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Abstract 

 
VISCOELASTIC EFFECTS ON A, 

POLYETHERIMIDE CYLINDER 

WITH CONSTANT RADIAL 

DEFORMATION 

 

L. Edward Parkman III, MSME 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Ashfaq Adnan 

The relaxation of an axisymmetric radially crimped joint is analyzed with the inner 

component being formed from the engineering grade polymer ULTEM™ 1000 

polyetherimide.  Creep and Relaxation tests were performed at several temperatures in 

order to use Time Temperature Superposition theory to assemble a master curve for 

predictions at long times based on short time testing. 

The master curves for each test were fit to the appropriate Prony Series and all 

coefficients are tabulated for re-use.  The elastic theory for the classic thick walled 

cylinder was reviewed and the conversion from elasticity to viscoelasticity was 

demonstrated.  Strength predictions are shown and compared to their elastic 

counterparts.  Finally, a non-dimensionalized model of strength over time is presented. 
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  Chapter 1

Problem Statement  

 

1.1 Geometry 

Different types of crimped joints have been used in several industries for many 

years.  Examples include metal caps on glass beverage bottles, lids for canned foods, 

and cartridge attachment for ammunition.  Radial crimping of tubular members is very 

common for attaching fittings for various hydraulic & pneumatic applications as well as 

attaching connectors to cables in the Telecommunications industry. 

Figure 1-1 below shows a schematic view of a radially crimped joint.  The yellow 

metal cylinder is originally slip fit over the blue plastic cylinder.  A tool is used deform the 

outer cylinder radially inward until a press fit is developed between the cylinders.  For the 

press fit to remain after the crimp tool is removed, the outer ring material must be 

deformed past its yield point.  As the crimp tool is removed, the outer ring will expand 

radially outward as the elastic stress in the part is relieved, leaving a press fit that is 

related to the plastic strain induced in the outer crimp ring. 
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Figure 1-1: Schematic View of Crimped Joint (x-section on left) 

 

Crimping was originally used to join thin metal parts, but it has also been used to 

join dissimilar materials, such as shown in Figure 1-1. This work is focused on examining 

and developing a predictive model for the long term effects of choosing a plastic material 

for the inner cylinder in a crimped joint.  In this application, the prediction of the long-term 

relaxation of the retention force F is the goal. 

For the sake of this work, the initial retention force Fi is assumed to be known 

shortly after the crimping operation (t≈0), and the specification for retention force F can 

be expressed as a percentage of Fi.  Assuming an original design safety factor of 1.5 

gives a specification for Fmin = 66% of Fi.  Radius a is assumed to be 1.0 mm and b is 1.5 

mm.  Radial deformation ur is assumed to be 0.075 mm, corresponding to 5% strain in 

the radial direction. 

For this work, the planned prediction time will be 20 years at 23˚C.  If possible, 

prediction to 20 years at 40˚C would be desirable to show the effects of temperature and 

highlight the difference between products designed for indoor and outdoor applications. 
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1.2 Assumptions 

In developing a material model, it’s good practice to start simple, check against 

reality, and then increase complexity.  In this work, uniaxial properties are measured and 

used to predict the effects of time on a simplified version of a crimp joint. 

 

1.2.1 No Local Deformations 

For this work, it will be assumed that the entire length of the outer ring is radially 

deformed inwardly.  End effects of the crimp are also not covered.  By making this 

assumption, the radial stress at the interface between the rings is constant and a 2D 

approximation can be used. 

This assumption ignores local deformations such as radial dimples and end 

effects that act as a stress concentrator.  For this reason, the methodology discussed 

herein is focused on predicting relaxation and will not be a good tool for predicting local 

failure modes such cracking at the ends due to localized stress. 

 

1.2.2 Elastic Deformation Only 

This model is intended to predict linear viscoelastic effects only.  This 

methodology should only be applied to stress/strain conditions below yield.  One 

exception would be if a linear elastic perfectly plastic (LEPP) material model fits the 

material choice for the inner cylinder.  If an LEPP model fits, then similar methods may be 

useful for predicting the viscoelastic relaxation from yield.  Because many plastic 

materials have non-linear stress-strain behavior, this work was limited to viscoelasticity.  

Any initial material yielding would very likely cause this model to predict artificially high 

retention strengths over time (dependent on material yield behavior). 
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1.2.3 EMetal >> EPlastic 

By assuming that the stiffness of the metal outer ring is much greater than the 

stiffness of the inner plastic material, a constant radial deformation can be assumed 

because the amount of extra deformation for every unit of relaxation is relatively small.  

This methodology should not be used for applications where the total stiffness of the 

outer ring is similar to the total stiffness of the inner ring (including the thickness of each).  

If the two rings had similar stiffness, then as the inner ring relaxed, the outer ring would 

deform it more (non-constant radial deformation). 

 

1.2.4 Retention Force is a Function of Interface Pressure Only 

Expressed as an equation,  

 

Equation 1-1: Pull Force for Radially Deformed Cylinder 

𝐹 =  𝜇𝑠 𝐴 𝜎𝑟(𝑟 = 𝑏) 

 

In Equation 1-1, F is the retention force as shown in Figure 1-1.  The static 

friction coefficient is represented by µs and A is the circumferential contact area.  The 

pressure at the interface is identical to the radial stress at the outside diameter boundary, 

which is represented by σr. 
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1.3 Simplified Problem 

Using the assumptions discussed in section 1.2 above, the problem at hand can 

be reduced to a cylinder under constant deformation, as seen in Figure 1-2.  In Figure 

1-2, ur is the strain in the radial direction and is considered to be constant at the outside 

diameter boundary. 

 

Figure 1-2: Problem Simplified to a Cylinder with Constant Radial Deformation 

 

1.4 Materials 

Polyetherimide (PEI) is a widely used amorphous engineering grade 

thermoplastic with high strength, high stiffness, high service temperature, inherent 

flammability resistance, and good chemical resistance. ULTEM™ 1000 was chosen for 

this study because it is PEI with no modifiers, fillers, or reinforcement.  According to 

SABIC’s website [1], ULTEM™ 1000 is used in the Aerospace, Transportation, 

Thesis Problem Statement Eddie Parkman, P.E. 
Advisor: Dr. Ashfaq Adnan UTA MSME Student 
Spring 2015 817-726-5025 

 
 

 
 

a 

b 

ur = u0 

   @ r = b 

Figure 1: Simplified View of Problem 
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Healthcare, and Wire & Cable industries.  According to the datasheet on the same 

website, the Tg of ULTEM™ 1000 is 217˚C. 

 

1.4.1 Stress/Strain Behavior 

In Figure 1-3, both the engineering and calculated true stress-strain curves are 

plotted.  The engineering stress-strain data plotted in Figure 1-3 is courtesy of SABIC’s 

website [2] and the true stress-strain was calculated.  The equations for true stress and 

strain are shown in Equation 1-2 (Ugural and Fenster [3]).  True stress and strain are 

denoted by σ and ε, while the engineering stress and strain are σ0 and ε0.   

 

Equation 1-2: Equations for True Stress and Strain [3] 

휀 =  ln(1 +  휀0) 

𝜎 =  𝜎0(1 +  휀0) 

 

ULTEM™ shows ductile stress-strain characteristics common in thermoplastics.  

Bilinear approximations or assumptions of LEPP material models will have errors in the 

neighborhood of yield, but may be acceptable for some applications, such as those that 

have strain/displacement as an input or limit.  The 5% strain corresponding to the 

constant displacement discussed in the problem definition (section 1.1) shows to be in 

the elastic region, meeting the assumptions in section 1.2.2 (linear viscoelastic).   
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Figure 1-3: Stress-Strain Based on Data from SABIC's Website [2] 
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1.4.2 Tensile Creep Behavior 

Figure 1-4 shows a plot created with Tensile Creep data from SABIC’s website 

[2].  At the onset of this work, the number of datasets at equal stress was a concern, and 

it was unknown how far into the future this data would enable prediction.  Upon later re-

evaluation, the 14MPa set from SABIC overlaps nicely and would definitely predict farther 

than 20 years into the future at 23˚C.  It was also believed that Relaxation data would be 

more valuable due to its perceived ease in analytical solutions (see section 4.2 for more 

details).  In section 3.4, Creep results from this work are compared to SABIC’s data.   

 

 

Figure 1-4: Tensile Creep Based on Data from SABIC's Website [2] 
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1.4.3 Dynamic Mechanical Analysis 

Figure 1-5  shows a plot created with data from SABIC’s website [2].  Dynamic 

Mechanical Analysis inputs a cyclical load on a test sample and measures the output 

cycles amplitude and frequency lag form the original input.  E’ is the storage modulus, E’’ 

is the loss modulus, and tan delta is the ratio E’/E’’.  The complex modulus E*(ω) = E’(ω) 

+ iE’’(ω).  With this data, the viscoelastic behavior can be related in the Fourier domain 

(see [4] for more info). 

This data illustrates one method for determining Tg.  For reference 217°C ~ 

422°F.  A local peak in E’’ can be seen at Tg.  The original intention was to use this data 

for predictions, but scans of several frequencies over different temperatures are needed 

to predict long time effects.  This data was all taken at 6.28 Hz. 

 

Figure 1-5: Flexural DMA Based on Data from SABIC's Website [2]  
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  Chapter 2

Background Information 

 

Because the focus of this work was related to time effects, empirical data for the 

structural properties of PEI was needed to predict long-term effects.  As collecting 

information over several years is impractical, Time-Temperature-Superposition-Principle 

(TTSP) methodology was chosen in order to collect short term data and make long term 

predictions.  As discussed by Brinson and Brinson [4], TTSP was proposed by H. 

Leaderman in the early 1940’s and the method has been refined by several people over 

the years.  References to these works can be found in their book [4]. 

The Relaxation test was chosen due to the Relaxation Modulus E(t)’s similarity to 

Young’s Modulus E and its simplicity with analytical solutions.  The Creep test was 

additionally chosen because of a desire to compare with SABIC’s data and because of a 

misunderstanding of inputting D(t) data into commercially available Finite Element 

Analysis (FEA) software (D(t) vs D*(t)).  Figure 2-1 shows a comparison of the inputs and 

outputs for each of these tests.  Equation 2-1 and Equation 2-2 show the meanings of 

E(t), D(t), and their relations.  Equation 2-2 indicates that E(t) and D(t) are not inverses in 

the time domain, but are inverses in the Laplace domain.  Further explanation is supplied 

by Brinson [4] and Christenson [5].   

In these equations, E(t) is the Relaxation Modulus and D(t) is the Creep 

Compliance.  σ(t) is the measured time dependent stress from an input constant strain ε0 

and ε(t) is the time dependent strain from an input constant stress σ0.  E(s) and D(s) (with 

bars above) are the Laplace transforms of E(t) and D(t).   
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Equation 2-1: Relaxation Modulus E(t) and Creep Compliance D(t) 

𝐸(𝑡) =  
𝜎(𝑡)

휀0
;    𝐷(𝑡) =  

휀(𝑡)

𝜎0
 

 

Equation 2-2: Relation between Relaxation Modulus and Creep Compliance 

𝐸(𝑡)  ≠
1

𝐷(𝑡)
;    �̅�(𝑠) =  

1

�̅�(𝑠)
 

 

 

 

Figure 2-1: Illustrated Comparison of Creep and Relaxation Tests 

 

  

σ = σ0 

ε = ε0 
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Figure 2-1 shows the difference between the Relaxation and Creep tests.  For 

the Creep test, a constant stress is applied and the strain is measured over time, similar 

to hanging a weight from a test specimen.  For the Relaxation test, a constant strain is 

supplied and the stress is measured over time.  Note that the illustrations in Figure 2-1 

assume a viscoelastic solid model (as opposed to a V.E. liquid).  The long term behaviors 

tend towards 0 or ∞ if a V.E. liquid.  Testing (discussed later), indicates that a much more 

complicated mathematical model with multiple parameters is needed to characterize 

ULTEM™ PEI. 

From empirical data, a mathematical function is fit to the time dependent material 

parameter (different functions for Creep or Relaxation, discussed later).  Once expressed 

as a function, the Laplace transform can be taken.  If the elastic solution for the problem 

is known, the Laplace transforms of the time dependent stress and strain are related by 

that function, as seen in Equation 2-3 and Equation 2-4.  In simple terms, the stress-

over-time answer to this problem is the inverse Laplace transform of the strain times s 

(Laplace domain variable) times the Laplace transform of the Relaxation Modulus. 

 

Equation 2-3: Relation of Stress and Strain in Viscoelasticity 

𝜎 =  �̅�∗휀 ;     휀 ̅ =  �̅�∗𝜎   

 

Equation 2-4: Definition of Complex Moduli 

�̅�∗ = 𝑠�̅� ;     �̅�∗ = 𝑠�̅� 
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  Chapter 3

Testing 

 

3.1 Test Plan 

In planning to use TTSP, some information was needed to relate time and 

temperature.  Williams-Landel-Ferry (WLF) and Activation Energy methodologies were 

investigated.  According to Brinson [4], the slope of the curves generated by the 

acceleration factors (aT) are discontinuous at Tg.  The WLF equation works better above 

Tg and the Activation Energy equation (Equation 3-1) works better below Tg.  It was 

observed that if the Arrhenius Activation Energy were known at some Tref, then the 

acceleration factor for any temperature could be calculated using Equation 3-1.  It’s 

worth noting that the Ea used below is specific to this failure mode.  Other Ea values, such 

as the Ea for thermal decomposition, do not apply to this mode.  Equation 3-1, R is the 

universal gas constant. 

 

Equation 3-1: Acceleration Factors for TTSP (Arrhenius Model) [4] 

ln 𝑎𝑇 =  −
𝐸𝑎

𝑅
(

1

𝑇
−  

1

𝑇𝑟𝑒𝑓
)    

 

Foreman et al. [6] investigated creep in PEI and found the best fit Arrhenius 

Activation Energy to be approximately 92 kJ/mol at 67˚C.  As shown in section 3.4, the 

testing for this work resulted in similar Ea for Creep.  Using this information, the first test 

plan (see Table 3-1) was set by simple trial and error using a simple spreadsheet.  The 

important parameters for the test are that the tests are short, all curves overlap each 

other, and all tests must be conducted at less than Tg for Equation 3-1 to be applicable.  
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The test plan shown in Table 3-1 would have allowed for prediction of behavior in excess 

of 20 years at 40˚C. 

 

Table 3-1: Original Test Plan 

 

 

During testing, it was discovered that the equipment was not capable of reliably 

holding temperatures above 113˚C, which is discussed further in section 3.3.  For this 

reason, the test plan needed to be quickly modified.  The original spreadsheet was re-

used to re-plan the test with the new max temperature of 110˚C.  The resulting test plan 

can be seen in Table 3-2.  Unfortunately, predictions at 40C are not supported by the 

revised test plan because Creep predictions of 20 years at 40˚C would require testing for 

approximately 2 weeks at 110˚C (delivery of work would not be possible by the due date).  

Note that an intermediate test at 40˚C had to be added because there was no overlap in 

the 23˚C and 80˚C test results. 

 

Table 3-2: Revised Test Plan 

 

Temp 

(°C)

Start 

Time 

(s)

End 

Time 

(min)

End 

Time 

(sec)

Temp 

(K)

aT (--> 

67°C)

aT (23°C 

--> 

67°C)

aT (40°C 

--> 

67°C)

Start 

Time @ 

23°C (s)

End Time 

@ 23°C 

(s)

End Time 

@ 23°C 

(yrs)

Start Time 

@ 40°C (s)

End Time 

@ 40°C 

(s)

End Time 

@ 40°C 

(yrs)

200 1 80 4800 473.2 9251.82 0.008 0.0607 1.16E+06 5.54E+09 175.68 1.52E+05 7.31E+08 23.17

160 1 10 600 433.2 1070.26 0.008 0.0607 1.34E+05 8.02E+07 2.54 1.76E+04 1.06E+07 0.34

120 1 10 600 393.2 79.8251 0.008 0.0607 9.97E+03 5.98E+06 0.19 1.31E+03 7.89E+05 0.02

80 1 10 600 353.2 3.3068 0.008 0.0607 4.13E+02 2.48E+05 0.01 5.44E+01 3.27E+04 0.00

23 1 15 900 296.2 0.00801 0.008 0.0607 1.00E+00 9.00E+02 0.00 1.32E-01 1.19E+02 0.00

Time-Temp Superposition Time-Temp Superposition

Temp 

(°C)

Start 

Time 

(s)

End 

Time 

(min)

End 

Time 

(sec)

Temp 

(K)

aT (--> 

67°C)

aT (23°C 

--> 

67°C)

aT (40°C 

--> 

67°C)

Start 

Time @ 

23°C (s)

End Time 

@ 23°C 

(s)

End Time 

@ 23°C 

(yrs)

Start Time 

@ 40°C (s)

End Time 

@ 40°C 

(s)

End Time 

@ 40°C 

(yrs)

110 1 2880 172800 383.2 38.3286 0.008 0.0607 4.79E+03 8.27E+08 26.20 6.31E+02 1.09E+08 3.46

80 1 10 600 353.2 3.3068 0.008 0.0607 4.13E+02 2.48E+05 0.01 5.44E+01 3.27E+04 0.00

40 1 10 600 313.2 0.06073 0.008 0.0607 7.58E+00 4.55E+03 0.00 1.00E+00 6.00E+02 0.00

23 1 15 900 296.2 0.00801 0.008 0.0607 1.00E+00 9.00E+02 0.00 1.32E-01 1.19E+02 0.00

Time-Temp Superposition Time-Temp Superposition
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By observing the differences in the two test plans, the power of TTSP is evident.  

In converting to 23˚C, 12 minutes at 200˚C gives the same future prediction as 48 hours 

of testing at 110˚C for PEI.   

 

3.2 Test Samples 

Samples were injection molded from ULTEM™ 1000 into a standard 1 mm thick 

impact disk.  Samples were then machined on a Computer Numerical Controlled Mill to 

the design shown in Figure 3-1 and Appendix A.  The sample were molded and 

machined by Corning Optical Communications LLC (Corning) personnel using Corning 

equipment with permission.   

 

 

Figure 3-1: Test Samples 
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The molded and machined test samples can be seen in Figure 3-1.  This design 

was optimized to allow it to be cut with a standard 1/32” diameter endmill.  At the time 

that these samples were designed, the amount of vibration in the cutting process was 

unknown, so samples were cut at various widths with the intention of utilizing the smallest 

size with good cut quality.   

Figure 3-2 shows a magnified view of one of the smallest (0.5 mm) sample’s cut 

surface, which was compared and found to be similar quality to all other sizes.  Figure 

3-2 was taken using a stereo microscope, and the smallest size was used for testing.  

The test samples were left attached to the original impact disk, and this was found to be a 

very effective way to protect the samples during shipping.  Optical measurement of the 

samples indicated a parallelism of approximately 0.020 mm. 

 

 

Figure 3-2: Magnified View of Cut Surface on 0.5mm Sample 

0.5 mm 

Molded Surface 

Machined Surface 
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3.3 Equipment 

The equipment used for this testing was a TA Instruments brand Dynamic 

Mechanical Analyzer (DMA) model Q800.  Full details on this model and all of the 

machine specifications in this section are directly from TA Instruments’ website [7].  The 

machine was set to apply static tension or strain for a standard Creep or Relaxation test 

(not a dynamic measurement).  The DMA used is property of Corning, was operated by 

Corning personnel, and was used with permission. 

The major machine specifications that drove testing parameters were the 

advertised load cell rating of 18 N and the temperature rating of -150 to 600˚C.  The 

Young’s Modulus from SABIC’s literature [1] was used to ensure that the sample 

geometry combined with the input strains for the Relaxation test would not overload the 

load cell.  For the Creep test, the equivalent initial stress was calculated using the same 

Young’s Modulus and the design nominal geometry. 

Originally, the test plan included samples tested at 200˚C and shorter times.  For 

some reason, this machine would not reliably hold temperatures above 113˚C.  

Unfortunately, adequate time to troubleshoot was not available and the test plan was 

modified to use a max temperature of 110˚C for a longer time.  In later troubleshooting, it 

was observed that this machine is commonly used for materials with a low Tg and has 

been upgraded with an aftermarket intercooler which limits the max temperature (not a 

concern for the typical applications for this specific unit).   
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3.4 Results 

 

3.4.1 Creep 

Figure 3-3 shows the results of measured Creep Compliance D(t) at four 

temperatures.  When evaluating the applicability of TTSP for Creep or Relaxation data, 

one major need is for the curves to overlap when the data is moved through time.  Note 

that changes in density were not considered for this work adding a small amount of error, 

but could be added in future works.   

As can be seen graphically, the only overlap between the 23˚C and 80˚C curves 

is between the first and last datapoints.  This is problematic for two reasons.  The first is 

that TTSP should generate a smooth curve through time.  If only single datapoints are 

used, a discontinuity could exist that would not be obvious.   

The second is related to this specific data.  The first datapoint for each 

temperature curve has a distinctive difference in curvature, including the appearance of 

an unanticipated inflection point early in each curve.  Because this datapoint is very 

quickly collected after the test started and because realistic testing is unable to produce 

instantaneous results as mathematically modeled by the Heaviside function, it is strongly 

believed that the machine and sample have not achieved/steadied to the desired stress.  

For this reason, the first datapoints will be neglected in later dealings with this data. 

If the response at shorter times is needed for a different application, attempting to 

push the equipment to measure at a faster measurement frequency is not recommended.  

Instead, running a sample set at a temperature less than Tref will cause that dataset to 

have an acceleration factor aT that is less than 1.  In other words, a data point collected at 

T<Tref one minute into the test may tell you how that material would respond after one 

second at Tref (for illustration only). 
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Figure 3-3: Creep Compliance Results 
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Figure 3-4: Creep Compliance Results Compared with SABIC's Data [2] 

 

For verification purposes, the test data was compared to SABIC’s Creep data as 

seen in Figure 3-4.  Unfortunately, these tests were run at different conditions.  When 

comparing the sets of 23˚C data shown with blue lines, it is to be expected that the 

observed time dependence would be “slower” with lower stress.  SABIC’s data shows 

lower compliance (higher effective stiffness) with lower stress applied.  Without more data 

at lower temperatures or shorter times, it’s not possible to draw a solid conclusion, but 

this relation is at least directionally correct. 

The green curves show the higher temperature test results.  SABIC’s test was 

conducted at slightly lower stress and 11˚C higher temperature than the test from this 

work.  The expected relation for this situation would be for the SABIC data to show a 
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lower compliance at very short times due to the lower stress and a faster acceleration of 

compliance at longer times due to the higher temperature.  In fact, that is exactly what is 

shown in Figure 3-4.  This new test data can be said to be very similar to the original 

data from SABIC. 

 

3.4.2 Relaxation 

The Relaxation test also showed some unexpected behavior at very short times.  

As seen in Figure 3-5, unexpected curvature can be seen in the first few datapoints of 

each set.  This is believed to be the same settling phenomenon observed in section 

3.4.1.  Note that the additional 40˚C test was requested after observing a gap in 

information between the 23˚C and 80˚C curves.  The 40˚C test was planned using the 

activation energy method from the tests by Foreman et al. [6] with the intention of filling 

this gap.  In the case of Relaxation, this 40˚C test did not fill the gap and supplies less 

long-term information than the 23˚C test. 
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Figure 3-5: Relaxation Modulus Results 

 

3.5 Time-Temperature Superposition 

A fast and repeatable method was desired for aligning the curves in time.  To 

accomplish this, a simple program was written to linearly interpolate the shifted time of 

the higher temperature compliance between the two nearest compliances of the lower 

temperature curve.  Once the first shift factor aT is found, the method can be repeated for 

subsequent higher temperature tests to assemble the master curve.  This program and 

its results can be found in Appendix B.  The error associated with a linear interpolation 

instead of an exponential curve fit is limited by using the two nearest compliances.  Note 

that because of the apparent equipment stabilization behavior in the first datapoints, the 
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fourth point was chosen due to its distance from the odd behavior and available overlap 

between curves. 

 

 

Figure 3-6: Creep Compliance Results and TTSP Master Curve 

 

As seen in Figure 3-6, the assembled Creep Master Curve allows predictions in 

excess of 20 years.  The acceleration factors and calculated activation energy Ea are 

shown in Table 3-3.  It’s important to note that the difference in the original acceleration 

factors formulated by lining up curves visually on an automated graph and those 

generated by linear interpolation varied by 3-14%, which may have a very large 

difference at long times.  The calculated activation energies (using Equation 3-1) for 
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80˚C and 110˚C matched the results of Foreman et al. [6]  (91.88 kJ/mol @ 67˚C) nicely, 

but the Ea for the 40˚C data did not. 

 

Table 3-3: Factors for Shifting Creep Data to 23˚C 

 

 

The assembled Relaxation Master Curve is shown in Figure 3-7.  Surprisingly, 

the exact same test lengths and temperatures that allow predictions of more than 20 

years for Creep only allow predictions of approximately 2 years in Relaxation.  It is 

believed that the reason for this difference is because the Creep Test inputs more work 

into the test sample for a given time and temperature than its Relaxation counterpart that 

starts at the equivalent stress-strain state. 

 

Temperature

(˚C)

Acceleration 

Factor 

aT

Activation 

Energy

(kJ/mol)

23 (1) -

40 72.97 194.58

80 438.72 92.81

110 23082 108.94
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Figure 3-7: Relaxation Modulus Results and TTSP Master Curve 
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Table 3-4 shows the acceleration factors and calculated activation energy used 

to assemble the Relaxation Master Curve shown in Figure 3-7.  Note that all activation 

energies are much lower than any Creep data. 

 

Table 3-4: Factors for Shifting Relaxation Data to 23˚C 

 

 

This relaxation data will not allow predictions to 20 years at 23˚C.  With the data 

in Table 3-4 and the test planning methodology discussed in section 3.1, it would be 

relatively simple to plan a test that would allow predictions farther into the future, at 

temperatures higher than 23˚C, or both.  For planning a Relaxation test with PEI, using 

an activation energy of approximately 70 kJ/mol is recommended. 

 

  

Temperature

(˚C)

Acceleration 

Factor 

aT

Activation 

Energy

(kJ/mol)

23 (1) -

40 1.33 12.94

80 154.65 76.90

110 519 67.80
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  Chapter 4

Analytical Solutions 

 

4.1 Elasticitiy 

As briefly explained in Chapter 2, the elasticity solution is used to find the 

viscoelasticity function.  Although well covered by literature, this exercise was repeated 

for thorough understanding.   

The expressions for stress distributions and associated deformations were 

derived by G. Lamé in 1833 and are very well covered by Timoshenko and Goodier [8] as 

well as Ugural and Fenster [3].  This classic thick walled cylinder problem starts with a 

definition similar to Figure 1-2, with a and b referring to the inner and outer radii while po 

and pi stand for the outer and inner pressures on those surfaces.  Equation 4-1 can be 

arrived at via manipulation of the Compatibility Equation or by use of Airy’s Stress 

Function converted for polar coordinates.  To use Airy’s Stress function, observation of 

axisymmetry is key in choosing the appropriate functions. 

 

Equation 4-1: General Solution to the Thick Walled Cylinder Problem 

𝛷 = 𝐴 log 𝑟 = 𝐵𝑟2 log 𝑟 + 𝐶𝑟2 + 𝐷 

 

 From here, the general equations for the stresses in the r and θ 

directions are shown in Equation 4-2 by taking the appropriate partial derivations for 

polar coordinates.   
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Equation 4-2: General Stress and Displacement Solutions 

for the Thick Walled Cylinder 

𝑎)              𝜎𝑟 =  
1

𝑟

𝛿𝛷

𝛿𝑟
=  

𝐴

𝑟2
+ 𝐵(1 + 2 log 𝑟) + 2𝐶 

𝑏)              𝜎𝜃 =  
𝛿2𝛷

𝛿𝑟2
=  −

𝐴

𝑟2
+ 𝐵(3 + 2 log 𝑟) + 2𝐶 

𝑐)              𝜎𝑟𝜃 =  0 

𝑑)              2𝐺𝑢𝑟 =  −
𝐴

𝑟
+ 𝐵[(𝜅 − 1)𝑟 log 𝑟 − 𝑟] + 𝐶(𝜅 − 1)𝑟 

𝑒)              2𝐺𝑢𝜃 = 𝐵(𝜅 + 1)𝑟𝜃 

 

Equation 4-1 and Equation 4-2 were also crosschecked with the work by 

Timoshenko and Goodier [8], which has a much more detailed discussion.  Equation 

4-2d above, the B term causes a θ direction displacement that is dependent on θ itself.  

Since the problem is axisymmetric in nature, B must be equal to zero.  Equation 4-3 

shows the boundary conditions to be applied.   

 

Equation 4-3: Boundary Conditions for Elastic Solution 

𝜎𝑟(𝑟 = 𝑎) =  0 

𝑢𝑟(𝑟 = 𝑏) =  𝑢0 

 

Solving the general radial stress equation with the applied boundary conditions 

yields the equations for stresses in the r and θ directions shown in Equation 4-4.   
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Equation 4-4: Stresses in the Thick Wall Cylinder with Constant Deformation (G,κ) 

𝜎𝑟 =  
4𝑢0𝐺𝑏

2𝑎2 +  (𝜅 − 1)𝑏2
(1 −  

𝑎2

𝑟2
) 

𝜎𝜃 =  
4𝑢0𝐺𝑏

2𝑎2 + (𝜅 − 1)𝑏2
(1 +  

𝑎2

𝑟2
) 

 

By converting G and κ to E and ν, the stresses in Equation 4-4 can be shown to 

be equivalent to the stress functions found by algebraic manipulation of the original Lamé 

functions, shown in Equation 4-5. 

 

Equation 4-5: Stresses in the Thick Wall Cylinder with Constant Deformation (E,ν) 

𝜎𝑟 =  
−𝑢0𝐸

[(1 − 𝜈)𝑟 + (1 + 𝜈)
𝑎2

𝑟 ]
(

𝑎2

𝑟2
− 1) 

𝜎𝜃 =  
𝑢0𝐸

[(1 − 𝜈)𝑟 + (1 + 𝜈)
𝑎2

𝑟 ]
(

𝑎2

𝑟2
+ 1) 

 

While the stress in the θ direction is not the primary focus of this work, it is worth 

noting that any failure, yielding, other plasticity, viscoplasticity, or embrittlement effects 

will initiate at the inner radius and will be driven by stresses in the θ direction.  Figure 4-1 

shows non-dimensionalized stresses in the r and θ direction as well as the equivalent 

Von Mises stress (as compared to the yield strength for failure prediction).  In elasticity, 

constant deformation and constant stress in the radial direction are equivalent to each 

other. 

 



 

30 

 

Figure 4-1: Non-dimensionalized Stresses in a Thick Walled Cylinder  

with Constant Radial Deformation 

 

4.2 Viscoelasticity 

One with a strong background in elasticity and new to viscoelasticity might see 

examples such as the constant stress cylinder presented by Christenson [5] and attempt 

to manipulate the solution in ways similar to those demonstrated in section 4.1.  Upon re-

evaluation of the problem statement diagram in Figure 1-2 and comparison with the 

illustrations in Figure 2-1, it becomes clear that these problems are as dissimilar as the 

Creep and Relaxation tests themselves.  In this section, a function will be fit to the Master 

Curve and then the complex modulus will be combined with the Elasticity solution. 
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4.2.1 Prony Series Approximation for Creep 

To fit a function to the assembled Master Curve data from section 3.5, Prony 

Series approximation was used.  A short program was written and can be seen in 

Appendix C.  The intention of this program is to fit a finite number of coefficients to 

Equation 4-6.  The Prony Series representation of D(t) is effectively a generalized Voigt-

Kelvin mechanical model, wherein a spring element is in series with infinite Voigt-Kelvin 

elements. 

 

Equation 4-6: Prony Series Representation for Creep Compliance [9] 

𝐷(𝑡) =  
1

𝐸0
+  ∑

1

𝐸𝑖

𝑛

𝑖=1

(1 −  𝑒−𝑡 𝜏𝑖⁄ ) 

 

The program was written to utilize a least squares approach as described by 

Brinson and Brinson [4].  Sign control methodology was added as detailed by Bradshaw 

and Brinson [9] to force all moduli to be positive in matching with physics.  As 

recommended by Bradshaw and Brinson [9] , the time constants were chosen 

logarithmically spaced, with the minimum and maximum time constants outside the 

dataset range.  Instead of scaling the range by an arbitrary constant, the time constants 

were chosen at each decade and ranged to 1 decade outside the available test data.  

Refer to Table 4-1.   

Unfortunately, the standard least squares fit routine built into Matlab® version 

R2013b was not able to simultaneously fit this many constants.  Fits with 3 and 5 

constants had very poor R
2
 values.  Instead, the program returns the same values for Ei 

that were originally input, but will also give goodness-of-fit calculations that can be used 

for a manual fitting routine. 
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As a side note, investigation using a later version of Matlab had a different type 

of fitting routine. The code in Appendix C experienced trouble in Matlab® version 

R2014a.  The alternate methods for the later versions were not tried, but may offer 

improvements over this code. 

 

 

Figure 4-2: First Step in Manual Prony Series Fit (All Ei = 1.5e10) 

 

The simple manually fitting routine that was developed starts by using the 

Young’s Modulus as reported by the material manufacturer or from a standard tensile test 

for E0.  All other Ei terms are set equal to each other and the fit is plotted with the test 

data as seen in Figure 4-2.  All Ei terms are scaled up and down equally until both curves 

are of the same order of magnitude.  Figure 4-2 shows the output from this rough 
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optimization with E0 = E and Ei = 1.5e10.  Next, the scale is adjusted to view the 

comparison of the two curves over the first decade of data.  The first Ei is adjusted, noting 

inverse sensitivity with the curve fit, until the first few points are roughly equal.  The scale 

is then adjusted to show the next decade of information and the next Ei term is adjusted.  

It was found that rechecking the previous Ei term before moving forward will save time 

and allow fine tuning as needed.  The final result of this routine with this data (r2 = .9999) 

is shown in Figure 4-3.   

 

 

Figure 4-3: Plot Used for Manual Fitting of Creep Prony Coefficients 
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Figure 4-4: Log Plot of Creep Prony Series Fit 

 

Figure 4-4 shows the same curve fit data in a log plot similar to all the plots from 

Chapter 3.  Figure 4-5 and Table 4-1 show the coefficients used to achieve this Prony 

series fit.  As discussed by Brinson and Brinson [4], the curvature seen in Figure 4-5 

smoothed as the fit was refined.  Although the Prony Series approximation presented 

here has time coefficients ranging from 1e-2 to 1e8 minutes, the model is only valid within 

the range of the assembled Master Curve.  This representation is calculated to be valid 

from 2 minutes to approximately 120 years, but due to the wide spacing of data at long 

times and the sensitivity to the linear interpolation methods for TTSP used, it is 

recommended to limit the use of this approximation to 20-30 years.  Collecting more 

datapoints from short tests at low and high temperature would reinforce this model. 
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Figure 4-5: Prony Series Coefficients for D(t) of PEI 
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Table 4-1: Time Constants and Moduli for Prony Series Representation of D(t) of PEI 

 

 

4.2.2 Prony Series Approximation for Relaxation 

Techniques very similar to those described in section 4.2.1 were also employed 

for the Relaxation Master Curve.  Prony Series approximation for Relaxation has a 

different form from Creep, as seen in Equation 4-7.  The Prony Series representation of 

E(t) is mathematically the Wiechert Model, with one spring in parallel with infinite Maxwell 

elements (generalized Maxwell model with one additional spring in parallel).  Figure 4-6 

shows the results of this curve fit. 

 

Equation 4-7: Prony Series Representation for Relaxation Modulus [9] 

𝐸(𝑡) = 𝐸∞ + ∑ 𝐸𝑖𝑒−𝑡 𝜏𝑖⁄

𝑛

𝑖=1

 

Time 

Constant 

τ (m  )

Modulus

E (MPa)

(N/A) 3580

1E-02 6900

1E-01 40000

1E+00 45000

1E+01 38000

1E+02 26000

1E+03 24000

1E+04 19000

1E+05 16000

1E+06 7600

1E+07 6100

1E+08 2850



 

37 

 

 

Figure 4-6: Plot Used for Manual Fitting of Relaxation Prony Coefficients 
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Figure 4-7: Log Plot of Relaxation Prony Series Fit 

 

Figure 4-7 shows the same Prony Series fit for Relaxation Modulus in the more 

familiar log plot form.  It is also worth noting that the fit function in Matlab® version 

R2013b did automatically optimize the Moduli used in the fit.  Figure 4-8 and   
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Table 4-2 show the coefficients both graphically and in tabular format.  The lack 

of smoothness in the curve in Figure 4-8 indicates that the fit could be refined by adding 

more terms, but as indicated in Figure 4-6, the r
2
 value was .9997, indicating a good 

enough fit for the scope of this work. 

 

Figure 4-8: Prony Series Coefficients for E(t) of PEI 
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Table 4-2: Time Constants and Moduli for Prony Series Representation of E(t) of PEI 

 

 

4.2.3 Utilizing the Elastic Solution 

To convert Equation 4-5 for use in viscoelasticity, the elastic modulus and 

Poisson’s Ratio must be replaced with their complex counterparts. This conversion is 

shown for clarity in Equation 4-8. 

 

Equation 4-8: Radial Stress Distribution in the Laplace Domain 

𝜎𝑟̅̅̅ =  
−𝑢0𝑠�̅�

[(1 − 𝑠�̅�)𝑏 + (1 + 𝑠�̅�)
𝑎2

𝑏
]

(
𝑎2

𝑟2
− 1) 

 

  

Time 

Constant 

τ (m  )

Modulus

E (MPa)

1E-02 300

1E-01 255.6

1E+00 111.9

1E+01 92.4

1E+02 160

1E+03 150.8

1E+04 186

1E+05 178.3

1E+06 235.2

1E+07 174.2

(Inf) 914.5
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For this work, the Poisson’s Ratio will be assumed to be constant.  As discussed 

by Brinson and Brinson [4], assuming a constant Poisson’s Ratio is effectively assuming 

that the Shear Modulus G and Bulk Modulus Κ scale equally through time (Κ(t)/G(t) = 

constant).  If ν(t) is constant, then the Laplace transform of ν0 is ν0/s.  Substitution and 

rearrangement of the terms in Equation 4-5 yields Equation 4-9. 

 

Equation 4-9: Radial Stress Distribution in Laplace Domain with Constant ν 

𝜎𝑟̅̅̅ =  
−�̅��̅�

[(1 − ν0)𝑏 + (1 + ν0)
𝑎2

𝑏
]

(
𝑎2

𝑟2
− 1) = 𝐶�̅�𝑠�̅� =  

𝐶�̅�

𝑠�̅�
 

 

According to Equation 4-9, if the Laplace inverses of the right hand terms can be 

found, then that solution can be multiplied by a constant representing all of the geometric 

effects.  The Laplace transforms and their inverses are covered in section 4.2.4. 
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4.2.4 Laplace Transforms 

Because the displacement is a constant for this problem, the time dependent 

displacement is modeled by Equation 4-10.  As commonly encountered, the Laplace 

transforms for E(t) and D(t) are easily found.  Both are shown in Equation 4-11.  Note the 

use of the Heaviside function H(t) to indicate an instantaneous crimp operation, when in 

reality this step would happen over some small time. 

 

Equation 4-10: Laplace Transform for Constant Displacement 

𝑢(𝑡) =  𝑢0𝐻(𝑡)  𝑎𝑛𝑑   �̅�(𝑠) =  
𝑢0

𝑠
 

 

Equation 4-11: Laplace Transforms for Creep and Relaxation 

𝐶�̅�

𝑠�̅�
=  

𝐶𝑢0

𝑠2�̅�
 =  

𝐶𝑢0

𝑠
𝐸0

+  ∑
𝑠
𝐸𝑖

𝑛
𝑖=1 −  ∑

𝑠2 𝐸𝑖⁄

𝑠 +  1
𝜏𝑖

⁄
𝑛
𝑖=1

 

𝐶�̅�𝑠�̅� =  𝐶
𝑢0

𝑠
𝑠�̅� = 𝐶𝑢0�̅� 

 

Matlab was once again employed (see Appendix D) to symbolically solve the 

inverse of the compliance function in Equation 4-11.  The Creep function code for 1 or 2 

parameters can be executed in less than a minute on a typical laptop.  A solution to the 3 

parameter inverse failed using a typical laptop (out of memory), took approximately 40 

minutes to execute on a modern multiprocessor workstation with excess memory, and is 

approximately 4.5 pages long.  All attempts to solve the 11 parameter equation failed.  It 

is clear from this exercise that obtaining the data that fits the application best is much 

easier than converting types.    
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The solution for time dependent stress using the Relaxation Modulus is relatively 

straightforward for this set of assumptions, and is shown in Equation 4-12.  It’s worth 

noting that for this simple static case, the viscoelastic solution is effectively the elastic 

solution with the Relaxation Modulus substituted for Young’s Modulus.  Brinson and 

Brinson [4] covered a similar example of an axially loaded bar and came to a similar 

conclusion for the simplified static case by using the convolution integral. 

 

Equation 4-12: Inverse Laplace Solution for Relaxation Modulus 

ℒ−1{𝐶𝑢0�̅�} =  𝐶𝑢0𝐸(𝑡) =  
−𝑢0𝐸(𝑡)

[(1 − ν0)𝑏 + (1 + ν0)
𝑎2

𝑏
]

(
𝑎2

𝑟2
− 1) =  𝜎(𝑡) 
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4.3 Results 

All of the previous information was combined, and the Relaxation Modulus was 

re-examined with respect to the Young’s Modulus.  This is shown graphically in Figure 

4-9.   

 

 

Figure 4-9: Comparison between Relaxation and Young's Modulus 
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Figure 4-10: Pressure (Stress) at the Crimp Interface (outside radius) 

 

As discussed previously, the interface pressure is equal to the stress at the 

outside radius of the plastic cylinder.  This pressure was calculated and plotted over time 

in Figure 4-10.  Note that the stress is negative because the material at the interface is in 

compression and the stress tends toward zero at long times due to viscoelastic 

relaxation. 
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Figure 4-11: Stress Non-dimensionalized by the Stress Predicted at t = 1 minute 

 

Last, the data was non-dimensionalized in order to view relaxation as a 

percentage.  The data was non-dimensionalized by the elastic stress and by the stress 

after 1 minute of relaxation.  Figure 4-11 shows the non-dimensionalized stress as 

compared to the 1 minute stress.  As can be seen, the stress in the neighborhood of 1 

minute is very similar to that predicted by elastic theory.  The 1 minute stress was chosen 

because it is more easily empirically tested.   
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In Figure 4-11, the stress at each Poisson’s Ratio was non-dimensionalized by 

its own stress at 1 minute.  Figure 4-11 shows that the ring is predicted to lose nearly 

half of its retention strength after a little more than 2 years and reaches its specification 

strength of 66% in less than 6 weeks and that Poisson effects over time have very little 

effect.   

By this non-dimensionalization technique, all geometric effects are removed.  

Because of that, Figure 4-11 is effectively a plot of E(t)/E(t=1) vs time.  By non-

dimensionalization, the plot in Figure 4-11 can be shown to theoretically stand for the 

non-dimensionalized viscoelastic stress at any point within the thickness and for any size 

thick wall cylinder over time. 
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  Chapter 5

Numerical Solutions 

 

The original plan was to import the Creep or Relaxation data into a commercially 

available finite element analysis (FEA) package and to compare the analytical results 

with the numerical results.  Unfortunately, commercially available software from ANSYS 

and Dassault Systémes (Abaqus) rely heavily on time measurements of Shear Modulus 

G and Bulk Modulus Κ.  Neither package easily accepts standard tensile Creep or 

Relaxation data.   

It is worth noting that ANSYS APDL does support use of E* and ν* data from 

DMA testing.  To utilize this feature, storage modulus E’ and loss modulus E’’ (or tanδ) 

data is needed over several decades of frequency.  It appears that frequency 

temperature superposition is also supported, but this was not tested. 

Both of these systems can be fitted with custom solutions, but building a custom 

material model would have delayed the delivery of this work. 
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  Chapter 6

Conclusions 

 

Although the Relaxation test data does not allow prediction to 20 years, it does 

predict the decay in retention force, including the point of interest when the product falls 

below specification.  The importance of this work lies in the ability to predict the 

performance of the product well into the future before it ever leaves the virtual drawing 

board.  This prediction shows a faster delay than expected, spurring higher interest in 

even longer term effects. 

 

6.1 Key Learnings 

Several critical pieces of information were discovered along this journey.  The 

first is a deep appreciation for the various material tests available at this point in time.  So 

many test methodologies are available and so much analysis is done automatically with 

modern equipment that it takes a good deal of study just to understand and appreciate 

the results.  Misunderstanding of the DMA data presented earlier in this work caused 

approximately one month delay even though the data was readily available. 

Along those lines, it is appropriate to acknowledge an early shortcoming.  In 

common mechanical engineering, it is easy to become most comfortable and reliant upon 

Young’s Modulus and Poisson’s Ratio.  In the world of elasticity, these two take care of a 

majority of applications, and easy conversion between E, ν, G, K, and λ means that we 

can pick favorites and convert as needed.  In viscoelasticity, the selection of mechanical 

property type drives the testing and form of the results, as seen by the inability to convert 

Creep data for this application.  Even though the Creep data gives the ability to predict 

longer term effects, it is much more complicated to use for this application.  Other 
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applications will readily use D(t) and experience troubles with any of the other time 

dependent material properties. 

 The last item to mention was the difference in activation energies 

between Creep and Relaxation.  This really closes the section where it began – 

understanding the test methodology at a deep level.  Upon discovery of an activation 

energy and reference temperature for Creep, the times and temperatures test plans for 

Creep and Relaxation were calculated using the Creep information.  Due to this 

misunderstanding, this work is not able to predict as far into the future as requested by 

the original problem statement. 

 

6.2 Future Work 

 
6.2.1 Longer Term Prediction 

As discussed in the previous section, the desire for this work was originally to 

predict 20 years into the future at temperatures up to 40°C.  With the Relaxation test 

better understood, it would not be a major work to put together a second Relaxation test 

plan to achieve those results. 

 

6.2.2 Internal Pressure 

If the elasticity solution was solved including internal pressure, then this solution 

could be better applied to hydraulic and pneumatic applications.  For static internal 

pressure applications, the Laplace inversion in section 4.2.4 could be directly applied.  

This would also allow the effects of cyclical internal pressures to be examined, but the 

Laplace transformations and inversions would need to be repeated for p(t). 
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6.2.3 Direct Testing 

An original desire for this work was to confirm the results with some additional 

empirical testing of the application itself.  An axial pull test could be assembled to show 

correlation between theoretical predictions and reality. 

 

6.2.4 Local Effects 

In reality, local effects are commonly used in crimping.  Localized radial 

deformations increase axial retention forces dramatically.  When parts fail, the location is 

commonly at the edge where the very stiff outer crimp band terminates.  Both of these 

highly important effects are not covered by this work.  Due to the complexity of these 

topics, it is believed that advanced numerical (finite element) models will be needed. 

 

6.2.5 Viscoplasticity 

In a manufacturing environment, process variation can cause quality concerns if 

not controlled.  To qualify a crimping process for small components, it may be noted that 

initial retention forces vary more in the elastic region than if the material is crimped into 

the plastic region because the output stress for the additional strain is negligible.  But 

what happens at long times? 

 

6.2.6 Composite Effects 

A common solution for injection molded applications needing higher stiffness 

and/or strength is to reinforce the plastic with short glass fiber.  With this reinforcement 

comes a three dimensional distribution of anisotropic material properties.  Where the 

manufacturer introduces the material to the mold may have as much to do with 

performance as the original part design. 
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6.3 Final Remarks 

This work did not accomplish all of the goals that were originally desired, but it 

set the groundwork to answer those concerns.  A material was analyzed, compared with 

data from the manufacturer, and the analysis routine was itself observed for 

improvements.  The calculated values for others to utilize this material analysis were 

delivered.  The operations to apply this material model to the thick walled cylinder with 

constant deformation were discussed and the results were shown, enabling others to 

apply some of this information to other applications.  The only deliverable that was 

missed was the prediction to at least 20 years at 23°C, but the goal to predict time to 

specification pull strength was met and all the information needed to plan an effective test 

to get 20-year data is contained herein.  Last, a non-dimensionalized model that 

theoretically predicts the viscoelastic stresses at any point in a PEI thick wall cylinder of 

any size with constant radial deformation was presented, showing a 1/3 drop in retention 

strength within 6 weeks and a drop of nearly ½ after 2 years at 23°C. 
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Appendix A 

Drawing for Test Samples
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Figure A-1: Drawing for Test Samples.
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Appendix B 

Linear Interpolations for Acceleration Factors 
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Appendix C 

Prony Series for Creep 



 

59 

 



 

60 

 



 

61 

 



 

62 

 



 

63 

 



 

64 

 



 

65 

 



 

66 

 



 

67 

Appendix D 

Inverse Laplace Transforms
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