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Abstract 

ADAPTIVE MULTIPLE OPTIMAL LEARNING FACTORS ALGORITHM 

FOR FEEDFORWARD NETWORKS 

 

Jeshwanth Challagundla, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Michael Manry 

There is always an ambiguity in deciding the number of learning factors that is 

really required for training a Multi-Layer Perceptron. This thesis solves this problem by 

introducing a new method of adaptively changing the number of learning factors 

computed based on the error change created per multiply. A new method is introduced 

for computing learning factors for weights grouped based on the curvature of the 

objective function. A method for linearly compressing large ill-conditioned Newton’s 

Hessian matrices to smaller well-conditioned ones is shown. This thesis also shows that 

the proposed training algorithm adapts itself between two other algorithms in order to 

produce a better error decrease per multiply. The performance of the proposed algorithm 

is shown to be better than OWO-MOLF and Levenberg Marquardt for most of the data 

sets. 
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Chapter 1 

Introduction 

1.1 Artificial Neural Networks 

An artificial neural network (ANN) is a computational model inspired by biological 

neurons. There are a number of different types of networks, but they are all characterized 

by a set of nodes and connections between the nodes. These nodes are basic 

computational units called neurons. The structure of an artificial neuron is shown in figure 

1.1. 

 

Figure 1.1 Nonlinear model of a neuron 

The connections between nodes are called synapses. Every synapse has a 

value associated with it called a synaptic weight. This weight is multiplied by the input of 

a synapse in order to obtain the output at the other end of a synapse.  A neuron also 

consists of a summing junction that sums up outputs of all the synapses connected to it. 

This is called the net value of the neuron. The net value is passed through an activation 

function in order to obtain the output of a neuron. Typically used activation functions are 

the piecewise linear function and nonlinear functions like sigmoid and hyperbolic tangent 

[7], [1].  
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ANNs with their remarkable ability to derive meaning from complicated and 

imprecise data can be used to extract patterns and detect trends that are too complex to 

be noticed by either human or other computer techniques.  

There are different kinds of ANNs based on the structural arrangement of 

neurons and the way data flows between them. All though there can be any number of 

arbitrary network configuration a few prominent ones are mentioned here. Feedforward 

networks were the first and simplest type of ANNs devised. In these networks, 

information moves only in one direction, forward, from the input nodes, through the 

hidden nodes and to the output nodes. There are no cycles or loops in these networks. A 

feedforward network with one hidden layer is called a single layer feedforward network, 

one with more than one hidden layer is called a multilayer feedforward network. ANNs 

with a feedback loop are called recurrent neural networks (NNs). ANNs which use both 

present as well as previous inputs are called time delayed NNs. ANNs which use radial 

basis functions which has built into a distance criterion with respect to a center are called 

radial basis function (RBF) networks. 

Of all these different NN architectures, multilayer feedforward NNs are 

extensively used for function approximation and pattern recognition task’s because of 

their special properties like universal approximation, approximation of Bayes 

discriminants, etc. The most commonly used multilayer feedforward network is the 

multilayer perceptron (MLP). 

1.2 Properties of MLP 

Universal Approximation:  

During 1970’s the apparent ability of sufficiently elaborate feed-forward networks 

to approximate quite well nearly any function encountered in applications led 

investigators to wonder about the ultimate capabilities of such networks. Are the 
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successes observed reflective of some deep and fundamental approximation capability, 

or are they merely flukes, resulting from selective reporting and a fortuitous choice of 

problems? Are multilayer feedforward networks in fact inherently limited to approximating 

only some fairly special class of functions [58]? 

However in 1988 Gallant and White [56] showed that a particular single hidden 

layer feed forward network using the monotone “cosine activation” is capable of yielding 

Fourier series approximation to a given function to any degree of accuracy. In 1989 Hect-

Nielsen [57] proved the same for single hidden layer feedforward networks with logistic 

activation. 

In 1989 Hornik, Stincombe and White [58] proved that standard multilayer 

feedforward networks are capable of approximating any measurable function to any 

desired degree of accuracy, in a very specific and satisfying sense. This is called the 

universal approximation theorem. It also implies that any lack of success in applications 

must arise from inadequate learning, insufficient number of hidden units or the lack of a 

deterministic relationship between input and target [59] [60]. However, the number of 

hidden units that are needed in the single hidden layer is still uncertain [43] [6]. 

    Approximating Bayes discriminants: 

Many publications [61] [62] [63] [64] [65] have shown that multilayer perceptron 

classifiers and conventional nonparametric Bayesian classifiers yield the same 

classification accuracy statistically. All these were empirical and hence are dependent on 

the data sets used.  

It was proved theoretically in 1990 [66] that a multilayer perceptron trained using 

back propagation approximates the Bayes optimal discriminant functions for both two-

class and multiclass recognition problems. Most importantly, it has been shown that the 

outputs of the multilayer perceptron approximate the a posteriori probability functions 
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when trained using back propagation for multiclass problems. This does not depend on 

the architecture of the network and is hence, applicable to any network that minimizes the 

mean squared-error measure. 

Therefore a multilayer perceptron (MLP) can approximate both a Bayes classifier 

and a Bayes approximation [67] [68]. It must be noted that the accuracy of the MLP in 

approximating Bayes posterior probabilities improves as the number of training patterns 

increases. 

1.3 Applications of MLP 

The MLP is very good at fitting nonlinear functions and recognizing patterns [7]  

[1]; consequently they are used extensively in function approximation and pattern 

recognition. 

    Pattern Recognition 

 Pattern recognition is formally defined as the process whereby a 

received pattern/signal is assigned to one of a prescribed number of classes. A neural 

network performs pattern recognition by first undergoing a training session during which 

the network is repeatedly presented with a set of input patterns along with the category to 

which each particular pattern belongs. Later, the network is presented with a new pattern 

that has not been seen before, but which belongs to the same population of patterns 

used to train the network. The network is able to identify the class of that particular 

pattern because of the information that it had extracted from training data [6]. 

The MLP is used in pattern recognition problems such as speech recognition 

[14], character recognition [15], fingerprint recognition [16], face detection [17], 

classification and diagnostic prediction of cancer [52], handwritten zip code recognition 

[53], etc. 
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    Function Approximation 

 Consider an unknown nonlinear input-output mapping described by a 

function f(·). In order to make up for lack of knowledge about the function f(·), a labeled 

data set is given. When the neural network is trained on this data set it tries to form an 

input-output mapping F(·) which is close enough to f(·) in a Euclidean sense over all the 

inputs in the labeled data set. 

The MLP is used in approximation problems [7] like stock market forecasting [8], 

aviation prognostics [9], data mining [10, 11], filtering [12], control applications [13], 

energy systems [44], atmospheric science [45], hydrology [46], renewable energy 

systems [47], ecological modeling [48], electric load forecasting [49], rainfall-runoff 

modeling [50], weather forecasting [51] etc.  

1.4 Problems with the MLP 

 In spite of the many applications of the MLP and its other advantages, it 

still has many problems that remain to be solved. A few of these problems are discussed 

here. 

1. Training of neural networks is very sensitive to the initial values of weights. This 

problem can be partly solved by using net control. Net control is nothing but 

initializing the weights in such a way that the mean of net values is a small non 

zero number like 0.5 and their variance is a small value [54] such as 1.0. 

2. First order algorithms lack affine invariance, i.e., two equivalent networks with 

different weight matrices that are trained using first order algorithms lose 

equivalence at the first iteration. 

3. Second order algorithms use multiplies inefficiently and do not scale well. This 

occurs because second order algorithms calculate Hessian matrices which are 
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computationally expensive. As the network size increases the number of 

multiplies required grows exponentially. 

4. There is always uncertainty in deciding the number of hidden layers and number 

of units in each hidden layer to be used [55]. 

5. Validation and confidence assessment is a problem [55] 

1.5 Organization of this Thesis 

Problems 2 and 3 can be partly solved by using Newton’s algorithm to find small 

sets of network parameters in each iteration [3] [5] [70] [71].The objective of this thesis is 

to continue this work by designing an algorithm that can adapt itself in every iteration in 

such a way that the size of hessian computed changes based on the error decrease per 

multiply. To a great extent this reduces the computational burden of second order 

methods. 

Chapter 2 reviews NN training including first order and second order algorithms 

and optimal learning factors. Chapter 3 discusses Output Weight Optimization, Newton’s 

method for input weights and the OWO-MOLF algorithms in detail. In chapter 4 we 

present the motivation for this thesis and some lemmas. Chapter 5 introduces the 

Adaptive Multiple Optimal Learning Factors algorithm in detail and describes its 

advantages. Experimental results are included in chapter 6 and the thesis is concluded in 

chapter 7. 
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Chapter 2 

Review of Neural Network Training 

2.1 MLP Notation and Processing 

 The MLP is the most widely used type of neural network [32], Training a 

MLP involves solving a non-convex optimization problem to calculate the network 

weights. The single hidden layer MLP is the focus of this work because any continuous 

function can be approximated to arbitrary precision [33]. The architecture of a fully 

connected feed forward neural network is shown in figure 2.1. 

 Input weights w(k,n) connects the n
th
 input to the k

th
 hidden unit. Output 

weights woh(i,k) connect the k
th
 hidden unit activation Op(k) to the i

th
 output yp(m) with 

linear activation. Bypass weight woi(i,n) connects the i
th
 output to the n

th
 input signal. The 

training data set {xp, tp} consists of input vectors xp that are initially of size N. One more 

input xp(N+1) whose value is always equal to 1 is added to handle the threshold for both 

input and hidden layers, so xp=[xp(1),xp(2),….,xp(N+1)]
T
. The desired output vector tp 

contains M elements. ‘p’ is the pattern number that varies from 1 to Nv, where Nv is the 

number of training vectors present in the data set. Nh is the total number of hidden units 

present in the MLP hidden layer. The dimensions of the weight matrices W, Woh and Woi 

are Nh by (N+1), M by Nh and M by (N+1) respectively [5]. 

 The hidden layer net function vector, np and the actual output of the 

network, yp can be written as [5], 

pp xWn       (2.1) 

pohpoip OWxWy              (2.2) 
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where the k
th
 element of the hidden unit activation vector Op is calculated as 

Op(k)=f(np(k)) and  f  denotes the hidden layer activation function. Training an MLP 

typically involves minimizing the mean squared error between the desired and the actual 

network output, defined as 

     
 


v

v

v

v

N

1p

p

2N

1p

M

1i

pp E
N

1
iyit

N

1
E     (2.3) 

        
2M

1i

ppp iyitE 


      (2.4) 

where, Ep is the cumulative squared error for pattern p [5]. 

xp(1)

xp(2)

xp(3)

xp(N+1)

yp(1)

yp(2)

yp(3)

yp(M)

Input
Layer

Hidden
Layer

Output
Layer

W

Woi

Woh

np(1)

np(Nh)

Op(1)

Op(Nh)

 

               Figure 2.1 Fully connected MLP Structure 
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2.2 Review of First Order Training Algorithms 

 Training of neural networks consists of changing the weights and biases 

in order to make the computed output as close as possible to the desired output. It mainly 

involves the following two independent steps. First a search direction has to be 

determined. i.e., in what direction do we want to search in weight space for a new current 

point? Once the search direction has been found we have to decide how far to go in the 

specified search direction, i.e., a step size has to be determined. 

Most of the optimization methods used to minimize error functions are based on 

the same strategy. The minimization is a local iterative process in which an 

approximation to the error function in a neighborhood of the current point in weight space 

is minimized. Neural network training depends mainly on the error function used. In this 

thesis mean squared error (2.3), (2.4) is used as the error function. Once the neural 

network is trained it will be able to make predictions on new data set whose outputs are 

unknown. 

    2.2.1 Back Propagation 

Back propagation is a well-established method for calculating first order gradient 

matrices defined as 

W
G






E

    (2.5)
 

oh

oh
W

G





E

     (2.6)

 

oi

oi
W

G





E

    (2.7)

 

The gradients are calculated using the chain rule, in which delta functions are 

calculated for output and hidden units. Delta functions are derivatives of an error function 
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of a particular training pattern with respect to the net function. The delta functions of 

output and hidden units [73] are calculated using the equation (2.8) and (2.9) 

 
 

    iyit2
iy

E
iδ pp

p

p
po 




         (2.8) 

 
 

      








M

1i
ohpop

p

p

p ki,wiδknf'
kn

E
kδ                (2.9) 

The elements of negative gradient matrices G, Goi, Goh of input, output and 

bypass weights W, Woh, Woi respectively are calculated from equation (2.10), (2.11) and 

(2.12) 

     
 

   








vN

1p

pp

v

n xkδ
N

1

nk,w

E
nk,g   ;  




v

T
N

1pvN

1
pp

x δG             (2.10)  

 
 

   








vN

1p

ppo

voh

oh kO iδ
N

1

ki,w

E
ki,g   ;  




v

T
N

1pvN

1
ppo

OδGoh    (2.11)

 
 

   








vN

1p

ppo

voi

oi n xiδ
N

1

ni,w

E
ni,g   ;  




v

T
N

1pvN

1
ppooi

x δG          (2.12) 

Steepest Descent 

In steepest descent the weights are updated in the direction of negative 

gradients. The weight changes of input, output and bypass weights are calculated using 

the gradients from eq. (2.10), (2.11) and (2.12) and a learning factor z. The weights are 

updated as follows, 

GWW  z     (2.13) 

        ohohoh GWW  z
        (2.14)

 

oioioi GWW  z
    (2.15)
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    Optimal Learning Factor 

Learning factor z decides the rate of convergence of neural network training. 

Usually a small positive value for z will work, but convergence is likely to be slow. If z is 

too large the error E can increase [7]. In order to avoid this uncertainty a lot of heuristic 

scaling approaches have been introduced to modify the learning factors between 

iterations and thus speed up the rate of convergence. However using a Taylor’s series for 

the error E, a non-heuristic Optimal Learning Factor (OLF) for OWO-BP (where OWO is 

Output Weight Optimization) can be calculated as, 

22 zE

zE
z




      (2.16) 

where the numerator and denominator derivatives are evaluated at z=0. Assume that the 

learning factor z is used to update only the input weights W, as  

GWW  z     (2.17) 

The expression for the second derivative of the error function with respect to the OLF is 

found using eq. (2.18), (2.19) as, [5] 

m)g(j,
m)w(j,n)w(k,

E
n)g(k,

z

E h hN

1k

N

1j

1N

1n

1N

1m

2

2

2

 
 







 







  (2.18) 

      j
jk,

k gHg
 


h hN

1k

N

1j

T
    (2.19) 

where column vector gk contains elements g(k,n) of G, for all values of n. H is the 

reduced size input weight Hessian with Niw rows and columns, where Niw=(N+1)·Nh is the 

total number of input weights. H
k,j 

contains elements of H for all input weights connected 

to the j
th
 and k

th
 hidden units and has size (N+1) by (N+1). When Gauss-Newton updates 

are used, elements of H are computed as 
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   
 

 
 

 nk,w

iy

mj,w

iy
 

N

2

nk,wmj,w

E p
N

1p

M

1i

p

v

2 v













 
 

  (2.20) 

Eq. (2.16) and (2.20) show that (i) the OLF can be obtained from elements of the Hessian 

H; (ii) H contains useful information even when it is singular; and (iii) a smaller non-

singular Hessian, 22 zE  can be constructed using H. Therefore it may be 

advantageous to construct and use Hessians of intermediate size [5]. 

     OWO-BP Algorithm 

 This is a two stage algorithm; in the first stage the Output Weight 

Optimization (OWO) technique is used in order to find out the output and bypass weights 

Woh and Woi respectively. In the second stage back propagation is used in order to 

compute the weight change matrix ΔW [72]. This weight change matrix is used to update 

the input weights W. 

OWO is a technique used to find out the output weights [74]. Since the 

activations in the outputs are linear, OWO is equivalent to solving a set of linear 

equations. The actual outputs can be calculated from the below modified equation 

pop XWy                  (2.21) 

where the basis vector Xp is the augmented input of size Nu formed by combining actual 

input and hidden unit activations [xp, Op]
T
, where Nu is equal to N+Nh+1. Wo includes both 

output and bypass weights [Woi : Woh] and has a size of M by Nu. The output weights can 

be solved by equating oWE/ to zero; this is equivalent to solving the set of linear 

equations given in equation 

T
oWRC      (2.22) 

R is the autocorrelation matrix of the augmented input Xp, and C is the cross correlation 

of augmented input and desired output tp.  
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



vN

1p

T

vN

1
p p tXC       (2.23) 





vN

1p

T

vN

1
p p XXR     (2.24) 

Eq. (2.22) is most easily solved using orthogonal least squares (OLS) [2] [5]. 

Once the output weights are computed, back propagation is used to compute the 

negative gradient G of input weights as shown in eq. (2.5) (2.10) in order to calculate the 

input weight change matrix ΔW, 

GΔW  z     (2.25) 

GWW  z          (2.26) 

A description of the OWO-BP algorithm is given below. For every training epoch [5] 

1. Solve the system of linear equations in (2.22) using OLS and update the output 

weights, Wo 

2. Find the negative Jacobian matrix G described in eq. (2.5) and (2.10) 

3. Update the input weight matrix W, using eq. (2.26) 

This method is attractive for following reasons [5], 

1. The training is faster than steepest descent and consumes fewer multiplies, since 

training weights connected to the outputs is equivalent to solving linear 

equations. 

2. It helps us avoid some local minima 

3. This method shows better performance when compared to the BP algorithm 

discussed before. 
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Conjugate Gradient 

 Conjugate Gradient is a first order training method that can be viewed as 

being intermediate between steepest descent and Newton’s method. The conjugate 

gradient method has the following properties; 

1. It minimizes quadratic error functions of n variables in n steps. 

2. The conjugate gradient algorithm requires no Hessian matrix evaluation. 

3. No matrix inversion or storage of an n×n matrix is required. 

In the conjugate gradient method, weights w, are not directly updated using the 

gradient vector gk; instead they are updated using a direction vector pk for the k
th
 

iteration, where,  

 oiohk G,GG,g vec
    (2.27)

 

 oioh W,WW,w vec
   (2.28)

 

 oioh P,PP,veckp     (2.29)
 

The vec operator converts all the parameter matrices into a single vector. The subscript k 

indicates the iteration number. The direction vector is updated as follows, 

kk1k
g pp .B

1



    (2.30) 

using a factor B1 calculated as [69], 

   

kk

1k1k

gg

gg
T

T

1B       (2.31) 

This direction vector, in turn, updates the weights as 

kk1k ww p z     (2.32) 
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Since the weights are updated using the direction vector as opposed to the 

gradients themselves, the direction of descent is superior to that seen in steepest 

descent and converges in fewer iterations [34] [68] [69].  

2.3 Review of Second Order Training Algorithms 

 Second order training of a MLP involves quadratic modeling of the error 

function. Second order training methods are preferred because of their fast convergence. 

They lead to problems like memory limitation, since the Hessian and Gradient matrices 

should be computed and stored. They also are computationally very expensive.  

     Newton’s Method 

Newton’s method is the basis of number of popular second order optimization 

algorithms. Newton’s algorithm is iterative, where in each iteration, [2] 

1. Calculate the Newton weight change vector e 

2. Updates variable with this weight change vector, e 

The weight change vector, e is calculated by solving the linear equations 

         g'eH'       (2.33) 

where, H’ is the Hessian of the objective function calculated with respect to all the 

weights in the network and has elements defined as,  

 
   jwiw

E
ji,h'

2






             (2.34) 

g’ is a vector of negative gradients and is defined as  

 oioh G,GG,g' vec
            (2.35)

 

Once eq. (2.33) is solved for e, the weights are updated as 

eww            (2.36) 

where, w is defined in eq. (2.28) 
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Even though Newton’s method has fast convergence in terms of iterations, it may fail if its 

Hessian is singular [37]. In this case the Levenberg-Marquardt (LM) algorithm [35] is 

used. 

     Levenberg-Marquardt Algorithm 

 LM can be thought of as a combination of steepest descent and the 

Gauss-Newton method. When the current solution is far from the correct one, the 

algorithm behaves like a steepest descent method: slow, but guaranteed to converge. 

When the current solution is close to the correct solution, it becomes a Gauss-Newton 

method. 

In LM the Gauss-Newton Hessian is modified as, 

IH'H' λ     (2.37) 

where λ  is a constant and I is the Identity matrix of the same size as H’. The weight 

change vector e is computed from eq. (2.38) using OLS [2] and the weights are updated 

as 

  g'IH'e
1

 λ            (2.38) 

eww      (2.39) 

By changing the value of λ  the algorithm can interpolate between first order and second 

order methods. If the error increases the value of λ is increased and the algorithm 

mimics steepest descent and if the error decreases the value of λ is decreased in order 

to operate it close to the Gauss-Newton method. LM is computationally very expensive, 

so it is used only for small networks [35]. 
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Chapter 3 

Practical Newton’s Algorithms for the MLP 

Newton’s method uses first and second order derivatives and usually performs better 

than steepest descent in terms of convergence per iteration. The idea behind this method 

is that, given a starting point, a quadratic approximation to the objective function that 

matched the first and second derivative values at that point is constructed. Then the 

approximate quadratic error function to generate the current solution vector is minimized. 

The current solution is then the starting point in the next iteration. If the objective function 

is quadratic, then the approximation is exact, and the method yields the true minimum in 

one step. If, on the other hand, the objective function is not quadratic, then the 

approximation will provide only an estimate of the position of the true minimum [38]. 

Practical Newton’s algorithms for the MLP are described in this section. 

3.1 Output Weight Optimization 

 Output weight optimization (OWO) is a technique used to find output 

weights Wo [74], which include both output to hidden and bypass weights [Woi : Woh], with 

less computation than steepest descent. In this subsection we show that OWO is 

equivalent to applying Newton’s method to output weights. The error function of (2.3) can 

be written as, 

      
 














v hN

1p

M

1i

1NN

1n
opp

v

ni,wnXit
N

1
E              (3.1) 

where, the basis vector Xp is the augmented input of size Nu formed by combining actual 

input and hidden unit activations [xp, Op]
T
 . In order to find the output weight change 

vector d calculation of first and second partial derivatives of the error function in eq. (3.1) 

with respect to the output weights is needed. The elements of the Hessian matrix Ho and 

the negative gradient vector go of output weights are computed as, 
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 
 

       jXni,wnXit
N

2

ji,w

E
ji,g p

N
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1NN

1n
opp
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o
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 


















        (3.2) 

 
   

   








vN

1p
pp

voo

2

o jXkX
N

2

jm,wki,w

E
jm,k,i,h   

 (3.3) 

The elements of the 2 dimensional Hessian matrix Ho, are found from ho(i,k,m,j) as 

      jm,k,i,hjN1mk,N1ih ouuo 
   (3.4) 

where, Nu=Nh+N+1. Elements of the negative gradient column vector go are calculated 

from go(i,j) as, 

    ji,gjN1ig ouo 
         (3.5)

 

The output weight matrix is converted into a vector wo=vec{ Wo}. The output 

weight change vector d=wo’
T
-wo

T
, where wo’ is the new version of the output weight 

vector wo, is computed from Newton’s method by solving the following equation. 

oo gdH       (3.6) 

Let us assume that there is only one output in the network. Now from eq. (2.23), (2.24), 

(3.2) and (3.3), we can see that 

,R  H o  2      (3.7) 

 T
oo RwCg  2          (3.8) 

By solving eq. (3.6), (3.7) and (3.8) we get 

 T
o

1T
o

T
o RwCRww'  

              (3.9) 

CRw' 1T
o

                (3.10) 

This shows that OWO is nothing but Newton’s method applied to output weights. 
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3.2 Newton’s Method for Input Weights 

 Let the input weight matrix is converted into a vector, w=vec{W}. Let 

e=w’-w be the unknown input weight change vector, where w’ is the new version of input 

weight vector w that we’re trying to find. The multivariate Taylor’s theorem says that E’, 

which is E as a function of e, can be approximated as [39],   

eHege  TT

2

1
EE'     (3.11) 

where, the elements of the Gauss-Newton input weight Hessian matrix H can be 

computed as follows 

   mj,wnk,w

E
m)j,n,h(k,

2




     (3.12) 

  
 

 
 
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  








vN

1p

M

1i

pp

v

 
mj,w
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 (3.13) 

 
 

 
      nxknf'ki,w

nk,w

iy
ppoh

p





            (3.14) 

The elements of the 2 dimensional Hessian H in eq. (3.11) are found from h(k,n,j,m) as 

      mj,n,k,hmN1jn,N1kh hh 
   (3.15)

 

Elements of the negative gradient column vector g are calculated from elements of the 

negative gradient matrix G in eq. (2.10) as, 

    nk,gnN1kg h 
         (3.16)

 

Setting 0E'  e , we get 

0E'  eHge                            (3.17) 

gHe  1      (3.18) 
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The input weight vector is then updated as 

eww'       (3.19) 

     3.3 OWO-Newton Algorithm 

 OWO-Newton is a two-step method in which we alternatively use 

Newton’s algorithm to decrease E via OWO in section 3.1 and Newton’s method for input 

weights in section 3.2 (2.22), (2.23) and (2.24). For the first iteration the input weights are 

randomly initialized. In the second step the input weights W are updated using Newton’s 

algorithm [2]. This process involves computation of the input weight Hessian H and the 

negative input weight gradient matrix G, as shown in eq. (2.10), (3.12), (3.13) and (3.14). 

This information is used to compute input weight change vector e and in turn update the 

input weights as in eq. (3.18) and (3.19). 

OWO-Newton Algorithm  

Given the number of iterations, Nit 

Initialize W  

For it=1 to Nit 

   Calculate G 

    Gg vec  

   Calculate H 

   Solve (3.3) for e 

    eD 1vec  

   DWW   

    Perform OWO 

end for 

The OWO-Newton algorithm has the following problems. 
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1. The error is not guaranteed to always decrease, since E is not a quadratic function of 

W. 

2. It is computationally very expensive since it involves computation and storage of 

Hessians and gradients; this makes it unfeasible for very large networks. 

 In order to reduce the computational cost, the OWO-MOLF algorithm for 

feedforward network was introduced [5]. 

3.4 OWO-MOLF Algorithm and its Analysis 

 In the OWO-BP algorithm the input weights are trained using the 

negative gradients and a learning factor z. The learning factor is normally assumed to be 

a small constant value; the learning factor z can also be found using a Taylor series as in 

eq. (2.16), (2.18), (2.19) and (2.20). The algorithm that uses the optimal learning factor 

performs extremely well when compared to arbitrary assumption. This shows that 

learning factor plays a very important role in the training process. In the OWO-MOLF 

algorithm the input weights of a network are trained using a negative gradient matrix G 

and a vector of learning factors z of size Nh×1. The derivation of multiple optimal learning 

factors algorithm is shown below [5] [75]. 

     Derivation of Multiple Optimal Learning Factors 

Consider an MLP with one hidden layer and Nh hidden units. Let us also assume 

that this MLP is trained using OWO-BP. Consider a learning factor vector z with Nh 

elements in it and all the input weights that are connected to a hidden unit are updated 

using the learning factor zk associated with that particular k
th
 hidden unit. The error 

function to be minimized is given in eq. (2.3). The predicted output yp(i) is given by, 

               

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where, g(k,n) is an element of the negative Jacobian matrix G. The first partial derivative 

of E with respect to zj is [5], 

            
  
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    (3.21)                                                                                                                             

where, 

       



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1N

1n
poipp nxni,witit ,               
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1n
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Using Gauss-Newton updates, the second partial derivative elements of the Hessian 

Hmolf are 
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 (3.24) 
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(3.26)

 

The Gauss-Newton update guarantees that Hmolf is non-negative definite. Given 

the negative gradient vector,  TN21 h
zE....,zE,zE molfg and the 

Hessian Hmolf, the next step is to minimize E with respect to the vector z using Newton’s 

method. Note that -gmolf(j) is given in (3.21), (3.22) and (3.23). In each iteration of the 

OWO-MOLF algorithm, the steps are as follows [5]: 

1. Calculate the negative input weight Jacobian G using BP. 
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2. Calculate z using Newton’s method and update the input weights as 

     nk,gznk,wnk,w k         (3.27) 

3. Solve linear equations for all output weights. 

Here, the MOLF procedure has been inserted into the OWO-BP algorithm, 

resulting in an algorithm we denote as OWO-MOLF. The MOLF procedure can be 

inserted into other algorithms as well. 

    MOLF Hessian from Gauss-Newton’s Hessian 

If Hmolf and gmolf are the Hessian and negative gradients, respectively of the error 

with respect to z, then the multiple optimal learning factors are found by solving 

molfmolf gzH       (3.28) 

The term within the square bracket in (3.26) is the elements of the Hessian H 

from Gauss-Newton method for updating input weights (as in (3.17), (3.18) and (3.19)). 

Hence, 
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Lemma 4. The (k,j)
th
 elements of hmolf can be expressed in vector notation as, 
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In matrix notation, 

  j
jk,T

k gHgjk,hmolf     (3.31) 

where, the column vector gk contains G elements g(k,n) for all values of n, where the 

(N+1) by (N+1) matrix H
k,j 

contains elements of H for weights connected to k
th
 and j

th 

hidden units. 
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     Analysis of OWO-MOLF 

 OWO-MOLF algorithm is very attractive for various reasons. First, it is 

not computationally expensive due to the reduced size of the Hessian. Second, linear 

dependencies in input and hidden unit activations do not lead to the singularity of the 

MOLF Hessian. This method performs as well as or better than the Levenberg-

Marquardt, with several orders of magnitude fewer multiplies. The MOLF hessian and 

gradients are weighted sums of the total network Hessian and gradients; this interesting 

property makes it very flexible to switch from the OWO-Newton algorithm to the OWO-

MOLF algorithm. 

In MOLF the number of learning factors that are computed is always equal to the 

number of hidden units Nh present in the network. The adaptive MOLF algorithm 

introduced in chapter 5, adapts the dimension of the learning factor vector z.  

    3.5 Computational Analyses of Two-Step Algorithms 

As discussed earlier the OWO technique involves computation of the 

autocorrelation of the augmented input vector Xp and the cross correlation matrix of the 

augmented input vector with the desired output vector tp. OLS is used to solve the set of 

linear equations in eq. (2.22) in order to find the output weights Wo. The number of 

multiplies required to solve for the output weights using OLS in one iteration is given by, 

                                   
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The total number of multiplies required to compute the output weights and negative 

gradients in one iteration is given by [5], 
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The number of multiplies per iteration of LM is given below [5], 

       1N3NNMN46NNM1N2N[MNNM huuhhuvlm  

  23
w

22
h NN]1N4N w  (3.34) 

where, Nw is the total number of weights in the network and is equal to MNu+(N+1)Nh and 

Nu=N+Nh+1 

Newton’s method for input weights involves computation of the input weight 

Hessian matrix of size Niw× Niw, where Niw=Nh(N+1). The number of multiplies required for 

one iteration is given as 

      















2

5
12N

6

1

2

MN
1NN12MNNM iw

v
iwiwiwvNewton     (3.35) 

In the OWO-Newton algorithm, the total number of multiplies required per iteration is, 

NewtonOWONewtonOWO MMM        (3.36) 

where, 

         









2

3
12N

6

1

2

N
M1NN12NM1NNNM u

v
uuuhvOWO (3.37) 

The OWO-MOLF algorithm also involves computation of a Hessian, however, 

compared to Newton’s method for input weights or LM, the size of the Hessian is much 

smaller. The Hessian used in OWO-MOLF has only Nh rows and columns. The number of 

multiplies required for OWO-MOLF in one iteration is given as, 
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26 
 

Chapter 4 

Motivation for Additional Work 

4.1 Problems with existing training algorithms 

Attempts to develop second order training algorithms have fallen short because 

of the following problems 

1. We have no theoretical justification for introducing small second order modules 

into first order algorithms as is done in OWO-MOLF. 

2. Second order training is computationally very expensive when there are many 

unknowns as in LM and OWO-Newton. 

3. Algorithms such as OWO-MOLF may obtain more error decrease per multiply 

than LM and OWO-Newton. The latter two algorithms provide more error 

decrease per iteration. We lack a method for interpolating between OWO-MOLF 

and OWO-Newton 

4.2 Proposed Work 

We propose to solve the listed problems with the following tasks: 

1. Show that in theory, incrementally increasing the size of the unknown vector in 

second order modules helps. 

2. Develop a method for changing the size of second order training modules for 

optimizing error decrease per multiply 

3. Develop a method that interpolates between OWO-MOLF and OWO-Newton. 
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4.3 Relevent Lemmas 

Here I present Lemma 1 in order to perform task 1 

Lemma 1:  

Assume E(w) is a quadratic function of the input weight vector w which is divided 

into k partitions wk such that 
T];;[ T

k
T
2

T
1 wwww   and 

k

k
w

g





E
. If a training 

algorithm minimizes E with respect to the k dimensional vector z producing an error 

 kk2211 gwgwgw k21k z,....z,zEE   and k can only increase by splitting one of 

the existing partitions, then Ek+1≤Ek 

Proof: 

The error E(w) after updating the input weights can be modeled as, 

  Heegeew TT
o

2

1
EE      (4.1) 

where Eo is the error before updating the input weights, g is gk for k=1, H is the Hessian, 

and e is the input weight change vector. If e is found optimally using Newton’s method, 

then 

gHe 1  
     (4.2) 

The input weight change vector for k groups is 

 Tk21 z.......z,z T
k

T
2

T
1k ggge 

   (4.3)
 

Given,   kz ewz  Eargmin , increase k by one so that 

 Tkbka21 z,z.......z,z T
kb

T
ka

T
2

T
11k gggge     (4.4)

 

If kkbka zzz  , then ek= ek+1 and Ek+1=Ek . However since the k+1 elements in z can all 

change, we get Ek+1≤Ek 
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Lemma 1 presents a clear justification for increasing the number of second order 

groups or unknowns 

Task 2 is performed by developing new algorithm of adaptive multiple optimal 

learning factors which is explained in detail in chapter 5 

In OWO-MOLF all the input weights connected to a hidden unit forms a group. Nh 

learning factors are computed one for each group. In adaptive MOLF k groups of input 

weights are formed by splitting the Nh groups of OWO-MOLF. Here I present lemma 2 

and 3 in order to show that the proposed algorithm of adaptive multiple optimal learning 

factors does perform task 3.  

Let adaptive MOLF denote any algorithm in which the weight groups of OWO-

MOLF have been split, generating new groups and therefore increasing k in lemma 1. 

Lemma 2:  

If E(w) is quadratic in a given iteration, and if E-EMOLF and E-EaMOLF denote the 

error decrease due to the Newton steps of OWO-MOLF and adaptive MOLF respectively, 

then E-EMOLF ≤ E-EaMOLF.  

Proof:  

The k groups of unknowns for adaptive MOLF can be formed by splitting the Nh 

groups of OWO-MOLF. The lemma follows from Lemma1. 

Lemma 3: 

  OWO-Newton is a limiting case of the adaptive MOLF algorithm as the k groups 

of adaptive MOLF are split until k=Nh·(N+1) 

Proof: 
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We have       
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In a given iteration’s Newton steps, the resulting errors are related as

aMOLFNewton EE  . Equality occurs if gk ≠ 0 for every non zero element of eNewton. 

Lemmas 2 and 3 show that the adaptive MOLF algorithm interpolates between 

OWO-MOLF and OWO-Newton. 
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Chapter 5 

Adaptive Multiple Optimal Learning Factors Algorithm 

 5.1 Core Idea of Adaptive MOLF Algorithm 

 The OWO-Newton algorithm often has excellent error convergence 

characteristics, but its performance decreases when there are linear dependencies in the 

input signal or hidden unit activations, and when the error function is not well 

approximated by a quadratic function. Also OWO-Newton is computationally more 

expensive than first order algorithms. Although the OWO-MOLF algorithm is not as good 

as OWO-Newton in convergence per iteration, it is much more resistant to linearly 

dependent input signals and it is computationally less expensive. The main idea of the 

Adaptive MOLF algorithm is to preserve the advantages of both OWO-MOLF and OWO-

Newton and to get rid of their drawbacks. 

 This algorithm can adapt itself between OWO-MOLF and OWO-Newton 

algorithms. In OWO-MOLF, Nh learning factors are computed. In the adaptive MOLF 

algorithm the number of learning factors that are computed can be anywhere between Nh 

and Nh × (N+1) in each iteration. 

5.2 Grouping of the Input Weights 

In the algorithm being described, a group is a set of input weights that are 

updated using the same learning factor. In the steepest descent method for example, 

there is one learning factor, z, and the group contains all network weights. 

In the OWO-MOLF algorithm all the input weights that are connected to a hidden 

unit are updated using a learning factor associated with that particular hidden unit. In this 

case the group size is N+1 and the total number of groups per hidden unit, Ng is equal to 

one. In the adaptive MOLF algorithm the group size changes between N+1 and 1 and the 

number of groups per hidden unit varies between 1 and N+1. 
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In this algorithm the input weights W are grouped based on the curvature Hw of 

the error function calculated with respect to input weights (the second derivative of the 

error function in eq. (2.3) with respect to the input weights). The elements of the matrix 

Hw can be calculated as, 
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Weights that are connected to different hidden units are never grouped since that is 

observed to damage performance. 

5.3 Adapting the number of groups 

Our goal is to vary the number of groups per hidden unit so that the error change 

per multiply is maximized. In each iteration, error change is computed by taking the 

difference in the error from present and previous iterations. This error change is divided 

by the number of multiples required for the current iteration as shown in eq. (5.2) in order 

to obtain the error change per multiply (EPM) attained in the present iteration. 
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    (5.2)

 

where,  M(it) stands for number of multiplies in iteration it 

             EPM(it) is the error per multiply in iteration it 

E(it) it the error computed in iteration it 

 it is the current iteration number. 

The number of groups per hidden unit Ng increase as the error change per 

multiply increases and vice versa. This algorithm creates a large error decrease in the 

initial iterations by operating similar to the OWO-Newton algorithm and as the error starts 

converging to the local minima the algorithm adapts itself to operate close to the OWO-

MOLF algorithm in order to reduce the computational burden. 
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5.4 Derivation of the Adaptive MOLF algorithm 

Assume an MLP whose input weights are trained using negative gradients as 

shown in section 2.2.1. But instead of a single learning factor assume a vector of learning 

factors z, with elements  zk,C used to update all the weights w(k,n) that belong to group C 

of hidden unit k. The error function to be minimized is given in eq. (2.3). The predicted 

output yp(i) is given by 
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where, 

   CGsCCR 
               (5.4) 

  00Gs            (5.5) 

where,  Ng is the number of groups per hidden unit 

 C is the group index 

Gs is the array of Ng×1 elements, these elements contains the sizes of each 

group, i.e. number of inputs associated to each group. 

Ik is the vector of input indices ordered in such a way that the index n of input to 

which weight w(k,n) with higher curvatures are connected will come first. 

Ik= [n1, n2, n3….., nN+1] where n1, n2, n3….., nN+1 are input indices such that 

hw(k,n1)≥ hw(k,n2)≥ hw(k,n3)…………≥ hw(k,nN+1) 

zk,C is the learning factor used to update all the input weights that belong to group 

C of hidden unit k. 

R is the function that maps between the group indices and the indices of vector I 
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The total number of learning factors that are going to be computed is L= Nh·Ng. L varies 

from Nh to Nh·(N+1) as the number of groups per hidden unit Ng, changes from 1 to N+1. 

The first negative partial of E with respect to zk,C is, 
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where,      
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Using Gauss-Newton updates, the elements of the 4-D Hessian HAmolf are computed as, 
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     bij,gaik,g jk  (5.11)
 

The elements of the 2 dimensional Hessian HAmolf are found from hAmolf(k,C1,j,C2) as, 

          

 (5.12) 

Elements of negative gradient column vector gAmolf are calculated from gAmolf(k,C) as, 

         (5.13) 
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The Gauss-Newton update guarantees that HAmolf is non-negative definite. Given the 

negative gradient vector, 
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Amolfg  and the Hessian 

HAmolf, we minimize E with respect to vector z using Newton’s method. The learning 

factors z can be computed as, 

Amolf
1

Amolf gHz  
           (5.14) 

The input weights W are updated as follows, 
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where, [(C-1)·Gs(C-1)] + 1 ≤ a ≤ C·Gs(C) 

    Initial point of the algorithm 

 In sections 5.1, 5.2, 5.3 and 5.4 we have seen that the algorithm adapts itself 

between OWO-MOLF and OWO-Newton algorithm as the number of groups per hidden 

unit changes from N+1 to 1. Now in this section we discuss the starting point of the 

algorithm i.e., the number of groups per hidden unit that are chosen in first iteration. 

 This process is done by experimenting on all possibilities of the number of 

groups per hidden unit from 1 to N+1. The one that gives the lowest error is chosen to be 

the starting point. This technique improves the performance of the algorithm drastically 

compared to random initialization of the number of groups in the first iteration. This 

technique can be used at regular intervals in training say once in every 50 iterations to 

improve the performance. 

 Testing the error for all the possible numbers of groups is computationally 

expensive. This problem is solved by taking advantage of the concept that the Hessian 

and negative gradients of the Adaptive MOLF algorithm can be interpolated from Gauss-

Newton Hessian and negative gradients of input weights. 
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     Adaptive MOLF Hessian and Gradients 

 From eq. (5.6), (5.11), (3.11) and (2.10) it can be seen that the Hessian and 

negative gradients of Adaptive MOLF algorithm can be interpolated from Gauss-Newton 

input weight Hessian and negative gradients H and g respectively as, 
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From eq. (5.14) and (5.15) we can interpolate the Hessian and negative gradients of an 

adaptive MOLF for any number of groups from Newton’s Hessian and negative gradients 

of input weights. This helps to avoid recalculating Hessian and negative gradients for all 

the possible number of groups in determining initial point of the algorithm. 

5.5 Effects of linearly dependent input signals 

Let us assume an input signal xp(N+2) that is linearly dependent on other inputs as, 
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During input weight adaptation the expression for negative gradient with respect to the 

learning factor associated to the group C1 containing xp(N+2) is given as, 
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The elements of the Hessian computed with respect to learning factors associated with 

groups C1 and C2 which contain xp(N+2) is given as, 
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Comparing eq. (5.6) and (5.20), (5.10) and (5.22) it is clear that the cross terms shown in 

the square brackets in eq. (5.20) and (5.22) avoids the elements of the Hessian and 

gradient in Adaptive MOLF algorithm from being linearly dependent on others. But as the 

number of groups increases these cross terms disappear making few rows of 
AmolfH  

dependent on others, therefore making AmolfH  singular. This can be prevented by just 

avoiding the number of groups per hidden unit Ng to reach very close to N+1. 
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5.6 Computational Cost 

The number of multiples required for an iteration of an adaptive MOLF algorithm is  
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where, NL=Ng·Nh. The computational cost of adaptive MOLF algorithm also varies 

between computational cost of OWO-MOLF and OWO-Newton. 
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              Chapter 6 

Simulations 

In this chapter the peformances of adaptive MOLF, OWO-MOLF, Scaled Conjugate 

Gradient and Levnberg Marquardt algorithms are compared. All the simulations shown in 

this chapter are run in Matlab 2013. 

6.1 Experimental Plots 

The performance of all the above mentioned algorithms is measured and 

compared both in terms of the number of iterations and the number of multiplies. In the 

LM and SCG algorithms all the weights are varied in every iteration. In the OWO-MOLF 

and adaptive MOLF algorithms the input weights are updated first and subsequently 

linear equations for the output weights are solved. 

The data sets used for the simulations are listed below in Table 5.1. A detailed 

description of the different datasets is specified in Appendix A.  

Table 6.1 Data Set Description 

Data Set Name No. of Inputs No. of Outputs No. of Patterns 

Twod.tra 8 7 1768 

Single2.tra 16 3 10000 

Oh7.tra 20 3 15000 

Concrete Data Set 8 1 730 

Matrix Inversion 4 4 2000 

 

 The above data sets are normalized to zero mean before training. The number of 

hidden units to be used in the MLP is determined by network pruning using the method of 

[75]. By this process the complexity of each of the data sets is analyzed and an 

appropriate number of hidden units is found. Training is done on the entire data set 10 

times with 10 different initial networks. The average Mean Squared Error (MSE) from this 

10-fold training is shown in the plots below. 
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 The average training error and the number of multiplies is calculated for every 

iteration in a particular dataset using the different training algorithms. These results are 

then plotted to provide a graphical representation of the efficiency and quality of the 

different training algorithms. These plots for different datasets are shown below. 

 

Figure 6.1 Twod.tra data set: Average error vs. number of iterations 
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Figure 6.2 Twod.tra data set: average error vs. number of multiplies 

 For the Twod.tra data file [76], the MLP is trained with 27 hidden units. In Figure 

6.1, the average mean square error (MSE) from 10-fold training is plotted versus the 

number of iterations for each algorithm (shown on a loge scale). In Figure 6.2, the 

average training MSE from 10-fold training is plotted versus the required number of 

multiplies (shown on a  loge scale). From these plots it is clear that adaptive MOLF is 

performing far better than the other three algorithms both in terms of number of iterations 

and number of multiples. 
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Figure 6.3 Single2.tra data set: average error vs. number of iterations 
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Figure 6.4 Single2.tra data set: average error vs. number of multiplies 

For the Single2.tra data file [76], the MLP is trained with 23 hidden units. In Figure 6.3, 

the average mean square error (MSE) from 10-fold training is plotted versus the number 

of iterations for each algorithm (shown on a loge scale). In Figure 6.4, the average 

training MSE from 10-fold training is plotted versus the required number of multiplies 

(shown on a loge scale). For this dataset the performance of adaptive MOLF is very close 

to that of OWO-MOLF. This shows that the number of groups per hidden unit Ng is 1 in 

most of the iterations.  
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Figure 6.5 Oh7.tra data set: average error vs. number of iterations 
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Figure 6.6 Oh7.tra data set: average error vs. number of multiplies 

For the Oh7.tra data file [76], the MLP is trained with 23 hidden units. In Figure 6.5, the 

average mean square error (MSE) for training from 10-fold training is plotted versus the 

number of iterations for each algorithm (shown on a loge scale). In Figure 6.6, the 

average training MSE from 10-fold training is plotted versus the required number of 

multiplies (shown on a loge scale). In this data set the proposed algorithm is performing 

better than OWO-MOLF in terms of iterations. In terms of multiples the performance of 

adaptive MOLF is very close to that of OWO-MOLF. 
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Figure 6.7 matrix inversion data set: average error vs. number of iterations 
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Figure 6.8 matrix inversion data set: average error vs. number of multiplies 

For the matrix inversion data file [76], the MLP is trained with 30 hidden units. In Figure 

6.7, the average mean square error (MSE) from 10-fold training is plotted versus the 

number of iterations for each algorithm (shown on a loge scale). In Figure 6.8, the 

average training MSE from 10-fold training is plotted versus the required number of 

multiplies (shown on a loge scale). For this dataset the proposed algorithm is dominating 

the other three algorithms. 
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Figure 6.9 Concrete data set: average error vs. number of iterations 
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Figure 6.10 Concrete data set: average error vs. number of multiplies 

For the concrete data file [77], the MLP is trained with 23 hidden units. In Figure 6.9, the 

average mean square error (MSE) for training from 10-fold training is plotted versus the 

number of iterations for each algorithm (shown on a loge scale). In Figure 6.10, the 

average training MSE from 10-fold training is plotted versus the required number of 

multiplies (shown on a loge scale). In this data set the proposed algorithm is performing 

better than OWO-MOLF in terms of iterations. In terms of multiples the performance of 

adaptive MOLF is very close to that of OWO-MOLF. 

 

6.2 K-fold Validation and Testing 

The k-fold validation procedure is used to obtain the average training and testing 

errors. In k-fold validation, given a data set, it is randomly split into k non-overlapping 
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parts of equal size, of which (k-2) parts are used for training, one part for validation and 

the remaining one part for testing. In this technique the training is stopped when we get a 

satisfactory validation error and the resulting network will be tested on the testing data to 

obtain the test error. This procedure is repeated k times in order to obtain average 

training and testing errors. For the simulations the k value is chosen as 10. Table 6.2 

given below, compares the average training and testing errors of the adaptive MOLF 

algorithm with other algorithms for different data files.  

Table 6.2 Average 10-fold training and testing errors 

Data Set  Adaptive MOLF OWO-MOLF SCG LM 

Twod.tra 
Etrn 0.0888 0.1554 1.0985 0.2038 

Etst 0.1172 0.1731 1.0945 0.2205 

Single2.tra 
Etrn 0.0042 0.0151 3.5719 0.0083 

Etst 0.2319 0.1689 3.6418 0.0178 

Mattrn.tra 
Etrn 0.0011 0.0027 4.2400 0.0022 

Etst 0.0013 0.0032 4.3359 0.0027 

Oh7.tra 
Etrn 1.2507 1.3205 4.1500 1.1602 

Etst 1.4738 1.4875 4.1991 1.4373 

Housing 
Etrn 2.7274 3.1318 5.9245 0.9543 

Etst 19.0627 24.6750 80.8080 133.990 

 

From the plots and the Table presented above, it can be inferred that adaptive MOLF 

performs better than OWO-MOLF, LM and SCG algorithms both in terms of iteration and 

multiplies in most of the data sets.  
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Chapter 7 

Conclusion and Future Work 

The question of the number of learning factors actually needed by a training 

algorithm is addressed by introducing an algorithm that can adaptively change the 

number of learning factors computed in order to produce better error decrease per 

multiply. The performance of adaptive MOLF is superior to the OWO-MOLF algorithm in 

terms of error decrease per iteration and often in terms of error decrease per multiply. 

The proposed algorithm is found to interpolate between the OWO-MOLF and OWO-

Newton algorithms. In some cases little is gained by increasing the number of learning 

factors beyond Nh. 

In this thesis the concept of adaptive multiple optimal learning factors is applied 

only for input weights, this can be extended to output and bypass weights as well. There 

is a very good possibility that adaptive MOLF and similar algorithms will be successfully 

utilized in training auto encoders and for constructing deep neural networks.
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Appendix A 

Description of Data Sets Used For Training and Validation 
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TWOD.TRA: (8 Inputs, 7 Outputs, 1768 Training Patterns, 244 KB) 

This training file is used in the task of inverting the surface scattering parameters 

from an inhomogeneous layer above a homogeneous half space, where both interfaces 

are randomly rough. The parameters to be inverted are the effective permittivity of the 

surface, the normalized rms height, the normalized surface correlation length, the optical 

depth, and single scattering albedo of an inhomogeneous irregular layer above a 

homogeneous half space from back scattering measurements. 

The training data file contains 1768 patterns. The inputs consist of eight 

theoretical values of back scattering coefficient parameters at V and H polarization and 

four incident angles. The outputs were the corresponding values of permittivity, upper 

surface height, lower surface height, normalized upper surface correlation length, 

normalized lower surface correlation length, optical depth and single scattering albedo 

which had a joint uniform pdf. 

SINGLE2.TRA: (16 Inputs, 3 Outputs, 10,000 Training Patterns, 1.6MB) 

This training data file consists of 16 inputs and 3 outputs and represents the 

training set for inversion of surface permittivity, the normalized surface rms roughness, 

and the surface correlation length found in back scattering models from randomly rough 

dielectric surfaces. The first 16 inputs represent the simulated back scattering coefficient 

measured at 10, 30, 50 and 70 degrees at both vertical and horizontal polarization. The 

remaining 8 are various combinations of ratios of the original eight values. These ratios 

correspond to  those used in several empirical retrieval algorithms. 

OH7.TRA: (20 Inputs, 3 Outputs, 15,000 Training Patterns, 3.1 MB) 

This data set is given in Oh, Y., K. Sarabandi, and F.T. Ulaby, "An Empirical 

Model and an Inversion Technique for Radar Scattering  from Bare Soil Surfaces," in 

IEEE Trans. on Geoscience and Remote Sensing, pp. 370-381, 1992. The training set 
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contains VV and HH polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 

50 deg along with the corresponding unknowns rms surface height, surface correlation 

length, and volumetric soil moisture content in  g / cubic cm. 

MAT.TRN: (4 Inputs, 4 Outputs, 2000 Training Patterns, 644KB) 

This training file provides the data set for inversion of random two-by-two 

matrices. Each pattern consists of  4 input features and  4 output features. The input 

features, which are uniformly distributed between 0 and 1,  represent a matrix and the 

four output features are elements of the corresponding inverse matrix. The determinants 

of the input matrices are constrained to be between .3 and 2. 

Concrete Compressive Strength Data Set: (8 Inputs, 1 Output, 1030 Training Patterns) 

This data said is obtained from machine learning data set library provided by 

school of Information and Computer Science at University of California Irvine. This data 

set contains attributes like quantity of cement, blast furnace slag, fly ash, water, super 

plasticizer, coarse aggregate, fine aggregate, age and concrete compressive strength 
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