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ABSTRACT

SPARSE SAMPLING AND ARRAY FOR WIRELESS COMMUNICATIONS

Qiong Wu, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Qilian Liang

In recent years, sparse sampling and array, such as coprime sampling, nested

sampling, nested array, attract attention for their potential to estimate autocorrela-

tion coefficients with all lags, and to calculate the power spectrum density. But this

theoretical merit is based on the premise that the input signals are wide-sense sta-

tionary. This dissertation first implements the coprime sampling for non-stationary

signal, which still decreases the computational complexity but suffers from high vari-

ances due to lack of observations. Then, this algorithm is extended to calculate am-

biguity function in the radar system, and several practical guidelines are concluded

in order to conduct the sparse sensing while retain the detection quality.

The dissertation also proposes an algorithm deriving higher-order statistics

(HOS) from the co-prime sampling and implements it in the order determination.

Specifically, it is extended to pairwise co-prime sequences (PCS) for calculating HOS,

and singular value decomposition (SVD) is used to the matrix formed by third-order

cumulants to determine the order of the autoregressive model. In this scenario, PCS-

based HOS algorithm enlarges the variance of third-order cumulants, which provides

better indicator to determine the order of moving average (MA) model.
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Furthermore, the dissertation extended the derivation of HOS based on nested

sampling. It develops multilevel nested sampling (MNS) algorithm to obtain higher-

order statistics (HOS), and analyzes the computational complexity of the MNS-HOS

algorithm for both parametric and nonparametric methods. Compared to the existing

HOS algorithms, the proposed algorithm vastly reduces the complexity by several

orders in terms of the length of segmentation window. It also applies MNS-HOS

algorithm to estimate the coefficients of a simplified LTE spatial channel model blindly

without using any training sequences.

Moreover, the dissertation proposes a novel deployment for multi-cell coopera-

tive cellular networks based on the two-dimensional (2D) nested co-array, and analyzes

its sum-rate capacity and spectrum efficiency. It takes advantage of the invariance in

the difference co-array so that the 2D nested array is able to calculate all elements

in the covariance matrix of channel fading coefficients. Based on this premise, it

demonstrates that the derivation procedure of average sum-rate capacity for the co-

operative cellular networks is still valid for the nested distributed base stations (BSs)

in the non-fading and Rayleigh fading channels. Given the same number of BSs, the

proposed distribution significantly increases the sum-rate capacity of the system.

In addition, the dissertation also derives nested deployment for the hybrid wire-

less networks, and analyzes its ergodic throughput capacity in Rayleigh fading chan-

nels. As opposed to the existing hybrid wireless networks in which BS only serves

individual cell area, the model of nested distributed BSs can be regarded as a multi-

cell virtual multiple-input and multiple-output (MIMO) system. Meanwhile, the 2D

nested deployment maximizes the degrees of freedom offered by the existing BSs from

O(N) to O(N2), in which the N stands for the number of BSs within the system.

The ergodic capacity is investigated as an indicator of the system performances.
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CHAPTER 1

Introduction

The degree of freedom (DoF) of sampling defined the minimum number of

sample points, which could specify certain properties of the sequence as a whole [2].

Before the research of coprime samplers, the available sensors were considered as a

signal array and increasing DoF could be achieved by performing an augmentation

algorithm on the covariances obtained via minimum redundancy arrays (MRA) [3],

which consisted uniformly linear arrays with maximum possible aperture. Bedrosian

[4] extended the linear array to non-uniformly distribution such that their pairwise

differences could generate full coverage for certain span, the paper also enumerated

the array size M from 3 to 11 to achieve full coverage as much as M(M − 1)/2.

The algorithm proposed in [5] could find near-optimal integer sensor locations that

maximized the number of distinct nonnegative integers, but it also restated the fact

that location of elements in an MRA could only be approximated rather than specified

in closed form. Besides, there were other ways to generate extra freedoms, including

higher order statistics based methods, Khatri-Rao product based methods, and nested

array [6]. Besides, the paper [8] developed the application of nested array beyond

focusing on the DoF, finding nested array could improve the spectrum efficiency.

Coprime sampling first had been used for identifying sinusoids in noise [26]

along with other methods proposed for synthetic aperture radar locating and imaging

of moving targets [9]. Further research explored the properties and applications of

coprime sampling and array in both time and frequency domains. The paper [27] used

coprime samplers to increase the dimensions of DFT filter banks after sensor arrays

1



as well as to estimate the power spectrum density of received signal. In the paper

[29], the multidimensional coprime sensing extended the previous implementations to

acquire densely sampled domain. The paper [7] proposed spatial smoothing algorithm

together with coprime sampling to estimate frequencies of sinusoids buried in noise

and directions-of-arrival of impinging signals on a sensor array.

In communication, higher-order statistics (HOS) approaches are favorable to

preserve both phase and amplitude information of the signal, and to deal with non-

Gaussian sequences and nonlinear non-minimum phase system. Its estimates can

be calculated from either conventional nonparametric methods of Fourier transform

[23], or parametric methods based on moving average (MA), autoregressive (AR), or

autoregressive moving average (ARMA) models [69]. The paper [23] provides further

details about both kins of methods. It is worth noting that both of them have high

variance and require a large number of records to obtain smooth estimates [24], but

increasing the number of segments is demanding on computation, and may increase

bias and introduce non-stationarity. Although there are preliminary researches [69,70]

providing a sparse sampling scheme, pairwise coprime sequences (PCS), as a possible

solution, how to accelerate speed of convergence and to leverage the trade-off between

complexity and performance are still open questions.

Besides the implementation of signal processing, the nested distributed array

is also introduced for signal acquisition via sensor array. It is firstly introduced to

perform array processing with increased degrees of freedom using much fewer physical

sensors [6]. The paper [73] generalizes this concept to the multiple dimensions, and

provides the optimal structure to maximize the number of elements in the virtual

co-array, as well as derives closed-form expressions for the sensor locations and the

exact degrees of freedom obtainable from the proposed array as a function of the total

number of the sensors.
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Chapter 2 implements the coprimes sampling theory to process the non-stationary

signal. Chapter 3 and 4 is to extend the use of co-prime sampling to higher-order

statistics, which decreases the computational overhead while still retains all merits

of cumulant-based order selection. In Chapter 5, the nested sampling scheme is fur-

ther derived for HOS, and compared with the algorithm proposed in the previous

chapter. In the Chapter 6 and 7, a novel nested-distributed network is introduced to

advance the research on joint multi-cell processing, which is the first literature analyz-

ing the communication systems with the nested-distributed BSs from the information-

theoretic point of view.
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CHAPTER 2

Coprime sampling for non-stationary signal processing

2.1 Introduction

Both of the designs of radar system and sensor network could be attribute to

obtaining sufficient samples to generate the correlation function so that a good ambi-

guity scale or spectrum estimation could be obtained [1]. The design of radar system

needs to take advantage of the ambiguity function (AF) between received signal and

transmitted signal to determine the resolution of the radar, side lobe behavior, and

ambiguities in both time and Doppler domains. AF is calculated via the convolution

of transmitted signal with received signal, which contains the copy of transmitted

signal, noise, and Doppler shift caused by the movement of the target. Furthermore,

considering cost of deployment in broad range, many applications of sensor network

require to distribute the sensor elements sparsely. The power spectral density (PSD)

acquired by these sensors could describe the power incidents for the given direction

and area, and PSD is the Fourier transform of autocorrelation function of received

signal or correlation function among the signal received in different sensors in the ar-

ray. Hence, both scenarios could benefit from sparse sensing a rapidly changing signal

sequence with optimal performance in terms of retaining the resolution or detecting

ability compared with dense sampling.

Note that the paper presenting coprime sampling [27] strictly confines discussion

within the underlying assumption of wide-sense stationary signal so that the expec-

tation of autocorrelation could approach the real value via multi-times averaging.

This increased delay is used to compensate the variation introduced by sub-Nyquist
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sampling. On the other hand, however, in the real-world application, just as the de-

scription in the first paragraph, the working scenarios of many applications involves

non-stationary signal. The sampled points could not simply ascribe to independent

and identical distribution either. Consequently, the autocorrelation coefficients might

change dramatically during a short period. In Chapter ??, we deal with this inconsis-

tency and discuss the coprime sampling for non-stationary signal to obtain its second

order statistic properties. In general, the classic point of view for processing non-

stationary signal regards it as piece-wise stationary signal, but as these two theories

combining together there are many research problems such as stability of estimation,

coverage of second order derivatives, and so on. In the following content, we will

discuss these problems and our tentative solutions in detail.

The rest of Chapter 2 is organized as follows, we first quickly revisit the basic

concepts and properties about coprime sampling in Section 2.2. In Section 2.3, we

propose and simulate the algorithm of two-steps coprime sampling especially used for

the non-stationary signal. In Section 2.4, we extend the implementation scenario to

radar signal processing and discuss several critical trade-offs in designing the radar

signal processing system with coprime sampling. Finally, we conclude the research

discussion in Section 2.5.

2.2 Theory and properties for coprime sampling

The algorithm of coprime sampling was introduced in [27]. The input signal is

S(T ). Original sample rate is Ts, and the down sampling rate for two sample streams

are M and N whose greatest common divisor is one. Then, except the beginning
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point, the two generated sample streams do not have any overlap in origin signal

sequence.

x1[n1] = S(MTs)

x2[n2] = S(NTs)

(2.1)

Definition 1. The difference co-array xk[n1, n2] is generated by two sample sequences

x1[n1] and x2[n2] coprime sampled from input signal. Its index k satisfies

k = Nn1 −Mn2 − n1 ∈ [0, b L
M
c], n2 ∈ [0, b L

N
c] (2.2)

The markers bZc stand for the largest integer less than certain values Z, and L stands

for the total length of the signal segment. The coprimality of M and N can be used

to show that the range of distinct value in xk[n1, n2] is the product of the coprime

factors [27]. That is

−MN + 1 ≤ Nn1 −Mn2 ≤MN − 1 (2.3)

First of all, the physical meaning of this difference co-array is that via this

difference co-array between the two coprime sampled steams the correlation of the

original sequence could be calculated at all lags. Note that it does not confine the

rate of down sampling, which might result the sample rate way below the Nyquist-

sampling restriction. That is, the sampling might be arbitrarily sparse. On the other

hand, however, there are two major drawbacks relevant with large values of coprime

pairs: the latency in the time domain and the resolution range in the frequency

domain. We will discuss them in detail in the following Section.

Besides, the minor differences in value ranges of coprime sampled signal streams

generate different coverage of difference co-array and result in different coverage of

autocorrelation coefficients.

Property 1. With n1 and n2 restricted to the range 0 ≤ n1 ≤ N − 1 and 0 ≤ n2 ≤

M − 1, index of the resulting difference co-array k = Mn1 − Nn2 will have MN
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distinct values in the range −(M − 1)N ≤ k ≤ (N − 1)M , which also indicates that

there are absent values in the given range of k.

Property 2. If the ranges of n1 and n2 are 0 ≤ n1 ≤ N − 1 and −M + 1 ≤

n2 ≤ M − 1, the resulting index of difference co-array will achieve full coverage for

0 ≤ k ≤MN − 1.

The detailed demonstration of two properties above could be found in [27].

Furthermore, in this Chapter, we implement coprime sampling beyond the limit of

MN − 1, which leads to the following property.

Property 3. Given sample points in the range (−L,L), the largest coprime pair that

it could have is M and N subject to MN < L, such that n1 and n2 restricted to the

range 0 ≤ n1 ≤ bL/Mc and −bL/Nc ≤ n2 ≤ bL/Nc, the resulting index of difference

co-array k = Mn1 −Nn2 will achieve full coverage in the range 0 ≤ k ≤ L− 1.

Proof : Following from the Euclid’s Theorem [16], we could conclude that with

any integer k in the range [0, L − 1], there are always integers n1
′ and n2

′ such that

k = Mn1
′ −Nn2

′.

Adding lMN to both terms in the right hand side of the formula with proper

selection of variable l, we could let n1 = n1
′ + lN such that n1 ∈ [0, bL/Mc]. Then

we have

k = M(n1
′ + lN)−N(n2

′ + lM) (2.4)

N(n2
′ + lM) = M(n1

′ + lN)−K (2.5)

Since we have already known that k ∈ [0, L − 1] and Mn1 ∈ [0, L], the range of

N(n2
′+lM) should be [−L,L]. Let n2 = n2

′+lM , we could have n2 ∈ [−bL/NcbL/nc]

which concludes the proof.
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Moreover, in the range −MN + 1 ≤ k ≤ 0, there are still absent values. But

based on the symmetry property of autocorrelation, these results could be used for

averaging the expectation of the symmetric positive counterpart.

2.3 STFT for coprime sampling non-stationary signal

2.3.1 Short time Fourier transform with coprime sampling

The presumption to generate autocorrelation from the coprime sampled se-

quence based on the previous chapter is that the second-order expectations of the

sequence remain unchanged over time, which is essentially the wide-sense stationary

(WSS) signal. In the application of radar signal processing, however, this criteria

cannot hold anymore. In this Section, we will discuss how to combine coprime sam-

pling with short time Fourier transform (STFT-CS) to process non-stationary signal,

and demonstrate this algorithm is useful to preserve both the original quality of the

signal and at the same time dramatic decrease the sample rate.

The choice of Short Time Fourier transform (STFT) is because this method

is widely used in analyzing the time-frequency properties of non-stationary signals.

In an STFT, the signal is segmented by a window function and performed Fourier

transform within the window. The width of the window is a trade-off between tempo-

ral resolution and frequency resolution–better time resolution is achieved by narrow

window while wider window could achieve better frequency resolution. In addition,

in the scenario of coprime sampling, based on the Property 3, the window size also

dictates the upper bound of the values of coprime pairs. Consequently, it determines

the trade-off between stability of the estimation and the computational complexity

of STFT-CS.
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First of all, there is one definition to simplify the description of algorithm.

Because the number of available autocorrelation estimation is changing along with

the choice of coprime pairs, we define the procedure of finding the average as a single

operator.

Definition 2. E(Rxy(k)) stands for mathematical expectation of autocorrelation R(k)

for a given k using all available estimations. The value of k is determined by two

independent index variables of the input sequence x and y.

The algorithm involves several important independent variables listed in Table

1.

Based on STFT, within every slicing window we consider the sequence

x[n] =





s[n] 0 ≤ n ≤ L− 1,

0 otherwise,

(2.6)

The estimate of autocorrelation is

ϕ̂xx[m] = E(cxx[m]) (2.7)

where cxx[−m] = cxx[m],

cxx[m] =





∑L−|m|−1
n=0 x[n]x[n+ |m|] m ≤ L− 1,

0 otherwise,

(2.8)

The implementation of this estimate could be implemented via using fast N-

point DFT algorithm three times.

X[k] =
N−1∑

n=0

x[n]e−j(2π/N)kn (2.9)

|X[k]|2 = X[k]X∗[k] (2.10)

cxx[m] =
1

N

N−1∑

k=0

|X[k]|2ej(2π/N)km (2.11)
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Finally, we could calculate the PSD of input signal via estimate of autocorrela-

tion ϕ̂xx[m].

s[m] =





ϕ̂xx[m]wc[m] 0 ≤ m ≤ Q− 1

0 Q ≤ m ≤ P −Q

ϕ̂xx[P −m]wc[P −m] 1 ≤ P −m ≤ Q− 1

(2.12)

The resulted PSD for given sliced signal is

S[k] =

Q−1∑

m=0

s[m]e−j(2π/Q)km (2.13)

Along with the moving of slicing window, we can acquire the spectrogram of

input signal via STFT-CS.

We implement the algorithm with linear frequency modulation (LFM) to test

it validity. The sample rate of the signal is 8000Hz, sweepping frequency from 0Hz

to 4000Hz in ten seconds, which can be observed from the top row of Figure 2.1.

The configurations of important variables corresponding to the Table 1 include: the

length of slicing window is 256 sample points (sp), the length of STFT is 512 sp,

the processed length of autocorrelation is 255 sp, the window function is Hamming

window with window size equal to the size of Fourier transform.

As shown in the Figure 2.1, the first row is the standard algorithm to calculate

STFT generating spectrogram, and the other rows are using the algorithm STFT-

CS mentioned above. We can see that both standard STFT and STFT-CS could

accurately trace the change of frequency.

Besides, based on the comparison of the lower three sub-figures in Figure 2.1

using SFTF-CS, we can see that as the increase of coprime pairs, there are more and

more traces of aliasing frequency appearing in the spectrogram. This is because as

the algorithm select less sample points to estimate the autocorrelation, there will be

more variation.
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Figure 2.1: Comparison of dierent coprime pairs

On one hand, the decreasing of sample points is desirable for signal processing.

For example, the fourth row in the Figure 2.1 only utilize about 17 percent of the

sample points to achieve the same instantaneous PSD estimation with minor quality

degeneration. On the other hand, however, the variation become more obvious if

we continue increasing the values of coprime pair. This is the motivation for us to

develop the 2-step STFT-CS presented in the next sub-section.

2.3.2 2-steps STFT coprime sampling

As the spectrogram described above, large values of coprime pair could generate

lots of noise. An intuitive method to identify fundamental frequency buried under

noise is to calculate its autocorrelation. Then, it becomes an interesting procedure of

iterative autocorrelation, that is, estimating the autocorrelation via using convolution

three times.
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Figure 2.2: Comparison of STFT-CS and 2-step STFT-CS

In time domain, we calculate the autocorrelation function based on (2.7)

ϕ̂′xx[m] = ϕ̂1xx[m] ∗ ϕ̂∗2xx[m] =

L−|m|−1∑

n=0

ϕ̂1xx[n]ϕ̂∗2xx[n+ |m|] (2.14)

where the ϕ1xx[m] and ϕ2xx[m] are two autocorrelation estimations which could be

either same or different values of coprime pairs. The counterpart in frequency domain

is straightforward. It is the product of PSD generated by two coprime pairs.

S ′[k] = DFT (ϕ̂1xx[m] ∗ ϕ̂∗2xx[m]) = S1[k]S2[k] (2.15)

In Figure 2.2, we show the result of 2-steps STFT-CS together comparing with

three results of 1-step STFT-CS with different configurations. The first row lists

STFT-CS without coprime sampling as benchmark. The second and third rows are

consistent with what we found in the previous sub-section. When the coprime pair

increases to 17 and 19, we can hardly distinguish the real trace of spectrogram from

the noise aliasing. The fourth row is the result of 2-steps STFT-CS using M1 = 17,
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N1 = 19, and M2 = 11, N2 = 13. The resulting sequence has roughly the same

degree of down-sampling rate (about 27 percent of the original sample points) as the

experiment in second row. But we can observe that via the 2-step autocorrelation

the false positive PSD estimates are obviously decreased.

2.3.3 Variation analysis for estimating autocorrelation

In the paper [27], the coprime sampling is the method dealing with the sub-

Nyquist sampling frequency. Though it does provide promising potential of dramat-

ically decreasing the sampling rate via coprime pair, the estimation is inherently

suffering the problem of taking much longer latency. While in the non-stationary

scenario, this situation would raise the major problem generating pronounced esti-

mation variation for the reason that only a small piece of samples could be considered

as stationary and processed once with autocorrelation estimation in STFT-CS. There

is not enough latency permitted for averaging.

In other words, the statistical stability is sacrificed negatively proportional to

the degree of coprime sampling. As the choice of coprime pair increases, the density

of differential array generated would decrease correspondingly, though the coprime

sampling might still calculate the full coverage of all lag by satisfying the Property 4.

Then the correlation estimates at that lag could be deteriorated offsetting from the

real values.

The paper [12] examined the error of estimating autocorrelation and the paper

[13] linked the variation with sampling rate and refined it in the form of mean-square

error. Besides, this paper also advocated that for short data records, whose sample

points were less than 50 or the product of bandwidth and sampling period is less than

25, the preferred sampling rate was the twice of Nyquist rate. Otherwise, there would

be obvious increases in the variance of the estimation.
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Comparing this claim with the scenario of experiments in this paper, the sam-

pling periods would fall into the category of short-data records while the sampling

rate should be regarded as sub-Nyquist rate which is much lower than the desired rate

in this criteria. Hence, the estimation will definitely suffer from significant variance.

The method of statistial differential could be used for estimating the covariances

of autocorrelation coefficients [10]. For convenience of analysis, we could treat the

LFM as piecewise stationary signal and define it as

x[n] =
L∑

s=0

hsεn−s (2.16)

where the series
∑∞

n=0
hn are absolutely convergent, and εn is a WSS process with

zero means and variance δ2, that is

E(εn) = 0, E(ε2n) = δ2 (2.17)

E(εnεm) = 0, for m 6= n (2.18)

Then, the real value of autocorrelation is

Rk = cov(xn, xn + k) = δ2
L∑

s=0

hshs+k (2.19)

and the estimation of autocorrelation is

R̂k,L = E(xn1Mxn2N) (2.20)

standing for averaging all of the available values of xn1Mxn2N to calculate the auto-

correlation k within the range L.

Assume ht = 0, we could calculate the covariance based on (2.16)

cov(xnxm+k, xpxq+k) =κ4

+∞∑

r=−∞

hn−rhm+k−rhp−rhq+k−r

+Rn−pRm− q +Rn−q−kRm−p+k (2.21)
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where κ4 = E(ε4)− 3δ4.

Therefore, we could have [11]

lim
L→∞

Lcov(R̂k,L; R̂l,L) =
κ4
δ4
RkRl +

+∞∑

q=−∞

(RqRq+k−l +Rq+kRq−l) = vkl (2.22)

and the particular case is the variance of autocorrelation

lim
L→∞

Lvar(R̂k,L) =
κ4
δ4
R2
k +

+∞∑

q=−∞

(R2
q +Rq+kRq−k) = vkk (2.23)

Another estimator for the autocorrelation is

Ck.L =
1

L− k
L−k∑

l=1

xtxt+k (2.24)

which confines estimate only based on the available sample points.

Similarly to (2.22, 2.23), we have

lim
L→∞

L cov(Ck,L;Cl,L) = vkl (2.25)

lim
L→∞

Lvar(Ck,L) = vkk (2.26)

Compared with (2.22), we could have

var(Ck,L − R̂k,L) = O(
1

L2
) (2.27)

Based on (2.23, 2.26) with Schwarz Inequality, we could have two measures for

the variation of autocorrelation estimation with the lengh of available sample points.

cov(Ck,L;Cl,L)− cov(R̂k,L; R̂l,L) = O(
1

L3/2
) (2.28)

E(R̂k,L −Rk) = O(

√
vkk
L

) (2.29)

From (2.28, 2.29) we can see why the estimate variation is increase as the

decrease of sample points. This is an inherent problem confining the choices of coprime

pairs in processing non-stationary signal using coprime sampling.
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2.4 Implementation in radar signal processing

The working principle of matched filter in radar signal processing is to out-

put the cross-correlation of target-plus-noise signal and transmitted signal [14]. So,

it is possible to implement the matched filter as a correlation process. When the

signal-to-noise (SNR) ratio is large, the output of the matched filter can usually be

approximated be the autocorrelation function of the transmitted signal. Hence, we

could use much less sampling points via coprime sampling to estimation the output

of matched filter.

In this Section, we still consider the typical LFM waveform, which is consistent

with the previous section and also used as a basic waveform in radar transmission

because it could independently control pulse energy through its duration and range

resolution through its bandwidth [15]. Thus, if the transmitted signal could be pro-

cessed to have long duration and narrowly concentrated autocorrelation, both good

range resolution and good energy can be obtained simultaneously.

Considering a modified waveform x′(t) by modulating x(t) with a LFM complex

chirp and compute its complex ambiguity function

x′(t) = x(t)ejπβt
2/τ (2.30)

The instantaneous frequency of this waveform is the derivative of the phase

function

Fi(t) =
1

2π

dθ(t)

dt
=
β

τ
t (2.31)

in which the βτ is called time-bandwidth product of the LFM pulse. The time-

delay measurement error is proportional to τ and the frequency measurement error

is proportional to 1/τ .

In many radar application, the moving target generate Doppler shift in its echo

signal, which makes the output of the matched filter should be considered as the cross
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correlation between the Doppler-shifted received signal and the transmitted signal.

In this case, we use ambiguity function (AF) to generate the behavior of a waveform

paired with its matched filter. Based on the analysis of AF, we could easily examining

resolution, side lobe behavior, and ambiguities in both time and Doppler domains.

Assume the Doppler frequency is FD, then the input waveform with a Doppler-

shifted response is x(t)ej2πFDt. Also assume that the filter is designed to peak at

TM = 0, which means that the time axis at the filter output is relative to the expected

peak output time for the range of a target. Assuming M and N are the coprime pair

and Ts is the sampling rate. Then the AF could be defined as

Â′(k, FD) =

∫ ∞

−∞
x′(MTs)x

′∗(NTs)e
j2πMTsFDds

=

∫ ∞

−∞
x(MTs)x

∗(NTs)e
jπβ(M2−N2)T 2

s /τ+j2πMTsFDds

= e−jπβk
2/τ

∫ ∞

−∞
x(MTs)x

∗(NTs)e
j2π(FD+βk/τ)MTsds

= e−jπβk
2/τ Â(k, FD +

β

τ
k) (2.32)

where k is the difference between two sample points, and Â(k, FD) is the original

complex ambiguity function for the simple pulse signal

Â(k, FD) =
ej2πFDk/2

τj2πFD
(ej2πFD

τ−k
2 − e−j2πFD τ−k

2 ) (2.33)

And its amplitude is

A(k, FD) =
∣∣∣Â(k, FD)

∣∣∣ =

∣∣∣∣
sin [πFD(τ − |k|)]

τπFD

∣∣∣∣ (2.34)

Then we can have the amplitude for the AF of the LFM waveform

A′(k, FD) = |Â′(k, FD)| =
∣∣∣∣
sin [π(FD + βk/τ)(τ − |k|)]

τπ(FD + βk/τ)

∣∣∣∣ (2.35)
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The zero-Doppler cut of the LFM ambiguity function, which is just the matched

filter output when there is no Doppler mismatch, is

A′(k, 0) =

∣∣∣∣
sin [πβk(1− |k|/τ)]

πβk

∣∣∣∣ − τ ≤ k ≤ τ (2.36)

and the zero-delay response is

A′(0, FD) =

∣∣∣∣
sin(πFDτ)

πFDτ

∣∣∣∣ (2.37)

In the experiment, we use coprime sampling on both transmitted signal in

matched filter and received signal. Because the length of the chirp is predefined and

need to fully analyze, based on Property 2, we could only have the difference co-array

of index with missing values. But since the missing values will be more often for

the autocorrelation with larger values, and we have already assumed TM = 0 making

the AF located relative to the time axis, there is not obvious effect of the missing

values for the image generated by coprime sampled AF. The following simulation also

confirms this claim.

From Figure 2.3, we can see that when we use small values of coprime pair in

the upper right plotting, the resulting AF has inconspicuous degradation comparing

with the upper left one, which is derived directly from formula. But as the values

of coprime pair increase, there will be duplicated aliasing parts getting closer to the

correct estimation. When we choose M = 9 and N = 7, the aliasing parts could still

be easily eliminated, but when the pair becomes M = 10 and N = 11, or even bigger,

the resulting AF is unable to use because all of the estimations overlap with each

other.

Then, based on Figure 2.4 and Figure 2.5, we can observe different effects of the

coprime sampling to the estimate of Doppler shift and time delay. Both of them are

generated simutanously with Figure 2.3. In Figure 2.4, because the coprime sampling
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Figure 2.3: Comparison of dierent choices of coprime sampling for AF
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Figure 2.4: Zero Doppler shift Ambiguity Function

is implemented in the time domain, the variation becomes more and more obvious

as the increase of coprime factors. We have thoroughly discuss the reason of this
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Figure 2.5: Zero-delay Ambiguity Function

phenomenon in the previous section. In Figure 2.5, since we keep the iteration along

the Doppler axis the same, there is no variation existing. As the values of coprime pair

increase, however, the distance between Doppler shift becomes smaller and smaller.

Hence, we can conclude that as the increase of values of coprime pair, it will have

deleterious effects including amplifying variation along time axis and decrease the

scope of Doppler shift frequency.

To further quantify the effect of coprime sampling, we enumerate all coprime

combinations under 17. The reason that we choose the threshold as 17 is because

if the values of pair above this threshold servere overlaping of aliasing parts make

the ouput useless. Besides, as shown in the following experiments, we find most of

the results could be consistently arranged according to the products of coprime pairs.

That is, four out of five important properties of coprime sampling AF are relevant

with the product of coprime pairs rather than the value of either factor.
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Figure 2.6: Distance between nearest main lobes in Doppler axis
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Figure 2.7: The width of major main lobe in Doppler axis

The distance between main lobes in Doppler axis determines the scope of

Doppler frequency. From Figure 2.6, we can see that this distance is decreasing
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monotonically from out-of-scope to about 33Hz along with the increase of the prod-

uct of coprime pair. Considering the width of main lobe provided in Figure 2.7, for

the case of 33Hz distance, the second lobes of two AF estimations would overlap to-

gether. Note that for product less than 50, there will be no duplicated main lobe in

the scope. For the worst case, the largest side lobes of each duplicate have overlapped

together.

The width of the main lobe in Doppler axis determines the Doppler resolution.

In the Figure 2.7, its range is from 19.8 Hz to 16.2 Hz. The width has only three

discrete possible values and does not directly relevant with the product of coprime

pair, though the general trend of width is getting smaller with larger products. This

finding is instructive to find such coprime pair with narrow main lobe width but also

less variation in time domain and longer distance among main lobes in Doppler axis.
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Figure 2.9: The width of the main lobe in time domain

Despite the largest side lobes in the Doppler axis become larger along with

increasing coprime pairs, as shown in Figure 2.8, this is still not the major challenge

comparing with the main lobes approaching to each other shown in Figure 2.6. Note

that there is one abnormal value generated by M=14 and N=11. But it is more like

a cutting-off main lobe located in the edge of scope rather than a real side lobe.

In Figure 2.9, the radiated shape shows no obvious relationship between the

trend of main lobe and the choice of coprime pairs.

Comparing Figure 2.10 with Figure 2.8, we can see the main problem in time

domain is caused by the variation, which in turn make the largest side lobes compa-

rable to the main lobe. Note that there is a turning point in the production of 88 for

the ratio changing from stable around 18 percent to increasing with the production.
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Figure 2.10: Ratio of 2nd side lobes to main lobes in time domain

2.5 Conclusions

In this Chapter, we develop the algorithm STFT-CS to deal with non-stationary

signal. The decreasing of processed data is favorable for sparse sampling as well as de-

creasing the computation complexity, but the cost is increasing estimate variation. To

alleviate the side-effects, we introduce two-steps STFT-CS. The simulation indicates

it is effective to eliminate aliasing estimations.

Besides, we also implement the coprime sampling with the matched filter of

radar signal processing, and quantify the effect of coprime sampling in such process.

Based on our analysis, one could integrate the coprime sampling in radar system to

detect targets, and choose the suitable configuration based on specific circumstance

and needs.

The future research directions include further optimizing the algorithm and us-

ing it with real-world radar data. Besides, coprime sampling and coprime sensor array
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do have many interesting features which might be useful for other applications, such

as wireless communication or image/audio signal processing. Moreover, just as using

STFY-CS converting time domain signal to more meaningful PSD representation,

coprime sampling could be regarded as preprocessing for contaminant data to restore

the fundamental information.
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CHAPTER 3

Coprime sampling of HOS for channel order determination

3.1 Introduction

The ultra-wideband (UWB) radio receives lots of attention in wireless com-

munication, because it possesses many properties of a spread-spectrum radio link,

such as multiple access addressing, interference suppression, and low probability of

detection and interception. Its indoor channel can be approximated with sufficient

accuracy using an autoregressive moving-average (ARMA) model [36].

To estimate the parameters of an ARMA model, higher-order statistics (HOS)

are preferable to second-order statistics, because the former approaches reveal both

amplitude and phase information, and are blind to any kind of Gaussian processes

[23]. Hence, HOS are able to extract rich information from the unknown model and

meanwhile boost SNR by disregarding both white and color Gaussian measurement

noise [37]. Among works that utilize HOS in parameter estimation, the order of a

model is often assumed to be known beforehand. But in most realistic situations, the

exact order of the model is not known and must be estimated prior to solving the

parameter estimation problem. The order determination is an indispensable part of

any parametric modeling procedure.

In general, existing order determination methods are autocorrelation-based

[38, 39] or HOS-based [40–42]. They can also be divided by inherent theories–using

information theoretical criteria [39,40] or linear algebraic methods [38].

Based on second-order statistics, Tugnait [39] proposed a heuristic modification

of Akaike’s information criterion (AIC) for order selection. It was useful for the mini-
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mum phase systems or selecting the spectrally equivalent minimum phase counterpart

to the given possibly nonminimum phase system. Similar algorithms were developed

for estimating the orders of two-dimensional autoregressive (AR) and ARMA mod-

els [38], as well as estimating the 3-D AR model with rank test procedure in singular

value decomposition (SVD) [43]. The paper [44] further derived factorization of co-

variance matrix and recursive estimation for multidimensional models with different

order in each dimension. However, this kind of approaches produced biased results

when additive Gaussian noise was present [45]. Besides, they assumed Gaussian pro-

cess and/or minimum phase models, and could not estimate all-pass factors inherent

in ARMA models.

Based on asymptotic property of third-order cumulants, the paper [46] proposed

an algorithm conducting model validation and order selection at the same time. The

AR order could also be determined using cumulants with the minimum description

length (MDL) criterion [47]. For 2-D models, the order of the 2-D moving-average

(MA) systems were estimated iteratively by minimizing HOS cost functions [42], and

the 2-D AR models were estimated by solving Hankel matrix constructed by HOS

cumulants [45]. Besides, Giannakis [48] developed two methods for non-Gaussian

ARMA processes, one of which used Gram-Schmidt procedure performing a linear

dependency search among the columns. Another method achieved better noise ro-

bustness using SVD to select AR order and polyspectral phases to estimate the rel-

ative MA degree. Zhang [41] improved the SVD performance in low SNR using the

product of diagonal entries test. In addition, information theoretic criteria were de-

rived for the kth-order cumulant [40], which did not require subjective thresholds and

yielded consistent estimates for both the orders and the parameters.

Given that the order determination is one important yet primitive stage to pro-

cess the signal, the motivation of Chapter 3 is to use co-prime sampling decreasing
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the computational overhead while still retaining all merits of cumulant-based order

selection, including determining the order of ARMA model with phase-only factors

and resisting Gaussian noise with unknown variance. Furthermore, as indicated by

previous research about co-prime sampling [25], the co-prime sampled sequences gen-

erate larger variance, which makes it more susceptible to noise and order mismatch.

This characteristic provides another insight to double check the order estimates.

In Section 3.2, we discuss the theoretical background of both co-prime sampling

and HOS. In Section 3.3, we develop theorems of pairwise co-prime sequences (PCS)

for estimating HOS. We describe the algorithm of order determination using PCS-

based HOS in Section 3.4, and provide simulation results in Section 3.5. Finally, we

draw the conclusions in Section 3.6.

3.2 Preliminaries

In this section, we provide an overview of higher-order statistics and co-prime

sampling, and demonstrate their relationship based on the estimation of second-order

moment.

3.2.1 Definition of higher-order statistics

Assuming x(t) is a zero-mean random process with at least kth-order stationary,

the kth-order cumulant of this process is defined as the first k−1 coefficients of Taylor
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series expansion of the data set. The expectations of second-order, third-order, and

fourth-order cumulant are [23]

c2x(τ) =E[x(t)x(t+ τ)], (3.1)

c3x(τ1, τ2) =E[x(t)x(t+ τ1)x(t+ τ2)], (3.2)

c4x(τ1, τ2, τ3) =E[x(t)x(t+ τ1)x(t+ τ2)x(t+ τ3)]

− c2x(τ1)c2,x(τ2 − τ3)

− c2x(τ2)c2,x(τ3 − τ1)

− c2x(τ3)c2,x(τ1 − τ2). (3.3)

The kth-order spectrum is defined as the Fourier transform of its kth-order

cumulant:

Skx(ω1, ω2, . . . , ωk−1) =
+∞∑

τ1=−∞

· · ·
+∞∑

τk−1=−∞

ckx(τ1, τ2, . . . , τk−1) · exp

(
−j

k−1∑

i=1

ωiτi

)
.

(3.4)

Specifically, the third-order spectrum is also called bispectrum, and the fourth-order

spectrum is trispectrum.

3.2.2 Properties of coprime sampling

Co-prime sampling can be imagined as a pair of uniform samplers simultane-

ously receiving a discrete-time signal w(n). The rates of two samplers are a co-prime

pair M and N .

w1(a1) = w(Ma1)

w2(a2) = w(Na2).

(3.5)

Except for the indexes equal to the least common multiples, these two sequences

do not have any overlapped mapping to the input signal w(n), but the difference of

the mapped indexes Ma1 − Na2 have seamless coverage in [0,MN ]. This difference
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set naturally relates the co-prime sampled sequences w1(a1) and w2(a2) to estimating

the second-order moments:

ĉ2w(k) =
1

L

L−1∑

l=0

w1(M(a1 +Nl))w∗2(N(a2 +Ml)), (3.6)

where k = Ma1 −Na2.

It is worth noting that there is no constraint on the choices of downsampling

rate M and N . Theoretically, sample rates for the intermediate two sequences are

not restricted by the Nyquist rate and the sample points can be arbitrarily sparse.

Besides, the ranges of M and N are also essential for the statistical characteristics of

the derived autocorrelation. In particular, co-prime sampling has two basic properties:

Property 4. When 0 ≤ a1 ≤ N − 1 and 0 ≤ a2 ≤ M − 1, the values of k =

Ma1−Na2 are restricted to the range −(M − 1)N ≤ k ≤ (N − 1)M . Since there are

at most MN distinct values for k, the co-prime sampled sequences cannot estimate

all autocorrelation coefficients in the given range.

Property 5. Given sample points in the range (−L,L), the largest co-prime pair M

and N subjected to MN < L, and a1 and a2 in the range 0 ≤ a1 ≤ bL/Mc and

−bL/Nc ≤ a2 ≤ bL/Nc, the resulting difference indexes k = Ma1 − Na2 are able

to achieve full coverage in the range 0 ≤ k ≤ L − 1. Here bXc stand for the largest

integer no larger than X.

The proofs can be referred in [25,27].

3.3 Pairwise co-prime sequence

3.3.1 Sufficient condition for HOS derived from PCS

In order to implement co-prime sampling with HOS, we extend the co-prime

sampling pair to pairwise co-prime sequences (PCS). In this Section, we formally prove
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two theorems of PCS. First of all, it is sufficient for any index value k of rth-order

statistics calculated from PCS.

Theorem 1. Given pairwise co-prime integers n1, n2, . . . , nr (gcd(ni, nj) = 1 for all

i 6= j) and any integer k, we can always find integers a1, a2, . . . , ar such that

k =
r∑

i=1

aini. (3.7)

Proof. Let us first check the existence of r = 2 and k = 1, that is a1n1 + a2n2 = 1.

Based on the Euclidean Algorithm [30], we derive the value of a1 and a2

gcd(n1, n2) = rn =rn−2 − rn−1qn

=rn−1(1 + qnqn−1)− rn−3qn

=rn−3 · ∗+ rn−4 · ∗
...

=n2 · ∗+ r1 · ∗

=n1 · ∗+ n2 · ∗ (3.8)

where ∗ stands for integers derived from the previous step, and ri stands for the

remainder in the next iteration. Hence, we can always find a1 and a2, satisfying

a1n1 + a2n2 = 1. For any value of k2, a
′
1 and a′2 also exist satisfying a′1n1 + a′2n2 = k2.

Hence, for any k3 = a3n3+k2 = a3n3+a1n1+a2n2, we can always find the means

to combine three prime numbers n1, n2, and n3. Suppose it holds through 1 to r′.

That is kr′ = a1n1+a2n2+ · · ·+ar′nr′ . Similarly, for r = r′+1, kr = ar′+1nr′+1+kr′ =

a1n1 + a2n2 + · · ·+ arnr. Hence, it holds for all k, a1, a2, . . . , ar ∈ Z.

3.3.2 Full coverage of HOS indices based on PCS

The following theorem proves that certain PCS scheme achieves seamless HOS

coverage for a finite segmentation.
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Theorem 2. Given pairwise co-prime integers n1, n2, . . . , nr (gcd(ni, nj) = 1 for all

i 6= j), let N = n1n2 . . . nr, and the index range be ai ∈
(
−N
ni
, N
ni

)
for i = 1, 2, . . . , r

and r ≥ 2. We can find solutions of indexes of k =
∑r

i=1 aini for any integer k in

the range k ∈ [0, N − 1].

Proof. Based on Theorem 1, there exist coefficients bi for i = 1, 2, . . . , r, such that

the index k of rth-order statistics can be represented as k =
∑r

i=1 bini.Then, the

coefficients of the pairwise co-prime set is rewritten as

k =
r∑

i=1

(bi − pi
N

ni
)ni. (3.9)

Considering the coefficient of n1, if p1 is properly chosen, because the step is N
n1

, the

result coefficient a1 = b1 − p1 Nn1
is in the range

(
− N
n1
, N
n1

)
.

For the case that r = 2, let a2 = b2 − p2
N
n2

, and a2n2 = k − a1n1. Because

k ∈ [0, N − 1] and a1n1 ∈ (−N,N), a2 ∈
(
− N
n2
, N
n2

)
. Similarly, we could deduce

that al ∈
(
−N
nl
, N
nl

)
for l ≥ 2. The range also holds for al+1 ∈

(
− N
nl+1

, N
nl+1

)
, which

concludes the proof.

3.3.3 Unique mapping from PCS to HOS indices

In addition, based on the simultaneous congruences in Chinese Remainder The-

orem and Theorem 2, the following corollary guarantees the index in HOS can be

uniquely calculated from a given set of PCS.

Corollary 1. (Pairwise co-prime mapping) Given pairwise relatively prime integers

n1, n2, . . . , nr and their product N = n1n2 . . . nr, the indexes ai in the PCS sequences

ni[ai] can be regarded as simultaneous congruences from the index of higher-order

statistics k to ni, respectively.

k ≡ ai (mod ni) (3.10)
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for i = 1, 2, . . . , r. The solution for the set of congruences is unique modulo N , which

is

k ≡
r∑

i=1

aipi
N

ni
(mod N) (3.11)

where the pi are determined from

pi
N

ni
≡ 1 (mod ni). (3.12)

Proof. Denote Ni = N
ni

, for all i. Because n1, n2, . . . , nr are PCS, gcd(Ni, ni) = 1.

Based on Theorem 1 and 2, we have

pNi + qni = 1 (3.13)

pNi ≡ 1 (mod ni) (3.14)

for 0 ≤ p < ni.

If x 6= y and they satisfy the set of congruences, then

x− y ≡ 0 (mod ni) i = 1, . . . , r. (3.15)

Because n1, n2, . . . , nr are pairwise co-prime, x− y is also divisible by N . Therefore,

x and y are identical modulo N .

3.4 PCS-based HOS algorithm for ARMA order determination

3.4.1 Probelm formulation

Let us consider the causal linear signal model:

x(t) +

p∑

i=1

a(i)x(k − i) =

q∑

i=0

b(i)w(t− i) (3.16)

where {a(i)}pi=1 and {b(i)}qi=0 denote the ARMA parameters, which can be further

abbreviated as ARMA(p, q). The p and q are the order of AR and MA respectively.

The observations consist of the signal x(t) and the measurement noise v(t):

y(t) = x(t) + v(t). (3.17)
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The transfer function in the Z domain is assumed to be free of pole-zero can-

cellations and exponentially stable:

H(z) =
+∞∑

i=0

h(i)z−i =

[
q∑

i=0

b(i)z−i

]/[
1 +

p∑

i=1

a(i)z−i

]

= B(z)/A(z) (3.18)

Besides, we have three assumptions in the following content:

S.1 The driving noise w(t) is non-Gaussian, zero mean, and independent and iden-

tical distributed (i.i.d.). Besides, it only has finite moments, which are esti-

mated via expectations, and denoted as E[w2(t)] = σ2
w, E[w3(t)] = γkw, and

E[w6(t)] < +∞.

S.2 The measurement noise v(t) is assumed to be zero mean, and has either white

or color Gaussian distribution. It is also i.i.d. and independent of w(t) with

E[v2(t)] = σ2
v .

S.3 The upper bounds of p and q are known.

Given PCS x[i], we are able to find any τ ∈ [0, N −1] based on Theorems 1 and

2, such that

τ =
r∑

i=1

aini, ai ∈
(
−N
ni
,
N

ni

)
. (3.19)

The second-order autocorrelation (r = 2) in (3.6) is rewritten as

ĉ2x(τ) =
1

L

L∑

l=0

x1(a1 +
N

n1

l)x2(a2 +
N

n2

l) (3.20)

where L denotes the number of segmentations used for averaging. Because the re-

sulting indexes of PCS are calculated using combinations of different co-prime pairs

rather than permutation of composite components, the estimates for theoretically

symmetric points are not equal. So, they are further averaged within the segment via

the symmetry of autocorrelation

c2x(τ) =
1

2
(ĉ2x(τ) + ĉ2x(−τ)) . (3.21)
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The third-order cumulant (r = 3) is estimated as

ĉ3x(τ1, τ2) =
1

L

L∑

l=0

3∏

i=1

xi(ai +
N

ni
l). (3.22)

Based on its symmetry property [23], the estimates are further averaged as

ĉ3x(τ1, τ2) =
1

6
[ĉ3x(τ1, τ2) + ĉ3x(τ2, τ1) + ĉ3x(−τ2, τ1 − τ2) + ĉ3x(−τ1, τ2 − τ1)

+ĉ3x(τ2 − τ1,−τ1) + ĉ3x(τ1 − τ2,−τ2)] . (3.23)

3.4.2 AR order determination based on Hankel matrix

we use the theorem derived from Hankel matrix [48] and the third-order cumu-

lant to select the AR order.

Theorem 3. Define the (M2 + 1)(N2 − N1 + 1) × (M2 + 1) matrix of third-order

cumulant CeCeCe

CeCeCe =



c3y(M1, N1) . . . c3y(M1 +M2, N1)

. . . . . . . . .

c3y(M1, N2) . . . c3y(M1 +M2, N2)

. . . . . . . . .

. . . . . . . . .

c3y(M1 +M2, N1) . . . c3y(M1 + 2M2, N1)

. . . . . . . . .

c3y(M1 +M2, N2) . . . c3y(M1 + 2M2, N2)




, (3.24)
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where

M1 ≥ q − p+ 1

M2 ≥ p− 1

N1 ≤ q − p

N2 ≥ q.

The matrix CeCeCe has rank p if and only if the ARMA(p, q) model is free of pole-zero

cancellations.

Because the singular values of a matrix are noise robust for rank estimation,

SVD approach has been successfully applied to AR order determination. Theoreti-

cally, using SVD with matrix in Theorem 3 is to find the nonzero singular values in

the matrix CeCeCe, but all the singular values are nonzero because of the estimation error

and existence of noise. Consequently, the subjective rule to estimate p is to find the

smallest difference between consecutive singular values {sCeCeCep+1 − sCeCeCep+2}.

3.4.3 MA order determination based on HOS properties

To estimate the order of MA models, rather than using the algorithms men-

tioned in Section 3.1, we apply a tractable approach based on the basic statistical

characteristic of HOS cumulant. After removing the AR impact from an ARMA se-

quence, the residual sequence can be regarded as a MA process. Suppose its order is

q, then it is safe to infer that

ĉ3y(q, 0) 6= 0, ĉ3y(q + 1, 0) ≈ 0. (3.25)

That is, the value of q is identified as the lag of the last cumulant sample that is not

approximately equal to zero. Note that the performance of this method is directly

related with the asymptotic property of the third-order cumulants derived from the
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sampled sequence. The asymptotic covariance expressions in terms of the ARMA

parameters can be found in [49]. However, in practice, we only estimate the sampled

averages rather than their true values. Based on the assumption S.2, we have a

consistent sample estimator of the covariance

cov[ĉ3y(m,n), ĉ3y(k, l)] ≈
1

N2

N∑

i=1

q+m∑

j=−q+n

(
1− |j|

N

)

· [y(i)y(i+m)y(i+ n)− ĉ3y(m,n)]

· [y(i+ j)y(i+ j + k)y(i+ j + l)− ĉ3y(k, l)]. (3.26)

Let k = m and k = n, we have the variance of sampled third-order cumulants

σ̂2[ĉ3y(m,n)] ≈ 1

N2

N∑

i=1

q+m∑

j=−q+n

(
1− |j|

N

)

· [y(i)y(i+m)y(i+ n)− ĉ3y(m,n)]

· [y(i+ j)y(i+ j +m)y(i+ j + n)− ĉ3y(m,n)]. (3.27)

Because the impulse response of a stable ARMA model is exponentially decaying, its

output cumulants can also be regarded as an MA process [41]. Hence, it is reasonable

to assume ĉ3y(m,n) ≈ 0 for m > q or n > q. The truncation point can be found by

visual inspection or hypothetical testing.

3.5 Simulation results

3.5.1 Basic setting

In simulations, the driven noise w(t) is a zero-mean exponential random deviate

process with E[w2(t)] = 1 and E[w3(t)] = 2. We generate signal sequence with 5000

sample points for a single run, and average results from 50 times of Monte Carlo

simulations for every scenario. Besides, we set the size of processing window is for 256

sample points and no overlap for consecutive windows. The estimates of each segment
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Table 3.1: Order determination of a MA(3) model

stat. b(0) b(1) b(2) b(3) b(4) b(5)

Noise free environment (SNR=+∞)

c2y
2.529 0.936 −0.314 −0.767 −0.006 −0.002
±0.011 ±0.003 ±0.002 ±0.002 ±0.002 ±0.003

c3y
2.589 2.317 1.369 −1.555 −0.017 0.018

±0.220 ±0.108 ±0.032 ±0.040 ±0.014 ±0.013

c′3y
2.672 2.352 1.389 −1.576 −0.039 0.026

±1.088 ±0.134 ±0.122 ±0.132 ±0.033 ±0.006

White Gaussian noise (SNR=0)

c2y
4.799 0.941 −0.321 −0.756 −0.016 −0.015
±0.023 ±0.008 ±0.004 ±0.004 ±0.005 ±0.007

c3y
2.684 2.345 1.353 −1.606 −0.138 −0.048
±0.480 ±0.182 ±0.083 ±0.107 ±0.053 ±0.036

c′3y
2.409 2.365 1.372 −1.699 −0.112 −0.074
±1.936 ±0.189 ±0.179 ±0.154 ±0.121 ±0.034

Colored Gaussian noise (SNR=0)

c2y
26.819 −9.336 −2, 791 −3.939 9.110 −3.307
±0.817 ±0.428 ±0.464 ±0.296 ±0.705 ±0.408

c3y
3.918 2.113 −1.114 −2.260 0.429 −0.198
±7.168 ±3.252 ±1.100 ±1.533 ±2.479 ±1.989

c′3y
3.505 2.594 1.536 −2.256 −0.691 0.451

±7.160 ±1.748 ±1.711 ±2.601 ±2.540 ±2, 075

are averaged to obtain the final result. In both test cases, we simulate scenarios

including noise-free environment (SNR = +∞), and white and color Gaussian noise

at SNR levels from 1 (0dB) to 100 (20dB). Moreover, we select n1 = 1, n2 = 2, and

n3 = 3 in PCS, which decrease the complexity to less than 17% of the existing HOS

algorithm.

3.5.2 MA model order determination

We simulate a MA(3) nonminimum phase model:

x(t) = w(t) + 0.9w(t− 1) + 0.385w(t− 2)− 0.771w(t− 3) (3.28)
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which has zeros at −0.75 ± 0.85j and 0.6. The statistics of simulation are shown

in Table 3.1. c2y denotes the autocorrelation coefficients. c3y denotes the cumu-

lants calculated using existing HOS, and c′3y are estimated via PCS-based HOS. The

corresponding variances are listed below the averages.

The first part of Table 3.1 indicates all of the three algorithms perform well in

the noise-free environment–the amplitudes of the fourth lags decrease dramatically

compared with the third lags. The upper figure in Figure 3.1 visualizes these statistics

and groups them according to different lags. Signals in the second part of Table 3.1

are corrupted by i.i.d. white Gaussian noise. Although the distinction between the

third and fourth lags is still visible for the autocorrelation, its zero-lag autocorrelation

is heavily affected. In contrast, the third-order cumulants reveal their insensitivity of

white Gaussian noise. The lower histogram in Figure 3.1 shows the superiorities of

HOS over autocorrelation in the environment with 0dB white Gaussian noise. From

Figure 3.1, we also observe that the PCS-based HOS has negligible performance

difference from the existing HOS algorithm. In the present of white Gaussian noise,

both of them are able to derive the right order. But PCS-based algorithm is much

simpler in terms of computational complexity.

Figure 3.2 visualizes the third part of the Table 3.1, which is the results simu-

lated in 0dB color Gaussian noise. The noise is acquired by passing white Gaussian

noise through MA channel with coefficients [1,−2.33, 0.75, 0.5, 0.3,−1.4]. The left

vertical axis of Figure 3.2 is the amplitudes of cumulants, and its right axis is the

ratio between variances and amplitudes linked as curves. Although the c2y retains

low variance, it is useless because the amplitudes of the fourth and fifth lags are large

enough to conclude wrong answers. We can still use the amplitude of c3y and c′3y

to derive the right order, but the curves of ratios provides better indicators, which
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Figure 3.1: noise free environment

increase almost six times from the third to the fourth lag. The PCS-based HOS

performs better for all mismatched orders.

3.5.3 ARMA model order determination

We simulate an ARMA(3,3) model with all-pass factors

x(t)− 2.2x(t− 1) + 1.77x(t− 2)− 0.52x(t− 3)

= w(t) + 0.9w(t− 1) + 0.385w(t− 2)− 0.771w(t− 3) (3.29)

with poles at 0.7± j0.4 and zeros at −0.75± j0.85, 0.6. The noise v(t) is the same as

the previous case. The Table 3.2 is divided according to SNR levels. S.V.cecece stands for

the normalized singular values derived from the matrix CeCeCe, and S.V.′pcs are derived
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Figure 3.2: Colored Gaussian noise

from the same matrix but formed based on PCS-based HOS. c3y and c′3y are the same

meaning as they are in Table 3.1. The columns for cumulants are lags of MA order

started from zero, and the columns for singular values stand for their sorted order

from 1 to 5.

From Table 3.2, we can see that both algorithms perform well for ARMA order

determination in noise-free (SNR = +∞) and mild noise (SNR = 10) environments.

For the AR models, PCS has less effect after the SVD approach. The fourth and

fifth singular values have the smallest difference. This indicates the right AR order

is 3. For the MA order selection, PCS-based HOS produce larger variance, but the

most obvious variances take place in the zeroth lag, which does not affect the final

decisions of MA order.
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Table 3.2: Order determination of a ARMA(3,3) model

Noise free environment (SNR=+∞)

S.V.cecece
1.000 0.435 0.154 0.030 0.008

±0.000 ±0.014 ±0.002 ±0.000 ±0.000

S.V.′pcs
1.000 0.465 0.265 0.103 0.078

±0.000 ±0.006 ±0.004 ±0.002 ±0.001

c3y
2.588 2.317 1.369 −1.555 −0.017
±0.220 ±0.108 ±0.032 ±0.040 ±0.014

c′3y
2.336 2.358 1.391 −1.611 −0.053
±1.032 ±0.178 ±0.123 ±0.175 ±0.061

White Gaussian noise (SNR=10)

S.V.cecece
1.000 0.436 0.154 0.030 0.008

±0.000 ±0.014 ±0.002 ±0.000 ±0.000

S.V.′pcs
1.000 0.465 0.264 0.103 0.078

±0.000 ±0.012 ±0.004 ±0.002 ±0.001

c3y
2.584 2.315 1.378 −1.561 −0.036
±0.249 ±0.114 ±0.038 ±0.043 ±0.018

c′3y
2.261 2.350 1.413 −1.628 0.042

±1.126 ±0.185 ±0.154 ±0.170 ±0.076

Color Gaussian noise (SNR=10)

S.V.cecece
1.000 0.436 0.155 0.035 0.011

±0.000 ±0.015 ±0.002 ±0.000 ±0.000

S.V.′pcs
1.000 0.467 0.270 0.103 0.081

±0.000 ±0.012 ±0.004 ±0.002 ±0.001

c3y
2.575 2.339 1.397 −1.519 −0.033
±0.326 ±0.129 ±0.062 ±0.070 ±0.039

c′3y
2.122 2.324 1.347 −1.584 −0.076
±1.114 ±0.253 ±0.288 ±0.248 ±0.210

3.6 Conclusion

In this Chapter, we extend the co-prime theorem to PCS, and prove theorems

about existence and seamless coverage of PCS for any index in HOS. We also demon-

strate the unique existence of mapping scheme for deriving HOS from PCS. Based

on these theorems, we propose the PCS-based HOS algorithm. One of its attractive

advantages is the ability of significantly decreasing computational complexity while

still maintaining the statistical properties.
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We apply the PCS-based HOS algorithm in ARMA processes. The simulations

indicate that this algorithm makes the computation less expensive, retains all prop-

erties of using HOS for order determination, and introduces new feature to double

check the correctness of order selection. For the MA order selection, in high SNR

environment (SNR ≥ 10), it produces more variance in the zeroth lag, which does

not affect the order decision, and in other places the variances remain within 10% of

the amplitude. In low SNR cases (SNR ≈ 0), it retains the amplitude estimations

and introduces significant variance for order mismatch, which makes it better for

the purpose of order selection. For the AR order determination, PCS makes minor

difference after SVD approach.
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CHAPTER 4

Co-prime sampling of HOS for channel estimation

4.1 Introduction

There are many communication problems that would benefit from using higher-

order statistics (HOS). Because autocorrelation and power spectrum are phase blind,

only Gaussian signals can be completely characterized by their first- and second-order

statistics. It is of interest to utilize HOS in problems including 1) digital communi-

cation, such as matched filter for signal detection [17] and phase reconstruction [18],

2) identification of nonlinear systems [19], and nonminimum phase time-invariant

channel models [20], and 3) non-Gaussian signal processing [21] and pattern recogni-

tion [22].

Broadly speaking, there are mainly two types of methods estimating HOS [21]:

conventional nonparametric method based on Fourier transform, and parametric

methods based on moving average (MA), autoregressive (AR), or autoregressive mov-

ing average (ARMA) models. The nonparametric approaches have better performance

to quantify phase coupling at harmonically related frequency pairs, while the para-

metric methods are widely used owing to their computational efficiency and higher

frequency resolution. The papers [21] and [23] provide further details about their

properties. It is worth noting that both kinds of methods have high variance and

require a large number of records to obtain smooth estimates, but increasing the

number of segments is demanding on computation, and may increase bias and intro-

duce nonstationarities [24].
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The dilemma above was our motivation to design an algorithm estimating HOS

via co-prime sampling, which had been proved useful in decreasing computational

complexity while still maintaining statistical features of the original signal [25]. The

basic idea of co-prime processing was to use Chinese reminder theorem with Be-

zout’s identity to identify multiple frequencies from under-sampled sequences [26].

Vaidyanathan [27] further confined the rates of downsampling to be co-prime, and

provided concrete demonstrations for sampling region so that co-prime sampled points

were able to calculate all of the second order derivatives. Besides, the concept of co-

primality was also used in system identification [28], filter banks design [27], and

multidimensional and multirate signal processing [29]. However, co-prime signal pro-

cessing had not been considered to derive HOS in previous research.

The main purpose of the Chapter ?? is to extend co-prime sampling calculating

HOS and to develop a PCS-based HOS algorithm processing non-Gaussian signal or

using in the nonminimum phase linear system. One of the advantages of the proposed

algorithm is to introduce new trade-off for the implementation of HOS–the algorithm

is able to maintain the same degree of complexity but to achieve better HOS estimates;

or it reduces the complexity by several orders with a mild performance loss.

In Section 4.2 we describe the PCS-based HOS algorithm, analyze its com-

plexity, and compare it with existing methods. The algorithm of channel parameter

estimation is developed in Section 4.3, and its performance is evaluated in Section

4.4. Finally, we draw the conclusions in Section 4.5.

4.2 Estimate of cumulants in PCS and the complexity analysis

In this Section, we propose the PCS-based HOS algorithm and demonstrate

how this algorithm reduces the computational complexity by several orders. In the

following content, PCS x1[i], x2[i], . . . , xr[i] denote the sampled sequences from in-
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put signal related with pairwise relatively prime integers n1, n2, . . . , nr, respectively.

Besides, two more conditions are assumed to simplify the derivation:

S.1 The input signals {x[n]} are real, discrete, zero-mean, and wide-sense stationary

to at least fourth order.

S.2 The segment length of the signal is equal to or longer than 2N , where N =

∏r
i=1 ni. This makes the implementation satisfying the Theorem 2 so that all

indexes in HOS could be derived from the PCS.

Based on Theorems 1 and 2, given PCS x[i], we are able to find any τ ∈ [0, N−1],

such that

τ =
r∑

i=1

aini, ai ∈
(
−N
ni
,
N

ni

)
. (4.1)

The second-order autocorrelation (r = 2) in (3.6) is rewritten as

ĉ2x(τ) =
1

L

L∑

l=0

x1(a1 +
N

n1

l)x2(a2 +
N

n2

l) (4.2)

where L denotes the overall number of segmentations used for averaging. Because the

resulting indexes in PCS are calculated via combination of different co-prime pairs

rather than permutation of composite components, the estimates for theoretically

symmetric points are not equal. Hence, they are further averaged within the segment

c2x(τ) =
1

2
(ĉ2x(τ) + ĉ2x(−τ)) . (4.3)

Similarly, the third- and four-order cumulants (r = 3 and r = 4) are estimated

as

ĉ3x(τ1, τ2) =
1

L

L∑

l=0

3∏

i=1

xi(ai +
N

ni
l), (4.4)

ĉ4x(τ1, τ2, τ3) =
1

L

L∑

l=0

4∏

i=1

xi(ai +
N

ni
l)− ĉ2x(τ1)ĉ2x(τ2 − τ3)

− ĉ2x(τ2)ĉ2x(τ3 − τ1)− ĉ2x(τ3)ĉ2x(τ1 − τ2), (4.5)
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and further averaged via symmetry property [23]

ĉ3x(τ1, τ2) =
1

6
[ĉ3x(τ1, τ2) + ĉ3x(τ2, τ1)

+ ĉ3x(−τ2, τ1 − τ2) + ĉ3x(−τ1, τ2 − τ1)

+ĉ3x(τ2 − τ1,−τ1) + ĉ3x(τ1 − τ2,−τ2)] . (4.6)

The fourth-order cumulant has twenty-four symmetric parts which are also worth

exploring in the computation process.

The following content shows that the complexity improvement is nontrivial via

estimating the HOS based on PCS. To quantify the complexity, we use the “Big

O” notation to denote the asymptotic limitation of a function when the argument

increases towards infinity. Both the parametric and nonparametric method have to

estimate cumulant based on expectation, which is the first part of the complexity. It

mainly comes from multiplication traversal in (3.1), (3.2), and (3.3). The operations

must be performed record by record which in turn causes the complexity to increase

exponentially. To estimate kth-order cumulant, the computation complexity is O(Nk)

where N is the length of segment.

S2,τ1,(τ2−τ3)(ω1,ω2, ω3) , F [c2x(τ1)c2x(τ2 − τ3)]

=c2x(τ1)c2x(τ2 − τ3)exp
(
−j2π

3∑

i=1

τiωi

)

=




N∑

(a1−a2)=0

x1(a1)x2(a2)
N∑

(a3−a4)=0

x3(a3)x4(a4)


 exp

(
−j2π

3∑

i=1

τiωi

)

=
N∑

(a1−a2)=0

x1(a1)exp

(−j2πa1(ω1 − ω2 − ω3)

N

)
x2(a2)exp

(−j2πa1ω1

N

)

N∑

(a3−a4)=0

x3(a3)exp

(−j2πa3ω2

N

)
x4(a4)exp

(−j2πa4ω3

N

)
(4.7)
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The nonparametric method further requires frequency averaging which makes it more

impractical for longer sequences. The classical FFT algorithm achieves computational

complexity O(NlogN) for second-order spectrum and O(N r−1logN) for the rth-order

Fourier transform [31]. Including the calculation of cumulants, the overall complexity

achieves as high as O(N2k−1logN).

On the other hand, PCS is able to decrease the calculation of cumulant by

at least one order. Suppose the length of segmentation is 2N . The complexity for

third-order PCS cumulant is

2N

n1

× 2N

n2

× 2N

n3

∼ O(N2) (4.8)

where N =
∏3

i=1 ni.

For nonparametric approach, the optimization is more significant by making

the Fourier transform in-place without complicated index mapping. The following

analysis is inspired by the structure of prime-factor FFT in [33]. For the kth-order

spectrum, we consider (3.4) to be a series of two-dimensional Fourier transform. Then,

the formula is rewritten as

Skx(ω1, ω2, . . . , ωk−1) =
1

L

L∑

l=1

N∑

τk−1=−N

[
. . .

[
N∑

τ1=−N

ckx(τ1, τ2, . . . , τk−1)

exp

(−j2πω1τ1
N

)]
. . .

]
exp

(−j2πωk−1τk−1
N

)
. (4.9)

Specifically, we can simplify the bispectrum as

S3x(ω1, ω2) =
N∑

(a1−a3)=−N




N∑

(a1−a2)=−N

x1(a1)exp

(−j2πa1(ω1 + ω2)

N

)

x2(a2)exp

(−j2πa2ω1

N

)]
x3(a3)exp

(−j2πa3ω2

N

)
. (4.10)

The averaging among L segments is deliberately omitted for simpler formula

abstraction. It can be easily restored in the implementation. Because L increases

48



linearly along with the length of signal, it is negligible compared with the exponen-

tially increased asymptotic property of N . In (5.11), complex multiplications are

in-place calculated, which only change a constant factor of the asymptotic limitation.

Hence, the calculation procedure decreased from O(N5logN) of the existing HOS to

quadratic form O(N2) for PCS-based HOS.

The fundamental difference between (5.12) and (3.4) is that without PCS, ckx is

calculated by the exhausted multiplying among N records for k times, which cannot

be decomposed. Furthermore, according to Corollary 2, there is one unique mapping

for a given set of PCS. So, this process can be deconvoluted for in-place Fourier

transform.

The analysis for trispectrum is more complex because of cross terms of second-

order cumulants in (4.5). We split its Fourier transform into four parts as

S4x(ω1, ω2, ω3) = S4,τ1,τ2,τ3 − S2,τ1,(τ2−τ3) − S2,τ2,(τ3−τ1) − S2,τ3,(τ1−τ2). (4.11)

The first part is the fourth-order moment. Similar to the third-order cumulant,

its complexity is O(N3). The other three cross terms are equivalent in complexity

because they are permutations of PCS x1(a1), x2(a2), x3(a3) and x4(a4). Take the

second term as example in (4.7). It can be regarded as products of in-place second-

order Fourier transform with complexity O(N). The overall complexity of S2,τ1,(τ2−τ3)

is O(N2). Hence, the trispectrum is added by one multiplicative term with complexity

O(N3) and three cross terms of second-order spectrum with complexity O(N2). The

resulting overall complexity is decreased from O(N7logN) to O(N3) for PCS.

4.3 MA channel estimation algorithm using HOS

As an application, we implement PCS-HOS to estimate impulse responses of

MA system. In [20], it demonstrated that MA coefficients could be computed recur-
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sively in closed form using both correlation and third-order diagonally sliced cumu-

lant c3,y(τ, τ). The paper also justified the uniqueness of the solution in a least-square

form. In [35], the algorithm was extended to the fourth order, and further improved

using more slices of time increments. However, as analyzed before, the computation

increases cubically for third-order cumulant along with the length of segment. It

might render the algorithm impractical before the estimate variation converges to an

optimal state. In the following content, we propose a modification of existing least-

square approach and use overdetermined formulas to suppress the additional estimate

variance caused by PCS.

Consider the finite impulse response (FIR) signal model:

x(t) =

q∑

i=0

h(i)w(t− i) (4.12)

where the observations consist both the signal x(t) and zero-mean noise v(t):

y(t) = x(t) + v(t). (4.13)

We have three assumptions for the following derivation:

S.1 The driving noise sequence w(t) is sufficiently long, non-Gaussian, zero mean

and independent and identical distributed (i.i.d.). The statistical characteristics

includes E[w2(t)] = σ2
w, E[wk(t)] = γkw, and E[w2k(t)] < +∞, for k = 3 or 4.

S.2 The measurement noise sequence v(t) is assumed to be zero mean, but does

not necessarily to be Gaussian. It is also i.i.d. and independent of w(t) with

E[v2(t)] = σ2
v , E[vk(t)] = γkv, and E[v2k(t)] < +∞, for k = 3 or 4.

S.3 The MA order q is known. For |i| > q, h(i) = 0. Hence, x(i) = 0 and y(i) = 0.
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4.3.1 MA system identification using 3rd-order cumulant

We extend the definition (3.2) as follow:

c3x(τ1, τ2) = γ3w

q∑

k=0

h(k)h(k + τ1)h(k + τ2) = γ3w

q∑

k=0

h(k)g(k; τ1, τ2) (4.14)

where

g(k; τ1, τ2) = h(k + τ1)h(k + τ2). (4.15)

Let G(z; τ1, τ2) denote the z-transform of the sequence g(k; τ1, τ2), then we can

have

C3x(z; τ1, τ2) = γ3wH(z−1)G(z; τ1, τ2) = γ3wz
τ2−τ1H(z−1)[H(z) ∗H(z)]. (4.16)

If we fix τ1 and replace τ2 with a different time increments τ3, we could have another

3rd-order cumulant containing γ3wH(z−1).

γ3wH(z−1) = C3x(z; τ1, τ2)[G(z; τ1, τ2)]
−1 = C3x(z; τ1, τ3)[G(z; τ1, τ3)]

−1. (4.17)

The two terms in the right hand side could form the equation

q∑

k=0

h(k + τ1)h(k + τ2)c3x(k − τ1, τ3)

=

q∑

k=0

h(k + τ1)h(k + τ3)c3x(k − τ1, τ2). (4.18)

Let τ2−τ1 = 0, τ3−τ1 = q and h(0) = 1, and denote τ1 as τ . Based on the assumption

(S.2) and (S.3), we can have the formula relating impulse response coefficients h(t)

with output y(t) and measurement noise v(t)

h(q)[c3y(−τ, 0)− γ3vδ(τ)] = c3y(−τ, q) +

q∑

i=1

h2(i)c3y(i− τ, q). (4.19)

Another connection between h(t) and y(t) comes from both second-order and

third-order. The autocorrelation coefficients of output signal satisfy

c2x(τ) = E [x(k)x(k + τ)] = σ2

min(q,q−k)∑

k=max(0,−m)

h(k)h(k + τ) (4.20)
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where k ∈ [−q, q] for all k. Its z transform of is

C2x(z; τ) = σ2
wH(z−1)H(z). (4.21)

Combining (4.21) with (4.14) and letting τ in (4.21) equal to τ1 in (4.14), we could

have

G(z; τ1, τ2)C2x(z; τ1) =
σ2
w

γ3w
H(z)C3x(z; τ1, τ2) (4.22)

q∑

k=0

h(k)h(k + τ2 − τ1)rx(τ1 − k) =
σ2
w

γ3w

q∑

k=0

h(k)c3x(τ1 − k, τ2 − k). (4.23)

Then, if we let τ1 = τ2, replace both symbols as τ , and let ε = σ2
w/γ3w, we have

[ry(τ)− σ2
vδ(τ)] +

q∑

k=1

h2(k)[ry(τ − k)− σ2
vδ(τ − k)]

= ε[c3y(τ, τ)− γ3vδ(τ)] +

q∑

k=1

[εh(k)][c3y(τ − k, τ − k)− γ3vδ(τ − k)]

= ε[c3y(−τ, 0)− γ3vδ(τ)] +

q∑

k=1

[εh(k)][c3y(k − τ, 0)− γ3vδ(k − τ)].

(4.24)

Let 1 ≤ |τ | ≤ q in (4.18), and −q ≤ τ ≤ −1 and q + 1 ≤ τ ≤ 2q in (4.24).

We have 4q equations for 2q + 2 unknown variables, which could be solved to get

least-square solution of the impulse response coefficients. The compact form is

MhMhMh = ccc (4.25)
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where

MMM =



M1M1M1

M2M2M2




hhh = [ε εh(1) εh(2) . . . εh(q) h2(1) . . . h2(q) h(q)]T

ccc = [c1c1c1 c2c2c2]
T

c1c1c1 = [ry(−q) ry(−q + 1) . . . ry(−1) 0 0 . . . 0]

c2c2c2 = [c3y(q, q) c3y(q − 1, q) . . . c3y(1, q) 0 0 . . . 0].

The matrix representations of M1M1M1 and M2M2M2 are described in (4.26) and (4.27).
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M1M1M1 =




c3y(q, 0) 0 . . . 0 0 0 0 . . . 0 0

c3y(q − 1, 0) c3y(q, 0) . . . 0 0 −ry(−q) 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c3y(1, 0) c3y(2, 0) . . . c3y(q, 0) 0 −ry(−2) −ry(−3) . . . 0 0

0 c3y(−q, 0) . . . c3y(−2, 0) c3y(−1, 0) −ry(q) −ry(q − 1) . . . −ry(−1) 0

0 0 . . . c3y(−3, 0) c3y(−2, 0) 0 −ry(q) . . . −ry(−2) 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 c3y(−q, 0) 0 0 . . . −ry(q) 0




(4.26)

M2M2M2 =




0 . . . 0 0 0 . . . 0 0 c3y(q, 0)

0 . . . 0 −c3y(q, q) 0 . . . 0 0 c3y(q − 1, 0)

0 . . . 0 −c3y(q − 1, q) −c3y(q, q) . . . 0 0 c3y(q − 2, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 −c3y(2, q) −c3y(3, q) . . . −c3y(q, q) 0 c3y(1, 0)

0 . . . 0 −c3y(0, q) −c3y(1, q) . . . −c3y(q − 2, q) −c3y(q − 1, q) c3y(−1, 0)

0 . . . 0 0 −c3y(0, q) . . . −c3y(q − 3, q) −c3y(q − 2, q) c3y(−2, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . 0 −c3y(0, q) c3y(−q, 0)




(4.27)

Finally, the least square solution in compact form is

ĥLS = (MTM)−1MT c. (4.28)

There are several aspects worth mentioning in both deriving (4.18) and (4.24)

and transforming them into matrices representation.
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Remark 1. The impulse response δ(τ) in (4.18) and (4.24) is based on the assump-

tion S.2, which makes the cross-correlation E[x(t)v(t)] = 0 for all t, and E[v(t1)v(t2)] =

0 for t1 6= t2.

Remark 2. In deriving the formula (4.24), we use the symmetric property of 3rd-

order cumulants. Specifically, c3y(m,m) = c3y(−m, 0) simplify the slicing for 3rd-

order cumulant only taking place for c3y(i, 0) and c3y(i, q) for 1 ≤ |i| ≤ q.

Remark 3. MMM is a 4q × (2q + 2) matrix, which can be further divided into two 2q ×

(2q + 2) matrices M1M1M1 and M2M2M2. They are derived from (4.18) and (4.24) respectively.

hhh is a 2q+ 2 column vector. ccc is a 4q column vector, which is evenly divided into two

sub-column vectors, c1c1c1 and c2c2c2, which also come from (4.18) and (4.24).

Remark 4. In order to eliminate the effect of measurement noise, we exclude the

rows coming from τ = 0 or k = τ when building matrices.

Remark 5. There are many zeros elements in MMM and ccc, because for the FIR system

we assume b(i) 6= 0 only for −q ≤ i ≤ q. That is, c3y(i, j) 6= 0 and ry(i) 6= 0 for

m,n ∈ [−q, q].

4.3.2 MA system identification using 4th-order cumulant

When the input signal w(t) has symmetric probability density function, the

third-order cumulants are identically zero. Examples of such situation include Bernoulli-

Gaussian random variables considered in [32], and signal with Laplace distribution

in [20]. In this circumstance, it is necessary to exploit the fourth-order cumulant to

fully utilize its non-Gaussian properties.

The general form of z-transform of the kth-order cumulant is

Ckx(z) = γkwH(z−1)G(z; τ1, . . . , τk−1) (4.29)
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where

G(z; τ1, . . . , τk−1) = zτk−1−τ1 H(z) ∗H(z) · · · ∗H(z)︸ ︷︷ ︸
(k−1) times.

(4.30)

Similarly to the third-order case, we use the same assumptions stated at the

beginning of this section to derive the equations using autocorrelations and 4th-order

cumulants. The expectation of input cumulant is derived from the definition (3.3)

and (4.12)

c4x(τ1, τ2, τ3) = γ4w

q∑

k=0

h(k)h(k + τ1)h(k + τ2)h(k + τ3). (4.31)

After Z-transform, let τ1 = τ , τ2− τ = m, τ3− τ = n, we have the following relation:

C4,x(z; τ, τ +m, τ + n) = γ4wH(z−1)G(z; τ, τ +m, τ + n)

= γ4wz
mznH(z−1)[H(z) ∗H(z) ∗H(z)]. (4.32)

The counterparts of (4.18) and (4.19) are derived for the same first-step time

increment τ with two different groups of 2nd- and 3rd-step increments m0, n0 and

m1, n1

q∑

k=0

h(k)h(k +m1)h(k + n1)c4x(k − τ,m0, n0)

=

q∑

k=0

h(k)h(k +m0)h(k + n0)c4x(k − τ,m1, n1). (4.33)

Let m0 = n0 = 0 and m1 = n1 = q, we obtain the first formula constructing the

matrix for least-square solution:

h2(q)[c4y(−τ, 0, 0)− γ4vδ(τ)] = c4y(−τ, q, q) +

q∑

k=1

h3(k)c4y(k − τ, q, q). (4.34)
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With consistent notion for letting τ2− τ = m, τ3− τ = n, the relation between

autocorrelation and 4th-order cumulant is

q∑

k=0

h(k)h(k +m)h(k + n)rx(τ − k)

= ε

q∑

k=0

h(k)c4x(τ − k, τ +m− k, τ + n− k). (4.35)

Let m = n = 0, we have the second formula for the matrix of least-square solution

[ry(τ)− σ2
vδ(τ)] +

q∑

k=1

h3(k)[ry(τ − k)− σ2
vδ(τ − k)]

=ε[c4y(−τ, 0, 0)− γ4vδ(τ)] +

q∑

k=0

[εh(k)][c4y(k − τ, 0, 0)− γ4vδ(τ − k)]. (4.36)

Let 1 ≤ |τ | ≤ q in (4.34), and −q ≤ τ ≤ −1 and q + 1 ≤ τ ≤ 2q in (4.36). The

compact form is

MhMhMh = ccc (4.37)

where

MMM =



M1M1M1

M2M2M2




hhh = [ε εh(1) εh(2) . . . εh(q) h3(1) . . . h3(q) h2(q)]T

ccc = [c1c1c1 c2c2c2]
T

c1c1c1 = [ry(−q) ry(−q + 1) . . . ry(−1) 0 0 . . . 0]

c2c2c2 = [c4y(q, q, q) c4y(q − 1, q, q) . . . c4y(1, q, q) 0 0 . . . 0].

The dimensionalities forMMM , hhh, and ccc are the same as using 3rd-order cumulants.

The structure of matrices of M1M1M1 and M2M2M2 could also refer to (4.26, 4.27) and replace

c3y(τ, 0) and c3y(τ, q) with c4y(τ, 0, 0) and c4y(τ, q, q).
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4.4 Simulation results

4.4.1 Basic setting

In order to fully explore properties of PCS, we apply it to estimate the sim-

plified LTE spacial channel model [34] where the channels are assumed to be MA

models with six paths. Furthermore, we assume each path has only one sub-path,

and the channel characteristics remain invariant over the processed data symbols,

which means the channel is slow fading for the very high signaling rates. MA(2) and

MA(5) are simulated with the inputs and outputs:

x1(t) =w(t)− 2.333w(t− 1) + 0.667w(t− 2) (4.38)

x2(t) =w(t) + 0, 1w(t− 1)− 1.87w(t− 2)

+ 3.02w(t− 3)− 1.435w(t− 4)

+ 0.49w(t− 5) (4.39)

y1(t) =x1(t) (4.40)

y2(t) =x2(t). (4.41)

Since the estimation is more susceptible for abnormal samples due to the sparse

sampling, it is of interest to see how PCS performs in computing higher-order cumu-

lants. In both model, we assume SNR = +∞. For channel estimation, we generate

signal sequence with 700000 sample points for a single run and average results from

50 times of Monte Carlo simulations for every scenario. Besides, we do not use any

filter to preprocess w(t), and set the overlap percentage equal to zero. We also con-

servatively select the PCS by setting n1 = 1, n2 = 2, and n3 = 3 for PCS-HOS(3),

and n1 = 1, n2 = 1, n3 = 2, and n4 = 3 for PCS-HOS(4). Because the purpose of

this paper is to indicate the validity of PCS-HOS algorithm, choosing smaller PCS

58



0 10 20 30 40 50 60 70

Length of signal (×104 )

0%

20%

40%

60%

80%

100%

R
a
ti

o
 b

e
tw

e
e
n
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 a

n
d
 e

x
p
e
ct

a
ti

o
n c3y(−2,0)

c3y(−1,0)

c3y(0,0)

c3y(1,0)

c3y(2,0)

Figure 4.1: y1[n] cumulant variance using PCS-HOS(3)

with less variance is preferable. Concerning how to accelerate convergence is beyond

the scope of this paper.

4.4.2 Convergence of cummulant calculated by PCS-based HOS

Because the absolute value of MA coefficients vary from 0.1 to 3.02, the variance

itself cannot fully reveal how well the estimation is. We use the ratio between standard

deviation and its expectation as vertical axis to indicate the convergence.

Figures 4.1 and 4.2 show the convergence of third-order PCS for estimating

cumulants with 2 taps or 5 taps. The estimate variances fall below 40% of the

expected value after 200K samples for MA(2), and 250K samples for MA(5). The

only exception is c3y(−5, 0). This is because there are less PCS points to average for

larger difference. The potential improvements are filter the data before calculating

cumulants, or use overlap windows to increase the candidates for averaging.
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Figure 4.2: y2[n] cumulant variance using PCS-HOS(3)
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Figure 4.3: y1[n] cumulant variance using PCS-HOS(4)

Figures 4.3 and 4.4 indicate the convergence of PCS-HOS(4). Compared with

Figures 4.1 and 4.2, they dramatically increase the estimation variance and decrease
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Figure 4.4: y2[n] cumulant variance using PCS-HOS(4)

the speed of convergence. Besides, Figure 4.4 is able to include only four out of

five taps, because if we include c4y(−5, 0, 0) and c4y(5, 0, 0), their large values would

render the other curves indistinguishable.

4.4.3 Convergence of MA parameter estimation

Figures 4.5 and 4.6 show the performance of estimating coefficients for MA(2)

and MA(5) using PCS-HOS(3). Comparing to Figures 4.1 and 4.2, the performance

of MA coefficients estimation correlates with the convergence of cumulant estimation.

After 200k sample points, output results of MA(2) are fairly stable as the variance

of cumulant estimations falls into 40% range of the expected values. Although the

1st tap of the MA(5) system seems abnormally unstable in Figure 4.6, it is mainly

because the real value of that coefficient is very small (0.100). The general estimates

are also stable after 200k samples.
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Figure 4.5: Variance of MA(2) using PCS-HOS(3)
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Figure 4.6: Variance of MA(5) using PCS-HOS(3)

The performances of PCS-HOS(4) in Figures 4.7 and 4.8 indicate that even for

the most conservative choice of PCS, it is still impractical to use it combining with
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Figure 4.7: Variance of MA(2) using PCS-HOS(4)
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Figure 4.8: Variance of MA(5) using PCS-HOS(4)

HOS for system identification. Although PCS-HOS(4) performs relatively good for

MA(2) system comparing to its performance in MA(5), the ratio between standard
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Figure 4.9: Performance comparison between PCS-HOS(3) and original HOS

deviation and expected value has amplified four times compared with the correspond-

ing curves of using PCS-HOS(3) in Figure 4.5. In Figure 4.8, expect the first tap,

all other taps remain unstable after 700k sample points. Referring to matrix repre-

sentation of least-square solution (4.26, 4.27), it needs cumulants with all delays to

estimate every tap in MA system. Because PCS-HOS(4) cannot confine the cumu-

lants c4y(−5, 0, 0), c4y(−5,−5,−5), c4y(5, 0, 0), and c4y(5, 5, 5), MA(5) cannot get a

stable estimate. The numeric results in Table 4.1 further reveal that the unstable

cumulant estimations result in the bias for the parameter estimates.

4.4.4 Performance comparison

In Figure 4.9, the performances are quantified via root-mean square error (RMS).

Three candidates in the comparison are all third-order HOS, including PCS-HOS(3)

using 700k sample points in the left side (blue), existing HOS using 110k samples in

the middle (green), and existing HOS using 700k in the right side (red). The reason
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for choosing the HOS with 110k samples it because it has the same computational

complexity as the PCS-HOS(3). The left vertical axis indicates the values of RMS,

and the right vertical axis is the ratio of performance gain between PCS-HOS and

he existing HOS with the same complexity. We can see that in MA(2) system PCS-

HOS(3) decreases RMS for more than 80%. For MA(5) system, the performance gain

is less significant, but it is still able to have about 45% performance gain on average.

Nevertheless, it is worth mentioning that the performance gain and complexity sim-

plification are acquired at the expense of averaging longer sequence, which increases

the delay of the system. For the same length of signal sequences, existing HOS has

roughly six times more complexity than PCS-HOS(3), and outperforms 12% less RMS

in MA(2) system and 26% less RMS in MA(5). There are obvious differences for the

last three taps of the MA(5) system. It is because the larger the tap of MA is, the

wider range of cumulants it needs to estimate the coefficient. Consequently, the larger

variance for longer cumulants in Figure 4.2 deteriorate the performance of PCS-HOS.

In Table 4.1, the proposed algorithm are compared with existing benchmarks.

Both the results of GM and Tug come from the paper [35]. Note that these results are

summarized from twenty-five Monte Carlo simulations, and the length of sequence in

the simulation is 5120. But they are still comparable, since all results are statistical

summarization and our purpose is to prove the validity of PCS-HOS. The “PCS3” and

“PCS4” indicate PCS-HOS(3) and PCS-HOS(4) algorithms. The statistics of each

algorithm include arithmetic mean, standard deviation, and RMS. For the benchmark

algorithms, the “Tug” is much better than the “GM”. “PCS3” outperforms “Tug” in

estimating all of the five taps. Although “PCS4” has smaller standard deviation and

RMS than the “GM”, but after the second tap, the estimates bias renders the results

useless.
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Table 4.1: Parameter Estimates

Algo.
Taps h(1) h(2) h(3) h(4) h(5)

Val. 0.100 -1.870 3.020 -1.435 0.490

GM

mean 18.654 -39.996 23.025 -4.804 1.056

std. 81.604 177.375 112.094 31.080 9.414

RMS 83.687 181.409 114.233 31.262 9.431

Tug

mean 0.366 -0.626 0.960 -0.765 0.311

std. 1.503 1.087 1.125 0.921 0.365

RMS 1.526 1.652 2.347 1.139 0.407

PCS3

mean 0.716 -1.763 2.080 -1.018 0.317

std. 0.601 0.305 0.715 0.315 0.122

RMS 0.860 0.323 1.180 0.521 0.211

PCS4

mean 1.043 -0.490 -0.472 0.100 0.045

std. 0.589 3.280 0.364 0.326 0.326

RMS 1.112 3.558 3.511 1.569 0.551

4.5 Conclusions

In order to use the co-prime signal processing HOS, we extend the co-prime

theorem to PCS, and prove theorems about existence and seamless coverage of PCS

for any index in HOS. We also demonstrate the unique existence of mapping scheme

for deriving HOS from PCS. Based on these theorems, we propose the PCS-HOS

algorithm. This algorithm significantly alleviates the computational demands for

calculating HOS while still maintains the statistical properties. If the system has no

constraint on memory or concurrency, the “in-place” characteristics of PCS-HOS can

be further accelerated based on parallel computing.

We apply the PCS-HOS algorithm to channel estimation where MA models are

assumed. In MA(2) channel, the PCS-HOS(3) is able to achieve 80% performance gain

comparing to existing HOS algorithm with the same computational complexity, or

12% performance loss using only 15% complexity. This property introduces new trade-
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off aspect for HOS signal processing. The additional variance introduced by PCS-HOS

is able to be suppressed by extending the length of signal, adding preprocessing filters,

or using overlapped window.

In the simulation, we also observe that PCS-HOS(4) is not suitable for es-

timating cumulants. But concerning the advantages of fourth-order HOS over its

third-order counterpart, it is worthwhile to find out new approaches suppressing the

variance caused by both PCS and HOS. There are also other aspects worth further

exploring, such as the influence of filter in preprocessing, choices of large PCS, and

implementation of PCS with nonparametric methods for channel estimation.
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CHAPTER 5

Nested sampling for HOS with application to channel estimation

5.1 Introduction

Accurate channel estimation can be used in orthogonal frequency division mul-

tiplexing systems to improve the performance by allowing coherent demodulation,

which possesses a 3-to-4 dB gain in signal-to-noise ratio (SNR) compared with dif-

ferential modulation [64]. Besides, systems are able to take advantage of receiver

diversity for optimum combining via channel estimators. In general, channel estima-

tion can be conducted by either inserting pilot segments into OFDM subcarriers [65],

or estimating channel only based on the received signal. But it is not efficient for

repeated transmitting a known sequence to train the equalizer at the receiver, and it

is difficult to establish data transmission over the channels suffered from unavoidable

presence of multipath fading. Theoretically speaking, the blind channel estimation is

preferable.

There are two kinds of approaches to implement the blind channel estimation.

The linear methods are based on the fact that the cyclostationary characteristics of

modulated signals permit the recovery of both amplitude and phase responses of a

communication channel only using second-order statistics [66]. The nonlinear meth-

ods are based on the calculation of higher-order statistics (HOS), and could be further

divided into direct or indirect approaches. The direct algorithm calculate HOS and

their discrete Fourier transforms with further matrix manipulation [67]. Although

its computation is more complex, the advantages include more straightforward for

theoretical derivation, free from minimizing cost functions so as to avoid local mini-
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mum problem, and insensitivity to time jitter. On the other hand, one of the typical

indirect algorithms is Bussgang algorithm [68], in which the deconvoluted signal im-

plicitly exploit the HOS via Bussgang statistics. This kind of methods is simpler to

implement and generally capable of delivering a good performance.

In general, HOS approaches are favorable to preserve both phase and ampli-

tude information of the signal, and to deal with non-Gaussian sequences and non-

linear non-minimum phase system. Its estimates can be calculated from either con-

ventional nonparametric methods of Fourier transform [23], or parametric methods

based on moving average (MA), autoregressive (AR), or autoregressive moving aver-

age (ARMA) models [69]. The paper [23] provides further details about both kins

of methods. It is worth noting that both of them have high variance and require a

large number of records to obtain smooth estimates [24], but increasing the number

of segments is demanding on computation, and may increase bias and introduce non-

stationarity. Although there are preliminary researches [69, 70] providing a sparse

sampling scheme, pairwise coprime sequences (PCS), as a possible solution, how to

accelerate speed of convergence and to leverage the trade-off between complexity and

performance are still open questions.

This is our motivation to design an algorithm estimating HOS based on nested

sampling. This concept is first introduced to conduct economic and sociological sur-

veys [71]. Later researches extend it to array signal processing [6], astronomical data

analysis [72], and estimating the directions of arrivals [7,73,74]. But nested sampling

has never been considered to derive HOS in previous literatures.

The main purpose of this paper is to develop a HOS algorithm based on multi-

level nested sampling (MNS). The direct merits of implementing nested sampling are

to greatly reduce the computational expense and to produce posterior inferences at

the same time. By using this sampling scheme, the proposed algorithm improves the
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PCS performances in terms of estimation variance and speed of convergence with the

same delay and a even lower computational complexity.

In Section 5.2, we discuss theoretical background about both higher-order statis-

tics and nested sampling. Then, we describe the MNS-HOS algorithm, and analyze

its complexity and complexity in Section 5.3. The performance of the proposed algo-

rithm is simulated in Section 5.4. Finally, we draw the conclusions in Section 5.5.

5.2 Preliminaries for nested sampling

Nested sampling is a non-uniform sampling scheme, using two different samplers

in each of given period. Given sampling interval Ts, although the signal is sparsely

and non-uniformly sampled at 1 ≤ l ≤ N1Ts and (N1 + 1)mTs, for 1 ≤ m ≤ N2,

in one sampling period, the autocorrelation c2x(τ) is able to be estimated at all lags

τ = kTs, where k, l, and m are integers.

In the simplest form, the nested array has two levels of sampling density, with

the level 1 samples at the N1 locations and the level 2 samples at the N2 locations:

Linner = {mTs, m = 1, 2, . . . , N1},

Louter = {n(N1 + 1)Ts, n = 1, 2, . . . , N2}.

As a result, the sampling interval for the inner layer is t1 = Ts, while the outer layer

is t2 = (N1 + 1)Ts.

Figure 5.1 shows an example of periodic sparse sampling using nested sampling

structure with N1=3 and N2=5. The cross-difference between two levels is

k = (N1 + 1)m− l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1, (5.1)

and its range is given by

k ∈ [−(N1 + 1)N2 − 1, (N1 + 1)N2 − 1] . (5.2)
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Figure 1: Nested sampling with N1 = 3, N2 = 5.

probabilistic graphical models and co-prime and nested samplers and arrays to sensor fusion.
Since probabilistic graphical models use statistical information, and Co-prime and Nested
Arrays could preserve the statistical knowledge, so it is very very promising.

3 Technical Approaches

3.1 Co-Prime and Nested Samplers for Radar Waveform Design

Waveform diversity is the technology that will allow one or more sensors on board a platform
to automatically change operating parameters, e.g., frequency, gain pattern, and pulse repetition
frequency (PRF) to meet the varying environments. It has long been recognized that judicious use
of properly designed waveforms, coupled with advanced receiver strategies, is fundamental to fully
utilizing the capacity of the electromagnetic spectrum. However, it is only relatively recent advances
in hardware technology that are enabling a much wider range of design freedoms to be explored. As
a result, there are emerging and compelling changes in system requirements such as more efficient
spectrum usage, higher sensitivities, greater information content, improved robustness to errors,
reduced interference emissions, etc. The combination of these is fuelling a worldwide interest in the
subject of waveform design and the use of waveform diversity techniques.

3.1.1 Preliminary Works on Nested Samplers for Waveform Design

Based on our preliminary works on nested samplers for waveform design, we observed that much
more spectrum efficient waveform could be designed. In the simplest form, the nested array [14]
has two levels of sampling density, with the level 1 samples at the N1 locations and the level 2
samples at the N2 locations.

1 ≤ l ≤ N1, for level 1

(N1 + 1)m, 1 ≤ m ≤ N2, for level 2

Fig. 1 shows an example of periodic sparse sampling using nested sampling structure with N1 = 3
and N2 = 5.

We used QPSK modulated signal with carrier frequency fc = 400Hz, which could be expressed
as

sQPSK(t) =

√
2Es

Ts
cos[2πfct + (i − 1)

π

2
] (1)

3

ONR TPOC: Dr. Rabinder N. Madan, Code 311

Figure 5.1: Nested Sampling with N1=3, N2=5

Note that there are missing values symmetric through zero within the range in

(5.2). The positive part includes (N1 + 1), 2(N1 + 1), . . . , (N2 − 1)(N1 + 1). Take the

Figure 5.1 as an example, the cross-difference will achieve the indexes

1, 2, 3, (), 5, 6, 7, (), 9, 10, 11, (), 13, 14, 15,

where the values with indexes in parentheses are left unknown. Then, we can use the

self-difference among points from the second level to calculate for the missing indexes,

which are 4, 8, and 12 in this example. The calculation is generalized as

(N1 + 1)(m1 −m2), 1 ≤ m1,m2 ≤ N2. (5.3)

With this method, we are able to calculate the second-order statistics without the

constraint about the lowest permitted sampling rate.

5.3 Multilayer nested sampling HOS algorithm

5.3.1 MNS-HOS algorithm

In this Section, we propose the MNS-HOS algorithm and make the nested sam-

pling according to the instantaneous variance of the input signal for better HOS esti-

mation. Besides, we also demonstrate how this algorithm reduces the computational

complexity by several orders. In the following content, MNS y0(n), y1(n), . . . , yk(n)
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denote the sampled sequences from output signal related with the nested levelN0, N1, . . . , Nk,

respectively. In addition, we have the following assumptions to modeling the system:

S.1 The driving signal {w(t)} is non-Gaussian, zero-mean, and independent and

identically distributed (i.i.d.). Besides, it only has finite moments, which are

estimated via expectations, and denoted as E[w2(t)] = σ2
w, E[w3(t)] = γ3w, and

E[w6(t)] < +∞.

S.2 The measurement noise {v(t)} is assumed to be zero-mean, and to have either

white or color Gaussian distribution. It is also i.i.d. and independent of {w(t)}

with E[v2(t)] = σ2
v .

S.3 The channel is regarded as a linear, time-invariant, and non-minimum phase

moving average (MA) system, and its order q + 1 has known beforehand.

Based on these assumptions, we derive a procedure for estimating the covari-

ances of the sampled cumulants, and model the output of the channel and the received

signal as

x(n) =

q∑

i=0

hiw(n− i), (5.4)

y(n) = x(n) + v(n). (5.5)

Then, we have

E[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

= E

[
1

N2

N−1∑

m=0

N−1∑

n=0

k−1∏

i=0

yi(m+ si)
k−1∏

j=0

yj(n+ tj)

]

= E

[
1

N2

N−1∑

m=0

N−1∑

n=0

k−1∏

i=0

yi(si)
k−1∏

j=0

yj(n−m+ tj)

]

=
1

N

N−1∑

n=−(N−1)

(
1− |n|

N

)
E

[
k−1∏

i=0

yi(si)
k−1∏

j=0

yj(n+ tj)

]
, (5.6)
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where s0 = t0 = 0. Hence,

cov[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

=
1

N

N−1∑

n=−(N−1)

(
1− |n|

N

)
E [G(y, k, 0, s)G(y, k, n, t)] . (5.7)

Since {y(n)} is a MA(q) process, the product from y(0) to y(sk) is statistically in-

dependent of the product form y(n) to y(n + tk) for n > s1 + q and n < −(t1 + q).

Therefore, the (5.7) can be written as

cov[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

=
1

N

s1+q∑

n=−(t1+q)

(
1− |n|

N

)
E [G(y, k, 0, s)G(y, k, n, t)]

≈ 1

N2

s1+q∑

n=−(t1+q)

(
1− |n|

N

)
Ĝ(y, k, 0, s)Ĝ(y, k, n, t), (5.8)

where

G(y, k, n, t) =
k−1∏

j=0

yj(n+ tj)− cky(t1, . . . , tk)

Ĝ(y, k, n, t) =
k−1∏

j=0

yj(n+ tj)− ĉky(t1, . . . , tk).

The approximation in the second step of (5.8) is based on the stationary and ergod-

icity properties of the given process, which provides the consistent estimation of the

expectation in its first step.
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Specifically, for the third-order cumulant, we can derive the variance of esti-

mation based on its covariance, and let τ1 = s1 = t1 and τ2 = s2 = t2, we have the

variance of sampled third-order cumulants

σ̂2[ĉ3y(m,n)] ≈ 1

N2

N∑

n=1

q+τ1∑

m=−q+τ2

(
1− |j|

N

)

· [y0(n)y1(n+ τ1)y2(n+ τ2)− ĉ3y(τ1, τ2)]

· [y0(m+ n)y1(m+ n+ τ1)y2(m+ n+ τ2)− ĉ3y(τ1, τ2)]. (5.9)

The multi-level nested sampling (MNS) is derived from the two-levels nested

sampling, and can be easily related with the calculation of HOS.

L1 = {nTs, n = 1, 2, . . . , N1} ,

Li =

{
nTs

i−1∏

j=1

(Nj + 1), n = 1, 2, . . . , Ni

}
, i = 2, . . . , K,

where K is the number of levels, and {Ni}Ki=1 are number of samples for the ith layer.

Compared with the basic coprime sampling and the pair-wise coprime sampling

for HOS [69], the MNS has no constraint on the choice of downsampling factor Ni.

Furthermore, given the sample points are independent and i.i.d., the sampling scheme

is able to take advantage of less noisy segments for better estimation.

Based on the analysis of variance, we can summarize the MNS-HOS algorithm

as follow:

5.3.2 Complexity analysis

The following content shows that the complexity improvement is nontrivial via

estimating the HOS based on MNS. To quantify the complexity, we use the “Big

O” notation to denote the asymptotic limitation of a function when the argument

increases towards infinity. Both the parametric and nonparametric method have to
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Algorithm 1 MNS-HOS Algorithm

Require: Ni > 0,∀i ∈ [0, K], {y(n)}Nn , for N ≥∏K−1
i=0 Ni

Initialize signal average µ̂ based on previous segment

for i = 1 to N do

Update average µ̂

Calculate variance for every segment with length N1 + 1.

if i ≡ 0 mod Nj, ∀j = 2, . . . , k − 1 then

Average Nj variances with interval
∏j−1

l=1 Nl

end if

end for

for i = k to 1 do

Nested range ← range with the smallest variance

end for

Conduct multilevel nested calculation

estimate cumulant based on expectation, which is the first part of the complexity. It

mainly comes from multiplication traversal in (3.1), (3.2), and (3.3). The operations

must be performed record by record which in turn causes the complexity to increase

exponentially. To estimate kth-order cumulant, the computation complexity is O(Nk)

where N is the length of segment.

The nonparametric method further requires frequency averaging which makes it

more impractical for longer sequences. The classical FFT algorithm achieves compu-

tational complexity O(NlogN) for second-order spectrum and O(N r−1logN) for the

rth-order Fourier transform [31]. Including the calculation of cumulants, the overall

complexity achieves as high as O(N2k−1logN).
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On the other hand, MNS is able to decrease the calculation of cumulant by at

least one order. Suppose the length of segment is 2N . The complexity to calculate

the third-order cumulant is

2N

N1

× 2N

N2

× 2N

N3

∼ O(N2), (5.10)

where N =
∏3

i=1Ni. Note that the variance estimation produce the overhead O(N)

to the calculation, but it is trivial compared with the HOS procedure and can be

ignored in the complexity analysis.

For nonparametric approach, the optimization is more significant by making

the Fourier transform in-place without complicated index mapping. The following

analysis is inspired by the structure of prime-factor FFT in [33]. For the kth-order

spectrum, we consider (3.4) to be a series of two-dimensional Fourier transform. Then,

the formula is rewritten as

Skx(ω1, ω2, . . . , ωk−1) =

1

L

L∑

l=1

N∑

τk−1=−N

[
. . .

[
N∑

τ1=−N

ckx(τ1, τ2, . . . , τk−1)

exp

(−j2πω1τ1
N

)]
. . .

]
exp

(−j2πωk−1τk−1
N

)
. (5.11)

Specifically, we can simplify the bispectrum as

S3x(ω1, ω2) =
N∑

(a1−a3)=−N




N∑

(a1−a2)=−N

x1(a1)exp

(−j2πa1(ω1 + ω2)

N

)

x2(a2)exp

(−j2πa2ω1

N

)]
x3(a3)exp

(−j2πa3ω2

N

)
. (5.12)

The averaging among L segments is deliberately omitted for simpler formula

abstraction. It can be easily restored in the implementation. Because L increases
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linearly along with the length of signal, it is negligible compared with the exponen-

tially increased asymptotic property of N . In (5.11), complex multiplications are

in-place calculated, which only change a constant factor of the asymptotic limitation.

Hence, the calculation procedure decreased from O(N5logN) of the existing HOS to

quadratic form O(N2) for MNS-HOS.

The fundamental difference between (5.12) and (3.4) is that without MNS, ckx

is calculated by the exhausted multiplying among N records for k times, which cannot

be decomposed.

It is also worth mentioning that the MNS-HOS algorithm has the same order

of complexity as another sparse sampling scheme PCS-HOS [69]. Compared with

PCS-HOS, MNS-HOS uses an iteration for estimating the variance of the signal,

keeps updating the sample average, and requires an extra memory with the length of

window size to record the variances. As a result, MNS-HOS is able to better explore

the statistical characteristics of the signal. The detailed improvement is provided in

the following section.

5.4 Simulation results

5.4.1 Basic setting

In order to fully explore properties of MNS, we apply it to estimate the simplified

LTE spacial channel model [34] where the channel is assumed to be a MA model with

six paths. Furthermore, we simplify each path to be only one sub-path, and assume

the channel characteristics remain invariant over the processed data symbols, which
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means the channel is slow fading for the very high signaling rates. MA(2) and MA(5)

are simulated according to the system model in (5.4) and (5.5):

x1(n) =w(n)− 2.333w(n− 1) + 0.667w(n− 2) (5.13)

x2(n) =w(n) + 0.1w(n− 1)− 1.87w(n− 2)

+ 3.02w(n− 3)− 1.435w(n− 4)

+ 0.49w(n− 5) (5.14)

y1(n) =x1(n) + v1(n) (5.15)

y2(n) =x2(n) + v2(n). (5.16)

In both models, we assume v1(n) and v2(n) are additive white Gaussian noise

(AWGN). The driven signal w(n) is a zero-mean exponential random deviate process

with E[w2(n)] = 1, E[w3(n)] = 2, and E[w4(n)] = 9. We generate signal sequence

with 700000 sample points for a single run and average the results from 50 times of

Monte Carlo simulations for each setting. There is no filter used for preprocessing the

input signal, and the overlap percentage is set to be zero. We select the coefficients

N1=4, N2=3, and N3=4 for MNS-HOS, which makes it decrease the complexity to

2.1% of the original HOS algorithm. As comparison, the PCS-HOS uses N1=2, N2=3,

and N3=5, which decreases the complexity to 3.3%.

Because the absolute value of MA coefficients vary from 0.1 to 3.02, the variance

itself cannot fully reveal how well the estimation is. We use the ratio between standard

deviation and its expectation as vertical axis to indicate the convergence.

5.4.2 Estimating cummulants via MNS and PCS

Figures 5.2 shows the comparison between third-order MNS and PCS for esti-

mating cumulants with 2 taps. The ratio between the standard deviation of MNS and
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Figure 5.2: Comparison of cumulant convergence for y1[n]

its expectation falls below 40% of the expected value after 100K samples, and below

20% after 400k samples, while the ratio of PCS falls below 40% at after receiving

170K samples, and the c3y(2, 0) falls below 20% after 600K samples.
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Figure 5.3: Ratios of variances between MNS and PCS

Figure 5.3 visualizes the comparison of each taps, in which the percentages in

the y axis stand for the ratios between MNS and PCS from Figure 5.2, and the tap

number is labeled at the left side of the figure. We can see that the most obvious

improvement of MNS upon PCS is for the 0 and ±1 taps.

Figures 5.4 indicates the convergence of both algorithm for MA(5) model. Com-

pared with Figures 5.2, the estimates of both algorithms suffer from increased variance

and decreased speed of convergence. However, MNS also performs much better than

PCS. As fitting both curves into the same scale for y axis, most of the MNS ratios

are overlapped within 100% area, while PCS has a much scattered curves indicating

larger variance and more inferior convergence.

5.4.3 Estimating MA system via MNS and PCS

In Figure 5.5, the performances of HOS algorithms for MA system identifica-

tion [35] are quantified via root-mean square error (RMSE). Three candidates in the
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Figure 5.4: Comparison of cumulant convergence for y2[n]

comparison are grouped by the RMSE for each tap, including PCS-HOS in the left

side (blue), MNS-HOS in the middle (green), and existing HOS in the right side (red).
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Figure 5.5: Performance comparison

The left vertical axis indicates the values of RMSE. The order of performances from

best to worst is HOS, MNS-HOS, and PCS-HOS.

The broken line using the right vertical axis indicates the performance improve-

ment of MNS-HOS relative to PCS-HOS. Generally speaking, MNS-PCS consistently

performs better than PCS-HOS. For MA(2) model, the improvement is not signifi-

cant because all the algorithms have a relative low RMSE in short MA systems. The

performance gain becomes remarkable in MA(5) model. MNS-HOS outperforms PCS-

HOS by 16.9% less RMSE on average. Specifically, it has 17.9% less RMSE in MA(2)

model and 8.8% less RMSE in MA(5) model. It is also desireable to observe that the

last three taps of MA(5) system do not deteriorate the estimates of MNS-HOS. It can

be explained by the good convergence of c3y(±5, 0) and c3y(±4, 0) in the upper figure

of Figure 5.4, because large variation for the cumulants of longer delay is the major

factor undermining the performance of corresponding MA coefficients. Concerning
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the MNS-HOS in this comparison has lower complexity (2.1% of the HOS without

sparse sampling) than the PCS-HOS has (3.3%), it is favorable to involve MNS-HOS

in the calculation of HOS when we leverage the trade-off between performance and

complexity.

Nevertheless, it is worth mentioning that the performance gain and complexity

simplification are acquired at the expense of increasing the delay of the system to aver-

age longer sequence, which is the case for both MNS-HOS and PCS-HOS algorithms.

For the same length of signal sequences, existing HOS has about fifty times more

computation. MNS-HOS has about 21.6% performance loss on average–generating

15.4% more RMSE in MA(2) and 22.5% more in MA(5).

5.5 Conclusion

In order to use the nested sampling to calculate HOS, we use multilevel nested

sampling to develop the MNS-HOS algorithm. This algorithm take advantage of

the second-order statistics during calculating HOS via sparse sampling, which signif-

icantly reduces the computational demands for calculating HOS while still maintains

the statistical properties.

In the simulation, MNS-HOS is first compared with PCS-HOS algorithm. It

produces less variance and converges faster for estimating HOS cumulants. As the

taps of MA prolong from two to five, these advantages become more obvious. We

further apply it to channel estimation where MA models are assumed, and compare

its performance with both original HOS algorithm and PCS-HOS. The MNS-HOS is

able to achieve 16.9% performance gain relative to PCS-HOS, and has 21.6% loss of

performance as opposed to the HOS without sparse sampling, but only uses its 2.1%

complexity cost.
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Although MNS-HOS is superior in the context of sparse sampling, we observe

that it still converges much slower than the original HOS does. It only handles the

problem of computational complexity in HOS calculation. Further improvement could

be attained by introducing Newton-Raphson method or Gauss-Newton algorithm. Be-

sides, this paper only discusses the third-order HOS. Extending the algorithm to even

higher moments is meaningful and nontrivial. There are also other aspects worth fur-

ther exploring, such as the influence of filter in preprocessing, adaptively changing the

choices of nested factors, and implementation of MNS with nonparametric methods

for channel estimation.
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CHAPTER 6

Capacity improvement of multi-cell cooperative cellular networks with nested

deployment

6.1 Introduction

Cellular networks are important parts of wireless communication systems. As

the number of macro-cellular BSs reaching 50 million worldwide by 2015 [75], it has

driven intensive research to fully utilized these facilities catering the growing demand

for high-data rate services.

There are quite a few works [76] indicating that sophisticated cooperations

among multiple BSs could achieve enormous gain over the lone-BS model. By increas-

ing the level of collaboration, the multiple BSs are regarded as a distributed antenna

array, and the multi-input multi-output (MIMO) techniques can be used to increase

capacity, decrease interference, and perform distributed beamforming. Specifically,

the downlink channel is commonly considered as a Gaussian noise plus interference

broadcast channel (BC), and applied single-user detection because of the complexity

and power constraints of the mobile receivers. The uplink channel is usually modeled

as a multiple-access channel (MAC), because there are less restrictive limitations at

the BSs, and the received signals are joint processed for the system enhancement [77].

For the uplink channel, an early study by Wyner [78] presented an analytically

tractable model, in which the cells were ordered in an infinite linear vector or 2D

hexagonal matrix. It derived optimal throughput and linear minimum mean-square

error for non-fading channels. These results were extended to flat-fading channels
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in [79], where the fading was observed to increase the throughput under certain cir-

cumstances.

For the downlink channel, the sum-rate of a multiple-antenna cellular system

was addressed with power constraints for each BS in [80] by taking advantage of

the duality principle between the BC and MAC [81]. “Dirty paper coding” (DPC)

principle [82] was also applied to eliminate the effect of uncorrelated additive inter-

ference. The corresponding achievable rate and improvements of spectrum efficiency

and sum-rate capacity for fading channel were reported in [83–85].

However, on the other hand, there are several inherent problems. First of all,

because of the limitation of backhaul links, it is impossible to recruit an arbitrary

number of BSs in order to achieve enormous spectrum efficiency gains [86]. Besides, if

the cooperative network is modeled as a cluster and put into a larger system that one

cluster is adjacent to the others, the out-of-cluster interferences would hinder further

improvement as the per-cluster transmit power increases [76].

In this paper, a novel nested-distributed network is introduced to advance the

research on joint multi-cell processing. It is also the first literature analyzing the

cellular system with the nested-distributed BSs from the information-theoretic point

of view. The nested array is firstly introduced to perform array processing with in-

creased degrees of freedom using much fewer physical sensors [6]. The paper [73]

generalizes this concept to the multiple dimensions, and provides the optimal struc-

ture to maximize the number of elements in the virtual co-array, as well as derives

closed-form expressions for the sensor locations and the exact degrees of freedom

obtainable from the proposed array as a function of the total number of the sensors.

The paper is organized as follows. Section 6.2 introduces the theoretical back-

grounds for both 2D nested array and sum-rate capacity of cooperative multi-cell

processing, as well as the basic assumptions for the network model. Section 6.3 de-
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rives the invariance of the difference co-array in order to obtain the capacity of nested

distributed network. In Section 6.4, the numeric results are provided to validate the

proposed propositions. Finally, we summarize the paper in Section 6.5, and provide

the directions for further research.

6.2 Preliminary and model description

6.2.1 2D nested co-array

The first two concepts relate with multidimensional lattice, which is extensively

used to represent the nest co-array.

Definition 3 (Fundamental Parallelepiped (FPD) [73]). The FPD of VVV ∈ CD×D in

D dimensions FPD(VVV ) is defined as the set of all vectors of the form

{V xV xV x,xxx ∈ [0, 1)D}.

Visually, FPD(VVV ) consist of all points contained in the parallelepiped whose

sides are given by the two column vectors of VVV . Its volume is given by |det(VVV )| and

the density of the lattice points is the inverse of its volume.

Definition 4 (Shifted FDP (SFPD)). For arbitrary integers k1 and k2, the SFPD is

defined as the FPD(NNN (s)) shifted by the vector [k1, k2]
T , which is

SFPD(NNN (s), k1, k2) ,
{
NNN (s)([k1, k2]

T − x), x ∈ [0, 1)2
}
.

The following definition provides one of the configuration for nested co-array

deployments, and the consecutive theorem guarantees that this Definition 5 satisfies

the requirements of both FPD and SFPD.

Definition 5 (2D Nested Co-Array). A two dimensional nested array is described by a

2×2 non-singular matrix NNN (d), an integer matrix PPP and integers N (s), N (d) = det(PPP ),

and satisfying
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1. A dense array with N (d) = det(PPP ) elements on lattice generated by NNN (d), with

sensor locations given by {NNN (d)nnn(d),nnn(d) ∈ FPD(PPP )}.

2. A sparse array NNN (s) = NNN (d)PPP , with sensor locations given by NNN (s)[k1, k2]
T with

0 ≤ k1 ≤ N
(s)
1 − 1, 0 ≤ k2 ≤ N

(s)
2 − 1.

3. N
(d)
1 N

(d)
2 = N (d) and N

(s)
1 N

(s)
2 = N (s), where N

(d)
1 and N

(d)
2 are the number

of rows and columns for the dense array, and N
(s)
1 and N

(s)
2 are corresponding

numbers for the sparse array.

Theorem 4. Consider two nonsingular 2 × 2 matrics NNN (s) and NNN (d) related by an

integer matrix PPP as NNN (s) = NNN (d)PPP .

1. Any point on NNN (d)nnn on the lattice NNN (d) can be expressed as NNN (d)nnn = NNN (s)nnn(s) −

NNN (d)nnn(d) where nnn(s) is an integer vector and nnn(d) ∈ FPD(PPP ).

2. All points within SFPD(NNN (s), k1, k2) can be generated by the differences {NNN (s)[k1, k2]
T−

NNN (d)nnn(d),nnn(d) ∈ FPD(PPP )}.

6.2.2 Sum-rate capacity for multi-cell processing

The ergodic per-cell sum-rate capacity is given by [78]

C(P ) =
1

L
E
[
log2

(
IIIL + PHHHLHHH

†
L

)]
(6.1)

where P is the transmit power of a single user, and the expectation is taken with

respect to the fading coefficients HHHL. The matrix HHHLHHH
†
L is an L×L matrix given by

[
HHHLHHH

†
L

]
m,n

=





aaamaaa
†
m + bbbmbbb

†
m m = n

bbbmaaa
†
n n = (m− 1) mod L

aaambbb
†
n n = (m+ 1) mod L

0 otherwise

(6.2)
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The definition of spectrum efficiency, denoted as γ, is expressed as a function

of the system average transmit Eb/N0 [89]. Its value is solved by substituting

P =
Eb
KN0

γ (6.3)

in (6.1), and K is the number of users in a cell. The Eb
N0

required for reliable commu-

nication is defined as

Eb
N0min

,
loge2

C ′(0)
(6.4)

Then, the slope of the spectrum efficiency for low-SNR and high-SNR can be defined

as

Slow ,− 2 [C ′(0)]2

C ′′(0)

= lim
Eb
N0
→Eb
N0min

10γ log10 2

10 log10
Eb
N0
− 10 log10

Eb
N0min

(6.5)

Shigh , lim
P→∞

PC ′(P ) = lim
Eb
N0
→∞

10γ log10 2

10 log10
Eb
N0

(6.6)

The upper and lower bounds for the fading channels are

Theorem 5. For K � 1, the average per-cell sum-rate capacity for Rayleigh fading

satisfies

log10(1 +KP ((1− ε) logeK + 2))

≤ C(P ) ≤ log10(1 + 2KP logeK). (6.7)

Theorem 6. The spectrum efficiency of channel for Rayleigh fading are characterized,

for any number of BSs M ≥ 3, by

Slow = 2; Shigh = 1;

(loge 2)2

2 logeK
≤ Eb
N0min

≤ (loge 2)2

(1− ε) logeK + 2
. (6.8)
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In both theorems, the ε = Pr{P > Pout}, indicating the possibilities that

certain number of users passes a lower bound of the fading power that is needed to

transmit. For example, the possibility that at least one of the users at a give cell

cross the threshold is 1 − (1 − 1/K(1−ε))K . If K = 100 and ε = 0.1, the possibility

is 79.762%, and 99.997% for ε = 0.5. Refer to [85] for detail proofs of these two

theorems.

6.2.3 Description of the system model

Figure 6.1 illustrates an example deploying BSs in a 2D nested array manner.

Every hexagon stands for a macrocell and the colored ones are deployed with actual

BSs. It could be regarded as a simplified model of metroplex area containing both

urban and suburb regions. Specifically, the sparse array is the lattice with blue color

indexing (x, 1), where x ∈ [1, 14], and the dense array is the yellow hexagons in the

middle.

As a result, its difference co-array is NNN (d) =




1 0

0 1


, PPP =




2 0

0 3


, N

(s)
1 = 3

and N
(s)
2 = 3. Both the lattices towards upper left and lower right are regarded as

the positive halves of the difference co-array, whose elements are given by

{
NNN (d) [k1, k2]

T , − (p1 − 1) ≤ k1 ≤
(
N

(s)
1 − 1

)
p1,

−(p2 − 1) ≤ k2 ≤
(
N

(s)
2 − 1

)
p2

}
.

where p1 and p2 are the eigenvalues of the PPP .

Based on the Theorem 4, we can conclude that the positive half of the co-

array is a “filled” 2D array in the sense that SFPD(NNN (s), k1, k2) of the sparse array

is completely filled by the dense array sensors for each k1 and k2 in the sparse array.
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Figure 6.1: Hexagonal cellular system model with nested BSs deployment

From the Definition 5, we also know that the upper left “filled” lattice spans to a

parallelogram grid of size L = MN , where M = N
(s)
1 N

(d)
1 and N = N

(s)
2 N

(d)
2 .

Every cell has K users. The vector baseband representation of the signals

received at the BSs is given as

yyy = HHHxxx+ nnn, (6.9)
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where HHH is the L× LK channel transfer matrix

HHH =




aaa0 0 0 . . . 0 bbb0

bbb1 aaa1 0 . . . 0 0

0 bbb2 aaa2 . . . 0 0

...
. . . . . . . . .

...
...

0 0 0 . . . aaaL−2 0

0 0 0 . . . bbbL−1 aaaL−1




, (6.10)

in which aaam and bbbm are 1×K row vectors denoting the channel coefficients experienced

by the K users from the corresponding NNN (d) and NNN (s) BSs. It also assumes that the

fading coefficients have complex values and are identical and independent distributed

(i.i.d.) among different users.

The channel state information (CSI) is assumed available to the joint multicell

BSs receivers only, and the channel coefficients are unknown for the transmitter. The

transmitters know the channel statistics, which can be viewed as ergodic process. As a

result, the users adjust their rates to this ergodic sum-rate capacity. It also assumes

that the users cannot cooperate their transmissions, and use Gaussian codebooks

so that the transmitted signal {[xxx]i}LKi=1 are i.i.d. zero-mean circularly symmetric

Gaussian random variables with variance P . nnn stands for the zero-mean circularly

symmetric additive white Gaussian noise (AWGN) vector, and E[nnnnnn†] = IIIL, where

IIIL is the L× L identity matrix. As a result, the power of transmission P is equal to

the SNR value in the following derivation.
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6.3 Sum-Rate capacity of nested distributed cooperative networks

6.3.1 Invariance in the difference co-array

The concept of invariance is often referred in the algorithms for direction of

arrival [90]. Specifically, it means that the array should be divisible into a number of

identical subarrays which are the shifted copies of each other.

The maximum number of the subarrays is obtained by shifting the fundamental

dense array with successive integer vectors. The improvement of rank is proportional

to the number of dense arrays [102], while the degrees of freedom available after spacial

smoothing is proportional to the size of the dense array. For constant elements to

construct the array system, the best strategy is to make the rank equals to the size

of dense array [74]. That is,

HHHm,n(i, j) = HHHNNN(d) [m n]T , (6.11)

where −M + 1 ≤ m ≤M − 1, −N + 1 ≤ n ≤ N − 1, 0 ≤ i < N
(d)
1 , 0 ≤ j < N

(d)
2 .

The received signal by the subarray (m,n) is denoted as yyym,n = HHHm,nxxx+σ2
neeem,n,

where the elements of HHHm,n are given as

[HHHm,n]Nl+i,k = HHHNNN(d)ej(ω1k(l−M+m)+ω2k(i−N+n))

where l = 0, . . . ,M , i = 0, . . . , N , ω1k = 2π[cos θk sin θk]n1n1n1
(d), ω2k = 2π[cos θk sin θk]n2n2n2

(d),

and θk is the azimuthal angle of the source k. NNN (d) = [n1n1n1
(d) n2n2n2

(d)]. Then it is ready

to derive that

yyym,n = HHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxx+ σ2
neeem,n (6.12)
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where ΛΛΛ1 and ΛΛΛ2 are K×K diagonal matrices with (i, i)th element given by ejω1 and

ejω2 , respectively. We can now define the autocorrelation of the received signal as

RRRm,n ,yyym,nyyy
†
m,n

=HHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxxxxx
†(ΛΛΛn

2 )†(ΛΛΛm
1 )†HHH†

NNN(d)

+ σ4
neeem,neee

†
m,n + σ2

nHHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxxeee
†
m,n

+ σ2
neeem,nxxx

†(ΛΛΛn
2 )†(ΛΛΛm

1 )†HHH†
NNN(d) (6.13)

Taking the average of RRRm,n over all (m,n), we can define the rank-enhanced matrix

R̂2 ,
1

MN

M∑

m=0

N∑

n=0

RRRm,n, (6.14)

since it provides the autocorrelations with the freedom of N (s)N (d) BSs by using only

N (s) +N (d) BSs. Besides, it can also be shown that

M∑

m=0

N∑

n=0

ΛΛΛm
1 ΛΛΛn

2xxxxxx
†(ΛΛΛn

2 )†(ΛΛΛm
1 )† = RRRxxHHH

†
NNN(d)HHHNNN(d)RRRxx (6.15)

M∑

m=0

N∑

n=0

ΛΛΛm
1 ΛΛΛn

2xxxeee
†
m,n = RRRxxHHH

†
NNN(d) (6.16)

M∑

m=0

N∑

n=0

eeem,neee
†
m,n = IIIM×N (6.17)

Substituting the values from (7.6)-(7.8) in (7.5), we have

Proposition 1. The covariance matrix of the signal received by a M × N array of

BSs on the lattice ÑNN
(d)

has the same form as R̂2 where

R̂ =
1√
MN

(
HHHNNN(d)RRRxxHHH

†
NNN(d) + σ2

nIIIM×N

)

=
1√
MN

(
KPHHHNNN(d)HHH

†
NNN(d) + σ2

nIIIM×N

)
. (6.18)

Hence, the cluster of BSs has the degree of freedom as O(N (s)N (d)) with O(N (s)+N (d))

actual BSs.
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6.3.2 Static AWGN channel

Concerning the case of nonfading channels, all fading coefficients are equal to

1. Based on (6.2), it is easy to conclude that (6.1) depends only on the sum of the

intra-cell transmit power. Hence, all transmission schemes with equal total intra-cell

power achieve the same throughput.

The nonzero entries of HHHLHHH
†
L derived from (6.2) are

[
HHHLHHH

†
L

]
m,m

=
K∑

k=1

|am,k|2|bm,k|2, (6.19)

[
HHHLHHH

†
L

]
m,n

=
K∑

k=1

a∗n,kbm,k, n = (m− 1) mod L, (6.20)

[
HHHLHHH

†
L

]
m,n

=
K∑

k=1

am,kb
∗
n,k, n = (m+ 1) mod L. (6.21)

As a result, the matrix HHHLHHH
†
L is a circulant matrix with the nonzero row elements

{K, 2K,K}. Based on the eigenvalues of the circulant matrices [88], we can have the

following proposition.

Proposition 2. The uplink average per-cell sum-rate capacity in the absence of fading

is

C(P ) =
1

L

L∑

l=0

log10

(
1 + 2KP

(
1 + cos

(
2π

l

L

)))
(6.22)

Substituting (6.22) into (6.4)-(6.6), we could have

Proposition 3. The spectrum efficiency for uplink channel is characterized by

Eb
N0min

=
loge 2

2
, Slow =

4

3
, Shigh = 1. (6.23)
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6.3.3 Flat-fading channel

The channel fading coefficients are taken as i.i.d. random variables, and their

statistics are denoted as

m1 , E[am,k] = E[bm,k], (6.24)

m2 , E[|am,k|2] = E[|bm,k|2], (6.25)

m4 , E[|am,k|4] = E[|bm,k|4], (6.26)

κ ,
m4

m2

, ∀m, k, (6.27)

to be the mean, second- and fourth-order moments and the kurtosis. The following

contents assume that the users have similar large scale path losses to the BSs. Besides,

given a rich scattering environment, the small-scale fading processes experienced by

the users can be modeled as mutually i.i.d. random processes. For simplicity, it also

assumes that all users are received with equal average power from the two BSs based

on dense and sparse array, respectively. For the case that all users are simultaneously

active, it also assumes that K � 1. Similarly to the derivation in [79], applying the

Strong Law of Large Number (SLLN) to K while keeping the total per-cell transmit

power KP constant, the diagonal entries of (6.2) can be represented using (6.24)-

(6.27)

lim
K→∞

[
1

K
HHHLHHH

†
L

]

m,m

= 2E[|am,k|2] = 2m2 (6.28)

lim
K→∞

[
1

K
HHHLHHH

†
L

]

m,n

= |E[am,k]|2 = |m1|2 (6.29)

lim
K→∞

[
1

K
HHHLHHH

†
L

]

n,m

= |E[am,k]|2 = |m1|2 (6.30)

Substituting (6.28)-(6.30) to (6.1), we could have
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Proposition 4. The average per-cell sum-rate capacity while the transmission expe-

riencing Rayleigh fading is

C(P ) =

1

L

L−1∑

l=0

log10

(
1 + 2KP

(
m2 + |m1|2 cos

(
2π

l

L

)))
. (6.31)

Comparing the capacity (6.31) with (6.22), we can see that the presence of

fading enhance the performance in terms of the average per-cell sum-rate capacity.

This is because the independence of the two fading processes affecting the signal of

each user, as observed by the two receiving BSs. Furthermore, by applying (6.31) to

(6.4)-(6.6), we could have

Proposition 5. For a general fading distribution, K � 1, and ∀L ≥ 3, the average

per-cell sum-rate capacity is characterized by

Eb
N0min

=
loge 2

2m2

, Slow =
2

κ
2K

+ |m1|4
2m2

+ 1
, Shigh = 1. (6.32)

Specifically for Rayleigh fading, the expressions are

Eb
N0min

=
loge 2

2
, Slow = 2, Shigh = 1. (6.33)

In the low-SNR region, the minimum transmit Eb/N0 that enables reliable com-

munications is the same for either intra-cell TDMA, which means that only a single

user simultaneously in each cell transmits for a fraction 1/K of time with the power

P , or in the wideband scenario. It is also identical with or without fading. However,

in the presence of Rayleigh fading, employing the wideband scheme with more than

two simultaneously active users per cell produces a higher low-SNR slope, and hence

a higher spectrum efficiency, as compared to the result for nonfading channels.
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Figure 6.2: Comparison of average per-cell sum-rate capacity for K = 100, and
ε = 0.1 or ε = 0.5

6.4 Numerical results

Figure 6.2 shows the values of channel capacities in no fading (6.22) and Rayleigh

fading (6.31) channels as a function of the total intra-cell transmit power. For com-
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Figure 6.3: Comparison of sum-rate capacity for the system

parison, it also includes the analytical derived upper and lower bounds (6.7) with

K = 100 users per cell. The upper figure shows the lower bound for ε = 0.1, while

the lower figure shows the lower bound for ε = 0.5. Comparing the results of non-

fading channels with those of Rayleigh-fading channels, it is obvious that the fading

has a positive impact on system performances. Besides, the Monte Carlo simula-

tions have a good match to the analytical lower bound. Furthermore, given a certain

number of users in a cell, a higher value of ε implies that more users are likely to

experience threshold crossing fading coefficients, so the lower bound, which is derived

based on the SLLN, yields a better approximation. This phenomenon is able to be

observed by comparing the two figures in Figure 6.2, in which the results of Monte

Carlo simulations are closer to the analytical lower bound with ε = 0.5 than it is with

ε = 0.1.
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Figure 6.3 shows the comparison of sum-rate capacity in the system point of

view. The regular deployment stands for the deploying BSs in a common hexagon

manner, while the nested deployment is elaborated in the previous contents. Both

deployments involve the same number of BSs. Based on the figure, the capacity

improvement is substantial. Specifically, the capacity increases by about eight times

for non-fading channel, and seven times for the Rayleigh-fading channel.

Figure 6.4 shows the corresponding per-cell spectrum efficiency results, plotted

as a function of the system average transmit Eb/N0. The beneficial effect of fading on

system performance is again clearly demonstrated, and a good match to the low-SNR

regime characterization of Proposition 5 is observed.

6.5 Concluding discussion

The feasibility and characteristics for the nested distributed cellular network are

discussed in this paper based on a traditional hexagonal multi-cell model. The model

assumes a modified version of soft-handoff scenario, in which each user simultaneously

communicates with two BSs, and at least one of them is the BS from the dense

array. Both the non-fading and Rayleigh fading channels are analyzed in terms of

the average per-cell sum-rate capacity and spectrum efficiency. It shows that the

invariant of difference co-array is valid to analyze the covariance of channel fading

coefficients, which plays an important role to derive the cell capacity. The numeric

results also support the correctness of the propositions.

A key insight of the present work is that by carefully deploying and scheduling

communication between users and different BSs, the cluster of the BSs is able to

achieve a much higher capacity compared to the simple collaboration among BSs. On

the other hand, there are many open questions in this direction of research, including

detailed power allocation and beamforming for the combination of dense array and
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Figure 6.4: Average per-cell spectrum efficiency

sparse array, the interference analysis when this nested distributed cellular network is

put into a system at large, and the relation between the uplink and downlink channels.
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CHAPTER 7

Ergodic throughput capacity of hybrid wireless networks with nested distributed

base stations

7.1 Introduction

The model of hybrid wireless network is proposed to improve the performance

of large-scale ad-hoc networks, which has fundamental limitations caused by the in-

terferences and contentions of medium access when the density of nodes per unit

becomes large [91]. In contrast, the hybrid networks are able to significantly in-

crease the connectivity by taking advantage of the fixed base stations (BSs) that can

be reached in multiple hops [92]. But with the significant growth of data demands

by the increasing number of both users and various mobile applications, it requires

higher throughput capacity and better utilization of the available spectrum resources.

On the other hand, it is appealing to maintain the existing network topology with

cooperative transmission schemes to improve the overall capacity of the system.

The concept of distributed antenna systems is originally introduced to enhance

the capacity of interference-limited cellular networks by shortening access distance,

saving transmit power, and reducing inter-cell interference [93]. It can also be treated

as a macroscopic MIMO system [94]. Specifically, the average per-cell capacity of

virtual MIMO architecture is analyzed for both uplink [79] and downlink [95]. In

the context of the 3GPP LTE-Advanced standard, it is known as coordinated multi-

point (CoMP) transmission or reception [96]. Its performance gain is studied in [97]

based on the assumption that the information about large-scale fading is known at

the transmitter.
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Concerning the hybrid wireless network, Gupta and Kumar initiated the study

of scaling laws in large ad-hoc wireless networks [98]. The throughput capacity using

the successive interference cancellation (SIC) was also investigated in [99] for the fast

fading as well as flat fading channels.

One the other hand, however, there is no thorough understanding of the information-

theoretic capacity of multi-cell virtual MIMO hybrid network accounting for fading

and path loss effects. In this paper, an analytical framework of the hybrid wireless

network with distributed base stations is proposed to fill in this blank. Besides, the

geographic deployment is also take into consideration. Specifically, the 2D nested

array proposed in the paper [73] is used for maximizing the degrees of freedom of the

cooperative BSs, so that the system is able to achieve the optimal ergodic throughput

capacity given the fixed number of BSs. The assumptions of channels also take reality

into consideration: the coherence time is much smaller than the delay spread; both

large-scale path loss and small-scale Rayleigh fading are included; and the resulting

fast fading channels are independent but not identically distributed.

The rest of this paper is organized as follows. Section 7.2 introduces the theo-

retical backgrounds about opportunistic communication and 2D nested array, as well

as the basic assumptions for the model of nested-distributed BSs. Section 7.3 obtains

the invariance of the difference co-array and MIMO capacity to cope with the capac-

ity derivation. In Section 7.4, the ergodic throughput capacity is derived. Finally, we

summarize the paper in Section 7.5.

7.2 Preliminaries and model description

In a given cell, it assumes that all inside nodes communicate based on a oppor-

tunistic time division multiple access (TDMA) manner. When a node is scheduled for

transmission in a particular time slot, a set of nodes from the same cell are selected
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to transmit simultaneously with the scheduled source, as long as such transmissions

do not impair the achievable transmission rate of the scheduled source. These nodes

are referred to as opportunistic sources. All these sources share the entire bandwidth.

However, rather than treating the interference from other nodes as noise, the receiver

deploys a successive interference cancellation (SIC) technique [100]. That is, after

one node is decoded, its signal is stripped away from the aggregate received signal

before the next node is decoded.

For any scheduled source s, it assumes that there are K nodes within the same

cell, whose Euclidean distance away from destination node d is greater than dsd.

That is, we have d0d ≤ d1d ≤ · · · ≤ dKd, and dkd ≥ (1 + ∆)dsd, where k = 0, 1, . . . , K,

and ∆ is a positive constant to model a guard zone [98]. It is worth mentioning

the motivation that we choose these farther nodes as opportunistic nodes is to make

sure the transmissions from the opportunistic sources do not impair the achievable

transmission rate of the scheduled source [91]. The SIC strategy maximizes the sum

rate and achieves a set of sum rate satisfying

K∑

k=0

Rk ≤ log

(
1 +

∑K
k=0Pk · |hkd|2

σ2

)
, (7.1)

where Rk denotes the kth node’s achievable rate, Pk is the transmit power from the

kth source node, hkd is and the composite channel between the kth source node and

the destination node, and σ2 is the power of AWGN.

7.3 Modeling of hybrid wireless networks

7.3.1 Invariance in the difference co-array

The concept of invariance is often referred in the algorithms for direction of

arrival [90]. Specifically, it means that the array should be divisible into a number of

identical subarrays which are the shifted copies of each other.
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The maximum number of the subarrays is obtained by shifting the fundamental

dense array with successive integer vectors. The improvement of rank is proportional

to the number of dense arrays [102], while the degrees of freedom available after spacial

smoothing is proportional to the size of the dense array. For constant elements to

construct the array system, the best strategy is to make the rank equals to the size

of dense array [73]. That is,

HHHm,n(i, j) = HHHNNN(d) [m n]T , (7.2)

where −M + 1 ≤ m ≤M − 1, −N + 1 ≤ n ≤ N − 1, 0 ≤ i < N
(d)
1 , 0 ≤ j < N

(d)
2 .

The received signal by the subarray (m,n) is denoted as yyym,n = HHHm,nxxx+σ2
neeem,n,

where the elements of HHHm,n are given as

[HHHm,n]Nl+i,k = HHHNNN(d)ej(ω1k(l−M+m)+ω2k(i−N+n)),

where l = 0, . . . ,M , i = 0, . . . , N , ω1k = 2π[cos θk sin θk]n1n1n1
(d), ω2k = 2π[cos θk sin θk]n2n2n2

(d),

and θk is the azimuthal angle of the source k. NNN (d) = [n1n1n1
(d) n2n2n2

(d)]. Then it is ready

to derive that

yyym,n = HHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxx+ σ2
neeem,n, (7.3)

where ΛΛΛ1 and ΛΛΛ2 are K×K diagonal matrices with (i, i)th element given by ejω1 and

ejω2 , respectively. We can now define the autocorrelation of the received signal as

RRRm,n ,yyym,nyyy
†
m,n

=HHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxxxxx
†(ΛΛΛn

2 )†(ΛΛΛm
1 )†HHH†

NNN(d)

+ σ4
neeem,neee

†
m,n + σ2

nHHHNNN(d)ΛΛΛm
1 ΛΛΛn

2xxxeee
†
m,n

+ σ2
neeem,nxxx

†(ΛΛΛn
2 )†(ΛΛΛm

1 )†HHH†
NNN(d) . (7.4)

Taking the average of RRRm,n over all (m,n), we can define the rank-enhanced matrix

R̂2 ,
1

MN

M∑

m=0

N∑

n=0

RRRm,n, (7.5)

105



Besides, it can also be shown that

M∑

m=0

N∑

n=0

ΛΛΛm
1 ΛΛΛn

2xxxxxx
†(ΛΛΛn

2 )†(ΛΛΛm
1 )† = RRRxxHHH

†
NNN(d)HHHNNN(d)RRRxx (7.6)

M∑

m=0

N∑

n=0

ΛΛΛm
1 ΛΛΛn

2xxxeee
†
m,n = RRRxxHHH

†
NNN(d) (7.7)

M∑

m=0

N∑

n=0

eeem,neee
†
m,n = IIIM×N (7.8)

Substituting the values from (7.6)-(7.8) in (7.5), we have

Proposition 6. The covariance matrix of the signal received by a M × N array of

BSs on the lattice ÑNN
(d)

has the same form as R̂2 where

R̂ =
1√
MN

(
HHHNNN(d)RRRxxHHH

†
NNN(d) + σ2

nIIIM×N

)

=
1√
MN

(
KPHHHNNN(d)HHH

†
NNN(d) + σ2

nIIIM×N

)
. (7.9)

Hence, the cluster of BSs has the degree of freedom as N (s)N (d) with N (s) + N (d)

physical BSs.

As a result, the nested distributed base stations (NDBS) is able to acquire

densely deployed O(N (s)N (d)) virtual BSs via the difference co-array with O(N (s) +

N (d)) actual BSs. In the following sections, these BSs simulate the multiple antennas

in the communication providing diversity gain and increasing reliability. For a target

cell, it can be served by the BSs not only from sparse array, but from the dense array

sharing the same frequency band.

7.3.2 Formulate NDBS as MIMO system

We denote NBS as the antennas equipped in each BS, and assume that each user

node has single antenna (Nnd = 1). A total bandwidth of W Hz for data transmission

is further split into Wu Hz for uplink, Wd Hz for downlink, and W = Wu+Wd. There

are three phases for the communication. During the uplink, the source node transmits
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data to all the NDBS under the existence of opportunistic nodes in the same cell.

Then, the collaborative NDBS decode the received data and send them to the NDBS

which are serving the destination cell via the wired network. Finally, the data is

transmitted to the destination node by cooperative NDBS via downlink.

For uplink, the received signal at the NDBS is described as:

yu =
κ∑

k=0

√
PuHH

k xk + n, (7.10)

where Pu is the average transmit power for source nodes and opportunistic nodes;

κ is the number of opportunistic nodes which simultaneously generate traffic to m

NDBS; Hk is the composite channel matrix from the kth node to m NDBS; xk repre-

sents the normalized transmit symbol sent by the kth node; the noise n is of AWGN

CN (0, σ2
nIN ·NBS), and the inter-cell interference which can be modeled as color Gaus-

sian noise [99].

Particularly, Hk consists N independent subchannel matrices to each NDBS:

Hk = [Hk
1 Hk

2 . . .H
k
n . . .H

k
m], (7.11)

where Hk
n : C1×NBS represents the composite fast fading channel matrix from the kth

node to the nth NDBS:

Hk
n = hlsnHss

n,k, n = 1, 2, . . .m, (7.12)

where hlsn = e−γdn/2

d
α/2
n

denotes the large-scale path loss to the nth NDBS, in which

the distance between the nth NDBS and the source node is dn, and γ and α are

the absorption constant of the attenuation and path-loss exponent. We assume all

the nodes are uniformly distributed in the two-dimensional plane. Hss
n,k : C1×NBS is

the small-scale Rayleigh fading channel matrix, in which all the entries are standard

normal distributed.
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Similarly, the received signal for the downlink is expressed as:

yd =

√
Pd
NBS

HHx + n′. (7.13)

Pd is the transmit power at each NDBS. x : CmNBS×1 represents the normalized

transmit symbol matrix from each transmit antenna. H is the composite channel

matrix from m NDBS to the destination node, which can be further separated as

H = [H1 H2 . . .Hn . . .Hm]T . (7.14)

Hn : CNBS×1 represents the composite fast fading channel matrix from the nth NDBS

to the destination code:

Hn = hlsnHss
n , n = 1, 2, . . .m, (7.15)

where Hss
n : CNBS×1 is the small-scale Rayleigh fading channel matrix, in which all

the entries have standard normal distribution.

7.4 Ergodic throughput capacity

7.4.1 The number of nodes per cell

The following lemma shows that there are Θ(n
b
) nodes within each cell.

Proposition 7. Consider a hexagonal network model consists of n nodes and b base

stations, both of which are uniformly distributed. For b = O( n
logn

) and n → ∞, the

number of nodes in each cell is bounded by Θ(n
b
).

Proof. Let event A denote a Bernoulli event that a particular node i, 1 ≤ i ≤ n,

will fall into a particular cell of area c2. Because nodes are placed uniformly on the

network, it is clear that probability of event A is PA = n/b
n

= 1
b
. Therefore, the
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number of nodes, nc, has a binomial distribution with parameters (PA, n). Using

Chernoff bound, we have

Pr(nc > k1
n

b
) ≤ E{exp(nc)}

exp(k1n
b

)

where k1 is a constant. Since E{exp(nc)} = (1 + (e− 1)PA)n ≤ exp[(e− 1)n
b
] because

1 + x ≤ exp(x), we get

Pr(nc > k1
n

b
) ≤ exp

{
− n

b
[k1 − (e− 1)]

}
. (7.16)

As long as k1 > e − 1, we know by the union bound that Pr(some cells have

more than k1n
b

nodes) converges to zero as n tends to infinity. Similarly,

Pr(nc < k2
n

b
) ≤ E{exp(−nc)}

exp(−k2n
b

)

where k2 is also a constant. Since E{exp(−nc)} = (1+(e−1−1)PA)n ≤ exp[(e−1−1)n
b
],

we obtain

Pr(nc < k2
n

b
) ≤ exp

{
− n

b
[(1− e−1)− k2]

}
. (7.17)

As long as k2 < 1− e−1, we know by the union bound that Pr(some cells have

less than k2n
b

nodes) converges to zero as n tends to infinity. Hence, it is concluded

that each cell contains Θ(n
b
) nodes and we complete the proof.

7.4.2 Uplink ergodic throughput capacity

The ergodic capacity for the fasting fading channel is defined as the ensemble

average of channel capacity over all possible channel realizations [101]. If we as-

sume the channel state information is known only at the receiver, combining with

the received signal model of the uplink phase in (7.10), the ergodic capacity with

opportunistic communications and SCI scheme is expressed as:

Ru = E
[
log

(
1 +

∑κ
k=0Pu‖Hk‖2
Iu + σ2

n

)]
. (7.18)
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Given the properties of the composite uplink channel matrix in (7.11), the

ergodic capacity of the source node and opportunistic nodes is further derived as:

Ru = E

[
log

(
1 + γu

m∑

n=1

βn

κ∑

k=0

‖Hss
n,k‖2

)]
, (7.19)

where γu = Pu
Iu+σ2

n
is the ratio of signal to noise plus interference (SINR), and βn =

(hlsn )2.

Since the entries of Hss
n,k are independent identically distributed (i.i.d.) com-

plex Gaussian random variables, ‖Hss
n,k‖2 follows Chi-square distribution with 2NBS

degrees of freedom. Furthermore, we denote

ϕ =
m∑

n=1

ϕn =
m∑

n=1

βn

κ∑

k=0

‖Hss
n,k‖2. (7.20)

We can get ϕn ∼ Γ(κNBS, 2βn). As a result, ϕ can be approximated as another

Gamma distribution as Γ(kϕ, θϕ) using the second order moment matching proposed

in [95], with the same first and second moments as:

kϕ =
κNBS(

∑m
n=1 βn)2∑m

n=1(βn)2
and θϕ =

2
∑m

n=1(βn)2∑m
n=1 βn

, (7.21)

with the mean and variance

µϕ = 2κNBS

m∑

n=1

βn and σ2
ϕ = 4κNBS

m∑

n=1

β2
n (7.22)

For high SINR, we have

Ru ≈ E

[
log

(
γu

m∑

n=1

βn

κ∑

k=0

‖Hss
n,k‖2

)]

= log2 γu + log2 e · ψ(kϕ) + log2 θϕ

(a)
= log2(γuθϕ) + log2 e

[
ln kϕ +

1

kϕ
+O

(
1

k2ϕ

)]
(7.23)

where ψ(.) in is the digamma function, and its asymptotic approximation ψ(x) =

lnx+ 1
x

+O
(
1
x

)
is used in (a).
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Figure 7.1: Ergodic Capacity in the uplink phase with NBS = 2

In the case of low SINR,

Ru ≈ E

[
log2 e · γu

m∑

n=1

βn

κ∑

k=0

∥∥Hss
n,k

∥∥2
]

= log2 e · γu · 2κNBS

m∑

n=1

βn. (7.24)

Because κ = Θ(mn
b

), the uplink ergodic capacity is upper bounded by

Ru = O

(
log

(
mnNBS

b

))
. (7.25)

Theorem 7. For a hybrid wireless network of n nodes and m distributed base stations

with NBS transmit antennas equipped at each base station, if the total number of base
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Figure 7.2: Ergodic Capacity in the uplink phase with m = 2

stations b = o( n
logn

), the uplink ergodic throughput capacities over Rayleigh fading

channels are

T uhigh(m,n, b) = O

(
log

(
mnNBS

b

)
Wu

)
bit/s, (7.26)

T ulow(m,n, b) = O

(
mnNBS

b
Wu

)
bit/s, (7.27)

for high SINR and low SINR respectively.

Numerical simulations are presented to validate this theorem. Figure 7.1 shows

the ratio between ergodic capacity and the capacity under AWGN at high SNR with

mBS = 4 antennas at NDBS (κ = 50), in which m = 1 indicates no cooperation

between base stations. By comparing the performance, one can attribute the capacity
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improvement to the number of NDBS involved in (m). Similarly, Figure 7.2 illustrates

uplink performance at high SINR with m = 9 NDBS. It is obvious that the ergodic

capacity scales in O
(
NBS).

7.4.3 Downlink ergodic throughput capacity

Given the received signal model as in (7.13), the ergodic capacity of the downlink

phase under infrastructure mode is:

Rd = E
[
log

(
1 +

Pd‖H‖2
NBS(Id + σ2

n)

)]

= E

[
log

(
1 +

γd
NBS

·
m∑

n=1

(hlsn )2‖Hss
n ‖2

)]
. (7.28)

Furthermore, we denote

χ =
m∑

n=1

χn =
m∑

n=1

(hlsn )2‖Hss
n ‖2. (7.29)

Hence, χn ∼ Γ(NBS, 2βn), and χ can be approximated by Gamma distribution

Γ(kχ, θχ) with

kχ =
NBS(

∑m
n=1 βn)2∑m

n=1(βn)2
and θχ =

2
∑m

n=1(βn)2∑m
n=1 βn

(7.30)

as the first and second order moments,

µχ = 2NBS

m∑

n=1

βn and σ2
χ = 4NBS

m∑

n=1

β2
n, (7.31)

as the mean and variance, where βn = e−γdnd−αn .

As a result, the ergodic capacity is derived from (7.28) as

Rd ≈ log2

γdθχ
NBS

+

[
ln kχ +

1

kχ
+O

(
1

k2χ

)]
log2 e (7.32)

for high SINR, and for low SINR, it is

Rd = 2γd

(
m∑

n=1

βn

)
log2 e (7.33)
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not feasible, which results in the following ergodic throughput
behavior:

R̄′ = E
{

log

(
1 +

P · l(|Xb − Xj |) · |hbj |2
λW2N0 + I ′

)}

= E
{

log
(
1 + |hbj |2 · sinr′)

}

=

∫ ∞

0

log(1 + x · sinr′) · mm

Γ(m)
xm−1e−mxdx

=
1

Γ(m) · ln 2

m−1∑

µ=0

(m − 1)!

(m − µ − 1)!
·

[
(−1)m−µ−2

( sinr′
m )m−µ−1

e
m

sinr′ Ei(− m

sinr′ ) +

m−µ−1∑

k=1

(k − 1)!(− m

sinr′ )
m−µ−1−k

]
, (31)

where sinr′ =
P ·min(1,ρ−α

0d e−γρ0d )

λW2N0+I′ and the pdf of |hbj |2 is
given by (11).

Further, we explore the implication of (31) in both low
SINR and high SINR scenarios. At low SINR, the transmission
rate (31) is transformed into

R̄′ ≈
∫ ∞

0

sinr′

ln 2
x · mm

Γ(m)
xm−1e−mxdx

= sinr′ · loge
2; (32)

while, at the regime of high SINR, we obtain

R̄′ ≈
∫ ∞

0

log
(
sinr′ · x

) mm

Γ(m)
xm−1e−mxdx

= log(sinr′) · mm

Γ(m)

∫ ∞

0

xm−1e−mxdx +

mm

Γ(m) · ln 2

∫ ∞

0

ln x · xm−1e−mxdx

= log(sinr′) +
1

Γ(m) · ln 2

[ ∫ ∞

0

ln x · xm−1e−xdx

−
∫ ∞

0

ln m · xm−1e−xdx

]

= log(
sinr′

m
) +

1

Γ(m) · ln 2

∫ ∞

0

xm−1e−x ln xdx

= log(
sinr′

m
) + loge

2

[(
1 + · · · + 1

m − 1

)
− C

]
. (33)

Clearly, at low SINR, the downlink transmission rate is
Θ

(
n
b

)
; while at high SINR, the downlink transmission rate is

Θ(log( 1
m · n

b )). Taking into consideration the bandwidth lim-
itation of downlink phase

(
Θ( b

nW2)
)
, the ergodic throughput

capacity under the infrastructure transmission mode T̄infra(n, b),
which is bottlenecked by the downlink phase, is summarized
as follows.

Theorem 3. For a hybrid wireless network of n nodes and
b base stations over Nakagami-m fading channels, if b =
o( n

log n ), the per-node ergodic throughput capacity under the
infrastructure transmission mode at low SINR is

T̄ low
infra(n, b) = Θ

(
W2

)
bit/s. (34)
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The related per-node ergodic throughput capacity at high
SINR is

T̄ high
infra(n, b) = Θ

(
b

n
log(

1

m
· n

b
)W2

)
bit/s. (35)

Finally, the Monte Carlo simulation is provided to verify the
effectiveness of the derived theoretical bounds. Here we take
the opportunistic nodes κ = 49 as an example. Figure 5 clearly
illustrates the excellent agreement between the simulation
result and the analytical results of the ergodic capacity at low
SINR (25) and high SINR regions (26), respectively.

To further illustrate the asymptotic behaviors of the derived
ergodic throughput capacity, in Figure 6 we compare the
uplink ergodic throughput capacity with the downlink scenario
under infrastructure mode. When the SINR is low (5 dB), the
Nakagami-m shape parameter will not take effect, which is
reduced to the AWGN scenario. However, the advantage of
introducing opportunistic sources is very obvious. Similarly,
at high SINR (15 dB), the uplink throughput overwhelmingly
exceeds the downlink scenario as the opportunistic nodes
κ increase. In particular, with m increasing, the harmonic
series

∑k
n=1

1
n ∼ lnk +C. Therefore, large m closes the

gap between the the uplink ergodic throughput capacity and
downlink ergodic throughput capacity as shown in Figure 6.

Figure 7.3: Ratio between uplink and downlink ergodic throughput capacity

Hence, at high SINR, the downlink transmission rate is Θ(log(mn
b

)), and the rate

is Θ(mn
b

) at low SINR. Because the badwidth limitation of the downlink is Θ( b
n
W2),

the ergodic throughput capacity is summarized as follow.

Theorem 8. For a hybrid wireless network of n nodes and N distributed base stations

over Rayleigh fading channels, if the total number of base stations b = o( n
logn

), the

per-node downlink ergodic throughput capacity at high SINR is

T dhigh(m,n, b) = O
(mb
n

log(
mn

b
)Wd

)
bit/s, (7.34)

and at low SINR,

T dlow(m,n, b) = O
(
mWd

)
bit/s. (7.35)

Figure 7.3 further illustrates the asymptotic behaviors of the derived ergodic

capacity. Its vertical axis is the ratio between the uplink and the downlink capacity.

The advantage of introducing opportunistic sources is very obvious. At both low

SINR (5dB) and high SINR (15 dB), the uplink throughputs exceed the downlink
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counterparts as the opportunistic nodes κ increase. However, with the m increasing,

the differences between the uplink and downlink capacity decreases.

7.5 Conclusion

In this paper, we demonstrate the advantages of NDBS in hybrid wireless net-

works based on the information-theoretic analysis. To maximize the degrees of free-

dom offered by the existing base stations, we introduce two-dimensional nested array,

and derive the invariance in the difference co-array so that the virtual BSs are able to

be much denser than their physical deployment. Based on this premise, we interpret

the hybrid wireless network as a MIMO system with cooperative BSs. The analy-

sis of the ergodic throughput capacity shows that the improvement of performances

is linearly related to the number of collaborative BSs as well as the number of the

antennas in each BS. It is concluded that, with opportunistic sources, although the

capacity in uplink is more robust to fading as wireless nodes increases, its counterpart

in downlink is also able to be improved by inviting more BSs as transmitters.
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CHAPTER 8

Conclusion and future works

8.1 Conclusion

In this dissertation, the theories of sparse sampling and array are derived for

both signal processing and information theory in wireless communication. Based on

the research results, the basis of sparse sampling is not necessarily confined to the

WWS signal. Combined with the simulation for non-stationary signal, the areas of im-

plementing sparse sampling is greatly broadened. Besides, the utilization of co-prime

and nested pairs is also expanded beyond calculating autocorrelation. HOS has been

proved to be useful in decades ago, but the prohibited computation complexity stops

it from widely used. The research in this dissertation introduces a novel approach to

decrease the complexity while still maintains all of the characteristic merits.

Furthermore, this dissertation also develops the information theoretical analysis

for cooperative wireless communication system given nested distributed base stations.

A key insight of the present work is that by carefully deploying and scheduling com-

munication between users and different BSs, the cluster of the BSs is able to achieve a

much higher capacity compared to the simple collaboration among BSs. On the other

hand, there are many open questions in this direction of research, including detailed

power allocation and beamforming for the combination of dense array and sparse

array, the interference analysis when this nested distributed cellular network is put

into a system at large, and the relation between the uplink and downlink channels.
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8.2 Future works

8.2.1 Channel capacity under sub-Nyquist coprime sampling

The study of capacity of analog Gaussian channels and capacity-achieving trans-

mission strategies was pioneered by Shannon [50]. These results have provided fun-

damental insights for modern communication system design. Shannons work focused

on capacity of analog channels sampled at or above twice the channel bandwidth.

However, in practice, the Nyquist rate may be excessive for perfect reconstruction

of signals that possess certain structures known a priori. On the other hand, the

hardware and power limitations may preclude sampling at the Nyquist rate for a

wideband communication system. For example, the newly developed LTE-Advanced

standard allows carrier aggregation, where multiple subbands over a wide spectrum

are aggregated and jointly used for transmission to/from a single terminal. Then, the

sampling rate requirement for perfect recovery is the sum of the subband bandwidths

termed the lamdau rate [51].

This motivates the exploration of the effects of sub-Nyquist sampling upon the

capacity of an analog Gaussian channel, and the fundamental capacity limits that

result when considering general sampling methods that include irregular nonuniform

sampling.

When the channel or signal structure is unknown, the blind sub-Nyquist sam-

pling approaches have be proposed to exploit the structure of various classes of input

signals based on sampling with modulation and filter banks [52]. The key step is

to scramble spectral contents from different subbands through the modulation opera-

tion. This procedure is also a characteristic of a general class of realizable nonuniform

sampling techniques applied in practice.
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One of the important characteristics for the subsampled channel is the non-

invertibility of the prefiltering operation, i.e., we cannot recover the analog channel

output from sub-Nyquist samples. The aliased SNR is a convex combination of SNRs

at all aliased branches, indicating that the impulse responses of the prefilter play

the role of “weighting” different branches. As in maximum-ratio combining (MRC),

the frequencies with larger SNRs should be given larger weight, while those that suf-

fer from poor channel conditions should be suppressed. Then, the problem of finding

optimal prefilters corresponds to joint optimization over all input and filter responses.

At the transmitter side, however, although MRC maximizes the combiner SNR

for a MISO channel, it is suboptimal for the joint optimization problem compared

with selection combining [53], which sets S(f − lfs) to one for some l = l0 and all

of the other frequencies to be zero. It precludes the undesired effects of noise from

low SNR frequencies, which is crucial in maximizing data rate. Besides, given the

transmitted signal is controlled, the selective combining prefiltering is able to generate

alias-free channel as well as suppress out-of-band noise.

The capacity with sampling rate under filter- and modulation-bank sampling

are not monotonously increasing [54]. This indicates that more sophisticated sampling

techniques, adaptive to the channel response and the sampling rate, are necessary to

maximize the capacity under sub-Nyquist rate constraints, including both uniform

and nonuniform sampling. Then, the following questions are which sampling method

can best exploit the channel structure and maximize sampled capacity under a given

sampling rate constraint. Besides, another question is that whether exists a capacity

upper bound over a general class of sub-Nyquist sampling systems.

I propose to characterize sampled channel capacity as a function of different

coprime sampling rate, thereby forming a new connection between sampling theory

and information theory. Besides, the study could indicate how the capacity of a
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sampled analog channel is affected by reduced sampling rate and identify optimal

sampling structures with certain choices of coprime pair given channel condition.

8.2.2 Adaptive multi-level nested sampling

Channel estimation is a well-studied problem in the fileds of telecommunica-

tion and signal processing. It has become a popular topic again due to its impor-

tant implementation in the modern wireless communication system. Combination of

Space-Time Block Code (STBC) with Orthogonal Frequency Division Multiplexing

(OFDM) has the potential to approach the information theoretical capacity limit of

Multiple Input Multiple Output (MIMO) channels [55]. However, at the receiver side,

most space-time equalizer require the knowledge of the Channel State Information

(CSI) to recover the transmitted data. This information is usually obtained through

training the coherent Maximum-Likelihood (ML) receiver [56]. The drawbacks of

training-based approaches and differential schemes have motivated an increasing in-

terest in the development of blind channel estimation algorithms for STBC systems.

Despite the high performances of ML algorithm, their computational costs be-

come prohibitive for high-order modulations. In the case of BPSK or QPSK constel-

lations, the blind-ML detection can be simplified to a Boolean Quadratic Program

(BQP) [57]. For more general settings, iterative procedure can be employed to avoid

the computational complexity of the ML approach. These include the Cyclic ML [56]

and the Expectation-Maximization (EM) [58] algorithms. However, these iterative

methods require a careful initialization of the channel and/or symbols. In particular,

a poor initialization can strongly affect the Symbol-Error Rate (SER) performance.

To avoid these drawbacks, several authors have investigated the use of sub-space [59]

or second-order statistics [60, 61] approaches. However, excluding some specific low-

rate codes, these approaches fail to extract the channel in a full-blind context [59–61].
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Several approach have been proposed in literature to solve this problem, including the

transmission of a short training sequence [59] or the use of precoders [61]. However,

these semi-blind methods cannot be employed in a non-cooperative scenario since

they require modification of the transmitter.

On the other hand, although HOS is able to avoid these limitations, based on

the previous [62], the original HOS algorithm is computational expensive while the

PCS-based HOS has a very slow speed of convergence.
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