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ABSTRACT

SPARSE REPRESENTATION BASED CLASSIFICATION:

TOWARDS EFFICIENCY AND ACCURACY

Soheil Shafiee, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Farhad Kamangar

With the fast growing deployment of machine intelligence in several real-life

applications, there are always increasing needs for faster and more precise machine

learning algorithms, especially classification and object recognition. One of the most

recent methods proposed for this purpose is Sparse Representation-based Classifica-

tion (SRC) which works based on the emerging theory of Compressive Sensing. SRC

shows excellent classification results in comparison to many well-known classifica-

tion approaches. However, despite its high recognition power, SRC suffers from high

computational and memory costs as it directly uses all original ground truth data

as representatives to build its training model. Given high recognition rates of SRC,

it becomes important to reduce the time and memory requirements of this method

while preserving its accuracy. These improvements help SRC to be a more practical

solution especially to be used on portable devices. This research investigates different

representative reduction approaches in the SRC context on multiple heterogeneous

datasets and proposes a training model to be used along with SRC by using fewer

but more informative representatives for the training space. We also investigate how
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incorporating multiple modalities of the data helps to improve SRC outcomes by

extending efficient SRC implementations to multi-modality schemes and introducing

three different approaches for this purpose. Experimental results show the proposed

methods not only perform faster, but they also improve the classification accuracy on

different datasets.
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CHAPTER 1

INTRODUCTION

1.1 Classification Problem

Machine learning is a scientific approach which makes computers able to gain

information to perform a specific task such as classification. Learning is a data-

driven process which gains information from some available data and learns how to

discriminate or predict the behavior of the data. Learning is categorized into un-

supervised and supervised learning. In un-supervised learning, training data are not

associated with labels and instead, their statistical properties help the system to gain

knowledge over the data. The most common example of un-supervised learning are

clustering algorithms [1] such as k-means [2], k-medoids [3], etc. On the other side,

supervised learning benefits from labeled data (annotated measurements or ground

truth) in the training phase which helps for more accurate and efficient learning in

comparison to un-supervised learning. Classification is one of the most challenging

problems in the category of supervised machine learning and it is defined as the

process of assigning a class label to an unknown test sample. When computers solve

the classification problems, they will be able to simulate human recognition system

which leads to the optimal goal of automation and machine intelligence. A large

number of methods and algorithms have been presented to solve the classification

problem and they are becoming more accurate and applicable in different real-life

applications. Some examples of these applications are object recognition such as face
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[4–7] and character recognition [8–10], signal classification such as voice recognition

[11,12] and biomedical signals classification [13,14], etc.

Classification algorithms use data representation approaches or features to char-

acterize their objects of interest. In supervised classification, these features are ex-

tracted from a set of known samples are pre-labeled by an automatic labeling algo-

rithm or an expert to form the training samples which are used to train the classifier

in the next phase. When training data is sufficiently available and well-distributed,

simple classifiers such as Nearest Neighbor (NN) [15] can classify an unknown test

sample by simply assigning it to the class of its nearest neighbor. To reduce the er-

ror, the classification process can be performed by assigning a test sample to the class

of majority of its k nearest neighbors (k-NN). At a higher level, Nearest Subspace

classifiers, NS or k-NS, identify an unknown test sample by assigning it to its nearest

subspace or k subspaces, respectively. A subspace defined as a low-dimensional space

on which samples of a single class lie. Several learning algorithms, such as Neural

Networks [16], Decision Trees [17], and Support Vector Machines (SVM) [18] are also

shown to be effective when employed as classifiers.

1.2 Sparse Representation-based Classification

Recently a classification approach is presented and shown to be effective in

many applications specially face recognition. Wright et al. proposed this method in

2009 and called it Sparse Representation-based Classification (SRC) [7] and reported

interesting results in automatic face recognition application. The main idea of SRC

derived from the assumption that in the face recognition domain, a particular sample

face from a specific person can be represented as a linear combination of the other

samples from the same person. Considering all the training samples from all the

classes, this representation is naturally sparse, i.e. only a few face samples involve
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in reconstruction of the test sample. While this assumption holds, the problem of

classification is converted into the recovery problem of a sparse vector which is defined

as a vector with a few non-zero entries.

The emerging theory of Compressive Sensing (CS) [19,20] proves that it is pos-

sible to recover a sparse signal from only a few measurements. For this purpose, the

signal and the measurement transform must satisfy certain conditions. It has been

shown that when these conditions are satisfied, the original signal can be efficiently

recovered via an `1-norm minimization process. In the context of classification using

SRC, the unknown object can be identified by recovering a coefficient vector which

represents that object as a linear combination of other objects from multiple classes.

When multiple classes along with several samples are available for each class, this co-

efficient vector will be in the form of a sparse signal which may be recovered according

to CS theory.

1.3 Contributions

In this thesis, we challenged SRC algorithm from two standpoint of efficiency

and accuracy. Despite the high recognition rates Wright et al. reported for SRC, it

suffers from time and space complexity. The fastest solution for `1-norm optimiza-

tion problem which is utilized by SRC is shown to be of quadratic time complexity

in the dimension of the sparse vector to be recovered. In other words, when the co-

efficient vector doubled in length, the time needed to solve the optimization problem

quadrupled. In Chapter 2 we will show that the length of the coefficient vector to

be recovered is equal to the number of columns in the SRC training matrix. Since

the original SRC algorithm uses the training samples directly to form its training

matrix columns, given large datasets along with SRC quadratic time complexity, the

classification process gets expensive in terms of execution time.
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A number of approaches have been proposed so far to increase the speed of

the classification task using SRC. These methods -which are called Sample Reduction

in this thesis- try to reduce the number of columns in the training matrix by either

building representative but abstract models [21, 22] or selecting the best representa-

tives from the original training samples [23]. Dictionary Learning (DL) approaches

-which belong to the first category- are usually employed to form smaller training ma-

trices while preserve the hidden discriminative information of the data. In this thesis,

different variants of efficient SRC-based approaches are investigated and an efficient

sample reduction method is proposed which improves the efficiency and accuracy of

the SRC in face and digit recognition applications. The proposed method employs a

clustering algorithm on each individual class of the training data separately and ends

up with sub-dictionaries whose number of atoms (dictionary columns) depends on

the diversity of the original samples from that class. Experiments on face and digit

recognition applications show the effectiveness of the proposed method in comparison

to SRC, in its original implementation as well as when combined with other sample

reduction methods.

Another drawback of SRC is the fact that it looks at data as a single modality

entity. In many real-life problems, the data is available from different feature spaces.

For example, a color image consists of three red, green and blue components and

each component contains certain information which might be desirable and effective

for classification purposes in the visual object classification problem. As another ex-

ample, in a face recognition problem, multiple feature vectors, such as Local Binary

Patterns and down-sampled gray-scale (described in Section 2.2), may be extracted

from face images. Each feature vector can be considered as an individual modal-

ity with its specific data representation and discrimination power. In this thesis,

we investigate a multi-modality approach based on SRC [24] which also suffers from
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performance issues when large number of training samples are available. To tackle

this problem, we propose three category of approaches to accelerate multi-modality

classification task in SRC framework and compared these approaches in different clas-

sification problems. In the first category, the original samples are first fed into sample

reduction algorithms and then modalities are extracted to be used in a multi-modal

SRC framework for classification. In the second and third approach, the original

training samples are first subjected to modality extraction and then their number of

representatives are reduced using a sample reduction algorithm introduced in Chap-

ter 3. The difference between second and third approaches is that the former forces

the number of representatives for each class to be the same over different modalities

while the latter is more flexible and can handle different number of atoms per class

over different modalities. We performed several experiments to show the improve-

ments achieved by these approaches in comparison to other well-known classification

algorithms.

1.4 Thesis Outline

The rest of this document is organized as follows. The basics of the Compressive

Sensing theory as well as the state of the art Sparse Representation-based Classifica-

tion are reviewed in Chapter 2. We also introduce the mathematical notations and

the datasets used for the experiments in this chapter. In Chapter 3, we first review

some of the techniques presented for efficient SRC implementation, then we introduce

our suggested sample reduction method. Experiments are conducted and reported

to show improvements of the proposed method over the original SRC. Our results

are also compared to when SRC is combined with other sample reduction methods.

Multi-modality extensions for SRC are studied in Chapter 4. We also introduced

5



our proposed efficient multi-modality approaches along with the experiments in this

chapter. Finally, our contributions are summarized in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1 Mathematical Notation and Definitions

2.1.1 Mathematical Notations

In this document, vectors and matrices are assumed to have real entries. Scalar

numbers are denoted by regular letters such as a and vectors are denoted by boldface

lower-case letters, such as v which is called an m-dimensional vector when it is a

column array consists of m real entries or equivalently, v ∈ Rm. Matrices are denoted

by regular upper-case letters, such as M and M ∈ Rm×n indicates matrix M has

m rows and n columns with entries mij located in the ith row and jth column. MT

denotes the transpose of matrix M where the entry at row j and column i of MT ∈

Rn×m is equal to the entry at row j and column i of matrix M ∈ Rm×n.

According to the above notation, a vector can be decomposed into its entries by

v = [v1, v2, . . . , vm]T. Matrix M ∈ Rm×n can be decomposed into n vectors or M =

[m1,m2, . . . ,mn]. The notations mi and mj represent the ith column and jth row of

matrix M , respectively. In a same way, matrix M ∈ Rm×n can be decomposed into C

sub-matrices Mc ∈ Rn×mcs such that M = [M1,M2, . . . ,MC ] or it can be decomposed

into K sub-matrices Mk ∈ Rnk×ms such that M =
[
(M1)T, (M2)T, . . . , (MK)T

]T
.

Subscripts and superscripts are also used frequently for scalars, vectors and

matrices and each of them will be made clear where needed.

7



2.1.2 Vector and Matrix Operations

For vector v ∈ Rm the `p-norm is denoted by ‖v‖p and

‖v‖p ,

(
m∑
i=1

|vi|p
) 1

p

. (2.1)

For the special cases where p = 0 and p =∞, we have

‖v‖0 ,
m∑
i=1

{vi 6= 0}, (2.2)

or count of non-zero entries of v and

‖v‖∞ , max
i
|vi|. (2.3)

For matrix M ∈ Rm×n, the `p-norm is defined as

‖m‖p ,

(
m∑
i=1

n∑
j=1

|mij|p
) 1

p

. (2.4)

The special case of p = 2 is known as the Frobenius norm and denoted by both ‖M‖2

or ‖M‖F . The mixed `p,q-norm of M = [m1,m2, . . . ,mn] is defined as

‖M‖p,q ,

(
n∑
i=1

‖mi‖pq

) 1
p

. (2.5)

for a square matrix M ∈ Rn×n, its trace is defined as

tr(M) = m11 +m22 + · · ·+mnn =
n∑
i=1

mii. (2.6)

2.2 Datasets

One of the main challenges in most research studies in machine learning is the

datasets which are used to train and the proposed methods and evaluate them against

other available approaches. In this thesis, different face and digit datasets are used

which are summarized as follows.
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Figure 2.1: Samples from FRGC dataset after pre-processing (face images in each
row are from same class).

FRGC face dataset This dataset is presented in [25] under the name of Face

Recognition Grand Challenge for the first time. Face images are captured in different

times, poses and situations. The main data contains 36817 face images from 535

persons. The original resolution of the images is either 1704×2272 or 1200×1600.

For our experiments, 100 classes are randomly selected from the dataset. All images

are converted to 8-bit grayscale, normalized and cropped into smaller 60×60 pixels

(Figure 2.1). For each class, 80 and 30 face images were randomly selected as training

and testing sets, respectively which results in a total number of 8000 training and

3000 testing samples. Images in testing set were selected to be different from training

images. For the experiments of multi-modality approaches, we used two modalities:

Down-sampled gray-scale level (GS) All images are resized into 32×32 images and

the corresponding 1024 vectors were used as one modality.

Local Binary Patterns (LBP) These features are widely used in face recognition

literature. LBP operator is originally designed for textures description. This operator

labels all pixels of an image after applying a threshold value to its 3×3 neighborhood

and consider the result as a sequence of true-false values. [26] used this idea to extract

9



Figure 2.2: Samples from Extended Yale B dataset (face images in each row are from
same class).

face descriptors for face recognition purposes. We also use LBP in our experiments on

face recognition by incorporating a neighborhood of 8 pixels and radius of 1 pixel. For

a down-sampled 32×32 grayscale face image, the LBP modality will be a 2 dimensional

30×30 image which is then vectorized to be used as 900 dimensional feature vectors.

Extended Yale B dataset The second face dataset used for the experiments were

selected from the Extended Yale B face dataset [27,28]. This dataset contains a total

of 2414 face images from 38 subjects which are cropped and normalized into 192×168

frontal face images. Images are captured under various controlled lighting conditions

in the laboratory (Figure 2.2). Half of these images (1207) were selected randomly

for training and the remaining were used as test samples. The same GS and LBP

modalities which used for FRGC face dataset are also applied to the Extended Yale

B dataset in our multi-modality experiments.

Cedar Buffalo digit dataset (USPS) To evaluate different methods in a con-

text other than face recognition, a number of experiments are also performed on

handwritten digits datasets. The first digit dataset which is used in this study is the

10



Figure 2.3: Samples from USPS dataset (images in each row are from same class).

Cedar Buffalo binary digits dataset (USPS) [29]. This dataset is taken from zip codes,

contains 10 classes with a total number of 11000 8 bits images, down-sampled and

Gaussian smoothed to 16×16 digit bitmaps (1100 images for each digit 0, 1, . . . , 9).

Images are thus represented by 256 dimensional vectors. Among these samples (Fig-

ure 2.3), half of them in each class are selected as training samples and the rest are

used to test the classification algorithm.

Multi-feature digit dataset (UCI)1 The second digit dataset used in this study

is the UC Irvine [30] multi-feature digit dataset (UCI) which is extracted from a

collection of original Dutch public utility maps. A slightly different version of the

dataset is used in [31]. This dataset contains 10 classes with a total number of 2000

samples (200 samples for each of digits 0, 1, . . . , 9). The original maps were scanned in

8 bits grey value in 400 dpi, sharpened [32] and thresholded to automatically extract

[33] the digits. Images were normalized to size 30×48 and 6 different modalities were

extracted and available for all samples:

1. FOU: 76 Fourier coefficients of the character shapes,

1Available online at https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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2. FAC: 216 profile correlations,

3. KAR: 64 Karhunen-Love coefficients [34], is the result of a linear transform

which is the projection of images onto the eigenvectors of a covariance matrix

of the training images.

4. PIX: 240 pixel averages in 2×3 windows (15×16),

5. ZER: 47 rotation invariant Zernike moments [35], are the projection of the image

onto a set of orthogonal bases functions,

6. MOR: 6 morphological features, like the number of endpoints of the skeleton.

More details on the features is found in [31, 36]. Half of the data in each class was

randomly selected as training samples and the rest were used to test the classification

algorithms.

2.3 Recovering a Sparse Signal

Compressive Sensing (CS) theory was introduced by Candès et. al [20] and

Donoho [19] in 2006 for the first time. According to this theory, under certain condi-

tions, it is possible to reconstruct an unknown signal or a vector of coefficients from

some measurements with a dimensionality far less than the original vector. Com-

pressive sensing, i.e. recovering a vector or signal from a lower dimensional measure-

ment signal, exceeds the traditional Shannon/Nyquist sampling theorem [37,38] and

hence has been recently received considerable attention in many applied areas such

as compressive imaging [39], medical imaging [40,41], remote sensing [42], communi-

cation [43], etc2. In order to achieve this recovery, the signal of interest needs to be

sparse and the measurement matrix must also satisfy certain conditions. A signal or

vector is called sparse when the majority of its entries are either zero or very close

2A comprehensive taxonomy on applications of CS is available at http://dsp.rice.edu/cs.
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to zero. More scientifically, a k-sparse signal is a signal whose entries, except for k of

them, are zero or close to zero.

The CS problem can be stated as follows. Given a measurement signal y ∈ Rm,

the goal is to recover the original sparse signal x ∈ Rn. Vectors x and y are related

by a system of linear equations

y = Ax, (2.7)

where A ∈ Rm×n is called the measurement matrix. Let’s assume there are more

equations than unknowns or m > n. The system of linear equations (2.7) with m > n

is called an over-determined system and most of the time, no exact solution can be

found for this problem. A conventional approximate solution to this problem which

yields to a unique answer is to minimize the `2-norm of the signal of interest or

mathematically,

x̂2 = argmin
x

‖x‖2 subject to Ax = y . (2.8)

Optimization problem (2.8) has a closed-form solution of x̂ = AT(AAT)−1 but this

solution is not necessarily sparse.

Now, let’s consider the case where the dimensionality of the measurement signal

y is smaller than the one for the original signal x, i.e. m < n. An illustration of this

situation is shown in Figure 2.4. Given the measurements y and the measurement

matrix A with m < n, equation (2.7) represents an under-determined system of linear

equations which has infinitely many solutions for x. However, since the signal x is

known to be sparse, it is possible to search for a sparse solution among many solutions

of (2.7) or equivalently, solve the `0-norm optimization problem

x̂0 = argmin
x

‖x‖0 subject to Ax = y , (2.9)
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Figure 2.4: Compressive sensing theory: it is possible to recover a k-sparse signal x
(in this example, k = 4) given measurements y when an under-determined dictionary
A exists such that y = Ax. Color and white entries correspond to non-zero and zero
entries, respectively.

where the term ‖·‖0 enforces sparsity of the solution. The optimization problem (2.9)

is shown to be an NP-hard problem [44] and to solve for a k-sparse signal x, one

should exhaustively search for all possible k-sparse signals in n dimension.

According to CS theory, [45, 46], it is shown that under certain conditions,

minimizer of (2.9) is equal to the one of

x̂1 = argmin
x

‖x‖1 subject to Ax = y . (2.10)

Unlike (2.9), polynomial complexity solutions for (2.10) are presented in the opti-

mization literature [47].

One of the conditions that must be satisfied for the equivalency of the solutions

of (2.9) and (2.10), is that x should be a k-sparse signal such that k � n. Another

condition for this equivalency is that the measurement matrix A should satisfy the

Restricted Isometry Property (RIP) [48]. Matrix A satisfies RIP if there is an εk ∈

(0, 1) such that

1− εk ≤
‖Ax‖2

‖x‖2

≤ 1 + εk (2.11)
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holds for all k-sparse signals x ∈ Rn and n > k. In the above inequality, εk is called

the restricted isometry constant and it is shown that if ε2k <
√

2− 1, (2.9) and (2.10)

converge to equal solutions [48].

An example of a matrix which satisfies RIP with high probability is an m ×

n random matrix whose entries are independently and identically distributed (iid)

random variables from a Gaussian probability density function with mean zero and

variance 1
n

[49, 50]. In this case, a k-sparse signal of length n can be recovered

from a measurement vector of length m where m ≥ cklogn
k

with c being a small

constant. If RIP condition (ε2k <
√

2 − 1) holds for matrix A, the k-sparse signal x

can be recovered from the measurements y via `1-norm optimization which is a convex

optimization problem and several methods, such as Orthogonal Matching Pursuit

(OMP) [51], Regularized Orthogonal Matching Pursuit (ROMP) [52], Compressive

Sampling Matching Pursuit (CoSaMP) [53] and Subspace Pursuit [54], have been

proposed to efficiently solve this problem.

In many applications, the original signal of interest (x) is not sparse. In these

situations, if a domain which represents x as a sparse signal exists, it is possible

to solve the recovery problem by substituting x by the (k-sparse) vector s such

that s = Ψ−1x where the square matrix Ψ ∈ Rn×n is a transform matrix [49]. By

substituting x in (2.7) with Ψs, we will have

y = Ax = AΨs = Θs, (2.12)

where Θ = AΨ ∈ Rm×n. Similar to (2.7), equation (2.12) represents an under-

determined system of equations with a k-sparse vector s and the whole system (2.12)

satisfies the CS conditions. Some examples for Ψ can be listed as Discrete Fourier

Transform (DFT), Discrete Cosine Transform (DCT) or Wavelet transform.
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2.4 Compressive Sensing for Classification

The idea of incorporating CS for classification purposes was developed in 2009

for the first time in face recognition application [7]. In this study, Wright et al.

mapped the classification problem into a CS problem using the basic equation (2.7)

and called it Sparse Representation-based Classification (SRC). They also reported

interesting results on face recognition application which were outstanding in both

recognition rates and robustness to noise when compared to other face recognition

methods. Since then, SRC was used in different applications and moreover, lots of

supplement algorithms were developed and published on top of the original SRC

method. In this section, we introduce the state-of-the-art SRC along with some

experiments to have fundamental information regarding the rest of this dissertation

in chapters 3 and 4.

2.4.1 Sparse Representation-based Classification (SRC)

Wright et al. demonstrated the effectiveness of SRC in a face recognition appli-

cation [7]. A face dataset consists of some face images each of which can be represented

as a matrix I ∈ Rh×w where h and w represent the height and the width of the face

image, respectively. In many face recognition algorithms, the vectorized version of

matrix I which is denoted by v ∈ Rm and m = w×h, is used to represent the face im-

age data. Assuming there are ni training images from subject (class) i in the dataset,

the matrix Vi = [vi,1,vi,2, . . . ,vi,ni
] ∈ Rm×ni represents all face images from subject

i. These face images can be considered as some points in an m dimensional space

which span a face subspace for class i [55]. In an ideal situation, a test image from

this class, noted by yi ∈ Rm and yi * Vi, can be represented as a linear combination

of the training images from the same class (Figure 2.5) or mathematically
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yi = xi,1·vi,1+ xi,2·vi,2+ xi,3·vi,3+···+ xi,ni·vi,ni=Vi·xi

+···+ xi,ni·

Figure 2.5: A face image of one class can be ideally represented as a linear combination
of other samples from the same class (face images are from FRGC dataset).

yi = xi,1vi,1 + xi,2vi,2 + · · ·+ xi,ni
vi,ni

, (2.13)

where xi,ps ∈ R and p ∈ {1, 2, . . . , ni} are the coefficients representing yi in the

domain of Vi. Denote the coefficient vector associated with class i by xi=[xi,1, xi,2,

. . . , xi,ni
]T, (2.13) can be formulated in the matrix form of

yi = Vixi. (2.14)

In a more general and multi-class scenario, considering all n = n1 + n2 + · · · + nC

training images from C classes, the entire training set can be represented by the

training matrix V = [V1, V2, . . . , VC ] ∈ Rm×n where

V = [v1,1,v1,2, . . . ,v1,n1 ,v2,1, . . . ,v2,n2 , . . . ,vC,nC
]. (2.15)

Figure 2.6 shows an illustration of this multi-class scenario. Given (2.15), equation

(2.14) can be generalized as

yi = V x?, (2.16)

where x? ∈ Rn is a coefficient vector with its all entries equal to zero except for

the ones associated with class i. Given several classes and many face images from
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⋮
xi 
⋮
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⟺ yi =Vx· · · · · ·

Figure 2.6: Generalization of the problem illustrated in Figure 2.5. In an ideal situ-
ation, a face image from a specific class i can be represented as a linear combination
of training faces from all classes such that the coefficient corresponding other classes
such that ∀j 6= i,xj = ~0.

each class in the training matrix, entries in the corresponding coefficient vector x? are

mostly zero hence x? can be considered as a sparse vector. More specifically, this vec-

tor is an ni-sparse vector of dimension n. If in matrix V , the number of image samples

is larger than the dimensionality of the sample space (m < n), (2.16) represents an

under-determined system of equations. The main idea of SRC proposed in [7] comes

from this fact that an unknown test sample yi can be classified by recovering the

sparse coefficient vector x? in (2.16). Based on the discussion in Section 2.3, a sparse

vector can be efficiently recovered from an under-determined system of equations by

solving the `1-norm optimization problem (2.10) with a quadratic complexity.

Up to this point, the assumption was an ideal situation, where a test face image

from one class is exactly equal to a linear combination of some pre-known samples

from the same class. In real applications, due to the existence of noise and modeling

errors in the data, this assumption is not valid. To deal with this problem, it can be

assumed that (2.16) holds by considering a small amount of noise, i.e.

y = V x+ e, (2.17)
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where e ∈ Rm represents the noise term, y is a general test sample from an un-known

class and vector x is the general coefficient vector to be recovered. In x, in contrast

to x?, entries associated with classes other than i are not necessarily zero but usually

they are small real values in comparison to the entries correspond to class i. Having

this assumption, the CS optimization problem (2.10) can be reformulated as

x̂ = argmin
x

‖x‖1 subject to ‖V x− y‖2 ≤ ε, (2.18)

where x̂ is the recovered coefficient vector and ε > ‖e‖2 is the relaxation term im-

posed to allow some noise in the recovery process. The optimization problem (2.18) is

known as Least Absolute Shrinkage and Selection Operator (LASSO) [56] and cate-

gorized as a convex optimization problem and can be efficiently solved by polynomial

solutions such as [47] which is a second-order cone programming approach. We used

the implementation of primal-dual algorithm for linear programming to solve (2.18)

optimization problem [57,58].

Figure 2.7 shows an example of the result of applying SRC algorithm on face

images from FRGC dataset. In this experiment, 5000 face images from 100 classes

formed the matrix V which is used as the training matrix in the optimization process

(2.18) to recover the coefficient vector. The test sample y (Figure 2.7a) is selected

from class 4 and fed into (2.18) along with the training matrix V . After optimization,

the coefficients associated with the first 500 training samples are shown in Figure 2.7b

by thin-red lines. The coefficient associated with the same class of y are marked by

thick-blue lines in the recovered vector and the training samples associated with the

2 largest coefficients are shown in this figure. It is clearly seen that largest coefficients

among all 500 coefficients happens to be from the same class as the test sample and

moreover, they look very similar in terms of face expressions.
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Figure 2.7: A result of running SRC algorithm on (a) an input test sample using a dic-
tionary containing 500 face images (10 subjects, 50 face images each). (b) Recovered
coefficient vector entries. It can be clearly seen that largest values in the recovered
vector are associated to class 4 (blue-thick entries) which is the test sample’s class.
(c) Residual values for all 10 classes. Class 4 (solid blue) has the minimum residue.

The second step in SRC is to identify the class of the test sample y by analyzing

the recovered coefficient vector x. Basically, any kind of classifier can be used in this

step. One can simply assign the test sample to the class which includes the largest

coefficient in x (the right-most training sample in Figure 2.7b). However, to get

more benefits from the face subspace structures, it is needed to consider all training

samples from a class to identify the class associated with y. For this purpose, given

the recovered vector x̂, a vector δi ∈ Rn is defined for every class i (i = 1, 2, . . . , C)

with all zero entries except for the ones associated with class i which are equal the

corresponding ones in the recovered vector x̂. An approximation of the input test

sample y for class i can be calculated by ŷi = V δi. Then, a class label i is assigned

to the object by selecting the class which minimizes the error between the actual test

sample y and the approximations ŷi vectors or

class (y) = î = argmin
i

‖V δi − y‖2. (2.19)

In the above equation the optimization objective function, ‖V δi − y‖2 is called residue.

Figure 2.7c shows the residual values calculated for 10 classes. As can be seen, resid-
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Algorithm 2.1: SRC Algorithm [7].

input : Training samples matrix V = [V1, V2, . . . , VC ] ∈ Rm×n for C classes;

Test sample y ∈ Rm;

Error tolerance ε > 0;

output : class(y);

- Normalize the columns of training matrix to have unit `2-norm;

- Solve the optimization problem (2.18) to recover the coefficient vector x̂;

for i = 1, 2, . . . , C do

- δi ∈ Rn = ~0 except for the sub-vector with class i which is equal to x̂i;

- Compute the residuals ri(y) = ‖V δi − y‖2;

class(y) = argmin
i

ri(y);

ual value for class 4, which is the class to which test sample y belongs, is significantly

smaller than the ones correspond to other classes, so SRC selects class 4 to be the

class associated with the test sample y. The above discussion on the recognition

process via SRC is summarized in Algorithm 2.1.

2.4.2 Dimensionality Reduction (DR)

In real-life applications of face recognition, there are usually lots of subjects and

face images available for training. Face images are usually from high dimensionality.

For instance, face images which are used for the SRC experiments illustrated in

Figure 2.7 are of the size of 60×60 and form 3600 dimensional vectors and a total

number of 100 subjects each contains 50 face images are analyzed. In the experiments

which are introduced in [7], face images are even larger and of the resolution of

640×480. An SRC framework with a training set containing large number of images

with high dimensionalities not only needs large storage, but also introduces high
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computational complexity which leads to longer execution time of the classification

task. For example, classification of a single test sample in the experiment of Figure 2.7

took approximately 320 seconds which is not desirable in real applications. On the

other hand, high dimensionality of the data imposes another disadvantage to the

problem. As described in Section 2.3, sparse signal recovery problem of (2.9) is

an NP-hard problem. However, under certain conditions, the convex optimization

problem (2.10) will efficiently converge to an equivalent solution to the minimizer

of (2.9). For this purpose, the training matrix V is needed to represent an under-

determined system of equations i.e. V must have more columns than rows. In SRC,

dimension of face images and number of training face samples determine the number

of rows and columns in matrix V , respectively. Training matrices with face images

from high dimensionality forces to select a large number of training samples to make

an under-determined system of linear equations. Large number of images might not

be available in many real-life applications and moreover increases the time needed for

the classification task. In Chapter 3, we will discuss the time complexity of the fastest

available algorithms to solve (2.18) is quadratic to the number of training samples.

Therefore, increasing number of samples to make V sufficiently under-determined,

imposes large amount of delays to the classification process.

In order to overcome the above mentioned issues, dimensionality reduction

methods can be used on both training and test samples. In the context of machine

learning and specifically, face recognition, a variety of feature extraction methods

are investigated which helps to deal with the problem of high dimensionality of the

samples. Some of these methods result in holistic face features such as Eigenfaces [4],

Fisherfaces [59] and Laplacianfaces [60]. Another category of feature extraction tech-

niques look for local and partial descriptors such as eyes, nose, etc. [61, 62]. Most

feature extraction methods use linear operations on the original images, hence the
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Figure 2.8: A result of running SRC algorithm on (a) an input test sample using a
dictionary containing 500 face images (10 subjects, 50 face images each) and down-
sample features. (b) Recovered coefficient vector entries. It can be clearly seen that
largest values in the recovered vector are associated to class 4 (blue-thick entries)
which is the test sample’s class. (c) Residual values for all 10 classes. Class 4 (solid
blue) has the minimum residue.

feature extraction process for a feature vector ŷ can be easily formulated by a matrix

multiplication ŷ = Ry, where R ∈ Rr×m is the feature extraction operator. On the

training side, the dimension of matrix V is also reduced to r by the multiplication

RV = V̂ ∈ Rr×n. In this situation, by selecting r � n, the system of linear equa-

tions ŷ = V̂ x will represent an under-determined system and since the coefficient

vector to be recovered is still sparse, it can be recovered using `1-norm optimization

problem. Simply by substituting ŷ and V̂ in the SRC algorithm (Algorithm 2.1) the

optimization problem (2.18) is converted to

x̂ = argmin
x

‖x‖1 subject to

∥∥∥∥∥∥∥
RV︷︸︸︷
V̂ x−

Ry︷︸︸︷
ŷ

∥∥∥∥∥∥∥
2

≤ ε. (2.20)

Several linear dimensionality reduction methods such as Eigenfaces, Fisherfaces, Lapla-

cianfaces, down-sampling and random projection are studied in [7]. We conduct an ex-

periment with a same settings as the one reported in Figure 2.7 using down-sampling

feature extraction and the result of running SRC to classify a test subject from class

4 is illustrated in Figure 2.8. As shown in Figure 2.8b, the recovered vector in this
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experiment shows more sparsity than the one recovered in the first experiment (Fig-

ure 2.7). This happens because dimensionality reduction makes the number of rows

in the training matrix to be far smaller than the ones when original images are used.

In this specific experiment, without applying dimensionality reduction, matrix V is of

the size 3600×5000 while after applying down-sampling, matrix V will become of size

100×5000 which represents a highly under-determined system of equations. Com-

paring the residual plot in figures 2.7 and 2.8 also shows that using dimensionality

reduction leads to larger difference in the residual values of the real class of y and

other classes which helps SRC to identify the class associated with the test sample in

a more accurate way when dimensionality reduction is used.
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CHAPTER 3

EFFICIENT IMPLEMENTATIONS FOR SRC

As discussed in Section 2.4, Wright et al. proposed a classification method called

Sparse Representation-based Classification (SRC) which is shown to have interesting

recognition rates on face recognition applications.

SRC solves the `1-norm optimization problem (2.18) or it’s Lagrange multiplier

equivalent, i.e.

x̂ = argmin
x

{
‖V x− y‖2

2 + λ ‖x‖1

}
, (3.1)

to recover the coefficient vector x and uses this vector for classification. One of the

major limitations of SRC is its speed which depends on the speed of solving `1-norm

optimization problem (3.1). It is shown that solving this optimization problem, in its

fastest way, has a time complexity which is quadratic to the number of columns in

matrix V [63]. This implies that if the number of training samples or, equivalently,

the number of columns in matrix V get doubled, the time required for solving (3.1)

is quadrupled. Figure 3.1 shows the relationship between the execution time and the

size of the SRC training matrix in a face recognition application. In this example,

columns in matrix V are 100 dimensional vectors formed by vectorizing down-sampled

face images. It is shown that how increasing number of samples in matrix V leads to

the classification running time increment in SRC.

In most practical applications, for example, a face recognition engine, the prob-

lem confronts with so many classes and there are usually lots of training samples

available in each class. Moreover, as discussed in Section 2.4.2 face images usually

come from a relatively large dimensional space. The dimensionality problem can
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Figure 3.1: Average time per test in SRC is super-linear to the number of columns
in matrix V .

be solved efficiently by dimensionality reduction methods described in Section 2.4.2.

However, the large number of training samples is still a big challenge in SRC efficiency

from both time and space point of view. Given the high recognition accuracy of SRC,

it becomes important to reduce the time and memory requirements of this method.

Reducing the number of training samples by a relatively modest factor results in a

significant decrease in SRC running time. Improvements in time and memory effi-

ciency help to make SRC a more practical solution for portable devices and can also

significantly decrease the computational load of SRC when running on more powerful

hardware.

According the above discussion, reducing the number of atoms in SRC training

matrix -which is called Sample Reduction (SR) in this document- is a big challenge

towards its efficiency. In [7], authors suggest to randomly select a subset of training

samples in order to reduce the size of the training matrix and as a result, reduce

the execution time and space requirements. This solution is not necessarily optimum
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since there may exist discriminative information in some samples which have not been

selected. On the other hand, some of the selected samples may contain redundancies

and information overlaps and can be merged or ignored by introducing a minimum

loss to the recognition outcome. A number of studies investigate different methods

to tackle this issue which are introduced in the following section.

3.1 A Review of Efficient SRC Algorithms

In this section, we discuss some methods which are presented to improve the

efficiency of the SRC algorithm by using more efficient and in the meantime pre-

cise data representation. In SRC context, two main categories for this purpose are

presented so far.

The first category includes approaches which use the training samples to build

a representative matrix whose columns are not selected from the original face images.

These methods usually searches for domains which represent training data precisely

and in the same time be discriminative in order to be used for classification purposes.

Dictionary learning (DL) algorithms can be categorized in this group. Primary DL

methods were developed to encode a data collection in a more abstract form for

communication and storage purposes. Usually, one of the objectives in DL is to

design a dictionary such that it can represent the data as sparse as possible.

An effective approach to build a dictionary is presented in [64] in which original

training samples are used in an optimization process to learn a dictionary. Assume
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all the n training samples (vectors vi) are stored in matrix V = [v1,v2, . . . ,vn] and

the goal is to come up with a dictionary D ∈ Rm×d (d ≤ n) by solving

{D,W} =argmin
D,W

{
n∑
j=1

‖vj −Dwj‖2
2 + λ ‖wj‖1

}

=argmin
D,W

{
‖V −DW‖2

F + λ ‖W‖1

}
such that ∀` ∈ {1, 2, . . . , d} : ‖d`‖2

2 ≤ 1, (3.2)

where W = [w1,w2, . . . ,wn] ∈ Rd×n is the coefficient matrix which can be considered

as the representation of training samples V over the dictionary D. The notation d`

shows the `th atom (column) in the dictionary D, λ is the regularization parameter

which holds a trade-off between the sparsity level of the columns of W and the

error term ‖V −DW‖F . Further dictionary learning algorithms are presented in

[65, 66] which may be used for classification purposes. A dictionary should have two

important properties in order to be used as the SRC training matrix:

1. It should represent the training data precisely.

2. It should have discriminative power which makes it appropriate to be utilized

for classification.

In this document, we will discuss the details of two DL methods which are specifically

designed to be used in an SRC framework: Metaface dictionary learning (MF) [21]

and Fisher Discrimination Dictionary Learning (FDDL) [22].

The next category of methods to approach sample reduction is called sample

selection (SS) in this thesis. These methods try to find the best representatives

among all training samples and build the training matrix V . For example, simply

selecting a random subset of samples from training data can be considered as a sample

selection method. To have a more justified example from this category, details for
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the Sparse Modeling Representative Selection (SMRS) method [23] will be discussed

in Section 3.1.3.

3.1.1 Metaface Dictionary Learning

Yang et al. [21] introduced a dictionary learning method based on metagenes in

gene expression data analysis [67], and used it along with SRC in a face recognition

framework. In this approach, dictionary D is considered to be a collection of sub-

dictionaries representing each class separately, i.e. D = [D1, D2, . . . , DC ], where each

Di ∈ Rm×di is learned for each class i separately by using training samples from

that class, Vi. Atoms in the sub-dictionary Di are denoted by di,j where Di =

[di,1,di,2, . . . ,di,di ] and di ≤ ni is the total number of atoms in the sub-dictionary

Di. Each atom in the dictionary required to be a unit vector, i.e. ∀i, j : dT
i,jdi,j = 1.

Metaface dictionary for class i will be determined by solving{
D̂i, Ŵi

}
= argmin

Di,Wi

{
‖Vi −DiWi‖2

F + λ ‖Wi‖1

}
such that ∀j ∈ {1, 2, . . . , di} : dT

i,jdi,j = 1, (3.3)

where Wi ∈ Rdi×ni is a sub-dictionary associated with ith class. Equation (3.3) is a

multi-variable optimization problem and could be solved by alternatively optimizing

Di and Wi while the other one is fixed. When fixing Di, the objective function is

reduced into

Ŵi = argmin
Wi

{
‖Vi −DiWi‖2

F + λ ‖Wi‖1

}
. (3.4)

The optimization problem (3.4) is solved using the standard convex optimization

approach presented in [68]. In the next step, Wi is fixed and the objective function

will be in the form of

D̂i = argmin
Di

‖Vi −DiWi‖2
F such that dT

i,j · di,j = 1 ∀j. (3.5)
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To solve (3.5), matrix Wi can be decomposed into Wi = [(w1
i )

T, (w2
i )

T, . . . , (wdi
i )T]

T
,

where wj
i ∈ R1×n represents the jth row of Wi. Now, each column of Di (i.e. di,js)

will be updated one by one and when updating one, all others are fixed. For each j,

the following optimization problem is solved

d̂i,j =argmin
di,j

∥∥∥∥∥Vi −∑
6̀=j

di,`w
`
i − di,jw

j
i

∥∥∥∥∥
2

F

such that dT
i,j · di,j = 1

=argmin
di,j

∥∥γ − di,jwj
i

∥∥2

F
such that dT

i,j · di,j = 1, (3.6)

where γ = Vi−
∑

` 6=j di,`w
`
i . Optimization problem (3.6) can be solved using Lagrange

multiplier and has the closed form solution of

di,j =
γ
(
wj
i

)T
γ
∥∥∥(wj

i

)T∥∥∥
2

. (3.7)

After updating all di,js, the whole dictionary Di will be updated. This process is

repeated for each individual class i ∈ {1, 2, . . . , C} to form the final dictionary D =

[D1, D2, . . . , DC ]. The overall optimization steps are summarized in Algorithm 3.1.

This dictionary will be used in SRC framework in the next step to perform the

classification task. Figure 3.2 (right) illustrates the first 3 Metaface dictionary atoms

calculated for three different datasets. An original sample from each class is shown on

the left. In this experiment, the total number of calculated dictionary atoms for the

illustrated class was set to 11, 10 and 45 for FRGC, Extended Yale B and USPS digits,

respectively. The performance of SRC using Metaface dictionary is evaluated in [21]

and compared to nearest neighbor classifier and when SRC uses a random subset

of training data as its matrix. Recognition results on three different face datasets

are reported in this study and show higher classification accuracies for metaface in

comparison to the other two classification methods.
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Algorithm 3.1: Metaface optimization process [21].

input : Training samples matrix V = [V1, V2, . . . , VC ] ∈ Rm×n for C classes;

Regularization term λ;

Number of dictionary atoms for each class di|Ci=1;

for i ∈ {1, 2, . . . , C} do
Each column of Di ∈ Rm×di is initialized as a random di,j |dij=1, ‖di,j‖2 = 1;

repeat

Fix Di and solve (3.4) for Wi;

Fix Wi and solve (3.5) for Di;

until convergence or maximum number of iterations;

output : Dictionary D and coefficients W ;

D = [D1, D2, . . . , DC ];

W = [W1
T,W2

T, . . . ,WC
T]

T
;

(a)

(b)

(c)

Figure 3.2: Metaface dictionary atoms (right) calculated for original face data (left)
on (a) FRGC dataset, (b) YaleB dataset and (c) USPS digits dataset.
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3.1.2 Fisher Discrimination Dictionary Learning (FDDL)

Yang et al. [22] proposed a dictionary learning method which builds a dictio-

nary containing class-labeled atoms and in the meanwhile uses Fisher discrimination

criterion to make the dictionary more discriminative. FDDL solves{
D̂, Ŵ

}
= argmin

D,W
{r(V,D,W ) + λ1 ‖W‖1 + λ2f(W )}, (3.8)

to come up with dictionary D̂ and the matrix of coefficients Ŵ . The `1-norm term

implies the sparsity, the function r(V,D,W ) is the discriminative fidelity term, and

f(·) is the Fisher discrimination constraint term. The regularization parameters λ1

and λ2 set a trade-off between the sparsity and discrimination power.

The discriminative fidelity term is actually the summation of fidelity terms over

all classes or equivalently,

r(V,D,W ) =
C∑
i=1

r (Vi, D,Wi), (3.9)

where each element Wi ∈ Rd×ni is the representation of Vi over D and can be decom-

posed into matrices W j
i ∈ Rdj×ni , j ∈ {1, 2, . . . , C} representing mapping of original

samples Vi over the sub-dictionary Dj. In other words, Wi=[(W 1
i )T, (W 2

i )T, . . . ,

(WC
i )T]T. In order for the dictionary D to be a good representative for the original

training samples V , The discriminative fidelity term, r(·), forces 3 constraints on both

dictionary and coefficient matrix.

C1: The whole dictionary D to be a good representative for the samples from class

i i.e. Vi. In other words, r tries to make DWi as close as possible to Vi.

C2: The sub-dictionary Di to be a good representative for samples Vi. Equivalently,

DiW
i
i is forced to be a good approximation of Vi.

C3: The coefficients which correspond to classes other than i should not represent

class i. In other words, W i
j (i 6= j) should be close to zero to make DjW

j
i as

small as possible.
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The above constraints, mathematically formulate the fidelity term for class i as

r(Vi, D,Wi) = ‖Vi −DWi‖2
F +

∥∥Vi −DiW
i
i

∥∥2

F
+

C∑
j=1
j 6=i

∥∥DjW
j
i

∥∥2

F
. (3.10)

This function is substituted in the objective function of (3.8).

The function f(·) in (3.8) is the Fisher discrimination criterion which increases

the discrimination power of the dictionary by considering the within-class and between-

class scattering (Sω(W ) and Sβ(W ), respectively) and implemented as

f(W ) = tr(Sω(W ))− tr(Sβ(W )) + η‖W‖2
F , (3.11)

where the last term imposed to provide convexity weighted by η and the tr(·) is the

matrix trace operator defined in Section 2.1.2. More details on the calculation of

Fisher discrimination criteria can be found in [22].

The functions (3.10), (3.11) and sparsity constraint are convex functions [22], so

(3.8) is categorized as a multi-variable convex optimization problem which is solved

by alternatively optimizing of D and X. The authors of [22], approached to (3.8)

in a similar way they approached Metaface dictionary learning (Algorithm 3.1) i.e.

alternative optimization. The optimization steps are discussed in more details in [22].

Solving (3.8) for all classes, results in a discriminative dictionary whose atoms

are labeled for different classes. Figure 3.3 shows 3 atoms of the FDDL dictionary

on the same three datasets and subjects of Figure 3.3. FDDL dictionary is used in

the next step instead of the training matrix in SRC algorithm for the classification

purpose. Experimental results in [22] shows significant improvements of classification

when using FDDL dictionary comparing to use a subset of the original training sam-

ples with the same number of columns in SRC framework and other two classifiers

of nearest neighbor and SVM. The SRC accuracy evaluation is also performed using

FDDL and other two DL methods of discriminative KSVD and dictionary learning
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(a)

(b)

(c)

Figure 3.3: FDDL dictionary atoms (right) calculated for original face data (left) on
(a) FRGC dataset, (b) YaleB dataset and (c) USPS digits dataset.

with structure incoherence (DLSI) methods. Experiments on face and digit recog-

nition and gender classification confirm that applying FDDL dictionary to SRC will

result in significantly higher recognition rates.

3.1.3 Sparse Modeling Representative Selection (SMRS)

While Metaface and FDDL methods try to build a new dictionary by processing

and modifying the training data, Sparse Modeling Representative Selection (SMRS)

proposes to form the dictionary by selecting its atoms from the original training

samples [23]. Basically, this approach searches for a few numbers of training samples

which represents all the training data as precise as possible. To achieve this objective
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at the first step, [23] tries to represent each training sample as a linear combination

of all others by optimizing

‖V − VW‖2
F , (3.12)

where W = [w1,w2, . . . ,wn] ∈ Rn×n is the coefficient matrix. To choose d represen-

tative samples among all samples, another force should be imposed into the objective

function of (3.12). The authors in [23] enforced

‖W‖0,q ≤ k, (3.13)

to (3.12), where k is the maximum number of representatives of interest and ‖W‖0,q

is the mixed `0,q-norm operator and counts the nonzero rows of W . In other words,

the nonzero rows of the solution W , indicate the indices of the representatives among

training data V . In order to make the solution translation-invariant, affine constraint

1TW = 1T is also added to the objective function. As described in Section 2.3, solving

an `0-norm optimization is NP-hard, so it is usually replaced by its relaxed alternative,

i.e. `1-norm. With this consideration, the sparsity term will be substitute by ‖W‖1,q

or the sum of `q-norms of the rows of the coefficient matrix W . This framework is

performed for each individual class, so finally, representatives for the ith class of the

training data are selected using

Ŵi = argmin
Wi

{
λ‖Wi‖1,q +

1

2
‖Vi − ViWi‖2

F

}
such that 1TWi = 1T, (3.14)

where λ is the sparsity regularization parameter. The parameter q is selected to be

greater than one to make the optimization problem convex [23]. The optimization

problem (3.14) is solved using Alternating Direction Method of Multipliers (ADMM)

method from [69].

The above scheme also indicates which samples are more informative to repre-

sent class i by directly comparing `q-norms of the selected samples. Moreover, [23]
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Figure 3.4: Representative selection on one of the subjects FRGC face dataset using
SMRS algorithm.

suggests an interesting method to improve the results by detecting outliers after per-

forming an analysis on the coefficient matrix W . The rows of W which correspond to

outliers should have a few non-zero entries. Based on this fact, a measure called row-

sparsity index (RSI) is introduced which is used to remove outlier representatives.

This study also made some discussions on how to efficiently update the represen-

tatives for each class when new training samples are introduced. This capability

makes SMRS to be a good representative selection algorithm in applications faces

dynamically updating datasets.

Figure 3.4 shows the representatives selected using SMRS algorithm. In this

experiment, a total number of 80 face images from one of the subjects of FRGC

dataset were selected as training samples, q is selected to be 2 and the parameter λ is

selected such that final number of selected representatives is equal to 10.By looking

at the selections, we can conclude that SMRS has selected face images with a high

diversity.

Authors in [23] demonstrate the effectiveness of their proposed approach by

conducting experiments in two main categories. First evaluation is choosing best

representatives in video sequences to summarize the scenes. Results show that SMRS
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algorithm selects the most distinctive frames as representatives and rejects frames

which are visually similar to the selected ones. The second set of experiments uses the

representatives of two datasets (Extended Yale B face and USPS digits) in different

classification methods including nearest neighbor, nearest subspace, SVM and SRC.

Recognition rate results confirm the effectiveness of SMRS representatives comparing

to other methods for selecting representatives (random, k-medoids [3], which is a

variant of k-means, and RRQR1).

3.2 Efficient SRC using Adaptive Clustering

In this section a method is proposed to reduce the number of columns in matrix

V by using an efficient replacement of the original training samples. This method

along with its experiments is published as a full conference paper [72].

According to the discussion in Section 2.4.1, face images from one subject form

a subspace in the original m dimensional space. Considering the fact that many

training face images might contain similar information, using all samples to represent

a sub-space is not efficient. In this case, it would be more rational to characterize

each class by a more representative and smaller set of sample vectors. For example,

consider a dataset with 100 classes with 150 sample per class or a total number of

15000 training face images. Assuming each face is a 60×60 image, the size of the

training matrix V will be 3600×15000. If a matrix of size 100×3600 is used for

feature extraction (R in (2.20)), then the final size of the matrix V̂ in (2.20) will be

100×15000. For comparison, if the average number of samples per class is selected

to be 10, the size of the matrix V̂ will be reduced into 100×1000. Although random

selection of the original training samples may reduce the number of columns in V̂ , it

cannot necessarily represent each class well.

1Rank Revealing QR Factorization [70,71]
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Algorithm 3.2: k-means clustering algorithm [1].

input : Data matrix Vi and number of clusters Qi;

- Initialize a Qi-partition randomly (or based on some prior knowledge;)

- Calculate mean vector for all clusters (mj , ∀j = 1, . . . , Qi) and form the cluster

prototype matrix M = [m1,m2, . . . ,mQi ];

while there is a change in at least one cluster do

- Re-partition: Assign each object in the dataset to the nearest (minimum

Euclidean distance) cluster with the center dji , j = 1, . . . , Qi;

- Recalculate cluster prototype matrix;

output : Cluster Centers dji s, j = 1, . . . , Qi;

A widely-used method to represent a group of samples by a smaller number

of representatives is clustering. k-means clustering [1, 2] has been frequently used in

pattern recognition and machine learning applications and is a method to partition a

dataset into k groups. k-means selects k set of cluster centers in data domain which

is a more compact representation of the original dataset. This algorithm works based

on squared error metric and summarized in Algorithm 3.2.

In the proposed approach, training samples are clustered into a number of

groups using an adaptive scheme of k-means clustering. The centers of the clusters

are then selected to form the columns of the matrix D which is further substitutes

V in the SRC framework. For this purpose, the number of clusters for each class

is adaptively selected based on the variability of the training samples for that class.

The variability of a cluster is defined as the maximum within-cluster sums of point-

to-centroid distance measure
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MaxDisti = max
j


√√√√√ Nj

i∑
`=1

(
vj,`i − d

j
i

)2

, (3.15)

where, N j
i is the number of samples in cluster j of class i, vj,`i is the `th sample in jth

cluster of class i and dji represents cluster center of the jth cluster in class i.

In practice, the number of clusters for class i, Qi, is constrained by a predeter-

mined maximum number of clusters, Qmax. Qi, starts from one and is incremented as

long as Qi ≤ Qmax and MaxDisti is larger than a fixed predetermined threshold, τ .

Since different classes may contain different variety of samples, applying this approach

on the training dataset will result in different number of clusters for each class. This

clustering scheme will be called Adaptive Clustering (AC) in this document and is

summarized in Algorithm 3.3.

The two parameters Qmax and τ allow the system to control the number of

columns in the final training matrix D. This adjusting feature is a parameter to trade

off efficiency for the accuracy. AC algorithm partitions the training samples space to

clusters such that classes with high variability end up with more representatives than

the classes with lower variability. Moreover, similar training samples are efficiently

clustered into one group and represented by a single representative.

3.2.1 Experiments

Experiments on the efficiency of the proposed AC algorithm are conducted in

two main stages. First we show the efficiency of the SRC method using AC training

matrix comparing to the original SRC method, where all or a random selection of the

original training samples were used to form the training matrix. A face recognition

application was selected to show how the proposed method works and how efficient

and accurate it is comparing to the original SRC method. The next set of experiments
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Algorithm 3.3: The proposed Adaptive Clustering (AC) algorithm.

input : Training samples V = [V1, V2, . . . , VC ];

The maximum number of clusters Qmax and threshold τ ;

for class i ∈ {1, 2, . . . , C} do
Qi = 2;

Mi = 1
ni

∑ni
`=1 vi,`;

MaxDisti =
√∑ni

`=1 (vi,` −Mi)
2;

while MaxDisti > τ or Qi ≤ Qmax do

Run Algorithm 3.2 on samples Vi to form Qi clusters with centers dji |
Qi
j=1;

MaxDisti = max
j

{√∑Nj
i

`=1

(
vj,`i − d

j
i

)2
}

;

Qi++;

Di =
[
d1
i ,d

2
i , . . . ,d

Qi−1
i

]
;

output : Dictionary D = [D1, D2, . . . , DC ];

which are studied in Section 3.3 includes a deep study on using different dictionary

learning and representative selection methods which were introduced in Section 3.1.

Three different datasets were examined to compare the effectiveness of these methods.

The first set of experiments show the effectiveness of the proposed sample re-

duction method on FRGC face dataset. Figure 3.5 shows two examples of face cluster

centers from one class along with the face images belong to each cluster. As can be

seen in this figure, face images which form the cluster on the left and right contain

similar information in terms of face expressions and lighting conditions. Here, samples

are 60×60 face images or 3600 dimensional vectors.

Figure 3.6 shows the histogram of number of clusters for 100 classes after ap-

plying adaptive clustering algorithm. In this experiment, 100 classes are randomly

selected from the FRGC face dataset to which AC is applied. Total number of train-

ing samples for all classes is 14794 face images and each training sample is a cropped
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Original face images in cluster 4 Cluster 4 center Original face images in cluster 6 Cluster 6 center

Figure 3.5: Illustrations of two cluster centers and their members for one subject from
FRGC face dataset.

to a 60×60 gray face image, i.e. a 3600 dimensional vector. Adaptive clustering

parameters Qmax and τ are selected such that after clustering the average number of

clusters for all classes is ∼10 (Qmax = 20 and τ = 0.42). As a result, the total number

of training samples in this experiment is 1000 which forms a 3600×1000 dictionary

D to be used as the SRC training matrix. Changing τ changes the average number

of clusters per class which results in a different number of columns in D. It is seen

from this figure that most classes ended up with 7-14 cluster per class and there

are a few classes with less than 7 and more than 14 clusters which shows the low

and high diversity (in terms of pixel values) of the original samples in these classes,

respectively.

Figure 3.7 shows the formed cluster centers for one of the face classes in the

training dataset. This class has a total number of 112 training samples. AC with

τ = 0.42 and Qmax = 20 was applied to this class and as a result, a total number

of 10 clusters are formed. Clusters are formed by different number of face samples

which are also included in Figure 3.7 for each cluster.

In next experiment, we investigated the effect of changing parameter τ on the

size of the training matrix. This parameter acts as a tradeoff between running time

and recognition accuracy. The original training samples contain a total of 14794 face
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Figure 3.6: Histogram of number of clusters for 100 classes using AC method (Qmax =
20 and τ = 0.42).
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Figure 3.7: Cluster centers formed by AC algorithm for one class from FRGC face
dataset.
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Figure 3.8: The relationship between τ and number of columns in matrix D.

samples from 100 classes. All classes were clustered separately using different values

for the parameter τ . Figure 3.8 shows how the size of training matrix D varies by

increasing this parameter. Parameter Qmax was set to 20 in this experiment. As it

can be seen in Figure 3.8, when τ is increased from 0.05 to 4, the number of columns

in dictionary D decreases from 2000 to 204.

SRC performance when using random subsets of training data (RND-SRC) and

when using the proposed method (AC-SRC) is measured and compared with different

number of columns in dictionary D. For the experiments in this section, parameters τ

and Qmax are selected such that different number of columns are formed in D. Recog-

nition accuracy simulations are performed for 3 different DR methods introduced in

Section 2.4.2, random projections (RP), Eigen faces (EIG), and down-sampling (DS).

Feature extraction matrix R is selected to have 100 rows in all simulations. Primal-

dual algorithm introduced in [57] was used to solve the optimization problem (3.1).

In order to compare the recognition accuracy for the two methods, AC parameters

(Qmax and τ) are tuned to achieve some pre-determined total number of clusters
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Figure 3.9: Recognition rate for AC-SRC using Random projection dimensionality re-
duction (blue solid line) and original SRC (red dashed line) method (a) using different
sizes of matrix D and (b) versus the average execution time for each test.

(200, 300, . . . ) for AC-SRC experiments. Then a similar number of training face im-

ages were randomly selected from the whole training dataset to form the RND-SRC

training matrix to be used for recognition. With this scheme, it is possible to compare

the recognition rate of both methods given equal computational load.

Figure 3.9a shows the recognition rates for different sizes of training matrix

using random projection. It can be seen that for the same number of columns in the

training matrix, using AC dictionary, SRC introduces higher recognition rates com-
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Figure 3.10: Recognition rate for AC-SRC using Eigen faces dimensionality reduction
(blue solid line) and original SRC (red dashed line) method (a) using different sizes
of matrix D and (b) versus the average execution time for each test.

pared to when it uses a random subset of the original training samples. For instance,

with a 100×1000 dictionary D (an average of 10 clusters per class), recognition ac-

curacy is %95.75 which is higher than the %85.5 accuracy for the RND-SRC method

with the same size of training matrix (average of 10 training sample per class). Note

that for the RND-SRC implementation, samples from the training dataset were ran-

domly selected to form matrix D. This random selection is performed 10 times and

an average recognition rate is reported as the result.
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Figure 3.11: Recognition rate for AC-SRC using Down-Sampling dimensionality re-
duction (blue solid line) and original SRC (red dashed line) method (a) using different
sizes of matrix D and (b) versus the average execution time for each test.

Figure 3.10a and Figure 3.11a also show similar results but when EF and DS

dimensionality reduction methods were used along in conjunction with SRC, respec-

tively. Again, it is clearly seen that SRC when using AC outperforms SRC when

using randomly-selected original training samples. Figure 3.9b, Figure 3.10b and

Figure 3.11b show the recognition rate of both approaches versus the average SRC

running time per test for the three dimensionality reduction methods. Examination

of these results indicates that for the same average time per test, SRC using AC
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outperforms the RND-SRC. For example, at the 100 msec average time per test,

the recognition rates of the AC-SRC are approximately %96, %93, %95 while the

recognition rates for the RND-SRC are %76, %75, %70 for the RP, EF, and DS

dimensionality reduction, respectively.

The efficiency of using the proposed AC dictionary along with SRC is also shown

in Table 3.1. For example, using a subset of 3500 images (an average number of 35

samples per class) from the original dataset and a DS dimensionality reduction, results

in a matrix size of 100×3500 for which RND-SRC method achieves %94.2 recognition

rate. In contrast, to achieve the same recognition rate, the proposed method only

needs an average number of 5 clusters per class, which leads to a 100×500 training

matrix. This is a reduction of number of columns in matrix D by a factor of 7

(3500 for RND-SRC to 500 for AC-SRC). Considering the fact that the `1-norm

minimization solution has a quadratic computational complexity, the proposed AC-

SRC introduces a significant improvement in the running time for recognition of a

single test image. This improvement is reflected in Table 3.1, where the SRC-AC

with DS dimensionality reduction leads to a speed improvement of factor 33 (2.64s

for RND-SRC to 0.08s for AC-SRC) while achieving even better recognition rates

(%94.7 for AC-SRC compared to %94.2 for RND-SRC). Similar improvements are

made when RP and EF dimensionality reduction methods are used along with SRC.

Table 3.1: Recognition rate, running time per test and number of columns in matrix
D for AC-SRC and RND-SRC methods for classifications of faces from 100 subjects
of FRGC dataset using Random Projection (RP), Eigen (EIG) and Down-Sampling
(DS) features.

DR
Method

AC-SRC RND-SRC
Acc(%) Time(s) V Cols Acc(%) Time(s) V Cols

RP 95.0 0.03 300 94.0 0.81 2000
EIG 95.0 0.18 900 94.2 1.33 2500
DS 94.7 0.08 500 94.2 2.64 3500
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Figure 3.12: SMRS(left), Metaface(middle) and FDDL (right) representatives selected
on subjects 3, 4514 and 8 from Extended Yale B (top), FRGC (middle), and Cedar
Buffalo (bottom) datasets, respectively.

3.3 Evaluation Studies on the Role of Sample Reduction in SRC

As discussed in Section 3.1, some studies suggested alternatives for large train-

ing matrices in SRC to make the whole process faster and space efficient. These

sample reduction methods are categorized into dictionary learning based methods

and sample selection methods. Three of these approaches i.e. Metaface DL, FDDL,

and SMRS are introduced in Section 3.1. Our proposed AC method can also be

categorized as a dictionary learning based method.

These sample reduction approaches are evaluated in SRC frameworks on a va-

riety of datasets and the corresponding results are reported in [73]. Experiments are

conducted on FRGC and Extended Yale B face and USPS digits datasets introduced

in Section 2.2. Figure 3.12 shows a column of SMRS, Metaface (MF) and FDDL dic-

tionaries for three different datasets. As can be seen, SMRS dictionary (left column)

selected some of the original data as representatives. On the other hand, Metaface

48



and FDDL methods learn their own representatives which are different from original

images.

In this evaluation study, we first build dictionaries for different sample reduction

methods. SRC classifies test samples in conjunction with each individual dictionary

and their recognition rates and testing time are compared. We also compare these

methods to when all the original data and a randomly selected subset of the data is

used as the training matrix in SRC. Results are presented separately for Extended

Yale B, FRGC and USPS datasets.

3.3.1 Experiments on Extended Yale B Dataset

In the first experiment, SMRS algorithm with a fixed predetermined λ (equation

(3.14)) for all classes was applied to training images to select the best representatives

to be used as a dictionary. This algorithm selected 8, 9, 10 or 11 (with an average

number of 9.58) representatives for each class (364 total representatives). Total run-

ning time for SMRS algorithm to build the dictionary was around 20 seconds. After

this step, original image vectors of length 32256 were down-sampled into 120 dimen-

sional vectors. Recognition rate using these representatives in an SRC framework is

%91.53 while the average classification time for a test sample is 50.87 milliseconds.

Number of selected representatives from the above SMRS experiment, are forced

into Metaface and FDDL dictionary learning methods. Metaface dictionary learning

process takes approximately 1300 seconds for all classes while FDDL learning time

is about 19400 seconds which is dramatically slow in comparison to the other two

methods. For the same dimensionality reduction approach (i.e. down-sampling),

SRC recognition rates are %86.60 and %92.52 for Metaface and FDDL dictionaries,

respectively. Finally, the best recognition rate is reported for our proposed method

(AC-SRC) which is equal to %93.09 while the AC learning time is roughly 174 seconds
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which is acceptable in comparison to other methods learning time. In this experi-

ment, the values for τ and Qmax were set such that the average number of formed

representatives per class is close to the one from SMRS algorithm.

In order to test the effect of dimensionality reduction on classification results,

the above experiments are repeated using random projection dimensionality reduc-

tion which projects face images into a 120 dimensional space. The classification is

repeated 10 times with different random projection matrices and the average recog-

nition rate using SMRS, Metaface, FDDL and AC dictionary learning methods are

%93.25, %88.17, %94.04 and %94.42, respectively.

To complete the experiments, SRC is also deployed as suggested in [7], i.e.

with randomly-selected samples (RND-SRC) and also with using all available train-

ing samples as the training matrix (ALL-SRC). Random selection of training samples

is repeated 10 times and the average recognition rate is reported. Results confirm

that using SMRS, FDDL and the proposed AC dictionaries can improve the recogni-

tion accuracy especially when DS dimensionality reduction is used. When using all

training samples, as expected, SRC achieves highest recognition rates of %97.70 and

%98.37 for DS and RP dimensionality reduction processes, respectively. Note that

although this approach dominates in terms of accuracy, it is much slower comparing

to when selecting a subset or learn a dictionary of samples. Specifically, while matri-

ces as small as 10 representatives per class (a total of 380 samples) can classify a test

sample in approximately 50 msec, classification time using a training matrix of all

training samples (a total of 1207 samples) is about 390 msec which is approximately

8 times slower. Table 3.2 shows the summary of the learning and classification results

on the Extended Yale B dataset.
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3.3.2 Experiments on FRGC Dataset

SMRS algorithm is employed first to select training representatives and form

the first dictionary. The parameter λ is selected such that the average number of

representatives is 12.5 with the total dictionary learning time of 38 seconds. The

same numbers of representatives are forced to Metaface and FDDL dictionary learn-

ing methods which introduce far longer learning processes (8200 and 91000 seconds

respectively). On the other side, AC learning time is 172 seconds which is a relatively

acceptable learning time. Again, learning parameters for the adaptive AC method

are selected such that the average number of representatives per class is similar to

the one for SMRS method.

Learned dictionaries using the four methods are used for SRC classification

along with down-sampling dimensionality reduction. This dimensionality reduction

changes sample vectors length from 3600 to 100. Recognition rates using SMRS,

Metaface FDDL and AC-SRC dictionaries are %94.30, %90.77, %94.10 and %97.06,

respectively. For this dataset, similar to Extended Yale B dataset, SRC accuracy is

the highest when AC dictionary is used and SMRS and FDDL dictionaries perform

better comparing to when Metaface dictionary is employed. The same number of

representatives per class is also forced to select 10 random subsets of the training

Table 3.2: Recognition rate (using down-sampling (DS) and random projection(RP))
and learning time for different sample reduction methods on Extended Yale B face
dataset.

%Acc (DS) %Acc (RP) Learn Time (s) Test Time (s)
RND-SRC 85.79 92.49 N/A 0.051
SMRS-SRC 91.53 93.25 20 0.050
MF-SRC 86.60 88.17 1300 0.051
FDDL-SRC 92.52 94.04 19400 0.049
AC-SRC 93.09 94.42 174 0.045
ALL-SRC 97.70 98.37 N/A 0.39
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data. These matrices are used for SRC classification and the average recognition rate

of %90.23 is obtained which is about %7 smaller than when AC dictionary is used.

In the next step, random projection is used to reduce the dimensionality of

the samples. The average recognition rates are %85.76, %80.65, %88.02 and %91.93

for SMRS, Metaface, FDDL and AC-SRC dictionaries respectively. The average

recognition rate reported by randomly selected representatives in this experiment is

%83.10 which is again far smaller than most of the dictionary-based classifications.

Regarding testing time, sample reduction methods introduce approximately

0.32 second to classify a test sample when the total number of atoms in the training

matrix is about 1250. Although incorporating all samples to form the SRC training

matrix ends up in high recognition rates (%96.80 and %97.70 for DS and RP, respec-

tively), the classification of every single FRGC face sample takes about 15 seconds

which is about 47 times slower than when smaller dictionaries are used for classifi-

cation. The results of using different sample reduction methods for classification of

FRGC face dataset are summarized in Table 3.3.

3.3.3 Experiments on USPS Digit Dataset

At the first step, SMRS dictionary learning is employed to build the dictionary

matrix. Parameter λ is selected to create an average of 24.7 representatives per class

Table 3.3: Recognition rate (using down-sampling (DS) and random projection(RP))
and learning time for different sample reduction methods on FRGC face dataset.

%Acc (DS) %Acc (RP) Learn Time (s) Test Time (s)
RND-SRC 90.23 83.10 N/A 0.32
SMRS-SRC 94.30 85.76 38 0.32
MF-SRC 90.77 80.65 8200 0.31
FDDL-SRC 94.10 88.02 91000 0.34
AC-SRC 97.06 91.93 172 0.30
ALL-SRC 96.80 97.70 N/A 15.14
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and the dictionary learning time is 85 seconds. Similar to face datasets, Metaface and

FDDL dictionary learning methods are incorporated with the same number of repre-

sentatives per class as SMRS dictionary. Dictionary learning running time is 5377 and

2298 seconds for Metaface and FDDL learning methods, respectively. AC dictionary

is built under parameters setting such that the average number of representatives per

class is approximately equal to the one from SMRS. Learning time for the AC dictio-

nary learning is 82 seconds which represents the fastest dictionary learning among all

methods for digits dataset. DS and RP are used to reduce the dimensionality of the

data from 256 to 64. Recognition rates using down-sampled SMRS, Metaface, FDDL

and AC dictionaries are %88.82, %85.93, %90.16 and %87.69, respectively while the

average recognition rate over 10 runs of random projection dimensionality reduction

are reported %80.83, %79.40, %85.08 and %80.13, respectively. An average testing

time of 24 milliseconds is reported for each digit test sample in the above classification

framework. Table 3.4 shows SRC recognition rate and dictionary learning time when

using SMRS, Metaface, FDDL and AC dictionary learning methods as well as using

all and random selections over the training samples for the digit recognition problem.

Table 3.4: Recognition rate (using down-sampling (DS) and random projection(RP))
and learning time for different sample reduction methods on USPS digit dataset.

%Acc (DS) %Acc (RP) Learn Time (s) Test Time (s)
RND-SRC 82.49 76.20 N/A 0.02
SMRS-SRC 88.82 80.83 85 0.02
MF-SRC 85.93 79.40 5377 0.02
FDDL-SRC 90.16 85.08 2298 0.02
AC-SRC 87.69 80.13 82 0.02
ALL-SRC 97.50 95.58 N/A 5.22

53



3.3.4 Interpretation of the Results

From the learning point of view, in the experiments on face data, SMRS is

the fastest method. While Metaface and FDDL methods need more than an hour

to build the dictionary, the learning time for SMRS is less than a minute. Our pro-

posed adaptive clustering method introduces a learning time about 3 minutes which

is way faster than Metaface and FDDL but not as fast as SMRS. In digit recognition

experiments, AC introduces the fastest learning time and we can conclude that it

is a fast learning method when the dimensionality of the samples is lower but there

are a large number of training samples available for each class. SMRS learning time

is still reasonable and slightly longer than AC but Metaface and FDDL, introduce

very slow learning process on digit recognition experiments. These differences in the

learning phase make SMRS and AC the best choice for dynamic situations where the

dictionary is regularly updated with new samples. While FDDL method introduces

the longest learning process on Extended Yale B and FRGC face datasets, Metaface

has the slowest learning curve when classifying digits. This fact implies that Metaface

learning time highly depends on the number of training images rather than the di-

mensionality of the training samples. On the other hand, FDDL needs more time to

learn when number of classes and the dimensionality of the data is higher.

Figure 3.13 shows SRC accuracy using different sample and dimensionality re-

duction methods on the three datasets. Investigation of the results for the four

different sample reduction methods show that for both Extended YaleB and FRGC

face data, AC-SRC introduces the best recognition rates. The next accurate results

obtained when FDDL dictionary is used (except for one case where SMRS introduces

%0.2 higher recognition rate than FDDL on FRGC face dataset). SRC recognition

rates when using SMRS dictionary are, in general, slightly lower than when FDDL

dictionary is applied. For digit recognition experiments, FDDL-SRC is the best clas-
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Figure 3.13: Recognition accuracy on different datasets using dimensionality reduc-
tion methods down-sampling (DS) and random projection (RP).

sifier in terms of accuracy, while SMRS and AC stand after this method. Metaface

dictionary learning method accuracy is lower comparing the other two approaches

and even in some cases it is less accurate than when simple random selection of the

training data is used as training model (Using RP dimensionality reduction on Ex-

tended Yale B and FRGC datasets). As expected, using all the training samples as

matrix V in SRC results in the best recognition rates in all experiments but classi-

fication of a test sample by this approach is far slower than when any one of the 5

sample reduction methods used in conjunction with SRC. The long classification time

makes this approach non-useable in real-life applications and proves the effectiveness

of incorporating sample reduction.

Analysis of the SRC recognition rates using down-sampling and random projec-

tion dimensionality reduction gives us some interesting results where for the FRGC

and USPS datasets, DS is more effective than random projection for all 5 sample

reduction methods but this is not the case for the Extended Yale B dataset. This
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difference may be the result of the characteristics of these datasets. As introduced in

Section 2.2, Extended Yale B dataset contains face images which are similar in pose

and expressions but only captured in different controlled lighting conditions while the

other two datasets were not captured within a controlled environment.

As a summary, one can conclude that using reduced-samples dictionaries in an

SRC framework, leads to faster classification process comparing to when all training

images are used to form the matrix V in SRC optimization (3.1). Among the selected

sample reduction methods, the proposed AC and FDDL introduced the highest recog-

nition rates while the learning curve for FDDL was much slower than AC and SMRS.

In comparison to best recognition results, the ones for the SMRS are also accept-

able in all datasets. This makes FDDL to be more applicable in off-line applications

and AC and SMRS to be more practical when training data is always updating and

learning is performed in a dynamic manner.
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CHAPTER 4

MULTI-MODAL SPARSE REPRESENTATION CLASSIFICATION

The SRC algorithm and its variants described in Section 2.4 and 3.1 looks at the

data space as a single modality (feature) space. In most of classification problems,

different modalities of a data sample may contain different discriminative informa-

tion and using a combination of these modalities would result in better classification

rates comparing when focusing on only one modality. There are many classification

approaches especially in object recognition which consider multiple feature spaces to

increase the classification accuracy [74, 75]. In this chapter, we first review a study

which focuses on multi-modality implementation of SRC and then propose 3 methods

to improve the efficiency and accuracy of this framework.

4.1 Related Work

4.1.1 Classification Using Multi-task Joint Sparse Representation

In [24], a supplement method was presented on top of SRC which combined

the multi-modality property of multitask sparse linear regression [76] and the high

classification power of the SRC method. Authors of [24], called their approach Multi-

task Joint Sparse Representation and Classification (MTJSRC). MTJSRC utilizes

different tasks (modalities/feature spaces) of the training dataset and makes several

training matrices to be used in the SRC framework. The test sample may be also

represented as multiple feature vectors. An example for this configuration is an image

classification problem where R, G and B components of test and training images are
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Figure 4.1: An illustration for MTJSRC algorithm.

separately used to form 3 training matrices. A schematic of this method is illustrated

in Figure 4.1.

MTJSRC uses a modified version of the original SRC algorithm. Assume the

test sample, y, and any of the training samples from C classes, V , are represented by

K different modalities. Denote by Mk = [Mk
1 ,M

k
2 , . . . ,M

k
C ] ∈ Rmk×n the kth modality

of the training samples V . Each sub-matrix Mk
i is an mk×ni matrix with mk and ni

represent the dimensionality of kth modality and the number of training samples in

class i, respectively. Similarly, a test sample y can be represented by K vectors, each

representing a modality. For the kth modality of y, i.e. yk ∈ Rmk
, equation (2.17)

can be reformulated as

yk = Mkxk + ek, (4.1)

where xk ∈ Rn (n =
∑C

i=1 ni) is the representation of yk of over the matrix Mk and

ek ∈ Rmk
is the corresponding error vector. The coefficient vector xk can be decom-

posed into smaller vectors xki ∈ Rni and each of them is the reconstruction coefficient

vector associated with class i (xk =
[
(xk1)T, (xk2)T, . . . , (xkC)T

]T ∈ Rn). Denote by
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Figure 4.2: A demonstration of the training samples matrix M (a) and the coefficients
matrix X (b) in (4.2).

X = [x1,x2, . . . ,xK ] ∈ Rn×K the coefficients matrix contains the coefficient vectors

for all K tasks. For a better understanding, Figure 4.2 shows the training matrices

M and its corresponding coefficient matrix X. Here, the training matrix is defined

as M=[(M1)T, (M2)T, . . . , (MK)T]T.

In order to classify the test sample, similar to SRC, it is required to recover

the coefficient vectors xks or equivalently, the coefficient matrix X. According to

the sparsity constraint in SRC, here, the ideal recovered matrix X for a test sample

yi from class i should be a row-sparse matrix which contains zero entries except for

the rows associated with class i, or equivalently entries in sub-matrix Xi. This sub-

matrix is called Xi ∈ Rni×K and Xi = [x1
i ,x

2
i , . . . ,x

K
i ] and contains the coefficients

associated with all modalities of training samples from class i. Figure 4.2b illustrates

this sub-matrix corresponds to class 1 within the overall coefficient matrix X.

In its first step and to recover the coefficient matrix X, MTJSRC solves the

optimization problem

X̂ = argmin
X

{
1

2

K∑
k=1

∥∥yk −Mkxk
∥∥2

2
+ λ ‖X‖1,2

}
, (4.2)
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which is also known as group-LASSO. The notation ‖·‖1,2 is the mixed `1,2-norm

operator to impose raw-sparsity and is defined as

‖X‖1,2 =
C∑
i=1

‖Xi‖2. (4.3)

An explanation on how imposing `1,2-norm to the objective function helps to find the

class associated with the test sample is as follows. first, to combine the strength of

all the atoms within class i, `2-norm (Frobenius norm) is applied over Xi. So there

will be a single number (µi) associated with each class. All these numbers form the

vector

µ = [‖X1‖2 , ‖X2‖2 , . . . , ‖XC‖2] = [µ1, µ2, . . . , µC ] . (4.4)

The objective of sparse coding in SRC needs to find a solution in which as few as

possible classes get involved in the reconstruction of the test sample. To consider this

constraint in the objective function, the term ‖µ‖0 is added. However, as discussed in

Section 2.3, solving the non-convex `0-norm optimization is NP-hard and its relaxed

version, i.e. `1-norm optimization is used or equivalently

‖µ‖0 = ‖[‖X1‖2 , . . . , ‖XC‖2]‖0 =
C∑
i=1

I (‖Xi‖2 6= 0)
relaxed−−−−→

C∑
i=1

‖Xi‖2. (4.5)

The optimization problem (4.2) is shown to have an iterative solution which

is known as Accelerated Proximal Gradient (APG) method [77, 78]. In this method,

optimization is done in two alternative steps which is called Generalized gradient

mapping and Aggregation. A summary of this algorithm which is used by the authors

in [24] is shown in Algorithm 4.1. Note that the running cost of this algorithm is

mostly come from the gradient calculation (4.6) and the cost for other steps are

negligible comparing to this step. If T is the average number of iterations and kL is

the index of the modality with the largest dimension, the computational complexity of
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Algorithm 4.1: APG algorithm proposed in [24] to solve (4.2).

input : Modality matrices Mk|Kk=1, Test sample modalities yk|Kk=1

Sparsity regulizer µ and step-size η > 0;

initialization: t = 0 ; α0 = 0 ; G0 = gk,0|Kk=1 = 0n×K ;

repeat

Step 1: Given Gt update Xt+1:

for modality k ∈ {1, 2, . . . ,K} do

∇k = −
(
Mk
)T
yk +

(
Mk
)T

Mkgk,t; (4.6)

xk,t+1 = gk,t − η∇k;

for class i ∈ {1, 2, . . . , C} do

xk,t+1 = max

([
1− λη

‖xt+1
i ‖2

]
, 0

)
;

Step 2: Given Xt and Xt+1 update Gt+1:

αt+1 = 2
t+3 ; γ = αt+1(1−αt)

αt
;

for modality k ∈ {1, 2, . . . ,K} do

gk,t+1 = xk,t+1 + γ
(
xk,t+1 − xk,t

)
;

t← t+ 1;

until Convergence or Maximum Iteration;

output : Matrix X = [x1,x2, . . . ,xK ];

(4.6) is O
(
KnmkL + 2TKnmkL

)
[24] which can also be considered as the complexity

for the whole Algorithm 4.1.

Given recovered coefficient vectors for different tasks, the class of the unknown

test sample can be calculated in a similar way to (2.19) i.e.

class(i) = î = argmin
i

K∑
k=1

∥∥yk −Mk
i x

k
i

∥∥2

2
. (4.7)
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Authors of [24] showed while the original SRC method achieves acceptable

recognition rates by using only one feature of the data, combining different modali-

ties using MTJSRC improves the results in face and object recognition applications.

Experiments in this study were conducted on Extended Yale B face datasets using

two features and on Oxford flower dataset [79] with 7 features. Classification accu-

racies were better when using multi-feature SRC comparing to when single feature

SRC classifiers were used. Moreover, they compared their method to other multi-

feature classifiers such as SVM and nearest subspace where the results confirmed

higher accuracy for the proposed method.

MTJSRC challenges the accuracy of SRC by incorporating multiple modalities.

It is shown that when modalities are selected in such a way that they cover different

aspects of the data space, MTJSRC outperforms SRC in different applications such

as face and object recognition [24]. MTJSRC uses the modalities from all samples

directly to form its models, thus its time complexity depends on both the number of

modalities and their dimensionality. Despite the good results reported in [24], similar

to SRC, MTJSRC’s performance degrades when there are a large number of training

samples available as training model. In comparison to SRC, this problem is even more

intense in this case since there are multiple training matrices each of them imposing

its own time complexity to the solution. This complexity imposes some limitations on

using this method in practical applications facing a large number of training data with

high dimensional modalities. Moreover, different modalities may contain redundancy,

un-used information, and noisy data which decrease the classification robustness.

4.2 Efficient and Accurate Classifiers Using Sparse Representation

In this section, we propose methods based on sparse representation which clas-

sify test samples in a more accurate way by incorporating multiple modalities and
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in the same time performs in a more efficient manner (both time and space) by sub-

stituting the original data by an efficient representation of the data in the training

phase. For this purpose, we employ the sample reduction approaches discussed in

Chapter 3.

In this study, incorporating sample reduction methods into MTJSRC to tackle

its limitation on large number of training samples is approached in three ways.

1- Red-Mod: (First sample reduction, then modality extraction) In this approach,

training samples are fed into a sample reduction method to come up with a more

abstract representation and then, modalities are extracted to be used in the opti-

mization process and final classification. Since all modalities are extracted from a

same set, they end up with equal number of columns and the problem can be solved

in a similar way of MTJSRC by employing all modality matrices directly in the

optimization problem (4.2) and recovering the sparse coefficients. This approach is

described in details in Section 4.2.1 and is published in [80].

2- Uniform Mod-Red: (First modality extraction, then uniform sample reduc-

tion) Due to the fact that different modalities come from different natures and the

data in each modality space has its own information overlaps and redundancies,

the optimum number of representatives may vary among different modalities. By

extracting the features in the first step, Approach 1 ignores this fact. To consider

this issue, second approach extracts the modalities from the original training sam-

ples at the first step and then apply sample reduction methods to come up with

abstract modality matrices. These matrices are then used in a multi-modality ob-

jective function which is optimized to recover the coefficient matrix. From this

category, in Section 4.2.2, we propose a multi-modal SRC-based method with Fisher

discrimination sample reduction which is published in [81].
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Figure 4.3: An illustration for CMSRC method.

3- Non-Uniform Mod-Red: (First modality extraction, then non-uniform sam-

ple reduction) Although approach 2 applies dictionary learning algorithms directly

on modality matrices, it enforces same number of representatives on all modality ma-

trices from a same class which can be considered as a limitation. In real world data,

over a same set of data, the representative power of a class may differ among different

modalities. To address this limitation, in Section 4.2.3 we present a multi-modality

sparse representation-based classification method which can handle modality matri-

ces with different number of atoms in each class. This approach is also published

in [82].

4.2.1 Cluster-Based Multi-task Classification Using Sparse Representation

In this section, a multi-modal dictionary-based framework is presented for a

more efficient and, in the same time, accurate classification which is called Cluster-

based Multi-task Sparse Representation Classification (CMSRC). This method is cat-

egorized to be a method from approach 1 and its block diagram is shown in Figure 4.3.
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Method In the first step, adaptive clustering algorithm (Algorithm 3.3) is applied

to the training matrix V to build a dictionary with different number of representatives

for each class. Representatives’ cardinality depends on the variability of the training

samples in each class and is tuned by the two parameters τ andQmax. After processing

the training images by this algorithm, sub-dictionaries Di with different number of

atoms are formed for each class. These sub-dictionaries then form the super dictionary

D which contains representatives for all samples from all classes.

The next step is to extract modalities from each atom in the dictionary D.

Different modality matrices will be formed which are noted by Mk
D ∈ Rmk×d. Note

that modality matrices extracted from dictionaries can be decomposed into class-

modality matrices or Mk
D =

[
Mk

D1
,Mk

D2
, . . . ,Mk

DC

]
. These modality matrices are

then used in a framework to classify an unknown test sample. A test sample y which

is a single-modality vector can be also represented as a multi-modal vector of different

dimensions noted by yk. For the kth modality we have

yk = Mk
Dx

k + ek, (4.8)

where xk ∈ Rd is the representation of the kth modality of the test sample y over

the modality matrix Mk
D and ek ∈ Rmk represents the error term. The coeffi-

cient vector xk is formed by sub-vectors xki ∈ Rdi associated with class i (xk =[(
xk1
)T
,
(
xk2
)T
, . . . ,

(
xkC
)T]T

). Similar to what discussed in Section 4.1.1, the coeffi-

cient matrix X can be recovered by solving

argmin
X

{
1

2

K∑
k=1

∥∥yk −Mk
Dx

k
∥∥2

2
+ λ ‖X‖1,2

}
. (4.9)

To solve (4.9), we used Algorithm 4.1 with substituting Mk by Mk
D. In the classifica-

tion step, the class of the unknown test sample is determined by placing the recovered

coefficient matrix X in (4.7).
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Experiments We performed face recognition experiments to show the effectiveness

of the proposed CMSRC method in comparison to other common classifiers including

SRC, AC-SRC, MTJSRC, Nearest Subspace (NS) Classifier [83], Nearest Neighbor

(NN) Classifier [15] and Support Vector Machines (SVM) [18] with linear kernel.

Comparison to Single-Modality SRC-based Approaches We first compare the recog-

nition rate of the proposed method (CMSRC) to the single modality RND-SRC (where

a random subset of training images are used as training matrix) and AC-SRC. To

exactly mimic SRC process in [7], we randomly select a subset from the training set

and then use their GS and LBP matrices in an SRC framework separately. For fixed

number of samples in each class (4∼12 for Extended Yale B and 2∼12 for FRGC

datasets), the sample selection and classification is repeated 10 times and the average

and standard deviation of recognition rates are reported. To compare with AC-SRC,

Algorithm 3.3 is separately applied to GS and LBP modalities of all training samples.

Tuning parameters τ and Qmax are selected such that the average number of clus-

ters per class for each modality become equal to what used for the SRC experiment.

Finally, the learned dictionaries are fed into SRC for classification.

In the next step, to run our proposed CMSRC on the data, first, adaptive

clustering algorithm is applied to all training samples. Again, we tune the algorithm

to come up with the same number of representatives per class as what is used for

previous simulations. Then, feature vectors are extracted from the representatives to

form the modality matrices. Before using the modality matrices Mk
Ds in (4.9), all their

columns are down-sampled to 100 dimensional vectors. This dimensionality reduction

is necessary to convert the classification problem to an under-determined system

of linear equations (details are discussed in Section 2.4.2). After the optimization
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Figure 4.4: Recognition rates of single modality RND-SRC, AC-SRC and CMSRC
on Extended Yale B dataset.

process, given the recovered coefficients X, classification task is completed using (4.7).

Figures 4.4 and 4.5 show the recognition rates for Extended Yale B and FRGC

face datasets, respectively. As can be seen for both datasets and with different number

of representatives per class, the proposed method performs more accurately than the

original SRC and AC-SRC which are two single-modality approaches.
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Figure 4.5: Recognition rates of single modality RND-SRC, AC-SRC and CMSRC
on FRGC dataset.
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Figure 4.6: Recognition rates of multi-modality classifiers on Extended Yale B
dataset.

Comparison to Multi-Modality Approaches The proposed method is also evaluated

against other multi-modality classification approaches. Similar to previous experi-

ment, we use fixed number of representatives for all classifiers. MTJSRC, as per-

formed in [24], is driven by randomly selected training samples. We repeat this selec-

tion 10 times and report the average recognition rate. For other classifiers, including

Nearest Subspace (NS), Nearest Neighbor (NN) and Support Vector Machine (SVM),

similar to our previous experiment on CMSRC, first the number of representatives is

reduced by applying Algorithm 3.3 and then used the final representatives as training

models for classification. Figures 4.6 and 4.7 show the classification rates for this

experiment on Extended Yale B and FRGC datasets, respectively. It is clearly seen

that the proposed method achieves higher recognition rates when compared to other

classifiers. In particular, for small number of training representatives, CMSRC shows

significant improvements in comparison to other classifiers.
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Figure 4.7: Recognition rates of multi-modality classifiers on FRGC dataset.

4.2.2 Multi-modal Sparse Representation Classification with Fisher Discrimination

Sample Reduction

In this section, we propose a multi-modal dictionary-based classification method

called Multi-modal Fisher discrimination Sparse Representation Classification. Our

approach in this section is to first extract the modalities and then perform sample

reduction on the extracted modalities individually. Since for all modality matrices,

sample reduction is employed by enforcing equal number of representatives per class,

this method is considered to belong to approach 2, Modality/Uniform Reduction.

The block diagram of this method is illustrated in Figure 4.8.

Method Given the matrix of training samples V , a total number of K modali-

ties are first extracted to form matrices Mk, k = 1 . . . K which are then compressed

into dictionaries DMk ∈ Rmk×d, where d =
∑C

i=1 di is the number of atoms in the

dictionary (di is the number of representatives of class i in DMk
). To achieve this
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Figure 4.8: An illustration for MMFSRC method.

compression, FDDL (Section 3.1.2) is employed in a multi-modality scheme which

solves

argmin
DMk ,Wk

{
C∑
i=1

r
(
Mk

i , D
Mk

,
[
W k
]
i

)
+ λ1

∥∥W k
∥∥

1
+ λ2f

(
W k
)}

. (4.10)

The modality dictionary DMk
is formed by class-specific sub-dictionaries DMk

i ∈

Rmk×di |Ci=1 and correspondingly, the coefficient sub-matrix
[
W k
]
i

(derived from the

matrix of all coefficients W k) represents modality matrix for class i, Mk
i over the

dictionary DMk
.
[
W k
]
i

can be considered as a row-concatenation of sub-matrices[
W k
]j
i
∈ Rdj×ni (Figure 4.9). Similar to what discussed in Section 3.1.2, dictionary

DMk
is a good representative for the modality matrix Mk if 3 constraints are sat-

isfied. First, the whole dictionary DMk
should represent all atoms associated with

class i or mathematically, Mk
i
∼= DMk [

W k
]
i
. Second, Mk

i
∼= DMk

i

[
W k
]i
i

to make the

sub-dictionary DMk

i to be a good representative for atoms associated with class i.

Finally, for j 6= i, a good discriminative dictionary may keep DMk

j

[
W k
]j
i

as small as

possible to make the sub-dictionary for class i a ”not good” representatives for other

classes. Therefore, discriminative fidelity term r(Mk
i , D

Mk
,
[
W k
]
i
) is defined as
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coefficient matrix W k.

∥∥∥Mk
i −DMk [

W k
]
i

∥∥∥2

F
+
∥∥∥Mk

i −DMk

i

[
W k
]i
i

∥∥∥2

F
+

C∑
j=1
j 6=i

∥∥∥DMk

j

[
W k
]j
i

∥∥∥2

F
. (4.11)

The Fisher discrimination criterion f(·) is forced to make the classes within the dictio-

naryDMk
as discriminative as possible by minimizing the within-class and maximizing

the between-class scatter of matrix W k [22]. These two scatter matrices are denoted

by Sω and Sβ, respectively and defined as

Sω(W k) =
C∑
i=1

∑
w∈[Wk]

i

(
w −mk

i

) (
w −mk

i

)T
(4.12)

and

Sβ(W k) =
C∑
i=1

ni
(
mk

i −mk
) (
mk

i −mk
)T
, (4.13)

where mk
i and mk are the mean vector of

[
W k
]
i

and W k, respectively. Given above

definitions, the Fisher discriminative term is defined as

f(W k) = tr(Sω(W k))− tr(Sβ(W k)) + η
∥∥W k

∥∥2

F
. (4.14)
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Algorithm 4.2: Multi-modal Fisher discrimination DL.

input : training samples V ;

desired number of representatives for all classes, di|Ci=1;

regularization parameters λ1, λ2;

for k ∈ {1, 2, . . . , K} do

Extract modalities Mk from original samples V ;

Initialize DMk
s with random coulumns with unit `2-norm;

repeat

for k ∈ {1, 2, . . . , K} do

for i ∈ {1, 2, . . . , C} do

Fix DMk
and solve (4.10) for

[
W k
]
i
;

for i ∈ {1, 2, . . . , C} do

Fix W k and solve (4.10) for DMk

i ;

until Convergence or Maximum Iteration;

output : Dictionaries DMk |Kk=1;

Coefficients W k|Kk=1;

Authors in [22] show that (4.14) is a convex function which helps the overall (4.10)

to be a convex optimization problem.

The main optimization problem (4.10) is solved for every modality k and can be

approached as an alternative optimization problem where W k is updated while DMk

is fixed in the first step and vice versa in the second step. This process is iteratively

repeated until convergence [22]. Algorithm 4.2 summarizes the optimization process

of (4.10).
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Given the unknown test sample and the dictionaries for all modalities, DMk
s,

the objective is to reconstruct the coefficient matrix X in

argmin
X

{
1

2

K∑
k=1

∥∥∥yk −DMk

xk
∥∥∥2

2
+ λ ‖X‖1,2

}
. (4.15)

Since numbers of dictionary atoms per class (dis) are equal for all modalities, it is

possible to use the APG algorithm (Algorithm 4.1) by only replacing Mk with DMk
.

Given the recovered coefficient matrix, one can determine the class of test sample y

by placing X and DMk
in (4.7).

Experiments Several experiments are conducted to show the efficiency and accu-

racy of the proposed MMFSRC method in face recognition applications. SRC-based

methods and more specifically, when using FDDL sample reduction are shown to be

effective in other applications such as object and digit recognition [22]. In this section,

MMFSRC is compared to both single modality approaches SRC and FDDL-SRC Sec-

tion 3.1.2 and other multi-feature approaches including MTJSRC, Nearest Subspace,

Nearest Neighbor and Support Vector Machines with linear kernel. Experiments are

conducted on YaleB and FRGC face datasets introduced in Section 2.2.

Comparison to Single-Modality SRC-based Approaches These set of experiments

compares the accuracy of MMFSRC to the single modality approaches of SRC and

FDDL-SRC. Modalities are extracted from all training samples which ends in matrices

of size 1024×1216 (GS) and 900×1216 (LBP) for Extended Yale B and 1024× 5000

(GS) and 900×5000 (LBP) for FRGC face samples. At first, the original SRC is exe-

cuted on each individual modality separately. For this purpose, we randomly selected

fixed number of columns (4∼12 for Extended Yale B and 2∼12 for FRGC) from GS

and LBP training matrices which are then separately used as SRC training matrices
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Figure 4.10: Recognition rates of single modality RND-SRC, FDDL-SRC and MMF-
SRC on Extended Yale B dataset.

(V in (3.1)). In order for the optimization problem to recover a sparse coefficient vec-

tor, we need to satisfy the compressive sensing conditions (Section 2.3) and for this

purpose, the system of linear equations (2.16) is needed to be an under-determined

system of linear equations. To achieve this, down-sampling is used to reduce the

dimensionality of the samples to 100. Finally, the coefficient vector x is recovered

by solving (3.1) and the identity of test samples y is determined by applying (2.19).

This random selection of training modalities is repeated 10 times and after running

SRC, average recognition rates for different sizes of training matrices are reported in

Figures 4.10 and 4.11 for Extended Yale B and FRGC datasets, respectively.

Equation (3.8) is then used to form two dictionaries while λ1 and λ2 are set

to 0.005 and 0.05, respectively. As discussed previously, to build FDDL dictionaries,

it is possible to force the number of atoms per class. To achieve a fair comparison

with SRC experiments in terms of time complexity, 4∼12 and 2∼12 (for Yale B and

FRGC) atoms per class are enforced to the dictionaries. These dictionaries are then

used individually instead of SRC training matrix and after recovering the coefficient
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Figure 4.11: Recognition rates of single modality RND-SRC, FDDL-SRC and MMF-
SRC on FRGC dataset.

vectors, classification is done over the test dataset. The corresponding results are

reflected by FDDL-SRC(GS) and FDDL-SRC(LBP) in Figures 4.10 and 4.11.

Finally, the proposed MMFSRC method, i.e. equation (4.15), is employed given

the two modality dictionaries and the set of test data. Solid blue line in Figures 4.10

and 4.11 illustrates the recognition rates of this method given different number of

representatives per class. It can be seen that for similar number of columns, higher

recognition rates are achieved using MMFSRC comparing to both SRC and FDDL-

SRC which run in a single modality scheme. Note that, for example in Extended

Yale B experiments, MMFSRC achieves %98.27 recognition rate by only using a total

number of 152 representatives (4 per class) while the second best classifier, i.e. FDDL-

SRC with LBP features, at its best accuracy (a total number of 456 representatives),

has a recognition rate of %95.47.

Comparison to Multi-Modality Approaches The next evaluation illustrates the ac-

curacy of MMFSRC in comparison to MTJSRC. Since MTJSRC uses a selection

of training set to form its training matrix, we repeated this algorithm 10 times us-

75



4 6 8 10 12
60

70

80

90

100

Number of representatives per class

R
ec
og
n
it
io
n
ac
cu
ra
cy

(%
)

MMFSRC

MTJSRC

(a)

2 4 6 8 10 12
20

40

60

80

100

Number of representatives per class

MMFSRC

MTJSRC

(b)

Figure 4.12: Recognition rates on (a) YaleB and (b) FRGC datasets, for MMFSRC
and MTJSRC.

ing randomly selected training samples. The average of the recognition rates using

this method is compared to MMFSRC results (using the same setup as previous

experiment) in Figures 4.12a and 4.12b for Extended Yale B and FRGC datasets,

respectively. It can be seen that, especially when the size of the training matrix is

very small, the proposed method outperforms MTJSRC. Even when larger number of

representatives (12 per class) are selected to form the training matrix in MTJSRC, it

only achieves %91.76 and %68.01 rates for Extendd Yale B and FRGC, respectively

while with the same number of representatives (and same running time), MMFSRC

achieves %99.50 and %96.73 accuracy.

In final experiment, we used the modalities from all the training samples to train

different classifiers while MMFSRC uses dictionaries with only 12 representatives per

class. The corresponding classification rates are reported in Table 4.1 where the

proposed method achieves recognition rates of %99.50 and %96.73 while MTJSRC

even when all training features are used to build its training matrices introduces

smaller accuracies of %99.01 and %95.43 for Extended Yale B and FRGC datasets,

respectively. Note that, for example, in experiments on FRGC, MMFSRC uses two
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100×1200 matrices while MTJSRC uses two 100×5000 matrices which imposes a far

larger time complexity to the algorithm. More specifically, given the group-LASSO

computational complexity (Section 4.1.1) and with the same number of iterations,

the proposed method is not only more accurate than MTJSRC, but also classifies

each FRGC test sample more than 4 times faster. Experiments also show that when

using all samples, MTJSRC needs more iterations to converge which results in a

much slower classification. Table 4.1 also shows the recognition rates using other

classification approaches using all training samples in training phase. Among these

classifiers, nearest subspace is shown to perform the best where its recognition rates

are slightly smaller and larger on Extended Yale B and FRGC datasets, respectively.

4.2.3 Non-Uniform Multi-Modal Sparse Representation Classification

In the context of multi-task sparse coding (Section 4.1.1), all the assumptions

and formulations are valid for the cases where the training model (matrices Mk) are

directly formed by the original samples. In this situation, given the training samples

V , different modalities are extracted from individual samples (columns of V ) and

stored in modality matrices Mks. Therefore each column in any of the modality

matrices Mk has a corresponding column in all other modality matrices (Mk′ , k′ 6=

k) and as a result, all modality matrices have equal number of columns for each

Table 4.1: Classification accuracy for different classifiers by using all training samples
for training.

Classifier
Accuracy (%)

Extended Yale B FRGC

SVM 94.32 93.23
NN 94.32 90.40
NS 98.60 96.93
MTJSRC 99.01 95.43
MMFSRC 99.50 96.77
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Figure 4.13: Training matrices in (a) original SRC, (b) SRC with dictionary learning,
(c) CMSRC, (d) MMFSRC and (e) SRC using dictionaries with different number of
atoms.

class (Figure 4.13c). The corresponding coefficient vectors, xk, and specifically the

ones associated with each class i corresponding to all modalities, xki , are from equal

dimensionality or mathematically,

{
xki ,x

k′

i ∈ Rni 7−→ xk,xk
′ ∈ Rn

}
, ∀i|Ci=1,∀k, k′|Kk=1

k 6=k′
. (4.16)

As a result, the column-concatenation of the coefficient vectors over all modalities,

i.e. [x1,x2, . . . ,xK ], will form matrix X ∈ Rn×K which is then recovered by (4.2) and

used for classification. This property is also valid for the proposed multi-modality

classifier, CMSRC and MMFSRC (Figure 4.13d). In the case of CMSRC, at the first

step, sample reduction is employed and then modalities MDk
s are extracted, so for

the coefficient vectors from different modalities, the assumption (4.16) is still valid (ni

and n are replaced with di and d). In MMFSRC, modalities are extracted first, but

when learning dictionaries DMk

i s, the same number of representatives, di is imposed

to all modalities for each class. This leads for the coefficients to be in a same situation
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as CMSRC where assumption (4.16) is satisfied. In all above mentioned situations,

it is possible to break the coefficient matrix X to sub-matrices Xi for all classes i

the classification task may be perform by reconstructing a row-sparse X. Therefore,

the group LASSO optimization (4.15) can be utilized for the reconstructing process.

In this section, we look at the classification problem using a sparse representation

framework from a different point of view. In the proposed method, modalities are

extracted from the training samples and stored in different modality matrices which

are then separately fed into a sample reduction process. This approach allows the

number of representatives (dictionary atoms) for each modality to be flexible and

different from other modalities depending on the variability, information content and

discriminative power of that specific modality over the dataset. The classification

problem under this setting is mapped into a new optimization and an algorithm is

proposed to recover the coefficient vectors. This approach is considered from the third

approach, Modality/Nun-Uniform Reduction.

Method In some sample reduction methods the final number of representatives is

not specified. For example, among the methods introduced in 3.1, SMRS and AC

determine the optimum number of representatives by using some parameters. When

K modalities are extracted from the training set, there are K datasets containing dif-

ferent information and redundancies and if the objective is to reduce samples in these

matrices, the optimum solution may leads to a different number of representatives for

each single modality in each class (nki 6= nk
′
i , k, k′ ∈ {1, . . . , K}, k 6= k′). For example,

in a face recognition application, after the sample reduction process, there might be

different number of representatives for GS and LBP modalities for a specific class.

As an example, Figure 4.14a shows the number of samples selected by SMRS for two

modalities on 100 classes of the FRGC face dataset. It can be clearly seen that the
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Figure 4.14: Number of representatives selected by SMRS on (a) two modalities of
100 classes from FRGC face dataset and (b) 6 modalities of 10 classes from UCI digit
dataset.

number of representatives in each class is different for the two extracted modalities.

Another example of variation of number of representatives is shown in Figure 4.14b

where SMRS was applied to 6 modalities of hand written digits samples from 10

classes (0∼9) of UCI digit dataset. In these cases, the training matrices associated

with each modality have different number of columns per class (Figure 4.13e) and

their corresponding coefficient vectors, xki s for different values of k are from differ-

ent dimensionalities. So, they cannot form a matrix anymore and the group LASSO

optimization (4.2) can not be employed. Figure 4.15b shows the coefficient vectors

for an example of this situation. It can be seen that for a specific class, coefficient

vectors corresponding to different modalities have different dimensionalities.
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Figure 4.15: Multi-task coefficients representation (a) matrix X in MTJSRC and
(b) array X include vectors with different length after applying sample reduction to
modality matrices. Note that unlike Xi in (b), Xi in (a) can be represented in a
matrix form.

In order to incorporate a method to handle modality matrices with different

number of atoms, we introduce the 1,2-normalized mixed norm

‖X‖1,N2
=

C∑
i=1

‖Xi‖N2
=

C∑
i=1

K∑
k=1

∥∥xki ∥∥2

nki
, (4.17)

where Xi represents an array of the coefficient vectors xki s (Xi = {x1
i ,x

2
i , . . . ,x

K
i })

and X = {X1, . . . ,XC}. This norm is used to enforce sparsity constraint to the multi-

task optimization function which is now reformulated as

X̂ = argmin
X

1

2

K∑
k=1

∥∥∥∥∥yk −
C∑
i=1

DMk

i xki

∥∥∥∥∥
2

2

+ λ‖X‖1,N2

. (4.18)

We derive the solution to the optimization problem (4.18) by incorporating a modified

version of the well-known Accelerated Proximal Gradient (APG) algorithm [77, 78]

where the coefficient vector array sequence X̂t and an aggregation vector array se-

quence Ĝt = {g1,t
1 , . . . , g1,t

2 , . . . , gK,t2 , . . . , gK,tC } are alternatively updated in two steps.
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Figure 4.16: An example of the NMSRC optimization process (Algorithm 4.3). The
curve shows the value of the objective function (4.18) in 26 iterations.

Details of this algorithm is shown in Algorithm 4.3. Convergence of the objective

function for the proposed algorithm is shown in Figure 4.16. After convergence, the

recovered array X is used in (4.7) to find the identity of the unknown test sample y.

Experiments The proposed Non-uniform Multi-modal SRC method (NMSRC) is

evaluated through several experiments on face and digit recognition. First, modalities

are extracted from the original training data. To reduce the number of samples, AC

which introduced in Section 3.2 and SMRS [23] on the modality matrices. These two

approaches are from both categories, dictionary learning and sample selection and

unlike FDDL and Metaface, they automatically tune the number of representatives

in every modality of each class depending on the statistics of the data. Improvements

achieved by the multi-modality property of the proposed method are first illustrated

by comparing it to single-modality SRC-based approaches, i.e. original SRC, SMRS-

SRC and AC-SRC. The next set of experiments are performed to show the effec-
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Algorithm 4.3: Proposed algorithm based on APG to solve (4.18).

input : Modality matrices Mk|Kk=1, Test sample modalities yk|Kk=1;

Sparsity regulizer µ and step-size η > 0;

initialization: t = 0 ; α0 = 0 ; G0 = gk,0|Kk=1 = 0;

repeat

Step 1: Given Gt update Xt+1:

for modality k ∈ {1, 2, . . . ,K} do

∇k = −
(
Mk
)T
yk +

(
Mk
)T
Mkgk,t; xk,t+1 = gk,t − η∇k;

for class i ∈ {1, 2, . . . , C} do

Ωi =
∑K

k=1

∥∥∥xk,t+1
i

∥∥∥
2

nk
i

;

for modality k ∈ {1, 2, . . . ,K} do

xk,t+1 = max
([

1− λη
Ωi

]
, 0
)

;

Step 2: Given Xt and Xt+1 update Gt+1:

αt+1 = 2
t+3 ; γ = αt+1(1−αt)

αt
;

for modality k ∈ {1, 2, . . . ,K} do

gk,t+1 = xk,t+1 + γ
(
xk,t+1 − xk,t

)
;

t← t+ 1;

until Convergence or Maximum Iteration;

output : Coefficients X =
{
x1,x2, . . . ,xK

}
;

tiveness of the proposed method in comparison to its multi-modality ancestor, i.e.

MTJSRC.

Face Recognition Experiments We used the previously introduced Extended Yale B

and FRGC face datasets with GS and LBP modalities to show the multi-modality

nature of the proposed algorithm.
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In the first step, adaptive clustering (AC) (Algorithm 3.3) is utilized to build

dictionaries out of the extracted modalities, individually. According to Section 3.2,

number of clusters formed for each class in AC is controlled by two input parameters:

the maximum within-cluster sums of point-to-centroid distance (τ) and maximum

number of clusters (Qmax). These parameters are tuned such that the final dictionaries

include average numbers of 2 (only on FRGC), 4, 6, 8, 10 and 12 columns per class

for each modality and as a result, the formed dictionaries on Extended Yale B dataset

are of sizes 1024×(152∼456) (GS) and 900×(152∼456) (LBP) and on FRGC dataset

are of size 1024×(200∼1200) (GS) and 900×(200∼1200) (LBP).

SMRS algorithm is then applied to the modality matrices of Extended Yale B

dataset, where the average number of 9.13 and 11.63 representatives per class were

selected on GS and LBP modalities, respectively. These numbers are 10.15 and 16.20

for FRGC dataset. Figure 4.14a shows the number of representatives selected for

each class of FRGC dataset individually.

For the optimization problem (4.18) to recover a row-sparse coefficient matrix,

the training matrix must represent an under-determined system of equations and

this is achieved by a matrix which has more columns than rows. In other words,

for each modality, the number of representatives should be larger than the modality

dimension. To satisfy this condition, down-sampling is used to reduce the GS and

LBP modalities dimensionality to 100. These models are then fed into the proposed

optimization problem (4.18) and its accuracy is compared to when these dictionaries

are individually used in an SRC framework and when the multi-modality MTJSRC

is applied by a training matrix of randomly selected samples.

The proposed multi-modality method with non-uniform modality matrices from

two sample reduction approaches (AC-NMSRC and SMRS-NMSRC) is evaluated

against the single-modality SRC methods of AC-SRC and SMRS-SRC. Figure 4.17
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Figure 4.17: Recognition rates of NMSRC comparing to MTJSRC and single-modality
SRC with AC sample reduction on FRGC face dataset.

shows the face recognition accuracies for different methods on Extended Yale B

datasets. Single-modality dictionaries (GS and LBP) are first generated by adaptive

clustering algorithm with different number of representatives per class and indepen-

dently imposed to the original SRC for final classification. These two dictionaries are

then used in the proposed optimization (4.18) simultaneously to classify unknown test

samples. In the next experiment, MTJSRC randomly selects samples from the original

training set, extract modalities and classifies test samples through its multi-modality

framework. Random selection on samples is repeated 10 times and the average and

standard deviation of the recognition rates are reported. Figure 4.18 shows the re-

sults from similar experiments on FRGC dataset. It can be seen that especially for

smaller dictionaries, the proposed method improves the recognition accuracy on both

datasets comparing to other SRC-based classifiers. As an example, to achieve about

∼95% accuracy on Extended Yale B dataset, AC-NMSRC needs training matrices as

small as ≈4 columns per class, while SRC with LBP dictionary need ≈10 columns

per class and MTJSRC needs dictionaries with more than 12 samples per class. Note

that the execution time in all SRC-based methods directly affected by the number of
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Figure 4.18: Recognition rates of NMSRC comparing to MTJSRC and single-modality
SRC with AC sample reduction on FRGC dataset.

columns in the training matrices and this makes our proposed method more applica-

ble in large scale problems. Table 4.2 compares the two variants (AC-NMSRC and

SMRS-NMSRC) of the proposed method with SRC and MTJSRC. For an average

of around 10 (Extended Yale B) and 12 (FRGC) samples per class, it is clearly seen

that both the proposed methods outperforms other classification approaches.

Digit Recognition Experiments The proposed method is evaluated over UCI multi-

modality digit dataset with 10 classes of hand written numerals (0∼9) which in-

Table 4.2: Recognition rates and the average number of representatives per class for
different classifiers on face datasets.

Method
Extended Yale B FRGC
#Reps. Acc.(%) #Reps. Acc.(%)

AC-SRC (GS) 10.05 94.00 11.78 94.83
AC-SRC (LBP) 10.14 96.79 12.24 91.73
SMRS-SRC (GS) 9.13 89.64 10.15 90.17
SMRS-SRC (LBP) 11.63 96.13 16.20 91.57
MTJSRC 10.00 92.94 12.00 68.01

±3.11 ±1.77
AC-NMSRC 10.10 98.03 12.01 96.00
SMRS-NMSRC 10.38 98.77 13.18 95.97
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troduced in Section 2.2. Similar to face recognition experiments, AC with different

parameters is used as the first approach to reduce the number of samples for all

modalities. SMRS is also applied where an average of 10.60, 18.80, 19.50, 2.40, 19.30

and 10.60 samples per class are selected among all the training data on the modalities

1∼6, respectively.

For dimensionality reduction process, random projection is employed on modal-

ities 1, 2, 3 and 5 where these vectors are randomly projected to 25 dimensional

vectors. Pixel value image (Modality 4) is down-sampled into a 5×5 (25 dimen-

sional) image and the last 6 dimensional modality is directly used for classification.

Two proposed approaches (AC-NMSRC and SMRS-NMSRC) are employed for the

experiments on UCI digit recognition and the corresponding results are reflected in

Table 4.3. 12 different training matrices are built by applying AC and SMRS on the

available 6 features. These matrices are individually used in SRC framework and

then simultaneously fed into our proposed method. Results confirm that the pro-

posed multi-modality methods outperforms single-modality SRC in all trials with the

recognition rates of %96.90 and %93.60 for AC-NMSRC and SMRS-NMSRC, respec-

tively. MTJSRC is then applied to the original training data and achieves an average

of %90.92 recognition rate out of its 10 run of training sample selections (14 samples

Table 4.3: Recognition rates and the average number of representatives per class for
different classification approaches on UCI digit dataset.

Method #Reps. Acc.(%) Method #Reps. Acc.(%)

AC-SRC (FAC) 13.80 89.50 SMRS-SRC (FAC) 10.60 86.00
AC-SRC (FOU) 15.20 70.40 SMRS-SRC (FOU) 18.80 68.70
AC-SRC (KAR) 14.50 89.30 SMRS-SRC (KAR) 19.50 86.40
AC-SRC (MOR) 12.80 51.30 SMRS-SRC (MOR) 2.40 36.60
AC-SRC (PIX) 13.70 93.40 SMRS-SRC (PIX) 19.30 93.30
AC-SRC (ZER) 15.00 78.10 SMRS-SRC (ZER) 10.60 73.20
MTJSRC 14.00 90.92 AC-NMSRC 14.10 96.90

±0.70 SMRS-NMSRC 13.50 93.60
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Figure 4.19: Recognition rates achieved by NMSRC comparing to MTJSRC (random
selection of samples) with training matrices with different sizes on UCI digit dataset.

per class). The last experiments (MTJSRC and two proposed methods) are also re-

peated for different training matrix sizes and Figure 4.19 reflects the corresponding

results. It can be seen that AC-NMSRC achieves outstanding recognition rate of

%96.50 by employing dictionaries as small as ≈40 atoms, while MTJSRC achieves an

average of %91.28 even when it uses 200 atoms in its training matrices.
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CHAPTER 5

CONCLUSION

In this thesis, we presented a comprehensive study on the state-of-the-art Sparse

Representation-based Classification (SRC) method by investigating different meth-

ods proposed to improve SRC from both efficiency and accuracy points of view. SRC

is inspired by the emerging theory of Compressive Sensing (CS) which recently at-

tracted considerable attentions. According to CS, under certain conditions, a sparse

signal may be efficiently recovered from a few number of measurements by incorpo-

rating an `1-norm optimization process. SRC maps the problem of classification of an

unknown test sample y to an under-determined system of linear equations y = V x

where V contains the given training samples and x is the sparse coefficient vector

of interest. By recovering x based on the CS theory, SRC can identify the class to

which test sample y belongs. Despite the interesting results reported for SRC in dif-

ferent applications, it suffers from high computational costs when dealing with large

training data.

We first studied a variety algorithms to accelerate SRC optimization process by

substituting the original training model with more abstract ones. We also proposed a

method to reduce the number of representatives for each class based on the diversity

and hidden information in the training samples of that class. This approach uses an

adaptive scheme of k-means clustering to reduce the number of representatives for

each class of the training data. Experiments on face and digit recognition show the

effectiveness of the proposed method in comparison to the original implementation of

SRC and using other sample reduction approaches along with SRC.
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In the next step, we focused on multi-modality implementations of SRC by

proposing three variants of multi-task joint sparse representation (MTJSRC) which

is a complementary approach based on SRC. In MTJSRC, several modalities of the

input space can be incorporated for classification. A joint optimization variant of the

one used in SRC is utilized to calculate and recover the coefficient vectors which are

then used to find the class associated with a given test sample. In this study, we in-

vestigated some methods to efficiently solve this multi-class multi-modality problem.

Our first proposed approach -which is called RedMod in this thesis- applies sample

reduction to the training samples at the first step. Then, after extracting modali-

ties from the new representatives, this method forms training models to be used by

MTJSRC for the classification task. To improve the accuracy by considering each

modality separately, the second approach -which is called Uniform ModRed in this

thesis- first extracts the modalities from all the training samples and then sample

reduction is separately incorporated on different modalities. A limitation of this ap-

proach is that we have to enforce same number of representatives to all modalities

from specific classes in order to be able to use MTJSRC optimization process. As a

more flexible method, the third approach -which is called Non-Uniform ModRed in

this thesis- can handle modality matrices with different number of representatives per

class by using a novel optimization algorithm. We evaluated the proposed approaches

by performing several experiments on face and digit recognition applications. Experi-

mental results show our proposed methods achieve higher recognition rates in a more

efficient structures in terms of both computational cost and required space.
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