorithm:  

Input: Root node N, Level l, Entry E = (p, ptr) 

Output: New GiST after entry E is inserted at level l 

Sketch:  Look for an appropriate place for the entry E and insert it. If 

splitting necessary, invoke split.  

Step 1: [ChooseSubtree] Choose subtree where the entry E is to be 

inserted. Let CS = ChooseSubtree (N, E, l) 

Step 2: If space available for E on CS, insert E on CS. If not, invoke Split 

(N, E, l). 

Step 3: Propagate changes upwards. AdjustKeys (N,l). 

 

 

3. Delete: The deletion algorithm maintains the balance of the tree. It simply 

looks for the entry which needs to be deleted by searching for the subtree, it 

is currently residing at and removes it. It then adjusts the tree if the deletes 

makes changes to the structure of the tree. 

Algorithm:  

Objective: Remove E from it’s leaf node. If this causes underflow, adjust 

tree accordingly. 

Step 1: [Find node containing entry] Invoke Search (N, E, p) and find leaf 

node L containing E. Stop if E not found. 

Step 2: [Delete entry] Remove E from CS (subtree). 

Step 3: [Propogate changes] Invoke CondenseTree (N, CS). 

Step 4: [Shorten Tree] If the root node has only one child after the tree 

has been adjusted, make the child as new root. 
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2.3.5 GiST over R-Trees 

In this section we describe the implementation of the key classes to make GiST 

emulate like R-Tree. In R-Tree the keys are the 4-tuples of reals, which represent the 

upper-left and lower-right of the Minimum Bounding Rectangle of the 2 dimensional 

polygons.  

The key is defined as (Xul, Yul, Xlr, Ylr) where Xul = points defining upper left 

corner of X axis, Yul = points defining upper left corner of Y axis, Xlr = points defining 

upper left corner of X axis, Ylr = points defining lower left corner of Y axis. The query 

predicate that is supported are Contains (box, v), Overlap (box, v) and Equal (box, v), 

where box is a 4-tuple as above. 

The following is the implementation of the query predicates: 

• Contains ((Xul1, Yul1, Xlr1, Ylr1), (Xul2, Yul2, Xlr2, Ylr2)) 

Returns true if 

(Xul1<=Xul2) ^ (Yul1 >= Yul2) ^ (Xlr1 >= Xlr2) ^ (Ylr1 <= 

Ylr2)  

 

• Overlaps ((Xul1, Yul1, Xlr1, Ylr1), (Xul2, Yul2, Xlr2, Ylr2)) 

Returns true if 

(Xul1 <= Xlr2) ^ (Yul1 >= Ylr2) ^ (Xul2 <= Xlr1) ^ (Ylr1 <=  

Yul2) 

 

• Equals  ((Xul1, Yul1, Xlr1, Ylr1), (Xul2, Yul2, Xlr2, Ylr2)) 

Returns true if 

(Xul1 = Xul2) ^ (Yul1 = Yul2) ^ (Xlr1 = Xlr2) ^ (Ylr1 =  

Ylr2) 
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Now, we present the implementation of GiST over R-Trees 

• Consistent (E, q):  

E = (p, ptr) where p = (Xul1, Yul1, Xlr1, Ylr1) and query q is either 

Contains, Overlaps or Equals (Xul2, Yul2, Xlr2, Ylr2). For any of these 

queries the consistent function will return true if Overlap ((Xul1, Yul1, 

Xlr1, Ylr1), (Xul2, Yul2, Xlr2, Ylr2)). 

• Union ({E1, … , En}):  

The union function returns a new predicate that holds for all tuples. In 

other words in R-Tree E1 = ((Xul1, Yul1, Xlr1, Ylr1), ptr1), …, En = 

((Xuln, Yuln, Xlrn, Ylrn), ptr) thus union function returns the maximum 

bounding rectangles of all the rectangles.  

• Penalty (E1, E2): 

The penalty function returns the metric value of the change in the area 

after E2 is installed in E1. Given E1 = (p1, ptr1) and E2 = (p2, ptr2), 

compute q = Union({E1, E2}) and return area (q) – area (E1.p). 

• Compress (E = (p, ptr)): 

The compress function returns the bounding box of a polygon entry E.p. 

• Decompress (E1 = (Xul1, Yul1, Xlr1, Ylr1)): The identity function, i.e., 

return E. [4] 
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2.4 R*-Tree 

R*-Tree was proposed by Norbert Beckmann, Hnas-Peter Kriegal, Ralf 

Schneider and Bernard Seeger in 1990 [5]. It is a variant of R-Tree which is also used to 

store spatial data such as points, lines and polygons. It has a little higher cost of 

implementation than the standard R-Tree. The data in R*-Tree may need to be 

reinserted, but R*-Tree gives a much better performance than the R-Tree.  

The major objective of R-Trees is to minimize the area of MBRs but R*-Trees go 

beyond that. There are more than one criteria that R*-Tree follow such as: 

1. Minimizes of the area covered by each MBR. The aim is to minimize the  

area of the dead space, i.e. the area covered by MBR, but not the data 

rectangles. It is because it tries to reduce the number of paths to travel during 

query processing.  

2. Minimizes the overlap of the MBRs. It tries to reduce the overlapping between  

MBRs, since a large overlapping will cause a large number of paths followed for 

a query. 

3. Minimizes the margins of the MBR.  Margin is defined as the sum of all sides  

of an MBR which is also known as perimeter. It aims at shaping more quadratic 

rectangles to improve the larger quadratic shape query performance. MBRs at 

the upper levels are smaller as the quadratic objects are packed more easily. 

4. Minimizes the storage utilization. There is an increase in the number of  

nodes which are invoked when the utilization is low. Especially for a larger query, 

where a significant portion of the entries satisfy the queries. Also, whenever the 

utilization of the node decreases the height of the tree increases. 

The above mentioned criteria is followed with an engineering approach as they 

can become contradictory. For an example, if we keep the area and overlap low, then the 
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entries in a node decreases. Hence, storage utilization may be impacted. Also, by 

keeping the margin minimized the node overlapping may be increased.  

The R*-Tree differs from R-Tree precisely in insertion technique and does not 

use any specialized deletion algorithm. The deletion in R*-Tree is similar to the original R-

Tree deletion algorithm. 

 

2.4.1 Insertion 

• ChooseSubtree [Root Node] 

Choose the entry at the root level whose MBR needs least area 

enlargement to insert the new entry.  

• ChooseSubtree [leaf node] 

Here it follows the minimizing the overlap of the MBR criteria 

where it chooses the entry whose MBR enlargement needs least 

overlap increase out of all the entries in the node. 

 

2.4.2 Reinsert 

In the case where ChooseSubtree cannot find the node with enough space to 

insert the new entry, it looks for an entry in the node whose centroid distance from the 

node distance are among the largest 30%. It then reinserts those node(s). 
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Figure 3: An R*-Tree 

If we look at the example given above, we assume that the node N1 is 

overflowing and the centroid of entry b is the farthest from the centroid of N1 and b is 

considered for reinsertion. Reinsertion improves the performance during the query 

processing as it tries to rebalance the tree. 

Since, reinsertion is a very costly process, thus it limits to just one reinsertion 

application per level. 

If overflow is unable to be handled by reinsertion then the splitting process takes 

place. [6] 

R*-Tree uses topological split when splitting needs to be done. This method 

chooses a split axis (smallest overall perimeter and works by sorting all the entries by the 

coordinates of their left boundaries) based on the perimeter and then minimizes overlap.  
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Chapter 3  

OVERVIEW OF PostGIS AND SpatialLite 

3.1 Introduction 

The Spatial Database Management System is a collection of spatially referenced 

data that acts as a model of reality. In its most basic form, the spatial database system is 

used to store, compute and retrieve spatial objects such as points, lines and polygons. In 

many applications these days, we require and manage 2D geographic, geometric or 

spatial data. In many other high level fields we need a storage and retrieval facility for 3D 

data, such as the human brain or the arrangement of molecular proteins in a human body 

[12].  Until the advent of SDBMS, relational database systems were used to manage 

such data in the database system. The purpose of this emerging technology is to manage 

a large collection of relatively simple geometric objects, for example, 100,000 polygons. 

This is different from CAD which deals with the geometric entities composed 

hierarchically into complex structures.[8] 

The two kinds of systems “Spatial Database Systems” and “Image Database 

Systems” are differentiated by the fact that an Image database store, manipulates and 

retrieves pictures and raster images where as a Spatial database contains objects in 

space rather than pictures or images of space. These objects have a definite identity, 

well-defined locations and relationships. There are three requirements for a Spatial 

Database System: 

The first requirement is that Spatial or Geometric information is always 

connected to non-spatial (alphanumeric) data. 

The second requirement is the Spatial Data Types (Points, lines and polygons) 

provide a fundamental abstraction for modeling the structure of geometric entities in 

space, as well as their relationships and their operations. 
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The third requirement is of the Spatial Indexing is that a system is at least able to 

retrieve data from a large collection of objects without scanning all the objects. 

The first requirement sounds of less importance, but emphasizes the fact that a 

spatial database cannot exist without non-spatial data. In general, the combination of 

Relational Query Language and Spatial Relationship gives us the Spatial Query. The 

second point describes the different SDTs and the operations that could be performed. 

Points, Lines and Polygons are basic geometric structures which provide fundamental 

abstraction for modeling the geometric structure in space. Finally, the third point explains 

about the indexing used to store these geometries and how (without scanning the entire 

index) we can retrieve the data by saving a lot of time [8]. In today’s time where we 

generate trillions of data every hour, we also need some method to store and index them 

so that we could access them in fractions of seconds.   

In this chapter, we will study about two different kinds of spatial database 

systems that have been used as tools to carry out spatial queries. The spatial databases, 

we have used are: 

1. PostgreSQL Database Management System with an extension of PostGIS, which 

is an open source, an OGC (Open Geospatial Consortium) complaint spatial 

database extender. It provides spatial functions like geometry data types, area, 

distance, intersection, union and much more. [9] 

 

2. SQLite Database Management System which is a lightweight open source 

database system. We used SpatiaLite, an extender for SQLite database engine 

with added spatial functions. 
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3.2 PostgreSQL  

PostgreSQL is an Object-Relational Database System (ORDBMS). It was 

developed at The University of California at Berkeley Computer Science Department. It is 

an open source which supports the SQL standards and has a lot of modern features to 

be offered such as: 

• Complex Queries 

• Foreign Keys 

• Triggers 

• Updatable Views 

• Transactional Integrity 

• Multiversion concurrency control [10] 

 

The implementation of POSTGRES began in 1986 under Professor Michael 

Stonebraker, who was sponsored by Defense Advanced Research Project Agency 

(DARPA), Army Research Office (ARO), the National Science Foundation (NSF), and 

ESL Inc. 

 

There have been many different research and production applications which are 

implemented in POSTGRES. Some of them being: 

• Jet engine performance monitoring package 

• Financial data analysis system 

• Asteroid tracking database 

• Medical Information database, and 

• Several Geographic Information Systems 
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3.2.1 PostGIS 

PostGIS is a spatial database extender for PostgreSQL object-relational 

database system. PostGIS allows geographic objects to run location queries in SQL. 

(SELECT nyc_subway_stations.name 

FROM nyc_subway_stations 

JOI nyc_neighborhoods 

ON ST_Contains(nyc_neighborhoods.geom, nyc_subway_stations.geom) 

WHERE nyc_neighborhoods.name = 'Little Italy';) 

Extra types such as geometry, geography, raster and others are added by 

PostGIS to PostgreSQL database. These spatial types are added with functions, 

operators and indexing structures which makes PostgreSQL Database Management 

System fast, feature-plenty and robust spatial DBMS. 

 

3.2.2 The dataset: 

For using PostGIS we needed a spatial dataset preferably a shapefile. The 

spatial data that are used for the experiments is the set of a benchmark data of New York 

City that include Point data: Subway stations, Line data: Streets and Subway lines, 

Polygon data: Boroughs and Neighborhoods plus non-spatial data such as Population 

data: Racially categorized. We downloaded the shapefile dataset provided to us by 

workshops.boundlessgeo.com/postgis-intro [11] 

 

There are four tables, namely: 
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1. nyc_census_blocks, which contained 38794 non-spatial population records. 

 blkid  Unique identity for every census block 

 popn_total Total population in the census block    

 popn_white Total white population 

 popn_blck Total black population 

 popn_asian Total Asian population 

 popn_native Total native population. 

 popn_other Total other population. 

 boroname Names of the borough in New York. 

 geom  Polygon boundary of the block. 

 

2. nyc_neighborhoods, which contained 129 polygon records 

name  Name of the neighborhoods. 

Boroname Name of all the boroughs in New York. 

geom  Polygon boundary of the neighborhood. 

 

3. nyc_streets, which contained 19091 line records 

name  Street names. 

oneway  Is street a oneway? “yes” = yes, “” = no. 

type Type of the street, either primary, secondary, residential 

or motorway. 

geom  Geometry of the line street. 

 

4. nyc_subway_stations 

name  Station name 
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borough Name of the borough in New York 

routes  Subway lines that run through this station 

transfers Lines you can transfer to, via, this station 

express Stations where express trains stop, “express” = yes, “” = 

no 

geom  Point geometry of the station 

 

After creating the database in PostgreSQL with PostGIS extension, we started 

populating it with the data into the tables specifically. 

 

Figure 4: PostgreSQL Database 

 
After creating the database and populating it with the tables mentioned above, it 

was the time to index the geometry of all the tables.  
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PostGIS is fully capable of indexing the geometries with various indexing 

structures like B+-Trees, R-Trees and GiST. We now show the geometries indexing 

method using R-Tree in PostGIS and the syntax used to do so. 

 

3.2.3 Creating Index 

We start indexing the geometries of different tables in the database using R-Tree 

indexing structure. The PostGIS syntax for creating the index is 

CREATE INDEX (“index_name”) 

On (“table_name”) 

Using rtree (“column_name”); 

 

Figure 5: R-Tree index on geometry column of census blocks 
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In this way we created an R-Tree index of the geometry column of the rest of the 

tables. 

Further, after doing the experiments by running various spatial queries on the 

tables indexed with R-Tree structure we recorded execution time and dropped the 

indexes. The spatial queries that we executed are explained in details in the next chapter 

(Chapter 4). We then indexed the geometries on GiST structure and ran the same set of 

different spatial queries and recorded the execution time. 

The syntax to create the GiST index on the geometry columns in GiST is 

CREATE INDEX (“index_name”) 

ON (“table_name”) 

USING gist (“geometry_column”); 

 

Figure 6: GiST index on geometry column of census blocks 
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3.3 SQLite 

SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional  SQL database engine. It is an open source and is available 

for free for any purpose. There are numerous applications where SQLite is being used 

and some of the high-profile projects include 

1. Apple – It uses SQLite in many functions like Apple Mail, Safari, Aperture which 

is deployed on their iPhones, iPods and iTunes software.  

2. Google – People are suspicious that Google uses SQLite in a lot of things, 

including Android cell phones, Google Gears etc. 

3. Python – SQLite is bundled up in the python programming language since python 

2.5. 

4. Firefox – Firefox uses SQLite as its primary metadata storage format. 

And other companies like, Microsoft, Adobe, Dropbox use SQLite in many ways 

like Skype, Photoshop etc. 

It was designed by D. Richard Hipp in 2000 [13] while working for General 

Dynamics on contract with the United States Navy. Hipp was designing a Guided Missile 

Destroyer software for which he also designed SQLite, which allowed programs to be 

operated without installing a database management system or requiring a database 

administrator. 

SQLite is an embedded SQL database engine which doesn’t have a separate 

server process. It reads and writes directly to ordinary disk file and creates an entire SQL 

database with multiple tables, indices, triggers and views contained in a single disk file. 

Since, the format of the database file is cross-platform, one can freely copy a database in 

different architectures. In contrast to other databases, like Oracle, MySQL, PostgreSQL it 

is not a client-server database engine. Rather, it is embedded into the end program. 
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3.3.1 SpatiaLite 

For our experiments, it was important for us to extend the capabilities of SQLite 

with SpatiaLite. One can think of SpatiaLite as an added Spatial technology for SQLite 

similar to what PostGIS does for the PostgreSQL. SpatiaLite is an SQLite database 

engine with added spatial functions.  

Spatialite provides vector geodatabase functionality which is similar to PostGIS, 

Oracle Spatial and SQL Server with spatial extentions. It is not a client-server 

architecture, but rather adopts a simpler personal architecture where the entire SQL 

engine is directly embedded within the application itself. As already mentioned the 

complete database is an ordinary file which can be transferred and moved between 

different computers and operating system.  

It gives spatial support to SQLite by covering Open Geospatial Consortium 

(OGC) and Simple Features specifications. Spatialite also adds R*-Tree index support in 

SQLite and also allows to do advanced spatial queries. It also supports multiple map 

projections and can also be used as a GIS vector format to exchange geospatial data. 

There are various softwares that support spatialite such as: 

1. ESRI’s ArcGIS 

2. QGIS 

3. Autocad MAP 

4. Global Mapper 

Web servers like 

1. GeoDjango 

2. Web2py 

And tools like 

1. GeoTools 
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2. pyspatialite, which is a python library 

 

3.3.2 Insertion and Indexing 

For using Spatialite we needed a spatial dataset preferably a shapefile. The 

spatial data that are used for the experiments is the same set of a benchmark data of 

New York City which was also used in PostGIS which include Point data: Subway 

stations, Line data: Streets and Subway lines, Polygon data: Boroughs and 

Neighborhoods plus non-spatial data such as Population data: Racially categorized. 

All the operations were taken place at the command line interface which is 

described below: 

1. Insertion 

To insert the data in Spatialite we first execute a SQL script by writing           

.read init_spatialite-2.3.sql. This command initializes the Spatial Metadata where the 

.read macro command executes an SQL script. Next, to insert the tables Spatialite 

provides .loadshp command which is used to import the shapefiles. The command 

follows with the shapefile’s name without .shp or .dbf extention and allows the user to put 

desired name of the table. For example, the shapefile of the nyc_neighborhoods was 

entered with the following command:  

.loadshp nyc_neighborhoods neighborhoods CP1252 32632 ASCII 

Here nyc_neighborhoods is the shapefile which is stored in the same directory 

where Spatialite is stored and neighborhoods is the table name for the shapefile. CP1252 

is the charset name for Windows Latin-1 and 32632 is the SRID. Spatial Reference 

System Identifier or simply SRID is a unique value which is used to identify projected, 

unprojected, and local spatial coordinate system definitions. 
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Thus, this way we inserted all the four shapefiles into four separate tables and 

named them accordingly. nyc_neighborhoods as neighborhoods, nyc_census_blocks as 

censusblocks, nyc_streets as streets and nyc_subway_stations as subwaystations 

2. Indexing 

After we got all the four tables in the database (nyc_db.sqlite) it was the time to 

index their geometries on R*-Tree index. As already discussed Spatialite adds R*-Tree 

index feature as an additional support to SQLite so that one can index the geometries on 

R*-Tree index. The only problem was that most of the database systems have direct 

queries like: 

CREATE INDEX “index_name” ON (“table_name”, “geometry_column”); 

This is because the CREATE INDEX represents an implementation of B-Tree. In 

this case B-Tree is not the choice of index as B-Tree is only capable to doing the 

comparative search like lesser than <, greater than > or equals = but not for geometries. 

For geometries we needed R*-Tree index. Thus, the R*-Tree module in Spatialite first 

creates a virtual table which has an odd number of columns between 3 and 11. The first 

column is always a 64 bit signed integer primary key and the other columns are 

represented as dimension pairs, where each pair is one dimension. The pairs describe 

the minimum and maximum value for that dimension. The SQL statement that creates the 

R*-Tree index is 

SELECT CreatSpatialIndex (‘neighborhoods’, ‘geom’); 

Where neighborhoods is the table name and geom is the geometry column. The 

geometry_column in the database stores the spatial information about all the tables in the 

database. If we take a closer look in the geometry_column by typing                     

SELECT * FROM geometry_column; we get 

Table 1: geometry_column 
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name geometry Type Coord Srid Spatial_index_enabled 

neighborhoods geom MULTIPOLYGON 2 32632 1 

census_blocks geom MULTIPOLYGON 2 32632 1 

streets geom MULTIPOLYGON 2 32632 1 

subwaystations geom MULTIPOLYGON 2 32632 1 

 

Hence, the geometry_column describes the spatial features of all the tables in 

the database. The most important of all the columns in geometry_column table is the 

Spatial_index_enabled column which lets the user know whether the spatial index is 

enabled (1) or not (0). 

 

3.4 Enabling index execution time 

Enabling index on the geometry columns takes time depending on the type of 

index. Some indexes take a short time, whereas, others take more than twice the 

standard times.  

We now record the time taken by the indexing trees, namely, R-Tree, GiST and 

R*-Tree to implement in the geometry of the benchmark data set. Since, the shapefile we 

used has been kept the same for all the three indexing structures, thus then comparison 

gives a clear picture to the reader.  

We started indexing the geometries of the different tables in the database. Below 

is the table with the average execution time for the different indexes implementation on 

the geometry columns of nyc_census_blocks, nyc_neighborhoods, nyc_streets and 

nyc_subway_stations 
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Table 2: Time taken by each index 

Indexes Nyc_Census_blocks Nyc_Neighborhoods Nyc_Streets Nyc_Subway_stations 

R*-Tree 2.842 1.245 2.606 1.332 

GiST 2.37 0.231 0.594 0.11 

R-Tree 0.862 0.25 0.345 0.032 

 

 

 

Figure 7: Graph of the time taken by each index 

 
So, clearly R*-Tree takes more than twice of the time as compared to other 

indexing techniques to implement on the geometry.  

In Chapter 2, it is already mentioned that R*-Tree has a little higher cost of 

implementation than the R-Trees and GiSTs but it gives a much better performance than 

the other two. We will testify the performance of the indexing techniques based on 

different criteria in later chapters. 
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Chapter 4  

SPATIAL QUERIES 

 
4.1 Areas of Spatial Models 

The only reason for the invention of and so much research based on SDBMS is 

to have a deeper analysis of space and the objects of which it is made. Spatial data is a 

term used to describe data that pertain to the space occupied by objects in a database. It 

is the geometric data like points, lines, rectangles, polygons and time, that have non-

spatial attributes, e.g. names of all the rivers, coordinates of a particular city, etc. 

There are two types of spatial models: Object model and field model. 

 

1. Object model: Object-modeling abstracts the spatial information in distinct, 

identifiable entities called objects. These objects have specific area and are 

represented by coordinates. Each object has a set of attributes such as 

name, address, coordinates, shape, etc., which are stored non-spatially in 

the database.  

 

2. Field model: Data that is spread over a region and which is defined by its 

continuity is known as field model. It is continuous in nature and has function 

values. Field models do not have a specific value, but change with respect to 

time or space. It sees the world as a continuous surface over which features 

vary, using object-based spatial database. [7] 
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Figure 8: Department Location 

 

Table 3: Object Viewpoint of University 

 

 

 

 

 

Table 4: Field Viewpoint of University 

f(x,y) “Library,” 3 ≤ x ≤ 4 ; 5 ≤ y ≤ 6 

f(x,y) “English,” 3 ≤ x ≤ 5 ; 3 ≤ y ≤ 4 

f(x,y) “Science,” 1 ≤ x ≤ 2 ; 1≤ y ≤ 4 

f(x,y) “Engineering,” 1 ≤ x ≤ 5 ; 1 ≤ y ≤ 2 

 

Area-
ID 

Department Area/Boundary 

UN1 Engineering [(1,1),(5,1),(5,2),(2,2)] 

UN2 English [(3,3),(2,3),(5,4),(4,4)] 

UN3 Science [(1,3),(2,3),(2,4),(1,4)] 

UN4 Library [(3,5),(4,5),(4,6),(3,6)] 
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In the functional viewpoint, the University is modeled as a function where the 

domain is the underlying geographic space of the University and the range is a set 

consisting of four elements-the names of the different buildings in the campus. The 

functional values are shown by a range of values of the x-y coordinates. Field model is 

also represented by a piecewise function or by the use of grids. The grids make use of 

the cells or pixels and have their precise coordinates. It is independent of the longitudes 

and latitudes, but, takes its center as the reference.  

In the object model, the buildings shown in the example have a definite starting 

and ending point in the x-y coordinate structure. The objects are represented as 

independent entities with some definite points of access such as longitude and latitude. 

We get the demarcation clearly defined in the University model shown above, thus get a 

specific boundary of the polygons. Each polygon has a unique identifier and non-spatial 

attributes. [12] 

The use of field models and object models depends on the requirement of a map 

developer. For example, in a map where the developer is supposed to define the region 

of interest in a city, the roads and building shown would be the lines and polygons (object 

model), whereas the density of people or vehicles stopping by to a specific part of the city 

would be shown by different colors (field model). 

 

4.2 Spatial Query Language 

Spatial Query Language is a database language which is developed to query 

spatial features using the traditional Structured Query Language (SQL). It is a normal 

extension to the SQL where the traditional relational query language is packed with the 

spatial relationships which in turn gives spatial query language. Spatial Query Language 

helps the user to retrieve and display the queries [13] by the use of query language to 
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retrieve data and by the presentation language i.e Graphical Presentation Language 

(GPL). Basically, we do not develop an exclusive spatial system, but integrate spatial 

query attributes and operations to Structured Query Language [14] 

We discussed the definition and the differences between field based models 

(raster data) and object based models (vector data). Table 4 describes the different 

operations that can take place over the data models based upon different queries. [15] 

 

Table 5: Data model and operation 

Data Model  Operator Group  Operation 

Vector Object Set-oriented equals, is a member of, is empty, is a subset of, is 
disjoint, from, intersection, union, diffrence, 
cardinality 

Topological boundary, interior, closure, meets, overlaps, is 
inside, covers, connected, components, extremes, is 
within 

Metric distance, bearing/angle, length, area, perimeter 

Direction east, west north, south 

Network successors, ancestors, connected, shortest-path 

Dynamic translate, rotate, sclae, shear, split, merge 

Ratser Field Local point-wise sums, differences, maximums, means, etc 

Focal slope, aspect, weighted average of neighborhoods 

Zonal sum or mean or maximum of field values in each 
zones 

 

Different Spatial Query Operations can be classified into following major groups 

 

• Update operation: Includes standard database operations such as create, modify 

and update. 

• Spatial selection: Contains the following operations: 

o Point query: Find all rectangles containing given point. 

o Range query: Find all points within a query rectangle. 
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o Nearest neighbor: Find all lines which intersect a query rectangle. 

o Distance scan: Enumerate points in increasing distance from a query 

point. 

o Intersection query: Find all the rectangles and polygons intersecting a 

query rectangle. 

o Containment query: Find all the rectangles or polygons within a query 

rectangle. [16] 

 

For the object data models, important spatial functions are those which 

determine the dimension of an object such as boundary and interior. Such operations 

come under the topological section and much future research is needed in the other 

fields of operator group. There are various queries that we performed in our experiment 

over the benchmark dataset using PostGIS and Spatialite. Both the database performed 

the same set of queries, but with a slight difference in terms of using the functions. There 

are various spatial functions that an SDBMS support. Table 5 describes different sets of 

functions and their use in a spatial database. Each function falls under a certain category 

which has a definite role while querying a database. 

Table 6: Operations listed in the OGC standard for SQL 

Basic Functions 

SpatialReference() Returns the underlying coordinate geometry 

Envelope() Returns the minimum orthogonal bounding rectangle of the 

geometry 

Export() Returns the geometry in a different representation 

IsEmpty() Returns true if the geometry is an empty set 

IsSimple Returns true if the geometry is simple (no self-intersection) 
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Table 6- continued 

Boundary() Returns the boundary of the geometry 

Topological/ Set Operators 

Equal Returns true if the interior and the boundary of the two geometries are 
spatially equal 

Disjoint Returns true if the boundaries and interior do not intersect 

Intersect Returns true if the interiors of the geometries intersect 

Touch Returns true if the boundaries intersect but the interiors do not 

Cross Returns true if the interiors of the geometries intersect but the boundaries do 
not 

Within Returns true if the interior of the given geometry does not intersect with the 

exterior of another geometry 

Contains  Tests if the given geometry contains another geometry  

Overlaps Returns true if the interiors of two geometries have non-empty intersection 

Spatial Analysis 

Distance Returns the shortest distance between two geometries 

Buffer Returns a geometry that consists of all points whose distance from the given 

geometry is less than or equal to the distance 

ConvexHull Returns the smallest convex set enclosing the geometry 

Intersection Returns the geometric intersection of two geometries 

Union Returns the geometric union of two geometries 

Difference Returns the portion of a geometry which does not intersect with 

another given geometry 

SymmDiff Returns the portion of two geometries which do not intersect with 

each other 

 

 
4.3 Conceptual Design of the Database 

The pictogram-enhanced ER diagram is shown in Figure 9. The Borough, 

Neighborhoods and Census_Blocks are encoded with polygon pictograms, Streets with  
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line pictogram and subway_stations with point pictogram. The different relations between 

different entities are also shown. It is clear from the figure that the pictograms enhance 

the spatial semantics conveyed by the ER diagram. 

 

 

Figure 9: ER diagram for the nyc_dataset, with pictograms 

 
4.4 Queries Used in Performance Evaluation 

As already discussed in section 4.2, in order to execute spatial queries on our 

database we used many spatial functions. In this section we will go through the different 

queries and will discuss the spatial function we used in order to execute them  
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The spatial queries we will present will be divided according to the categories 

they fall into.[11]. We will denote each query with a certain variable (Q1, Q2, …, Qn) so 

that later in this thesis we can refer to each query just by the variable. 

Simple SQL: 

Q1: Select name from nyc_neighborhoods 

 SELECT name 

 FROM nyc_neighborhoods; 

 

Q2: Select all the neighborhood names which are under ‘Manhattan’ borough.  

 SELECT name 

 FROM nyc_neighborhoods 

 WHERE boroname = ‘Manhattan’; 

 

Q3: Find number of letters in all the neighborhood names in Brooklyn. 

 SELECT char_length(name) 

   FROM nyc_neighborhoods 

   WHERE boroname = 'Brooklyn'; 

 

Q4: What is the population of the city of New York? 

 SELECT Sum(popn_total) AS population 

   FROM nyc_census_blocks; 

 

Q5: Find the total population of the borough The Bronx. 

 SELECT Sum (popn_total) AS population 

   FROM nyc_census_blocks 
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   WHERE boroname = 'The Bronx'; 

 

Q6: Find the percentage of white people for each borough. 

SELECT boroname 

,100*Sum(popn_white)/Sum(popn_total) AS white_pct 

FROM nyc_census_blocks 

GROUP BY boroname; 

 

Functions used in the simple SQL exercise 

F1: Average( ) 

The function Average( ) in PostGIS returns the average value of the 

numeric column. 

F2: Char_length( ) 

The function char_length( ) in PostGIS counts the length of the 

characters in the column. 

F3: Sum( ) 

The sum( ) function in PostGIS returns the sum of records in a set of 

records. 

Geometry: 

Q7: Compute the area of the ‘West Village’ neighborhood. 

 SELECT ST_Area(geom) 

   FROM nyc_neighborhoods 

   WHERE name = 'West Village'; 

 

Q8: Compute the area of ‘Manhattan’ in acres. (The unit given to us in the 
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       data is in meters 

 SELECT Sum(ST_Area(geom)) / 4047 

   FROM nyc_neighborhoods 

  WHERE boroname = 'Manhattan'; 

 

Q9: Compute the number of the census blocks with hole in New York City  

 SELECT Count(*) 

   FROM nyc_census_blocks 

WHERE ST_NumInteriorRings(ST_GeometryN(geom,1)) > 0; 

 

Q10: Find the total length of all the streets in New York City in Kilometers. 

 SELECT Sum (ST_Length(geom)) / 1000 

   FROM nyc_streets; 

 

Q11: Find the length of the street ‘Columbus Cir’. 

 SELECT ST_Length(geom) 

   FROM nyc_streets 

   WHERE name = 'Columbus Cir'; 

 

Q12: What is the JSON representation of the boundary of ‘West Village’? 

 SELECT ST_AsGeoJSON(geom) 

   FROM nyc_neighborhoods 

   WHERE name = 'West Village'; 

 

Q13: Summarized by the type, calculate the length of the streets in New York. 
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 SELECT type, Sum(ST_Length(geom)) AS length 

FROM nyc_streets 

GROUP BY type 

ORDER BY length DESC; 

Functions used in the Geometry exercise 

F4: ST_Area 

The function ST_Area in PostGIS returns the area of the surface if it is a 

polygon or a multipolygon.  

F5: ST_AsGeoJSON() 

The function ST_AsGeoJSON in PostGIS returns the geometry as a 

GeoJSON element. 

F6: ST_GeometryN 

The ST_GeometryN function in PostGIS returns the 1-based Nth 

geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, 

MULTILINESTRING, MULTICURVE OR MULTIPOLYGON. Otherwise, 

return NULL. 

 

Spatial relationship: 

Q14: What is the neighborhood of the ‘Broad St Subway Station’? 

 SELECT name, ST_AsText(geom) 

FROM nyc_subway_stations 

WHERE name = 'Broad St';  

(Which returns POINT (583571 4506714)) 

SELECT name, boroname 

FROM nyc_neighborhoods 
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WHERE ST_Intersects(geom, ST_GeomFromText ('POINT(583571 

4506714)',26918)); 

Q15: For the street named ‘W Lake Dr find the geometry value. 

 SELECT ST_AsText(geom) 

   FROM nyc_streets 

  WHERE name = 'W Lake Dr'; 

Q16: Find the neighborhood and borough of ‘W Lake Dr’. 

 SELECT name, boroname 

FROM nyc_neighborhoods 

WHERE ST_Intersects( 

geom, 

ST_GeomFromText('LINESTRING(586812 4501262,586811 4501142)', 

26918)); 

Q17: Find the street which joins ‘W Lake Dr’ . 

SELECT name 

FROM nyc_streets 

WHERE ST_DWithin( 

geom, 

ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)', 

26918), 

 0.1 

); 

(Here, 0.1 at the end is the distance in meters which says, find the street 

which is within distance 0.1 meters from W Lake Dr.) 
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Q18: Find the total number of people who live within 50 meters of ‘W Lake 

         Dr’ 

 SELECT Sum(popn_total) 

   FROM nyc_census_blocks 

   WHERE ST_DWithin( 

    geom, 

ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)', 

26918), 

   50 

  ); 

 

Functions used in the Spatial Relation exercise 

F7: ST_AsText( ) 

The function ST_AsText( ) in PostGIS returns the Well-Known Text 

(WKT) representation of the geometry/geography without SRID 

metadata. 

F8: ST_GeomFromText( ) 

The function ST_GeomFromText( ) in PostGIS returns a specified 

Geometry value from Well-Known Text representation (WKT). 

F9: ST_DWithin( geometry A, geometry B, radius) 

The ST_DWithin(geometry A, geometry B, radius) function in PostGIS 

returns true if the geometries are within the specified distance (radius) of 

one another. 

F10: ST_Intersects(geometry A, geometry B) 
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Returns TRUE if the geometries/geography “spatially intersect” – (share 

any portion of space) and FALSE if they don’t (they are disjoint). 

 

 

Spatial Joins: Spatial Joins allow a user to combine information from different tables by 

using spatial relationships. It matches rows from the join features to the target feature 

based on their spatial relative location. 

Q19: Find the distance between ‘Columbus Cir’ and ‘Fulton Ave’. 

 SELECT ST_Distance( 

 ST_GeomFromText( 

 (SELECT ST_AsText(geom) 

 FROM nyc_streets 

 WHERE name = 'Columbus Cir'), 26918), 

 ST_GeomFromText( 

 (SELECT ST_AsText(geom) 

 FROM nyc_streets 

 WHERE name = 'Fulton Ave'), 26918) 

 )/1000 as Distance_in_Kms; 

If we look carefully, in this query the user first tries to find WKT 

representation of Columbus Cir and Fulton Ave, then, by using the 

function ST_Distance calculates the distance between them. 

 

Q20: Find the neighborhood of ‘South Ferry’ subway station. 

 SELECT 

   nyc_subway_stations.name, 
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   nyc_neighborhoods.name, 

   nyc_neighborhoods.boroname  

 FROM nyc_neighborhoods  

 JOIN nyc_subway_stations  

 ON ST_Contains(nyc_neighborhoods.geom,  

 nyc_subway_stations.geom) 

 WHERE nyc_subway_stations.name = 'South Ferry'; 

 

Q21: What is the population and racial make-up of the neighborhoods of 

         Manhattan? 

 SELECT 

 nyc_neighborhoods.name, 

 Sum (nyc_census_blocks.popn_total), 

 100.0 * Sum(nyc_census_blocks.popn_white) /  

 Sum(nyc_census_blocks.popn_total), 

 100.0 * Sum(nyc_census_blocks.popn_black) / 

 Sum(nyc_census_blocks.popn_total) 

 FROM nyc_neighborhoods 

 JOIN nyc_census_blocks 

 ON 

ST_Intersects(nyc_neighborhoods.geom, nyc_census_blocks.geom) 

 WHERE nyc_neighborhoods.boroname = 'Manhattan' 

 GROUP BY nyc_neighborhoods.name 

 ORDER BY white_pct DESC; 

Functions used in the Spatial Join exercise 
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F11: ST_Contains(geometry A, geometry B ) 

The function ST_Contains( ) in PostGIS returns true if and only if no 

points of B lie in the exterior of A, and at least one point of the interior of 

B lie in the interior of A. 

F12: ST_Distance(geometry A, geometry B ) 

The function ST_Distance(geometry A, geometry B ) in PostGIS returns 

2-dimensional Cartesian minimum distance between two geometries. 

 

Nearest Neighborhoods: 

Q22: What subway station is in ‘Bensonhurst’? 

 SELECT s.name, s.routes 

FROM nyc_subway_stations AS s 

JOIN nyc_neighborhoods AS n 

ON ST_Contains(n.geom, s.geom) 

WHERE n.name = 'Bensonhurst'; 

 

Q23: What is the closest street to ‘Cortlandt’ subway station? 

 SELECT streets.gid, streets.name 

 FROM 

 nyc_streets streets, 

 nyc_subway_stations subways 

 WHERE subways.name = 'Cortlandt' 

 ORDER BY ST_Distance(streets.geom, subways.geom)  

 ASC 

 LIMIT 1; 
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List of some more important functions in Spatial Database Management System 

F13: ST_Length 

The function ST_Length in PostGIS returns the 2d length of the 

geometry if it is a linestring or multilinestring. 

F8: ST_Perimeter 

The function ST_Perimeter returns the total length of the boundary of the 

polygon or multipolygon. 

F9: ST_X 

 It returns the X coordinate of the point. 

F10: ST_Y 

 It returns the Y coordinate of the point. 

F11: ST_Crosses (geometry A, geometry B) 

The function ST_Crosses (geometry A, geometry B) returns TRUE if 

geometry A and geometry B have some interior points in common. 

F12: ST_Disjoint (geometry A, geometry B) 

The function ST_Disjoint (geometry A, geometry B) returns TRUE if the 

geometries do not spatially intersect. 

F13: ST_Equals (geometry A, geometry B) 

If both the geometry A and B represent the same geometry regardless of 

their direction then the function ST_Equals (geometry A, geometry B) 

returns TRUE. 

F14: ST_Overlaps (Geometry A, Geometry B) 

The function ST_Overlaps (Geometry A, Geometry B) returns TRUE if 

both the geometries have same dimension, and share space but are not 

completely contained by each other. 
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F15: ST_Touches (Geometry A, Geometry B) 

The function ST_Touches (Geometry A, Geometry B) returns TRUE if 

the interiors of the geometries do not intersect but have at least one point 

in common. 

F16: ST_Within (Geometry A, Geometry B) 

The function ST_Within (Geometry A, Geometry B) returns TRUE if 

geometry A is completely inside geometry B. 
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Chapter 5  

EXPERIMENTAL RESULTS 

 
5.1 Platform 

In our experimental evaluation, we present the methodologies for our 

experiments. We used Intel core i7 2.8 GHz CPU with 4GB memory on Windows 7 64-bit 

operating system. We performed the experiments on PostgreSQL with an extension of 

PostGIS with R-Tree and GiST indexing and SQLite with an extension of Spatialite which 

helped us to index the geometries on R*-Tree indexing structure. As, already discussed 

in Chapter 4, the data we used was a benchmark dataset of New York City which had a 

total of 58505 records consisting of 19091 lines, 129 polygons, 491 points and 38794 

non-spatial data with multipolygon geometries.  

 

5.2 Methodology 

We ran a set of 23 queries of different categories. In the last chapter, we divided 

the queries according to their categories and here we will identify them by their variable 

which are already defined in section 4.4. In the experiment we ran each set of queries on 

the database without index and on R-Tree, GiST and R*_tree indexed database and 

finally recorded their execution time. Here we will describe the execution time for each 

query by histograms which will help us evaluate the performance of each index under 

different categories.  

In the next section we will see the execution time in milliseconds for each 

category without index and indexed in all three indexing structures. 
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5.3 Time taken  

In this section we will describe the execution time of each category with the help 

of histograms. Each bar of the histogram will represent the time taken (in ms) by each 

query. We will start from the first category i.e. Simple SQL where we will show the 

execution time of the queries without and with indexes. 

 

5.3.1 Simple SQL 

 

 
 

Figure 10: Time taken without Index (Simple SQL) 
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Figure 11: Time taken by R-Tree Index (Simple SQL) 

 

 
 

Figure 12: Time taken by GiST index (Simple SQL) 
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Figure 13: Time taken by R*-Tree index (Simple SQL) 
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Figure 14: Average time taken by all the indexing structures (Simple SQL) 
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5.3.2 Geometry 

 

 
 

Figure 15: Time taken without Index (Geometry) 

 

 
 

Figure 16: Time taken by R-Tree Index (Geometry) 

103

22

250

321

11 11 22

0

50

100

150

200

250

300

350

400

Query

T
im

e
 i
n

 m
s

Without Index (Geometry)

Q7

Q8

Q9

Q10

Q11

Q12

Q13

11 14

81

21 11 11 21

0

50

100

150

200

250

300

350

400

Query

T
im

e
 i
n

 m
s

R-Tree (Geometry)

Q7

Q8

Q9

Q10

Q11

Q12

Q13



 

56 
 

 
 

Figure 17: Time taken by GiST Index (Geometry) 

 

 
 

Figure 18: Time taken by R*-Tree Index (Geometry) 
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Figure 19: Average Time taken by all the indexing structures (Geometry) 
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5.3.3 Spatial Relationship 

 
 

Figure 20: Time taken without Index (Spatial Relationship) 

 

 
 

Figure 21: Time taken by R-Tree Index (Spatial Relationship) 
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Figure 22: Time taken by GiST Index (Spatial Relationship) 

 

 
 

Figure 23: Time taken by R*-Tree Index (Spatial Relationship) 
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Figure 24: Average time taken by all the indexes (Spatial Relationship) 

 
 Thus again, R*-Tree wins by executing Spatial Relationship queries with 
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5.3.4 Spatial Joins 

 
 

Figure 25: Time taken without Index (Spatial Joins) 

 

 
 

Figure 26: Time taken by R-Tree Index (Spatial Joins) 
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Figure 27: Time taken by GiST Index (Spatial Joins) 

 

 
 

Figure 28: Time taken by R*-Tree Index (Spatial Joins) 
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Figure 29: Average time taken by all the indexes (Spatial Joins) 
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5.3.5 Nearest Neighbor 

 
 

Figure 30: Time taken without Index (Nearest Neighbor) 

 

 
 

Figure 31: Time taken by R-Tree Index (Nearest Neighbor) 
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Figure 32: Time taken by GiST Index (Nearest Neighbor) 

 

 
 

Figure 33: Time taken by R*-Tree Index (Nearest Neighbor) 
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Figure 34: Average time taken by all the indexes (Nearest Neighbor) 
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Chapter 6  

CONCLUSION AND FUTURE WORK 

 
 In this thesis, we compared the performance of three different spatial 

indexing structures for five different categories of queries. The spatial indexing structures 

we implemented were R-Trees, GiSTs and R*-Trees on two different Spatial Database 

Management Systems, namely PostgreSQL and SQLite with an extension of PostGIS 

and SpatiaLite respectively. 

 After executing various extensive queries, R*-Trees gave us the results 

in the least time for all the categories except for Simple SQL. R-Trees are the best 

indexing structure for executing Simple SQL queries and GiST indexing can be 

considered for Spatial Relationships, Spatial Joins, and Nearest Neighbor search queries 

after R*-Trees.  

 We now plan to build a Spatio-Temporal indexing structure which can 

efficiently index dynamic data with an additional dimension of time. Our further works will 

include the implementation of a new spatio-temporal indexing structure on dynamic 

geographical datasets. Dynamic datasets have time as another dimension which makes it 

more complex than the static data. Dynamic datasets consist of million users location 

data. Our objective is to develop and implement an indexing structure that could index 

the dynamic data and allow a user to retrieve the data in least possible time.   
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