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Abstract 

FASTER SAMPLING OVER THEORITICAL AND 

ONLINE SOCIAL NETWORKS 

Ramakrishna Aduri, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Gautam Das 

Online social networks have become very popular recently and are used by 

millions of users. Researchers increasingly want to leverage the rich variety of 

information available. However, social networks often feature a web interface that only 

allows local-neighborhood queries - i.e., given a user of the online social network as 

input, the system returns the immediate neighbors of the user. Additionally, they also 

have rate limits that restrict the number of queries issued over a given time period. These 

restrictions make third party analytics extremely challenging. The traditional approach of 

using random walks is not effective as they require significant burn-in period before their 

stationary distribution converges to target distribution. In this thesis, we build a prototype 

system SN-WALK-ESTIMATER that starts with a much shorter random walk and uses 

acceptance-rejection sampling to get samples according to a desired distribution. Using 

only minimal information about the graph such as diameter, SN-WALK-ESTIMATER 

produces high quality samples with a much lower query cost. We test the system over 

several theoretical graph families and real world social networks. 
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Chapter 1  

INTRODUCTION 

The popularity of social networks has been growing ever since the 

communication has become online and led to creation of the interactive social networks 

such as Facebook, Twitter etc. The Facebook and Twitter ranks second and eighth in 

terms of online traffic according to Alexa, a traffic analytics website [7,8].  It can be 

observed that most of the users spend their time online not just for email but for social 

activity over internet via well-defined social networks. An online user can be described as 

someone who creates a profile on a social networking site such as Facebook and adds 

personal details which may not be required to be submitted. A user is  connected to 

another user by means of having a similar interest or somebody whom the user might 

know outside the internet. The social network can be considered as either directed or 

undirected graph that has users as nodes and their connections as edges. A complex 

network will have weighted edges as can be seen in case of Facebook which allows the 

users to rank their connects as per their liking, such as close friend.  

The enormous size of the social networks and the combined activity of all the 

users has created lot of interest among researchers who explore the behavioral traits of 

individuals. The whole social network can be treated like a breathing apparatus of 

emotions or expression of individuals reacting to worldwide events, irrespective of 

whether they are good or bad. It has become a norm until recently that the quickest way 

to communicate to wide audience is through the social networks.  

The social networks have been used differently for different research 

communities. For example, the sociologists use them as a tool to collect data regarding 

the online human behavior. Advertising agencies use the data to take advantage of any 

better marketing strategies for their clients. The engineering researches can analyze how 
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to design better social networks by observing bottle necks within the existing framework. 

The social networking companies themselves can analyze the data to create even more 

user friendly options and cool techniques. They may even try to use the data to optimize 

the data storage facilities of their data centers. An internet service provider might analyze 

the data traffic generated by users online to understand the clogs within its delivery 

network [3].  

 As described above, the social networks offer the researchers to look for any 

data related behavioral traits and exploit those patterns to make their own systems better. 

Despite these networks offer such information clouded in their networks, all of such data 

is not available due to the fact that most of the social networking site organizations do not 

provide citing both technical and privacy related legal issues. On the other hand, 

researches cannot use techniques such as web scraping because of existing limitations 

on API query limits, login requirements. It is impossible to issue large number of local 

neighborhood queries because of these restrictions. This leaves only the option of 

performing sampling over the networks in order to understand the whole network. The 

sampling can be done over defined statistical methods. However, the employment of 

statistics requires a complete knowledge of the network to accurately assess the 

information, lack of it means that the sampling is going to be very difficult [3].  

The sampling was carried by graph traversal techniques such as Breadth First 

Search (BFS). However, BFS induces bias towards high degree nodes and thus is not 

reliable [9]. The random walks offer the other alternative over the graph traversal 

techniques. The difference between the two methods is that in graph traversal a node is 

visited exactly once but in random walk the node can be visited more than once. Simple 

random walk consists of starting at a node and choose next node in uniformly random 

fashion.  
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The random walks such as Simple Random Walk are biased towards high 

degree nodes because of the inherent convergence of stationary distribution directly 

dependent on the degree of nodes. Another problem with random walks is their inability 

to converge to the target distribution quickly and this is called burn-in period. The random 

walks have an inherent property of selecting the nodes more than once and this can lead 

to high variance. All these lead to error in aggregate estimation of the social networks. To 

make matters difficult, if a graph's topology is not known, then it is not possible to 

calculate sampling distribution [4]. However, the random walks are still better than other 

techniques because they guarantee a convergence after long burn-in periods. This is 

because of the properties of Monte Carlo Markov Chain (MCMC) methods that they are 

based on. A clear example is in the case of Simple Random Walk (SRW), the stationary 

distribution is in directly proportionate to the degree of a node, eliminating the bottleneck 

of graph topology.  

The key challenge is to have a quick sampling technique which does not 

compromise on the quality of the sampled data. This thesis will describe building SN-

WALK-ESTIMATER which produces sampled distribution in faster convergence to target 

distribution. The following chapters describe the technical background of the problem and 

discuss how those problems have been tackled.     
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Chapter 2  

TECHNICAL BACKGROUND 

Graph Sampling 

There has been explosive growth among online social networks in the last few 

years and more new users are joining these networks on daily basis. Facebook, with 890 

million daily active users, is one example [1] and Twitter, with its 288 active million 

monthly users who are sending 500 million tweets per day, is another example of the 

explosive growth [2]. It is apparent that these huge numbers of users being active round 

the clock present the researchers who analyze the behavior characteristics of such online 

network of users, an opportunity to decode the common or trendy patterns, which could 

help them understand how these networks actually behave in various characteristic ways. 

However, it is not simple to sift through these huge graphs of social networks because of 

their sheer size besides the ever existing problem of network organizations not providing 

the data due to various issues ranging from technical to ethical. Even if they did provide 

the whole data it is very difficult to handle such huge amount of data without facing 

technical issues. The crawling of entire graph of network is not only practically infeasible 

but the network organizations also have restrictions on the number of queries that can be 

issues online.  Therefore, it is of paramount importance that there must be a way to 

shrink the size of social networks so that the smaller graphs of networks can be better 

analyzed in an efficient manner and are understood to reveal the behavioral patterns of 

all the users.  

  Graph Sampling is an efficient method of producing smaller graphs which 

represent the huge social networks in a way that they can be analyzed at a micro level 

efficiently and provides the big picture of huge social networks. It is a challenge to create 

a small graph which efficiently represents the huge graph of social network and acts as a 
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sample to generate the desired aggregate estimations of sampled nodes which represent 

the original graph. The graph sampling algorithms have been researched upon over the 

years and there has been fair evaluation of such graph sampling algorithm candidates. 

Bread First Search (BFS) is one such early candidate which is biased towards high 

degree nodes [3]. Random walk algorithms based on Monte Carlo Markov Chain 

(MCMC) methods are an efficient for sampling nodes from a typical huge online social 

network. There are traditional random walk algorithms such as Simple Random Walk 

(SRW) and well known Metropolis-Hastings Random Walk (MHRW). These algorithms 

suffer from long execution times even though they are efficient. In order to do a faster 

sampling, a new algorithm called Walk-Estimate is proposed [4]. 

The model of the graph can be considered as followed. The online social 

networks are directed edges among nodes which can be deemed as nodes. In practice, 

the directed edges can be reduced to undirected edges only if the edges exist in both 

directions between a set of two users. Let 𝑉 be the set of all vertices in the graph 𝐺 and E 

be the set of edges, then |𝐸| can be used to denote the number of edges. For a given 

node 𝑣 ∈  𝑉, Let 𝑁 (𝑣) be the neighbors of the node, and the degree of node becomes  

𝑑 (𝑣)  =  |𝑁 (𝑣)|. The goal of graph sampling is to generate a sample of 𝑉 which is small 

enough to be analyzed and produce behavioral characteristics of the whole graph.  

 

Random Walks 

Markov Chains having a stationary distribution are used in drawing samples so 

that the drawn samples get support from the distribution. Markov chain exhibits a unique 

property of drawn samples, wherein, the next drawn sample is dependent only on the 

current drawn sample but not anything further than it. This rises to important notion of a 

distribution which does not depend on either the initial state of drawn sample or the 
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instance at which a sample is drawn. The Markov Chain converges to a stationary 

distribution [5].  A random walk can be described as MCMC method for a given graph. A 

random walk starts from a node, say 𝑣𝑖 ∈  𝑉, and transits to another node 𝑣𝑖+1 

in the neighborhood of 𝑣𝑖, according to a pre-determined distribution. This distribution 

over 𝑁 (𝑣) is referred as transit design [4].  

For the MCMC based random walk to converge to a stationary distribution, it has 

to satisfy three important properties. First is the irreducibility which means the random 

walk can start at any node in the graph and can produce a non-empty set of nodes with 

positive probabilities in finite number of iterations. This property is quite suitable for 

design of random walk for social networks because it eliminates the uncertainty 

surrounding the starting node. Second is the aperiodicity which will ensure the random 

walk does not have fixed period of oscillation. Third is the property of random walk being 

positively recurrent. This means that if an initial node is sampled from a distribution, all 

the subsequent  samples are also sampled according to the same distribution [5]. 

In Random Walk over the social networks, the samples can be obtained by 

crawling. The process of crawling involves in selecting an initial node and repeats the 

process of selecting another node. In each iteration, the initially selected node's 

neighbors are visited based on how they are selected. Two popular types of random walk 

are Simple Random Walk (SRW) and Metropolis-Hastings Random Walk (MHRW) which 

are different from each other on how the neighbors are chosen from starting node.  

The Simple Random Walk is biased towards high degree nodes. This is due to 

fact that the probability of crawling from a node to its neighbor always converges to a 

stationary distribution. This ensures the crawling happens towards high degree nodes. 

Since Simple Random Walk is biased towards high degree nodes, the samples obtained 

tend to be biased while arriving at aggregate estimation. 
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The SRW can be defined as follows: 

"Given graph G (V, E), and a current node u ∈  V, a random walk is called Simple 

Random Walk if it uniformly at random chooses a neighboring node 𝑣 from𝑢’s 

neighbors as the next step. The transition matrix T is  

 𝑇(𝑢, 𝑣) =  �1/|N (u)|, if v ∈  N (u)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

" [4].   

The Metropolis-Hastings Random Walk offers the possibility of correcting the 

bias induced by Simple Random Walk by altering the transition probabilities. The MHRW 

modifies the transition probabilities such that the probability of crawling to a smaller 

degree node is more than crawling to a higher degree node. This is achieved by the 

following transition matrix: 

  𝑇(𝑢, 𝑣) =  �

1
|N (u)|

,                if v ∈  N (u)

1 − ∑ 𝑇(𝑢,𝑤)𝑤 ∈ 𝑁(𝑢)  𝑖𝑓 𝑢 = 𝑣
0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  [4].

 

 

The stationary distribution then reduces to uniform distribution, which gives an 

opportunity to the algorithm to reject some of higher degree nodes thus ensuring the 

impact of biased samples is reduced [3]. 

 There is an inherent problem of these two random walk, that, they both depend 

on the convergence of stationary distribution. The convergence of distribution becomes 

even more significant problem considering a huge graph of social networks. The key 

question is how quickly the random walks converge or when to stop looking for sampled 

nodes. This is the key performance characteristics of random walk algorithms and often 

called by the name “burn-in period”. The burn-in period is can be termed as the number 

of steps that a random walk takes to arrive at stationary distribution [4]. Since the 
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convergence ensures the elimination of dependency on the starting node, it comes at 

cost of performance of random walk algorithm. 

 The Relative Point-wise Distance, a term which describes the largest relative 

difference between the distribution at a given time and the stationary distribution, can be 

defined as follows: 

 ∆ (𝑡) = max𝑢,𝑣 ∈ 𝑉,𝑣 ∈ 𝑁(𝑢) �
|𝑇𝑢𝑣𝑡 − 𝜋 (𝑣)|

𝜋 (𝑣)
 

where 𝑇𝑢𝑣𝑡   - the element of 𝑇𝑡  with indices 𝑢 and 𝑣 

           𝜋     - the stationary distribution of random walk 

 In the view of estimating the performance of a random walk, it is essential to note 

that the above difference (Δ (k)) must be converging to zero. The burn-in period can be 

understood as the minimum value of k, such that it remains below a threshold value 

which is a pre-determined value of the relative point-wise distance.  

 In order to monitor such values for relative point-wise distances, it is imperative 

to have monitors which may be called as convergence monitors. One such convergence 

monitor test is Geweke Diagnostic. The basic idea of applying Geweke Diagnostic is to 

assess two parts of the same random walk and observe the means of each part to 

determine whether they are different from each other or not. The test is to observe 

whether two parts have the same distribution so much as that they both are almost equal. 

The Geweke Diagnostic works on two windows, Window A and Window B, which are 

created out of “k” steps of random walk, with one being 10% of k and other being last 

50% of k. For any attribute θ, the z value can be calculated as shown below: 

   𝑍 =  � 𝜃𝐴− 𝜃𝐵

�(𝑆𝐴+ 𝑆𝐵)
� 

where 𝜃𝐴 and 𝜃𝐵 are means of 𝜃  and 𝑆𝐴 and 𝑆𝐵 are corresponding variances. 
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[6]. 

As it can be observed that as z value tends to zero, the stationary distribution converges. 

Therefore, in practical scenario, since it is hard to achieve absolute zero value to have 

100% confidence of achieving the convergence, it is useful to have a threshold of 0.1 to 

have enough confidence [6].  

 The property of a graph called spectral gap or eigenvalue helps in understanding 

the burn-in period of a random walk. Since each random walk has its own transition 

matrix, its eigenvalues can be computed and used to estimate the length of burn-in 

period. The spectral gap of a graph is actually the difference between its two largest 

eigenvalues. However, the largest eigenvalue is 1 corresponding to the stationary 

distribution. This is denoted by the symbol, λ and is calculated as “1-(second largest 

eigenvalue)” [4]. 

 

Acceptance Rejection Sampling 

The unknown graph of online social networks present a problem of drawling 

samples from the target distribution. The sampling of such nodes becomes difficult to 

adhere to the target distribution because of its probability density function (pdf). The pdf 

is complex so that it is almost impossible to directly draw the samples from the target 

distribution. Therefore, a novel idea of a known distribution's probability distribution 

function multiplied with a constant, is used in determining whether to accept the sample 

or reject it. For a sample node of u is drawn with the probability of p (u) while the target 

distributions probability is q (u). It is multiplied by a constant which is generally a 

threshold value designed. This is the key challenge in determining the constant such that 

the number of rejected samples is low. Consequently, a bias is introduced with large 

threshold value. The target distribution can be computed as shown below: 
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𝛽(𝑢) =
𝑞(𝑢)
𝑝(𝑢) ∗  min 𝑣 ∈  𝑉   (

𝑝(𝑣)
𝑞(𝑣)) 

However the challenge is to compute  min 𝑣 ∈  𝑉   (𝑝(𝑣)
𝑞(𝑣)

) because of unknown nature of 

graph beforehand. A threshold can be set for the purpose of handling  min 𝑣 ∈  𝑉   �𝑝(𝑣)
𝑞(𝑣)

� 

even though it can induce certain degree of bias. 

 

Performance measures 

The performance of a sampling algorithm is an interesting one to understand. 

One performance measure can be the query cost which is the total number of steps that 

the algorithm takes to arrive at the desired sample set of nodes in an online social 

network. The online social networks do not allow the queries to be executed beyond a 

certain limit and they usually filter such crawlers which issue the queries incessantly by IP 

addresses. Or even if the social networks do not have limit on the number of queries 

issued, it is computationally not possible to derive the sample sets for aggregation 

estimates. Another performance measure depends on the bias introduced by the 

algorithm itself. For example, in the case of Simple Random Walk, the drawn samples 

are biased towards high degree nodes and the actual probability distribution can deviate 

considerably from the target distribution. Generally, the target distribution can be the 

uniform distribution which is an unbiased distribution. It is ideal to have the actual 

distribution can converge to the uniform distribution. However, the drawn samples can 

have bias as the random walk algorithms are naturally inclined towards high degree 

nodes. One problem with the bias is that the calculating how different the two 

distributions, the actual distribution and the target distribution, are from each other and 

theoretically it can be calculated as a form of vector difference [4].    
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Ideal-Walk 

The existing random walk algorithms have an issue with the burn-in period or the 

time it takes to converge to the target distribution so that the algorithm can stop exacting 

more samples. Both the Simple Random Walk and Metropolis-Hasting Random Walk 

suffer from the problem of converging quickly to the desired set of samples. These two 

random walks require the walk to be long enough so that the difference between the 

actual distribution or sample distribution and the target distribution or stationary 

distribution can be minimal or negligible. Consequently, this results in high query cost 

which is the number of steps that the algorithm takes to converge. The distance between 

the two probability distributions can be measure by vector difference and it forms a key 

performance measure as discussed in preceding section [4].  

The difference between the two probability vector changes as the length of 

random walk increases. This is evident in observing the probability at the starting node 

which is always 1 and the probability at all other nodes is zero. As a result, the 

distribution will be skewed at the start. As the random walk progresses, the probabilities 

at nodes it visits becomes more than zero, making the probability vector to contain 

positive values. The interesting factor is to observe the rate at which the values of 

probability vector become positive and consequently, how it affects the distance 

measure. The values of probability at all nodes become positive as the length of random 

walk exceeds the diameter of the graph. The maximum value in the set of all nodes 

experiences the sharpest decline after few initial steps of the walk and the distance 

between the actual distribution and target distribution also becomes smaller. However, 

the rate at which the decrease in the distance between the two probability distributions 

happens slowly after it experiences a drastic fall during the few initial steps of the walk. It 

is worth to recall that the convergence to absolute zero between the two distributions can 
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never occur and it takes very large number of steps to achieve quasi-zero difference 

between the two probability distributions, namely, the actual distribution of the samples 

and the target distribution. [Reference to Figure 1], As it can be observed, the maximum 

probability falls drastically after few initial steps of the walk and once the length of the 

walk exceeds the diameter of the graph, the drop in the value of maximum probability 

becomes stagnant. Also, it can be seen that the minimum probability sharply rises and 

then becomes stagnant as well. It can be inferred from the behavior of probability 

changes during the walk that few initial steps are crucial to major change in the values 

and once the values change significantly, no matter how many steps that the random 

walk takes after that, the change becomes negligible. This reveals an interesting point on 

how random walks behave over a number of steps during the walk that it relies heavily on 

the initial stages for greater change and later part for much lesser change. This results in 

high burn-in periods of traditional random walks [4].  

On the contrary to the behavior of random walk’s convergence to target 

distribution, the performance of acceptance and rejection sampling behaves in an 

opposite manner. If the rejection sampling is applied even before the length of the walk is 

at least as long as the diameter of the graph, it costs heavily and computationally 

infeasible. On the other hand, once the random walk’s length becomes as much as the 

diameter, the rejection sampling becomes cost effective. This can be proven by way the 

acceptance rejection sampling depends on the minimum probability that it requires to 

assess the possibility of accepting a sample. Since at the beginning of the walk, the 

minimum probability is zero for most of the nodes, it is not possible to accept any sample 

and as the length of the walk increases, the minimum probability becomes positive 

allowing the samples to be accepted. Therefore, the time when it happens that the 

minimum probability reach the level of stability within its value, the acceptance and 
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rejection sampling can be applied to quicken the process of accepting the samples. 

Subsequently, the acceptance and rejection sampling also becomes cost effective [4]. 

 There are two patterns emerge from above description of how the convergence 

can be achieved at different stages of the random walk. One is to simply wait for the 

random walk to converge to target distribution and the other is to use acceptance 

rejection sampling to arrive at the convergence fast enough. An observation can be made 

while deciding when to apply the acceptance rejection sampling that if it is applied when 

the sample distribution reaches a point where the random walk becomes longer than the 

diameter of the graph, the acceptance rejection sampling becomes much effective. If a 

threshold which informs the walk when to apply the acceptance rejection sampling can be 

estimated, the whole burn-in period of the walk itself can be controlled. The value of the 

threshold must not be large because it will not help determine when to apply rejection 

sampling. Therefore, the idea of an Ideal Random Walk could be the one that completes 

the task of drawing suitable samples quickly enough.  

 

Walk-Estimate 

As stated above sections, it is near impossibility that crawling over the entire 

online social network is possible and it requires many queries to achieve that. To avoid 

the issue of crawling entire network of nodes to arrive at desired aggregate estimations, 

the idea of sampling can be used. However, this idea is plagued with convergence to the 

desired target distribution and results in high query cost, a key performance indicator 

considering the number of nodes to be sampled. A new algorithm, called Walk-Estimate, 

is introduced and it is designed to eliminate the delay in reaching the target distribution by 

random walk [4].  The algorithm takes the advantage of the observations made during the 

traditional random walk by applying the acceptance rejection sampling after a short 
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random walk. If the exact point where the rate of change in the maximum value of 

probability value in the actual distribution becomes almost zero, which means the change 

in the actual value, becomes stagnant the walk can be stopped and the acceptance 

rejection sampling can be applied. The Walk-Estimate does not wait for the convergence 

to happen rather it goes ahead with acceptance rejection sampling after a short walk. The 

Walk-Estimate does the estimation of probability of sample node 𝑝𝑡  (𝑢), say for node 𝑢, 

after certain steps of random walk, say 𝑡 and use the acceptance rejection sampling to 

adjust the probability of the node 𝑢 to the desired target distribution. It is proven that the 

additional cost of acceptance and rejection sampling is far less than the actual cost of 

running the traditional random walk in the case of it running more than the diameter of the 

graph [4]. Thus, the algorithm Walk-Estimate’s input is the random walk based on MCMC 

sampler and outputs the desired sample set of nodes according to the desired target 

distribution, i.e., the stationary distribution.  

The Walk-Estimate consists of two components. One is the Walk and other is the 

Estimate. The Walk part of the algorithm delivers the short walk and its length while the 

Estimate part provides the estimation of reaching a sampled note after such short walk. 

For example, if the sampled node is v and the estimate probability is 𝑝 (𝑣), after a walk of 

say t-steps, which is estimated by Walk component, the Estimate is called by Walk to 

provide the value of 𝑝 (𝑣). Based on 𝑝 (𝑣), the Walk then performs the acceptance 

rejection sampling on the node v [4]. 

The input to the Walk-Estimate also consists of two parts, one being the design 

of MCMC sampling algorithm and two being the desired sample size. The aim of the 

Walk-Estimate is to reduce the wait cost of traditional random walks and produce a set of 

desired samples which conform to target distribution. 
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Algorithm Walk 

 The key challenge for the Walk to work to be aware of the graph topology before 

it calls the Estimate to estimate the probability at any given node. However, in practice, it 

is not possible to know the graph topology beforehand and it gives rise to question of how 

to determine number of steps that the Walk takes before it calls the Estimate. Since it is 

impossible to estimate the length of short walk or the number of steps that Walk takes, it 

can only be arrived at after observing the behavior of Walk over a number of graphs. The 

Walk-Estimate is performed over theoretical graphs, Cycle, Hypercube, Barbell, Tree and 

Barabasi-Albert [4]. The results showed that the length of the short walk is very small and 

it can be set to a lower value without compromising on the query cost. A default walk 

length which is twice the graph diameter can be used and the exact value is 10 for real 

social networks. However, setting up the length of Walk remains as key challenge as far 

as Walk is considered and it must be at least the diameter of the graph to allow the Walk 

to have conservative approach towards final desired sample set. 

 

Unbiased Estimate 

 The Walk described in the section above calls the Estimate to get probability of 

the sampled node after a short walk, so that it can apply the acceptance and rejection 

sampling to determine whether to accept the sample or not. The Estimate produces an 

unbiased estimate of the sample’s probability with negligible query cost. However, the 

estimation of the simple method produces considerable error because of its high value of 

variance estimation. 

 The Unbiased Estimate for a given sample node u, can be computed as below: 

𝑝𝑡  (𝑢) = �
𝑝𝑡−1 (𝑣)
|𝑁(𝑣)|

𝑣 ∈𝑁 ( 𝑢 )      
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Where, 𝑝𝑡  (𝑢)   is the probability of estimation for the node u, 

 𝑝𝑡−1 (𝑣)  is the probability of node v ,which is a neighbor of u, 

𝑁 (𝑣) is the degree of the node v. 

The probability estimation of node u is dependent on its neighboring node v which in turn 

depends on its neighboring node and so on. This is a clear recursive process of finding 

the probability of a given node at a certain random walk length. Since the starting node 

will have a probability of 1, the limits can be set as p (starting_node) as 1 and for rest of 

others it could be zero. As the calls return the successive value for corresponding nodes, 

the probability values at the visited nodes become non-zero and positive values.  

 It can be proven that the estimate is an unbiased estimation as shown below:  

The unbiased estimation of node u is simply,                                                                        

𝑞𝑡  (𝑢) = �
|𝑁 (𝑢)| ∗ 𝑝𝑡−1 (𝑣)  

|𝑁(𝑣)|
𝑣 ∈𝑁 ( 𝑢 )      

 

where 𝑞𝑡  (𝑢) is the unbiased estimate.  

The expected value of the q t (u) can be derived to get the p t (u), which is the estimated 

value.  

The simple derivation is [4], 

 𝐸 (𝑞𝑡  (𝑢) ) =  ∑ 1
|𝑁(𝑢)|𝑣 ∈𝑁 ( 𝑢 ) 

|𝑁 (𝑢)|
|𝑁(𝑣)|

 𝐸 (𝑞𝑡−1  (𝑣) )  

                   =  ∑𝑣 ∈𝑁 ( 𝑢 ) 
1

|𝑁(𝑣)|
 𝐸 (𝑞𝑡−1 (𝑣) ) 

       = ∑𝑣 ∈𝑁 ( 𝑢 ) 
1

|𝑁(𝑣)|
 𝑝𝑡−1  (𝑣)) 

       =  𝑝𝑡  (𝑢) 

 

The Unbiased Estimate algorithm can be stated as: 

For Node u, Start node w and Walk Length t, 
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Unbiased-Estimate (u,w,t) =  

 If t == 0 and u == w then return 1 

If t == 0 and u != w then return 0 

Else return 𝑝𝑢𝑣
𝑞𝑢𝑣

 * Unbiased-Estimate ( v, w, t-1 ) [4]. 

However, the error of estimation will be high because of high value of variance. The 

section below details how to tackle the problem of high variance and presents the method 

to reduce it. 

 

Variance Reduction Strategies 

The sampled nodes should exhibit less variance so that the confidence of the 

drawn sampled nodes is high and to keep the standard error low. Since the estimation of 

the nodes is high, it causes high variance and hence the high estimation error. The error 

should be reduced and it can be proven that the probability of sampled nodes is low 

aiding the error to be on higher side. This is conspicuous by the error calculation 

by�(1 − 𝑝𝑡  (𝑢)) 𝑝𝑡  (𝑢)⁄ , where the 𝑝𝑡  (𝑢) is the probability of the sampled node 𝑢. The 

reduction of the error can be achieved by two stages, one the initial crawling and the 

other weighted sampling [4].  

 The initial crawling performs the crawl for the for certain number of hops in the 

neighborhood of the starting node. For example, for a starting node 𝑠, the probability of 

all its neighbors 𝑣 , 𝑝(𝑣) can be computed as, 1 |𝑁(𝑠)|⁄ . In order to keep the cost of the 

initial crawling low, the number of hops can be anywhere between 2 to 3 [4]. The cost will 

be likely to be low because the nodes might have been already visited by the Walk. 

 The weighted sampling takes advantage of the knowledge of the random walks 

and back ward estimations performed already and picks the node with the computed 
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probability. The sample probability of a node 𝑢, 𝑝(𝑢) can be calculated based on the 

values of 𝑝𝑡−1(𝑢′), instead of relying only on the uniform random basis. This is justified 

because of the varying values of probabilities of neighboring nodes. This can only be 

performed after the initial crawling because of the initial conditions of probability values 

will not be different from each other (zero values). In this way, the sampling process can 

be shifted from being random to being based on weighted sampling of nodes. To retain 

the unbiased estimate of the probability, the minimum probability of ∈ is assigned to all 

the nodes and remaining 1−∈ is assigned in direct proportion to the number of times the 

node 𝑢′ is visited during the Walk for 𝑡 − 1 number of steps [4]. 

 All the random walks start from the same node and let us assume the number of 

such walk are 𝑛ℎ𝑤 and the number of times the node 𝑢′ is reached after (𝑡 − 1) steps 

is 𝑛𝑢,,(𝑡−1). Then the ratio of  
 𝑛𝑢,,(𝑡−1)

𝑛ℎ𝑤
 , will have impact on how the node 𝑢′ is picked.  

The algorithm can be summarized as,  

  

WS-BW ( ,𝑤, 𝑡) =  

  Initiate ∈ 

  If 𝑡 = 0 and  𝑢 = 𝑤, then return 1 

  If 𝑡 = 0 and  𝑢 ≠ 𝑤, then return 0 

  else   

         𝜋𝑢′ =  ∈
|𝑁(𝑢)|

 

         𝜋𝑢′ = 𝜋𝑢′ + (1−∈) ∗  
 𝑛𝑢,,(𝑡−1)

𝑛ℎ𝑤
   

         return  1
|𝑁(𝑢)|∗𝜋𝑣

 *  WS-BW ( 𝑢,𝑤, 𝑡 − 1  ) 
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Algorithm Estimate 

The algorithm Estimate can be produced by using the two concepts of initial 

crawling and weighted sampling. To reduce the standard error even further, the algorithm 

Estimate can be run multiple times and the average of all the runs can be taken as final 

value. The conspicuous question of how many such executions are possible depends on 

how efficient the query system is and how much the system can tolerate a given query 

cost. The number of executions for each node can be evaluated as a proportionate value 

to that of the estimated variance.   

The algorithm Estimate can be stated as follows: 

Estimate ( 𝑤, 𝑡, ℎ,𝐹 ) : 

 Start with node 𝑤 and crawl the neighborhood of 𝑤 for ℎ hops 

 Let 𝑉𝑓 be the set of nodes that random walk 𝐹 hits  

 𝑓𝑜𝑟 𝑢 ∈  𝑉𝑓  execute the following: 

          𝑝𝑡(𝑢 ) = WS-BW ( 𝑢,𝑤, 𝑡) 

  Compute estimation variance of 𝑝𝑡(𝑢 ) 

     𝑒𝑛𝑑 𝑓𝑜𝑟 

     Based on the query cost limitations, use WS-BW algorithm to reduce variance 

     Pick the nodes at random in proportion to their variance  [4]. 
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Chapter 3  

ARCHITECTURE 

The Architecture of the SN-WALKER-ESTIMATE as shown in Figure 4-1, 

consists of frontend UI which picks up the json files from a backend that has two major 

components, Graph Walker and Graph Sampler, which in turn contains a sub component 

of Graph Estimator.  

 

Figure 3-1 System Architecture 

 
 
 

Graph Walker 

The Graph Walker determines the probabilities for the nodes to be crawled. For 

the traditional random walk, the nodes are chosen based on either the Metropolis-

Hastings Random Walk algorithm or Simple Random Walk algorithm. An initial check 

window controls the number of nodes to be crawled in the traditional random walk and 
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using the Geweke diagnostic the crawling can be stopped. The Geweke diagnostic is 

checked either for the cutoff or an absolute zero difference between the two means. The 

nodes that are visited during the random walk are set to a cutoff by Geweke diagnostic.  

For the Walk-Estimate, the nodes are again chosen according to chosen 

algorithm of either Simple Random Walk or Metropolis-Hastings Random Walk. However, 

the probabilities are simultaneously calculated for estimation.  

The Graph Walker is implemented by the Walk component of Walk-Estimate 

algorithm, which produces the short walk after an initial crawling of h-hop neighborhood 

which is a cost effective method of estimating the probabilities. The Graph Walker after 

performing a short walk conducts the acceptability of the sample using the acceptance 

and rejection sampling method. The probability of acceptance and rejection sampling is a 

fraction of minimum probability at the node which is considered to be the sample and the 

target distribution at the same node. Once the probability is computed, it is compared to a 

randomly generated floating number between 0 and 1, to decide whether to accept or 

reject the sample.  

The Graph Walker runs in an iteration of a certain number of random walks so 

that it reduces the error in the sampling distribution and after it performs a short walk, it 

calls the component Graph Sampler which operates on the Estimate component of Walk-

Estimate Algorithm. 

 

Graph Sampler 

In the traditional random walk algorithms, samples are simply obtained by 

chosen algorithm whether it is MHRW or SRW. The probabilities of the nodes are 

estimated during the forward walk of the random walk algorithm for certain number of 

walks which has been set to 100. The visited samples are then calculated for the 
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probabilities and the last node of the walk is chosen as candidate node after performing 

the acceptance rejection sampling on it.  

The Graph Sampler uses stratified sampling as an option where the probabilities 

of neighboring nodes are computed to assess the samples. The Walk component of the 

Walk-Estimate calls the Estimate component to assess the sampling distribution and to 

perform the acceptance and rejection sampling. The Graph Sampler provides the 

estimation probabilities in two walks, one the forward walk and other the backward walk. 

In the forward walk, the Graph Sampler runs the Estimate component of the Walk-

Estimate for certain number of walks and collects all the samples with the estimated 

probabilities. The estimated probabilities are calculated within a loop controlled by the 

length of the random walk, which is given by the Graph Walker, as a fraction of a 

constant less than 1 and degree of a particular node.  

The Graph Sampler induces high variance because the low probability nodes are 

not considered and also due to the fact the estimate biased towards high degree nodes. 

To correct this error, the Graph Sampler uses the unbiased estimate to calculate the 

probabilities as a backward walk. The backward walk starts at the node which has low 

probability and tries to find the seed node or the start node from where it started the walk 

from originally. The backward walk happens exactly to the length of the forward random 

walk length. However, this is not a trivial case in case of a large graph and it. This is 

actually a limitation in the SN-WALK-ESTIMATER because of its lower probability of 

reaching the start node in its backward walk. The Graph Sampler handles such situation 

with a zero probability and this means that the Graph Sampler looks to conduct more 

backward random walks in search of finding a positive probability for such nodes.  
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Graph Estimator 

The Graph Estimator takes the samples and computes the metrics such as 

Average Degree of the samples, number of steps taken to converge and query cost. The 

Graph Estimator provides the samples over which the aggregation estimation can be 

performed. In case of the social networks such as Twitter, the in-degree and out-degree 

of the nodes can be treated as an important parameter when computing the aggregate 

estimations. The Graph Estimator provides the average degree of confirmed samples 

from the Walk and Estimate components.  

The Graph Estimator also plays the role of file collector and dumps all the 

relevant files required for the frontend to produce visualizations. However, it is hard to 

produce all the files for large graphs because they can overload the frontend to cause 

performance issues.   
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Chapter 4  

USER INTERFACE DESCRIPTION 

The User Interface is developed using d3 java script library as show in Figure 4-

1. It consists of front-end to display the content and animation of the graph supported by 

the backend which is a flat file system of json files generated by the SN-WALK-

ESTIMATER. The json format is designed to capture all the events happening during the 

random walk. It captures the data for traditional random walk and also generates the data 

for the SN-WALK-ESTIMATOR. The files are generated to be picked by the front-end as 

shown in Figure 4-2 which loads these json files and populates the nodes, edges of the 

graph. The json files are two types, one being the data containing the graph and the other 

containing the event data. The front-end initially loads the graph with the nodes and 

edges being displayed with a certain color. Depending on the event, the animation shows 

the slow movement of progress of the corresponding event. The events are all clickable 

links and the data is picked up separately for each clickable event.  

 

Figure 4-1 Graph Selector 
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For example, the Fixed Nodes and Potential Samples for the estimation are 

generated by the algorithm are read from the json file and the animation picks up the 

each path traversed by the algorithm coloring them red and the potential sample to 

green. Once the potential sample is colored green, it remains so for the entire execution 

of the event. The events are shown as explained above. The aggregate estimation are 

shown at the end. These include average degree for the node, the query cost for the 

entire walk and the accepted samples.  

 

Figure 4-2 SN-WALK-ESTIMATER 
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The query cost of random walks is displayed as shown in Figure 4-3. The only 

drawback of the UI is its inability to display the entire information for each node on a 

mouse hover event.  It just shows only the ID of a particular node which is just an integer. 

One more drawback of UI is that the performance matching algorithm while creating sub-

selection of entire set of nodes is linear, as the search within d3 java script library is of 

linear nature. For a small graph, the visualization can be observed clearly and as the size 

of the graph grows, the UI is helpful in only realizing how the random walk performs over 

different set of nodes.  

 
 
 

 
Figure 4-3 Query Cost 
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Chapter 5  

EXPERIMENTS 

The experiments are carried out on both theoretical graphs and real world social 

networks such as yelp users, google plus and twitter users. The real world datasets are 

provided by corresponding vendors and contain unique user defined fields with which all 

the other details can be extracted from other datasets. This is fair as far as the sampling 

is concerned as the entire properties of each node need not be considered, as it carries 

no value to the output of the algorithm, which is the sampled nodes converged to target 

distribution.  

 

Hardware: 

The Hardware is a dual-core 2.13 GHz Intel running on Ubuntu 12.04 LTS with 

3.9 GiB RAM. The algorithms were developed in python 2.7. 

 

Datasets: 

 Google plus is one of the largest social networks with its 540 million monthly 

active Google+ users and 300 million monthly active 'in-stream' users who are just 

visitors [7]. For the experimental analysis, the dataset is modeled as an undirected graph 

with users being nodes and circles being edges. The dataset size is about 54 MB 

containing 16 thousand nodes and 4.5 million edges. The average degree of the graph 

turned out to be 560 [4]. Yelp, an organization helps connect the people with local 

businesses like dentists, hair stylists and mechanics, has about 135 million unique 

visitors and it boasts of users having written over 71 million local reviews [8]. Its dataset 

can be interpreted for experimental analysis as users being the nodes and edges being 

the reviews written for same business. The number of nodes in the graph is about 120 
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thousand with 954 thousand edges.  Twitter user dataset has about 81 thousand users 

with 1.7 million edges. All the datasets above are treated like undirected graphs and the 

in and out degrees of a node are considered to be its attributes. 

The traditional random walk algorithms, the Simple Random Walk (SRW) and 

Metropolis-Hastings Random Walk (MHRW) are evaluated against the Walk-Estimate 

algorithm (WE). The Walk-Estimate algorithm can have three versions depending on the 

variance reduction strategies. The variance reduction strategies are initial crawling and 

weighted sampling. Therefore the Walk-Estimate algorithm can have three variations as 

follows: WE-None, WE-Crawl and WE-Weighted [4]. 

 

Setting of parameters: 

The parameters are set as follows. The Geweke diagnostic convergence (Z) has 

been used for only traditional random walks and is set to 0.1 (Z ≤ 0.1). The WE algorithm 

has the walk length set to 2 ∗ (𝑔𝑟𝑎𝑝ℎ𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) + 1 . For WE-Crawl which uses only initial 

crawling for variance reduction, the initial hop values are set to 1 and 2 for Google Plus 

and Yelp, Twitter respectively. For the weighted sampling the weight indicator ∈ is set to 

0.1. The results are averaged for 100 runs and in the Walk-Estimate algorithm, the 

number of random walks are varied between 100 and 2000 [4].  

The performance measures vary for different social networks. For Google Plus, 

the Average degree and Average number of words in the self-description of a user are 

considered. For Yelp and Twitter, the concerned graph properties such as the degree, 

shortest path are considered and in case of Twitter, the average number of followers can 

be computed from the in and out degree. However, the big challenge is to reduce the 

bias of the samples in determining these measures. Since it is of almost impossible task 

28 



 

of determining such bias, an error can be computed based on the difference between the 

actual and estimated aggregated values [4].  

 

Results: 

The results obtained showed a marked difference between how the Walk-

Estimate performed against the traditional random walks, MHRW and SRW on the 

grounds of sample bias and query cost. From the figure (Google Plus), the WE algorithm 

fares better than both traditional random walks, MHRW and SRW. The relative error is 

less in case of WE and high in both MHRW and SRW. For Yelp, the same performance 

characteristic of WE is repeated where its relative error is less than that of both MHRW 

and SRW and the same has been repeated in case of Twitter also. However, since the 

WE algorithm statistics cannot be taken as absolute values to be compared with, a better 

way to analyze is to compare within its variants, WE-None, WE-Crawl, WE-weighted and 

WE. From the tests over Google Plus, WE performed better than all other single variants 

as expected. However, to test whether the samples obtained by WE are indeed of high 

quality, the distribution of samples is compared to the target distribution. This is also done 

for SRW so that both SRW and WE can be compared. As expected, the WE fared better 

than SRW in terms of the distance measures such as 𝑙∞ and K-L divergence as stated in 

the table. 
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Chapter 6  

CONCLUSION 

In this thesis, the system built was the SN-WALK-ESTIMATER, whose 

performance over the traditional random walks, Simple Random Walk (SRW) and 

Metropolis-Hastings Random Walk (MHRW), is better in terms of its faster convergence 

to the sampling distribution without compromising on the quality of the samples. The SN-

WALK-ESTIMATER performs a much shorter random walk and applies acceptance 

rejection sampling to get the sample set of nodes. It also employs techniques to reduce 

variance induced by random walks. Its two components one the WALK conducts the 

short walk and other ESTIMATE provides the necessary estimation of to be sampled 

nodes. The SN-WALK-ESTIMATER clearly demonstrates that the traditional random 

walks can be calibrated to improve their performance characteristics by overcoming the 

inherent problems built into them by their own nature.   
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