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Abstract 

OPTIMAL DESIGN OF A PARALLEL BEAM SYSTEM 

WITH ELASTIC SUPPORTS TO MINIMIZE 

FLEXURAL RESPONSE TO 

HARMONIC LOADING 

 

Bret R. Hauser, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Bo P. Wang 

Mechanical systems subject to vibration are prevalent across many industries.  Harmonic 

problems can be especially challenging to optimize due to the likelihood that the response will be 

multi-modal; influenced by system natural frequencies throughout the design space.  Further, 

analysis of these systems often involves large and complex computer models which require 

significant resources to execute.   A parallel beam system, as evaluated with Finite Element 

Modeling (FEM), is used in this work to demonstrate a proposed method of identifying an 

optimum in a constrained, multi-modal environment suitable for Expensive Black Box Functions. 

The presented method leverages benefits of a combined approach where the domain is 

first surveyed for potential areas of optimal response using a method of Steepest Feasible 

Descent (SFD), followed by a search in the optimal region using direct search methods.   The 

method of SFD is made useful for constrained models by a penalty system including both 

deterministic and programmatic methods.  A sensitivity-based search vector method also helps to 

manage situations where significant difference in magnitude exists among the design variables.  

Evidentiary support for these key program elements is provided using standardized test functions.  

The effectiveness of the method is also demonstrated by seeking a minimum flexural response 

for a parallel beam system subject to elastic support and response constraints. 
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Chapter 1  

Introduction 

Background and Motivation 

Mechanical systems subject to vibration are prevalent across many industries including 

aerospace, mining, machine tools, medical devices, consumer appliance, building construction, 

etc.  Although very different in their application, these industries sometimes share the need to 

minimize one or more aspects of flexural deformation given some time-variant input load and with 

consideration for a set of design constraints. 

Multiple options are available to the designer as to how best to optimize such a system in 

order to avoid operation at or near a natural frequency.  For example, one option would be to 

modify some property of the system (geometry, material, etc.) in order that the structure’s first 

(lowest) natural frequency is greater than the range of intended operation.  In so doing, the 

structure is ‘assured’ that it will not operate at or near a natural frequency, and will not pass 

through one as the operating frequency ramps up and down prior to and following the intended 

operation. 

Sometimes however, design constraints exist which prevent the lowest natural frequency 

from exceeding the operating range of the device.  For example, the system may have design 

constraints that force it to operate at or near a natural frequency(s) at least some of the time.  In 

these cases, it is important that the flexural response of the system also be considered at and 

near the natural frequency(s) in order to assure safe operation.  One common approach used by 

designers to limit flexural response at and near these natural frequencies is to incorporate either 

a damped or undamped Dynamic Vibration Absorber (DVA).  Such systems can be very effective 

at minimizing the flexural response and commonly involve the addition of spring-mass elements 

(with or without damping) ‘tuned’ to absorb system energy at a particular natural frequency(s) of 

interest. 

A subset of mechanical vibration problems further exist whereby a ‘family’ or ‘platform-

system’ design is built around a common ‘base structure’.  Such a family-style design adds 
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challenge to the design process because the base system incorporates a variety of additive sub-

systems which may differ from each other in form, fit and/or function, but all of which must 

function within (often common) design parameters.   Examples of such family systems include 

cantilever-type drilling platforms (oil, water, etc.), machine tools intended to support a broad 

family of fixed- and adjustable-boring tools, or the support structure of a multi-purpose engine test 

cell.  In the case of these family system examples, the ‘end-effect’ sub-system is dynamically 

loaded and adds complication to the design process in that the overall system design has a  

much broader scope with respect to vibrational response.  In these instances, the ‘base’ structure 

must be designed to account for (potentially) multiple natural frequency responses due to the 

changing geometric configurations.  Also, geometric and other design constraints for the platform-

style product may limit the variables available for optimization. In fact, these design limitations 

may preclude some variables which have the most significant impact on improving the system 

from being optimized at all.  For example, the mounting geometry to support the family variant  

‘end effector’ may be ‘fixed’ in its design, regardless of the vibrational needs of the various family 

variant end effectors.  Here, a variety of natural frequency responses among the family variants is 

possible and a simple DVA design may not be adequate (because of the various configurations 

and natural frequencies involved).  Nevertheless, the system response including all of the family 

variants must be optimized to a safe level, therefore, the art of system optimization must include 

appropriate compromise among the family variants. 

When seeking an optimum design for flexural system response (minimum deformation, 

minimum stress, etc.), the mathematical form of the response must be considered.  If the 

response varies smoothly for the given input parameters, as a parabolic bowl for example, then 

the response meets the criteria for a smooth, unimodal function and a variety of optimization 

methods may be efficiently used.  If, as in the case of our example, a vibratory deformation 

response is to be minimized in a frequency range that includes natural frequency response(s), 

then the response is no longer smooth and instead likely to be multimodal.  To further complicate 

matters, family-style products often produce multiple natural frequencies within the intended 
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operating range.  If an optimization strategy that is appropriate for smooth, unimodal responses 

were used, then a local minimum would be found based upon the assumed start condition.  The 

identified local minimum though may not be a suitable ‘global’ minimum because the unimodal-

based optimization strategy cannot ‘cross’ the various resonant response peaks from one area of 

‘local minimum’ to the next.  Without consideration for this limitation to the optimization process, 

suitable trade-offs may not be appropriately identified between input variables and responses; 

causing design limitations in the effectiveness, efficiency and/or safety of the ultimate system.   

Finally, the effective simulation of many such family-style systems involve models 

(computer simulation, test configurations, etc.) that are sufficiently large and involve enough 

complexity that they have burdensome temporal or financial cost for each solution pass.  Further, 

the mathematical form of the response for these systems is typically unknown to the designer 

prior to exploration of the response; therefore the most efficient optimization strategy is likely to 

not be immediately obvious and to present a significant challenge to the overall design process.  

These models then meet the criteria of an ‘expensive black box’ function and require that the cost 

of an Optimization exercise be considered as a potentially significant obstacle in the overall 

process.   

In the practice of mechanical system design, some combination of these factors 

frequently exists such that the overall optimization process is encumbered.  Global search 

algorithms are documented in literature that attempt to solve such problems and identify a ‘global 

optimum’ solution.  These are often complicated and less than ideal for systems with complex 

responses or for those which meet other criteria for ‘black-box’ systems.  As such, the ‘design 

cost’ of utilizing these more complicated optimization algorithms as applied to a diversity of 

design problems increases; and, further, can become overly burdensome on many product 

design efforts resulting in a general lack of use and failure to find a needed optimal solution. 

Objectives 

In this work, an optimization strategy is sought that is an effective compromise between 

finding an acceptable ‘global optimum’ and the overall design cost for harmonic response of 
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family-style systems; specifically, one that may be modeled as a system of parallel beams. That 

is, an optimization methodology is explored which has limited complexity, and therefore has 

potential for efficient implementation on a variety of design problems, while at the same time 

being effective in producing an acceptable global optimum solution given a limited number of 

solution passes. Finite Element Analysis (FEA) of the harmonically-loaded system is used in this 

work and serves as an example of a black-box style system where useful details about the form 

of the response are not known prior to the optimization effort.  
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Chapter 2  

Overview of Problem under Study 

Problem Description 

For simplicity of study, the family-style sample problem is defined to be a system of two 

parallel beams, one of which is common for all variants (the base structure) and a second that 

varies in geometry to form the ‘family’ of ‘end-effects’.  Loading is applied to the system at the 

free end of the top (variable, end-effect) bar.  Figure 2-1 illustrates the architecture of the 

problem. 

 

Figure 2-1 Illustration of problem under study 

The specific problem to be solved through this work then, is to minimize the flexural 

response of the upper beam’s ‘tip mass’ given harmonic loading across a specified range of 

frequencies and subject to design variable constraints, consideration for the ‘optimal’ family 

response among all variants as well as a pre-defined ‘minimum stiffness’ for the system.  

The base (bottom) beam is defined to be cantilevered, but also supported to ground by 

two (2) mid-span spring-damper mechanisms whose locations are variable among the family 

system (positions L1 and L2). That is, the locations of these lower supports as well as the value of 
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their respective spring stiffness and damping values are variables to be optimized in the study.  

The overall length of the base beam (LB) as well as its cross-sectional properties (A1, I1) and 

material properties are ‘fixed’ values and consistent for all family variants.  

The top beam is attached to the bottom via two (2) spring-damper connections (positions 

L3 and L4).  The placement of these ‘inter-body’ connections are defined to be common (fixed) 

among all family variants, but variable in stiffness & damping value.  That is, the stiffness and 

damping value for each of these inter-body supports are variables to be optimized for optimal 

family response whereas the location of these supports are not.  Three (3) different top beam 

configurations are included in the overall study to form the ‘family’.  The axial location of the top 

beam (Lc), cross-sectional properties (ATop, ITop) and material properties are fixed and common 

among all family variants.  However, the overall length (LTop) and size of the lumped mass (m), 

differ for each of the (3) family variants.  These are ‘fixed values’ for each family variant and are 

not variables for optimization as part of the study.  

Two types of loading are considered for the system.  The first is a harmonic load (FH) 

placed at the distal or tip-end of the second beam, common among all design variants.  The 

second is a static load (FS), also placed at the tip-end of the top beam but used to characterize a 

static deflection as a constraint for the Optimization process.  The use of this statically driven 

constraint is intended to prevent the algorithm from identifying a solution which minimizes 

harmonic response at the cost of impractically low system stiffness.  Note that gravity loading on 

the bar is neglected for the purposes of this optimization study. 

Output (response) variables of interest are products of deformation of the top (variant) 

beam.  Specifically, these response metrics include: 

 Tip (free-end) displacement of top beam 

o Static response 

o Maximum integrated (discrete) sum and range of harmonic responses 

each frequency polled) 
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 Maximum harmonic deflection at any point along the top beam among 

frequencies within the operating range 

A summary of input values and response variables is provided in Table 2-1 below. 

Table 2-1 Input and response variable details for problem under study 

Input Values 
Family Variant 

1 2 3 

Fixed Values 

Bottom Beam 

Length LB 72 in 

Cross-Section A1, I1 Solid, Circular – OD = 0.500 in 

Material Properties 

Young’s Modulus 

Poisson’s Ratio 

Mass Density 

 

EB 

 

29x10
6
 psi 

B 0.29 

ρB 7.324x10
-4

 Lbm/in
3
 

Top Beam 

Location Lc 36 in 

Support Locations 
L3 45 in 

L4 63 in 

Cross-Section ATop, ITop Solid, Circular – OD = 0.250 in 

Material Properties 

Young’s Modulus 

Poisson’s Ratio 

Mass Density 

 

ET 

 

29x10
6
 psi 

T 0.29 

ρT 7.324x10
-4

 Lbm/in
3
 

Force Magnitude FH, Fs 0.5 Lbf 

Frequencies 

Studied 
fii 10~100 Hz, 2.5 Hz increments 

Length LTop 48 in 54 in 60 in 

Lumped Mass m 4.8x10
-5

 lbm 3.8x10
-4

 lbm 1.3x10
-3

 lbm 

Variables (to be Optimized) 

Bottom Beam 

Support #1 

L1 0 < L1 < L2 

K1 500 < K1 < 50000 Lbf/in 

C1 0.005 < C1 < 0.500  (damping ratio) 

Support #2 

L2 L1 < L2 < LB 

K2 500 < K2 < 50000 Lbf/in 

C2 0.005 < C2 < 0.500  (damping ratio) 

Top Beam 

Support #3 
K3 500 < K3 < 50000 Lbf/in 

C3 0.005 < C3 < 0.500  (damping ratio) 
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Table 2.1 - Continued 

Support #4 
K4 500 < K4 < 50000 Lbf/in 

C4 0.005 < C4 < 0.500  (damping ratio) 

Response Variables 

Static Load 

Tip Deflection 

Harmonic Load 

Tip Deflection – sum of harmonic responses among frequencies (defined in detail 

later) 

Tip Deflection – range of harmonic response among frequencies (defined in detail 

later) 

 

Visualization of Response 

Figure 2-2 illustrates the complexity of the response for tip deflection of the parallel beam 

problem (Figure 2-1) as a function of two (2) of the input variables.  Specifically, a ‘preliminary’ 

model using the commercially available FEA software ANSYS ® (SAS IP, Inc.) is used here to 

explore variation in the location of the two (2) ground supports to simply illustrate the potential for 

multimodality of the harmonic tip responses.  As shown, many ‘peaks’ exist within the design 

space where resonant conditions exist.  Intermingled within these areas of maximum lie several 

areas of potential minimum where an acceptable global minimum may exist.  Further, the location 

and interrelationship of these resonant areas serve to ‘isolate’ the potential areas of minimum 

from one another.  Because the surface cannot be considered a smooth, unimodal surface over 

the design space, optimization algorithms intended for such are not reliable for use here in order 

to find a global optimum.  Therefore, the need for a method that includes this flexibility is needed. 



 

9 

 

Figure 2-2 Visualization of maximum tip deflection over partial design space 
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Chapter 3  

A Review of Theory and Literature 

Optimization of Structural Dynamic Systems by Maximizing Fundamental Frequency 

It is well understood that all physical systems capable of storing energy also have a 

defined set of natural frequencies at which that system will naturally vibrate.
[1]

  Mechanical 

systems, such as those discussed within the scope of this paper are principally elastic systems, 

being comprised of spring, mass and damper characteristics and as such include the capability of 

dynamic response; whereby energy is transferred from a potential state to a kinetic state and 

back.  There exists then a set of frequencies at which these systems will naturally vibrate without 

a continued external periodic force.  If, however, an external periodic forcing function is applied to 

these systems then a vibrational response is created.  If the forcing function frequency coincides 

with the natural frequency of the system then the system is said to be in ‘resonance’ and the 

amplitude of the vibrational response can become much larger than the amplitude of the forcing 

function.  In fact, if no damping exists as part of the system then the response amplitude at 

resonance mathematically becomes infinite. 

 

Figure 3-1 Classical SDOF system with damping 

Considering a classical, Single Degree of Freedom (SDOF) model including spring, mass 

and dashpot elements as shown in Figure 3-1, the Equation of Motion is 
[2]

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑝𝑜 cos(𝑡) (3-1) 
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And the steady state solution is 

𝑢𝑝 = U cos(𝑡 − )  (3-2) 

                  where:        

U = 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

 

 = tan−1 [
𝑐

𝑘−𝑚
2]   = 𝑝ℎ𝑎𝑠𝑒 𝑙𝑎𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑎𝑚𝑝𝑖𝑛𝑔   (3-3) 

𝑛 = √
𝑘

𝑚
 = 𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (3-4) 

The Frequency Response Function (FRF) or ‘Magnification Factor’ for a sinusoidal 

forcing function () applied to a system with natural frequency (n) 
[2]

, frequency ratio (r) and 

damping ratio () is 

𝑈(𝑟)

𝑈𝑜

=
1

√(1 − 𝑟2)2 + (2𝑟)2
 

(3-5) 

                  where:        

U𝑜 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 (𝑚)𝑢𝑛𝑑𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 (𝑝𝑜)  

 

r =


n
  (3-6) 

 =
𝑐

𝑐𝑐𝑟

  
(3-7) 

As can be deduced from Equation (3-5), a forcing function () equal to a natural 

frequency of the system (n) without the influence of damping (=0) produces a singularity and a 

mathematically infinite value for the frequency response function.  As defined here, damping 

represents the ability of a system to dissipate energy.  In reality of course, a condition of zero 

damping does not practically exist since all mechanical systems within the scope of this work 

include at a minimum some amount of material damping.  Therefore, the amplitude of vibrational 

response of a system (frequency response factor) is determined by the forcing function frequency 

in relation to the natural frequency(s) of the system as well as the degree of damping present.  
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Figure 3-2 illustrates the FRF as a function of frequency ratio (r) for multiple values of damping 

ratio (). 

 

Figure 3-2 FRF as a function of damping - classical SDOF system 

A preferred and common practice is to design a physical structure such that the forcing 

frequency is significantly below the fundamental (lowest) natural frequency of the system.  Norton 

[1]
 recommends a factor of at least 3 or 4 for this safety factor whereas other texts recommend 

designing the structure such that the fundamental frequency is as much as 15 to 20 times the 

frequency of the forcing function 
[3]

.  Unfortunately, this is not always possible given constraints of 

the design. 

A related form of dynamic response is defined as a ‘self-excited vibration 
[4]

 
[5]

 
[1]

. Self-

excited vibrations (SEV) are those dynamic responses where systems begin to vibrate ‘of their 

own accord’ based on a motion such that when the motion stops, the response motion also stops.  
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Shaft whirl in an electric motor is a classic example of SEV and due in large part to a rotating 

shaft with eccentric mass which may cause the system to deform much like a jump-rope being 

swung by children 
[1]

 or other mode shapes.  Another way of describing SEV is that of a free-

vibration but with negative damping 
[4]

.  SEV however is not limited to rotating structures and may 

exist in lateral vibrations as well.  Billah and Scanlan 
[6]

 propose that SEV or negative damping 

may be responsible for the Tacoma Narrows bridge failure of 1940. 

The forced vibration response of a system (as is the subject of this paper) differs from 

SEV in that the response motion exists independently of the forcing motion.  That is, when the 

forcing function discontinues the response motion continues, decaying to zero only if the system 

has positive damping characteristics.  Both responses, however, are dependent upon 

(characterized by) the natural frequency(s) of the system 
[4]

 and as such should be considered in 

the overall design process as discussed previously. This paper directly considers the lateral 

vibrations of beam systems due to forced vibration and not SEV.  Because of this, SEV will not be 

discussed in further detail other than to say that, in general, since both vibrational phenomena are 

rooted in the natural frequency characteristics of the structure; the techniques described in this 

paper to identify an optimum combination of stiffness, mass and damping for a system in order to 

minimize response to forced vibration may also have application to SEV as well. 

With consideration for the lateral vibration of beams, much research has been conducted 

on means by which to raise the fundamental natural frequency to a maximal value by the optimal 

placement and sizing of intermediate, lateral elastic beams.  Akesson and Olhoff 
[7]

 described that 

a minimum stiffness could be identified for optimally located intermediate elastic supports to 

maximize the fundamental frequency of a cantilever beam.   

They initially describe, based on Courant’s maximum-minimum principle 
[8]

, how rigid 

supports may be positioned at the vibrational zero of a cantilever beam to raise the fundamental 

frequency.  By Courant, a structure with n additional supports will raise its jth natural frequency j 

to between the jth and (j+n)th frequencies.  That is, for a cantilever beam system a fundamental 

eigenfrequency (o) exists where the mode shape is well-known as an oscillatory general 
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bending of the beam about the neutral axis.  No vibrational node or ‘zero’ other than the 

connection with the support wall exists at this fundamental frequency.  The beam’s second mode 

(1) is a higher order flexure where at a specific axial location, the beam ‘pivots’ at the neutral 

axis at a ‘zero’ point or a vibrational node.  At this axial location, the vibrating beam does not 

depart vertically from the static lateral position.  If a single rigid support (n=1) is located at this 

axial position (vibrational node of the (j+n)th frequency), then the new fundamental frequency of 

the cantilever beam raises to the value of the original second mode.  That is, o
1
 = 1

0
.  Similarly, 

rigid supports placed at the 2 nodes or ‘zeroes’ of the third natural frequency (2) of the initial 

system will raise the fundamental frequency to that original third eigenfrequency.  

Akesson and Olhoff further demonstrate that similar improvements can be made using 

elastic instead of rigid supports.  A critical value of stiffness exists for this support(s) whereby if it 

is placed at a node of the next higher eigenvalue, the fundamental frequency is raised to that next 

eigenfrequency value as if it were a rigid support.  If the stiffness value of this support is further 

raised to be above this critical value, no impact to further increase the natural frequency is 

obtained.  Stiffness values below this critical value however do not achieve the full 

eigenfrequency increase as experienced with the critical value of stiffness.   

The placement of the elastic support (of varying stiffness) can similarly be modified to 

raise the fundamental natural frequency to the value of the original second eigenvalue.  That is, 

Akesson and Olhoff demonstrate that an optimum value (for proper placement of the support) 

exists for the increase in fundamental frequency with the critical value of stiffness.  Deviations 

from this optimum location, whereby the support is positioned further axially ‘down’ the beam, 

result in mode switching where the two modes in question interchange their roles as ‘first and 

second modes’. 

Finally, Akesson and Olhoff describe that differing optimums exist in the placement of the 

support depending on whether the support’s stiffness is greater than or equal to or less than the 

critical support stiffness.  That is, if the support stiffness is greater than or equal to the critical 
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stiffness, then the optimum location of the support is identified by the absence of support reaction 

force.  As described above, a rigid support placed at a vibrational node is an optimum location.  

Since a vibrational node by definition has no lateral displacement in the cantilever beam problem, 

a support placed at this location would experience no reaction force.  However, if the support 

stiffness is less than the critical stiffness value then a reaction force will be associated, regardless 

of the support location (vibrational node or not).  However, for this sub-critical stiffness value, the 

optimal support position is described to be that placement that provides a zero slope to the mode 

shape at the support location.  To summarize then, the optimal placement of a support with 

critical or super-critical stiffness is identified by a reaction force of ‘0’ and the optimal placement of 

a support with sub-critical stiffness is identified by a mode-shape slope of ‘0’ at the support 

location. 

Wang, Jiang and Zhang 
[9]

 follow this work and attempt to devise an approach to 

programmatically optimize the location of support positions to maximize the fundamental 

frequency of structures regardless of their stiffness value.  In their paper, authors Wang, et al. 

describe a method for using design sensitivity analysis to find the effects of design variables 

(support location and stiffness) upon the fundamental frequency of a structure, and then optimize 

those variables using a heuristic optimization procedure called evolutionary shift.  An equation for 

design sensitivity is derived using the derivatives of a natural frequency with respect to the 

support location, including terms for both reaction force and mode slope.  An initial support 

location (for a support of defined stiffness) is identified and then moved gradually to assess its 

impact on design sensitivity.  An optimum solution is identified as that position where design 

sensitivity has a value of ‘0’; that is, either the reaction force goes to zero in the case that the 

support stiffness is critical or super-critical, or the mode-slope goes to zero in the case that the 

support stiffness is sub-critical.  One reported challenge to the procedure is a ‘mode-shift 

behavior’ discussed by Akesson and Olhoff where certain support locations cause an 

‘interchange’ of their roles as first and second modes.  Another challenge reported by Wang, et 

al. is related to their implementation of FEA as part of the process.  They discuss that in the 
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practical application of their process, the optimal location of a support is often not at a defined FE 

node but rather between nodal locations and within the span of a defined element.  Rather than 

creating an alternate FE mesh, the authors choose to interpolate the design sensitivity function 

between the established FE nodes in order to find the precise optimal location for the support. 

Wang also uses this general methodology to optimize support locations for the static 

deflection of structures due to force 
[10]

 and moment 
[11]

 loading with similar success and 

challenges.  

Recognizing that it is impossible within a practical world to implement a support with 

infinite stiffness, Wang, Friswell and Lei 
[12]

 use the closed form equation for design sensitivity 

proposed above 
[9]

 to investigate a minimum effective stiffness for intermediate supports 

considering various end conditions.  Further, they illustrate that the support(s) need to be stiffer in 

order to be applicable for maximizing higher-order frequencies.  Note that in this work, 

optimization algorithms are not used to identify the preferred solution(s) in preference for the 

application of closed form solutions.  In so doing, the frustrations experienced in the previous 

works 
[9] [10]

 are avoided. 

Similar results are demonstrated by Zhu and Zhang 
[13]

 by slightly different means.  In 

their work, Zhu and Zhang implement a topology optimization method to maximize the 

fundamental natural frequencies of beams and plates.  Using a Solid Isotropic Material with 

Penalty (SIMP) model, they demonstrate that intermediate beam supports of sub-critical spring 

stiffness result in maximal fundamental frequencies if placed more distally than if the spring 

stiffness is a critical or super-critical value. 

Consideration for the works described in this section infers that the maximization of a 

fundamental natural frequency for a beam system is enhanced by the fact that the response 

function (frequency) can be treated as a ‘smooth surface’.  That is, the closed form solution 

developed by Wang et al. 
[9]

 as well as the graphical results depicted by Akesson and Olhoff 
[7]

 

indicates that the resonant frequency(s) varies without significant mathematical discontinuity as a 

function of support location and stiffness.  This ‘simplifies’ the optimization effort in that many 
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techniques are then available to the designer.  Further, optimizing the design of a system by 

‘relocating’ the fundamental natural frequency to be greater than the anticipated operating 

frequency is a beneficial and desired practice.  However, this is not always possible.   

Dynamic Vibration Absorber Systems 

Sometimes design constraints exist such that one or more natural frequencies cannot be 

avoided within the anticipated operating range.  In the case that damping is not explicitly added, 

the resulting frequency response at the resonance point becomes a mathematical discontinuity to 

the response where theoretically infinite response is reached.  Of course, no system in the real 

world ever has ‘0’ damping, but in practice the damping properties of many metals and other 

materials are low enough that, without additional explicit use of damping elements or other 

techniques, the overall ‘limitation’ effect is negligible.  For these conditions, the response at 

conditions of resonance can become extremely large and a source for product failure.  The 

existence of this ‘mathematical discontinuity’ within the response also frustrates the optimization 

effort.  One approach to limit the maximum frequency response at and near a resonant condition 

is the use of damped or undamped dynamic vibration absorbers (DVA). 

Undamped DVA 

Vibration texts including Den Hartog 
[4]

, Craig 
[2]

 and Piersol 
[5]

 commonly describe the 

use of a Dynamic Vibration Absorber (DVA) as a device which can be used to mitigate the 

vibrational response of a system in resonance.  Sometimes also referred to as a Tuned Vibration 

Absorber (TVA), the device was first invented by Frahm 
[14]

 in 1911 and makes use of a 

secondary spring-mass system which is sized appropriately to ‘absorb’ the energy of the primary 

system during resonant conditions. 
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Figure 3-3 Undamped dynamic vibration absorber 

Recalling the simplified 1-DOF spring-mass system of Figure 3-1 and Eq. (3-4), a 

resonant condition is created as a function of the mass and spring stiffness.  In the application of 

a DVA, a second mass of significantly smaller size (𝑚𝑎) is attached to the free side of the main 

mass via a secondary spring (𝑘𝑎).  The secondary (DVA) spring stiffness is sized together with 

the secondary (DVA) mass in order to match the resonant frequency of the primary spring-mass.  

In so doing, the absorber spring-mass is excited at the resonant frequency with a defined, finite 

displacement while the displacement of the main mass is limited by the system to ‘0’.  The 

Equation of Motion of the resulting 2 Degree of Freedom system in matrix format is 
[2]

 

[
𝑚1 0
0 𝑚𝑎

] {
𝑢̈1

𝑢̈𝑎
} + [

𝑘1 + 𝑘𝑎 −𝑘𝑎

−𝑘𝑎 𝑘𝑎
] {

𝑢1

𝑢𝑎
} = {

𝑝𝑜

0
} cos(𝑡) 

(3-8) 

Which results in the following FRF for the main and absorber masses respectively.
 [2]

 

𝑈1

𝑈𝑜

=
1 − 𝑟𝑎

2

[1 +  (
𝑎

𝑝
)

2

− 𝑟1
2] [1 − 𝑟𝑎

2] −  (
𝑎

𝑝
)

2
 (3-9) 

𝑈𝑎

𝑈𝑜

=
1

[1 +  (
𝑎

𝑝
)

2

− 𝑟1
2] [1 − 𝑟𝑎

2] −  (
𝑎

𝑝
)

2
 

(3-10) 
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                  where:        

U𝑜 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑚𝑎𝑠𝑠 (𝑚1) 𝑢𝑛𝑑𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 (𝑝𝑜)   

 

r1 =


n_1
    ,    r𝑎 =



n_a
 (3-11) 

𝑛_1 = √
k1

m1
    ,     𝑛_𝑎 = √

k𝑎

ma
 

(3-12) 

 =
𝑚𝑎

𝑚1

 
(3-13) 

Although a DVA works well to limit the deformation of the main mass exactly at the 

resonant frequency, a strong detriment of the system is that two (2) new system natural 

frequencies are created on either side of the original resonance as shown in Figure 3-4. 

 

Figure 3-4 FRF of main and absorber masses - undamped DVA, =0.2 

As discussed by Den Hartog 
[4]

 and illustrated in Figure 3-4, a simplified 2-DOF DVA 

system can expect the new natural frequencies to be at approximately 0.8*n and 1.25*n for an 

absorber mass sized to be 20% of the primary mass.  If the absorber mass were to grow to as 

much as 50% of the primary mass, the new resonant frequencies expand only a few percent 

further from the original resonance condition; but as the absorber mass shrinks below 20% the 

two (2) natural frequencies converge on a single natural frequency (of the primary mass).  This 
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limits the effectiveness of such a device to those applications where the expected operating 

range is relatively constant and centered on the the resonant frequency of the primary mass. 

Damped DVA - Theory 

Den Hartog describes a useful addition to the undamped DVA through the addition of an 

explicit damping element.  In his text 
[4]

, Den Hartog describes the addition of a dashpot element 

between the primary and secondary masses of the example 2-DOF system to not only reduce the 

maximum amplitude of the response at and near resonance, but to significantly expand its 

effectiveness with respect to frequency.  This is illustrated in Figure 3-5. 

 

Figure 3-5 Damped dynamic vibration absorber 

The Equation of Motion for this system becomes 
[4]

 

[
𝑚1 0
0 𝑚𝑎

] {
𝑢̈1

𝑢̈𝑎
} + [

   𝑐 −𝑐
−𝑐    𝑐

] {
𝑢̇1

𝑢̇𝑎
} + [

𝑘1 + 𝑘𝑎 −𝑘𝑎

−𝑘𝑎 𝑘𝑎
] {

𝑢1

𝑢𝑎
} = {

𝑝𝑜

0
} cos(𝑡) 

(3-14) 

which results in the following FRF for the main mass. 

𝑈1

𝑈𝑜

= √
(2𝑔𝑓)2 + (𝑔2 − 𝑓2)2

(2𝑔𝑓)2(𝑔2 − 1 + 𝑔2)2 + [𝑓2𝑔2 − (𝑔2 − 1)(𝑔2 − 𝑓2)]2
 

(3-15) 

                  where:         

 =
𝑐𝑎

2𝑚𝑛_1

 (3-16) 
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𝑔 =


𝑛_1

  
(3-17) 

𝑓 =
𝑛_𝑎

𝑛_1

  
(3-18) 

The influence of the damper can be understood physically as follows.  When the damper 

value is negligible (c=0), the 2-DOF system is the same as the undamped system described 

previously and with two (2) resonant peaks exist; one on either side of the resonant frequency of 

the main mass system (depending upon the value of the absorber mass).  When the damper 

value is at the other theoretical extreme however (c=), the main and absorber masses are 

effectively ‘locked’ together and behave as one with a new, single resonant condition near but 

slightly lower than the original ‘main-system’ resonance due to the increase in mass.  This new 

single resonant peak however is still located between the two (2) resonant frequencies of the 

system where c=0.  As the damper value varies between c=0 and c=, the response amplitude 

decreases from  to a finite value.  Further, as the value moves from c= toward c=0, the 

response curve transitions from a single peak toward a 2-peak response; trending toward the 2 

infinitely-large responses when c=0. This is illustrated in Figure 3-6. 
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Figure 3-6 FRF of damped DVA with multiple damping magnitudes, =0.2 

Interestingly, all response curves for 0 < c <  intersect at two (2) frequency points that 

Den Hartog terms ‘P’ and ‘Q’.  They lie on either side of the resonant peak for c=, but within the 

‘outer’ resonant peaks corresponding to c=0.  Den Hartog explains that at some (finite) value for c 

within this range, an optimum exists whereby the maximum response amplitude is minimized and 

the slope of the amplitude curve is ‘0’ at both points P and Q.  Further, he showed that this 

optimal value for damping can be identified by differentiating the steady-state response equation 

with respect to r where r is defined as the ratio of the operating frequency to the natural frequency 

of the main mass and spring. 

Ozguven and Candir 
[15]

 apply the use of damped DVA’s to a cantilever beam in order to 

suppress the first and second resonant responses.  Specifically, they pursue two (2) damped 

DVA’s attached to the free-end of a cantilever beam to which a harmonic load is applied, also at 
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the free end.  The free-end is chosen for the location of both dampers because, as noted by 

Ozguven and Candir, a DVA is most effective if attached to the point where maximum response 

occurs at the resonance of interest.  Procedurally, Ozguven and Candir first derive closed-form 

solutions for the steady state amplitude of the beam displacement and then use these equations 

to solve the min-max problem using an iterative numerical technique.  Initially, the properties of 

the first absorber are then determined in order to tune it to the first resonant condition without 

consideration for the second absorber, and then the second absorber’s parameters to address 

the second resonance independent of the first absorber.  A second step is to then optimize the 

parameters of the first absorber over the frequency range of interest while keeping the properties 

of the second absorber fixed.  Once that optimum is found then those properties for the first 

absorber are ‘fixed’ and the optimization repeated for the second absorber over the pre-defined 

frequency range.  The process is repeated until an acceptable convergence threshold is reached, 

indicating that optimum values for both DVA’s are attained. 

Interestingly, Ozguven and Candir found that the optimum parameters of the first 

absorber are appreciably affected by the existence of the second absorber, while the converse 

was not true. Further, they found that the existence of structural damping has little effect upon the 

overall system so long as that value is ‘light’.  In their work, Ozguven and Candir utilized a 

structural damping ratio of 0.01, which they considered to be ‘light’. 

Yang et al. 
[16]

 extend the application of a damped DVA to application on a vibrating plate 

and through a frequency band.  Of particular interest is their observation that coupling among 

structural modes affects the optimal location of the DVA’s.  More specifically, Yang et al. point out 

that for control of modes that are well-separated from neighboring resonant frequencies, the 

optimal location of the DVA is found to be the maximum vibration locations for both narrow band 

and broadband vibration reduction.  However, modes where the resonant frequencies are 

relatively close together provide interactions that strongly influence the optimal placement of the 

DVA, including negative effects on off-target modes.  A genetic algorithm (GA) optimization 

routine is used in their study to facilitate these optimal placements. 



 

24 

Damped DVA – Practical Application 

Multiple ‘practical’ applications of damped DVA’s were found during the literature study.  

Three (3) are mentioned here with particular relevance to the current study.   

Russell 
[17]

 investigated the effect of structural damping and a novel use of a damped 

DVA to reduce the sensation of sting experienced in the top hand of a player holding a baseball 

or softball bat.  In this work, Russell compares the analysis of a baseball bat to a free-free beam.  

Given the ‘node’ and ‘anti-node’ locations from a free-free beam analysis, Russell notes that 

when the bat is conventionally gripped then the bottom hand is located near an anti-node of the 

first bending mode and at a node of the second bending mode.  The reverse is true however for 

the top hand.  That is, the top hand is located at the node of the first mode and the anti-node of 

the second mode.  Simply stated, Russell notes that the left and right hands are both placed near 

anti-nodes (maximal deflection of the bat); for each of the first two (2) modes respectively.  It is 

this location of the hands (near the anti-nodes) that is a significant contributor to the sensation of 

‘sting’ for an ‘incorrectly-hit’ ball.  To this end, he notes that anti-nodes exist at the extreme distal 

(barrel) end of the bat for both first and second modes.  Russell’s paper is primarily a report on 

empirical testing of multiple bat construction methods for an undisclosed manufacturer, but does 

conclude that a relationship exists between the effects of damping, the damped DVA and the 

sting experienced by players.  Specifically, he cites a correlation between physical testing to 

determine the modal damping rate of each bat type and a subjective evaluation of sting 

experienced by players.  Further, he concludes that the bat incorporating the damped DVA, when 

tuned to the 2nd mode, was most successful in reducing sting for the player. 

Hao et al. 
[18]

 report the application of a damped DVA to an electric grass trimmer in order 

to suppress detrimental hand-arm vibration.  Similar in principle to the goals of this investigation, 

they sought to reduce the vibration experienced at the handle of the device subject to harmonic 

loading applied at the free end by optimally locating and tuning a damped DVA.  Optimal location 

and tuning of the DVA was found through experimentation, resulting in a decrease of measured 

acceleration at the handle in excess of 67%. 
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Finally, Pierson 
[19]

 addresses a tangential topic with the incorporation of 

magnetorheological fluids to serve as a ‘controllable support mechanism’ for support of feed stock 

in high-volume computer-numerically-controlled (CNC) turning machines.  The problem that he 

attempts to address is the efficiency of the change-over process when the size of bar stock must 

be changed from job-to-job.  In the current technology, such a changeover requires that the 

closely toleranced guide channel for the feed stock also be changed to an appropriate size for the 

new bar diameter.  His attempt is to utilize a support system that is more generally sized such 

that it can be used to support a wider variety of bar stock sizes while still effectively mitigating 

vibrational resonances in the feed stock at and near machine frequencies.  His proposal is to use 

magnetorheological fluids together with appropriately placed electromagnets to alter the effective 

stiffness of the fluid and thereby overall support system as a means of manipulating the resulting 

natural frequency.  The scope of his work does not present a final solution, but does suggest 

promise in the idea as well as some practical considerations for further work.  For example, he 

observes that a rigid body moving through a volume of magnetorheological fluid does not fit into 

the well-studied categories of flow, shear and squeeze-flow mode.  Further, the difficulty in 

predicting natural frequencies of a bar within a field where viscous forces are present is not well-

studied either; the latter being a significant contribution of his work.  Although Pierson’s research 

is at best a tangential topic to that presented in this work, it is an interesting idea and worthy of 

note here. 

Optimization of Smooth, Unimodal Functions 

As inferred by Equation (3-4) for physical systems and discussed by Wang et al. 
[9]

 and 

Akesson and Olhoff 
[7]

, an objective function of fundamental natural frequency can be considered 

a smooth function, and either convex or concave in nature.  That is, significant discontinuities to 

the response do not exist as they do with harmonic response near a resonant frequency because 

mass cannot physically diminish to zero (0) so as to create a mathematical singularity.  This 

simplifies the task of optimization for the natural frequency value because a wider array of tools is 

appropriate.  Further, the constraint functions are also free of local discontinuities so long as they 
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exist as side constraints (due to geometric bounds, material property bounds, etc.).  Vanderplaats 

[20]
 states that if the objective and constraint functions can both be shown to be convex, then a 

single optimum exists for the objective function and that optimum is the global optimum.  Multiple 

methods are available to the designer to identify the global optimum of a smooth, convex 

(unimodal) function, including zero-order, first-order and second-order methods.   

First-Order Methods 

First-order methods are usually more efficient than zero-order methods because they 

utilize gradient information as opposed to solely the function values 
[20]

.  Among the simplest and 

most well-known of first-order methods is the method of Steep Descent.  In this technique for 

unconstrained problems, the response is evaluated at an assumed starting location and a search 

direction is established that is consistent with the largest gradient, or the direction of steepest 

descent.  Given this search direction and the starting point, a 1-D search routine is then 

performed in the direction of steepest descent until a minimum value is found. 
[20]

  (Note that in 

the case where a maximum value is sought, the ‘negative’ of the minimum is conventionally 

sought.)  The method of Steep Descent is not a particularly efficient method in comparison to 

other first-order methods 
[20]

 and, because of this, is not commonly used for a full optimization 

method.  Nevertheless, it has been investigated and used successfully. 

Fliege and Svaiter 
[21]

 for example proposed using the method of steep descent for 

unconstrained multicriteria optimization as well as adaptation of the method of feasible directions 

for use in constrained cases.  In their work, they show that these methods converge to a point 

satisfying certain first-order necessary conditions for Pareto optimality 
[21]

 that are parameter free.  

In so doing, Fliege and Svaiter demonstrate first-order methods that are free from ordering 

information or weighting factors, simplifying an approach to multicriteria optimization.  Although 

successful in their demonstration, the authors conclude that since the method is a first-order 

method, it should be considered only as ‘first steps’ toward an overall efficient method rather than 

as efficient methods unto themselves.    
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Several one-dimensional (1-D) or ‘line’ search methods are also available to be used in 

conjunction with a 1st order Optimization method.  One effective method 
[20]

 is that of polynomial 

approximation.  By this method, a one-dimensional polynomial of the response is created in the 

direction of the search vector and the location of the minima thus identified.  An advantage of this 

method is that, given a ‘good’ curve fit to the data, a global minimum along the search vector (for 

a multimodal curve) can be identified with some certainty as compared with a local minimum that 

might be otherwise misunderstood to be the global minimum.  A disadvantage of this method may 

be the amount of computing resource needed to evaluate the 1-D curve as a function of length 

depending upon search strategy used. 

An alternative to the polynomial approximation is an approximation method, or ‘inexact 

line search condition’ sometimes referred to as the Armijo method.  Nocedal 
[22]

 describes that a 

sufficient decrease in the objective function (along the descending search direction) can be 

described by the inequality 

𝑓(𝑥𝑘 + 𝑘𝑝𝑘)𝑓(𝑥𝑘) + 𝑐1𝑘𝑓𝑘
𝑇𝑝𝑘  (3-19) 

where 𝑥𝑘 is the starting point for the search,  is the step length, 𝑝𝑘 is the (descending) search 

direction, 𝑓𝑘
𝑇𝑝𝑘  is the directional derivative and with the constant 𝑐1 (0,1).  This inequality, also 

known as the Armijo condition, states that a ‘sufficient decrease’ in the objective function ‘f’ is 

obtained for a given step such that the result lies below the curve indicated by the RHS of (3-19) 

for an assumed value of 𝑐1.  In practice, the value of this constant is generally very small and may 

be on the order of 10
-4

 or so.   

Although the Armijo inequality does constitute a ‘sufficient decrease’ along the search 

direction to establish a potential minima (in that it ‘guarantees’ a reduction of the function value), it 

does not ensure that the result is a global or even local minimum along the search vector and 

risks that an unnecessarily short step length is identified.  A result of this could be a large number 

of search steps.  Nocedal 
[22]

 suggests that an additional condition may be employed to evaluate 

whether a minima has been identified in the search.  A curvature condition is proposed as 



 

28 

𝑓(𝑥𝑘 + 𝑘𝑝𝑘)𝑇𝑝𝑘   𝑐2𝑓𝑘
𝑇𝑝𝑘 (3-20) 

where the LHS of Equation (3-20) is the derivative of the LHS of Equation (3-19) and the constant 

𝑐2 (𝑐1, 1) is an assumed value (usually closer to 1 than 𝑐1) used to help identify a ‘sufficient’ 

difference between the slope (LHS of Equation (3-20)) and the initial slope at the point 𝑥𝑘.  

Equations (3-19) and a modified form of Equation (3-20) whereby both sides are taken as the 

absolute values are commonly known as the Wolfe conditions 
[22]

 and are useful in identifying 

both a sufficient decrease (per Armijo) and a minimally acceptable slope (positive or negative as 

noted by the inclusion of absolute value).  This is an improvement over the simple implementation 

of the Armijo condition (3-19) but still fails to differentiate a minimum as a local or global feature.  

Although both of these methods (Armijo and Wolfe conditions) hold the potential to speed 

the evaluation process along the search vector in comparison with the polynomial approximation, 

the polynomial approximation holds the potential to be a more accurate evaluation of the search 

vector with improved discrimination between local and global minimums.   

A draw-back to the Steepest Descent method is that no information is carried forward 

from one iteration to another 
[20]

.  That is, as a minimum is identified along the 1-D search vector 

for each iteration, the process starts ‘afresh’ in that a new search direction is identified based on 

the surface gradient (only) at the new start point.  Vanderplaats 
[20]

 recommends that two (2) 

alternative approaches exist as modifications of the Steepest Descent method, but which yield 

improved convergence efficiencies.  The Conjugate Direction method 
[23]

 identifies an initial 

search direction and 1-D search in the same method as described above for Steepest Descent, 

but modifies subsequent search directions by adding a ‘factor’ of the previous iteration’s search 

vector to the newly calculated vector of steepest descent at the current iteration’s start point.  

Alternatively, the Variable Metric Method 
[24]

 modifies the search vector based on the inverse of 

the Hessian matrix as the optimization progresses; the Hessian matrix being a matrix of second-

partial derivatives of the function with respect to the design variables.  Since Variable Metric 

Methods have convergence criteria similar to second-order methods, they are often called quasi-
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Newton methods and represent a potentially significant improvement in convergence rate as 

compared with basic Steepest Descent methods. 

Second-Order Methods 

Second order methods improve upon first order methods by adding Hessian matrix 

information as part of the optimization routine.  As such, these methods are usually more efficient 

than the lower-order methods.
[20]

 

Newton’s method is considered to be the classical second-order method.
 [20]

 It derives the 

search vector based upon the Taylor series expansion of the response and incorporates both 

gradient and Hessian matrices directly.  As described by Vanderplaats
 [20]

, this is both a blessing 

and a limitation of the method.  Where the Hessian matrix can be practically calculated, the 

Newton method is ‘almost always the preferred approach’ due to the improved efficiencies.  

However, multiple factors may prohibit the calculation of the Hessian matrix in real-world 

problems.  For example, closed-form equations for many problems are not readily available and 

calculation of the Hessian matrix using finite-difference methods can be too costly to be practical 

in many cases.  Further, the use of the Newton method relies on a Hessian matrix that is non-

singular and positive definite.  If the Hessian is not positive-definite, then a non-convex  problem 

exists and multiple local-minimums exist; a condition that can result in oscillation in the solution .  

If the Hessian is singular, or nearly so, then that indicates that the objective is linear in one or 

more of the design variables and the solution for the search direction vector may become so ill-

conditioned that the results are not valid.  For all of these reasons, Vanderplaats advises that 

second-order methods are less frequently used as a direct solution of complex real-world 

problems and more commonly as a component in the development of first-order methods which 

may be more easily employed. 

Optimization of Non-Smooth, Multimodal Systems 

As illustrated previously for the harmonic problem of this work, many real-world problems 

involve optimization of a response which is non-smooth, multimodal or both.  As a result, ‘higher 

order’ information such as gradient and hessian functions is not available within a practical 
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context.  Further, the application of ‘purely’ first-order approaches such as the method of Steep 

Descent, while applicable, are not particularly efficient with respect to the speed of their 

convergence.  Therefore, alternate methods are needed. 

Direct Methods 

One class of techniques is commonly described as Direct Methods.  Kolda et al. 
[25]

 

describe that Direct Search methods are traditionally best-known as unconstrained optimization 

techniques that do not explicitly use derivatives.  Because of this, they recommend that Direct 

Search methods may be particularly appropriate for Simulation Based Optimization where the 

process of obtaining derivatives for gradient-based methods may, at the very least be difficult, 

even when the underlying objective and constraint functions are smooth (continuously 

differentiable).  Kolda et al. review that Direct Methods enjoyed popularity as early as the 1960’s 

where they found favor with application to digital computer use.  For example, an early direct 

search method is described as a Compass Search where ordinal steps (North, South, East and 

West) are taken from an assumed starting point to identify a reduction in the function.  Should 

one be found, then that point becomes the new iterate and a subsequent step is made in kind.  If 

a reduction is not found, then the ordinal steps are taken at ½ step increments until the step size 

meets a predetermined minimal value indicating convergence. 

Vanderplaats 
[20]

 discusses three (3) more modern Direct Search techniques applicable to 

Constrained Functions; Genetic Search, Particle Swarm and Sequential Quadratic Programming. 

Genetic Algorithm 

Genetic Algorithms (GA) 
[26]

 attempt to mimic natural evolutionary processes in that 

candidate designs are represented by binary sequences that are altered with respect to their 

‘fitness’ to the objective function.  Key features of a GA algorithm 
[20]

 include the use of function 

values only, the ability to handle discrete variables and a requirement that it include evaluation of 

a very large number of function evaluations.  If the objective function can be described by a 

response equation (surrogate function of a more complex simulation result for example), then 
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solution of each function evaluation can be very fast making the GA approach an attractive 

alternative for multimodal problems. 

Wang and Chen 
[27]

 applied a GA method to the optimization of support location of 

beams.  In their work, Wang and Chen effectively used GA to identify optimal placement of both 

elastic and rigid supports to maximize the fundamental natural frequency of beams with a variety 

of boundary conditions without the use of gradient information.   

Particle Swarm Optimization 

Particle Swarm Optimization (PSO) methods 
[28]

 are another technique which attempts to 

find the solution to optimization problems by mimicking the effects of nature.  In fact, 

Vanderplaats compares PSO to modelling ‘… a swarm of bees or flock of birds seeking food’ 
[20]

.  

Although PSO is designed to solve unconstrained problems, it can be applied to minimization of 

constrained problems by modifying the objective function into a ‘pseudo-objective function’ which 

includes a penalty-value, based upon violation of the defined constraints.  In general, an initial 

population of starting points (or ‘particles’) is established, each with a randomly assigned velocity 

vector.  The pseudo-objective function is evaluated at its new position (original position plus 

velocity * time step) and the particle with minimum pseudo-objective function is identified.  A new 

velocity vector is computed for the population which utilizes an ‘inertia’ parameter applied to the 

new velocity vector as well as ‘trust’ parameters applied to terms which involve the identified 

particle with minimum pseudo-objective function.  A subsequent time step is then performed, all 

particles are re-evaluated and the process repeated until convergence is obtained through 

minimized movement of the particles.   

Banks et al. 
[29]

 state that PSO has been in existence since approximately 1997 and, as a 

‘natural computing paradigm’ has enjoyed formative research particularly in the fields of social 

modelling, computer graphics and simulation and animation of natural swarms or flocks of 

animals.  They cite that an attribute shared by many of the ‘natural computing’ paradigms is the 

ability to deal with noisy or incomplete data.  Further, research is cited by Banks et al. that PSO 

finds solutions near optima faster than GA but is more prone to premature convergence than 



 

32 

Evolutionary Algorithms.  This is termed by Banks et al. as ‘Swarm Stagnation’ which, although 

desired as a rapid convergence outcome, is a potential drawback of PSO in that the swarm can 

easily stagnate around a solution without pressure to continue exploration.  

Vesterstrøm and Thomsen 
[30]

 compared the effectiveness of Differential Evolution (DE), 

Particle Swarm Optimization and Evolutionary Algorithms (EA) on a series of 34 standardized 

benchmark programs.  They conclude that in general, the DE algorithm outperforms both PSO 

and EA in terms of consistent speed of convergence and ability to find the optimum.  The DE 

algorithm is another in the group of methods that attempt to utilize natural processes as a ‘search 

method’. 
[30]

   An array of initial start points (termed ‘individuals’) is assumed and evaluated and 

then offspring are created using the weighted difference of parent solutions. Importantly, 

Vesterstrøm and Thomsen conclude that the PSO routine was particularly problematic with test 

cases involving noisy functions and this aspect is recommended for further investigation.   

Laskari et al. 
[31]

 investigate PSO as a means of optimizing minimax problems in 

comparison to Sequential Quadratic Programming (SQP) methods (discussed later in this 

chapter).  Key conclusions are that PSO is shown to be an effective method for solving minimax 

problems, but may be outperformed by SQP methods which were shown to be much faster for 

less complex problems.  The authors 
[31]

 note however that PSO is very easily implemented and 

has a key advantage that gradient information is not required as is required by the SQP method.  

As a result, it is not affected by discontinuities in the objective function as discussed previously.  

Further, they recommend that if the problem to be solved is a ‘black box function’ (where ‘only 

function values are provided’ 
[31]

 as opposed to gradient, hessian or other information), as may be 

the case with optimization of computer simulation results, then PSO may be a good alternative as 

an initial search tool with continued optimization performed by the more efficient gradient-based 

methods such as SQP.   

As with GA above, Vanderplaats 
[20]

 advises that PSO methods require a very large 

number of function evaluations.  In the event that a simplified surrogate model of the response is 

available for evaluation, the optimization event may be able to fit within an acceptable bound of 
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computational effort.  If however a surrogate model is not practical (as might be the case for finite 

element based computer simulations) the PSO method may not be an efficient alternative with 

respect to other methods.   

Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) 
[32]

 is described by Vanderplaats 
[20]

 as another 

in the category of Direct Methods suitable for optimization of constrained functions.  In many 

methods, including the method of Steep Descent discussed earlier, an initial search direction is 

chosen based upon gradient information obtained in the vicinity of the iteration’s start point and a 

1-D search then performed to find a potential optimum along that vector.  In the SQP method 
[20]

, 

the selection of the search vector is treated as a sub-problem with a quadratic objective function 

and linear constraint functions shown as: 

Minimize:   Q(S) = F(X) + 𝐹(X)𝑇𝑆 +
1

2
𝑆𝑇𝐵𝑆 (3-21) 

         Subject to:          𝑔𝑗(X)𝑇𝑆 + 𝑗𝑔𝑗(X) ≤ 0      𝑗 = 1, 𝑚 (3-22) 

                                  ℎ𝑘(X)𝑇𝑆 + ̅ℎ𝑘(X) = 0        𝑘 = 1, 𝑙 (3-23) 

Vanderplaats describes that here, the design variables are the components of S and the 

matrix B is initially the identity matrix, but is updated at each subsequent iteration to approach the 

Hessian matrix of the Lagrangian.  

The commercial software program MATLAB ® (The MathWorks, Inc.) includes SQP as 

an algorithm option within its constrained nonlinear optimization command ‘fmincon’ 
[33]

.  MATLAB 

® help documentation regarding the use of fmincon 
[33]

 states that gradient information may be 

defined by the user as an input to the command.  If gradient information is not provided by the 

user however, it is estimated ‘automatically’ within the fmincon function by the finite difference 

method.  

Optimization of Expensive Black Box Functions 

Much work is conducted and published in the area of optimization of ‘Expensive Black 

Box Functions’.  As previously defined 
[31]

, a Black Box Function is one where only function 
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values of the response are available.  This may be in contrast to knowledge of the response that 

might lead to gradient or hessian information for example.  This is commonly the case with 

computer simulations such as Finite Element Analysis (FEA) and Computational Fluid Dynamics 

(CFD) techniques or experimental evaluations of physical prototypes.  Knowles 
[34]

 describes a 

set of characteristics that are typically associated with an Expensive Black Box Function (EBBF).  

They include (but are not limited to):  

 The time taken to perform one evaluation is of the order of minutes or hours 

 Only one evaluation can be performed at one time (no parallelism is possible) 

 The total number of evaluations to be performed is limited by financial, time or 

resource constraints. 

 No realistic simulator or other method of approximating the full evaluation is readily 

available. 

Due to the nature of the EBBF problem, solution techniques are often focused on 

stochastic techniques.  The use of surrogate models is one common approach which aids in the 

optimization of this class of problems. 
[35] [36]

 (By definition, use of a surrogate model transforms 

the problem from an EBBF to a simpler problem where additional optimization tools are 

appropriate.) Jones et al. 
[35]

, for example, suggest a surrogate response surface (RS) approach 

based in ‘kriging’ models and ‘Bayesian global optimization’ techniques which has three (3) major 

advantages in comparison with other EBBF techniques. 

 The technique often requires the fewest function evaluations of competing methods 

because effective interpolation and extrapolation is made possible over ‘large 

distances’. 

 The approach provides a credible stopping rule based on confidence intervals 

provided by a statistical model of the RS. 

 The approach provides a fast approximation to the computer model as compared to 

the original evaluation itself. 
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An obvious limitation of the RS method is one of accuracy of the surrogate model with 

respect to the primary model.  In the event that the computer simulation results in a relatively 

smooth function, an effective RS can be developed and validated in a relatively few number of 

function evaluations; making such a technique highly desirable for EBBF’s.  However, if (as is the 

case with many harmonic analyses of mechanical systems) the RS is more complex and includes 

multimodality and / or discontinuities a great many more function evaluations are required in order 

to produce a surrogate model of acceptable quality. 

Another technique for optimizing on EBBF’s is the use of mode-pursuing sampling 

methods. In their paper, Wang et al. 
[37]

 describe the mode-pursuing sampling method as a 

technique that ‘systematically generates more sample points in the neighborhood of the function 

mode while statistically covering the entire search space’. 

Although the motivation for this work includes consideration for EBBFs, a full inclusion of 

methods specific to their solution is beyond the selected scope.  Rather, a ‘simplified alternative’ 

is sought which is in keeping with and provides some amount of ‘balance’ between more 

traditional optimization techniques and consideration for problems involving expensive function 

solves.    A description of the selected technique(s) is included in a later chapter. 
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Chapter 4  

Model Development and Validation 

Modelling and Validation Plan 

Chapter 2 describes a sample problem for purposes of this study which is comprised of a 

‘family’ of mechanisms involving two parallel beams; one (bottom beam) that is common to all 

family variants and one (top beam) which is unique to each family variant.  In addition to 

cantilever support, the bottom (common) beam is supported by two intermediate elastic supports 

to ground, each of which includes both spring and damper components.  The top (variable) beam 

is a ‘free-free’ beam with respect to end conditions, but is supported by two intermediate elastic 

supports (spring and damper components) to the base beam. A lumped mass and applied force 

(static and harmonic analyses) are applied to the tip end of the top beam. The system is 

illustrated in Figure 2-1. 

A primary focus of this study is to compare and contrast the effectiveness of alternative 

strategies for optimization of the parameters related to the elastic supports using Finite Element 

Methods (FEM) as the means for solving the structural analysis problem.  Therefore, it is 

important to validate that the FEM models are correct and appropriate prior to their use in the 

optimization effort.  This model validation effort is the subject of this chapter and focuses on two 

(2) primary means of comparisons which are listed here and explained in greater detail below.  

1) comparison of 1D (beam) & 3D (solid) FEM results for a simplified single-

beam model against theoretical solutions for both static deflection and modal 

analysis 

2) comparison of 1D & 3D FEM results for harmonic loading of the parallel-beam 

problem as a means of identifying the most efficient modeling method for later 

use in the optimization studies 

Mesh density studies are included as part of each of these processes in order to support the 

relative conclusions.  
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The first part of the validation effort focuses on evaluation of a single beam model.  This 

simplification from the parallel-beam is considered in order to simplify the development of a 

theoretical solution; against which the validation comparison can be made.  That is, a theoretical 

solution to the parallel-beam problem (with intermediate elastic supports) is a complex effort and 

outside the selected scope of this project.  Rather, the focus of this project is a comparison of 

alternative optimization techniques in combination with FEM structural analysis.  The simpler two-

step validation approach described above is sufficient to support correctness of the FEM solution 

and is therefore used here for comparison of the FEM modal and static results to theoretical 

solutions. 

Theoretical solutions for both natural frequency and static load analyses for the first part 

of this validation exercise are based on classical Euler-Bernoulli beam theory.  It is recognized 

that a limitation exists in this approach in that Euler-Bernoulli beam theory does not account for 

shear deformation or rotary inertia as may become significant for short, stubby beams.
[2]

  

Methods such as Timoshenko beam theory may be employed to incorporate both of these 

elements in the theoretical analysis and would make the solution more robust for beams of low 

aspect ratio, but given that the Problem under Study has a relatively large aspect ratio, this more 

complex analytical method will not be employed.  Rather, the first part of the validation exercise 

focuses on comparison of the FEM results for mode shape, mode frequency and static deflection 

to theoretical results using classical Euler-Bernoulli beam theory. 

The second part of the validation effort evaluates the level of detail required in the FEM 

model.  Specifically, can an appropriate (analytically correct) result be reached using the more 

simple method of 1D meshing as compared with a more burdensome 3D technique.  This 

comparison is made specifically using the parallel beam system under harmonic loading.  The 

theoretical calculation of harmonic response for continuous systems is complex and beyond the 

selected scope of this work.  Harmonic model validation is, in general, a combination of modal 

and structural elements and therefore is validated to a minimal degree by validation of the two 

component analyses (above).  However, a significant difference exists between the performance 
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of a 1D and 3D modeling technique with respect to mesh convergence and model efficiency.  

Therefore, the second validation effort compares the response of the FEM 1D and 3D models to 

each other in a harmonically loaded, parallel beam system.  This validation effort replicates the 

model under study in this larger work and serves to substantiate (or refute) that a 1D modelling 

technique can be utilized rather than a 3D technique in order to improve the speed of the 

computations.  This determination will be made based on a review of the results and the 

convergence of their responses. 

Theoretical Solutions - Dynamic 

The theoretical solution to transverse vibration of Euler-Bernoulli beams is described in 

detail in the text by Craig and Kurdila 
[2]

 and summarized below.  The method is derived using 

Newton’s Second Law and makes the following assumptions: 

 Beam deformation is planar and in the principle plane of definition for the beam. 

 The beam is oriented within this plane such that its neutral axis is the x-axis 

within the plane of definition. 

 Cross sections of the beam which are originally perpendicular to the neutral axis 

(undeformed state) remain perpendicular to the neutral axis in the deformed 

state; i.e. transverse shear deformation is neglected. 

 The material is both linearly elastic and homogeneous at and throughout any 

cross section. 

 Transverse stresses (y and z) are negligible in comparison to the axial stress 

x.  

 Rotary inertia of the beam may be neglected in the moment equation. 

 Mass density is constant at each cross section such that the center of mass 

coincides with the geometric centroid of any given cross section of the beam. 

The general equation of motion then for the transverse vibration of a single beam is 
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𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣

𝜕𝑥2
) + 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
= 𝑝𝑦(𝑥, 𝑡),          0 < 𝑥 < 𝐿 

(4-1) 

where the first term on the left hand side represents the elemental bending moment aspect of 

Newton’s Law and the second term represents the elemental shear force for a beam of length L.  

For free vibration as is appropriate to consideration of natural frequency response here, the right 

hand term goes to zero and the Equation of Motion reduces to 

𝜕2

𝜕𝑥2 (𝐸𝐼
𝜕2𝑣

𝜕𝑥2) + 𝜌𝐴
𝜕2𝑣

𝜕𝑡2 = 0,          0 < 𝑥 < 𝐿  (4-2) 

Assuming harmonic motion of the form V(x)cos(t-) where  is the phase lag due to 

damping, the eigenvalue equation for free vibration of a uniform beam becomes 

𝜕4𝑉

𝜕𝑥4
− 4𝑉 = 0 (4-3) 

                  where:         

4 = 2
𝜌𝐴

𝐸𝐼
 

(4-4) 

The general solution to the fourth-order differential equation in (4-3) is given as 
[2]

 

𝑉(𝑥) = 𝐶1 sinh(𝑥) + 𝐶2 cosh(𝑥) + 𝐶3 sin(𝑥) + 𝐶4 cos(𝑥)  (4-5) 

Values for the four constants (C1 thru C4) are obtained by incorporating boundary 

conditions specific to the beam under study.  Two (2) boundary conditions are selected as being 

sufficient to validate the FEM model to theoretical computations.  First a beam which is simply 

supported at both ends is considered and then a cantilever beam is considered for the second 

case.  Although only parallel beam problem does not include a case where the bottom beam is 

simply supported at both ends, it is included here in order to add confidence in the validation of 

the FEM model. 

For the uniform beam of length (L) with simply supported end conditions at each end, the 

boundary conditions are 
[2]

 

𝑉(0) = 0  
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𝜕2𝑉

𝜕𝑥2
|𝑥=0 = 0 

 

𝑉(𝐿) = 0 (4-6) 

𝜕2𝑉

𝜕𝑥2
|𝑥=𝐿 = 0 

 

Through application of boundary conditions (4-6) for the simply supported beam, it is 

shown by Craig and Kurdila 
[2]

 that a nontrivial solution to the general solution (4-5) exists only if 

sin(L)=0  Therefore, the characteristic equation yields eigenvalues (r) as follows 
[2]

: 

𝑟 =
𝑟

𝐿
 (4-7) 

where r indicates the order of the mode. 

Use of these eigenvalues, then, yields the following solutions for natural frequency (r) 

and mode shape (r) for a uniform beam of length (L), simply supported at each end. 
[2]

 

𝑟 = (
𝑟

𝐿
)

2

√(
𝐸𝐼

𝜌𝐴
) 

(4-8) 


𝑟

(𝑥) = sin (
𝑟𝑥

𝐿
) (4-9) 

For the second constraint case (cantilever), the boundary conditions for a beam of length 

(L) are 
[2]

 

𝑉(0) = 0 
 

𝜕𝑉

𝜕𝑥
|𝑥=0 = 0 

 

𝜕2𝑉

𝜕𝑥2
|𝑥=𝐿 = 0 

(4-10) 

𝜕3𝑉

𝜕𝑥3
|𝑥=𝐿 = 0 

 

Application of boundary conditions (4-10) for the cantilever beam is shown by Craig and 

Kurdila 
[2]

 to yield a characteristic equation as 

cos(𝐿) cosh(𝐿) + 1 = 0 (4-11) 
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No simple expression for the roots of this characteristic equation is available so, as 

referenced by Craig and Kurdila 
[2]

, numerical solutions yield the following eigenvalue expressions 

which are in turn used to define expressions for the first four natural frequencies (r).  The first 

four mode shapes 𝒚𝒓 (
𝒙

𝑳
) of the cantilever beam are given by Blevins 

[38]
.  Constants 𝑟𝐿 are given 

by Craig and Kurdila 
[2]

 and r by Blevins 
[38]

. 

𝑟 =
(𝑟𝐿)2

𝐿2
√(

𝐸𝐼

𝜌𝐴
) 

(4-12) 

𝑓𝑟 =
𝑟

2𝜋
 (4-13) 

𝑦𝑟 (
𝑥

𝐿
) = 𝑐𝑜𝑠ℎ (

𝑟𝑥

𝐿
) − 𝑐𝑜𝑠 (

𝑟𝑥

𝐿
) − 𝑟 (𝑠𝑖𝑛ℎ (

𝑟𝑥

𝐿
) − 𝑠𝑖𝑛 (

𝑟𝑥

𝐿
)) (4-14) 

                  where:         

1𝐿 = 1.8751 ,      2𝐿 = 4.6941 ,      3𝐿 = 7.8548 ,      4𝐿 = 10.996 (4-15) 

1 = 0.734095514,   2 = 1.018467319,   3 = 0.999224497, 4 = 1.000033553 (4-16) 

 

Theoretical Solutions - Static 

Deflection of static beams, both cantilevered and simply supported, are well known and 

documented in literature.  Therefore a review of their derivation will not be included here.  Rather, 

the resulting closed form solutions are provided below for point-loaded beams as found in various 

‘beam tables’ and texts including Den Hartog. 
[39]

 

Tip (maximum) deflection of cantilevered beam of length (L): 

𝑡𝑖𝑝 =
𝑃𝐿3

3𝐸𝐼
 

(4-17) 

Center (maximum) deflection of beam of length (L) simply supported at both ends: 

𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑃𝐿3

48𝐸𝐼
 

(4-18) 

Note that as with the larger (parallel beam) optimization study, the weight of the bar due to gravity 

is not considered here. 
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Single Beam Model Validation 

Description of 1D & 3D FEM Models 

The top beam for Family Variant ‘1’ is selected as the model for the ‘single-beam’ FEM 

validation exercise. Specific dimensional and material properties are given in Table 2-1.  As 

mentioned previously, two (2) constraint cases are considered for this validation exercise: 

1) the beam is loaded and supported as a cantilever  

2) simply supported at each end with mid-span load.   

Load values for the two (2) cases are also taken from Table 2-1.  The lumped mass at 

the free end of the top beam is not necessary or considered in this validation exercise, which is 

consistent with the assumptions of the theoretical models discussed previously.  Finally, both 1D 

(beam) and 3D (solid) models of the modal analysis are constrained to limit motion to the primary 

plane only.  That is, both lateral translation and axial rotation are constrained to ‘0’ in order to be 

in keeping with the theoretical models. 

Figure 4-1 and Figure 4-2 illustrate a close-up view of the 1D (beam) and 3D (solid) 

models respectively.  Note that although beam elements are used, the commercial FEM program 

used (ANSYS ® v14.5.7) illustrates the 1D (beam) model in a quasi-3-dimensional fashion as 

noted in the illustration below (Figure 4-1).  However, the beam elements have units of length 

only, with cross-sectional geometric properties obtained via section property definition. The 3D 

(solid) model by contrast discretizes the solid body into ‘solid’ elements, including both brick and 

tetrahedral shapes.   
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Figure 4-1 Close-up of 1D (beam element) model - nodal spacing = 0.050" 

 

Figure 4-2 Close-up of 3D (solid element) model - nodal spacing  0.0125" 

For purposes of this investigation, the 1D (beam) element type used was ANSYS’ ® 3-D, 

2-Node beam, BEAM188; based on linear shape functions and uses one point of integration along 

the length.  It is recognized that a higher order element type (such as cubic) would require far 

fewer elements to reach a converged response.  However, the use of linear elements with a 

nodal density appropriate for solution convergence supports the needs of this study and 
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illustrates the use of the optimization tools in an ‘Expensive Black Box’ style model.  The shape 

functions associated with ANSYS’® BEAM188 
[44]

 used as a linear beam are provided in the 

equation below for reference. 

𝑢 =
1

2
[𝑢𝑙(1 − 𝑠) + 𝑢𝑗(1 + 𝑠)] 

𝑣 =
1

2
[𝑣𝑙(1 − 𝑠) + 𝑣𝑗(1 + 𝑠)] 

𝑤 =
1

2
[𝑤𝑙(1 − 𝑠) + 𝑤𝑗(1 + 𝑠)] 

𝜃𝑥 =
1

2
[𝜃𝑥𝑙(1 − 𝑠) + 𝜃𝑥𝑗(1 + 𝑠)] 

𝜃𝑦 =
1

2
[𝜃𝑦𝑙(1 − 𝑠) + 𝜃𝑦𝑗(1 + 𝑠)] 

𝜃𝑧 =
1

2
[𝜃𝑧𝑙(1 − 𝑠) + 𝜃𝑧𝑗(1 + 𝑠)] 

(4-19) 

 

Mesh Sensitivity Results and Validation of FEM to Theoretical Models 

Validation of the FEM model results is obtained by comparison of both static deflection 

and modal results to the theoretical results obtained using the equations from the preceding 

section.  As part of this process, mesh sensitivity analyses are conducted for both static and 

modal results in order to define the appropriate mesh density at which the FEM models converge.  

For purposes of this exercise, an error value of 1% (between FEM and theoretical result) is 

selected as a threshold of ‘goodness’.  This value is selected for the purposes of this study as an 

appropriate compromise between accuracy and overall model size and corresponding computing 

requirements. 

Mesh sensitivity results as well as a comparison to the theoretical solutions for static 

deflection are summarized in Figure 4-3 and Figure 4-4 for the Cantilever and Simply-Supported 

constraint conditions respectively.  Data supporting these figures are provided in Appendix A as 

Tables A-1 and A-2. 
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Figure 4-3 Mesh sensitivity and validation results - static deflection, cantilever beam 

 

Figure 4-4 Mesh sensitivity and validation results - static deflection, simply supported beam 
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Both the 1D (beam) and 3D (solid) models of the cantilever and simply supported beams 

indicate convergence toward the theoretical solution(s).  However, the 1D model does so with 

significantly fewer total nodes than the 3D model in both cases.   As shown in the data above, the 

1D model achieves 1% error with approximately 9600 total nodes for the cantilever beam and 

approximately 800 total nodes for the simply supported beam.  This equates to approximately 200 

nodes per inch (NPI) and 16.7 NPI for the cantilever and simply supported beams respectively.  

The 3D model, however, requires many more nodes; in excess of 10
6
 total nodes ( 2.08x10

4
 

NPI) for the simply supported beam and more than 10
7
 nodes for the cantilever.  As noted in the 

figure though, with 10
7
 nodes, the cantilever beam fails to reach the acceptability threshold of 1% 

effort.  It is recognized that good FEM practice includes methods to selectively modify the nodal 

density in different areas of the geometry in order to reduce the required overall number of nodes, 

but it is anticipated that the 3D model will still require significantly more nodes than the beam 

modeling method.  Further, the repetitive modeling method required by the planned optimization 

effort makes it impractical to ‘optimize’ the nodal densities for each geometry and a more 

generalized meshing strategy is preferred.   

Comparison of the cantilever and simply supported mesh discretization results then show 

a significant difference in the minimum mesh densities required.  For both 1D and 3D beams, the 

cantilever end condition requires significantly higher mesh density than the simply supported 

condition to achieve convergence.   This is attributed to the fact that the relatively large 

deformation of the cantilever beam requires smaller elements (higher nodal density) in order to 

accurately model the result.  The 3D models in general either required such a high nodal density 

as to be impractical (with respect to computing resources).  Therefore, a conclusion is drawn from 

these results that a 1D element type with nodal density of at least 200 NPI is appropriate to 

achieve the goals of the study for static deflection. 

Mesh sensitivity results for the modal evaluations (frequency value) are summarized in 

Figure 4-5 and Figure 4-6 for the Cantilever and Simply-Supported constraint conditions 

respectively.  Data supporting these figures are provided in Appendix A as Tables A-3 thru A-6. 
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Figure 4-5 Mesh sensitivity and validation results - mode frequency, cantilever beam 

 

Figure 4-6 Mesh sensitivity and validation results - mode frequency, simply supported beam 
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As with the static deflection results above, both the 1D (beam) and 3D (solid) models of 

the cantilever and simply supported beams indicate convergence toward the theoretical solution.  

Also as with the static results, the modal results for the 1D model shows convergence with 

significantly fewer total nodes than does the 3D model.   However, the minimum nodal density 

required for convergence is lower for the modal analysis than the structural.  That is, the 1D 

model of the cantilever beam for modal results achieves 1% error with approximately 17 total 

nodes or 0.35 NPI (vs 200 NPI for the static analysis).  The 3D model requires at least 500 nodes 

(10.42 NPI) for the modal frequency result as compared to 2.08x10
4
 NPI for the static analysis.  

The simply supported model has identical results for the modal analysis (as compared to the 

cantilever beam) with a minimum 17 total nodes for the 1D method and 500 nodes for the 3D 

method.  Note that these values indicate the nodal density required to achieve the error threshold 

(1%) for all four (4) modes.   

Interestingly, the modal frequency predictions for the cantilever beam with 3D elements 

diverge above approximately 10
5
 nodes (20,833 NPI) but remain stable at this high nodal density 

for the simply supported case.  Note that the 1D elements did not show such a discrepancy at 

high nodal densities; rather, 1D modal frequency predictions remained within 1% of the 

theoretical values for both cantilever and simply supported beams.   

These results indicate that acceptable results may be achieved with nodal densities 

greater than 0.35 NPI for 1D elements and between 10.42 and 20,800 NPI for 3D elements.  

Given the selected scope of this work, it is sufficient to accept an upper bound on nodal densities 

of 3D modal models of 20,800 NPI and not pursue a precise understanding of the divergence at 

higher densities.   

Theoretical results for mode shape of the simply supported models are established in 

Equation (4-9) above and presented graphically in Figure 4-7 below.   By comparison, mode 

shape results for the 1D FEM solution using a (minimally acceptable) nodal density of 

approximately 200 NPI are presented in Figure 4-8.   As shown, the FEM results for mode shape 

match the theoretical results.  The 3D results for mode shape are identical as well, although they 
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are not depicted here since 3D element types will not be used for the parallel beam study (given 

the above validation comparisons). 

 

Figure 4-7 Theoretical results - mode shape, simply supported beam 

 

Figure 4-8 FEM results (1D model, 200 NPI) - mode shape, simply supported beam 

Theoretical results for mode shape of the cantilever case are established in Equation 

(4-14) above and presented graphically in Figure 4-9 below.   Similar results for the 1D FEM 
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solution using a (minimally acceptable) nodal density of approximately 200 NPI are presented in 

Figure 4-10 for comparison.   Here too, the FEM mode shape results for 1D model of a cantilever 

beam match the theoretical results and therefore validate this aspect of the FEM model with 1D 

element type.  Although not depicted here, the 3D results for mode shape match as well. 

 

Figure 4-9 Theoretical results - mode shape, cantilever beam 

 

Figure 4-10 FEM results (1D model, 200 NPI) - mode shape, cantilever beam 
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Parallel Beam Model Validation (1D vs. 3D Harmonic) 

In addition to the single beam validation efforts (for static deflection and natural 

frequency), a comparison between 1D and 3D modeling methods was conducted for the parallel 

beam model in order to compare and contrast the relative responses under harmonic loading.  

Although not a true ‘validation’ per se (since a comparison is not made to theoretical results) this 

comparison serves to help support a decision for 1D vs. 3D modelling method for the parallel 

beam Problem under Study and eventual optimization exercise.  This is necessary because the 

optimization exercise is anticipated to involve a large number of FEM solves and efficiency during 

that process is important in order to minimize the overall time required given computing resources 

at hand. 

The parallel beam model used in this validation comparison is as depicted in Figure 2-1 

with values specified per Table 2-1 for Family Variant #1 (48” long top beam).  Figure 4-11 

illustrates the model boundary conditions and loads.  As shown, a harmonic load (0.5 lbf) is 

applied to the free-end of the top beam.  The bottom beam is primarily cantilevered (fixed 3 DOF 

translation, 3 DOF rotation) with mid-span supports as shown.  The left end of the top beam is 

fixed in 2DOF rotation and axial translation only to allow for ‘free’ movement within the plane of 

the analysis as described previously.  In addition, all nodes of the model are constrained to 

prevent lateral translation and thereby limit motion to planar.  The analysis is conducted from 10 – 

100 Hz in 2.5 Hz increments. 

 

Figure 4-11 Parallel beam harmonic analysis model constraints and boundary conditions 
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Two (2) types of output metrics are considered for the harmonic model validation effort; 

displacement metrics of the top beam’s free tip (load point) and the reaction forces of the four (4) 

support springs.   

The, displacement response of the top beam’s load point is considered via two (2) 

metrics; by summing the response at each frequency and also by computing the range of 

harmonic displacements across the range of frequency.  This is consistent with output metrics 

that are to be optimized for the Parallel Beam problem (discussed in detail in a later chapter) and 

represent for the purposes of this validation study the system response through a variety of 

conditions.   

Spring reaction forces are not considered as part of the Parallel Beam optimization study, 

but are included here as another type of metric from which to gain insight into the differences and 

similarities of the two (2) modeling methods.  For the validation effort, spring reaction force is 

considered by summing the forces for each spring across the range of frequencies 

(independently) in order to gain insight across a variety of conditions in a similar manner to tip 

deflection (above).  The list of output metrics to be compared then is summarized in Table 4-1 

below. 

Table 4-1 Output metrics for harmonic model comparison 

Sum – Load Point Displacements  (vertical) Across Frequencies 

Range - Load Point Displacements  (vertical) Across Frequencies 

Sum – Forces Across Frequencies (Spring 1) 

Sum – Forces Across Frequencies (Spring 2) 

Sum – Forces Across Frequencies (Spring 3) 

Sum – Forces Across Frequencies (Spring 4) 

 
Figure 4-12 and Figure 4-13 illustrate the convergence error of the 1D and 3D harmonic 

models respectively.  Data supporting these figures are provided in Appendix A as Tables A-7 

and A-8.  For these purposes, ‘convergence error’ is the difference (%) in the result of two 

adjacent nodal densities.  As shown, the 1D model has convergence error < 1% through the 

entirety of mesh densities studied (70 – 2x10
5
 total nodes or approximately 1.4 – 1600 NPI).  The 

3D model on the other hand is converged to < 1% only for total node count above approximately 
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40,000 (approximately 342 NPI).  Note that both 1D and 3D models show a trend toward 

increasing error at higher node densities (above 1600 & 3083 NPI respectively).  As with similar 

trends for the modal and static deflection studies above, this trend is attributed to numerical 

inconsistencies of the large models and is not explored further within the scope of this work. 

 

Figure 4-12 Harmonic mesh convergence error - 1D elements 
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Figure 4-13 Harmonic mesh convergence error - 3D elements 

Selected Model Description for Problem under Study 

Table 4-2 summarizes the range of acceptable nodal densities (to achieve error < 1%) 

per the mesh sensitivity results for static, modal and harmonic analyses. 

Table 4-2 Acceptable nodal densities for study of parallel-beam 

 
1D Elements 3D Elements 

Minimum Maximum Minimum Maximum 

Static 200 None observed 2.1x104 None observed 

Mode Frequency 0.35 None observed 10.4 20,833 

Harmonic 1.4 None observed 342 None observed 

 

It is concluded then that a 1D element model with nodal density of at least 200 NPI is appropriate 

to balance model size and result accuracy and should be used in the later optimization efforts. 
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Chapter 5  

Development and Characterization of the Optimization Algorithms 

Identification of Candidate Methodologies 

An objective of this work is to seek an optimization method that is an effective 

compromise between finding an ‘absolute global optimum’ solution and the overall cost of the 

effort as applied to harmonic response problems for platform-style systems.  As discussed in a 

previous section of this report, a wide variety of optimization methods are available; each having 

pro’s and con’s with respect to application to the problem at hand.  Key considerations are 

summarized as follows. 

 First-order search methods (e.g.; Steep Descent) are known to be efficient in the 

initial stages of optimization but loose efficiency as the search nears the optimum.  

Because of their nature, they require gradient information about the surface which is 

not directly available for Black Box type functions. 

 Direct search methods on the other hand (e.g.; Genetic Algorithm, Particle Swarm, 

Sequential Quadratic Programming, etc.) do not require gradient information about 

the response which makes them attractive for Black Box Functions.  Note that SQP 

methods can incorporate gradient information to advantage, but it is not required in 

order to determine the descent direction.  Rather, SQP treats the selection of the 

search vector as an optimization ‘sub-problem’. 

 Direct search methods are reported in literature as being effective for use in 

searching for global optimums, especially for multimodal responses.  This is 

particularly important for problems involving harmonic response, where natural 

frequencies may exist within the operating range causing a multimodal nature to the 

response. 

 Direct methods, however, are reported to require a high number of function 

evaluations to achieve the desired result.  This contradicts the objective of finding a 



 

56 

search method applicable to Expensive Black-Box Functions where each function 

solution may be very costly. 

 Laskari, et al. 
[31]

, report that the Particle Swarm direct method outperformed SQP for 

all but the ‘less complex problems’.  Noting that PSO (and other direct methods) do 

not require gradient information, they recommend that these methods might be 

appropriate for Expensive Black Box functions; especially for finding a ‘good 

approximation of the solution’ and then ‘continuing with a faster gradient based 

method, such as SQP’. 

Laskari, et al.’s recommendation is the inspiration for the method explored in this work; 

an initial ‘coarse global’ search for starting points sampled from across the entire design space, 

followed by use of an SQP direct-search method in the local region showing the most optimal 

result from the ‘coarse global’ search.  Their recommendation, however,  is based upon use of a 

PSO direct search method as the initial ‘coarse search’ given that PSO was the primary subject of 

their paper. 

As discussed previously, Direct methods are known to require a large number of function 

evaluations during the course of their search.  Since this is in conflict with a goal of this work to 

define a strategy appropriate to large models, a modification to Laskari, et al.’s recommendation 

is considered for this investigation.  That is, to utilize the first-order method of Steepest Descent 

for the global search, followed by an SQP (local search) method starting from the most attractive 

global result.  Since “Steepest Descent’ is, strictly speaking, an unconstrained search algorithm 

and the problem is a constrained one, a modification is made to account for effects of various 

constraints.  For purposes of this work, the resulting process is termed the method of ‘Steepest 

Feasible Descent’ to clarify the distinction.  The classical method of Steep Descent, and by 

extension Steepest Feasible Descent, is known to be particularly effective (efficient) in identifying 

an approximation to the optimum result within the first few ‘jumps’, but is particularly inefficient as 

a local search tool near the optimal point.  SQP however, is valued for its efficiency as a local 
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search tool, but is less effective at transitioning ‘ridges’ and other local maxima features of a 

multimodal response in order to find a ‘global optimum’.   

The preferred method for this work then, is to utilize the efficiency of the first (very few) 

jumps of a Steepest Feasible Descent methodology to find the general area of potential minimum, 

followed by SQP as the more efficient local search tool.  A (perhaps) simpler approach might be 

to simply evaluate a number of sample points throughout the design space (without a specific 

directional algorithm) as a method to finding the best regions for a subsequent local search.  

Success in this approach however would be largely attributed to the ‘luck’ of having the ‘right’ 

starting points since no real intelligence is utilized during such a search.  By incorporating the first 

few jumps of a Steepest Feasible Descent methodology however, it is theorized that the 

additional ‘intelligence’ will result in a more intelligent estimation of global minimum; with a limited 

number of function evaluations.  By following this Steepest Feasible Descent initial search with a 

more refined SQP local search, it is theorized that the best of both methods will contribute to a 

better result than either method employed individually.   

Although the combined method appears to be an efficient overall strategy, its 

effectiveness on a multimodal response (as opposed to a ‘straight-forward’ application of either 

the Steepest Feasible Descent or SQP methods) is not immediately clear and is therefore a 

subject of comparison in this work.  Specifically, three (3) optimization methodologies are 

explored and compared here in order to identify an ‘optimal’ methodology for later use on the 

parallel beam problem.  The candidate methods are: 

a) Use of Steepest Feasible Descent method (only), starting from a given number of 

points sampled from across the design space.  As with the ‘combined’ method 

(below), this Steepest Feasible Descent search will be limited to a very few ‘jumps’ 

for each starting point in order to evaluate the efficiency of this approach. 

b) Use of SQP (only) starting from each of a sampling of starting points from across the 

entire design space.  In this way, SQP is used as a ‘global’ search tool and identifies 

a potential result for each starting point based upon selected convergence criteria.  
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Use of SQP in this way evaluates its ability to cross ‘ridges’ and other local maxima in 

a multimodal response in order to find an acceptable global minimum. 

c) The combined use of the method of Steepest Feasible Descent as a coarse ‘pre-

search’ for the sampling of points across the design space followed by a more refined 

SQP method starting at the single most optimal result of the pre-search.  In this way, 

it is hoped that the most-efficient aspects of each approach will be exploited and the 

less-efficient aspects of each likewise avoided in the overall method. 

Down-Select Technique and Description of Test Functions 

Down-Select Technique 

The three (3) candidate optimization methodologies each have strengths and 

weaknesses related to the Problem under Study based on the theory and results of the literature 

review.  Without specific comparative data however, a firm recommendation cannot be made as 

to the ‘best’ method to be used for this application.  Therefore, a comparative study and data-

based selection of the most appropriate method from among the candidates needs to be 

conducted.  In order to draw strong conclusions, this ‘down-selection’ is based upon a 

comparison of performance from among the candidate methods against standard test functions 

for which optimum theoretical values are known.  Two (2) key metrics are identified for this 

comparison.  They are: 

 Total number of function evaluations used to identify the global optimum value 

(efficiency). 

 Comparison of the identified optimum for each candidate technique as compared to 

the theoretical (global) minima of the test function (efficacy). 

Based upon this comparison, an ‘optimal’ method will be selected and later utilized on the 

parallel beam problem.   

Test Function Descriptions 

Test functions are needed that have known theoretical (global) optimums in order to 

compare the relative efficiency and efficacy of each candidate optimization method.  Since the 
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problem to be solved is a harmonic analysis where multimodal responses are expected, it is 

appropriate that the test functions also include a variety of modalities.  Also, the parallel beam 

problem is defined as a multi-variable problem.  Therefore, the test functions need to incorporate 

this capability as well.  For the purpose of this comparison however, their use here will be limited 

to 2 dimensions in order to aid in visualization of the program responses.  Given these 

considerations, four (4) standard test functions 
[40]

 are selected with known theoretical global 

optimums, varying degrees of modality and the capability to scale with respect to the number of 

input variables. They are listed here in increasing order of ‘difficulty’ and discussed more fully 

below.  The test functions are: 

 De Jong’s Function 

 Rosenbrock’s Valley 

 Schwefel’s Function 

 Rastrigin’s Function 

De Jong’s Function 

This function represents a simple test function which is parabolic in nature.  As such, the 

surface is both unimodal and convex making it among the easiest to solve.   De Jong’s function in 

2-D is given below and illustrated in Figure 5-1. 

𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 
(5-1) 

Test Area: −5.12 ≤ 𝑥𝑖 ≤ 5.12,       𝑖 = 1,2 
 

Theoretical Minimum at (𝑥1, 𝑥2) = (0,0);     𝑓(𝑥1, 𝑥2) = 0 
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Figure 5-1 De Jong's function in 2D 

Rosenbrock’s Function 

Sometimes referred to as Rosenbrock’s Valley, this function represents a somewhat 

more complicated test surface in that it introduces multi-modality over part of the domain.  As can 

be seen in Figure 5-2, an elongated ‘valley’ exists on either side of a bisecting plane within which 

lies a global optimum.  Although the function appears to be symmetric about the bisecting plane, 

the two crescent-shaped ‘minima’ areas are slightly different such that only one global optimum 

exists.  This, together with the fact that the valley ‘floor’ has little differentiation from the global 

optimum makes this function particularly challenging.  Rosenbrock’s function in 2D is defined as 

𝑓(𝑥1, 𝑥2) = 100 ∗ (𝑥2 − 𝑥1
2)2 + (1 − 𝑥1)2 

(5-2) 

Test Area: −2.048 ≤ 𝑥𝑖 ≤ 2.048,       𝑖 = 1,2 
 

Theoretical Minimum at (𝑥1, 𝑥2) = (1,1);     𝑓(𝑥1, 𝑥2) = 0 
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Figure 5-2 Rosenbrock's function in 2D 

Rastrigin’s Function 

Rastrigin’s test function is a significantly more complex test surface than either of the 

previous functions in that many local minima exist within the standard domain.  This makes it a 

good test surface for routines needing to assess multimodal behaviors.  However, it is expected 

to be more complicated (i.e.: a greater number of local minima) than the multimodal surface of the 

parallel beam problem (and thus a conservative test function).  Since the function is based on De 

Jong’s, the surface is (generally speaking) symmetric about the two planes through x i=0; creating 

a global optimum at the origin.  Rastrigin’s function in 2D is defined as 

𝑓(𝑥1, 𝑥2) = 10 ∗ [𝑥1
2 − 10 cos(2𝜋𝑥1)] + [𝑥2

2 − 10 cos(2𝜋𝑥2)] 
(5-3) 

Test Area: −5.12 ≤ 𝑥𝑖 ≤ 5.12,       𝑖 = 1,2 
 

Theoretical Minimum at (𝑥1, 𝑥2) = (0,0);     𝑓(𝑥1, 𝑥2) = 0 
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Figure 5-3 Rastrigin's function in 2D 

Schwefel’s Function 

Schwefel’s function is similar to Rastrigin’s in that several local minima exist within the 

design space.  Unlike Rastrigin’s however, Schwefel’s function is not symmetric.  As shown in 

Figure 5-4, the global minimum is geometrically distant from the origin; providing a challenge to 

optimization routines that might favor symmetry.  Schwefel’s function in 2D is defined as 

𝑓(𝑥1, 𝑥2) = (418.9829 ∗ 2) − [𝑥1 ∗ sin (√|𝑥1|)] + [𝑥2 ∗ sin (√|𝑥2|)] (5-4) 

Test Area: −500 ≤ 𝑥𝑖 ≤ 500,       𝑖 = 1,2 
 

Theoretical Minimum at (𝑥1, 𝑥2) = (420.9687,420.9687);     𝑓(𝑥1, 𝑥2) = 0 
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Figure 5-4 Schwefel's function in 2D 

Description of Optimization Program and Key Subroutines 

An optimization program was written from scratch in MATLAB ® as part of this overall 

project.  The Steepest Feasible Descent subroutine(s) are based on classical methods, but 

include a few enhancements that are believed to enhance the effectiveness.  The direct search 

subroutine leverages an existing function (fmincon) available within MATLAB ®, but otherwise 

was also written from scratch as part of this project.   

In general, the program calls an appropriate ‘external’ solver to evaluate the function at 

the design variable conditions and then returns the results for consideration of the next 

optimization move (change in design variable values).  This external solver could either be an 

ANSYS ® FEA project, an external MATLAB ® Objective Function or an internal subroutine to 

evaluate one (1) of the above described test functions.  For the parallel-beam problem, the 

internal subroutine calls ANSYS ® as the external solver with reference to a predefined FEM 

‘project’ including geometry, material, boundary condition and other relevant specifications.  Input 

variables are passed from the primary code to ANSYS ® for the particular ‘design point solution’, 

and results then passed from ANSYS ® back to the primary MATLAB ® code.  Use of the 
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external MATLAB ® function is similar in that function evaluation is handled by the external 

MATLAB ® function.  The ‘function solver’ for the four (4) test functions is written as a subroutine 

internal to the main program simply because this functionality is intended to be a ‘verification’ 

alternative for the user and, as such, has limited scope with respect to its use.  That is, it is not 

intended that the user be able to modify the test function algorithm(s) other than to select among 

their use.  Regardless of the solver used however, the program allows the user to select from 

among the three (3) candidate optimization methods: 

a) Global Optimization via Steepest Feasible Descent Method 

b) Global Optimization via Direct (SQP) Method 

c) Global Optimization via Steepest Feasible Descent followed by Direct Optimization 

via SQP 

The ‘top-level’ program flow to negotiate among these options is diagrammed in Figure 

5-5.  Detail describing each of the major program elements follows and key subroutines are 

charted in Appendix B.  A full program listing is provided in Appendix C. 
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Figure 5-5 Program flowchart - main program flow 

Method of Steepest Feasible Descent from Global Sampling Points 

The classical first-order search method of Steepest Descent is an unconstrained 

optimization technique 
[20]

 that relies on the identification of a descent gradient (search vector) 

from a given starting point, along which a 1-D optimization is then conducted to find a minimum 

value.  This process, termed here as one ‘jump’, is then repeated until either a pre-defined 

number of jumps is reached or convergence criteria is met. 

Three (3) significant challenges exist to the effective implementation of this approach.  

They are: 

1. Selection of the search direction given consideration for a Black Box type function 

and the effects of constraints 
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2. A 1-D line search technique that accounts for both multimodal responses and the 

effects of constraints; including side-bounds and other constraints on design 

variables as well as result-oriented constraints 

3. Appropriate selection of start points for the global search 

 Discussion of each of these challenges and the implemented solutions follow. 

Selection of a Feasible Search Direction 

The first-order search technique of Steep Descent is not in itself a method for solving 

constrained problems.  The search direction in the classical implementation 
[20]

 is simply derived 

as the vector with the steepest descending gradient based upon first-order information of the 

response at the starting point (X0). 

The (parallel beam) Problem under Study meets the criteria of a ‘Black Box function’ and, 

as such, an equation for the response is not known prior to the optimization attempt.  Because of 

this, the search direction is established via Finite Difference Approach where a linearized 

equation of the response is established for a very small ‘area’ surrounding each starting point 

(X0).  The size of this ‘area’ is determined by offsetting each design variable (independently) by a 

small value.  In theory, and when each of the design variables are of the same order of 

magnitude, this process works very well.  In practice however, optimization problems may require 

solution where the design variables are of significantly different orders of magnitude.  Such is the 

case with the parallel beam problem where stiffness values can be of the order of 10
5
 lbf/in while 

physical dimensions are less than 100 in and damping coefficients may be as low as 10
-3

.  In this 

case, a constant value for the offset value on each design variable (from X0) may skew the 

sensitivity feedback of the derived Sn.  That is, if an offset magnitude is chosen to be small 

enough to be appropriate for the damping coefficient for example (order 10
-3

), it will represent an 

insignificant difference to the spring stiffness (order 10
5
).  In this case, the change to the spring 

stiffness would result in negligible change to the solution, where the same step-size change to the 

damping coefficient may result in a much more significant effect.  As a result, the computed Sn 

vector would incorrectly favor a descent direction for the damping coefficient with little or no 
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component in the direction of spring stiffness; even if the response gradient actually may favor a 

steeper gradient for the spring stiffness when viewed from a ‘larger scale’. 

Two (2) options to correct this problem are identified and considered for use here.  First, 

the step size could be defined as a function of the defined range in the given design variable.  

That is, as the step from X0 for each (independent) design variable is considered, the step size 

could be established as a percentage of the range of that design variable.  This is given in the 

equation below. 

∆𝑥= 𝛼𝑟(𝑥𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 − 𝑥𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑) 
(5-5) 

                  where:         

𝛼𝑟 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒  

A second option would be to utilize a percentage of the average of the bounds for the 

given design variable per the following equation. 

∆𝑥= 𝛼𝑎 (
𝑥𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 − 𝑥𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑

2
) (5-6) 

                  where:         

𝛼𝑎 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

In general, the effect of either of these two (2) approaches would be an improvement 

over the constant step size described previously.  However, the ‘averaged’ approach of Equation 

(5-6) more directly addresses the fundamental issue of identifying the order of magnitude of the 

design variable and is therefore selected for inclusion in the program.  A value of 0.5% is selected 

for a in order to balance the need for a large enough step to be meaningful while remaining 

small enough to consider only ‘local’ effects around X0.  This becomes particularly important 

when the response is highly multi-modal as is discussed later.  

To confirm this theory, a simple test is derived using a Classical SDOF system with 

damping (Figure 3-1).  The goal is to substantiate that:  
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 A large order of magnitude difference among variables can influence the resulting Sn 

vector.  

 The sensitization method proposed by Equation (5-6) results in a more appropriate 

search vector than a common step method under such circumstances.   

To conduct the test, a simple optimization problem is created to minimize the FRF 

(Equation (3-5)) given side-bound conditions only for each of the three (3) design variables.  Side 

bounds are established for two (2) sets of conditions: 1) minimal order of magnitude difference 

between the variables and 2) large order of magnitude difference among the variables in order to 

test that the sensitized method of determining Sn is (or is not) correct.   

First, the idea is challenged that a ‘common’ step size for each design variable is 

insufficient when large differences in the order of magnitude exist; that is, the first test supports 

that the use of a common step size in such instances is ‘a problem’.  To do this, each of two (2) 

variable sets are solved using the ‘common’ step size method, one where the variable 

magnitudes are relatively close to one another and another where there is significant difference in 

the magnitudes among the variables.  A comparison of the Sn resulting from each method will be 

used to support a statement that the common step size method is (or is not) problematic in such 

circumstances.. 

Secondly, the variable set with large order of magnitude differences is to be solved by 

both methods for deriving the Sn vector; that is, by both the ‘common step size’ method and the 

‘sensitized Sn’ method of Equation (5-6).  From these results it will be demonstrated that, for 

large order of magnitude differences, a difference in the resulting Sn vector exists (or not) based 

upon method. By evaluating the results of both tests it will be demonstrated that a) a problem 

exists to be solved and b) which method of computing Sn is more appropriate when large size 

differences exist among the variables. 

Input parameters for the test are given in the following table.  Note that Data Set (1) has 

minimal difference among the variable’s magnitudes whereas Data Set (2) has more pronounced 

differentiation.  For each run, the program is asked to solve an external MATLAB ® optimization 
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function where the objective function is the result of Equation (3-5) for a single forcing function 

frequency ().  (The use of a single forcing frequency as opposed to a range as is typical for FRF 

studies manages the size of the problem while achieving the objectives of the example.)  

Constraints are limited to the side bound constraints on the variables for simplicity. 

Table 5-1 Input parameters for test of Sn derivation methodology 

Parameter 
Data Set (1) Data Set (2) 

Minimum Maximum Minimum Maximum 

Mass 1.0 kg 10 kg 10 kg 100 kg 

Spring rate 10 N/m 50 N/m 10000 N/m 50000 N/m 

Damping 
ratio 

0.01 0.50 0.01 0.50 

 

Results from the comparative runs are provided below.  For each run, the Sn vector is 

computed by comparing the start point and end points, and then normalizing to a unit vector 

length. 

Table 5-2 Resulting Sn vectors for test of Sn derivation methodology 

Run Computation Method 
Sn Vector Components 

mass stiffness damping 

1 Common – Data Set 1 0.9733 -0.2294 0 

2 Common – Data Set 2 0 0 0 

3 Sensitized – Data Set 2 0.1166 0 0.9932 

 

The comparison between runs 1 and 2 supports that a ‘common step size’ method (of 

deriving the Sn vector) is less effective when large variation exists in the relative orders of 

magnitude among the variables.  The data set where limited variation exists (Run 1) resulted in a 

non-zero Sn vector, which is desirable.  The data set with larger variation (Run 2), however, 

resulted in a ‘stalled’ analysis where the Sn vector was (incorrectly) determined to be 0.   

The comparison between runs 2 and 3 support that the ‘sensitized step size’ method (of 

deriving the Sn vector) is more productive (and desirable) when large differences exist in the 
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relative orders of magnitude among the variables.  Given that both runs 2 and 3 utilize data set 2 

(with the larger difference in magnitudes), run 3 detected that a descent vector exists with 

components of both mass and damping, as opposed to the stalled condition of run 2 using the 

‘common step size’.  The correctness of the sensitized step method (run 3) over the other runs is 

further supported by the theory of the Frequency Response Function (Equation (3-5), Figure 3-2) 

where the value of the damping ratio is shown to be a dominant factor.  Neither Run 1 nor Run 2 

identified damping ratio to be a dominant factor; an inconsistency between these results and the 

theory.   

Given the results of Table 5-2, it is concluded that the ‘common step size’ method can be 

problematic in the correct identification of the Sn vector when there is large differences in 

magnitude among the input variables.  Further, the data supports that the ‘sensitized step size’ 

can result in a more correct answer.  Therefore, the sensitized method is selected for use in this 

project; resulting in the descent gradient (Sn) along which the steep descent 1-D line search is to 

be conducted.  For purposes of this algorithm, it is assumed that the starting point (X0) is in 

feasible space. Consideration however must be given to feasibility in the direction of the Sn 

vector where some modification of the vector may (or may not) be required in order to remain in 

feasible space.  This consideration of modification to the Sn vector is discussed below, and start 

point selection is discussed more fully in a later section.  Determination of the Feasible Descent 

Vector is one of the key subroutines charted in Appendix B. 

Once a candidate Sn has been identified based on a finite difference analysis of the area 

surrounding X0, the effect of constraints (side bounds and other design-variable constraints) must 

also be considered in order to establish that the Sn which is selected actually points to feasible 

space.  Note that only design-variable constraints are considered in the potential modification of 

Sn.  Result-oriented constraints would require solutions which, to this point, have not yet 

occurred.  Result-oriented constraints are considered later in the evaluation of the 1D line search 

and are discussed below.   
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To consider the feasibility of the Sn vector to design-variable constraints, the distance 

from X0 to the nearest input constraint bound (in the direction of Sn) is first established and 

compared to the distance along Sn to the nearest input constraint bound.  That is, a ratio is 

developed along the direction of Sn comparing the distance to the nearest constraint in the 

direction of travel vs. the total distance ‘across the design space – both directions’ along Sn.  If 

this ratio falls below a predefined threshold, then the starting point X0 is considered to be ‘against 

a constraint wall’ and modification of the direction of Sn is needed to remain within feasible 

space.   

Redirection of Sn to avoid the constraint is accomplished by identifying that component 

direction of Sn which has minimum distance to the constraint(s) and then setting that component 

of the vector to ‘0’.  In this way, Sn is modified to the steepest descending vector ‘along’ the 

constraint boundary in order to remain within feasible space.  Once this first modification to 

direction is made, the ratio of distance to the nearest constraint (in the new direction) vs. total 

distance is repeated to determine if additional redirections are needed.  In the case that X0 is 

actually in a ‘corner’ with respect to design-variable constraints, then the algorithm returns a 

vector Sn with each component value equal to ‘0’ and an error-handling routine identifies that no 

further search can be made from this X0.  In this event, the function value at X0 is evaluated and 

recorded as the result of the given ‘jump’.  The effectiveness of this methodology is demonstrated 

in a later section. 

One-Dimensional Line Search Strategy for a Constrained Problem 

A goal of line search techniques is to find a ‘sufficient’ minimum along the search path 

with a minimum of computational effort.  Armijo’s-based methods (discussed previously) as well 

as the derivative methods are common solutions because they ‘estimate’ the minima with a 

minimum of function evaluations.  These methods are particularly effective for simple, convex 

responses but are not effective where the response is multimodal.   

Because of the expectation that the response surface will be multimodal for the harmonic 

problem at hand, a polynomial approximation method is used as part of the Steepest Feasible 
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Descent method here.  The 1-D line search method is also one of the key subroutines charted in 

Appendix B. 

In general, the 1-D line search algorithm searches for a minimum along Sn given a 

predefined limit for the maximum number of function evaluations (along each Sn search), 

accuracy of the curve fit (both R
2
 and error at each solved point) and with consideration for 

feasibility of the results.  A maximum search distance is computed from the starting point (X0) to 

the nearest design variable constraint (side-bound or other).  Within this span, an initial sampling 

of points is evenly distributed and solved and the resulting data-set fit to a polynomial of order 

specified by the user.  Based upon the curve fit of the 1-D polynomial to the data, a regression 

coefficient (R
2
) is computed.  A theoretical minima is computed for the polynomial and error 

evaluated between this predicted minimum and the value for the solved point with lowest function 

value result.    If either the R
2
 or error values are worse than the predefined acceptability criteria, 

then an additional point is established and evaluated at (or very near) to the location of the 

predicted minima value (from the 1D polynomial evaluation) and the process repeated.  As points 

are added to the matrix, the polynomial order is increased to improve the accuracy of the curve fit 

up to a maximum user-specified order value.  This maximum polynomial order is important 

because curve fits with large polynomial orders often result in erroneous fits due to numerical 

conditioning errors, etc.  In practice, a maximum polynomial value of ‘4’ was observed to yield 

good results.  Values significantly above ‘4’ were more likely to result in numerical conditioning 

errors.  Also, the minimum distance between the new point relative to the predicted minimum 

location is controlled to prevent numerical conditioning errors due to a number of points being too 

close together. 

The goal, then, is to find the location for the minima along the 1D polynomial, meeting 

acceptance criteria and with the fewest number of function evaluations given limitations on the 

order of the polynomial to avoid numerical conditioning errors.   Given enough solved points 

along the search path, and for unimodal or ‘low-‘modal functions a solution can be found relatively 

quickly (with a few number of function solves).  However, for search paths which are highly multi-
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modal (and with consideration for the cost of each function evaluation of an EBBF) a successful 

1-D line search can become a challenge.  Therefore, a numerical strategy is implemented as 

follows in the case where acceptance criteria are not met within a user-specified maximum 

number of function evaluations along each search vector.  That is, once the maximum number of 

points has been reached along a given search path, the strategy shifts from that of adding points 

near the anticipated minima to that of eliminating points far from the observed minimum in an 

effort to improve the accuracy of the curve fit in the area of interest.  The criterion for ‘keeping’ a 

point in this instance is that it lies within ± 25% of the maximum span along Sn (from X0 to the 

nearest constraint bound).  The user selectable value for the maximum number of points to 

evaluate along Sn is a compromise between increased solution times and the accuracy of the 

curve fit (and resulting predicted minima).  In practice, acceptable results were achieved when 

between 15 and 20 maximum function evaluations were utilized along each Sn vector. 

As with the selection of the Feasible Descent Search Vector, the effect of constraints 

must be considered for the 1-D line search algorithm.  Here, however, all constraints (both side, 

input and output) are considered.  Given that the Sn vector has been selected with consideration 

for design-variable constraints though, the emphasis here is on the results-oriented constraints.  

One popular approach found in literature is to minimize the objective function using the 

unconstrained 1-D search method, but apply a penalty function as constraints become violated. 

Chen and Chi 
[41]

 for example, utilize a penalty function to improve their particle swarm algorithm 

by applying a penalty to particles that are at the upper or lower bound of the design variable 

definition. 

There are multiple ways in which to apply a penalty to the unconstrained objective 

function.  For example, the penalty can be applied as an ‘exterior’ function whereby no penalty is 

incurred so long as all constraints are satisfied, but some penalty is assessed as a function of the 

constraint where a violation exists. 
[20]

  An example of this is shown in Equation (5-7) where an 

objective function f(x) is penalized by squaring the constraint function together with a penalty 

multiplier (p) if it fails to be satisfied (g>0).   
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𝑓(𝑥)𝑝𝑒𝑛 = 𝑓(𝑥) + 𝑝 ∑ (𝑚𝑎𝑥[0, 𝑔𝑗(𝑥)]
2

)

𝑛

𝑗=1

 (5-7) 

Vanderplaats explains that the motivation for squaring the constraint violation is to 

provide a slope of zero at the constraint boundary for the resulting penalized objective function.  

In this way, the transition from feasible to infeasible space is smoothed and the 1-D line search 

methodology thereby simplified.  An alternative to the penalty method of Equation (5-7) is to 

replace the ‘squared constraint value’ with a linear value.  The motivation for this approach is that 

for constraint violations near the boundary, although the ‘squared’ term does smooth the 

transition, the resulting penalty effectiveness may be minimized excessively for small positive 

constraint values.  The consequence of this could be reduced effectiveness of the method to 

define the constraint border for multi-modal responses.  Therefore, a variation of the penalty 

equation is also considered where the constraint value remains linear.  This is given below as 

Equation (5-8). 

𝑓(𝑥) = 𝑓(𝑥) + 𝑝 ∑(𝑚𝑎𝑥[0, 𝑔𝑗(𝑥)])

𝑛

𝑗=1

 (5-8) 

The comparison regarding the effectiveness of these two (2) methodologies with respect to a 

constrained 1-D line search is demonstrated in a later section. 

The inclusion of a penalty (without other consideration), however, may not be sufficient to 

adequately define infeasible space during the 1-D line search process.  As shown in Figure 5-6 

below, the effect of the penalty function to accurately identify the constraint boundary can be 

limited.  In theory, the penalty function should alter the curve of the function value such that the 

resulting minimum is outside of infeasible space.  However, in this example the penalized function 

value’s minimum remains in an infeasible region because the effect of the penalty value is not 

strong enough near the constraint bound to adequately change the shape of the curve.  Note that 

this particular example uses Rastrigin’s function (multi-modal) with a non-linear penalty method 

per Equation (5-7).  This same behavior, to one degree or another, was observed during program 

development regardless of penalty method employed.  Of course, the magnitude of the effect is 
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influenced by both penalty method and multiplier, but whatever the selection, it cannot be 

guaranteed prior to an optimization run that such a situation will not exist.   

 

Figure 5-6 Identification of constraint boundaries 

Therefore, in addition to application of a penalty to the function value, a numerical 

technique is also employed to help guarantee that the minima resulting from the 1-D line search 

is within feasible space.  If the proposed minimum is found to be infeasible, then polynomial 

curves are fit to both penalized function and constraint values along the length of the 1-D search 

path.  Predicted values of both constraint and penalized function are both surveyed at a high 

density (on the order of 1000 points along the 1-D curve) and the minimum (predicted) function 

value with feasibility (g<=0) is selected as the minimum for that 1-D line search.  (Note that both 

function and constraint value evaluations during this process are ‘predicted’ values based upon 

the curve fits and do not represent additional function evaluations in order to minimize computing 

resource requirements in consideration for EBBF’s.)   This process is included in the flowchart of 

the One-Dimensional Line Search subroutine (Function: OneDSearch) in Appendix B.   The 

effectiveness of this technique, in addition to selection of the appropriate penalty function 

(Equations (5-7 vs. (5-8) and penalty multiplier (p) is discussed in a later section.   
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Selection of Feasible Start Points 

The definition of the global starting points is, in general, conducted by first establishing a 

user-defined number of start points which span the design space for each of the design variables 

between the specified lower- and upper-bounds.  Each of these candidate points is then 

evaluated to filter out any points which are not in feasible space based design-variable 

constraints that may exist (side-bounds and other).  The resulting matrix of starting points (X0’s) 

is then submitted to the appropriate search routine.  Determination of the Feasible Start Points is 

one of the key subroutines charted in Appendix B 

It is recognized that one common way to conduct computer experiments is to utilize a 

Latin Hypercube Sampling (LHS) technique to optimize the distribution of the sampling points 

through the design space 
[42]

.  However, since LHS is within itself an optimization technique, 

some small differences in results may exist from run-to-run.  Given that this report focuses heavily 

upon comparison among the optimization techniques, it is desired that the starting points (X0) be 

both identical among each run and (as much as possible) evenly distributed across the design 

space.  Therefore, a relatively large number of start points using a haltonset distribution is utilized 

here.  The MATLAB ® haltonset function 
[33]

 is a ‘pseudo’ randomization of the input variables 

across the design space, but in a repeatable manner whereby given the same design space 

definition and quantity of points, the definition of the set of candidate points will be identical from 

run-to-run.  Note that for the MATLAB ® haltonset routine, the first point is always the origin.  This 

gives an unfair advantage to algorithms attempting to solve symmetric test functions (e.g.; De 

Jong’s and Rastrigin’s).  Therefore, for the purposes of this report and the comparisons being 

made, this first value of haltonset is omitted programmatically for all runs in order to remove 

potential biases.   

SQP Method from Global Sampling Points 

The implementation of the Direct Search methodology of SQP is relatively straightforward 

given the use of the MATLAB ® language.  That is, the MATLAB ® function ‘fmincon’ is utilized 

with the ‘SQP’ modifier as a means to implement the SQP search process.  Unlike the method of 
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Steepest Feasible Descent, the Direct Search Method of SQP is a constrained search 

methodology.  That is, the effects of the constraints are handled directly by the algorithm.  

However, it was determined through trials (data not presented here) that the fmincon algorithm 

was more effective at preventing infeasible results by including the penalty function (described in 

the Steepest Feasible Descent section above) as part of the Objective Function.  That is, the 

same penalty function is included in the Objective Function for both the Steepest Feasible 

Descent and SQP algorithms.  In this way, the SQP method gave the most robust results.   The 

effectiveness of this approach is demonstrated in a later section. 

Combination of Steepest Feasible Descent and SQP Methods 

The combination of Steepest Feasible Descent as an initial (coarse) search methodology 

followed by the SQP (Direct) method is theorized to yield a better result in terms of fewest 

number of function evaluations overall in order to achieve the most accurate answer for 

multimodal surfaces.  Implementation of the process is straightforward with respect to the two (2) 

major algorithm components described above.  Given the feasible start points, the Steepest 

Feasible Descent search is conducted with a user-specified maximum number of ‘jumps’ (2 or 3 

jumps recommended).  At the conclusion of this routine, the best (minimum Objective Function) 

feasible result is identified and then used as a single start point for the SQP search.  As described 

above, both the Steepest Feasible Descent and SQP methodologies incorporate the same 

penalty modifier as part of the Objective Function for the most robust constraint handling solution.  

The effectiveness of this approach is demonstrated in a later section. 

Use of a ‘Single-Objective Optimization’ Tool for ‘Multi-Objective Optimization’ 

The algorithms described here (both Steepest Feasible Descent and SQP) are Single-

Objective Optimization tools 
[20]

.  That is, they are appropriate for optimization of a single 

objective.  They can, however, be utilized for Multi-Objective Optimization by combining the 

elements of various ‘individual’ single objectives into a single ‘combination’ objective function.  

For example, if for the parallel beam problem it was desired to stabilize harmonic tip deflection, 

one might consider multiple aspects such as minimizing the tip deflection over a range of 
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frequencies as well as minimizing the range of those deflection results.  One method of 

‘consolidating’ these objectives is to create one objective function by computing a discrete 

integration of the results over the frequency range as a metric of ‘tip deflection’ and another result 

which is the simple range among the results.  By minimizing the sum of both results, a pseudo 

Multi-Objective analysis is conducted; however given that a single objective function results, the 

problem can be solved using Single-Objective Optimization tools such as described above.   

As described by Vanderplaats 
[20]

 it may also be necessary to consider weighting factors 

for the components of this multi-faceted optimization function; especially if the magnitudes of the 

components are significantly different.  If, in another example, the goal were to minimize both 

deflection and stress then it would be most effective to normalize each to a similar magnitude 

value.  Otherwise, the optimization algorithm would disproportionately ‘focus’ its efforts to 

minimize the larger magnitude response at the expense of the other. Normalization of constraint 

functions should also be considered for similar reasons.   

Given that the test functions are Single-Objective Optimizations, these considerations do 

not apply.  However, they do apply to the parallel beam problem.  This technique is discussed 

further in the development of both Objective and Constraint functions for the parallel beam 

problem in a later section. 

Algorithm Confirmation 

One-Dimensional Line Search Effectiveness 

The effectiveness of the 1-D line search algorithm is evaluated separately for 

unconstrained and constrained searches using the previously described test functions.  

Discussions for each case occur separately below. 

Performance as an Unconstrained Search against Test Functions 

The effectiveness of the 1-D line search strategy is assessed using the four (4) test 

functions described previously.  Specifically, for each of the test functions data is obtained from 

the programmatic 1-D search for a given search vector.  This data is plotted and analyzed, and 

compared to the programmatic results.  In this way, the effectiveness of the strategy is assessed 
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and a statement regarding effectiveness of the method can be made.  Each of the four (4) test 

functions are used in this assessment but, given the simplicity of the 1-D polynomial for both De 

Jong’s and Rosenbrock’s functions, only one search vector is discussed for each.  Because the 

other two functions are multimodal and therefore more challenging to the search routine, multiple 

search vectors are considered for both Rastrigin’s and Schwefel’s functions in order to illustrate 

various potential scenarios.  A total of seven (7) 1-D search path evaluations are presented here 

for the unconstrained case.  For each test, the following were established: 

 maximum number of points along Search Vector = 21 

 minimum R
2
 =0.9995  

 abs(max error) = 5% 

 initial (minimum) polynomial order = 3 

 maximum polynomial order = 4 

As might be expected, acceptance criteria were achieved quickly for the 1-D line search of De 

Jong’s function, and with fewer than the maximum allowable number of points.  Figure 5-7 

illustrates this result. 
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Figure 5-7 1-D line search, De Jong's function 

As shown, only 6 total points were used by the program to establish a minimum with 

<0.0006% error between predicted and observed values.  The regression coefficient was also 

found to be the same (R
2
=1.0) for both programmatic and external evaluations of the polynomial.  

These results are acceptable. 

Results from the Rosenbrock’s function are similar to that of De Jong’s due to the 

unimodal nature of the curve.  As shown in Figure 5-8 only 6 total points were (again) used by the 

program to identify the minimum with near-zero error between predicted and observed values.  

The regression coefficient was also found to be acceptable for both programmatic and external 

evaluation of the polynomial.  These results are also acceptable. 
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Figure 5-8 1-D line search, Rosenbrock's function 

Rastrigin’s function is multimodal in nature and, because of that, three (3) test cases are 

presented.  As shown in Figure 5-9, the first case (search vector) resulted in an identified 

minimum that is roughly mid-span between X0 (x=0) and the nearest input constraint (x 3.6).   

The full allowable quantity of points (n=21) were utilized during this line search and, as shown in 

the figure, the program identified an optimum at x1.36 and clustered points in that area.  When 

all data are considered as a whole, the resulting correlation is poor (R
2
=0.69).  However, as the 

program removed data that are far from the identified minimum (after reaching the maximum 

number of points) a much improved curve fit emerged.  As expected, the correlation coefficient 

(R
2
=0.9953) agrees between the refined programmatic analysis and external evaluation and an 

error value of -3.075% exists between the predicted minimum from the polynomial evaluation and 

observed results. Although this error meets the acceptance criteria, the value of R
2
 does not.  The 

programmatic use of these two (2) metrics for acceptance of the curve fit is only used to stop the 

line search prior to reaching the maximum number of points.  In a case such as this, the criterion 

was not met but the maximum number of points was reached.  Programmatically, the response in 
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this case is to accept the smallest of the (solved) function results and note the values of both R
2
 

and error in the output.  The test case here is considered successful in that the data along the 

search vector are analyzed with equivalent results, both programmatically and by external 

evaluation.  If such a case were to happen during an actual optimization run (acceptance criteria 

not met) then use of the smallest (solved) function result rather than polynomial prediction helps 

to ensure accuracy of the results.  The use of the polynomial approximation method during the 1-

D search however, adds to the ‘appropriate selection’ of additional points by identifying potential 

areas of minimum. 

It is recognized also that due to the multimodality of the function, other minimums may 

exist and may be even be more attractive than the one which is identified.  This is particularly true 

when the threshold for maximum number of points in the search is low.  However, even though 

the potential exists, the program will identify a minimum that is ‘sufficient’ for the purposes of this 

coarse search without expending an extreme amount of computing resources which is 

acceptable. 

 

Figure 5-9 1-D line search, Rastrigin's function (search vector #1) 
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A second search vector for Rastrigin’s is illustrated in Figure 5-10.  Note that the only 

difference between this line search and the one for Rastrigin’s above is the selection of a different 

search vector starting from a different X0.  This time, the minimum was identified much closer to 

the X0 position; such that the initial descending ‘vector’ at X0 contributes to the identification of 

the minimum.  That is, no ‘ridge’ separates X0 from the minimum.  As with the first vector of 

Rastrigin’s, the full quantity of points (n=21) were utilized during this line search and in the 

process the program identified an optimum at x0.43; clustering points in that area.  When all 

data are considered as a whole for this search, the resulting correlation is less than deemed 

acceptable (R
2
=0.92).  However, as the program removed data that are far from the identified 

minimum a much improved curve fit (R
2
=0.9998) emerged.  An error value of -0.41% exists 

between the predicted minimum from the polynomial evaluation and observed results.  These 

results are deemed to be acceptable. 

 

Figure 5-10 1-D line search, Rastrigin's function (search vector #2) 

A third search vector for Rastrigin’s (again from a different X0) is illustrated in Figure 

5-11.  This time, the minimum was identified much closer to the maximum (constraint bound) end 
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of the line search.  In fact, the curve appears to be highly multi-modal and the region evaluated by 

the program (around the predicted minimum) is very narrow.  The full quantity of points (n=21) 

were utilized during this line search which (as a whole) result in a poor correlation coefficient 

(R
2
=0.72).  However, the programmatically refined fit yielded a much improved curve fit 

(R
2
=0.99998) and an error value of -0.08%.  This test case is another example where the 

identified minimum may not be the absolute minimum along the search vector.  It does, however, 

represent a ‘sufficient’ minimum within the constraint a predefined maximum number of function 

evaluations.   Therefore, these results are also deemed to be acceptable. 

 

Figure 5-11 1-D line search, Rastrigin's function (search vector #3) 

Schwefel’s function is also multimodal in nature and, because of that, two (2) test cases 

are presented.  As with the test cases for Rastrigin’s above, these test cases for Schwefel differ in 

the selection of X0 and the direction of search vector in order to illustrate variety in the types of 

situations potentially encountered.  The first of these, presented in Figure 5-12, appears to be 

‘simpler’ than the Rastrigin’s searches discussed above.  All 21 points were utilized in the search, 

but the initial correlation with all of the data is marginal (R
2
=0.96).  As such, it does not meet the 
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acceptance criteria.  Because of that, the program entered the ‘refinement’ subroutine and the 

resulting curve fit was improved for both correlation coefficient (R
2
=0.99999) and error (-0.009%).  

As shown, both programmatic and external analysis of the refined data agrees regarding the 

correlation coefficient. These results are acceptable. 

 

Figure 5-12 1-D line search, Schwefel's function (search vector #1) 

The second search vector for Schwefel’s function also resulted in a multi-modal 1D line 

search and is presented in Figure 5-13.  The maximum of 21 points were again utilized in the 

search, resulting in effectively no correlation to the data set as a whole (R
2
=0.194).  The 

refinement routine improved the results (R
2
=0.613, error = -12.28%) but failed to meet the 

acceptability criteria.  However, both programmatic and external analysis of the refined data set 

result in the same correlation coefficient and, to that end, the test of the algorithm is deemed a 

success. 
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Figure 5-13 1-D line search, Schwefel's function (search vector #2) 

It is recognized that significant improvement in the curve fit could be made by refining the 

data set even more (restricting data to a smaller region bounding the potential minimum).  In 

addition, the data infers that a lower minimum may exist between the last two evaluated points 

(near the constraint bound – between x=800 and x=900). Such fidelity in the 1-D model, however, 

comes at a high price in terms of computational cost for EBBF where each function solution may 

take several minutes or hours to achieve.  For this evaluation, given that acceptability criteria 

were not met, the identified minima from the search is the minimum (actual) function solve result 

rather than a predicted minimum from the polynomial curve.  As such, a minimum is returned 

even though it may not be the absolute minimum that could be identified with further (more costly) 

investigation.  The acceptability of whether or not such a minimum represents a ‘sufficient’ 

minimum in terms of the goal of identifying an area of regional minimum through the steepest 

feasible descent method with an acceptably few number of function solves is another question.  

This is evaluated via performance testing (to identify the theoretical minima of the test functions) 

in a later section. 
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Performance as a Constrained Search against Test Functions 

In order to demonstrate the effectiveness of the 1-D algorithm for constrained searches, 

evaluate and choose between the two penalty function methods of Eq. (5-7) vs. (5-8) and ‘size’ 

the penalty multiplier (p), a test was conducted using De Jong’s test function.  De Jong’s was 

selected for this effort because of the simplicity and symmetric nature of the function.   The 

preferred method resulting from this test will be confirmed and discussed later using the other test 

functions as well.   

As shown in Figure 5-14 below, a simple ‘zone of infeasibility’ was established for the 

test.  This zone is a circle of defined radius and centered at the origin and shaded for clarity in 

Figure 5-14.  Given that the minimum of De Jong’s function is at the origin, this forces the routine 

to find a minimum value which exists in feasible space, ‘outside’ of the infeasible area.  In 

actuality, any location directly on the circular boundary functions as a correct minimum value for 

this test case.  The test, then, becomes how well the given method identifies the boundary.  Major 

parameters for the test cases are as follows. 

 Steep Descent from each of 75 starting points (X0) using Haltonset 

 Limited to 2 jumps per convergence path 

 Non-feasible range = Radius 2.0, centered at (0,0) 

 Penalty function per Equation (5-7 vs. (5-8 - squared vs. linear constraint values) 

 Penalty Multiplier range 0.10 ~ 10.0 
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Figure 5-14 Example of penalty function test result, De Jong's function 

The goal of this test then is to compare the two penalty function methods and also vary 

the value of the penalty multiplier to determine if:  

1. the penalty function allows a minimum to be found within the infeasible boundary  

2. how close to the boundary are the identified minimums located   

In an ‘ideal’ result for this test case, the identified minimum values would lie exactly on the 

constraint boundary; in this case, at a radius of 2.0 from the origin.  With an infinite number of 

‘jumps’, the Steepest Feasible Descent method would likely converge to optimums directly at this 

boundary regardless of the penalty method employed..  By limiting the maximum number of 

jumps to two (2) however, the effectiveness of the penalty method is better challenged  

To evaluate the effectiveness of a given algorithm, a ‘radius’ is computed from the origin 

of the design space to the resulting end point from each starting point’s path (identified minimum 

from each start point).  A ‘maximum’ and ‘minimum’ radius value is reported from among all of the 

convergence paths (all of the X0’s) for each test case.  In this way, the range of end point 
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locations (relative to the origin) and overall effectiveness of the tested technique are easily 

compared.  A perfect result of course would be that all end points would be located on the 

boundary (Radius = 2.0) and with no difference between ‘maximum’ and ‘minimum’ location.  

Results of the penalty algorithm test are provided in Table 5-3 below and illustrated in Figure 

5-15. 

Table 5-3 Comparison of penalty methods, radius of path optimums from center 

Penalty 
Multiplier 

Value 

(p) 

‘Squared’ Constraint Value 
Eq. (5-7) 

‘Linear’ Constraint Value 
Eq. (5-8) 

Minimum 
Radius 

Maximum 
Radius 

Minimum 
Radius 

Maximum 
Radius 

0.001 2.00067 2.38871 2.00067 2.39084 

0.003 2.00067 2.38861 2.00067 2.38967 

0.005 2.00067 2.38683 2.00067 2.38791 

0.010 2.00067 2.25501 2.00067 2.27474 

0.025 2.00007 2.25501 2.00067 2.25501 

0.050 2.00007 2.25501 2.00005 2.25501 

0.100 2.00005 2.25501 2.00005 2.25501 

0.250 2.00005 2.25501 2.00005 2.25501 

0.500 2.00005 2.34921 2.00005 2.41282 

2.500 2.00086 3.41399 2.00078 2.49872 

5.000 2.00086 3.40547 2.00086 2.61456 

10.000 2.00086 3.40159 2.00086 2.68848 
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Figure 5-15 Comparison of penalty methods - De Jong's test function 

As shown, none of the test cases resulted in an identified optimum that was inside the 

infeasible zone (radius < 2.0).  In fact, minimum radius values for both penalty methods resulted 

in very nearly ideal results for all multiplier values tested.  Given this result, a selection of any of 

the penalty multiplier values within the tested range would be an acceptable choice.   

The maximum radius results are different however, with a notable optimal range 

observable for penalty multiplier values less than 0.50.  If the penalty multiplier value is too low, it 

diminishes the effectiveness of the penalty equation somewhat as can be seen in Equations (5-7) 

and (5-8) and illustrated for multiplier values below 0.010.  At the other extreme, large multiplier 

values (greater than 1.0) result in an increase in error for the ‘max radius’, particularly for the 

constraint values which are squared as part of the penalty equation Eq. (5-7).   

Given these observations, together with the potential benefit to curve smoothness of the 

‘squared constraint’ penalty method Eq. (5-7); a decision is made to utilize the ‘squared 

constraint’ penalty method for the parallel beam problem.  A penalty multiplier value of 0.250 is 

selected as an acceptable value in the observed ‘optimal region’ (Figure 5-15); large enough to 
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have a significant effect upon the applied penalty, but not so large as to cause increased error in 

the results.   

Therefore, by applying Equation (5-7) to the Objective Function with a Penalty Multiplier 

of 0.250, the unconstrained method of Steepest Feasible Descent can be effectively utilized as a 

tool for constrained optimization.  This is confirmed in a later section of this report where the 

method is challenged against constrained regions for each of the four (4) test surfaces.   

Performance Test Parameter Definition – Overall Effectiveness and Efficiency 

The optimization program was evaluated for accuracy and efficiency against all four (4) 

test functions using each of the three (3) candidate methodologies and considering both 

unconstrained and constrained scenarios.  For each test, the design space was defined as 2-

DOF with a range for each design variable in keeping with the standard test function 

‘specification’ described previously. 
[40] 

  Key results for the unconstrained tests are accuracy and 

efficiency of the overall solution by means of four (4) factors.  These factors are used then to 

compare and contrast the candidate algorithms (Steepest Feasible Descent only, SQP only and 

the Combined approach).  The key factors are: 

 Coordinate location of the identified best solution vs. the theoretical solution. 

 Function value of the identified best solution vs. the theoretical solution. 

 Number of function evaluations conducted. 

 Number of solutions found within a target range bounding the coordinate location of 

the theoretical solution.  Specifically this ‘Results Region Bound’ is defined as ± 1.0% 

either side of the coordinate location as a percent of the maximum value of that 

coordinates design space.  Specific values for this ‘Results Region Bound’ are 

provided in the table below for each test function. 

Specific input parameters common to unconstrained tests for all three (3) methodologies are also 

listed in Table 5-4. 
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Table 5-4 Program parameters - test function evaluations 

Number of Start Points 75 

Start Point Definition Haltonset 

Max Jumps (Steep 
Descent) 

2  

Max Jumps (SQP method) 250  

Min 1D Polynomial order 3 

Max 1D Polynomial order 4 

Max no. of 1D points 15 

Min R2 allowable 0.9995 

1D error allowable 5% 

Minimum Des. Var. step 
size 

0.001 

Penalty Method ‘Squared Constraint Method’ - Eq. (5-7) 

Penalty multiplier value 0.250 

Design Space Definition 

Test Function Design Space Range Results Region Bounds 

De Jong’s x= ± 5.120, y= ± 5.120 x= ± 0.0512, y= ± 0.0512 

Rosenbrock’s x= ± 2.048, y= ± 2.048 x= ± 0.0205, y= ± 0.0205 

Rastrigin’s x= ± 5.120, y= ± 5.120 x= ± 0.0512, y= ± 0.0512 

Schwefel’s x= ± 500, y= ± 500 x= ± 5.00, y= ± 5.00 

   
Starting points for each of the test functions are depicted graphically in the following 

figures.  Although each is selected via haltonset, the scaling is appropriate to the varying design 

spaces.   
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Figure 5-16 Starting point locations - De Jong's test function 

 

Figure 5-17 Starting Point locations Rosenbrock's test function 
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Figure 5-18 Starting point locations - Rastrigin's test function 

 

Figure 5-19 Starting point locations - Schwefel's test function 

Input parameters for the constrained tests (including starting points) are identical to those 

of the unconstrained tests above with the exception that a circular region of infeasibility is defined 

around the theoretical optimum solution for each test function.  In this way, the program is 
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challenged to find the best feasible solution lying outside of the constrained area.  This constraint, 

however, is only applied ‘after’ the initial selection of starting points.  That is, although the 

constraint applies to the location of the point, it is not applied during the initial selection of the 

starting points; rather only to the position of the resultant points.  In this way, the program is 

challenged with finding feasible results for starting points are defined both in feasible and 

infeasible space.  Successful results for the constrained evaluations are that solutions are 

identified in feasible space (only).   Constraint boundary definitions for the four (4) test functions 

are described in the following table. 

Table 5-5 Constraint region parameters - constrained test function evaluations 

Test Function 
Constraint Region Definition 

Center Radius 

De Jong’s (0,0) 2.0 

Rosenbrock’s (1,1) 0.5 

Rastrigin’s (0,0) 2.0 

Schwefel’s (420,420) 100 

   
Results for both unconstrained and constrained tests for each methodology (Steepest 

Feasible Descent only, SQP Method only and Combined) are provided and discussed in the 

sections below using each of the four (4) test functions. 

Method of Steepest Feasible Descent from Global Sampling Points 

Performance as an Unconstrained Search against Test Functions 

Tests were conducted against each test function for the Method of Steepest Feasible 

Descent from the Global Start Points without any further optimization.  That is, for this test the 

optimum solution was identified from the defined maximum number of jumps for each start point 

and a ‘global’ optimum identified from among those results.  Graphical results are depicted for 

each test function in the following figures and illustrate the convergence paths followed for each 

global start point as well as the location of the best (lowest function result) overall value.  

Numerical results are tabulated below as well.   
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Figure 5-20 Test result, steepest feasible descent - De Jong's function 

 

Figure 5-21 Test result, steepest feasible descent - Rosenbrock's function 
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Figure 5-22 Test result, steepest feasible descent - Rastrigin's function 

 

Figure 5-23 Test result, steepest feasible descent - Schwefel's function 
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Table 5-6 Test function result - method of steepest feasible descent 

 

Test Function 

De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s 

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.9687,420.9687) 

Test Result 
(4.2e-4, -4.5e-

4) 
(1.0067, 1.0135) 

(-0.0070, 
0.0117) 

(421.109, 419.456) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0 

Test Result 0 0 4.6e-4 2.0e-4 

Number of Function Evaluations 

Test Result 1131 1190 2233 1869 

Number of Solutions within ‘Results Region 

Test Result 75 1 2 2 

     

The data indicates that the Method of Steepest Feasible Descent from Global Start 

Points succeeded in finding optimums very near to the theoretical optimum for all four (4) test 

functions. All of the start points for the De Jong’s function resulted in optimums within the ± 1.0% 

‘target range’.  One (1) for Rosenbrock’s and two (2) each for Rastrigin’s and Schwefel’s also fell 

within the target range.  Another interesting observation is that for the relatively ‘simple’ test 

functions of De Jong and Rosenbrock, similar numbers of function values were needed (1131 and 

1190).  The more complicated Schwefel’s function required more (1869) whereas the test function 

with the highest degree of multimodality (Rastrigin’s) required the most function evaluations 

(2233). 

These results support that the method of Steepest Feasible Descent does find at least 

one (1) optimum solution within the toleranced region for each of the test surfaces.  A fuller 

benefit of this test is realized by the comparison of these results to those of the other two (2) 

methods (Direct Search only and the Combined method) which is presented later in this chapter. 
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Performance as a Constrained Search against Test Functions  

Results for the constrained searches using the Method of Steepest Feasible Descent 

(only) from Global Search Points are provided in the following plots.  As mentioned previously, 

the purpose of this test is to confirm (or refute) that the algorithm is capable of identifying 

optimums only within feasible space, regardless of whether the start point resides in feasible 

space or not.  Note that, like the previous plots which include constrained regions, the area of 

non-feasibility is shaded. 

 

Figure 5-24 Test result, constrained steepest feasible descent - De Jong's function 
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Figure 5-25 Test result, constrained steepest feasible descent - Rosenbrock's function 

 

Figure 5-26 Test result, constrained steepest feasible descent - Rastrigin's function 
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Figure 5-27 Test result, constrained steepest feasible descent - Schwefel's function 

These data, then, indicate that the penalty algorithm used in conjunction with the Method 

of Steepest Feasible Descent from Global Search Points works as desired and prevents results 

from being identified within infeasible space; whether the starting point was defined within 

feasible space or not. 

SQP Method from Global Sampling Points 

Performance as an Unconstrained Search against Test Functions 

Tests were also conducted against each test function for the Direct Method (using SQP) 

from the Global Start Points without any further optimization.  That is, an optimum solution was 

identified from each start point and a ‘global’ optimum identified from among those results.  

Graphical results are depicted for each test function in the following figures showing the path 

followed from start to end for each global start point as well as the location of the best (lowest 

function result) overall value.  Numerical results are tabulated below as well.   
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Figure 5-28 Test result, direct method (SQP) - De Jong's function 

 

Figure 5-29 Test result, direct method (SQP) - Rosenbrock's function 
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Figure 5-30 Test result, direct method (SQP) - Rastrigin's function 

 

Figure 5-31 Test result, direct method (SQP) - Schwefel's function 
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Table 5-7 Test function result - direct method (SQP) 

 

Test Function 

De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s 

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.9687,420.9687) 

Test Result (7.4e-6,1.0e-3) (0.9793, 0.9597) (4.7e-5, 1.0e-3) (-296.88, 438.27) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0 

Test Result 2.03e-8 1.55e-7 2.7e-6 0.107 

Number of Function Evaluations 

Test Result 1344 4863 2118 450 

Number of Solutions within ‘Results Region 

Test Result 75 0 1 0 

     

The data indicates that the Direct Method using SQP from Global Start Points was 

successful in finding the theoretical optimum (within the toleranced region) for De Jong’s function 

for all start points, but for only one (1) of the start points for Rastrigin’s function.  None of the start 

points resulted in the theoretical optimum for either Rosenbrock’s or Schwefel’s although the 

identified minimum was much closer (to the theoretical result) for the Rosenbrock’s Valley than 

for the Schwefel’s function.  As shown in the data, the minimum identified for the Schwefel’s 

function was not close to the theoretical optimum.   

Another interesting point is that the number of function evaluations for the Schwefel’s 

function was, comparatively speaking, quite low at only 450 solves.  This, in comparison to 1344 

~ 4863 for the other three (3) test functions, indicates that the Direct Method with SQP converged 

to a solution within the minimum step size quickly and the algorithm failed to identify significant 

gradients on Schwefel’s function that could have been explored.  

The results indicate that use of the Direct Method with SQP was successful for the 

unimodal surface of De Jong, but should be used with care for multi-modal surfaces (e.g.; 
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Rastrigin’s or Schwefel’s) or surfaces with small gradients such as Rosenbrock’s Valley.  It is 

recognized that if a minimum step size value had been chosen smaller than 0.001, the SQP 

method would likely have been more accurate for at least some of the test functions, but at the 

expense of a greater number of function solves.  This is demonstrated and confirmed in a later 

section. 

Performance as a Constrained Search against Test Functions 

Results for the constrained searches using the Direct Optimization Methods with SQP 

(only) from Global Search Points are provided in the following plots.  These data help support the 

efficacy of the penalty algorithm employed.  As mentioned previously, successful results prevent 

any optimum from being identified within infeasible space. 

 

Figure 5-32 Test result, constrained direct method (SQP) - De Jong's function 
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Figure 5-33 Test result, constrained direct method (SQP) - Rosenbrock's function 

 

Figure 5-34 Test result, constrained direct method (SQP) - Rastrigin's function 
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Figure 5-35 Test result, constrained direct method (SQP) - Schwefel's function 

As with the Steepest Feasible Descent results previously reported, these data for the 

Direct Method with SQP indicate that the penalty algorithm works as desired and prevents results 

from being identified within infeasible space; whether the starting point was defined within 

infeasible space or not.  The fact that no local minimums were identified within the infeasible 

region confirms the acceptability of the implemented SQP method with respect to constraint 

handling.  

Combination of Methods from Global Sampling Points 

Performance as an Unconstrained Search against Test Functions 

Finally, tests were conducted against each test function for the ‘Combination Method’, 

which first finds a minimum for each of the Global Sampling Points, identifies the best ‘global’ 

interim solution and then applies the Direct Method with SQP to that as a starting point.  As 

before, graphical results are depicted for each test function showing the path followed from 
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beginning to end for each start point as well as the location of the best (lowest function result) 

overall value.  Numerical results are tabulated below as well. 

 

Figure 5-36 Test result, combined method - De Jong's function 
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Figure 5-37 Test result, combined method - Rosenbrock's function 

 

Figure 5-38 Test result, combined method - Rastrigin's function 
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Figure 5-39 Test result, combined method - Schwefel's function 

Table 5-8 Test function result - combined method 

 

Test Function 

De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s 

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.9687,420.9687) 

Test Result (3.9e-4, -1.4e-3) (1.0065, 1.0135) (6.3e-4, 7.7e-4) (421.109, 419.458) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0 

Test Result 4.3e-8 1.7e-8 2.5e-6 1.9e-4 

Number of Function Evaluations 

Test Result 1137 1194 2250 1875 

Number of Solutions within ‘Results Region 

Test Result 1
(1)

 1
(1)

 1
(1)

 1
(1)

 

1) Note that since the final (SQP) search originates from a single point, only 1 result is possible. 
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The data indicates that the Combined Method was successful at obtaining a ‘global’ 

minimum within the toleranced region for all test cases.  These results are acceptable to 

demonstrate that the algorithm functions acceptably with respect to all four (4) test surfaces when 

evaluated with the Combined (Steepest Feasible Descent plus Direct SQP) search methodology.  

A comparison of the efficiency and efficacy of this method as compare with the other two (2) 

candidates is provided and discussed in a later section.  As with the Direct Method previously, it 

is recognized that if a minimum step size value had been chosen smaller than 0.001, the result 

would likely have been more accurate for at least some of the test functions, but at the expense 

of a greater number of function solves.  This is demonstrated and confirmed in a later section. 

Performance as a Constrained Search against Test Functions 

Following are plots (similar to those above for the other search methodologies) for the 

Combination Search Methodology on each test function to challenge the algorithms ability to 

prevent infeasible results. 

 

Figure 5-40 Test result, constrained combined method - De Jong's function 
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Figure 5-41 Test result, constrained combined method - Rosenbrock's function 

 

Figure 5-42 Test result, constrained combined method - Rastrigin's function 



 

113 

 

Figure 5-43 Test result, constrained combined method - Schwefel's function 

These Combined Search Method results also support that the penalty algorithm works as 

desired and prevents results from being identified within infeasible space. This confirms the 

acceptability of the Combined method with respect to constraint handling. 

Selected Optimization Technique for Problem under Study 

In the previous section, the results of each of the search methods was evaluated with 

respect to finding a correct global optimum (vs. known theoretical optimums) for each of the four 

(4) test functions.  In this section, the efficacy and efficiency of the methods are compared in 

order to support a statement as to which is the most effective and efficient methodology for 

application to the parallel beam problem.  For convenience, the results of the test runs of the 

previous section are summarized in the following table.   
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Table 5-9 Test function result - summary of unconstrained results 

 
Test Function 

De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s 

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.969,420.969) 

Steep Descent (4.2e-4, -4.5e-4) (1.0067, 1.0135) (-0.0070, 0.0117) (421.109, 419.456) 

Direct (SQP) (7.4e-6,1.0e-3) (0.9793, 0.9597) (4.7e-5, 1.0e-3) (-296.88, 438.27) 

Combined (3.9e-4, -1.4e-3) (1.0065, 1.0135) (6.3e-4, 7.7e-4) (421.109, 419.458) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0 

Steep Descent 0 0 4.6e-4 2.0e-4 

Direct (SQP) 2.03e-8 1.55e-7 2.7e-6 0.107 

Combined 4.3e-8 1.7e-8 2.5e-6 1.9e-4 

Number of Function Evaluations 

Steep Descent 1131 1190 2233 1869 

Direct (SQP) 1344 4863 2118 450 

Combined 1137 1194 2250 1875 

Number of Solutions within ‘Results Region 

Steep Descent 75 1 2 2 

Direct (SQP) 75 0 1 0 

Combined 1
(1)

 1
(1)

 1
(1)

 1
(1)

 

1) Note that since the final (SQP) search originates from a single point, only 1 result is possible 

     

The Steepest Feasible Descent and Direct methods (used independently) produced 

similar results in terms of accuracy (efficacy) and number of function evaluations (efficiency) for 

both De Jong’s and Rastrigin’s solutions.  In both cases, the SQP method was slightly more 

accurate than SFD in terms of both the coordinate location and function value of the identified 

optimum.  This is to be expected since the SFD method was limited to two (2) ‘jumps’ as is more 

appropriate for a ‘coarse’ search method.  Another interesting observation is that for the 

Rastrigin’s function, even given the 2-jump limitation, the SFD method found an optimum within 

the toleranced results region for two (2) start point searches, whereas only one (1) landed within 
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the toleranced region for the SQP method.  This is interesting because a primary challenge 

presented by Rastrigin’s is the multitude of local minima throughout the design space separated 

by ‘ridges’.  This supports, to a limited degree, the original hypothesis that SQP may have more 

difficulty moving across ridges than Steepest Feasible Descent.  The difference in this example 

however is small. 

A more pronounced difference between these two (2) independent methods is 

observable with the Rosenbrock’s Valley results.  Here, the SFD method found an optimum very 

near to the theoretical optimum (with a ‘2-jump’ limit) for one (1) of the start points, whereas none 

of the start points for the SQP method ended within the toleranced ‘Results Region’; although the 

SQP solution was ‘close’ to the region of interest.  Further, the SQP method required significantly 

more function evaluations than the Steepest Feasible Descent (4863 vs. 1190) to reach this 

conclusion.  For the Rosenbrock’s Valley test, then, Steepest Feasible Descent is shown to be 

both more effective and more efficient than the Direct method with SQP. 

Perhaps the most striking difference between the two (2) independent methods is 

observable with the Schwefel’s function.  As a reminder, Schwefel’s is similar to Rastrigin’s in that 

multiple local minima exist, but with the added challenge that the theoretical minima is 

geometrically distant from the center of the design space.  For this test function, the SFD method 

resulted in two (2) global start points finding a result within the allowable tolerance surrounding 

the theoretical minimum. The SQP method however failed to place any within the same results 

region and, in fact, found an ‘optimal’ result far from the theoretical solution.  A closer look at the 

plot (Figure 5-31) indicates that for this test, the SQP method resulted in little if any movement 

among any of the start points for Schwefel’s function.  This is supported by the significantly fewer 

function evaluations used by SQP.  Detailed review of the convergence data (not presented here) 

reveals that for this test, the algorithm stopped because the size of the step fell below the defined 

acceptability threshold (minimum design variable step size = 0.001); that is, the routine was 

quickly satisfied with the findings for each start point within the limits of the step size threshold.  

Given this observation, it is theorized that a significantly smaller design variable step size limit 
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would improve the optimization results by allowing the algorithm to continue its search.  To prove 

this theory, a subsequent test was run for the SQP method on Schwefel’s function with a 

Minimum Design Variable step size set to 0.00001 ( two (2) orders of magnitude smaller than the 

original test) and different results were observed.  This time, the theoretical optimum solution was 

found but at the cost of a significantly greater number of function evaluations.  Results of this 

additional test are as follows: 

Table 5-10 Additional unconstrained test function result - Schwefel's function 

Input: 

Min Design Variable step size 0.00001 

Optimization Method Direct Method (independently) 
Test Surface Schwefel’s 

Theoretical Global Optimum (420.9687,420.9687) 

Results: 

Location of Identified Minimum  (420.9687,420.9687) 
Function Value of Identified Minimum 1.697e-8 

Number of Function Evaluations 3963 

Number of Solutions within Results 
Region 

2 
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Figure 5-44 Additional direct method test, Schwefel's function, unconstrained 

These data confirm the theory that the reason for the (original) failure of the Direct 

Method (SQP) to find the theoretical optimum on an unconstrained Schwefel’s function was due 

to the minimum step size stopping criteria being too large.  By making this value much smaller, 

the theoretical optimum was found by two (2) global starting points (vs. no acceptable solutions 

for the original search).  However, more than eight (8) times the function evaluations were 

required in the process as compared with the Steepest Feasible Descent method (3963 vs. 450).  

Therefore, it can be concluded that for the more conservative (larger) minimum step size, the 

SFD Method is more effective than the SQP Method with Schwefel’s function.  If, however, the 

minimum step size is decreased for the SQP search, both methods are similar with respect to 

effectiveness (each finding theoretically correct solutions for 2 of the starting points) but the 

Steepest Feasible Descent is significantly more efficient than the Direct method.  In a larger 

sense, this same consideration for stopping criteria can be applied to all of the methods as well 

as consideration for the maximum number of jumps specified for SFD searches; each with the 
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potential to improve accuracy of the overall result, but at the expense of an increased number of 

function solves.  As noted in Table 5-4, the stopping criterion for the SFD search was a design 

variable step size limit of 0.001”.  By contrast, the stopping criterion for the second (successful) 

SQP search was a limit of 0.00001” (Table 5-10).  When compared to the design space size for 

Schwefel’s function (x= ± 500, y= ± 500 per Table 5-4), the SFD search was successful with a 

design variable stopping size of 1e-4% (of the range in design space) whereas the SQP method 

required a stopping size of 1e-6%.  This is an important consideration for EBBF functions where 

the cost of each function solve is significant.    

Comparison of the combined method results (to the SFD and SQP individual methods) 

tests the theory that there is utility in leveraging benefits of the two individual methods as a 

means to maximize both efficacy and efficiency.  A review of the data from De Jong’s surface 

(Table 5-9) shows that the combined method did find the correct answer within approximately the 

same small tolerance as either of the individual methods.  Efficiency was also very similar 

between the combined and individual methods, supporting a conclusion that no significant benefit 

exists for the combined method on the relatively simple De Jong’s function.  This is not surprising 

given the function’s simplicity.  Note that, as indicated in Table 5-9 only one (1) solution exists 

within the toleranced ‘Results Region’ for the Combined method.  This is because only one (1) 

start point is utilized in the SQP part of the search; starting from the optimum result of the ‘global’ 

Steepest Feasible Descent search. 

A similar comparison for each of the other three (3) test functions yields a different, yet 

common theme.  The combined method results in optimums which match the more accurate of 

either of the individually applied methods and with little more than the fewest function solves 

between them.  That is, the combined method is both as accurate and as efficient as the better of 

the individual methods for these, more complicated, test surfaces.  As mentioned for the SFD vs. 

SQP comparison above, this data supports that the ‘Combined’ method is more tolerant of a 

coarse design variable step size as a stopping criteria than the SQP method used independently.  

This is a significant observation with consideration for use with EBBF’s. 
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It is also interesting to compare the performance of the search methods to similar results 

from literature.  Kao and Zahara 
[43]

 performed comparable tests using Rosenbrock’s function with 

two (2) design variables in their investigation of a Continuous Genetic Algorithm (CGA).  Their 

results are shown together with results from SFD, SQP and ‘Combined’ methods in Table 5-11 

below. 

Table 5-11 Comparison of Optimization Results to Literature Results 

 
Results From This Work 

(Values Repeated from Table 5-9) 
Results from 

Literature using 
Continuous 

Genetic 
Algorithm 

[43]
 

 
SFD 

Independently 
SQP 

Independently 
‘Combined’ 

Method 

Number of 
Function 

Evaluations 
1190 4863 1194 960 

Error (%) – 
Global Optimum 

Coordinate 
Location vs. 
Theoretical 

1.51 % 4.42 % 1.50 % 0.40 % 

  

A conclusion is formed that by combining the two search techniques in the proposed way, 

the best of each method is leveraged to achieve the best result.  Therefore, the combined method 

is more suitable for Expensive Black Box functions than either method used independently 

because it finds an accurate result with the fewest number of function evaluations.  As shown for 

the Rosenbrock’s function, this reduction in function evaluations can be significant (4863 for 

Direct vs. 1190 for Combined  75% reduction).  Further, the proposed method is shown to be 

less sensitive to coarse design variable step size as a stopping criterion.  Both of these 

observations can be very important if each function solve requires several minutes, hours or more 

to accomplish.  Given these observations, the combined method is selected for use on the 

parallel beam problem.   
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Chapter 6  

Optimization of Parallel Beam Problem 

The previous two (2) chapters discuss development of the key elements of this research 

effort; 1) finite element modeling of the harmonically loaded parallel beam system and 2) the best 

optimization method to be used in finding a global solution to a multimodal surface.  In this 

chapter, these elements are brought together and the harmonic parallel beam problem is solved 

to find the combination of input parameters which result in a minimum harmonic response. 

Parametric Model Definition – Use of Super-Elements 

The parallel beam problem (illustrated in Figure 2-1) is comprised of three (3) model 

variants.   As defined in Table 2-1, these family variants exist in parallel to form the overall 

problem definition, differing by the length of the upper bar (Ltop) and the magnitude of the lumped 

mass (m).  Ultimately, an optimum set of input parameters (common to all family variants) is 

sought which produces a minimum ‘compromised’ response across the variants.   

One challenge presented by the problem definition is a method by which to model the 

variation of the bottom beam’s supports along the entire length of the beam given a fixed 

placement for the two (2) inter-beam supports.  That is, the geometric location of the inter-beam 

supports is fixed with respect to the origin and not subject to redefinition during the optimization 

process.  The location of the lower beam’s supports to ground, however, is not.  Therefore, the 

relative location of the inter-beam supports with respect to the lower beam’s supports will change 

during the analysis.  Although the act of meshing the beam(s) is conducted via an automatic 

meshing routine within the finite element program (ANSYS ®), the connectivity of the spring 

supports to the upper and lower beams must be defined with respect to their relative locations.  If 

an optimization model begins with both lower springs located between Point ‘A’ and the inter-

body spring at L3, then the automatic mesh definition is dependent upon a ‘super-element’ model 

definition that specifies one super-element for the lower beam between Point ‘A’ and L1, a second 

super-element from L1 to L2 and a third super-element from L2 to L3. If the next iteration requires 

that the bottom support at L2 move to the right of L3, then the definition of the super-element from 
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L1 to L2 and then L2 to L3 is no longer correct.  Instead, the super-element definition needs to be 

re-written to be from L1 to L3 and then L3 to L2.   

Although there are potentially multiple ways to programmatically handle this detail, a 

relatively straightforward method of multiple model definitions is selected here.  That is, by 

examination of the problem parameters it can be shown that six (6) potential configurations exists 

to cover all potential super-element configurations.  If a unique ANSYS ® model (computer file) is 

written for each super element configuration, then depending upon the placement of the spring 

supports (driven by the optimization code), the appropriate ANSYS ® model (super-element 

configuration) can be called.  These six (6) super-element configurations are depicted 

schematically in Figure 6-1 below.  The super-element models are consistent between (i.e.; do 

not change among) the three (3) family variants of the problem.  Therefore, by modeling these six 

(6) super-element configurations parametrically and providing the correct variable definitions 

according to the family variant (top beam length and lumped mass size.), then the problem is 

simplified for analysis. 
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Figure 6-1 Super-element models - schematic layout 

Optimization Plan 

Use of a ‘Single-Objective Optimization’ Tool for ‘Multi-Objective Optimization’ 

The problem statement for the parallel beam problem was defined in Chapter 2 as being 

comprised of both static and harmonic response variables.  Tip deflection response due to a 

static loading is used as a constraint response and will be discussed in a later section of this 

chapter.  Harmonic deflection responses (also due to tip loading) comprise the remainder of the 

problem statement and combine to form the variable (objective function) to be minimized. 
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 Within this latter ‘group’, two (2) harmonic responses per family variant are considered 

as part of the total objective function.  They are: 

1. The sum of tip displacement due to the harmonic loading:  Note that this is a discrete 

sum of the harmonic responses among the range of frequencies studied as shown in Eq. 

(6-1).  It is similar to a discrete integration of the area under the FRF curve, but does not 

include the ‘dimension’ of frequency as would be considered in an actual integration.  An 

integrated result is not necessary in this case since all analyses are conducted across the 

same frequency range and with the same frequency spacing. 

𝑑𝑡𝑖𝑝−𝑠𝑢𝑚 = ∑ 𝑑𝑓                

𝑓

 (6-1) 

                             𝑤ℎ𝑒𝑟𝑒 𝑑𝑓 = ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓 

 

 

𝑑𝑓 = √𝑑𝑟𝑒𝑎𝑙,𝑓
2 + 𝑑𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦,𝑓

2  
 

𝑓 = 10~100 𝐻𝑧, 𝑠𝑡𝑒𝑝 = 2.5 𝐻𝑧  

By minimizing this scalar sum of tip displacements, the overall magnitude of harmonic 

response (across the frequency range) is minimized.  However, due to natural frequency 

effects it is quite possible that a solution with a ‘low’ summed deflection response could 

still have a large response at some particular frequency(s) and therefore be undesirable 

as a practical solution.  Consideration for this eventuality is motivation for the second part 

of the objective function. 

2. Consideration for minimizing the range of tip displacement due to harmonic loading aids 

in optimizing the system by seeking to ‘flatten’ the tip displacement across frequencies.  

When combined with the summed metric, the tip deflection response can be better 

optimized for minimal response across all frequencies.  This scalar is given in Eq. (6-2). 

𝑑𝑡𝑖𝑝−𝑟𝑎𝑛𝑔𝑒 = max(𝑑𝑓) − min(𝑑𝑓)    
(6-2) 

                            𝑤ℎ𝑒𝑟𝑒 𝑓 = 10~100 𝐻𝑧, 𝑠𝑡𝑒𝑝 = 2.5 𝐻𝑧  
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By treating the two (2) harmonic responses as scalar components of a single objective 

function, the single-objective optimization tools described previously can be utilized to solve a 

multi-objective optimization problem.  In order to ensure that both components are considered 

appropriately in the process, each of the responses are normalized against a scalar constant that 

represents a generally expected ‘average’ magnitude for the given response.  The result is that 

each component of the objective function now has an order of magnitude that is similar and one 

response is not ‘favored’ over the other in the optimization process due to differences in scale.  

The magnitude of these normalization constants was selected by separate test cases of a couple 

of exemplary conditions which is not discussed further here.  The exact magnitude of the 

normalization factors is not critical since the constant is applied to all results in an effort to scale 

them to similar magnitudes.  The normalization factors used for this investigation are: 

Table 6-1 Normalization factors used for response variables 

Response Variable 
Normalization 

Factor 

Sum of tip displacements 
across frequencies - Eq. (6-1) 

300 

Range of tip displacements 
across frequencies - Eq. (6-2) 

100 

  
The multi-objective purpose of the single objective function is furthered by adding a 

weighting factor to each of the two components in order to consider their relative importance in 

the overall optimization process.  The single-objective optimization function then becomes 

𝑂𝐹𝑆𝑂 = 1(𝑑𝑡𝑖𝑝−𝑠𝑢𝑚) + 2(𝑑𝑡𝑖𝑝−𝑟𝑎𝑛𝑔𝑒) 
(6-3) 

                       𝑤ℎ𝑒𝑟𝑒    1 =  Weighting factor –  sum of tip displacements 

                                        2 = Weighting factor – range of tip displacements 

 

  

The weighting factors used are given in Table 6-2. 
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Table 6-2 Weighting factors used for response variables 

Response Variable 
Weighting 

Factor 

1 
Sum of tip displacements 

across frequencies - Eq. (6-3) 
1.0 

2 
Range of tip displacements 

across frequencies - Eq. (6-2) 
0.5 

   
In this way, the summed harmonic tip displacements over the range of frequencies are given a 

higher priority than the range of displacements.  The weighting factor values selected here are 

somewhat arbitrary, but serve to exemplify the development of a single objective function as a 

solution for a multi-objective problem. 

Development of the Objective Function 

A goal of the study is to find the combination of input variables which provide for the ‘best’ 

response for the family system.  In addition to the use of a single objective function as described 

above, consideration must be made for the response of each of the family variants as 

components of the objective function in order to optimize the ‘system’ response.  It is assumed 

here that equal weighting should be given to the response from each of the three (3) family 

variants.  Therefore, as each of the family variants are evaluated for a given set of variables 

(support locations, spring stiffnesses and damping coefficients) the overall objective function 

simply becomes the sum of the individual objective functions for each variant.  This is given in 

Equation 6-4 below. 

𝑂𝐹 =  ∑(𝑂𝐹𝑠𝑜)𝑖

𝑛

𝑖=1

 (6-4) 

                                              𝑓𝑜𝑟   𝑛 =  total 3 family variants  

  

Finally, a penalty value is added to the overall objective function as defined in Eq. (5-7).  

In this way, the resulting penalized objective function considers the following: 

 Multi-objective optimization of both sum and range of harmonic tip deflection across 

the range of frequencies studied. 
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 Relative importance (weighting) of the sum and range responses of the system 

 Consideration for the overall system response; including multiple family variants  

 Penalty effects for designs resulting in infeasible responses to established constraints 

Development of the Constraint Functions 

Two (2) types of constraints are considered in this analysis; those related to the values of 

the input (design) variables and those related to the output (results) of the simulation. 

Input constraints are, as the term implies, those constraints that apply solely to the values 

of the various input variables.  These include side bounds as well as other constraints imposed 

on the system.  For the parallel beam problem, side bounds include the upper and lower limits 

associated with the placement of the bottom beam’s supports (L1 & L2) as well as upper and 

lower bounds for each of the four (4) spring stiffnesses and four (4) damping coefficients.  Values 

for these side-bound constraints are given in Table 2-1 as illustrated in  Figure 2-1. 

Programmatically, these side-bound constraints are converted into a set of constraint 

equations for each of the various inputs.  Each side-bound constraint is an ‘inequality constraint’ 

in that any value less than or equal to zero (0) represents feasibility.  Development of an 

exemplary constraint equation for the lower-bound (LB) of an input variable is given as follows: 

𝑥 ≥ 𝐿𝐵 
 

  0 ≥ 𝐿𝐵 − 𝑥 
 

  𝑔𝐿𝐵 = 1 −
𝑥

|𝐿𝐵|
 (6-5) 

  

Note that in Eq. (6-5), the equation is normalized against the value of the LB. In this way, 

similarity among all constraint equations is included for improved results during the optimization 

process (similar in concept to previous discussions regarding response variables). If the 

constraint equations were not normalized, then the differing magnitudes of the constraint results 

would have an unintended consequence of ‘weighting’ during optimization.  Further, for side-

bound constraints where the value of the side-bound may be a negative value (such as with the 

test surfaces addressed previously), it is important to normalize against the absolute value of the 
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LB so as not to invert the sign of the actual constraint result.  A similar process exists for the 

upper-bound (UB) constraints but is not repeated here due to its straightforward nature.  These 

side-bound constraint equations are implemented in the optimization code programmatically for 

each of the input variables with respect to both upper and lower bounds by the process of Eq. 

(6-5).  A total of 20 side-bound constraint equations exist for the parallel beam problem; 

consisting of upper and lower equations for each of ten (10) input variables.  

In addition to the side-bound constraints, seven (7) other input constraints are imposed 

upon the model.  These include constraints that govern the location of the bottom beam’s 

supports (L1 & L2) given the physical limitations that none of the four (4) spring supports can lie 

‘on top of each other’.  In fact, given an assumed physical geometry of the supports, some 

minimum amount of distance must exist between them in order for the geometry of the design to 

be practical.  It is assumed for the purposes of this exercise that this minimum distance is 1.5 

inches.  Each of these constraint equations are developed in the same manner as presented in 

Eq. (6-5) above.  ‘Non side-bound’ constraints and equations are given in Eq. (6-6) below. 

L1 and L3 differ by at least 1.5”    𝑔1 = 1 −
|𝐿1 − 𝐿3|

1.50
  

L1 and L4 differ by at least 1.5”    𝑔2 = 1 −
|𝐿1 − 𝐿4|

1.50
  

L2 and L3 differ by at least 1.5”   𝑔3 = 1 −
|𝐿2 − 𝐿3|

1.50
  

L2 and L4 differ by at least 1.5”    𝑔4 = 1 −
|𝐿2 − 𝐿4|

1.50
 (6-6) 

L1 is offset from Point ‘A’ by at least 1.5”    𝑔5 = 1 −
𝐿1

1.50
  

L2 is offset from Point ‘B’ by at least 1.5”    𝑔6 =
𝐿2 − 𝐿𝑏

1.50
+ 1  

L2 is greater than L1 and is offset by at least 1.5” 
   𝑔7 =

𝐿1 − 𝐿2

1.50
+ 1 
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Each of these ‘non side-bound’ constraints are also considered as inequality constraints 

in the model whereby a negative value (or ‘0’) resulting from the constraint equation indicates a 

feasible result. For this problem, no equality constraints were utilized. 

Result-based (or output) constraints were also considered for the model.  As described 

previously, the goal of the process is to minimize harmonic response, but with consideration for 

some minimum stiffness of the system such that a maximum static deflection value is not 

exceeded.  Therefore, for each combination of design variable values, and for each of the three 

(3) family variants a static analysis was conducted where the deflection of the tip of the upper 

beam was evaluated.  This resulting deflection value (for each family variant) was then compared 

to the established maximum allowable deflection value in order to create a constraint equation for 

this output result.   

For this evaluation, an allowable maximum static deflection of 2.0 inches (given the static 

loading of 0.5 Lbf defined in Table 2-1) was established.  Given this value, it can be expected that 

configurations with a maximum cantilever are more likely to exceed the static threshold and 

others (where L1 & L2 are more centrally located for example) may have feasible results with 

respect to static deflection.  The results-based inequality constraint for static deflection is 

developed in Eq. (6-7) as follows: 

2.0 ≥ |𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑐| 
 

  0 ≥ |𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑐| − 2.0 
 

  𝑔𝑟𝑒𝑠𝑢𝑙𝑡_𝑖 =
|𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑐|

2.0
− 1 

(6-7) 

𝑤ℎ𝑒𝑟𝑒 𝑖 =  each of the 3 family variants  

  

Programmatically, each of the individual, inequality constraint equation results (20 side-

bound, 7 ‘non side-bound’ and 3 static deflection results) are combined into a single row vector 

for passage to the various subroutines of the optimization program.  As mentioned previously, no 
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equality constraints were used in this problem.  Had they been used, they would have been 

collected into a similar vector for passage as well. 

Additional Considerations 

One limitation of the Steepest Feasible Descent algorithm derived and implemented here 

is that, during the 1-D line search, the maximum length of the line search is determined by the 

distance from the starting point (X0) to the nearest design variable constraint bound.  In the case 

that only side-bounds exist on the design variables, this is sufficient and allows the fullest 

possible exploration of the design space along the search vector (Sn) without further 

consideration.  However, if additional design variable constraints exist within the domain then the 

maximum distance may be shortened accordingly.  That is, these additional, intermediary design 

variable constraints could be incorrectly sensed as an upper or lower bound by the subroutine 

that looks for the maximum distance across the design space.  In this event, the maximum search 

distance would be limited to the space between X0 and the first such intermediary constraint.  

The consequence of this issue is that additional feasible space may still exist beyond the 

recognized ‘nearest constraint bound’ that would not be recognized by the algorithm for 

exploration and a potential global minimum not discovered.   

Such is the case for the parallel beam problem here where the support locations are 

constrained from existing within a tolerance band of one another.  For example, if X0 is defined 

such that both L1 and L2 exist  to the ‘left end’ of the lower bar (near point A), and the search path 

dictates positive movement of both L1 and L2 (to the right), then the maximum search distance will 

be limited to the first support location constraint that is encountered (L2’s interaction with L3).  This 

would allow exploration of the design space to the left of L3, but would omit feasible space to the 

right of L3 that should also be explored.  Such a limitation could prevent a global optimum from 

being discovered if it existed to the right of L3.  As discussed later under ‘Opportunities for Further 

Research’, this is an area where improvement can be made to the current program. 

Until such improvements can be incorporated, a ‘workaround’ was implemented for use 

with this parallel beam analysis.  Starting points were selected such that some existed in each of 
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the six (6) geometric configurations (ref. Figure 6-1).  In this way, it is possible for a ‘global’ 

minimum to be identified in any of the six (6) configurations for the Steepest Feasible Descent 

Method.  From that point, the direct search method (SQP) would begin and could traverse any of 

the configurations; since the 1-D search distance is not defined in the same way for SQP as for 

the SFD Method. 

The haltonset method of point selection was maintained as the method for starting point 

selection, but for this analysis a sufficient number of points was identified that four (4) starting 

points could be identified for each of the six (6) configurations.  Programmatically, a loop was 

created using haltonset point selection in increasing size and the ‘first four’ starting points that fell 

into each of the six (6) configurations (and was also feasible with respect to other design variable 

constraints) was selected.  The maximum of four (4) points per configuration, or total 24 starting 

points, was selected in an effort to both demonstrate the effectiveness of the overall method to 

identify an optimum while giving consideration to the overall computing time required (given that 

the parallel beam problem takes significant time to solve each function evaluation).  The starting 

points identified and used in the analysis are provided in Table 6-3 below. Other key program 

parameters are given in Table 6-4. 

Table 6-3 Starting points used in the parallel beam optimization problem 

Super-
Element 
Model 
(Figure 

6-1) 

Support 
Locations 

(in) 

Spring Stiffnesses 
(Lbf/in) 

Damping Coefficients 

L1 L2 K1 K2 K3 K4 C1 C2 C3 C4 

1 

9.000 32.000 40100 28786 18500 15731 0.1215 0.1092 0.0911 0.0733 

22.500 26.667 4460 22724 45500 38577 0.2962 0.2655 0.2202 0.1757 

2.250 42.667 16340 16663 23409 12216 0.4709 0.4218 0.3494 0.2781 

29.250 37.333 28220 10602 1318 35062 0.1523 0.0845 0.4785 0.3805 

2 

18.000 48.000 20300 14643 9500 8115 0.0632 0.0571 0.0480 0.0391 

31.500 58.667 44060 2520 14409 4601 0.4127 0.3697 0.3063 0.2440 

11.250 53.333 8420 44949 41409 27447 0.0941 0.0324 0.4354 0.3464 

28.125 51.556 34556 26765 24227 46778 0.1249 0.0077 0.3288 0.1592 

3 

38.250 66.667 26240 23735 27909 16024 0.0067 0.4479 0.3709 0.2952 

24.750 69.333 10796 38888 19318 1086 0.2688 0.1887 0.0705 0.4488 

14.625 67.556 46436 20704 2136 20417 0.2996 0.1641 0.4579 0.2616 

34.875 65.778 25052 44083 34045 39749 0.3304 0.1394 0.3512 0.0745 
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Table 6-3 - Continued 

4 

46.688 53.630 11984 22003 13182 40627 0.4795 0.1682 0.2024 0.2457 

47.531 60.741 48099 15076 28355 26568 0.3972 0.4314 0.2474 0.0762 

52.594 58.370 19587 32394 8719 1694 0.0273 0.3327 0.3147 0.3164 

53.016 55.210 27190 18539 43529 22783 0.3271 0.3656 0.4046 0.4718 

5 

55.125 64.889 4856 5551 10727 35355 0.0375 0.4232 0.2642 0.1080 

48.375 70.222 30992 28930 42636 5479 0.0684 0.3985 0.1575 0.4152 

60.188 69.630 23864 15942 40182 14266 0.1609 0.3245 0.3316 0.3482 

53.438 67.852 579 46248 18537 33598 0.1917 0.2998 0.2249 0.1610 

6 

64.617 68.181 5426 29549 4033 48062 0.0122 0.1244 0.3438 0.1263 

66.410 69.761 41541 7778 9388 2100 0.2588 0.4206 0.4570 0.1121 

65.988 68.971 27856 21632 15231 8589 0.2298 0.4934 0.2325 0.0839 

65.145 70.288 14550 48351 20586 15618 0.4474 0.2699 0.3672 0.0698 

           

Table 6-4 Program parameters – parallel-beam optimization problem 

Number of Start Points 24 (ref. Table 6-3) 

Start Point Definition Haltonset 

Max Jumps (Steep Descent) 2  

Max Jumps (SQP method) 250  

Min 1D Polynomial order 3 

Max 1D Polynomial order 4 

Max no. of 1D points 15 

Min R2 allowable 0.9995 

1D error allowable 5% 

Minimum Des. Var. step size 0.001 

Penalty Method ‘Squared Constraint Method’ - Eq. (5-7) 

Penalty multiplier value 0.250 

  
As indicated, the minimum design variable step size is selected to be 0.001.  This could 

be considered an ‘overly coarse’ value in light of findings regarding the SQP method on 

Schwefel’s test function (Figure 5-31 vs. Figure 5-44) where a smaller step size was needed to 

find an accurate result.  (Note that both the order of magnitude of the design space of Schwefel’s 

function and that of the spring locations for the parallel beam are ‘similar’.)  However, the results 

for the Combined search method met accuracy goals with the larger step size.  Therefore, the 

minimum step size of 0.001, together with the use of the Combined search method is acceptable 

for the parallel beam study.  

Results and Discussion 

The FEM models of the parallel beam were meshed with 1-D (beam) elements at a 

specified nodal density of 200 NPI, resulting in approximately 48,000 to 53,000 total nodes per 
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model depending on the family variant.  A representative illustration of a loaded and constrained 

model is given in Figure 4-11.   

Among the 24 start points, a total of 811 function evaluations were made; 798 during the 

Steepest Feasible Descent phase and 13 during the follow-on Direct (SQP) search.  Each of 

these function evaluations consisted of three (3) FEM models (for each of 3 family variants) for a 

total of 2433 FEM model solutions.  (Note that each FEM model solution included both static and 

harmonic analysis components.)  A more detailed summary of function count by start point and 

optimization phase is depicted in Table 6-5 below. 

Table 6-5 Results data – summary of function evaluation count 

Start Point 

Super-
Element 
Model 

(Figure 6-1) 

Optimization 
Phase 

Total Function 
Evaluations 

1 2 

Steepest 
Feasible 
Descent 

 
(Coarse 
Search) 

40 

2 1 15 

3 1 15 

4 2 41 

5 1 40 

6 3 40 

7 2 50 

8 1 32 

9 3 30 

10 5 30 

11 2 50 

12 3 30 

13 5 30 

14 3 40 

15 4 40 

16 5 30 

17 5 30 

18 4 30 

19 4 30 

20 4 30 

21 6 35 

22 6 30 

23 6 30 

24 6 30 

SFD Result 
of #4 

2 
Direct Search 

(SQP) 
13 

   811 

    

Each function solve lasted approximately 28 minutes (including all of the 3 family 

variants) for a total solution time of approximately 15 days, 18.5 hours.  This, together with the 
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use of FEM as a function solver, supports that the parallel beam problem under study is an 

example of an EBBF.   

A maximum of two (2) ‘jumps’ were specified for each of the SFD start points and a 

maximum of 250 ‘jumps’ for the ‘follow-on’ SQP effort (ref. Table 6-4 above).  Among the SFD 

search paths, each starting point’s search could potentially end in one (1) of three (3) ways: 

1) Convergence achieved – design variable movement less than defined threshold 

2) Convergence not achieved, max jumps completed 

3) No feasible results found  

A maximum number of 15 1-D line search points was also specified per jump (ref. Table 

6-4 above).  This number, plus one search point for each degree of freedom (10 variables) during 

the calculation of Sn, yields a maximum 25 potential function evaluations per jump.  A summary 

of the SFD results for each start point is provided in Table D-1 in Appendix D.  This summary 

includes design variable definitions, function values (penalized), maximum constraint values and 

stopping criteria.  Results for the SQP portion of the search are also given in Table D-1.   

An optimum configuration for the parallel beam structure was identified by the program as 

the result of the search from global starting point number 4.  As depicted in Table D-1, the result 

of the first part of this search (SFD) was identification of the optimal ‘region of possibility’ as the 

lowest penalized function value (1.4511). The SQP search then began from the end of jump 2 

and continued until convergence (result also shown in Table D-1).  The resultant optimal 

configuration for the parallel-beam then is given in Table 6-6 below.  The FRF for tip deflection of 

the optimal configuration (resulting from Start Point #4) is shown in Figure 6-2. 

Table 6-6 Design variable values for optimal configuration of parallel beam 

Design Variable Optimal Value 

Spring Location L1 29.245 in 

Spring Location L2 50.417 in 

Spring Stiffness K1 44060 lbf/in 

Spring Stiffness K2   2520 lbf/in 

Spring Stiffness K3 14409 lbf/in 
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Table 6-6 - Continued 

Spring Stiffness K4   4601 lbf/in 

Damping Coefficient C1     0.4126 

Damping Coefficient C2     0.3344 

Damping Coefficient C3     0.3063 

Damping Coefficient C4     0.2403 

  

 

Figure 6-2 Harmonic tip response for optimal configuration of parallel beam 

Figure 6-2 illustrates the ‘transition’ or ‘improvement’ of the FRF as a result of the optimization 

process for start point #4; ultimately identified as the optimal result.  As shown, some 

improvement in response for family variants ‘2’ and ‘3’ was made, but the response for variant ‘1’ 

was made slightly worse in the process.  This ‘trade-off’ or ‘compromise’ in the overall design was 

necessary and planned in order to reduce the selected objective function for consideration of the 

family as a whole, including the range of responses between the variants.  As depicted in Table 

D-1, the overall (family) objective function corresponding to the changes of Figure 6-2 reduced 

from 2.4054 to 1.4511 (39.67% reduction).  This resulting penalized function value (1.4511) is 

significantly lower than the local optimums resulting from some other start points.  For example, 
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start point 6 resulted in a function value of 14.0065 (a reduction of 69.46% from its initial value of 

45.4097) and start point 14 in a value of 16.1061 (a reduction of 59.26% from its starting value of 

16.1061).  As a comparison to the optimal solution of Figure 6-2, the FRF ‘improvement’ path of 

Start Point #6 is provided in Figure 6-3 below.  As shown, even though the natural frequency 

response for variant ‘2’ of start point 6 (approx. 90 Hz) is reduced through the process by 

approximately 81%, this ‘optimal’ response is still significantly higher than the response (approx. 

85 Hz) of the optimal configuration in Figure 6-2; improving by approximately 64% additionally. 

When viewed another way, the optimum result for start point 4 (Figure 6-2) at ~ 85 Hz is 

improved in comparison to the initial configuration for start point 6 (Figure 6-3) by approximately 

99%. 

 

Figure 6-3 Harmonic tip response for start point #6  

Even with these improvements, natural frequencies remain within the frequency range of 

interest for variants ‘2’ and ‘3’ of the resultant design.  An original goal of this study was to reduce 

the flexural response for the parallel beam system given an assumed ‘constraint’ that the support 
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elements for the upper beam could not vary in their location.  This was based upon the premise 

that a platform-style design may include such rigidity in its requirements among the variants so as 

to preclude otherwise influential variables from being part of the optimization process.  Figure 6-4 

and Figure 6-5 illustrate the mode shapes of the natural frequencies for family variants ‘2’ and ‘3’ 

(of the optimal design from Figure 6-2) respectively and give insight as to why the optimization 

process did not eliminate those natural frequencies.  In both cases, the main flexure is bending 

(mode 1) of the upper beam which is dominated by upper beam geometry and support location 

(discussed further later). 

 

Figure 6-4 Mode shape of family variant '2', 82.5 Hz 

 

Figure 6-5 Mode shape of family variant '3', 42.5 Hz 

This result illustrates a point made in the original motivation for this work; sometimes 

design constraints exist which ‘forces’ the system to ‘operate’ at or near a natural frequency(s).  
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In this example, the location of the upper beam’s supports are fixed as are the variant beam’s 

geometry and therefore not subject to the optimization effort.  Without modification of these, any 

attempt to modify the upper beam’s natural frequency is muted.   

One potentially influential variable regarding the upper beam’s response that was 

included in the optimization however are the spring stiffness of K3 and K4.  Potentially, a 

significant change of stiffness there may have some influence to move the natural frequency.  

The data of Table D-1 indicates that these two spring stiffnesses were not modified during the 

optimization path of start point 4.  As discussed later in this chapter, the search vector Sn 

provides insight as to the sensitivity of the various design variables.  Since these stiffnesses did 

not change, it is logical to conclude that they had at most a minor effect upon the specified 

function value.  This is discussed in more detail later in this chapter.  Further investigation into the 

issue of the upper spring stiffnesses could yield fruit, either with modification of the parameters of 

the study, or even with an element of the algorithm that could improve effectiveness.  For 

example, a benefit could potentially be achieved by ‘splitting’ the optimization into multiple runs so 

that the number of design variables is reduced for each run.  This could aid in the sensitivity given 

to a particular variable, but is not pursued further within this work. 

The result of the optimization effort discussed here is considered successful, in that the 

familial response was minimized given constraints of the problem and with consideration for the 

response of all family variants across the frequency range.  This is demonstrated through 

comparison of two (2) representative results above (Figure 6-2 and Figure 6-3) as well as detailed 

data describing minimization of the objective function as discussed throughout the remainder of 

this chapter.   

Table D-1 depicts that convergence was achieved during the SFD search for five (5) of 

the 24 start points and no feasible results were found for two (2) of them. The remainder (17) did 

result in feasible solutions but did not achieve convergence before completing the maximum 

specified number of jumps.  As mentioned previously, the best solution from the SFD results was 

identified as being from starting point #4, which is one of those that did achieve convergence 
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within two (2) SFD jumps.  The SQP search began from this result, resulting in no appreciable 

change before achieving its convergence criteria.  This is depicted in Figure 6-6 thru Figure 6-8 

below. 

 

Figure 6-6 SQP Variable Convergence - Length Dimensions 
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Figure 6-7 SQP Variable Convergence - Spring Stiffnesses 

 

Figure 6-8 SQP Variable Convergence - Damping Coefficients 
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Table D-2 (Appendix D) depicts the Sn vector used during each jump of the SFD 

searches.  This data can be interpreted as a form of ‘sensitivity analysis’, giving indication as to 

which variables were the most significant with respect to improvement in the function result at the 

point of the jump’s X0 position.  As shown, six (6) jumps had a Sn= [0].  

By a comparison of the Sn data for these six (6) jumps (having Sn= [0]) against the data 

of Table D-1, it can be seen that starting points #2 and #3 resulted in gmax>0; indicating an 

infeasible solution.  A penalized function value is recorded for the X0 point for each of these, but 

a function value of ‘0’ is recorded as a result of the (infeasible) jump.  This indicates that a 

descending vector (Sn) could not be identified which pointed to feasible space.  The other four (4) 

jumps resulted in feasible solutions and the function value at the respective X0 positions was 

identified and considered as part of the overall search for a global minimum.  In these four (4) 

cases, the reason for Sn= [0] is that the point was at a local minimum; as identified by the fact 

that both Sn= [0] and the solution met convergence criteria. 

Considering Sn data from Table D-2 as a ‘sensitivity metric’, it can be shown that the 

position of the lower support springs (L1 and L2) were by far the most influential at reducing the 

objective function.  In fact, these two (2) variables accounted for at least 80% of the Sn vector’s 

magnitude for all but four (4) of the 46 total jumps (jumps with Sn=[0] excluded).  This is 

computed by comparing the absolute magnitudes of the variables in question to the sum of the 

absolute magnitudes for all variables, as shown in Eq. (6-8) below. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 =
∑ |𝑆𝑛(𝑖)|𝑖

∑ |𝑆𝑛(𝑗)|𝑗

 
(6-8) 

𝑤ℎ𝑒𝑟𝑒 𝑖 =  design variables in question  

𝑗 =  all design variables  

  

By comparison, for these 42 jumps where spring location dominated, spring stiffness design 

variables contributed less than 1.3% and damping coefficient up to 19.7% of the Sn vector’s 

magnitude.  For the four (4) jumps where spring location did not dominate, spring stiffness 
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contributed between 3.8% and 49.4% while damping coefficient contributed between 50.6% and 

96.2%.   

These results indicate that, for the parallel-beam problem overall, the location of the support 

springs has the strongest effect on reduction of the objective function followed by damping 

coefficient and lastly by support spring stiffness.   

At a high level, this is supported by observations from theory.  As demonstrated with the damped, 

classical SDOF (Figure 3-2) the frequency ratio (r) has the most profound effect on the magnitude 

of the response, followed by the damping coefficient (when the frequency ratio selected is near to 

‘1’ indicating resonance).   

In the parallel beam study, the location of the support springs showed the most significant effect 

on reduction of the objective function.  This can be compared to the length of a cantilever beam 

with respect to its natural frequency response.  As shown in Eq. (4-12), length can have a 

significantly stronger effect upon the natural frequency of a cantilever beam than other aspects of 

stiffness such as cross-sectional size or material strength.  Because of this strongly influential role 

regarding natural frequency, the location of the spring supports also has a strong effect upon 

harmonic response magnitude, particularly when the natural frequency is near to (or within) the 

range of frequencies of interest.  As shown in Figure 6-2, family variants ‘2’ and ‘3’ of the optimal 

solution both include a natural frequency within the scope of frequencies evaluated.  Therefore it 

is logical to expect that support spring location would be highly influential for the parallel-beam 

problem under study. 

Second to location of the support springs, theory shows that damping can have a 

profound effect upon the harmonic response where that response is near to a natural frequency 

of the system. (Ref. damped SDOF example of Figure 3-2.  Since natural frequencies are shown 

to exist within the frequency range of interest for even the most optimum result, it is logical to 

conclude also that damping coefficient would have a pronounced effect upon the model. 

These data also support that the decision to sensitize Sn to the scale of each of the 

design variables was a productive choice; as was predicted from the test results of Table 5-2. 
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Table D-3 depicts the results of the 1-D line searches for each of the SFD starting points 

and jumps.  This data is significant because it gives insight into whether the line search algorithm 

was successful in its intended purpose.   

Of the 46 jumps completed (across the 24 SFD start points), all but five (5) achieved 

acceptability criteria (R
2
>0.9995 and error<±5.0%) per Table 6-4.  Two (2) of these ‘non-

converged’ searches (start point 7, jump 1 and start point 11, jump 1) reported R
2
 values of 

0.99631 and 0.99816 respectively but did achieve the error criteria (-0.3897% and -0.3671%).  

For each of these, the maximum number of evaluations (25) was conducted for the jump and the 

line search optimum was identified to be mid-span between X0 and the maximum length of the 

search vector.  

Two (2) of the jumps (start points 2 and 3) found that all of the initial set of 1-D search 

points resulted in infeasible results.  If, as in this case, the program determines with high 

confidence (R
2
 > 0.98) along the full length of the Sn vector that none of the points will have a 

gmax<=0, then no further investigation takes place along that vector.  It is recognized that potential 

exists for a feasible result to be found elsewhere along the vector, but this is not investigated 

given consideration for EBBF’s and the predicted low-likelihood of a feasible result.    

The remaining ‘non-converged’ search (start point 15, jump 2) reported a correlation 

coefficient of -.  This indicates that there although some points along Sn were feasible, there 

were not enough from which to construct a polynomial after having evaluated the maximum 

allowable number of points.  In this event, the algorithm selects the minimum solved value among 

the feasible points as the optimum.  As shown in Table D-3 , this optimal point was located at the 

maximum length of the 1-D search vector.  Given that this optimal point was a ‘solved value’, and 

that no polynomial existed, the error for this case is programmatically to be reported as ‘0’, which 

was the case for this result. 

Seven (7) additional searches also utilized the maximum number of function evaluations. 

In these cases however, the resulting polynomial met both R
2
 and error acceptability criterion for 

polynomial accuracy.  These results are consistent with behavior observed for some of the more 
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complex test functions (ref. Figure 5-9 thru Figure 5-13) where ‘outlier’ points far from the 

observed minima were removed in order to improve the polynomial’s accuracy near the minima; 

indicating that the response along the search vector was likely multimodal (as with the test 

cases). 

The specified minimum polynomial order for the line searches was set at three (3) (Table 

6-4) which, together with 10 design variables, yields a minimum number of points allowable for 

the line searches of 14 (one (1) more than the polynomial order plus one (1) for each design 

variable).  Of the 46 total jumps, all used more than this minimum number of points; indicating 

that none of the line searches met acceptance criteria (both R
2
 and error) at the minimum 

polynomial order.  Interestingly, most (32 of 46) of the line searches used 15 points per jump, 

indicating that both R
2
 and error were satisfied with the addition of only one (1) more than the 

minimum number of points.   

When the algorithm adds a point to the line search matrix, it also increments the 

polynomial order (to a prescribed maximum).  Considering this, it is likely that the response for 

these 32 searches was more complex than a simple unimodal polynomial (as with DeJong’s and 

Rosenbrock’s search results in Figure 5-7 and Figure 5-8 respectively).  The addition of an 

additional point, and more importantly the increase in polynomial order from ‘3’ to ‘4’ in these 

cases was sufficient to improve the polynomial’s accuracy to acceptable levels. 

Six (6) of the 46 searches resulted in a 1-D line search optimum at the X0 position (x=0 

along the search vector).  As can be seen by a comparison of Table D-3 and Table D-2, those 

searches where the optimum was located at X0 are those where Sn= [0].  A total of 10 other line 

searches resulted in an optimum located ‘mid-span’ between the X0 and maximum length of the 

search path (nearest constraint bound).  The remaining 30 line searches identified the optimum 

result at the maximum length of the search path.  This indicates that the search algorithm did 

utilize the full length of the search vector during evaluations.   

Considering all of these results, together with the algorithm’s performance on the various 

test functions (Figure 5-7 thru Figure 5-13), it appears that a variety of modalities existed with the 
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polynomial approximations performed during the parallel beam optimization; requiring varying 

numbers of point evaluations and approximation methods.   
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Chapter 7  

Summary and Conclusions 

In the course of this work, a parallel beam structure with intermediate elastomeric 

supports was investigated to find the optimal placement and configuration of the supports 

(stiffness and damping coefficients) in order to minimize response to harmonic loading subject to 

multiple design variable and results-based constraints.  A key objective of this effort was the 

development of an optimization strategy for use with such systems that is an effective 

compromise between finding an ‘acceptable global optimum’ and the overall design cost.  The 

selection of the harmonically loaded parallel beam for this problem highlights a challenging 

consideration for a global optimization algorithm; that of finding a solution for a response that is 

likely multi-modal.  The problem under study was further complicated by defining the parallel 

beam to be a ‘platform-style’ product with three (3) family variants to the geometry; each of which 

was considered as part of a ‘compromise solution’ to the overall optimization effort.  Also, key 

variables defining the upper (variant) beam were ‘fixed’ as might be experienced in a practical 

application, preventing an ideal optimization of the upper beam’s flexure from being 

accomplished. For these reasons, an optimization method was sought that would be appropriate 

for the practical solution of Expensive Black Box Functions (EBBF).   

Using the proposed optimization method, an optimum set of design parameters for the 

platform-style, parallel-beam structure was identified which showed significant improvement in the 

desired characteristics.  And, in the process, the algorithm was demonstrated to be useful for an 

EBBF with multi-modal response.  Overall, this work is comprised of four (4) major elements.  

They are: 

1. A review of theory and literature regarding structural dynamics as relevant to the 

problem under study, as well as optimization methodologies that may be appropriate 

for its solution as an EBBF. 
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2. Development and validation of an FEM model of the parallel beam system, including 

both static and dynamic aspects, as are needed in the solution of the constrained 

optimization problem. 

3. Development and characterization of the proposed optimization algorithm, written in 

MATLAB ® language. 

4. Optimization of the parallel beam problem using the proposed algorithm to coordinate 

a series of ‘external function solutions’ of the FEM model using ANSYS ® software. 

The proposed optimization algorithm leverages benefits of two (2) methodologies 

common in the field of multi-disciplinary optimization; the first-order method of Steepest Descent 

and the direct search method of Sequential Quadratic Programming (SQP).  While each has 

strengths and weaknesses regarding solution of an EBBF with multi-modal response, it is 

proposed that by combining and modifying them in a particular way that an effective tool can be 

created.  In the process, the method of Steepest Descent is modified to be useful as a 

constrained search tool (termed the ‘Method of Steepest Feasible Descent’), and objective 

functions are created that allow tools normally limited to application on single objective problems 

to be used for a multi-objective purpose.  Prior to being used for solution of the parallel beam 

problem, the proposed optimization algorithm is challenged against four (4) standard test 

functions to evaluate its effectiveness on responses with a variety of modalities, and to support 

whether the theory of a ‘combined’ search methodology is productive as compared to use of the 

component methodologies independently.   

Several conclusions are drawn as a result of this work.  They are: 

1. Results support that the proposed ‘combined’ search methodology does in fact leverage 

the best of each component methodology in order to find a global optimum that is both 

more effective (accuracy of result against theoretical solution) and more efficient (number 

of function evaluations required) against the standardized test functions where a high 

level of modality is present.  In this way, the proposed method is demonstrated to be 
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more suitable for EBBF’s like the parallel-beam problem than either component method 

used independently. 

2. Results support that the proposed ‘combined’ search methodology was not practically 

more effective or more efficient when used for simple, unimodal responses than either of 

the component methodologies used independently.  However, the data also supports that 

use of the proposed method for such a response was no worse than either of the 

component methodologies.  

3. The method of Steepest Feasible Descent, modified as part of this work from the 

classical unconstrained Steepest Descent methodology, is demonstrated to be useful for 

constrained searches.  Key modifications are as follows: 

a. The line search was augmented to include both deterministic and programmatic 

penalty function effects. 

b. A sensitivity-based search vector was utilized to improve response in situations 

where the various design variables have significantly different orders of 

magnitude among their values. The effectiveness of this approach was 

demonstrated and confirmed on a Classical damped SDOF theoretical system. 

c. Programmatic identification of the search vector includes consideration for 

feasibility of the targeted design space, including modification as necessary to 

achieve feasible space. 

4. Stopping criteria (step size) is demonstrated to be important to accuracy of the result, 

especially for multi-modal responses and particularly with the SQP methodology.  A 

significance of this conclusion is that the selected minimum step size may need to be 

significantly smaller than what otherwise might be expected as important.  For example, a 

tolerance of ±1% on a dimension may normally be considered significant.  But in light of a 

multi-modal response, the stopping criteria may need to be significantly smaller to 

achieve an acceptable result; particularly for the SQP method.  This of course carries the 

burden of longer solution times.  However, use of the ‘coarse’ step size was 



 

148 

demonstrated to be acceptable with the proposed ‘Combined’ search methodology, 

further supporting its utility for EBBFs. 

5. FEM validation data support that the practice of modeling beam structures with 1-D beam 

elements can be significantly more effective than modeling them with 3-D solid elements 

in terms of computing resources required and the potential for numerical problems with 

the larger models. 

6. An optimal solution to minimize flexural response of the platform-style parallel beam 

problem was successfully identified using the proposed method, resulting in 

recommended values for each of the ten (10) design variables.  Even though optimized, 

the solution still included natural frequencies within the frequency range of interest for two 

(2) of the three (3) family variants because of the assumed constraint that the upper 

beam’s geometry and support locations were fixed as part of the product family definition.  

Variation of the (other) allowed variables however, provided for an improvement in the 

response for the family product as intended.  A review of the FRF plots of the optimal 

solution compared to other, less ideal solutions, show a reduction in the peak resonant 

response of between 33 and 99%, with a reduction in the objective function value of 

between 40 and 69% as a result of the method.  This indicates success with respect to 

the goals of the study.  Although significantly improved, natural frequencies do, however, 

remain within the operating range; highlighting an unfortunate aspect of practical design 

and a motivation for this work.  Sometimes product constraints exist that preclude an 

ideal design.  In this case, because the upper beam’s properties were fixed, natural 

frequencies could not be avoided for some of the family variants within the frequency 

range of interest.  The proposed optimization method did, however, identify a set of 

design variables that minimized the responses significantly. 

7. Results indicate that, for minimization of harmonic response across all of the family-

variants for the parallel-beam problem, the location of the support springs demonstrate 

the strongest effect on reduction of the objective function followed by damping coefficient 
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and lastly by support spring stiffness.  This aligns with theoretical predictions.  Further, 

this alignment is attributed to the use of ‘sensitivity based’ search vectors in the proposed 

optimization method.   
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Chapter 8  

Opportunities for Further Research 

Following are areas where further research may yield further improvement to the current 

work. 

1. When used with a problem requiring Super-Element configurations such as this 

parallel beam structure, a limitation exists where the solution cannot ‘cross’ between 

Super-Elements in search of an optimal solution.  This requires that multiple start 

points be defined within each Super-Element configuration, adding to the overall time 

of the analysis.  Research into methods of eliminating this constraint could yield 

significant benefit in reduced analysis time through a reduced number of start points. 

2. The effects of the number of design variables upon the efficiency of the proposed 

method are not well understood.  Research into these effects and predictive 

guidance to the user would be beneficial. 

3. This proposed method is deterministic in nature and does not consider uncertainty of 

the design variables as part of the process.  As illustrated in the parallel beam 

example, several minima were identified with similar objective function values; but 

with no guidance beyond the function values as to which is the better option.  

Research into incorporation of reliability based design optimization (RBDO) concepts 

could add important, additional capability to the process. 
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Appendix A 

FEM Model Validation Data 
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Table A- 1 Mesh sensitivity and validation results - static deflection, cantilevered beam 

Total 
Nodes 

Theoretical 
Result 

Eq (4-17) 
(in) 

FEM Result 
(in) 

Error 
(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

-3.315 

-0.290 - Note 1 - 91.25% - Note 1 - 

17 -0.524 - Note 1 - 84.21% - Note 1 - 

33 -0.895 - Note 1 - 73.01% - Note 1 - 

97 -1.734 - Note 1 - 47.68% - Note 1 - 

193 -2.277 - Note 1 - 31.33% - Note 1 - 
261 - Note 1 - -1.312 - Note 1 - 60.43% 

385 -2.701 - Note 1 - 18.53% - Note 1 - 

501 - Note 1 - -1.496 - Note 1 - 54.86% 

769 -2.979 - Note 1 - 10.14% - Note 1 - 

1461 - Note 1 - -1.796 - Note 1 - 45.82% 
1921 -3.175 - Note 1 - 4.22% - Note 1 - 

2901 - Note 1 - -1.982 - Note 1 - 40.21% 

3841 -3.247 - Note 1 - 2.06% - Note 1 - 

5781 - Note 1 - -2.160 - Note 1 - 34.85% 

9601 -3.291 - Note 1 - 0.72% - Note 1 - 
11541 - Note 1 - -2.326 - Note 1 - 29.85% 

19201 -3.309 - Note 1 - 0.17% - Note 1 - 

38401 -3.318 - Note 1 - -0.08% - Note 1 - 

76801 -3.337 - Note 1 - -0.67% - Note 1 - 

147953 - Note 1 - -2.867 - Note 1 - 13.50% 
895065 - Note 1 - -3.059 - Note 1 - 7.74% 

5860976 - Note 1 - -3.175 - Note 1 - 4.23% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 

  



 

153 

Table A- 2 Mesh sensitivity and validation results - static deflection, simply supported beam 

Total 
Nodes 

Theoretical 
Result 

Eq (4-17) 
(in) 

FEM Result 
(in) 

Error 
(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

-0.207 

-0.096 - Note 1 - 53.53% - Note 1 - 

17 -0.132 - Note 1 - 36.50% - Note 1 - 

33 -0.161 - Note 1 - 22.27% - Note 1 - 

97 -0.189 - Note 1 - 8.61% - Note 1 - 

193 -0.198 - Note 1 - 4.41% - Note 1 - 

261 - Note 1 - -0.178 - Note 1 - 14.25% 

385 -0.203 - Note 1 - 2.16% - Note 1 - 

501 - Note 1 - -0.183 - Note 1 - 11.57% 

769 -0.205 - Note 1 - 0.99% - Note 1 - 

1461 - Note 1 - -0.190 - Note 1 - 8.38% 

1921 -0.207 - Note 1 - 0.28% - Note 1 - 

2901 - Note 1 - -0.193 - Note 1 - 6.82% 

3841 -0.207 - Note 1 - 0.04% - Note 1 - 

5781 - Note 1 - -0.196 - Note 1 - 5.54% 

9601 -0.207 - Note 1 - -0.10% - Note 1 - 

11541 - Note 1 - -0.198 - Note 1 - 4.50% 

19201 -0.208 - Note 1 - -0.15% - Note 1 - 

38401 -0.208 - Note 1 - -0.17% - Note 1 - 

76801 -0.208 - Note 1 - -0.18% - Note 1 - 

147953 - Note 1 - -0.204 - Note 1 - 1.61% 

895065 - Note 1 - -0.205 - Note 1 - 0.88% 

5860976 - Note 1 - -0.206 - Note 1 - 0.47% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 
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Table A- 3 Mesh sensitivity and validation results - modal frequencies, mode 1 

Total 
Nodes 

Theoretical 
Result 

Eq (4-13) 
(Hz) 

FEM Result 
(Hz) 

Error 
(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

59.349 

59.319 - Note 1 - 91.25% - Note 1 - 

17 59.313 - Note 1 - 84.21% - Note 1 - 

33 59.313 - Note 1 - 73.01% - Note 1 - 

97 59.313 - Note 1 - 47.68% - Note 1 - 

193 59.313 - Note 1 - 31.33% - Note 1 - 

261 - Note 1 - 59.481 - Note 1 - -0.22% 

385 59.313 - Note 1 - 18.53% - Note 1 - 

501 - Note 1 - 59.456 - Note 1 - -0.18% 

769 59.313 - Note 1 - 10.14% - Note 1 - 

1461 - Note 1 - 59.455 - Note 1 - -0.18% 

1921 59.313 - Note 1 - 4.22% - Note 1 - 

2901 - Note 1 - 59.455 - Note 1 - -0.18% 

3841 59.314 - Note 1 - 2.06% - Note 1 - 

5781 - Note 1 - 59.455 - Note 1 - -0.18% 

9601 59.313 - Note 1 - 0.72% - Note 1 - 

11541 - Note 1 - 59.454 - Note 1 - -0.18% 

19201 59.253 - Note 1 - 0.17% - Note 1 - 

38401 59.197 - Note 1 - -0.08% - Note 1 - 

76801 59.438 - Note 1 - -0.67% - Note 1 - 

147953 - Note 1 - 59.407 - Note 1 - -0.10% 

895065 - Note 1 - 54.324 - Note 1 - 8.47% 

5860976 - Note 1 - 54.894 - Note 1 - 7.51% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 
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Table A- 4 Mesh sensitivity and validation results - modal frequencies, mode 2 

Total 
Nodes 

Theoretical 
Result 

Eq (4-13) 
(Hz) 

FEM Result 
(Hz) 

Error 
(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

371.937 

373.072 - Note 1 - -0.31% - Note 1 - 

17 371.764 - Note 1 - 0.05% - Note 1 - 

33 371.679 - Note 1 - 0.07% - Note 1 - 

97 371.673 - Note 1 - 0.07% - Note 1 - 

193 371.673 - Note 1 - 0.07% - Note 1 - 

261 - Note 1 - 374.980 - Note 1 - -0.82% 

385 371.673 - Note 1 - 0.07% - Note 1 - 

501 - Note 1 - 372.675 - Note 1 - -0.20% 

769 371.673 - Note 1 - 0.07% - Note 1 - 

1461 - Note 1 - 372.562 - Note 1 - -0.17% 

1921 371.673 - Note 1 - 0.07% - Note 1 - 

2901 - Note 1 - 372.561 - Note 1 - -0.17% 

3841 371.674 - Note 1 - 0.07% - Note 1 - 

5781 - Note 1 - 372.561 - Note 1 - -0.17% 

9601 371.673 - Note 1 - 0.07% - Note 1 - 

11541 - Note 1 - 372.560 - Note 1 - -0.17% 

19201 371.664 - Note 1 - 0.07% - Note 1 - 

38401 371.653 - Note 1 - 0.08% - Note 1 - 

76801 371.675 - Note 1 - 0.07% - Note 1 - 

147953 - Note 1 - 371.916 - Note 1 - 0.01% 

895065 - Note 1 - 368.503 - Note 1 - 0.92% 

5860976 - Note 1 - 373.682 - Note 1 - -0.47% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 
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Table A- 5 Mesh sensitivity and validation results - modal frequencies, mode 3 

Total 

Nodes 

Theoretical 

Result 

Eq (4-13) 

(Hz) 

FEM Result 

(Hz) 

Error 

(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

1041.0 

1069.440 - Note 1 - -2.73% - Note 1 - 

17 1042.474 - Note 1 - -0.14% - Note 1 - 

33 1040.662 - Note 1 - 0.03% - Note 1 - 

97 1040.539 - Note 1 - 0.04% - Note 1 - 

193 1040.538 - Note 1 - 0.04% - Note 1 - 

261 - Note 1 - 1067.999 - Note 1 - -2.59% 

385 1040.538 - Note 1 - 0.04% - Note 1 - 

501 - Note 1 - 1044.150 - Note 1 - -0.30% 

769 1040.538 - Note 1 - 0.04% - Note 1 - 

1461 - Note 1 - 1043.038 - Note 1 - -0.20% 

1921 1040.538 - Note 1 - 0.04% - Note 1 - 

2901 - Note 1 - 1043.031 - Note 1 - -0.20% 

3841 1040.538 - Note 1 - 0.04% - Note 1 - 

5781 - Note 1 - 1043.030 - Note 1 - -0.20% 

9601 1040.538 - Note 1 - 0.04% - Note 1 - 

11541 - Note 1 - 1043.029 - Note 1 - -0.19% 

19201 1040.535 - Note 1 - 0.04% - Note 1 - 

38401 1040.532 - Note 1 - 0.04% - Note 1 - 

76801 1040.539 - Note 1 - 0.04% - Note 1 - 

147953 - Note 1 - 1041.204 - Note 1 - -0.02% 

895065 - Note 1 - 1042.351 - Note 1 - -0.13% 

5860976 - Note 1 - 1038.798 - Note 1 - 0.21% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 
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Table A- 6 Mesh sensitivity and validation results - modal frequencies, mode 4 

Total 
Nodes 

Theoretical 
Result 

Eq (4-13) 
(Hz) 

FEM Result 
(Hz) 

Error 
(%) 

1D (beam) 3D (solid) 1D (beam) 3D (solid) 

9 

2041.0 

2265.202 - Note 1 - -10.98% - Note 1 - 

17 2052.656 - Note 1 - -0.57% - Note 1 - 

33 2039.511 - Note 1 - 0.07% - Note 1 - 

97 2038.597 - Note 1 - 0.12% - Note 1 - 

193 2038.586 - Note 1 - 0.12% - Note 1 - 

261 - Note 1 - 2167.207 - Note 1 - -6.18% 

385 2038.585 - Note 1 - 0.12% - Note 1 - 

501 - Note 1 - 2049.203 - Note 1 - -0.40% 

769 2038.585 - Note 1 - 0.12% - Note 1 - 

1461 - Note 1 - 2043.524 - Note 1 - -0.12% 

1921 2038.585 - Note 1 - 0.12% - Note 1 - 

2901 - Note 1 - 2043.493 - Note 1 - -0.12% 

3841 2038.585 - Note 1 - 0.12% - Note 1 - 

5781 - Note 1 - 2043.489 - Note 1 - -0.12% 

9601 2038.585 - Note 1 - 0.12% - Note 1 - 

11541 - Note 1 - 2043.486 - Note 1 - -0.12% 

19201 2038.584 - Note 1 - 0.12% - Note 1 - 

38401 2038.582 - Note 1 - 0.12% - Note 1 - 

76801 2038.586 - Note 1 - 0.12% - Note 1 - 

147953 - Note 1 - 2039.886 - Note 1 - 0.05% 

895065 - Note 1 - 2039.504 - Note 1 - 0.07% 

5860976 - Note 1 - 2038.149 - Note 1 - 0.14% 

Note 1:  Total nodes differ between 1D and 3D models for given nodal density.  Therefore, results 

not available for this combination of model and total nodes. 
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Table A- 7 Harmonic mesh convergence error - 1D elements 

Total 
Nodes 

FEM Result 
Convergence Error 

(%) 

Load Point 
Deflection  

(vertical - in) 

Sum of Forces 
(lbf) 

Load Point 
Deflection  
(vertical) 

Sum of Forces 

Sum Range Spring 1 Spring 2 Spring 3 Spring 4 Sum Range Spring 1 Spring 2 Spring 3 Spring 4 

48 21.716 0.165 23.891 45.283 91.705 105.376       

70 21.716 0.165 23.891 45.283 91.706 105.376 0.00% -0.01% 0.00% 0.00% 0.00% 0.00% 

126 21.716 0.165 23.891 45.283 91.706 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

242 21.716 0.165 23.891 45.283 91.706 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

482 21.716 0.165 23.891 45.283 91.706 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

962 21.716 0.165 23.891 45.283 91.706 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1922 21.716 0.165 23.891 45.283 91.706 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

4802 21.716 0.165 23.891 45.283 91.705 105.376 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

9602 21.716 0.165 23.891 45.283 91.706 105.377 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

24002 21.716 0.165 23.891 45.282 91.704 105.374 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

48002 21.717 0.165 23.892 45.284 91.707 105.378 0.00% -0.03% 0.00% 0.00% 0.00% 0.00% 

96002 21.719 0.165 23.894 45.290 91.732 105.410 -0.01% -0.01% -0.01% -0.01% -0.03% -0.03% 

120002 21.707 0.165 23.882 45.261 91.637 105.291 0.05% 0.28% 0.05% 0.06% 0.10% 0.11% 

160004 21.700 0.166 23.871 45.240 91.632 105.293 0.04% -0.62% 0.04% 0.05% 0.01% 0.00% 

192002 21.719 0.166 23.895 45.292 91.691 105.354 -0.09% -0.56% -0.10% -0.12% -0.06% -0.06% 

240002 21.705 0.166 23.880 45.256 91.683 105.355 0.07% 0.51% 0.06% 0.08% 0.01% 0.00% 
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Table A- 8 Harmonic mesh convergence error - 3D elements 

Total 

Nodes 

FEM Result 
Convergence Error 

(%) 

Load Point 

Deflection  

(vertical - in) 

Sum of Forces 

(lbf) 

Load Point 

Deflection  

(vertical) 

Sum of Forces 

Sum Range Spring 1 Spring 2 Spring 3 Spring 4 Sum Range Spring 1 Spring 2 Spring 3 Spring 4 

1932 28.676 0.591 25.006 49.775 125.592 143.651       

3642 30.918 0.718 25.344 50.777 128.900 148.564 -7.82% -21.40% -1.35% -2.01% -2.63% -3.42% 

7242 31.921 0.778 25.497 51.230 130.432 150.784 -3.24% -8.46% -0.61% -0.89% -1.19% -1.49% 

9672 32.097 0.789 25.524 51.308 130.684 151.151 -0.55% -1.35% -0.11% -0.15% -0.19% -0.24% 

14442 32.225 0.796 25.544 51.364 130.867 151.412 -0.40% -0.95% -0.08% -0.11% -0.14% -0.17% 

29226 32.361 0.808 25.567 51.441 131.255 151.914 -0.42% -1.47% -0.09% -0.15% -0.30% -0.33% 

47499 32.352 0.807 25.565 51.434 131.204 151.863 0.03% 0.13% 0.01% 0.01% 0.04% 0.03% 

50825 32.360 0.807 25.566 51.437 131.214 151.876 -0.03% -0.05% 0.00% -0.01% -0.01% -0.01% 

62244 32.363 0.807 25.566 51.437 131.208 151.867 -0.01% 0.02% 0.00% 0.00% 0.00% 0.01% 

81902 32.363 0.807 25.566 51.436 131.202 151.861 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 

140318 32.467 0.811 25.580 51.469 131.297 151.975 -0.32% -0.48% -0.05% -0.06% -0.07% -0.08% 

 

 

.
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Appendix B 

Flowcharts of Key Program Subroutines 
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Appendix C 

Full Program Listing 
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% ############################################################################################### 

% 
%          GLOBAL OPTIMIZATION ROUTINE 

% 

% ############################################################################################### 
%  Written By:  Bret Hauser 

%  Latest Revision Date:  Jan 16, 2015 

% ############################################################################################### 
% This code provides an optimization routine intended to find a 'global optimum' on a multimodal 

% resoponse surface for use with an external solver.  Multiple optimization strategies are available 

% to the user including: 
%       1.)  'Coarse search' via Steepest Feasible Descent Method 

%       2.)  'Refined search' via Direct Search using fmincon with SQP modifier 

%       3.)  Combination of Coarse search to find region of best likelihood followed by SQP search 
%            from single most promising result of coarse search. 

% Although the program is intended for use with an ANSYS FEA external solver, it could be modified 

% to call 'any' external solver.  Four (4) internal test functions exit within this code as a means 

% of confirming code results as well as any future modifications. 

%   

% Note that for use of the 'Refined search' method, a MATLAB Optimization Toolbox license is 
% required.  Also, use of the quasi-random tool 'haltonset' is used as one of multiple available 

% methods to determine start points.  If haltonset is selected, a MATLAB Statistics Toolbox license 

% is also required.   
% ############################################################################################### 

%  The project consists of 5 primary 'code' elements which are used as follows: 

%     - This MATLAB program:  Is the 'top-level' code which creates a header text file for 
%                             run-specific data, appends it to the main ANSYS input script file,  

%                             launches the ANSYS run, reads and evaluates the results file, 
%                             archives the script and results files, evaluates the convergence 

%                             state of the solution and launches a subsequent iteration as 

%                             needed. 
%     - ANSYS Header file:    Is the code (written programmatically by this top-level MATLAB  

%                             program) which includes the iteration-specific variables definition  

%                             data for the given optimization loop.  
%     - ANSYS Script file:    Is the code (written independently by the user in PYTHON) which  

%                             interacts with the previously defined ANSYS project to modify values 

%                             of established project parameters and write pre-defined results to  
%                             a formatted output file. 

%     - ANSYS Merged Script:  Is the script file programmatically generated as part of each 

%                             iteration to append the ANSYS Header file to the front of the 
%                             ANSYS Script file.  This ANSYS Merged Script is the input script 

%                             called by this top-level MATLAB code for the ANSYS solve. 

%     - ANSYS Project file:   The ANSYS project is independently established as a 'stand alone' 
%                             project including geometry definition, pre- and post-processing 

%                             elements.  Input and Output variables of interest are defined as 

%                             parameters (conventionally named within ANSYS as "P1", "P2", 
%                             etc.) and are available in the Parameters Data Container to be 

%                             used as Design Points.  Multiple Design Points are not required 

%                             for this process.  The Script file specifies the use of dP0 in 
%                             this exercise for each loop of the optimization.  Input and 

%                             output data for each iteration are archived programmatically in 

%                             the form of the merged script file and the results file as well 
%                             as stored in array form within the MATLAB Optimization routine 

%                             and summarized in various output plots upon completion. 

% ############################################################################################### 
%     Key files needed to execute a job: 

% 

%        1.)  This MATLAB program 
%        2.)  'Setup_Script_body.txt' = body of ANSYS Script file (above) 

%        3.)  ANSYS *.wbpj project, predefined with all geometry, loads, BC's, input and output 

%             parameters 
% ############################################################################################### 

% To Use This Code: 

%    1.)  Ensure that path for ANSYS executable is set correctly.  To do so, obtain admin permission 
%         and open Start\Control Panel\System\Advanced System Settings\Environment Variables\... 
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%         System Variables\Path - include desired path if not already there.  NOTE: This version of 

%         code is set up for ANSYS 15.0.7, if ANSYS is updated then need to verify both executable 
%         path and executable filename (specifie in function 'ANSYSsolve' below. 

%    2.)  Set up ANSYS project including geometry definition, pre- and post processing 

%         including solve.  Make sure all runs correctly without errors across full breadth of input  
%         variable range. 

%    3.)  Define parameters in ANSYS and identify input/results parameters by name (P1, P2, 

%         etc.) for input into Input section below. 
%    4.)  IMPORTANT ** Set 'Update Option' to 'Submit to RSM' and 'Solve Process Setting' to 

%         selected Solver and cores for each Solution cell in the project and save project before 

%         running this MATLAB file. 
%    5.)  Populate Input section of this code (below).  Note that major sections of input are 

%         identified in 'steps'.  Be sure that all of the steps are complete. 

%    6.)  Set up objective function 'f' in function 'Objective_fun' below.  Note 
%         that fmincon minimizes so to maximize a function need to minimize the negative. 

%            - define objective function components and equation to compute function value 

%            - identify results values that have a constraint bound(s) (to be included in output 

%              matrix) 

%    7.)  Set up constraint functions as needed in function Constraint_fun below. 

%            - input (design variable) constraints 
%            - output (results variable) constraints 

%    8.)  Set the ANSYS project to solver choice as appropriate. 

%    9.)  Best practice to import merged script file to ANSYS to verify solve for 1 iteration. 
%         Can 'abort' job if long job using RSM to speed up process. Look for error messages within  

%         ANSYS regarding script execution.  

% ############################################################################################### 
  

  
function main  % *** CHARTED *** 

clc; clear all; close all   

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 
global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 
global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

   format long 
   % Select the primary script file for the ANSYS model build and solve  

   [scriptname,pjctpath] = uigetfile('*.txt','Select the *.txt ANSYS script file for the project'); 

   % --convert path syntax to ANSYS needs-ANSYS input script requires pathnames with '/', not '\' 
   ANSYSpjctpath=pjctpath; 

   for ii=1:length(ANSYSpjctpath)  % for loop to replace '\' with '/' in path 

      if ANSYSpjctpath(ii)=='\' 
         ANSYSpjctpath(ii)='/'; 

      end 

   end 
   % =====  check to see if project directory has spaces in it...if so alert user to redefine 

   for ii=1:length(pjctpath) 

      if pjctpath(ii)==char(32)   %char(32)= 'space' 
         line1=' The project path name includes spaces which are problematic for Matlab. '; 

         line2=['  ',pjctpath,' ']; 

         line3=' PLEASE RENAME THE FOLDER(S) SO THAT NO SPACES ARE INCLUDED AND RESTART '; 
         % note:  all string lengths must be same to put in following composite vector 

         msgstring=char(line1,' ',line2,' ',line3); 

         msgtitle='Error - Spaces in pathname'; 
         msgbox(msgstring,msgtitle,'error'); 

         stop;  % end program execution within MATLAB - not clean but functional 

      end 
    end 

  

 % ############################################################################################# 
   %%    ---  DEFINE INPUT DATA --- 

   % -------------------------------------------------------------------------------------------- 

   %   Input data notes 
   %   1.) FILE NAMES correspond to the pre-defined ANSYS file (*.wbpj), and names to be used 
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   %       for the results file and flag file.  Results file is written by the ANSYS input script  

   %       and contains a record of Design Variables as well as output data to be read as the  
   %       objective function later in this code.  The flag file is a 'marker' file that is 

   %       written at the conclusion of the solve to indicate its completion.  Its presence is 

   %       tracked later in this code as an indication that the solve is complete. 
   %   2.) DEFINE TEST FUNCTION if applicable or choose to solve an external function.  Note that 

   %       input variables must be set up for the test function as well as objective_fun and 

   %       constraint_fun specifics desired for the test run. 
   %   3.) DESIGN VARIABLES are entered as 'cell array of strings' data.  'ANSYS Parameter Name' is  

   %       the named assigned to that parameter in ANSYS' 'Parameter Set' Data Component (eg: P1,  

   %       P2, etc.) Note use of '{}' instead of '()' or '[]' to indicate cell array.  Note that 
   %       test function variables are included by default, but only active if test function chosen. 

   %   4.) MISC INPUT DATA should be confirmed prior to each run.  This includes various parameters 

   %       including stopping criteria, allowable bounds for curve fits, etc. 
   %   5.) RESULTS DATA sets up the parameters to be read by this code from ANSYS.  The format 

   %       is similar to that of Design Variables and includes the ANSYS 'Parameter Set' name  

   %       (P7,P8, etc.) and a description.  As with Design Variables, this is a cell array so 

   %       note use of '{}' rather than '()' or '[]'. Note that 'Max Expected Value' is required for 

   %       each parameter. This is used in the Objective_Fun and Constraint_Fun subroutines to 

   %       normalize the results. 
   %   6.) OPTIMIZATION SOLUTION PATH allows the user to select the optimization scheme. Note that a 

   %       user-specified max number of Steepest Feasible Descent 'jumps' and SQP 'jumps' are 

   %       available for definition. 
   %   7.) STARTING POINTS may be defined by the user in a number of methods.  Note that in addition 

   %       to a user-specified number of global start points, an optimization can be executed from a 

   %       single user-specified startpoint in the format [DV1 DV2 DV3...] in the order of design 
   %       variables previously specified. 

   %   8.) TEST FUNCTION CONSTRAINTS may also be specified for use in confirming the algorithm's 
   %       ability to negotiate around feasible/infeasible space.  Note that since the test 

   %       functions are defined as '2D' space, the constraint bounds are defined as a circle of 

   %       user-specified origin and radius, within which lies 'infeasible' space. 
   % 

=========================================================================================== 

   % -- STEP 1.)  Specify File Names (See Input Data Note 1) ------- 
        solvertype=2;  %[0]=ANSYS, [1]=External MATLAB Function, [2]=Test Function      

        %  --- [0] = ANSYS Project --- 

          if solvertype==0 
              %name of ANSYS proj file to be executed 

            my_project={'Parallel_Beam_Family_Config-1a_C-F.wbpj' 'Parallel_Beam_Family_Config-1b_C-F.wbpj' 

'Parallel_Beam_Family_Config-1c_C-F.wbpj';  
                        'Parallel_Beam_Family_Config-2a_C-F.wbpj' 'Parallel_Beam_Family_Config-2b_C-F.wbpj' 

'Parallel_Beam_Family_Config-2c_C-F.wbpj'; 

                        'Parallel_Beam_Family_Config-3a_C-F.wbpj' 'Parallel_Beam_Family_Config-3b_C-F.wbpj' 
'Parallel_Beam_Family_Config-3c_C-F.wbpj'; 

                        'Parallel_Beam_Family_Config-4a_C-F.wbpj' 'Parallel_Beam_Family_Config-4b_C-F.wbpj' 

'Parallel_Beam_Family_Config-4c_C-F.wbpj'; 
                        'Parallel_Beam_Family_Config-5a_C-F.wbpj' 'Parallel_Beam_Family_Config-5b_C-F.wbpj' 

'Parallel_Beam_Family_Config-5c_C-F.wbpj'; 

                        'Parallel_Beam_Family_Config-6a_C-F.wbpj' 'Parallel_Beam_Family_Config-6b_C-F.wbpj' 
'Parallel_Beam_Family_Config-6c_C-F.wbpj'} 

            my_resultsfile='logfile.dat'; %name of results file to be written by inputscript 

            my_flagfile='flagfile.dat'; %name of temp flag file to show completion of ANSYS solve 
          elseif solvertype==1   

         % --- [1] = External MATLAB Function --- 

            my_obj_fun=@Sn_Study_OF; 
            my_cons_fun=@Sn_Study_CF;   

            my_project=my_obj_fun; 

            my_resultsfile='logfile.dat'; %name of results file to be written by inputscript 
            my_flagfile='flagfile.dat'; %name of temp flag file to show completion of ANSYS solve 

          elseif solvertype==2   

         % --- [2] = Test Function (Internal - choose from below) 
            testfunction=4; 

               % 0=NO TEST FUNCTION IN USE - ANSYS or External Solve Used 

               % 1=De Jong's function in 2D  - bounds in x & y = [0   5.12] 
               % 2=Rosenbrock's Valley in 2D  - bounds in x & y = [0   2.048] 
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               % 3=Rastrigin's function in 2D - bounds in x & y = [0   5.12] 

               % 4=Schwefel's function in 2D (modified for bounds) - bounds in x & y = [0   500]  
             if testfunction==1 

                 my_project={'De Jongs Test Function'}; 

             elseif testfunction==2 
                 my_project={'Rosenbrocks Valley Test Function'}; 

             elseif testfunction==3 

                 my_project={'Rastrigins Test Function'}; 
             elseif testfunction==4 

                 my_project={'Schwefels Test Function'}; 

             end 
             my_resultsfile='logfile.dat'; %name of results file to be written by inputscript 

             my_flagfile='flagfile.dat'; %name of temp flag file to show completion of ANSYS solve 

          end 
   % ------------------------------------------------------------------------------------------- 

   % -- STEP 3.) Specify Design Variable Information (See Input Data Note 2)-------- 

                %  format = {  Param_ID, ValueMin,   ValueMax,   Description} ------ 

           if solvertype==0   % ANSYS function solve requested 

           %  format = {ANSYS Parameter Name,   ValueMin,   ValueMax,   Description} ------ 

                     inputvar={'P62',               '0',       '72',    'Dim_L1 (in)'; 
                               'P63',               '0',       '72',    'Dim_L2 (in)'; 

                               'P116',            '500',    '50000',    'K1 stiffness (lb/in)'; 

                               'P117',            '500',    '50000',    'K2 stiffness (lb/in)'; 
                               'P118',            '500',    '50000',    'K3 stiffness (lb/in)'; 

                               'P119',            '500',    '50000',    'K4 stiffness (lb/in)'; 

                               'P120',          '0.005',    '0.500',    'C1 damping coefficient'; 
                               'P121',          '0.005',    '0.500',    'C2 damping coefficient'; 

                               'P122',          '0.005',    '0.500',    'C3 damping coefficient'; 
                               'P123',          '0.005',    '0.500',    'C4 damping coefficient'} 

                            

           elseif solvertype==1  % External MATLAB function solve requested         
                %  format = {  Param_ID, ValueMin,   ValueMax,   Description} ------ 

                     inputvar={  'M',        '10',   '100',  'Mass (kg)'; 

                                 'K',     '10000', '50000',  'Spring constant (N/m)'; 
                                 'Zeta',   '0.01',  '0.50',  'Damping ratio'}; 

           elseif solvertype==2                 

               if testfunction==1   % De Jong's function 
                     inputvar={'x',          '-5.12',         '5.12',     'Test Dimension 1'; 

                               'y',          '-5.12',         '5.12',     'Test Dimension 2'} 

               elseif testfunction==2   % Rosenbrock's Valley 
                     inputvar={'x',          '-2.048',         '2.048',     'Test Dimension 1'; 

                               'y',          '-2.048',         '2.048',     'Test Dimension 2'} 

               elseif testfunction==3   % Rastrigin's function 
                     inputvar={'x',          '-5.12',         '5.12',       'Test Dimension 1'; 

                               'y',          '-5.12',         '5.12',       'Test Dimension 2'} 

               elseif testfunction==4   % Schwefel's function 
                     inputvar={'x',          '-500',           '500',       'Test Dimension 1'; 

                               'y',          '-500',           '500',       'Test Dimension 2'} 

               end 
           end 

   % -------------------------------------------------------------------------------------------- 

   % -- STEP 4.) Misc input data 
      polyfitorder=3;  %order of 1-D polynomial (starting - will adjust automatically to meet R^2) 

      rsqrdallow=0.9995; % min allowable R^2 - 1D curve fit 

      minspan=2;  % no two points can be closer than minspan [pcnt] of max distance together 
      max1Dpts=15; % maximum number of points allowed during 1-D line search 

      maxpolyfitorder=4; % max allowable order of polynomial to prevent numerical errors 

      ErrorAllow1D=5.0; % pcnt error ('5'=5%)allow between predicted min from 1D eqtn & actual solve 
      DVstepmin=0.001;  % Minimum input variable step size indicating design convergence   

      penalty=0.250;  % value of penalty function for output constraints in Objective_Fun 

   % -------------------------------------------------------------------------------------------- 
   % -- STEP 5.) Results data setup (See Input Data Note 4) ---------------- 

       if solvertype==0   % no test function - these result values for ANSYS job 

           % ------------ 
           % -- output variables for ANSYS function 
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           %   Note:  'Max_Expected_Value' is a rough approximation of the maximum absolute value of 

           %   the given response.  This is used in the normalization of the output results at the 
           %   bottom of Objective_Fun for the computation of the Objective Function Variable [f] 

           %   only.  Results are NOT normalized for any other reason and are captured in the 

           %   history file and log outputs in their non-normalized state.  Normalization of the 
           %   Objective Function Variable is needed in order to aid in the application of penalty 

           %   for constraint violations. 

           % ------------ 
           % format={Parameter Name,  Max_Expected_Value    Description} ------ 

           outputvar={ 'P128',               '1',           'Static_Deflection (In)'; 

                       'P129',               '300',           'my_Tip_UY_Sum (In)'; 
                       'P130',               '100',           'my_Tip_UY_Range (In)'} 

            

          % **** NOTE:  Only output parameters defined within Workbench can be passed out from 
          % ANSYS to Matlab.  Parameters defined as output within the 'Parameters' cell based 

          % on output values from Workbench do not have a 'value' property and therefore will 

          % not pass out under PYTHON script. 

          % ----------------------------------------------------------------------------------- 

       elseif solvertype==1  % output values for External MATLAB function 

           % format={Parameter Name,  Max_Expected_Value    Description} ------ 
           outputvar={  'FRF',                   '1',       'Freq Response Fnctn at 40 Hz'} 

          % ----------------------------------------------------------------------------------- 

                   
       elseif testfunction==1   % De Jong's function 

           % -- output variables for De Jong's test function 

           % ------------ 
           outputvar={ 'scalarout',        '50',           'Scalar result from Test Function'};   

       elseif testfunction==2   % Rosenbrock's Valley function 
           % -- output variables for Rosenbrock's Valley test function 

           % ------------ 

           outputvar={ 'scalarout',      '3000',           'Scalar result from Test Function'};   
       elseif testfunction==3   % Rastrigin's function 

           % -- output variables for Rastrigin's test function 

           % ------------ 
           outputvar={ 'scalarout',        '80',           'Scalar result from Test Function'};   

       elseif testfunction==4   % Schwefel's function 

           % -- output variables for Schwefel's test function 
           % ------------ 

           outputvar={ 'scalarout',      '1500',           'Scalar result from Test Function'};   

       end 
   % -------------------------------------------------------------------------------------------- 

   % -- STEP 6.) Define Optimization Solution Path ---------------- 

      optsoltn=1; 
         % 0=Global Solution Only 

         % 1=SQP Solution (fmincon) Only 

         % 2=Combination - best Global Solution seeds Start Point for SQP Solution 
      % variables for global search 

         maxjumps=2; %max number of steepest descent 'jumps' during global optimization (ea point) 

      % variables for SQP search 
         SQPmaxjumps=250;   % number of maximum allowable jumps for SQP Solution  

   % -------------------------------------------------------------------------------------------- 

   % -- STEP 7.) Define Starting Points ---------------- 
     globalstart=1; 

         % 0=Evenly divided design space - use 'globalStartQty' below to specify 

         % 1=Start points per Haltonset - use 'globalStartQty' below to specify 
         % 2=Start points per Latin Hypercube Sampling - use 'globalStartQty' below to specify 

         % 3=Start points per Random Generator (uniform distr) - DOES NOT REQUIRE STAT TOOLBOX 

     % Number of FEASIBLE start points desired 
         globalStartQty=75;     

   % -------------------------------------------------------------------------------------------- 

   % -- STEP 8.) Define 'Output' Constraint Test Area for Test Functions ---------------- 
        consxcoef=1000.00;   % x-coordinate of center of circle 

        consycoef=1000.00;   % y-coordinate of center of circle 

        constrrad=2.0; % radius of circle     
   % #############################################################################################  
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    if solvertype~=2 

       testfunction=0;  % verifies that testfunction set correctly if actual solve in process 
    end 

   %%     --- FIND SIZE OF INPUT / OUTPUT ARRAYS & Minimum Stepsize --- 

   [count_dv,inputcols]=size(inputvar);  %count number of design variables specified 
   [count_outv,outputcols]=size(outputvar);  %count number of results variables specified 

       distdesspc=0;  %initialize variable 

%     % ----- find 'corner distance' across design space -----  
%         distdesspc=0; 

%         for distii=1:count_dv  %define design space 'corner distance' across all Des Var. 

%            distdesspc=distdesspc+(str2double(inputvar(distii,3))-... 
%                                                str2double(inputvar(distii,2)))^2; 

%         end 

%         distdesspc=sqrt(distdesspc);  % distance 'across' design space for parameterization 
    % --- determine minimum step size for 1D search and Search Vector Offset ----- 

       minstepsize=0;  % initialize variable 

       for ii=1:count_dv 

          minstepsize=minstepsize+(str2double(inputvar(ii,3))-str2double(inputvar(ii,2)))^2; 

%           if temp<minstepsize 

%              minstepsize=temp;  % find minimum range in DV  
%           end 

       end 

       minstepsize=sqrt(minstepsize)/1e5;  % minimum stepsize = fraction of minimum DV range 
       %        minstepsize=(distdesspc)/200000;  % min step size  

   % #############################################################################################  

    %% Set-up Archive Location 
    % ------------------------------------------------------------------------------------------ 

    % This section establishes an archive directory as a sub-level to the user-defined 
    % project directory (the directory that the *.wbpj file was selected from).  Input script 

    % files, output files (per iteration) and a summary results file are stored in the 

    % archive directory.  In addition, this section checks to make sure that a previous 
    % archive directory is not 'active' so as not to overwrite the previous run's data.  If a 

    % previous archive directory is found, the program stops execution with a message to the 

    % user that the previous directory was found and that it should be removed or renamed. 
    % ------------------------------------------------------------------------------------------ 

        arch_dir=strcat(pjctpath,'archive'); 

        direxists=0; 
        direxists=exist(arch_dir,'dir'); % returns 0 if directory does not exist 

        if direxists~=0 

             line1='*********************************************************************'; 
             line2='*********************************************************************'; 

             line3='          AN ARCHIVE DIRECTORY ALREADY EXISTS UNDER THE NAME         '; 

             line4=arch_dir; 
             line5='   PLEASE EITHER REMOVE OR RENAME THE ARCHIVE DIRECTORY AND RESTART  '; 

             line6='*********************************************************************'; 

             line7='*********************************************************************'; 
             msgstring=char(line1,line2,line3,line4,line5,line6,line7); 

             msgtitle='Error - globalDVdiv<1'; 

             msgbox(msgstring,msgtitle,'error'); 
             stop;  % end program execution within MATLAB - not clean but functional 

        end 

        cmdline=['cd ' pjctpath]; 
        [status,cmdout]=dos(cmdline);   % make project folder active 'in dos window' 

        cmdline=['mkdir '  'archive']; 

        [status,cmdout]=dos(cmdline);  % make folder for archive as sub to project folder 
     %% ************************************************************************** 

     %   Optimization Sequence Calls 

     %  ************************************************************************** 
         if optsoltn==0  % Global Solution Only 

%              [feaspts]=globalsearchpts(globalDVdiv,maxjumps);  % define global X0 start points  

             [feaspts]=globalsearchpts(maxjumps);  % define global X0 start points  
             % feaspts = number of global points that meet constraints 

             [glX0min,glfevalmin,globalfevalcount]=globalsearch(feaspts,maxjumps);% global search(s) 

             bestX0=glX0min;  %best solution from this global-only search 
         end 
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         if optsoltn==1  % SQP Solution Only from global start points 

%              feaspts=1;  % only 1 X0 start point for SQP search 
%              % SQP X0 point defined in input data above 

             [feaspts]=globalsearchpts(maxjumps);  % define global X0 start points  

             % feaspts = number of global points that meet constraints 
             [myXOPT,myFVAL,SQPfevalcount]=SQPsearch(feaspts,SQPmaxjumps); 

             bestX0=myXOPT;  %best solution from this SQP-only search 

  
         end 

         if optsoltn==2; % Combination Global Search then refined SQP Search 

%              [feaspts]=globalsearchpts(globalDVdiv,maxjumps);  % define global X0 start points  
             [feaspts]=globalsearchpts(maxjumps);  % define global X0 start points  

             % feaspts = number of global points that meet constraints 

             [glX0min,glfevalmin,globalfevalcount]=globalsearch(feaspts,maxjumps);% global search(s) 
             feaspts=1;  % only 1 X0 start point for SQP search 

%              [XOPT,FVAL,SQPfevalcount]=SQPsearch(SQPX0,feaspts,SQPmaxjumps); 

             [myXOPT,myFVAL,SQPfevalcount]=SQPsearch(feaspts,SQPmaxjumps); 

             bestX0=myXOPT;  %best solution from this combination search 

         end 

         PlotResults(bestX0); %goto function PlotResults for final plotting of variable traces 
          

  

  
            

%% ########################################################################################## 

%     Sub-Functions 
% ########################################################################################## 

  
function [glX0min,glfevalmin,globalfevalcount]=globalsearch(feaspts,maxjumps) % *** CHARTED ***  

% this function conducts the global search given a number of feasible points and specified max 

% jumps.  The actual feasible points are in 'globalX0' as a global variable. 
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
% ============================================================ 

% Steepest Descent Evaluation of Global Start Points with Polynomial Approximation 1-D search      

 % ======  print header to screen output ================ 
     fprintf('%s\r',' '); 

     global_his=[]; 

 % ====== plot test surface here only if 'global-only' solution, else plot in SQPsearch ====== 
     if optsoltn==0 

         if testfunction==1    

            nopts=50; 
            PlotTestFunction(nopts)  %plot countour plot of function 

         elseif testfunction==2 

            nopts=50; 
            PlotTestFunction(nopts)  %plot countour plot of function 

         elseif testfunction==3 

            nopts=150; 
            PlotTestFunction(nopts)  %plot countour plot of function 

         elseif testfunction==4 

            nopts=150; 
            PlotTestFunction(nopts)  %plot countour plot of function 

         end 

     end 
 % ===== Open Global History File ==================================================  

         summary_file=[pjctpath,'archive\GLOBAL OPT RESULTS SUMMARY.TXT']; 

        fid20 = fopen(summary_file, 'w'); %open file for write permiss.-discard contents 
        % note '\r\n' is carriage return with new line in Windows OS 

        fprintf(fid20,'%s\r\n','# ##########################################################'); 

        fprintf(fid20,'%s\r\n','#   Results summary from Global Opt search (comma delimited)'); 
        fprintf(fid20,'%s\r\n','# ----------------------------------------------------------'); 
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        for ii = 1:length(my_project) 

            thisproject=char(my_project(ii,:)); 
            fprintf(fid20,'%s%s\r\n','  Project = ',thisproject); 

        end 

        fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 
        fprintf(fid20,'%s\r\n','#                   Convergence History'); 

        fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 

        hdr_text1=(',X0,Jump'); 
        for ii=1:count_dv 

           hdr_text1=cat(2,hdr_text1,char(44),inputvar{ii,1}); 

        end 
        for ii=1:count_outv 

           hdr_text1=cat(2,hdr_text1,char(44),outputvar{ii,1}); 

        end 
        hdr_text1=cat(2,hdr_text1,',X-position of 1-D result,Max 1-D Search Distance,R-Squared,'... 

                    ,'Min-Pnt Error (%)',',No of Function Evals this Xo',',Max Constr Fun Value'); 

        fprintf(fid20,'%s\r\n',hdr_text1(:));  

 % =====  'Outer loop' = Each Identified Global Start Point ========    

     globalfevalcount=0;  % counter for total number of fevals during global search    

     linesearchstepshold=linesearchsteps; %variable changes in jump, need to reset to original 
     polyfitorderhold=polyfitorder;        %variable changes in jump, need to reset to original 

     for X0point=1:feaspts  % step through the feasible globalX0 points 

        searchtype=0;  % (0)=global search, (1)=fmincon search, (2)=globalsearchpts 
        fprintf('%s%s%s\r','----- Global X0 Point #',num2str(X0point)',' -----'); 

        feval=0;  %counter for number of function evaluations conducted 

        X0=globalX0(X0point,:);  % X0 = 'selected X0' from the globalX0 vector at row X0point 
        % ===== Inner loop - step through steepest descent 'jumps' ============ 

        convergedflag=0;  % indicates convergence for exit of loop 
        tempconvergedflag=0; % indicates convergence temporarily until all output written, then exit 

        while convergedflag==0 

           for jumps=1:maxjumps  
              linesearchsteps=linesearchstepshold;  %temp var - reset to linesearchsteps each jump 

              polyfitorder=polyfitorderhold; % temp variable - reset to polyfitorder each jump 

              F=[]; %initialize the objective function results matrix F  
              % ===== Find initial search direction 'S' ===== 

                 [Sn,maxdist,F,constrflag]=SearchVector(X0point,jumps,X0,F);%find desc unit vector 

                 % ---- write start point output to global history output file ---- 
                     if jumps==1 

                        [globalhisrows,globalhiscols]=size(global_his); 

                        for ii=1:globalhisrows 
                            if global_his(ii,1)==X0point 

                                startii=ii; 

                            end 
                        end 

                        textstring=[]; 

                        for jj=1:globalhiscols 
                          textstring=cat(2,textstring,char(44),num2str(global_his(... 

                                                                              startii,jj))); 

                        end 
                        fprintf(fid20,'%s\r\n',textstring); 

                    end 

%                   % ---- end write start point output to global history output file ---- 
%                     if constrflag==1  % constrflag=1 means no Sn values point to feasible space 

%                        F_X0=F(1,count_dv+2); 

%                        global_his=[global_his; X0point jumps X0 F_X0 0 0 0 0 0];      
%                        convergedflag=1; 

%                        break 

%                     end 
              % ===== Fit polynomial approximation and find minimum along 1-D line search ===   

              if ceil(max(max(abs(Sn))))==0 

                  convergedflag=1;  % X0 in a constraint corner or at point of zero gradient 
                  %===== log results to global history & screen ======= 

                  precision=-min(floor(log10(minstepsize)));  % precision of minimum step size 

                  magnitude=ceil(log10(max(abs(X0)))); % order of mag of max value in DV 'inputvar' 
                  if magnitude < 1 
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                     magnitude=1;  %artificially designate magnitude=1 for format purpose if 0<X0<1 

                  end 
                  % create format string with numerical formats matching no of input variables 

                  formatstring='%s%s%s'; 

                  for jj=1:2  %format for both X0 and X0new 
                     for ii=1:count_dv   

                        formatstring=strcat(formatstring,'%',num2str(magnitude+precision+3),'.',... 

                                                                 num2str(precision+1),'f%s'); 
                     end 

                  end       

                  formatstring=strcat(formatstring,'\r'); 
                  mymagnitude=magnitude+precision+4;  %formatting for X0 & X0new with spaces 

                  myformatstringsub=[]; 

                  for formatii=1:count_dv 
                     myformatstringsub=strcat(myformatstringsub,'%',num2str(mymagnitude),... 

                        '.',num2str(precision+2),'f'); 

                  end 

                  myformatstring=strcat('%s%s%s',myformatstringsub,'%s','%6.4f\r'); 

                  F_X0=F(1,count_dv+2); 

                  % ---- write output to screen ----- 
                  fprintf(myformatstring,'Jump ',num2str(jumps),' complete, X0=(',X0,... 

                                       '); in a corner or point of zero gradient, fmin=',F_X0);   

                  global_his=[global_his; X0point jumps X0 F_X0 0 0 0 0 0 0];      
                  % ---- write output to global history output file ---- 

                  [globalhisrows,globalhiscols]=size(global_his); 

                  textstring=[]; 
                  for jj=1:globalhiscols 

                    textstring=cat(2,textstring,char(44),num2str(global_his(globalhisrows,jj))); 
                  end 

                 fprintf(fid20,'%s\r\n',textstring);                   

              else   % X0 NOT in a constraint corner or at point of zero gradient 
                  [linecoef,rsqrd,minfcalc,F_xline,constrflag,gmax]=OneDSearch(X0,Sn,F,maxdist,... 

                                                                                 jumps,X0point); 

                  if constrflag==1  % constrflag=1 means no Sn values point to feasible space 
                     F_X0=F(1,count_dv+2); 

                     [rows,cols]=size(global_his); 

                     X0old=global_his(rows,3:count_dv+(3-1)); %resulting best pt from prev jump 
                     F_X0old=global_his(rows,count_dv+4);  %resulting best F_X0 from prev jump 

                     g_old=F_xline(1,count_dv+7);  % feasibility result of X0 this jump 

                     global_his=[global_his; X0point jumps X0old F_X0old 0 0 0 0 feval g_old];      
                     convergedflag=1; 

                     break 

                  end 
                  %===== compute new X0 and log results to global history & screen ======= 

                  precision=-min(floor(log10(minstepsize)));  % precision of minimum step size 

                  magnitude=ceil(log10(max(abs(X0)))); % order of mag of max value in DV 'inputvar' 
                  if magnitude < 1 

                     magnitude=1;  %artificially designate magnitude=1 for format purpose if 0<X0<1 

                  end 
                  % create format string with numerical formats matching no of input variables 

                  formatstring='%s%s%s'; 

                  for jj=1:2  %format for both X0 and X0new 
                     for ii=1:count_dv   

                        formatstring=strcat(formatstring,'%',num2str(magnitude+precision+3),'.',... 

                                                                 num2str(precision+1),'f%s'); 
                     end 

                  end       

                  formatstring=strcat(formatstring,'\r'); 
                  X0new=X0+minfcalc(2)*Sn;  % new X0, start of next 'jump' 

                  mymagnitude=magnitude+precision+6;  %formatting for X0 & X0new with spaces 

                  myformatstringsub=[]; 
                  for formatii=1:count_dv 

                     myformatstringsub=strcat(myformatstringsub,'%',num2str(mymagnitude),... 

                        '.',num2str(precision+2),'f'); 
                  end 
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                  myformatstring=strcat('%s%s%s',myformatstringsub,'%s',myformatstringsub,... 

                     '%s%6.4f%s%6.4f%s%6.4f%s%10.8f%s%6.3f%s%d%s%d\r'); 
                  pcnterror=(minfcalc(3)-minfcalc(1))/minfcalc(3)*100;  %percent error of min point 

                  % ---- write output to screen ----- 

                  fprintf(myformatstring,'Jump ',num2str(jumps),' complete, X0=(',X0,... 
                     '); ends at X1=(',X0new,'), feval =',minfcalc(3),' @ x=',minfcalc(2),... 

                     ', maxdist=',maxdist,', R^2=',rsqrd,', Min-Pnt Error(%)=',pcnterror,... 

                               ', Ttl Fun Evals this X0 = ',feval,', Max Constraint Value =',gmax); 
                  global_his=[global_his; X0point jumps X0new ... 

                         minfcalc(3) minfcalc(2) maxdist rsqrd pcnterror feval gmax];             

                  % ---- write output to global history output file ---- 
                  [globalhisrows,globalhiscols]=size(global_his); 

                  textstring=[]; 

                  for jj=1:globalhiscols 
                    textstring=cat(2,textstring,char(44),num2str(global_his(globalhisrows,jj))); 

                  end 

                 fprintf(fid20,'%s\r\n',textstring);    

              end  

              % ----- check for convergence ----- 

                % -- convergence due to design variable stagnation 
                if convergedflag==0  %jump not yet reached a convergence flag-check the following 

                   desvarstalled=0; 

                   for jj=1:count_dv 
                      if abs(X0new(jj)-X0(jj))<=DVstepmin 

                         desvarstalled=desvarstalled+1;  % this DV movement <= defined minimum 

                      end 
                   end 

                   if desvarstalled==count_dv 
                      tempconvergedflag=2;  % all des variables <= defined min therefore converged 

                   end 

                % -- convergence due to function eval stagnation for this jump 
                   [globalhisrows,globalhiscols]=size(global_his);  

                   finalfeval=global_his(globalhisrows,count_dv+4); 

                   prevfeval=global_his(globalhisrows-1,count_dv+4); 
                   if abs(finalfeval-prevfeval)/finalfeval*100<=funtol;  

                      tempconvergedflag=3; %function eval <= defined min [%] therefore converged 

                   end 
                   if tempconvergedflag==0 

                      X0=X0new;  % prep for next loop 

                   end 
                   if isnan(rsqrd)==1||isinf(rsqrd)==1 %[1]='NaN' -or- +/-infinity 

                      fprintf('%s\r',... 

                              'R^2=NaN or Inf maeans not enough feasible points to fit curve'); 
                   end 

                   if tempconvergedflag~=0 

                      if tempconvergedflag==2 
                         fprintf('%s\r',... 

                             'Design Variable Movement less than allowable tolerance - converged'); 

                         convergedflag=2;     
                      end 

                      if tempconvergedflag==3 

                         fprintf('%s\r',... 
                           'Function Evaluation change less than allowable tolerance - converged'); 

                         convergedflag=3;     

                      end 
                      break 

                   end 

                end 
           end  % end of inner 'jumps' loop 

           if tempconvergedflag==0     %no convergence found 

              if jumps==maxjumps       % max jumps completed 
                fprintf('%s\r',... 

                   'Convergence not achieved, max jumps completed'); 

                 convergedflag=4;   
                   % no convergence found, max jumps achieved, flag flipped to exit while loop 
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              end 

           end 
           if constrflag~=0 

               fprintf('%s%s\r',... 

                        'Feasible results not found along this Sn for Jump = ',num2str(jumps)); 
%                       'Sn not found that points to feasible space from this X0'); 

               convergedflag=5;  

               % ---- write output to global history output file ---- 
                  [globalhisrows,globalhiscols]=size(global_his); 

                  textstring=[]; 

                  for jj=1:globalhiscols 
                    textstring=cat(2,textstring,char(44),num2str(global_his(globalhisrows,jj))); 

                  end 

                 fprintf(fid20,'%s\r\n',textstring);  
                %abort this X0, no Sn found that points to design space with feasible result constr. 

           end            

        end  % end of convergedflag==0 while loop 

        globalfevalcount=globalfevalcount+feval;  

     end  % end of outer 'X0point' loop 

     fprintf(fid20,'%s\r\n','end of data'); 
     fclose(fid20);  %close global history log 

     [globalhisrows,globalhiscols]=size(global_his);  % size of final global_his 

%         % ---------------------------------------------------------------------------------------- 
        % --- print X0 radius values from origin as 'debug' confirmation of constraint routine --- 

        Radius=[]; 

xcoef=consxcoef; 
ycoef=consycoef; 

        for ii=1:globalhisrows 
            rad=0;   

            if ii~=globalhisrows 

                if global_his(ii+1,1)>global_his(ii,1) 
                    Radius=[Radius; global_his(ii,1) sqrt((global_his(ii,3)-xcoef)^2+(global_his(ii,4)-ycoef)^2)]; 

%                     for jj=1:count_dv 

%                         rad=rad+(global_his(ii,jj+2))^2; 
%                     end 

%                     rad=sqrt(rad); 

%                     Radius=[Radius; global_his(ii,1) rad]; 
                end 

            else 

                Radius=[Radius; global_his(ii,1) sqrt((global_his(ii,3)-xcoef)^2+(global_his(ii,4)-ycoef)^2)]; 
%                 for jj=1:count_dv 

%                     rad=rad+(global_his(ii,jj+2))^2; 

%                 end 
%                 rad=sqrt(rad); 

%                 Radius=[Radius; global_his(ii,1) rad]; 

            end 
        end 

        Radius 

        minradius=min(Radius(:,2)) 
        maxradius=max(Radius(:,2)) 

        % ---------------------------------------------------------------------------------------- 

     % ====== find minimum feasible feval from global search - input to SQP search ==== 
     fevalmin=1e12;  

     fevalcol=2+count_dv+1;  % column for function eval value in global_his 

     glX0no=1e12;  % initialize as flag for feasible result found or not 
     for ii=1:globalhisrows 

         if global_his(ii, globalhiscols)<0  %limit search for min feval to feasible results 

             if global_his(ii,fevalcol)<fevalmin 
                 fevalmin=global_his(ii,fevalcol);   

                 glX0no=global_his(ii,1);                  %feasible minimum found 

                 glX0min=global_his(ii,3:3+(count_dv-1)); 
                 glfevalmin=global_his(ii,fevalcol); 

             end 

         end 
     end 
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     if glX0no==1e12 

         fprintf('%s\r\n',' '); 
         fprintf('%s\r\n','###########################################################'); 

         fprintf('%s\r\n','##             NO FEASIBLE RESULT FOUND !!               ##'); 

         fprintf('%s\r\n','##      VERIFY THAT CONSTRAINTS ARE APPLICABLE.          ##'); 
         fprintf('%s\r\n','###########################################################'); 

         fprintf('%s\r\n',' ');      

     else      
         fprintf('%s\r\n',' '); 

         fprintf('%s\r\n','######################################'); 

         fprintf('%s\r\n','## Minimum Value from Global Search ##'); 
         fprintf('%s\r\n','--------------------------------------'); 

         my_stringsub=strcat('%s',myformatstringsub,'%s%3.0f\r\n'); 

         fprintf(my_stringsub,'    Identified optimum Design Point at (',glX0min,... 
                                                            ') - from Global X0 Point #',glX0no); 

         my_stringsub=strcat('%s%',num2str(mymagnitude),'.',num2str(precision+2),'f\r\n'); 

         fprintf(my_stringsub,'    Estimated opt value based on 1-D line search = ',glfevalmin); 

         fprintf('%s%5.0f\r\n','    No of (global) function evaluations = ',... 

                                                                          globalfevalcount); 

         fprintf('%s\r\n','######################################'); 
     end 

  

function [feaspts]=globalsearchpts(maxjumps) % *** CHARTED ***    
% this function defines the potential X0 points for the global search and filters them for those 

% that meet all constraint criteria. 

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 
global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
   %% Define Global Start Points (globalX0) 

      % ------------------------------------------------------------------------------------------ 

      % This section identifies the feasible design space based on constraints appropropriate 
      % to the Design Variables (as opposed to constraints appropriate to results) and then 

      % identifies the specified start points (X0) matching the quantity specified in the input 

      % data section. 
      % ------------------------------------------------------------------------------------------ 

      searchtype=2;  % (0)=global search, (1)=fmincon search, (2)=globalsearchpts 

      linesearchsteps=polyfitorder+1; %no of pts (add to X0) to use for 1-D poly approx. 
      if polyfitorder<2  % Error check for number of divisions spec'd for linesearch 

         line1='  The starting (minimum) order of the polynomial must be >= 2.    '; 

         line2='                                                       '; 
         line3='  Please modify the value - polyfitorder - and restart. '; 

         % note:  all string lengths must be same to put in following composite vector 

         msgstring=char(line1,line2,line3); 
         msgtitle='Error - 1-D LineSearchSteps<3'; 

         msgbox(msgstring,msgtitle,'error'); 

         stop;  % end program execution within MATLAB - not clean but functional 
      end 

      StartQty=globalStartQty; 

      StartPt=0;  % flag to indicate that global start matrix meets defined number of points (rows) 
      while StartPt==0 

          if globalStartQty<2  % Error check for number of global start points 

             line1=' The number of global start points must be greater than 1.'; 
             line2='                                                       '; 

             line3='  Please modify the value - globalStartQty - and restart. '; 

             % note:  all string lengths must be same to put in following composite vector 
             msgstring=char(line1,line2,line3); 

             msgtitle='Error - globalStartQty<1'; 

             msgbox(msgstring,msgtitle,'error'); 
             stop;  % end program execution within MATLAB - not clean but functional 

          end 

          if rem(globalStartQty,1)>0  % Error check for globalStartQty not integer 
             line1=['The value globalStartQty = ',num2str(globalStartQty),' is not an integer.']; 
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             line2='                                                       '; 

             line3='  Please modify the value to be an integer and restart. '; 
             % note:  all string lengths must be same to put in following composite vector 

             msgstring=char(line1,line2,line3); 

             msgtitle='Error - globalStartQty not an integer'; 
             msgbox(msgstring,msgtitle,'error'); 

             stop;  % end program execution within MATLAB - not clean but functional 

          end       
          % ----------------------------------------------------------------------------      

          % populate potential global X0 matrix based on user selected method 

          % ---------------------------------------------------------------------------- 
          if globalstart==0  % start points defined per evenly divided design space      

             potglobalX0=[];  % initialize matrix for globalX0 values 

             for ii=1:globalStartQty   % build by column, each column = design variable value 
                value=0;   

                for jj=1:globalStartQty^(ii)  %2^(ii)    % loop thru 'sets of rows' by globalDVdiv 

                   value=value+1; 

                   for kk=1:globalStartQty^(count_dv-(ii))  %2^(3-1)=4 

                      row=((jj-1)*globalStartQty^(count_dv-(ii)))+kk; 

                      minvalue=str2double(inputvar(ii,2)); 
                      maxvalue=str2double(inputvar(ii,3)); 

                      ratio=(value-1)/(globalStartQty-1); 

                      cellvalue=ratio*(maxvalue-minvalue)+minvalue; 
                      potglobalX0(row,ii)=cellvalue; 

                   end 

                   if value==globalStartQty 
                      value=0; 

                   end 
                end 

             end 

          end       
          if globalstart==1  % startpoints defined per haltonset 

              PX0=haltonset(count_dv,'skip',1);       % haltonset for 'count_dv' columns 

                % skip first haltonset point since always in extreme corner.  Don't want this point  
                % for test functions since symmetric functions make it easier for point at origin  

                % to point at the minimum value at the center. (eg. Rastrigins function) 

              potglobalX0=net(PX0,StartQty); % length of matrix 
              [potrows,potcols]=size(potglobalX0); 

                 % rows of potglobalX0 = each potential startpoint 

                 % columns represent each design variable (2 DV = 2 cols, etc.) 
                 % potglobalX0 always a 2-D matrix 

              for ii=1:potrows   %scale potglobalX0 from haltonset 0~1 to full input variable range 

                  for jj=1:potcols 
                      minvalue=str2double(inputvar(jj,2)); 

                      maxvalue=str2double(inputvar(jj,3)); 

                      potglobalX0(ii,jj)=(maxvalue-minvalue)*potglobalX0(ii,jj)+minvalue; 
                  end 

              end 

          end 
          if globalstart==2  % startpoints defined per latin hypercube sampling 

              potglobalX0=lhsdesign(StartQty,count_dv,'iterations',5); % LHS for 'count_dv' columns 

              [potrows,potcols]=size(potglobalX0); 
                 % rows of potglobalX0 = each potential startpoint 

                 % columns represent each design variable (2 DV = 2 cols, etc.) 

                 % potglobalX0 always a 2-D matrix 
              for ii=1:potrows   %scale potglobalX0 from haltonset 0~1 to full input variable range 

                  for jj=1:potcols 

                      minvalue=str2double(inputvar(jj,2)); 
                      maxvalue=str2double(inputvar(jj,3)); 

                      potglobalX0(ii,jj)=(maxvalue-minvalue)*potglobalX0(ii,jj)+minvalue; 

                  end 
              end 

          end           

          if globalstart==3  % startpoints defined per random number generator (uniform distr) 
              potglobalX0=rand(StartQty,count_dv); % rand does not require Statistical Toolbox 
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              [potrows,potcols]=size(potglobalX0); 

                 % rows of potglobalX0 = each potential startpoint 
                 % columns represent each design variable (2 DV = 2 cols, etc.) 

                 % potglobalX0 always a 2-D matrix 

              for ii=1:potrows   %scale potglobalX0 from rand 0~1 to full input variable range 
                  for jj=1:potcols 

                      minvalue=str2double(inputvar(jj,2)); 

                      maxvalue=str2double(inputvar(jj,3)); 
                      potglobalX0(ii,jj)=(maxvalue-minvalue)*potglobalX0(ii,jj)+minvalue; 

                  end 

              end 
          end 

          % ----- end populate potential start points ---------- 

          % Filter global X0 matrix for points that satisfy constraints for design variables.  Add 
          % a column to the globalX0 matrix that indicates result (1=feasible, 0=not-feasible). 

          %   Comments: 

          % Constraint function is polled by multiple sections of this code.  Here, the input 

          % variables are polled for satisfaction to the constraints established as opposed to 

          % results being checked against constraints governing defined bounds for output variables. 

          % Both checks (design variables and results) need to reside within the same constraint  
          % function.  When the global X0 variables are being checked, results 

          % do not yet exist.  To prevent an error since the results vector is empty, the flag  

          % 'resultflag' is set to '0' (off) to indicate no results exist and that section of the  
          % constraint function code is skipped.  When the objective function is called (FEA solve) 

          % resultflag' is set to 1' (on) indicating that all polls from there on out will include  

          % results and that section of the constraint function will be activated.'resultflag' is a  
          % global variable.  set it back to '0' if constraint function evaluated for DV only. 

          % ----- Filter and strip potential start points per input-variable feasibility constr. --- 
          [rows,cols]=size(potglobalX0); 

          feaspts=0;  % initialize counter for number of feasible global X0 values found 

          for ii=1:rows 
             x=[];  %initialize temporary DV point for constraint eval 

             for jj=1:count_dv 

                x=[x potglobalX0(ii,jj)]; 
             end 

             % --- test for constraints --- 

                 result=[]; % no results to pass to Constraint_Fun 
%                  resultflag=0; %  % [0]=no results exist, [1]=results to be passed               

                 [gout,~,gpos]=Constraint_Fun(x,1); 

                 %                 [gout,~,gpos]=Constraint_Fun(x,result); 
             % ---------------------------- 

             if gpos<=0 

                potglobalX0(ii,count_dv+1)=1; %global X0 point satisfies constraints...feasible  
                feaspts=feaspts+1; 

             else 

                potglobalX0(ii,count_dv+1)=0; %global X0 point not satisfy constraints, not-feasible 
             end 

          end 

          % strip the non-feasible points from the globalX0 vector 
          globalX0=[];  %initialize feasible global X0 vector 

          for ii=1:rows  

             if potglobalX0(ii,count_dv+1)==1  % X0 point feasible 
                globalX0=[globalX0;potglobalX0(ii,1:count_dv)]; % put point in the feasible vector 

             end 

          end 
          [rowglobal,colglobal]=size(globalX0);  % size of resulting feasible start points 

          if globalstart==0  % start points defined per evenly divided design space  

              StartPt=1;  % do not add points to evenly divided start point routine, take only  
                         % what meets feasibility tests from original division of design variables 

          else  % for haltonset/LHS point sets, pointsets are >> needed, filter to find enough 

              if rowglobal>=globalStartQty  % check if requested number of startpoints correct 
                  StartPt=1;   % flag to indicate that global start matrix meets defined rows 

                 if feaspts>globalStartQty 

                     globalX0=globalX0(1:globalStartQty,:); 
                  end 
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                  [rowglobal,colglobal]=size(globalX0); 

                  feaspts=rowglobal; 
              end 

          end 

          StartQty=StartQty+1; 
       end   %end of StartPt==0 'while' loop 

         % --- plot feasible global X0 values --- 

         if count_dv==3  % plot a 3-D plot if 3 input variables 
            figure    

            plot3(potglobalX0(:,1),potglobalX0(:,2),potglobalX0(:,3),'x','MarkerEdgeColor','k',... 

                                                         'MarkerSize',3); 
            hold on 

            plot3(globalX0(:,1),globalX0(:,2),globalX0(:,3),'o','MarkerFaceColor','r'); 

            grid on 
            title({'\bf Global X0 Values Conforming to Input Variable Constraints';... 

                    ['\bfTotal ',num2str(feaspts),'\bf Points']}); 

            xlabel(inputvar(1,4)); 

            ylabel(inputvar(2,4)); 

            zlabel(inputvar(3,4)); 

            axis([str2double(inputvar(1,2)) str2double(inputvar(1,3)) str2double(inputvar(2,2))... 
               str2double(inputvar(2,3)) str2double(inputvar(3,2)) str2double(inputvar(3,3))]); 

            legend('Potential global X0 points','Feasible global X0 points','Location','Best'); 

         end 
         if count_dv==2   % plot a 2-D plot if 2 input variables 

            figure    

            plot(potglobalX0(:,1),potglobalX0(:,2),'x','MarkerEdgeColor','k'); 
            hold on 

            plot(globalX0(:,1),globalX0(:,2),'o','MarkerFaceColor','r'); 
            grid on 

            title({'\bf Global X0 Values Conforming to Input Variable Constraints';... 

                    ['\bfTotal ',num2str(feaspts),'\bf Points']}); 
            xlabel(inputvar(1,4)); 

            ylabel(inputvar(2,4)); 

            axis([str2double(inputvar(1,2)) str2double(inputvar(1,3)) str2double(inputvar(2,2))... 
               str2double(inputvar(2,3))]); 

            legend('Potential global X0 points','Feasible global X0 points'); 

         end 
         % --- construct a question dialog for globalX0 size approval 

            line1='*** WARNING ***'; 

            line2=' Too many starting points during the global optimization phase may'; 
            line3=' take excessive compute time depending upon the model.'; 

            line4=' '; 

            line5=['Are ',num2str(feaspts),' global X0 points acceptable?']; 
            msgstring=char(line1,line2,line3,line4,line5); 

            gX0choice=questdlg(msgstring,'Global X0 Vector Size','Yes','No','Cancel','Cancel'); 

            switch gX0choice  %evaluate selection from question dialog box 
               case 'Yes' 

                  % size is selected to be ok...no action needed 

               case 'No' 
                  line1='  Please modify the value - globalDVdiv - and restart. '; 

                  msgstring=char(line1); 

                  msgtitle='Size of globalX0 not acceptable'; 
                  msgbox(msgstring,msgtitle,'help'); 

                  stop;  % end program execution within MATLAB - not clean but functional 

              case 'Cancel' 
                  stop;  % end program execution within MATLAB - not clean but functional     

            end 

         % ---            
         fprintf('%s\r',' '); 

         fprintf('%s\r','#################################################################'); 

         fprintf('%s%s%s\r','A total of ',num2str(feaspts),... 
            ' X0 points will be evaluated for global optimum.  Global optimizations conducted '); 

         fprintf('%s%s\r','via steepest descent algorithm with polynomial approximation ',...  

                                                                             '1-D line search.'); 
         fprintf('%s"%s"%s%s\r','The max number of steepest descent ','jumps',... 
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                                                                        ' = ',num2str(maxjumps)); 

         fprintf('%s\r','#################################################################'); 
         fprintf('%s\r',' '); 

  

function [myXOPT,myOptf,SQPfevalcount]=SQPsearch(feaspts,SQPmaxjumps)  
% this function conducts a SQP optimization search given a starting 'SQPX0' point which may  

% either be specified directly by the user or is an output of the global search routine.  A maximum 

% number of jumps is also specified by the user. 
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
     % =====  'Outer loop' = Each Identified Global Start Point ========    

 % ====== plot test surface here only if 'SQP' or 'combo' solution, else plot in global ====== 

         if optsoltn~=0 

         if testfunction==1    

            nopts=50; 

            PlotTestFunction(nopts)  %plot countour plot of function 
         elseif testfunction==2 

            nopts=50; 

            PlotTestFunction(nopts)  %plot countour plot of function 
         elseif testfunction==3 

            nopts=150; 

            PlotTestFunction(nopts)  %plot countour plot of function 
         elseif testfunction==4 

            nopts=150; 
            PlotTestFunction(nopts)  %plot countour plot of function 

         end 

         end 
     globalfevalcount=0;  % counter for total number of fevals during global search   

     HIS=[]; %initialize history record 

     for X0point=1:feaspts  % step through the feasible start points 
        searchtype=1;  % (0)=global search, (1)=fmincon search, (2)=globalsearchpts 

        X0=globalX0(X0point,:);  % X0 = 'selected X0' from the globalX0 vector at row X0point 

        if optsoltn==2 %use optimum result of global search as start point for single fmincon search 
            X0=glX0min;           

        end 

        feval=0;  %initialize function eval tracking number 
        % Define bounds, initial guess at start point 

        %   set constraints A, B, Aeq, Beq = 0 since constraints handled separately 

        Obj=@Objective_Fun; 
        Con=@Constraint_Fun; 

        A=[];B=[];Aeq=[];Beq=[]; 

        LB=[]; UB=[];  %initialize bounds variables 
        his=[];  %initialize history record 

        for ii=1:count_dv 

           LB=[LB str2double(inputvar{ii,2})]; 
           UB=[UB str2double(inputvar{ii,3})]; 

        end 

%            X0point=1; 
        if X0point<100 

           X0ptstr=strcat('00',num2str(X0point)); 

           if X0point<10 
              X0ptstr=strcat('000',num2str(X0point)); 

           end 

        end 
        if searchtype==0 

            StartPt=['GXo',X0ptstr];  % 'name' of start pt (X0) to be added to archive filenames 

        else 
            StartPt=['LXo',X0ptstr];  % SQP (fmincon) start point 

        end         

        OP=optimset('Display','iter','Algorithm','sqp','DiffMinChange',DVstepmin,... 
                                                    'TolX',DVstepmin,'maxfunevals',SQPmaxjumps); 
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        [XOPT,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD] = fmincon(Obj,X0,A,B,Aeq,Beq,LB,UB,Con,OP); 

        % compile convergence history - his = [ -XO locations- fval] from Objective_Fun 
        [hisrows,hiscols]=size(his); % size of his for this fmincon start point 

        [HISrows,HIScols]=size(HIS);  % size of overall history log (all fmincon start points) 

        for hisii=1:hisrows 
            HIS(hisii+HISrows,:)=[X0point his(hisii,:)]; 

        end 

        [HISrows,HIScols]=size(HIS);  % size of overall history log (all fmincon start points) 
     end % end this jump 

%      [HISrows,HIScols]=size(HIS); 

     SQPfevalcount=HISrows; 
     % write optimization history to file in archive directory 

     summary_file=[pjctpath,'archive\FOCUSED OPT RESULTS SUMMARY.TXT']; 

     fid20 = fopen(summary_file, 'w'); %open file for write permiss.-discard contents 
     % note '\r\n' is carriage return with new line in Windows OS 

     fprintf(fid20,'%s\r\n','# #####################################################'); 

     fprintf(fid20,'%s\r\n','#   Results summary from Optimization (comma delimited)'); 

     fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 

        for ii = 1:length(my_project) 

            thisproject=char(my_project(ii,:)); 
            fprintf(fid20,'%s%s\r\n','  Project = ',thisproject); 

        end 

     fprintf(fid20,'%s\r\n','# -----------------------------------------------------');      
     if optsoltn==2 

        fprintf(fid20,'%s\r\n','#  Optimum Design'); 

        for ii=1:count_dv 
           fprintf(fid20,'%s%s%s%s%s%12.5f\r\n','#   ',inputvar{ii,4},', ',inputvar{ii,1},... 

              ' = ',XOPT(ii)); 
        end 

        fprintf(fid20,'%s\r\n','# -----------------------------------------------------');         

     end 
     fprintf(fid20,'%s\r\n','#  Convergence History'); 

     fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 

     hdr_text1=['Global X0']; 
     hdr_text2=['St Pt #']; 

     for ii=1:count_dv 

        hdr_text1=cat(2,hdr_text1,char(44),inputvar{ii,1}); 
        hdr_text2=cat(2,hdr_text2,char(44),inputvar{ii,4}); 

     end 

     for ii=1:count_outv 
        hdr_text1=cat(2,hdr_text1,char(44),outputvar{ii,1}); 

        hdr_text2=cat(2,hdr_text2,char(44),outputvar{ii,3}); 

     end 
     fprintf(fid20,'%s\r\n',hdr_text1(:));  % need to use {:} for cell array 

     fprintf(fid20,'%s\r\n',hdr_text2(:)); 

     [rows,cols]=size(HIS); 
     for ii=1:rows 

        textline=[]; 

        for jj=1:cols 
            textline=cat(2,textline,num2str(HIS(ii,jj)),char(44)); 

        end 

        fprintf(fid20,'%s\r\n',textline); 
     end 

%      fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 

%      fprintf(fid20,'%s\r\n','#  Optimum Design'); 
%      for ii=1:count_dv 

%         fprintf(fid20,'%s%s%s%s%s%12.5f\r\n','#   ',inputvar{ii,4},', ',inputvar{ii,1},... 

%            ' = ',XOPT(ii)); 
%      end 

%      fprintf(fid20,'%s\r\n','# -----------------------------------------------------'); 

     fprintf(fid20,'%s\r\n','end of data'); 
     fclose(fid20); 

     % ------ find result of each jump to identify to find best of constrained solutions ----  

     HISOPT=[];   %re-initialize values for search 
     for ii=1:(feaspts-1) 
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         myOptf=1e12; flag=0; 

         for jj=1:(HISrows-1) 
             if HIS(jj+1,1)==ii+1 

                 if flag==0 

                     HISOPT=[HISOPT;HIS(jj,:)];  %HISOPT = temp matrix of result of each X0 
                     flag=1; 

                 end 

             end 
         end 

     end 

     HISOPT=[HISOPT;HIS(HISrows,:)];  %add result of last X0 
     [HISOPTrows,HISOPTcols]=size(HISOPT); 

     myOptf=1e12; myXOPT=[]; 

     for ii=1:HISOPTrows 
         if HISOPT(ii,HISOPTcols)<myOptf 

             myOptf=HISOPT(ii,HISOPTcols); 

             myXOPT=HISOPT(ii,2:2+count_dv-1); 

         end 

     end 

     fprintf('%s\r\n','######################################'); 
     fprintf('%s\r\n','## Minimum Value from SQP Search ##'); 

     fprintf('%s\r\n','--------------------------------------'); 

     myXOPT 
     myOptf 

     SQPfevalcount 

     fprintf('%s\r\n','######################################'); 
        

function append (file1,file2,file3,solveloop)    
% this function combines the text of two files into one file 

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  
global  solvertype my_solverfunction my_obj_fun my_cons_fun 

   min_file=[pjctpath,file3]; 

   fid1 = fopen(file1, 'r'); 
   fid2 = fopen(file2, 'r'); 

   A = fread(fid1); 

   B = fread(fid2); 
   fid11 = fopen(min_file, 'w'); 

   fwrite(fid11,[A;B]); 

   fclose(fid11); 
   fclose(fid1); 

   fclose(fid2); 

   % rename input script file to include feval tracking number & put in archive folder 
      for ii=1:length(file3)     % identify only the primary part of the name (vs '.txt' extension) 

         if file3(ii)==char(46) 

            pointer=ii-1; 
         end 

      end 

      fnamemain=file3(1:pointer);  % filename without extension 
      fnameext=file3(pointer+2:length(file3));  % filename's extension 

      if feval<1000 

         fevalstr=strcat('0',num2str(feval)); 
         if feval<100 

            fevalstr=strcat('00',num2str(feval)); 

            if feval<10 
               fevalstr=strcat('000',num2str(feval)); 

            end 

         end 
      end 

      if feval>=1000    %add '0's' to feval for function evals < 1000 

         fevalstr=num2str(feval); 
      end 



 

188 

      if solveloop<100 

          solveloopstr=strcat('0',num2str(solveloop)); 
          if solveloop<10 

              solveloopstr=strcat('00',num2str(solveloop)); 

          end 
      end       

      % append name and move input script file to archive directory 

      cmdline=['copy ' file3 strcat(' archive','\',fnamemain,'_',StartPt,'_feval',... 
                                              fevalstr,'_',solveloopstr,'.',fnameext)];  

      [status,cmdout]=dos(cmdline);      

    
function [f]=Objective_Fun(x)      

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

 % --- this loop set up for series execution of multiple ANSYS models --- 

  [modelrows,modelcols]=size(my_project); 
  if testfunction==0 

      maxmodelcount=modelcols; % if not a test function, repeat Obj_Fun for multi-models 

  else 
      maxmodelcount=1; % if IS a test function, not multi-models therefore only 1 time thru 

  end 

  result=[];  %initialize variable 
  feval=feval+1; %track index of fevals-primarily for naming of input/output files to archive 

  format long   
  for solveloop=1:maxmodelcount 

       % --- select the correct family variant --- 

       if x(1)<45 && x(2)<45 
           family_variant=1; 

       elseif x(1)<45 && x(2)>45 && x(2)<63 

           family_variant=2; 
       elseif x(1)<45 && x(2)>63 

           family_variant=3; 

       elseif x(1)>45 && x(1)<63 && x(2)>45 && x(2)<63 
           family_variant=4; 

       elseif x(1)>45 && x(1)<63 && x(2)>63 

           family_variant=5; 
       elseif x(1)>63 && x(2)>63 

           family_variant=6; 

       end 
       % ---- correct family variant selected ---         

       Results_file=[pjctpath,my_resultsfile]; 

       flagfile=[pjctpath,my_flagfile];  % file to flag that solve is complete 
       % ---- delete flagfile from previous run if it exists ------- 

           fileexists=0;  %initialize variable    

           fileexists=exist(flagfile,'file'); % returns 0 if file written by ANSYS does not exist 
           if fileexists~=0 

               delete(flagfile);  % del prev flag file indicating that ANSYS job is completed 

           end 
       % ------- end del flagfile ----------- 

       % *********************************************************************** 

       % Write header text to temporary file containing user defined input data 
       % *********************************************************************** 

          header_file=[pjctpath,'header.txt']; 

          fid10 = fopen(header_file, 'w');  % open file for write permission-discard contents 
          % note '\r\n' is carriage return with new line in Windows OS 

          fprintf(fid10,'%s\r\n','# #####################################################'); 

          fprintf(fid10,'%s\r\n','#   Define input data for use in script below'); 
          fprintf(fid10,'%s\r\n','# -----------------------------------------------------'); 

          fprintf(fid10,'%s%s%s\r\n','my_path = "',ANSYSpjctpath,'"');  

          if modelcols~=1   % more than 1 geometry variant available per function evaluation 
              thisproject=char(my_project(solveloop,geometry_variant,:)); 
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          elseif modelcols==1 % only 1 geometry variant to choose from per functio evaluation 

              thisproject=char(my_project(solveloop,:));  
          end 

          fprintf(fid10,'%s%s%s\r\n','my_project ="',thisproject,'"'); 

%           fprintf(fid10,'%s%s%s\r\n','my_project ="',my_project(solveloop),'"'); 
          fprintf(fid10,'%s%s%s\r\n','my_flagfile ="',my_flagfile,'"'); 

          fprintf(fid10,'%s%s%s\r\n','my_resultsfile ="',my_resultsfile,'"'); 

          fprintf(fid10,'%s%d\r\n','#No of Design Variables = ',count_dv); 
          fprintf(fid10,'%s\r\n','# --- input design variables this iteration ---'); 

         % fprintf(fid10,'%s\t%s\t%s\t%s\r\n','#','Param No.','Value','Description'); 

          inputstrname=[]; 
          inputstrval=[]; 

          inputstrdescr=[]; 

          precision=-min(floor(log10(minstepsize)));  % precision of minimum step size 
          magnitude=ceil(log10(max(abs(x)))); % order of magnitude of maximum value in DV 'x' 

          for ii=1:count_dv    % loop to write input variables values to temp string array 

             % adjust format string to include +1 order of magnitude to left of decimal point and +2 

             % orders of magnitude to the right 

             tempformat=strcat('%',num2str(magnitude+3),'.',num2str(precision+2),'f'); 

             tempformatzero=strcat('%',num2str(2),'.',num2str(4),'f');  %format if x(ii)='0' 
             if ii<count_dv 

                inputstrname=cat(2,inputstrname,char(39),inputvar{ii,1},char(39),','); %ASCII(39)=' 

                if x(ii)==0 
                    inputstrval=cat(2,inputstrval,num2str(x(ii),tempformatzero),','); 

                else 

                    inputstrval=cat(2,inputstrval,num2str(x(ii),tempformat),','); 
                end 

                inputstrdescr=cat(2,inputstrdescr,char(39),inputvar{ii,4},char(39),','); 
             else 

                inputstrname=cat(2,inputstrname,char(39),inputvar{ii,1},char(39)); 

                if x(ii)==0 
                    inputstrval=cat(2,inputstrval,num2str(x(ii),tempformatzero)); 

                else 

                    inputstrval=cat(2,inputstrval,num2str(x(ii),tempformat)); 
                end 

                inputstrdesc=cat(2,inputstrdescr,char(39),inputvar{ii,4},char(39));             

             end 
          end 

          % print values of design variable(s) to header text for this iteration 

          fprintf(fid10,'%s%s%s\r\n','var_name=[',inputstrname,']'); 
          fprintf(fid10,'%s%s%s\r\n','var_val=[',inputstrval,']'); 

          fprintf(fid10,'%s%s%s\r\n','var_desc=[',inputstrdesc,']'); 

          fprintf(fid10,'%s\r\n','# --- output design variables this iteration ---'); 
          outputstrname=[]; 

          outputstrdescr=[]; 

          for ii=1:count_outv    % loop to write output variables to temp string array 
             if ii<count_outv 

                outputstrname=cat(2,outputstrname,char(39),outputvar{ii,1},char(39),',');  

                outputstrdescr=cat(2,outputstrdescr,char(39),outputvar{ii,3},char(39),','); 
             else 

                outputstrname=cat(2,outputstrname,char(39),outputvar{ii,1},char(39)); 

                outputstrdesc=cat(2,outputstrdescr,char(39),outputvar{ii,3},char(39));             
             end 

          end       

          % print description of output variable(s) to header text for this iteration 
          fprintf(fid10,'%s%s%s\r\n','result_name=[',outputstrname,']'); 

          fprintf(fid10,'%s%s%s\r\n','result_desc=[',outputstrdesc,']');       

          fprintf(fid10,'%s\r\n',' '); 
          fclose(fid10); 

       % *********************************************************************** 

       % Append header text to main body file (selected above) containing user defined input data 
       % *********************************************************************** 

          append (header_file,scriptname,'inputscript.txt',solveloop) ;  

       % =========== Evaluate Objective Function ================== 
          %  ------------------------------------------------ 
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          if solvertype==0   % ANSYS solve requested 

             %  ------ Evaluate via direct ANSYS solve --------- 
              [resultarray]=ANSYSsolve(flagfile,Results_file); %Call ANSYS & read results file  

              result(:,solveloop)=resultarray; %convert 'temporary' pass variable to global variable 

          elseif solvertype==1  % External MATLAB function solve requested 
              [f,result]=my_obj_fun(x);   

               % --- write results file --- 

               fid50=fopen(Results_file,'w');  % write permission, discard contents 
               fprintf(fid50,'%s\r\n','------- Input Data ---------'); 

               fprintf(fid50,'%s\r\n','[Param Name] = [Param Value] ;  [Description]'); 

               for ii=1:count_dv 
                   mystring=[char(inputvar(ii,1)),' = ',num2str(x(ii)),' ; ',char(inputvar(ii,4))]; 

                   fprintf(fid50,'%s\r\n',mystring); 

               end 
               fprintf(fid50,'%s\r\n','Ready to solve:');  %match text as flag for later 

               fprintf(fid50,'%s\r\n','Solve Complete:');  %match text as flag for later 

               for ii=1:length(result) 

                   text1=cat(2,outputvar{ii,3},' = '); 

                   fprintf(fid50,'%s%s\r\n',text1,num2str(result(ii),9)); 

               end 
               fclose(fid50); 

          elseif solvertype==2  % Internal test function solve requested 

          %  ---- Evaluate via specified test function ---- 
             [result]=EvalTestFunction(x); %'x' is var passed to this larger 'Objective' function 

             % --- write results file --- 

               fid50=fopen(Results_file,'w');  % write permission, discard contents 
               fprintf(fid50,'%s\r\n','------- Input Data ---------'); 

               fprintf(fid50,'%s\r\n','[Param Name] = [Param Value] ;  [Description]'); 
               for ii=1:count_dv 

                   mystring=[char(inputvar(ii,1)),' = ',num2str(x(ii)),' ; ',char(inputvar(ii,4))]; 

                   fprintf(fid50,'%s\r\n',mystring); 
               end 

               fprintf(fid50,'%s\r\n','Ready to solve:');  %match text as flag for later 

               fprintf(fid50,'%s\r\n','Solve Complete:');  %match text as flag for later 
               fprintf(fid50,'%s%s\r\n','scalarresult = ',num2str(result,9)); 

               fclose(fid50); 

          end 
    % -------------------------------------------------------------------------------------------- 

       % ===============Rname and Copy Results File to Archive Directory ================= 

          for ii=1:length(my_resultsfile) 
             if my_resultsfile(ii)==char(46) 

                pointer=ii-1;                   % find length of filename without extension 

             end 
          end 

          fnamemain=my_resultsfile(1:pointer);  % filename without extension 

          fnameext=my_resultsfile(pointer+2:length(my_resultsfile));  %filename's extension 
          if feval<1000 

             fevalstr=strcat('0',num2str(feval)); 

             if feval<100 
                fevalstr=strcat('00',num2str(feval)); 

                if feval<10 

                   fevalstr=strcat('000',num2str(feval)); 
                end 

             end 

          end 
          if solveloop<100 

              solveloopstr=strcat('0',num2str(solveloop)); 

              if solveloop<10 
                  solveloopstr=strcat('00',num2str(solveloop)); 

              end 

          end 
          if feval>=1000    %add '0's' to feval for function evals < 1000 

             fevalstr=num2str(feval); 

          end 
          % append name and move results file to archive directory 
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          cmdline=['copy ' my_resultsfile strcat(' archive','\',fnamemain,'_',StartPt,'_feval',... 

                             fevalstr,'_',solveloopstr,'.',fnameext)];  
          [status,cmdout]=dos(cmdline);  

  end  %end 1:maxmodelcount loop - all results stored in result(:,solveloop) 

    % 
============================================================================================ 

    % ==   Specify Objective Function and Results Constraint Variables                          == 

    % 
============================================================================================ 

    %  ANSYS Solve Section - 

    % ---------------------- 
    % ---- Objective function for ANSYS solve --  

        % Note that results are stored in cell array 'result{ii}' in the order of outputvar[r,c]. 

        % The objective function 'f' below should be populated with the appropriate results as  
        % required and referenced above in the data input section of function 'main'.  

        % 

        if solvertype==0   % ANSYS solve requested 

           % derive key performance components 

              % normalize results by expected output magnitude for objective function ONLY 

              my_result=[]; 
              [rowsresult,colsresult]=size(result); 

              for solveloop=1:maxmodelcount 

                 my_temp_result=[]; 
                 for iiout=1:rowsresult 

                    my_temp_result=[my_temp_result result(iiout,solveloop)/... 

                                                                 str2double(outputvar(iiout,2))]; 
                 end 

                 my_result(:,solveloop)=my_temp_result; 
              end 

              % key performance components    

                   % --------------------------------------------- 
                   % *** NOTE: OBJECTIVE_FUN METRICS USE 'NORMALIZED' RESULT VALUES, NOT RAW --- 

                   %             raw results = [result] 

                   %      normalized results = [my_result] 
                   % ---------------------------------------------     

                   % --- Constants to be used in this section --- 

                      L1=x(1); 
                      L2=x(2); 

                      L3=45; 

                      L4=63; 
                      Lb=72; 

                      weight_sum=1.0; 

                      weight_range=0.5; 
                   sum_disp=0;  range_disp=0; 

                   for solveloop=1:3 

                       sum_disp=sum_disp+my_result(2,solveloop); % sum of integrated displ 
                       range_disp=range_disp+my_result(3,solveloop); % sum of range of displ 

                   end 

                   f=sum_disp*weight_sum+range_disp*weight_range; 
  

    % -------------------------------------------------------------------------------------------- 

    %  External MATLAB Function Solve Section - 
    % ------------------------------  

        elseif solvertype==1   % External MATLAB solve requested  

            % objective function defined externally in referenced file 
    % -------------------------------------------------------------------------------------------- 

    %  Test Function Solve Section - 

    % ------------------------------  
        elseif solvertype==2   % Test Function solve requested  

  

            f=result;  %scalar output of 2D test funciton 
              f=f/str2double(outputvar{1,2});  % normalize result for use in Obj Fntn Variable 

        end 

    % 
============================================================================================ 
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    %  Penalty Function - 

    % ------------------- 
     for solveloop=1:maxmodelcount  %evaluate constraint for penalty separately for each model result  

        [g,heq,gpos]=Constraint_Fun(x,solveloop);   

        constr_sum=0; 
        if length(g)>0 

            for gii=1:length(g) 

                constr_sum=constr_sum+(max(0,g(gii)))^2; 
            end 

            f=f+constr_sum*penalty; 

  
        end 

     end 

    % -----  Check to verify that result not empty - must pass 'real' matrix -----   
      [rowsRC,colsRC]=size(result); 

      if rowsRC+colsRC<1 

          result=[0];    %ensure that result<>[] even if no results constraints required 

      end    

    % write results to history matrix 

    if rowsRC~=1||colsRC~=1 
        hisresult=[]; hisf=[]; 

        for ii=1:colsRC 

            hisresult=[hisresult result(:,ii).']; 
        end 

        hisf=[hisf f];     

    elseif rowsRC==1&&colsRC==1 
        hisresult=result; 

        hisf=f; 
    end 

    his=[his;x hisresult hisf];   % tracking history 

      
function [g,heq,gpos]=Constraint_Fun(x,solveloop)  

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  
global  solvertype my_solverfunction my_obj_fun my_cons_fun 

% --- definition of variables --- 

%            x = input (design variable) coordinates of this point 
%    result = result value for those variables corresponding to a results constraint (see end of 

%                'Objective_Fun' subroutine). 

%            g = inequality constraint matrix (g>0 is infeasible, g<=0 is feasible) 
%          heq = equality constraint matrix 

%     gpos = flag that infeasible constraint found 

% -------------------------------- 
 gpos=0;  % [0] means no constraints violated - initialize variable with this assumption 

%  if searchtype==1  %(0)=global search, (1)=fmincon search, (2)=globalsearchpts 

%     result=[]; %[result] not defined in SQP search, define here for below logic 
%  end 

 emptytest=isempty(result); % [1] if result=[], [0] if result not empty 

      % --- if results exist or operating from fmincon, evaluate against ouput constraints --- 
 outputconstr=(emptytest==0||searchtype==1); % convert tests to logical scalar output 

% ----- Scratch space to document constraint eqtns ------ 

    % --- Constants to be used in this section --- 
       L1=x(1); 

       L2=x(2); 

       L3=45; 
       L4=63; 

       Lb=72; 

       spaceallow=1.250;  % minimum spacing between bearings 
    %  --- input constraints --- 

    %    L1 & L2 not equal to L3 or L4 and L2>L1 

    %      abs(L1-L3)>=spaceallow;  0>=spaceallow-abs(L1-L3);  g=spaceallow-abs(L1-L3); 
    %                                                                  g=1-abs(L1-L3)/spaceallow 
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    %      abs(L1-L4)>=spaceallow;  0>=spaceallow-abs(L1-L4):  g=spaceallow-abs(L1-L4) 

    %                                                                  g=1-abs(L1-L4)/spaceallow 
    %      abs(L2-L3)>=spaceallow;  0>=spaceallow-abs(L2-L3):  g=spaceallow-abs(L2-L3) 

    %                                                                  g=1-abs(L2-L3)/spaceallow 

    %      abs(L2-L4)>=spaceallow;  0>=spaceallow-abs(L2-L4):  g=spaceallow-abs(L2-L4) 
    %                                                                  g=1-abs(L2-L4)/spaceallow 

    %      L2 >= L1+spaceallow;  0>=L1+spaceallow-L2;  g=(L1-L2)+spaceallow; g=(L1-L2)/spaceallow+1 

    %      L1>=0+spaceallow:  0>=spaceallow-L1;    g=spaceallow-L1;    g=1-L1/spaceallow 
    %      L2<=Lb-spaceallow; 0>=L2-Lb+spaceallow; g=(L2-Lb)+spaceallow; g=(L2-Lb)/spaceallow+1 

    % 

    %  --- output (results) constraints --- 
    %    abs(deflection_static)<=2;  0>=abs(defl_static)-2;  g=abs(defl_static)-2;   

    %                                                                     g=abs(result(1,ii))/2-1; 

    % 
    % 

    %  ** NOTE: Do not use 'Length' as variable name since it is a Matlab command. ** 

% ============================================================================================ 

% ==   Specify Objective Function and Results Constraint Variables                          == 

% ============================================================================================ 

% -------------------------------------------------------------------------------------------- 
%  ANSYS Solve Section - 

% ---------------------- 

% ---- Constraints for ANSYS solve --  
    % Constraint equations include both input and output constraints, grouped separately below.   

    % Constraint equations are defined for more clarity in 'scratch space' above.     

    % 
    if solvertype==0   % ANSYS solve requested 

        g_out=[];  g_dv=[];  % initialize variables 
        % --- Design variable (input-based) constraints --- 

              g_dv(1)=1-abs(L1-L3)/spaceallow;         

              g_dv(2)=1-abs(L1-L4)/spaceallow; 
              g_dv(3)=1-abs(L2-L3)/spaceallow; 

              g_dv(4)=1-abs(L2-L4)/spaceallow; 

              g_dv(5)=(L1-L2)/spaceallow+1; 
              g_dv(6)=1-L1/spaceallow; 

              g_dv(7)=(L2-Lb)/spaceallow+1; 

        % --- Result variable (output-based) constraints --- 
            if outputconstr==1  %logic var from top of this sub-routine - ok to evaluate results 

               % derive key performance components (repeat of Objective_Fun) 

               % --------------------------------------------- 
               % *** NOTE: CONSTRAINT METRICS USE 'RAW' RESULT VALUES, NOT NORMALIZED --- 

               %             raw results = [result] 

               %      normalized results = [my_result] 
               % --------------------------------------------- 

               for solveloop_c=1:3  % each model must meet static defl constraint 

                   g_out(solveloop_c)=abs(result(1,solveloop_c))/2-1; % static defl for ea result 
               end 

            end 

% -------------------------------------------------------------------------------------------- 
%  External MATLAB Solve Section - 

% ---------------------- 

    elseif solvertype==1  %External MATLAB function requested         
       [g_dv,g_out,heq]=my_cons_fun(x, result, outputconstr);    %result,     

    end 

     
     

% -------------------------------------------------------------------------------------------- 

%  Test Function Solve Section - 
% ------------------------------  

% ---- Test function objective function (COMMENT THIS SECTION OUT FOR TEST FUNCTION SOLVE)  -- 

    if testfunction~=0   % Test Function requested 
        g_out=[];  g_dv=[];  % no constraints other than design variable side constraints   

        % --- Design variable (input-based) constraints --- 

             
            % put any design variable (input-based) constraints here 
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        % --- Result variable (output-based) constraints --- 
            if outputconstr==1 %logic var from top of this sub-routine - ok to evaluate results 

                % add output constraints within this if-end loop 

                  g_out(1)=constrrad-sqrt((x(1)-consxcoef)^2+(x(2)-consycoef)^2); 
            end 

            if searchtype==1 

                if max(g_out)>0 
                    flag=1;  % fmincon in infeasible space 

                end 

            end 
    end 

% ============================================================================================ 

% ---- global constraint matrix assembly and compliance check --- 
    g=[g_dv g_out]; %NOTE order of individual '_dv' and '_out' constraints within global matrix 

    noconstraint=isempty(g); % [1] if matrix=[], [0] if matrix not empty 

    if noconstraint==1 

        g=[-1];  % no constraint means unconstrained problem, set g<0 to signal feasible space 

    end 

    % loop to identify if any constraint is non-compliant - useful for quick evals in main code 
    for gii=1:length(g) 

       if g(gii)>0; 

          gpos=1;    % non compliant constraint found 
       end 

    end 

    heq=[];   % equality constraint   
% ---- does Xpot violate any LB/UB side bounds defined in 'inputvar' ---- 

    for jj=1:length(x) 
        if x(jj)< str2double(inputvar(jj,2)) 

           gpos=2;  % potential X0 point violates LB for this variable 

        end 
        if x(jj)> str2double(inputvar(jj,3)) 

           gpos=3;  % potential X0 point violates UB for this variable 

        end 
    end 

  

function [tempdist]=Pt_Pt_Dist(x1,x2)     
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty  

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
% Calculate the distance between 2 multi-variate points 

tempdist=0; 

for distii=1:length(x1) 
   tempdist=tempdist+(x2(distii)-x1(distii))^2; 

end 

tempdist=sqrt(tempdist); 
  

function [maxdist]=searchmaxdist(X0,Sn,X0point) % *** CHARTED ***    

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 
global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 
global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

% ######### Start of Numerical Search Technique ############################################### 
% --------------------------------------------    

%  This subroutine uses numerical search technique along defined search vector Sn to find 

%  the distance from X0 to the nearest constraing ('wall').  The numerical search is 
%  accomplished by taking 'course' steps along Sn until crossing into infeasible range, then 

%  backing up by '1 course step' and restepping 'out' in a much finer step(s) until the 

%  'wall' or feasibility boundary is again reached (creates more accurate estimate of 
%  boundary, but still in error by as much as length of small step.)  Method works, but 
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%  takes time due to numerous steps along Sn.  Consider as efficiency improvement replacing 

%  numerical search technique below with direct mathematical calculation. (pgs 18-19) 
  % ==========  Find max distance along 'Sn' to infeasible region ============= 

  %   (assumes starting within feasible space definition of starting point - X0 or other) 

  feasflag=0; 
  step=0; 

  if distdesspc~=0 

      deltastep=distdesspc/100; 
  else 

      deltastep=minstepsize; 

  end 
  while feasflag==0   % coarse search 

      step=step+deltastep; % make coarse steps in only one direction  

      Xpot=X0+step*Sn; 
%           resultflag=0;  %only check for input constraints on subsequent ConstraintEval 

%           [feasflag]=ConstraintEval(Xpot); 

      % --- test for input variable only constraints --- 

          result=[]; % no results to pass to Constraint_Fun 

%           resultflag=0; %  % [0]=no results exist, [1]=results to be passed  

          [gout,heqout,gpos]=Constraint_Fun(Xpot,1); 
          if gpos~=0 

              feasflag=1;  % indicates not feasible - exit loop 

          end 
          if feasflag==1 

              break 

          end 
      % ---------------------------- 

      if distdesspc~=0 
          if step*max(abs(Sn))>(distdesspc*1e4)  % Error check - no apparent constraints 

              step 

             distdesspc 
             Xpot 

             Sn 

             line1='  The number of steps taken in the 1-D line search             '; 
             line2='  are very high.  This may be because constraints are not       '; 

             line3='  properly set.  The current search direction is printed in the '; 

             line4='  Matlab command window  '; 
             line5='   **** Do you want to continue or stop the process? ****     '; 

             % note:  all string lengths must be same to put in following composite vector 

             msgstring=char(line1,line2,line3,line4,line5); 
                msgstring=char(line1,line2,line3); 

                gX0choice=questdlg(msgstring,'Unbounding Constraints (Course)?'... 

                                                          ,'Continue','Stop','Cancel','Stop'); 
                switch gX0choice  %evaluate selection from question dialog box 

                   case 'Continue' 

                      % User elected to continue...no action needed 
                   case 'Stop' 

                      line1='  Please check the constraints and restart. '; 

                      msgstring=char(line1); 
                      msgtitle='Potential Unbounding Constraints'; 

                      msgbox(msgstring,msgtitle,'help'); 

                      stop;  % end program execution within MATLAB - not clean but functional 
                  case 'Cancel' 

                      stop;  % end program execution within MATLAB - not clean but functional   

                end 
          end 

      end 

  end   %exit loop when step crosses into infeasible region - backup one notch to feasible 
  feasflag=0; 

  Xpot; 

  Xpot=Xpot-deltastep*Sn; %crossed into infeasible, backup one notch to feasible 
  step=step-deltastep;  %reset stepsize for subsequent 'fine' search 

%        lastcoursestep=step 

  deltastep=deltastep/100;  % fine search = fraction of course step        
  while feasflag==0 
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     step=step+deltastep;  % make fine steps in only one direction  

     Xpot=X0+step*Sn; 
%           resultflag=0;  %only check for input constraints on subsequent ConstraintEval 

%           [feasflag]=ConstraintEval(Xpot); 

     % --- test for input variable only constraints --- 
         result=[]; % no results to pass to Constraint_Fun 

%          resultflag=0; %  % [0]=no results exist, [1]=results to be passed  

         [gout,heqout,gpos]=Constraint_Fun(Xpot,1); 
         if gpos~=0 

             feasflag=1;  % indicates not feasible - exit loop 

         end  
         if feasflag==1 

             break 

         end 
     % ----------------------------           

     if distdesspc~=0 

         if step*max(abs(Sn))>(distdesspc*1e2) % Error check - no apparent constraints 

             Sn 

            line1='  The number of steps taken in the 1-D line search             '; 

            line2='  are very high.  This may be because constraints are not       '; 
            line3='  properly set.  The current search direction is printed in the '; 

            line4='  Matlab command window  '; 

            line5='   **** Do you want to continue or stop the process? ****     '; 
            % note:  all string lengths must be same to put in following composite vector 

            msgstring=char(line1,line2,line3,line4,line5); 

               msgstring=char(line1,line2,line3); 
               gX0choice=questdlg(msgstring,'Unbounding Constraints (Fine)?'... 

                                                       ,'Continue','Stop','Cancel','Stop'); 
               switch gX0choice  %evaluate selection from question dialog box 

                  case 'Continue' 

                     % User elected to continue...no action needed 
                  case 'Stop' 

                     line1='  Please check the constraints and restart. '; 

                     msgstring=char(line1); 
                     msgtitle='Potential Unbounding Constraints'; 

                     msgbox(msgstring,msgtitle,'help'); 

                     stop;  % end program execution within MATLAB - not clean but functional 
                 case 'Cancel' 

                     stop;  % end program execution within MATLAB - not clean but functional   

               end 
         end 

     end 

  end   %exit loop when step crosses into infeasible region - backup one notch to feasible 
  feasflag; 

  Xpot=Xpot-deltastep*Sn; %exited above loop because crossed into infeasible, backup one notch 

   %  Xpot=feasibility limit for refined search  
%  [tempdist]=Pt_Pt_Dist(X0,Xpot);   % dist from X0 to Constraint wall via numerical technique 

  tempdist=(Xpot-X0)/Sn;    % dist from X0 to Constraint wall via numerical technique 

  % ########## End of Numerical search technique ############################################## 
  maxdist=tempdist;  % maxdist=max 1-D distance along 'S' to infeasible region 

    

function [resultarray]=ANSYSsolve(flagfile,Results_file)     
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
    % ==============Call ANSYS & Solve=========================== 

   cmdline=('runwb2.exe -B -R inputscript.txt');  % ANSYS Workbench executable - verify and get   

   %                     proper path from 'properties' of ANSYS icon if needed after new install.  
   [status,cmdout]=dos(cmdline,'-echo');  % note, MATLAB program execution will pause until  

%                                                                            dos job is complete 

   % status 
   % cmdout 
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   % ============== Wait for Results File to Reappear following Solve =========================== 

   % flagfile is a file that is written by the inputscript.txt following the solve as a flag to 
   % this code that the solve is complete.  The results file could be used for this purpose, 

   % but instead is opened (ie: 'appears' in the directory folder) prior to the solve so that 

   % log file type data can be written as the solve executes. 
   fileexists=0;  %initialize temp variable 

   while fileexists==0 

      pause(2) % check for existance of flagfile every 'x' seconds 
      fileexists=exist(flagfile,'file'); % returns 0 if file does not exist 

   end 

   pause(10); %file found, pause few more seconds to verify all file write activity is complete 
   % ===============Read Results File ================= 

   fid20=fopen(Results_file); 

   foundit=0; %initialize temp variable 
   while foundit==0  % loop to find start of output section of results file 

      TLINE=fgetl(fid20);  % read a line of results file and ignore 

      if TLINE(1:14)=='Solve Complete' 

         foundit=1; 

      end 

   end 
   for ii=1:count_outv    % read results data from output file 

      TLINE=fgetl(fid20);  % read next line to start results output 

      my_pos=0;  % temp variable for result string line length 
      lineflag=0;  % temp flag variable  

      while lineflag==0 

         my_pos=my_pos+1; 
         if TLINE(my_pos)==char(61)    %char(61) is '=' 

            my_pos=my_pos+1;  % advance pointer by 1 to get off of '=' sign 
            lineflag=1;  % '=' found, exit loop 

         end 

      end 
      resultstr=TLINE(my_pos:length(TLINE));  %read numerical value from pointer to end of line 

      resultarray(ii)=str2double(resultstr); 

   end 
   fclose(fid20); 

  

function [scalarresult]=EvalTestFunction(x)     
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
   X=x(1);  

   Y=x(2);    

   % ---- De Jong's Function ---- 
   if testfunction==1 

      scalarresult=X^2+Y^2;   

   end 
   % ---- Rosenbrock's Valley ----- 

   if testfunction==2 

      scalarresult=100*(Y-X^2)^2+(1-X)^2;  %Rosenbrock's Valley in 2D, result = scalar value 
   end 

   % ---- Rastrigin's Function ----  

   if testfunction==3 
      scalarresult=10*2+(X^2-10*cos(2*pi*X))+(Y^2-10*cos(2*pi*Y)); 

   end 

   % ---- Schwefel's Function (modified for bounds to be continuous) ---- 
   if testfunction==4 

      scalarresult=(418.9829*2)-(X*sin(sqrt(abs(X)))+Y*sin(sqrt(abs(Y))));   

   end 
    

function [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y)        

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 
global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
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global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 
global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

% ========= Compute Polynomial Approximation along Sn for 1-D Search ========== 
warning('off');  % turn warning message for badly conditioned polynomial off 

% ### NOTE:  warning for badly conditioned polynomial occurrs some times, particularly with  

%     functions resembling Schwefel's or Rastrigin's with highly non-linear 1-D search paths. 
%     Curve fit routine confirmed on these functions and curve fit from MATLAB's polyfit matches 

%     a fit to the same data at same polynomial level with EXCEL.  Stepping through process line 

%     by line with manual process (EXCEL) matches predicted location of 1-D minimum found by 
%     MATLAB's process even though warning messages exist.  Tried using 'mu' element to polyfit 

%     and polyval routines per MATLAB's help suggestion, but resulted in incorrect curve fits 

%     with R^2 values less than zero.  Therefore, abandoned 'mu' element and just suppressed 
%     warning messages during polyfit routine given that methodology is confirmed by comparison 

%     to manual process. 

    %       mu(1)=mean(F_xline(:,count_dv+2)); 

    %       mu(2)=std(F_xline(:,count_dv+3)); 

    %       [linecoef,S,mu]=polyfit(F_xline(:,count_dv+2),F_xline(:,count_dv+3),polyfitorder); 

[linecoef,S]=polyfit(F_xline(:,my_x),F_xline(:,my_y),polyfitorder); 
%note linecoef=[a^n a^n-1....a^0] where a^0 = constant term, n=max order of 

%fit (polyfit(x,y,n)) 

warning('on');  %turn warning messages back on       
% ===== calculate R^2 for curve fit ===== 

   residsqrd=0; 

   sumsqrd=0; 
   [F_xlinerows,F_xlinecols]=size(F_xline); 

   for fitii=1:F_xlinerows  % sum of squares - residuals 
      x=F_xline(fitii,my_x);   

      [fcalc]=polyval(linecoef,x); 

      factual=F_xline(fitii,my_y); 
      residsqrd=residsqrd+(factual-fcalc)^2;    % sum of squares - residuals 

      sumsqrd=sumsqrd+(F_xline(fitii,my_y)-mean(F_xline(:,my_y)))^2; 

   end 
   rsqrd=1-residsqrd/sumsqrd;  % R^2 for 1-D curve fit 

   

function [minfcalc]=PolyMin(mindist,maxdist,linecoef) 
global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 
global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 
   minfcalc(1)=1e12;  % starting value for variable - minimum value of polynomial 

   minfcalc(4)=-1e12; % starting value for variable - maximum value of polynomial 

   % ###### Start polynommial minimum values via roots of diferentiated curve ###### 
   % ++++ Differentiate polynomial for 1-D line search and then find roots to determine min/max 

   %      points, then search roots plus endpoints of differentiated polynomial to find min value. 

   for min_ii=1:(length(linecoef)-1)   % differentiate polynomial (linecoef) 
       termorder=length(linecoef)-min_ii;  % polynomial order of this particular term 

       dlinecoef(min_ii)=termorder*linecoef(min_ii);  %diff for this term 

   end 
%    linecoef 

%    dlinecoef 

   myroots=roots(dlinecoef);    % roots of differentiated polynomial 
   % evaluate polynomial at endpoints to find minimum value 

   if polyval(linecoef,0)<minfcalc(1)   % value of basic polynomial at endpoint x=0 

       minfcalc(1)=polyval(linecoef,mindist);    
       minfcalc(2)=mindist; 

   end 

   if polyval(linecoef,maxdist)<minfcalc(1)  % value of basic polynomial at endpoint x=maxdist  
       minfcalc(1)=polyval(linecoef,maxdist);    

       minfcalc(2)=maxdist; 

   end    
   % evaluate differentiated polynomial between endpoints for value 
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   for root_ii=1:length(myroots) 

       if isreal(myroots(root_ii))==1    % 1 means root is real, 0 means imag. 
           if myroots(root_ii)>=mindist  %verify root between '0' and 'maxdist' 

               if myroots(root_ii)<=maxdist 

                   rootval=polyval(linecoef,myroots(root_ii));  % value of poly at this root 
                   if rootval<minfcalc(1) 

                       minfcalc(1)=rootval;  % new 'lowest' root value at dist = x 

                       minfcalc(2)=myroots(root_ii); % new 'lowest' root location (x-value) 
                   end 

                   if rootval>minfcalc(4) 

                       minfcalc(4)=rootval; % new 'maximum' value along Sn 
                       minfcalc(5)=myroots(root_ii); % location of 'maximum' value along Sn 

                   end 

               end 
           end 

       end 

   end 

    

function []=PlotTestFunction(nopts) 

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 
global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 

global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 
global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

   xlow=str2double(inputvar(1,2)); 
   xhigh=str2double(inputvar(1,3)); 

   ylow=str2double(inputvar(2,2)); 
   yhigh=str2double(inputvar(2,3)); 

  X1=linspace(xlow,xhigh,nopts); 

  Y1=linspace(ylow,yhigh,nopts); 
  [X2,Y2]=meshgrid(X1,Y1); 

%    [X1,Y1]=meshgrid(xlow:nopts:xhigh,ylow:nopts:yhigh) 

% evaluate gridpoints to find max Z over range of X and Y 
   Z=[]; 

%    [Z]=EvalTestFunction(X2,Y2); 

   for ii=1:length(X1) 
      for jj=1:length(Y1) 

         point=[X1(ii) Y1(jj)]; 

         [gridresult]=EvalTestFunction(point); 
         Z(jj,ii)=gridresult; 

      end 

   end 
   maxz=max(max(Z));  %scalar max value within [z] 

   minz=min(min(Z));  %scalar min value within [z] 

   deltaz=maxz-minz;  %spacing between max and min value within [z] 
   % ----------------- plot surface countour ------------------------------------------ 

       figure 

%        subplot(2,1,1);  %top plot of 2-Plot figure 
    %    surf(X2,Y2,Z)%,'EdgeColor','none','facecolor','interp') 

       surfc(X2,Y2,Z);  % surface contour plot 

       view(-28,22);  % adjust the view angle 
       axis([xlow xhigh ylow yhigh 0 ceil(maxz)]); 

       shading faceted;  % interpolated shading 

       xlabel('\bfx axis') 
       ylabel('\bfy axis') 

       if testfunction~=0 

          if testfunction==1 
             title('\bfTest Function: De Jongs Function in 2D'); 

          end 

          if testfunction==2 
             title('\bfTest Function: Rosenbrocks Valley in 2D'); 

          end 

          if testfunction==3 
             title('\bfTest Function: Rastrigins Function in 2D'); 
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          end 

          if testfunction==4 
             title('\bfTest Function: Schwefels Function in 2D'); 

          end 

       end 
       grid on 

       hold off 

       pause(0.5) % pause to let plots execute before optimization process starts 
        

function PlotResults(bestX0)   

% this function conducts the global search given a number of feasible points and specified max 
% jumps.  The actual feasible points are in 'globalX0' as a global variable. 

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  

global  solvertype my_solverfunction my_obj_fun my_cons_fun 

 % ************************************************************************** 

 %   Plot Results 
 %  ************************************************************************** 

    % --- plot variable X0 starting points --- 

     if solvertype==0||solvertype==1  %ANSYS or External MATLAB solution requested 
         if count_dv==3  % plot a 3-D plot if 3 input variables 

             figure    

             plot3(globalX0(:,1),globalX0(:,2),globalX0(:,3),'o','MarkerFaceColor','r'); 
             hold on 

             grid on 
             title({'\bf Convergence Paths of Start Points'}); 

             xlabel(inputvar(1,4)); 

             ylabel(inputvar(2,4)); 
             zlabel(inputvar(3,4)); 

             axis([str2double(inputvar(1,2)) str2double(inputvar(1,3)) str2double(inputvar(2,2))... 

                str2double(inputvar(2,3)) str2double(inputvar(3,2)) str2double(inputvar(3,3))]); 
          end 

          if count_dv==2   % plot a 2-D plot if 2 input variables 

             figure    
             plot(globalX0(:,1),globalX0(:,2),'o','MarkerFaceColor','r'); 

             hold on 

             grid on 
             title({'\bf Convergence Paths of Start Points'}); 

             xlabel(inputvar(1,4)); 

             ylabel(inputvar(2,4)); 
             axis([str2double(inputvar(1,2)) str2double(inputvar(1,3)) str2double(inputvar(2,2))... 

                str2double(inputvar(2,3))]); 

          end 
     elseif solvertype==2  %test function requested 

         if testfunction==1    

            nopts=50; 
         elseif testfunction==2 

            nopts=50; 

         elseif testfunction==3 
            nopts=150; 

         elseif testfunction==4 

            nopts=150; 
         end 

         % ----------- plot contours ----------------------------------------------------- 

         % evaluate gridpoints to find max Z over range of X and Y 
         xlow=str2double(inputvar(1,2)); 

         xhigh=str2double(inputvar(1,3)); 

         ylow=str2double(inputvar(2,2)); 
         yhigh=str2double(inputvar(2,3)); 

         X1=linspace(xlow,xhigh,nopts); 

         Y1=linspace(ylow,yhigh,nopts); 
         [X2,Y2]=meshgrid(X1,Y1); 
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         Z=[]; 

         for ii=1:length(X1) 
            for jj=1:length(Y1) 

               point=[X1(ii) Y1(jj)]; 

               [gridresult]=EvalTestFunction(point); 
               Z(jj,ii)=gridresult; 

            end 

         end 
         maxz=max(max(Z));  %scalar max value within [z] 

         minz=min(min(Z));  %scalar min value within [z] 

         deltaz=maxz-minz;  %spacing between max and min value within [z] 
         figure 

         CL=[]; 

         Spacing=[.007 .015 .032 .063 .125 .25 .5 1.0]; 
         CL=Spacing *(deltaz)+minz; 

         C=contour(X1,Y1,Z,CL,'linestyle','-','linewidth',1); 

         axis square; 

         xlabel('\bfx axis') 

         ylabel('\bfy axis') 

         if testfunction~=0 
            if testfunction==1 

               title('\bfTest Function: De Jongs Function in 2D - Convergence Paths'); 

            end 
            if testfunction==2 

               title('\bfTest Function: Rosenbrocks Valley in 2D - Convergence Paths'); 

            end 
            if testfunction==3 

               title('\bfTest Function: Rastrigins Function in 2D - Convergence Paths'); 
            end 

            if testfunction==4 

               title('\bfTest Function: Schwefels Function in 2D - Convergence Paths'); 
            end 

         end 

         hold on 
         % ----------  plot contraint area for test function -------------- 

             Xconstr=[]; Yconstr=[];  

             if testfunction~=0 
                 for theta=0:1:359   % angle of 0 to 359 degrees, step of 1 

                     thetarad=theta*pi/180; 

                     Xconstr=[Xconstr;consxcoef+sin(thetarad)*constrrad]; 
                     Yconstr=[Yconstr;consycoef+cos(thetarad)*constrrad]; 

                 end 

             end 
             fill(Xconstr,Yconstr,[1 0.75 0.75],'facealpha',0.75);  %filled constraint area 

             hold on 

         % ---------- end plot contraint area for test function --------------      
         grid on 

     end 

    % --- end plot 'initial' figures --- 
    % ---- plot jumps for each starting X0 (Global) point ---- 

    [globalhisrows,globalhiscols]=size(global_his);  

    [rowsHIS,colsHIS]=size(HIS);   
    globalplotparams=[];  %initialize temp plot matrix 

    if optsoltn~=1  % global solutions exist to be plotted 

  
        if count_dv==2||count_dv==3   % plot a 2-D or 3-D plot of results 

           X0point=0;  

           for ii=1:globalhisrows 
              if X0point~=global_his(ii,1) 

                  X0point=global_his(ii,1); 

              end 
              maxX0jumps=0;  % initialize temp variable to count max jumps for this X0 point 

                 if global_his(ii,2)==0 

                    globalplotparams(X0point,1)=ii;  %row loctn of jump 0 for this X0 point 
                 end 
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                 if global_his(ii,2)>maxX0jumps 

                    globalplotparams(X0point,2)=ii; %row loctn of max jump for this X0 point 
                    maxX0jumps=global_his(ii,2); 

                 end 

           end 
           [glplotparamrows,glplotparamcols]=size(globalplotparams); 

           global_his; 

           if count_dv==2  % --- 2D plot of Steepest Feasible Descent Results --- 
               for ii=1:glplotparamrows 

                  rowmin=globalplotparams(ii,1); 

                  rowmax=globalplotparams(ii,2); 
                      h1=plot(global_his(rowmin,3),global_his(rowmin,4),'ro','linewidth',3);  

                      h2=plot(global_his(rowmin:rowmax,3),global_his(rowmin:rowmax,4),'b--',... 

                                                                                'linewidth',1); 
                      h3=plot(global_his(rowmax,3),global_his(rowmax,4),'bo','linewidth',2); 

                      h4=plot(global_his(rowmin:rowmax,3),global_his(rowmin:rowmax,4),'x',... 

                            'MarkerEdgeColor','k','MarkerSize',5); %markers for each corner pt 

                      h5=plot(bestX0(1),bestX0(2),'bo','MarkerSize',15,'linewidth',3); 

               end 

           end 
           if count_dv==3   % --- 3D plot of Steepest Feasible Descent Results --- 

               for ii=1:glplotparamrows 

                  rowmin=globalplotparams(ii,1); 
                  rowmax=globalplotparams(ii,2); 

                  h1=plot3(global_his(rowmin,3),global_his(rowmin,4),global_his(rowmin,5),... 

                                                                          'ro','linewidth',3);  
                  h2=plot3(global_his(rowmin:rowmax,3),global_his(rowmin:rowmax,4),... 

                                             global_his(rowmin:rowmax,5),'b--','linewidth',1); 
                  h3=plot3(global_his(rowmax,3),global_his(rowmax,4),... 

                                                     global_his(rowmax,5),'bo','linewidth',2); 

                  h4=plot3(global_his(rowmin:rowmax,3),global_his(rowmin:rowmax,4),... 
                          global_his(rowmin:rowmax,5),'x','MarkerEdgeColor','k','MarkerSize',5); 

               end 

               h5=plot3(bestX0(1),bestX0(2),bestX0(3),'bo','MarkerSize',15,'linewidth',3); 
           end 

            legend([h1 h2 h3 h4 h5],{'Starting Point (X0)','Search Path','Path End Point',... 

                                'Corner Marker','Absolute Optimum'},'Location','southwest') 
%              colorbar('location','eastoutside'); 

            legend BOXON;  % turn 'on' box around legend 

        end  % end of plot 2-D loop 
    end     

    if optsoltn~=0   %fmincon solutions exist to be plotted 

        globalplotparams=[]; %initialize temp plot matrix 
        if count_dv==2||count_dv==3   % plot a 2-D or 3-D plot of results 

           X0point=0;  

           maxjumps=0; 
           for ii=1:rowsHIS 

              if X0point~=HIS(ii,1) 

                  X0point=HIS(ii,1); 
                  globalplotparams(X0point,1)=ii;  %row loctn of jump 0 for this X0 point 

              end 

              maxjumps=maxjumps+1; 
              globalplotparams(X0point,2)=maxjumps; 

           end 

           [glplotparamrows,glplotparamcols]=size(globalplotparams); 
           if count_dv==2   % --- 2D plot of Steepest Feasible Descent Results --- 

               for ii=1:glplotparamrows 

                  rowmin=globalplotparams(ii,1); 
                  rowmax=globalplotparams(ii,2); 

                  h1=plot(HIS(rowmin,2),HIS(rowmin,3),'ro','linewidth',3);  

                  h2=plot(HIS(rowmin:rowmax,2),HIS(rowmin:rowmax,3),'b--','linewidth',1); 
                  h3=plot(HIS(rowmax,2),HIS(rowmax,3),'bo','linewidth',2); 

                  h4=plot(HIS(rowmin:rowmax,2),HIS(rowmin:rowmax,3),'x',... 

                    'MarkerEdgeColor','k','MarkerSize',5);   %plot markers for each corner pt 
                  h5=plot(bestX0(1),bestX0(2),'bo','MarkerSize',15,'linewidth',3); 
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               end 

           end 
           if count_dv==3   % --- 3D plot of Steepest Feasible Descent Results --- 

               for ii=1:glplotparamrows 

                  rowmin=globalplotparams(ii,1); 
                  rowmax=globalplotparams(ii,2); 

                  h1=plot3(HIS(rowmin,2),HIS(rowmin,3),HIS(rowmin,4),'ro','linewidth',3);  

                  h2=plot3(HIS(rowmin:rowmax,2),HIS(rowmin:rowmax,3),HIS(rowmin:rowmax,4),... 
                                                                         'b--','linewidth',1); 

                  h3=plot3(HIS(rowmax,2),HIS(rowmax,3),HIS(rowmax,4),'bo','linewidth',2); 

                  h4=plot3(HIS(rowmin:rowmax,2),HIS(rowmin:rowmax,3),HIS(rowmin:rowmax,4),... 
                         'x','MarkerEdgeColor','k','MarkerSize',5); %markers for each corner pt 

               end 

                  h5=plot3(bestX0(1),bestX0(2),bestX0(3),'bo','MarkerSize',15,'linewidth',3); 
           end 

           legend([h1 h2 h3 h4 h5],{'Starting Point (X0)','Search Path','Path End Point',... 

                                'Corner Marker','Absolute Optimum'},'Location','southwest') 

           legend BOXON;  % turn 'on' box around legend 

%            colorbar('location','eastoutside'); 

           for ii=1:count_dv   % plot input design variables as function of iterations 
              figure 

              for jj=1:glplotparamrows 

                  rowmin=globalplotparams(jj,1); 
                  rowmax=globalplotparams(jj,2); 

                  plot(HIS(rowmin:rowmax,ii+1),'b--','linewidth',2); 

                  hold on; 
                  titlestr=strcat('\bfConvergence of Design Variable: ',inputvar(ii,4)); 

                  title(titlestr); 
                  xlabel('\bfIterations'); 

                  ylabelstr=strcat('\bf',inputvar(ii,4),',  ',inputvar(ii,1)); 

                  ylabel(ylabelstr); 
                  grid on; 

              end 

            end 
           for ii=1:count_outv   % plot input design variables as function of iterations 

              figure 

              for jj=1:glplotparamrows 
                  rowmin=globalplotparams(jj,1); 

                  rowmax=globalplotparams(jj,2); 

                  plot(HIS(rowmin:rowmax,ii+1+count_dv),'b--','linewidth',2); 
                  hold on; 

                  titlestr=strcat('\bfConvergence of Result: ',outputvar(ii,3)); 

                  title(titlestr); 
                  xlabel('\bfIterations'); 

                  ylabelstr=strcat('\bf',outputvar(ii,3),',  ',outputvar(ii,1)); 

                  ylabel(ylabelstr); 
                  grid on; 

              end 

           end 
        end  % end of SQP-only plot loop 

    end 

      
function [Sn,maxdist,F,constrflag]=SearchVector(X0point,jumps,X0,F)  % *** CHARTED ***           

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv  arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  
global  solvertype my_solverfunction my_obj_fun my_cons_fun 

constrflag=0;  % initialize flag to indicate that no Sn found that points to feasible space 

% ===== Find initial search direction 'S' ===== 
% --- evaluate function at X0 --- 

  % --- create string 'name' to be used in output filename --- 

  if X0point<1000    
      X0ptstr=strcat('0',num2str(X0point)); 
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      if X0point<100 

         X0ptstr=strcat('00',num2str(X0point)); 
         if X0point<10 

            X0ptstr=strcat('000',num2str(X0point)); 

         end 
      end 

  end 

  if searchtype==0 
      StartPt=['GXo',X0ptstr];  % 'name' of start pt (X0) to be added to archive filenames 

  else 

      StartPt=['LXo',X0ptstr];  % SQP (fmincon) start point 
  end 

  [f]=Objective_Fun(X0); % evaluate f(X0) 

  [g,heq,gpos]=Constraint_Fun(X0,1);   
  % --- convert 2D result matrix (potential) to 1D array ---  

    [rowsRC,colsRC]=size(result); 

    if rowsRC~=1||colsRC~=1 

        hisresult=[]; 

        for ii=1:colsRC 

            hisresult=[hisresult result(:,ii).']; 
        end 

    elseif rowsRC==1&&colsRC==1 

        hisresult=result; 
    end 

  F=[F;0 X0 f hisresult max(g)]; 

  if jumps==1 
     global_his=[global_his;X0point 0 X0 f 0 0 0 0 0 max(g)]; %log X0 to glbl his array 

     % ===== Print X0 and F_X0 to screen ======    
     precision=-min(floor(log10(minstepsize)));  % precision of minimum step size 

     magnitude=ceil(log10(max(abs(X0)))); % order of magnitude of max value in DV 'inputvar' 

     if magnitude < 1 
        magnitude=1;  %artificially designate magnitude=1 for format purpose if 0<X0<1 

     end 

     % create format string with numerical formats matching no of input variables 
        formatstring='%s'; 

        for ii=1:count_dv 

           % adj format string to include +1 order of mag to left of decimal point and +2 
           formatstring=strcat(formatstring,'%',num2str(magnitude+precision+3),'.',... 

              num2str(precision+1),'f'); %includes one space between numbers 

        end 
     formatstring=strcat(formatstring,'%s%6.4f\r'); 

     fprintf(formatstring,'Start of Jump 1, X0=(',X0,'), feval = ',... 

                                                     F(1,count_dv+2));  %print X0 to screen 
  end 

  for ii=1:count_dv   % evaluate offset-X0's to find 'S' 

     % set 'minstepsize' for each DV as x% of avg magnitude for that DV (minstepsize diff each DV) 
     % rationale is that some DV magnitudes >> others & pcntge of total space (envelope) 

     % disproportionatly different for some DV's vs. others.  (eg. K=500~50000, c=.005~.500) 

     Snpcntstep=0.5;  % step size (%) chosen for pcnt of ttl span for each DV  
     avgMagnitude=(str2double(inputvar(ii,3))-str2double(inputvar(ii,2)))/2; 

     Snstepsize=(Snpcntstep/100)*avgMagnitude;  %'x' pcnt of avg magnitude for this input variable 

     % --- evaluate offset point as part of array for initial calc of Sn --- 
     X0_offset=X0; 

     X0_offset(ii)=X0_offset(ii)+Snstepsize;  %offset X0 in specific DV direction  

%      X0_offset(ii)=X0_offset(ii)+minstepsize;  %offset X0 in specific DV direction  
%          resultflag=0;  %only check for input constraints on subsequent ConstraintEval 

%          [feasflag]=ConstraintEval(X0_offset);  %does X0_offset violate any input constraints? 

     % --- test for input variable only constraints --- 
         result=[]; % no results to pass to Constraint_Fun 

%              resultflag=0; %  % [0]=no results exist, [1]=results to be passed  

         [gout,heqout,gpos]=Constraint_Fun(X0_offset,1); 
     % ---------------------------- 

     if gpos~=0 

         X0_offset(ii)=X0(ii)-minstepsize;  %pick point on the 'other side' of X0 
     end 
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     [f]=Objective_Fun(X0_offset);  

     [g,heq,gpos]=Constraint_Fun(X0_offset,1);     
      % --- convert 2D result matrix (potential) to 1D array ---  

        [rowsRC,colsRC]=size(result); 

        if rowsRC~=1||colsRC~=1 
            hisresult=[]; 

            for ii=1:colsRC 

                hisresult=[hisresult result(:,ii).']; 
            end 

        elseif rowsRC==1&&colsRC==1 

            hisresult=result; 
        end 

     F=[F;0 X0_offset f hisresult max(g)]; 

  end 
% ---- solve 'F' simult to get the coefficients for the equation of the response variables---- 

  % linear approximation of response surface computed via simultaneous equations 

  %  surface = sum(ai*xi)+C... e.g. in 3 variables => f=ax+by+cz+(1)C where 'C' = offset 

  %  compute via matrix math, coeffs[a;b;c...]=A\B 

  %  A=[a(ii) b(ii) c(ii) 1];  B=[f(ii)] (column vector)! where ii=presolved pts 

  A=[F(:,2:count_dv+1),ones(count_dv+1,1)]; %Des Variables 
  B=F(:,count_dv+2);  % obj function result vector from objective function 'f' 

  coef=A\B; % coefs for the equation of plane (obj fnctn) in 'order of Design Variables' 

  delF=coef.'; % transpose obj fnctn equation to row vector  
% ---- Find gradient of surface ---- 

  % since surface = linear approximation, gradient = coefficients of design 

  % variables.  For 3 variable example, f=ax+by+cz+C; f'=ai+bj+ck; therefore 
  % gradient becomes all but the last term of 'delF'. 

  gradF=delF(1:count_dv); %gradient of surface = 'S' = search path 
% ------- Identify direction of 'S' for descending direction ---------- 

  % find the descending direction of 'S' using very small step in direction of 'S' 

  %   (gives SQP result of 'S' direction at X0 that is 'free' of complications 
  %   if surface is highly non-linear...might not get same results if use large 

  %   step) 

  difflag=0;  diffloop=0; loopout=[]; 
  while difflag==0  % X0 may be at SQP min/max - expand search until diff found 

     diffloop=diffloop+1;  %'counter' to increase step size 

     thisstep=(gradF*(diffloop*(minstepsize*500))); 
     fa=(X0+thisstep)*coef(1:count_dv)+coef(count_dv+1);  % eval fun with positive offset 

     fb=(X0-thisstep)*coef(1:count_dv)+coef(count_dv+1);  % eval fun with negative offset 

     thisdiff=abs((fa-fb)/fa*100);  %pcnt difference between fa and fb 
     loopout=[loopout;diffloop fa fb thisdiff]; 

     myloopdata=[diffloop fa fb thisdiff];   % for debugging purposes 

     if thisdiff>0.1 %greater than 0.1% difference noted in slopes=indicates slope 
        if fa<fb  % assuming positive slope 'S', fa<fb 

           S=gradF;  % want descending direction so choose opposite sign for S 

        else 
           S=-gradF; % slope of S is actually descending so keep the sign 

        end 

        difflag=1;  %difference in slopes noted & decisions made, exit loop 
     end 

     if diffloop>1e5 

        %fprintf('%s%','No difference in slope detected...pls confirm'); 
        %loopout   %if loop 'hangs' to here, no diff in slope perceived - abort 

        %stop 

        S=[]; 
        for ii=1:count_dv 

           S=[S 0]; 

        end 
        difflag=1; 

     end 

  end 
% ----- convert S to a unit vector and redirect if heading into infeasible range ----- 

  Lngth_S=0; 

  for ii=1:count_dv 
     Lngth_S=Lngth_S+S(ii)^2; 
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  end 

  Lngth_S=sqrt(Lngth_S); 
  if max(S)==0   % X0 at SQP maxima/minima 

     Sn=S;       % Sn=S=[0] 

     maxdist=0; 
  else 

     Sn=S/Lngth_S;  % resulting unit vector in search direction 'S' 

    % ######### Start of 'Direct Distance' Evaluation Method ################################## 
        % find distance from X0 to Side Constraint Boundaries along Sn (max DV envelope) 

        Constr_Dist=[];  % vector for constraint distance to each DV boundary in dir of Sn 

        for dist_ii=1:count_dv   % step thru loop for each DV 
            LB_dist=(str2double(inputvar(dist_ii,2))-X0(dist_ii))/Sn(dist_ii); 

            UB_dist=(str2double(inputvar(dist_ii,3))-X0(dist_ii))/Sn(dist_ii); 

            Constr_Dist=[Constr_Dist;abs(LB_dist) abs(UB_dist)]; %distance to LB/UB for DV(ii) 
        end 

        distdesspc=min(Constr_Dist(:,1))+min(Constr_Dist(:,2)); %min dist across between all ii's 

          % distdesspc = distance from X0 along Sn to nearest LB + distance along Sn to nearest UB.   

          % Note that the nearest LB and UB may not be the same input variable side bound depending  

          % upon the slope of Sn and the placement of X0. 

% ######### End of 'Direct Distance' Evaluation Method ####################################  
     % ===== Detmn if 'Sn' is headed to infeasible (input var) range, redirect if needed ===== 

     % --- find distance along S from X0 to nearest input constraint 

        if distdesspc~=0 
            [maxdist]=searchmaxdist(X0,Sn,X0point);  % find dist along Sn from X0 to nearest 'wall' 

            maxdistpcnt=maxdist/distdesspc*100;  %pcnt of maxdist as function of des space  

        else 
            maxdist=DVstepmin;  % avoid division by '0' later on 

            maxdistpcnt=0; 
        end 

     % --- redirect Sn if too close to input constraint --- 

        % strategy is that if length along Sn to nearest constraint is < 0.1% of 
        % distance across design space, then declare point X0 to 'against a wall' and Sn 

        % needs to be adjusted to move along that wall.  This is done by removing the 

        % vector component of Sn that points to the wall.  Process is repeated to 
        % identify if X0 is 'against 2 or more walls'.  If X0 is in a 'corner' of all 

        % constraints where the only descending direction is into infeasible space, then 

        % the loop for this X0 point is aborted and the program moves on to evaluation 
        % of the next X0 point. 

        distpcntthreshold=0.1;  %[%] 

        while maxdistpcnt < distpcntthreshold %[percent] 
           % find which Sn vector component direction is shortest 

           tempdist=[1 -1e12]; %[dummy_ID  starting_min_value]   

           for ii=1:count_dv 
              tempSn=Sn;   % Sn = 0 indicates either maxima/minima or constraint 'corner'   

              tempSn(ii)=0;   

              if tempSn==0 
                 Sn=tempSn; 

                 maxdistpcnt=1000;  % X0 in a maxima/minima or constraint 'corner' 

                 break 
              end 

              Snlngth=sqrt(sum(tempSn.^2)); % find current length of Sn 

              tempSn=tempSn/Snlngth;  % normalize Sn to unit vector                     
%               maxcomponent=max(abs(tempSn));  %find max abs value component in tempSn 

%               tempSn=tempSn/maxcomponent;  % normalize tempSn against maxcomponent     

              [constrdist]=searchmaxdist(X0,tempSn,X0point); 
              if constrdist>tempdist(2) 

                 tempdist=[ii constrdist]; %closest constraint in direction ii 

              end 
           end 

           if maxdistpcnt>=distpcntthreshold 

              break 
           end 

           % --- remove vector component 'ii' 

           ii=tempdist(1); 
           Sn(ii)=0;  % remove vector component  
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           Snlngth=sqrt(sum(Sn.^2)); % find current length of Sn 

         %  maxcomponent=max(abs(Sn));  %find max abs value component in tempSn 
           Sn=Sn/Snlngth;  % normalize Sn to unit vector              

           [maxdist]=searchmaxdist(X0,Sn,X0point);     % evaluate with modified Sn 

           maxdistpcnt=maxdist/distdesspc*100;  
           % if that change to Sn successful then exits loop, else repeats  

           if maxdistpcnt>=distpcntthreshold 

              break 
           end 

        end 

        Snlngth=sqrt(sum(Sn.^2)); % find current length of Sn 
        if Snlngth~=0 

            Sn=Sn/Snlngth;  % normalize Sn to unit vector  

        elseif Snlngth==0 
            Sn=Sn;  %Sn=[0 0...] therefore in constraint corner, etc. 

        end 

        Sn;  % resulting Sn is unit vector 'clear' of close constraints 

        maxdist; %max distance in resulting Sn from X0 to closest constraint 

  end  % Sn into feasible space found w.r.t. input constraints 

       
function [linecoef,rsqrd,minfcalc,F_xline,constrflag,gmax]=OneDSearch(X0,Sn,F,maxdist,jumps,X0point) % *** CHARTED *** 

global pjctpath ANSYSpjctpath scriptname my_project my_resultsfile inputvar count_dv inputcols 

global SpaceAllow his my_flagfile minstepsize count_outv outputvar arch_dir feval penalty result 
global g_dv g_out globalX0 global_his rsqrdallow endpcnt linesearchsteps polyfitorder constrrad 

global testfunction distdesspc funtol StartPt optsoltn HIS globalstart globalStartQty glX0min 

global searchtype DVstepmin mu minspan max1Dpts maxpolyfitorder ErrorAllow1D consxcoef consycoef  
global  solvertype my_solverfunction my_obj_fun my_cons_fun 

   minfcalc=[0 0 0 0 0];  %initialize in case no feasible results found at mingcalc and abort 
   constrflag=0;  %initialize variable-[0]=feasible solutions found, [1]=no feasible solutions found 

   gmax=0;  % initialize variable 

   F_xline=[];  %reinitialize matrix to hold function solves within 1-D line search routine 
   % ===== 1D Curve Fit along 'S' ===== 

   %   to save a function solve, use previously evaluated f(X0) as first point 

   [rows,cols]=size(F); 
   F_X0=F(1,count_dv+2);   %value of f at X0 

   g_X0=F(1,cols);  % constraint value (max) at X0 in last column of F 

   F_xline=[0 X0 0 F_X0 0 0 0 g_X0];   % temp matrix to hold function solves within this subroutine 
     % F_xline=[row_number Physical_Loc_this_Pt  Pt_loc_on_search_line  Fval_this_Pt ... 

     %                        R^2 Pred_Min_this_curve_fit Error_this_Pt_to_curve_fit max_g_this_pt] 

   % --- generate initial points --- 
   xloc(linesearchsteps)=maxdist;    %n'th point at maxdist, others spaced in between 

   xloc(1)=(minspan/100)*maxdist; %pt very near to X0 (xloc(0)) to establish grad<0 per Sn descent    

   %distribute remainder 'xloc' points evenly between xloc(1) and maxdist, note xloc=0 is X0 is '0' 
   for lineii=2:linesearchsteps    

       xloc(lineii)=(maxdist-xloc(1))/(linesearchsteps-1)*(lineii-1)+xloc(1);    

   end 
   % --- evaluate initial points and populate F_xline --- 

   for lineii=1:linesearchsteps %compute f for 1-D search pts per step matrix xloc[] 

      % note that f(0) already computed above = 'xloc(0)' = F_xline(1) 
      X0line=X0+xloc(lineii)*Sn; 

      [f]=Objective_Fun(X0line); 

      [g,heq,gpos]=Constraint_Fun(X0line,1); 
      gmax=max(g); 

      F_xline=[F_xline; lineii X0line xloc(lineii) f 0 0 0 max(g)]; 

   end 
   goodfit=1; 

   % === evaluate fit of initial points 

       % ==== Check to see if likelihood that range meets feasibility criteria 
          my_x=count_dv+2;   % column of F_xline with x-variable - 1D dist along Sn 

          my_y=count_dv+7;   % column of F_xline with y-variable - max(g) 

          [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y);%,temporder,n);            
          [mingcalc]=PolyMin(0,maxdist,linecoef); % find estimated min along 1-D search path 

            % mingcalc has same form as minfcalc - mingcalc(4) is estimated maximum 

          if mingcalc(1)>0  %.001 vs. '0' as tolerance to rough calculations 
              if rsqrd>0.98 
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                  constrflag=1;  % high confidence of no feasible points along Sn 

                  goodfit=1;  % flag indicating time to exit this subroutine 
                  gmax=max(F_xline(:,count_dv+7)); % maximum [g] value of 1D points evaluated 

              end 

          end 
       if constrflag==0   % skip these evaluations of points if no confidence of feasible points 

           % ==== Compute Polynomial Approximation & R^2 along Sn for 1-D Search ========== 

              my_x=count_dv+2;   % column of F_xline with x-variable 
              my_y=count_dv+3;   % column of F_xline with y-variable 

              [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y);%,temporder,n);    

           % ======  use polynomial approximation to find 1-D minimum along Sn 
              [minfcalc]=PolyMin(0,maxdist,linecoef); % find estimated min along 1-D search path 

              % -- is proposed solution feasible?  if not, find best solution that is feasible 

                testX0=X0+minfcalc(2)*Sn;  % proposed best result 
                [g,heq,gpos]=Constraint_Fun(testX0,1); 

                gmax=max(g); 

                if gmax>0  %find next best solution if optimum is infeasible 

                    my_x=count_dv+2;   % column of F_xline with x-variable - 1D dist along Sn 

                    my_y=count_dv+7;   % column of F_xline with y-variable - max(g) 

                    [glinecoef,grsqrd]=myPolyFit(F_xline,my_x,my_y);%curvefit of 'g';   
                    fitmatrix=[]; fitstep=maxdist/1000; fitloc=0; tempstep=0; tempfitmatrix=[]; 

                    for fitii=1:1000 

                        fitloc=fitstep*fitii; 
                        pred_gmax=polyval(glinecoef,fitloc); % pred gmax for this point 

                            % temp storage of all responses for plotting purposes 

                            tempfitmatrix(fitii,1)=polyval(linecoef,fitloc); %pred f for this point 
                            tempfitmatrix(fitii,2)=pred_gmax; %pred g for this point 

                            tempfitmatrix(fitii,3)=fitloc; %1D location of predicted minimum 
                        if pred_gmax<0 

                            tempstep=tempstep+1; 

                            fitmatrix(tempstep,1)=polyval(linecoef,fitloc); %pred f for this point 
                            fitmatrix(tempstep,2)=pred_gmax; %pred g for this point 

                            fitmatrix(tempstep,3)=fitloc; %1D location of predicted minimum 

                        end 
                    end 

                    %% added rows 12-23-14 

                    [rowstemp,colstemp]=size(fitmatrix); 
                    if rowstemp>0 

                        [x,i]=min(fitmatrix(:,2));  %i=row index of minimum gmax value 

                        minfcalc(2)=fitmatrix(i,3); % distance along S for identified minimum [in] 
                        minfcalc(1)=polyval(linecoef,minfcalc(2)); % predicted value of (f) 

                    else   % no points along 1D line are feasible 

               %         constrflag=1;  % no feasible points along Sn 
                        minfcalc(2)=0; 

                        minfcalc(1)=polyval(linecoef,minfcalc(2)); 

                    end 
                    %% end added rows 

                end 

               % minfcalc(1)=fcalc; % polynomial value at dist = x (estimated value of min FVAL) 
               % minfcalc(2)=x;  % distance along S for identified minimum [in] 

               % minfcalc(3)=actual FVAL from optimum ID'd by 'PolyMin' 

               % minfcalc(4)=maximum value along Sn 
               % minfcalc(5)= location (1D) of maximum value (similar to minfcalc(2) 

             [F_xlinerows,F_xlinecols]=size(F_xline); 

             tempmin=1e12; 
             for ii=1:F_xlinerows %find min solved (f) that is feasible 

                 if F_xline(ii,count_dv+3)<tempmin&&F_xline(ii,F_xlinecols)<=0 

                     tempmin=F_xline(ii,count_dv+3); 
                 end 

             end 

             minfcalc(3)=tempmin;  %min solved f that is also feasible 
          % -------- best feasible minfcalc(1),(2) and (3) identified -------- 

%              % ----- find minimum response within F_xline that is also feasible ---- 

%                  tempf=1e12; gmax=1;  
%                  for ii=1:F_xlinerows 
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%                      if F_xline(ii,count_dv+3)<tempf 

%                          if F_xline(ii,F_xlinecols)<0 % g<0 means feasible 
%                              tempf=F_xline(ii,count_dv+3); % feasible minimum found 

%                              constrflag=0;  % no constraint conflicts 

%                              gmax=F_xline(ii,F_xlinecols);  % max(g) for this solved point 
%                                feasii=ii;  % pointer for feasible point 

%                          else 

%                   %           gmax=0;  %don't want to loose ID of feasible solution above... 
%                   %           constrflag=1;  % point is not feasible   

%                          end 

%                      end 
%                  end 

                 if gmax>0 

                     constrflag=1;  %ID constrflag=1 iff ALL F_xline results infeasible 
                 end 

             % --- check for acceptability criteria ----     

                 if gmax<0  % feasible min found - check for R^2 and error 

                     Error1Dmin=abs((minfcalc(1)-minfcalc(3))/minfcalc(3));  

                     if rsqrd < rsqrdallow  

                        goodfit=0;  % R^2 value not acceptable, repeat fit with addt'l point 
                     end 

                     if abs(Error1Dmin)*100>ErrorAllow1D % 

                         goodfit=0;  % error between predicted / actual FVAL at min point too large 
                     end 

                 else 

                     goodfit=0;  % no feasible result found - need to add another point 
                 end 

       end 
   outofbounds=0;  % flag to indicate that search for acceptable pair failed 

   while goodfit==0;   %flag goodfit=0 means r^2 target / error not yet achieved 

     constrflag=0; %reset constraint flag indicating infeas results for this section 
     polyfitorder=polyfitorder+1;  %increment polyfit order by 1 

     if polyfitorder>maxpolyfitorder 

         polyfitorder=maxpolyfitorder;  % limit polynomial order to avoid numerical problems 
     end 

     linesearchsteps=linesearchsteps+1; %maintain 1 more point than order of eqtn 

     newdist=1e12;   % initialize variable 
     % ==== Compute Polynomial Approximation & R^2 along Sn for 1-D Search ========== 

      my_x=count_dv+2;   % column of F_xline with x-variable 

      my_y=count_dv+3;   % column of F_xline with y-variable 
      [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y);%,temporder,n);    

     % ======  use polynomial approximation to find 1-D minimum along S 

     [minfcalc]=PolyMin(0,maxdist,linecoef); % find estimated min along 1-D search path 
     if rsqrd>0.95  %diff logic schemes if 'f' curvefit good or not 

          % -- R^2 good, proposed solution feasible?  if not, find best solution that is feasible 

            testX0=X0+minfcalc(2)*Sn;  % proposed best result 
            [g,heq,gpos]=Constraint_Fun(testX0,1); 

            gmax=max(g); 

            if gmax>0  %find next best solution if optimum is infeasible 
                my_x=count_dv+2;   % column of F_xline with x-variable - 1D dist along Sn 

                my_y=count_dv+7;   % column of F_xline with y-variable - max(g) 

                [glinecoef,grsqrd]=myPolyFit(F_xline,my_x,my_y);%curvefit of 'g';   
                fitmatrix=[]; fitstep=maxdist/1000; fitloc=0; tempstep=0; 

                for fitii=1:1000 

                    fitloc=fitstep*fitii; 
                    pred_gmax=polyval(glinecoef,fitloc); % pred gmax for this point 

                    if pred_gmax<0 

                        tempstep=tempstep+1; 
                        fitmatrix(tempstep,1)=polyval(linecoef,fitloc); %pred f for this point 

                        fitmatrix(tempstep,2)=pred_gmax; %pred g for this point 

                        fitmatrix(tempstep,3)=fitloc; %1D location of predicted minimum 
                    end 

                end 

                    %% added rows 12-23-14 
                    [rowstemp,colstemp]=size(fitmatrix); 
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                     if rowstemp>0 

                        [x,i]=min(fitmatrix(:,2));  %i=row index of minimum gmax value 
                        minfcalc(2)=fitmatrix(i,3); % distance along S for identified minimum [in] 

                        minfcalc(1)=polyval(linecoef,minfcalc(2)); % predicted value of (f) 

                    else   % no points along 1D line are feasible 
           %             constrflag=1;  % no feasible points along Sn 

                        minfcalc(2)=0; 

                        minfcalc(1)=polyval(linecoef,minfcalc(2)); 
                    end 

                    %% end added rows                 

            end 
            % minfcalc(1)=fcalc; % polynomial value at dist = x (estimated value of min FVAL) 

            % minfcalc(2)=x;  % distance along S for identified minimum [in] 

            % minfcalc(3)=actual FVAL from optimum ID'd by 'PolyMin' 
            % minfcalc(4)=maximum value along Sn 

            % minfcalc(5)= location (1D) of maximum value (similar to minfcalc(2) 

            [F_xlinerows,F_xlinecols]=size(F_xline); 

            tempmin=1e12; 

            for ii=1:F_xlinerows %find min solved (f) that is feasible 

                if F_xline(ii,count_dv+3)<tempmin&&F_xline(ii,F_xlinecols)<=0 
                    tempmin=F_xline(ii,count_dv+3); 

                end 

            end 
            minfcalc(3)=tempmin;  %min solved f that is also feasible 

     else  %poor fit for curve fit of f to data - sort for best of F_xline for seed point 

         % keep predicted minimum point from minfcalc(1),(2),(3) for next solved point 
         % determine then if it is feasible and/or potential minimum to be expanded upon 

     end 
      % -------- best feasible minfcalc(1),(2) and (3) identified -------- 

      % --- remove outlier pts if reached max number of pts along line --- 

      if outofbounds==1 
          F_xlinerows=max1Dpts+1;  % use F_xlinerows as flag to enter end adding pts and find min. 

      end 

      if F_xlinerows>=max1Dpts %max number of points evaluated...filter points to improve curve fit 
          qtrspan=maxdist/4;  %keep points<+/-qtrspan from tempdist (potential min)  

          if bestpt~=0  % best feasible point found within F_xline 

              bestval; bestpt; bestdist;% bestg; % best feasible results from solved data in F_xline 
              tempF_xline=[]; 

              for iitemp=1:F_xlinerows  %filter points to < qtrspan 

                  if abs(F_xline(iitemp,count_dv+2)-F_xline(bestpt,count_dv+2))<=qtrspan 
                      if F_xline(iitemp,F_xlinecols)<0  % only keep pts with feasible results 

                          tempF_xline=[tempF_xline; F_xline(iitemp,:)]; 

                      end 
                  end 

              end 

             F_xline=tempF_xline;  % points filterd to reduced span around best feasible point 
              my_x=count_dv+2;   % column of F_xline with x-variable 

              my_y=count_dv+3;   % column of F_xline with y-variable 

              [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y);%,temporder,n);   
             % ======  use polynomial approximation to find 1-D minimum along S 

             [F_xlinerows,F_xlinecols]=size(F_xline); 

             minend=1e12;  maxend=-1e12; 
             for ii=1:F_xlinerows  %find min and max endpoints of new F_xline for curve fit 

                 if F_xline(ii,count_dv+2)<minend 

                     minend=F_xline(ii,count_dv+2); 
                 end 

                 if F_xline(ii,count_dv+2)>maxend 

                     maxend=F_xline(ii,count_dv+2); 
                 end 

             end 

             % === find estimated min val and location for best feas point from solved data 
             minfcalc(1)=polyval(linecoef,bestdist);  % evaluate polynomial from best solved point 

             minfcalc(2)=bestdist;  % 1D location of new point 

             minfcalc(3)=bestval; % best solved value in F_xline 
%              gmax=bestg;  % max constraint value for best solved value in F_xline 
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             goodfit=1;  % process complete - exit loop 

          else 
              constrflag=1;  %constrflag=1 means no values found within feasible space this Sn 

              goodfit=1;  %process complete - exit loop 

          end 
      end 

      if goodfit==1 

          testX0=X0+minfcalc(2)*Sn;  % proposed best result 
          [g,heq,gpos]=Constraint_Fun(testX0,1); 

          gmax=max(g); 

          break 
      end 

      % ==== New Point Needed - Don't duplicate new point if too close to existing in F_xline 

         % ---- [minfcalc] to new, higher order curve fit feasible result? 
         tempspacing=1e12;  %initialize temp variable to find closest F_xline result to minfcal(2) 

         for ii=1:F_xlinerows 

             if abs(F_xline(ii,count_dv+2)-minfcalc(2))<tempspacing 

                 tempspacing=abs(F_xline(ii,count_dv+2)-minfcalc(2)); 

                 tempii=ii; % closest F_xline result found 

             end 
         end 

         if F_xline(tempii,F_xlinecols)<0  %predicted result is feasible - use as seed for next pt. 

             gmax=F_xline(tempii,F_xlinecols);  % predicted min = feasible 
         else  %pred result not feas - find F_xline point with 1.)feasibility and 2.)lowest feval 

             tempF_xline=[];thisline=0; 

             for ii=1:F_xlinerows 
                 if F_xline(ii,F_xlinecols)<=0 % find feasible results in F_xline 

                     thisline=thisline+1; 
                     tempF_xline(thisline,:)=F_xline(ii,:); 

                 end 

             end 
             [rows,cols]=size(tempF_xline); 

             if rows>0 

                 [x,feasii]=min(tempF_xline(:,count_dv+3)); %find min f within feasible F_xline 
                 minfcalc(1)=tempF_xline(feasii,count_dv+5); 

                 minfcalc(2)=tempF_xline(feasii,count_dv+2); 

                 minfcalc(3)=tempF_xline(feasii,count_dv+3);   
             elseif rows==0 %no feasible results in F_xline, find closest to feasible result 

                 [x,feasii]=min(F_xline(:,F_xlinecols)); %find minimum g within F_xline 

                 minfcalc(1)=F_xline(feasii,count_dv+5); 
                 minfcalc(2)=F_xline(feasii,count_dv+2); 

                 minfcalc(3)=F_xline(feasii,count_dv+3);   

             end 
         end 

         % --- minfcalc(2) now holds seed for next point --- 

         outofbounds=0;  % initialize flag to indicate that search for acceptable pair failed 
         [F_xlinerows,F_xlinecols]=size(F_xline);   

         counter=max(F_xline(:,1)); % counter = max value = 1 less than actual number of rows 

         duplicatepoint=0;  % flag to identify new point duplicates existing within F_xline 
         thisminspan=abs(minfcalc(2)-F_xline(1,count_dv+2));%dist pred min to X0 along Sn 

         for iicheck=2:counter+1  % find dist pred min to nearest neighboring point 

             if abs(minfcalc(2)-F_xline(iicheck,count_dv+2))<thisminspan 
                 thisminspan=abs(minfcalc(2)-F_xline(iicheck,count_dv+2)); 

             end 

         end 
         if thisminspan/maxdist*100<minspan 

             duplicatepoint=1;  %pot point < minspan to existing point 

         end 
         if duplicatepoint==0 % no nearby point found - ok to make new point at this loc 

             newdist=minfcalc(2); 

         else  % find nearest gap to proposed point and place new point midspan 
           % === add new point midway between neighboring existing pt in area of potential minimum 

              tempdist=minfcalc(2); 

              xloc=F_xline(:,count_dv+2);  % evaluate point positions in 1-D along Sn so far 
              sortxloc=sort(xloc); % sort xloc for temp use in following sub-section of routine 
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              if rsqrd<0  % debugging check 

                  rsqrd 
                  stop 

              end 

              [F_xlinerows,F_xlinecols]=size(F_xline); 
              % --- add point routine dependent upon location of predicted min (tempdist) --- 

              if tempdist>=max(sortxloc) 

                  tempdist=max(sortxloc); 
              end 

              if tempdist~=0 

                  myflag=0; 
                  for iicheck=1:(length(sortxloc)) %look for nearest open gap to put new point 

                      if tempdist~=sortxloc(iicheck) 

                          if tempdist<sortxloc(iicheck)  %0<tempdist<sortxloc(1) 
                              step=0; 

                              minbound=0; maxbound=1; 

                              if (tempdist-0)/max(sortxloc)>=minspan/100 

                                  newdist=(tempdist+0)/2; 

                                  myflag=1; 

                              end 
                              if myflag==0 

                                  if (sortxloc(iicheck)-tempdist)/max(sortxloc)>=minspan/100 

                                      newdist=(tempdist+sortxloc(iicheck))/2; 
                                      myflag=1; 

                                  end 

                              end 
                              while myflag==0   % look for first gap > 0 that is wide enough  

                                  newmax=maxbound+step; 
                                  newmin=minbound+step; 

                                  if step==0 

                                     if(sortxloc(newmax)-0)/max(sortxloc)>=minspan/100 
                                         newdist=(0+sortxloc(newmax))/2; 

                                         myflag=1; 

                                     end 
                                     if myflag~=0 

                                         break 

                                     end 
                                  else 

                                     if sortxloc(newmax)>max(sortxloc) 

                                         outofbounds=1;  % exceeded maxdist range  
                                     end 

                                     if(sortxloc(newmax)-sortxloc(newmin))/max(sortxloc)>=... 

                                                                                        minspan/100 
                                         newdist=(sortxloc(newmin)+sortxloc(newmax))/2; 

                                         myflag=2; 

                                     end 
                                     if myflag~=0 

                                         break 

                                     end 
                                  end 

                                  step=step+1; 

                              end 
                          end  %end if tempdist<sortxloc(iicheck) 

                          if tempdist>sortxloc(iicheck) 

                              if tempdist<sortxloc(iicheck+1) 
                                  minval=sortxloc(iicheck);  

                                  maxval=sortxloc(iicheck+1); 

                                  % check if maxbound-minbound > 'minspan' of overall maxdist 
                                  % if not, put new point in first region where span > minspan 

                                  if (maxval-tempdist)/max(sortxloc)>=minspan/100 

                                      newdist=(tempdist+maxval)/2; 
                                      myflag=3; 

                                  end 

                                  if myflag==0 
                                      if (tempdist-minval)/max(sortxloc)>=minspan/100 
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                                          newdist=(minval+tempdist)/2; 

                                          myflag=3; 
                                      end 

                                  end 

                                  if myflag==0 
                                      maxendflag=0; minendflag=0; 

                                      step=1; minbound=iicheck;  maxbound=iicheck+1; 

                                      while myflag==0  % check to see if next step 'up' > minspan 
                                          newmax=maxbound+step;  % upper step identifier 

                                          newmin=minbound+step;  % lower step identifier 

                                          if newmax<=length(sortxloc) 
                                              if(sortxloc(newmax)-sortxloc(newmin))/... 

                                                                        max(sortxloc)>=minspan/100 

                                                  newdist=(sortxloc(newmin)+sortxloc(newmax))/2; 
                                                  myflag=4; 

                                              end 

                                              if myflag~=0 

                                                  break 

                                              end 

                                          else 
                                              maxendflag=1;     % exceeded upper limit of curve 

                                          end                                               

                                          newmax=maxbound-step; 
                                          newmin=minbound-step; 

                                          if newmin<0 

                                              minendflag=1;  %exceeded min limit of curve 
                                          else 

                                              if newmin==0 
                                                 if(sortxloc(newmax)-0)/max(sortxloc)>=minspan/100 

                                                     newdist=(0+sortxloc(newmax))/2; 

                                                     myflag=5; 
                                                 end 

                                                 if myflag~=0 

                                                     break 
                                                 end 

                                              else 

                                                  if(sortxloc(newmax)-sortxloc(newmin))/... 
                                                                       max(sortxloc)>=minspan/100 

                                                      newdist=(sortxloc(newmin)+sortxloc(newmax))/2; 

                                                      myflag=6; 
                                                  end 

                                              end 

                                          end 
                                          if myflag~=0 

                                              break 

                                          end 
                                          if maxendflag==1 

                                              if minendflag==1 

                                                  outofbounds=1; 
                                                  break  %exceeded both max and min ends of curve 

                                              end 

                                          end 
                                          step=step+1; 

                                      end 

                                  end 
                                  if myflag~=0 

                                      break 

                                  end 
                              end 

                          end   % end tempdist>sortxloc(iicheck) 

                      else  %tempdist same as existing point 
                          if iicheck<length(sortxloc) 

                              newdist=(sortxloc(iicheck)+sortxloc(iicheck+1))/2; 

                              myflag=7; 
                          else 
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                              newdist=(sortxloc(iicheck-1)+sortxloc(iicheck))/2; 

                              myflag=8; 
                          end 

                          if myflag~=0 

                              break 
                          end 

                      end 

                  end 
              else   % tempdist=0 

                  if sortxloc(1)/max(sortxloc)>=minspan/100 

                      newdist=(0+sortxloc(1))/2; 
                      myflag=9; 

                      if myflag~=0 

                          break 
                      end 

                  else 

                      myflag=0; 

                      step=1; 

                      minbound=0; maxbound=1; 

                      while myflag==0 
                          newmax=maxbound+step; 

                          newmin=minbound+step; 

                          if sortxloc(newmax)>max(sortxloc) 
                              stop 

                          end 

                          if(sortxloc(newmax)-sortxloc(newmin))/max(sortxloc)>=minspan/100 
                              newdist=(sortxloc(newmin)+sortxloc(newmax))/2; 

                              myflag=9; 
                          end 

                          if myflag~=0 

                              break 
                          end 

                          step=step+1; 

                      end 
                  end 

              end  % end of loop to add new point based on predicted location 

              [F_xlinerows,F_xlinecols]=size(F_xline);   
              counter=max(F_xline(:,1));  

%              xloc(counter)=newdist;  % distance along 1D curve for added point 

         end  %end add new point in nearby midspan location               
     % === evaluate function at new point 

     if outofbounds~=1 

         X0new=X0+newdist*Sn;  % X0 resulting from newly added point 
               %  note...don't put XOnew into minfcalc since minfcalc = 1 col & X0 = diff size 

         [f]=Objective_Fun(X0new);   % actual FVAL at location of estimated minimum 

         [g,heq,gpos]=Constraint_Fun(X0new,1); 
         gmax=max(g); 

         minfcalc(1)=polyval(linecoef,newdist);  % evaluate polynomial from new point 

         minfcalc(2)=newdist;  % 1D location of new point 
         minfcalc(3)=f;  % result of actual solve for location along Sn of predicted min 

         Error1Dmin=abs((minfcalc(1)-minfcalc(3))/minfcalc(3));  

         % ===== add evaluated potential minimum to F_xline 1-D search sub-database 
         F_xline=[F_xline; counter+1 X0new minfcalc(2) minfcalc(3) rsqrd minfcalc(1) ... 

                                                                                Error1Dmin max(g)]; 

     end 
      % ===== assess acceptability of curve fit ===== 

         % ==== Compute Polynomial Approximation & R^2 along Sn for 1-D Search ========== 

          my_x=count_dv+2;   % column of F_xline with x-variable 
          my_y=count_dv+3;   % column of F_xline with y-variable 

          [linecoef,rsqrd]=myPolyFit(F_xline,my_x,my_y);%,temporder,n);   

         % ======  use polynomial approximation to find 1-D minimum along S 
         [minfcalc]=PolyMin(0,maxdist,linecoef); % find estimated min along 1-D search path 

         [F_xlinerows,F_xlinecols]=size(F_xline); 

         bestpt=0; bestval=1e12;  % flag for row of F_xline with minimum value 
         for ii=1:F_xlinerows 
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             if F_xline(ii,count_dv+3)<bestval 

                 if F_xline(ii,F_xlinecols)<0  % only accept results that are in feasible space 
                     bestval=F_xline(ii,count_dv+3);  % best feasible solved value in F_xline 

                     bestpt=ii;                       % index of best solved value in F_xline 

                     bestdist=F_xline(ii,count_dv+2); % 1D distance of best solved value in F_xline 
          %           bestg=F_xline(ii, F_xlinecols); % max_g for this best solved value in F_xline 

                     gmax=F_xline(ii, F_xlinecols); % max_g for this best solved value in F_xline 

                 end 
             end 

         end 

         if bestpt~=0    % solved minimum found that is within feasible space     
             if F_xline(bestpt,count_dv+5)==0 

                 minfcalc(1)=polyval(linecoef,F_xline(bestpt,count_dv+2)); %evaluate from polynomial 

             else 
                 minfcalc(1)=F_xline(bestpt,count_dv+5); 

             end 

             minfcalc(2)=F_xline(bestpt,count_dv+2); 

             minfcalc(3)=F_xline(bestpt,count_dv+3); 

             ErrorMinPt=abs((minfcalc(1)-minfcalc(3))/minfcalc(3)); 

             if rsqrd > rsqrdallow  
                 if abs(ErrorMinPt)*100<ErrorAllow1D % 

                     goodfit=1;  % R^2 value and error acceptable with new fit including new point 

                 end 
             end 

         end 

   end 
%    penalty=minfcalc(3)*10; % penalty = midspan 1D range 

   linecoef;  % coefficients of 1D response curve along Sn 
   rsqrd;     % R^2 value for 1D curve fit 
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Appendix D 

Tabulated Results 



 

 

2
1
7

 

Table D-1 Summary of results by start point 

Start 
Point 

Point 
Definition 

Design Variable Definition Function 
Value 

(penalized) 
gmax 

Stop 
Criteria 

L1 
(in) 

L2 
(in) 

K1 
(lbf/in) 

K2 
(lbf/in) 

K3 
(lbf/in) 

K4 
(lbf/in) 

C1 C2 C3 C4 

Steepest Feasible Descent Results 

1 

X0 18.000 48.000 20300 14643 9500 8115 0.0632 0.0571 0.0480 0.0391 1.8211 -9.0E-02 

(2) Jump 1 end 19.151 52.205 20300 14643 9500 8115 0.0632 0.0571 0.0480 0.0390 1.4763 -1.6E-01 

Jump 2 end 19.191 52.390 20300 14643 9500 8115 0.0632 0.0571 0.0480 0.0390 1.4526 -1.2E-01 

2 
X0 9.000 32.000 40100 28786 18500 15731 0.1215 0.1092 0.0911 0.0733 2.3119 6.9E-02 

(3) 
Jump 1 end 9.000 32.000 40100 28786 18500 15731 0.1215 0.1092 0.0911 0.0733 0.0000 6.9E-02 

3 
X0 22.500 26.667 4460 22724 45500 38577 0.2962 0.2655 0.2202 0.1757 2.2445 9.9E-02 

(3) 
Jump 1 end 22.500 26.667 4460 22724 45500 38577 0.2962 0.2655 0.2202 0.1757 0.0000 9.9E-02 

4 

X0 31.500 58.667 44060 2520 14409 4601 0.4127 0.3697 0.3063 0.2440 2.4054 -1.2E-01 

(1) Jump 1 end 29.245 50.478 44060 2520 14409 4601 0.4126 0.3347 0.3063 0.2403 1.4511 -9.5E-02 

Jump 2 end 29.245 50.478 44060 2520 14409 4601 0.4126 0.3347 0.3063 0.2403 1.4511 -1.2E-01 

5 

X0 2.250 42.667 16340 16663 23409 12216 0.4709 0.4218 0.3494 0.2781 2.0746 -2.2E-02 

(2) Jump 1 end 2.425 43.499 16340 16663 23409 12216 0.4709 0.4219 0.3494 0.2779 1.5840 -3.7E-04 

Jump 2 end 3.217 43.499 16340 16663 23409 12216 0.4674 0.4182 0.3456 0.2748 1.5704 -3.7E-04 

6 

X0 38.250 66.667 26240 23735 27909 16024 0.0067 0.4479 0.3709 0.2952 45.4097 -7.4E-02 

(2) Jump 1 end 38.321 64.507 26240 23735 27909 16024 0.0067 0.4480 0.3708 0.2954 14.2590 -4.4E-03 

Jump 2 end 38.429 64.500 26240 23735 27909 16024 0.0067 0.4480 0.3708 0.2957 14.0065 -2.1E-04 

7 

X0 11.250 53.333 8420 44949 41409 27447 0.0941 0.0324 0.4354 0.3464 1.5147 -1.0E-01 

(1) Jump 1 end 11.338 53.791 8420 44949 41409 27447 0.0941 0.0324 0.4354 0.3464 1.4548 -1.0E-01 

Jump 2 end 11.338 53.791 8420 44949 41409 27447 0.0941 0.0324 0.4354 0.3464 1.4548 -7.9E-02 

8 

X0 29.250 37.333 28220 10602 1318 35062 0.1523 0.0845 0.4785 0.3805 1.6676 -3.2E-02 

(2) Jump 1 end 29.324 37.574 28220 10602 1318 35062 0.1523 0.0846 0.4797 0.3808 1.6119 -3.4E-02 

Jump 2 end 29.394 37.788 28220 10602 1318 35062 0.1523 0.0846 0.4811 0.3808 1.5891 -3.6E-02 

9 

X0 24.750 69.333 10796 38888 19318 1086 0.2688 0.1887 0.0705 0.4488 5.1330 -3.7E-02 

(2) Jump 1 end 24.310 70.500 10796 38888 19318 1086 0.2689 0.1888 0.0707 0.0546 4.4817 -7.2E-05 

Jump 2 end 23.999 70.500 10796 38888 19318 1086 0.2689 0.1888 0.0707 0.0050 4.4524 -7.2E-05 

10 

X0 55.125 64.889 4856 5551 10727 35355 0.0375 0.4232 0.2642 0.1080 9.6272 -9.9E-02 

(2) Jump 1 end 61.497 69.498 4856 5551 10727 35355 0.0380 0.4059 0.2649 0.1080 3.6211 -1.9E-03 

Jump 2 end 61.497 70.494 4856 5551 10727 35355 0.0379 0.4024 0.2645 0.1081 3.5188 -1.9E-03 

11 

X0 28.125 51.556 34556 26765 24227 46778 0.1249 0.0077 0.3288 0.1592 1.6408 -6.4E-02 

(1) Jump 1 end 27.877 50.431 34556 26765 24227 46778 0.1249 0.0077 0.3288 0.1592 1.4546 -6.4E-02 

Jump 2 end 27.877 50.431 34556 26765 24227 46778 0.1249 0.0077 0.3288 0.1592 1.4546 -6.4E-02 

12 

X0 14.625 67.556 46436 20704 2136 20417 0.2996 0.1641 0.4579 0.2616 4.5127 -6.2E-02 

(2) Jump 1 end 12.765 64.501 46436 20704 2136 20417 0.2996 0.1641 0.3900 0.2616 2.8336 -8.8E-04 

Jump 2 end 1.503 64.501 46436 20704 2136 20417 0.2996 0.1639 0.1636 0.2587 2.0563 -8.8E-04 

13 

X0 48.375 70.222 30992 28930 42636 5479 0.0684 0.3985 0.1575 0.4152 5.9100 -2.5E-02 

(2) Jump 1 end 48.448 70.496 30992 28930 42636 5479 0.0684 0.3985 0.1575 0.4149 5.4937 -2.8E-03 

Jump 2 end 61.496 70.496 30992 28930 42636 5479 0.0685 0.3985 0.1575 0.3472 3.4575 -2.4E-03 
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Table D-1 - Continued 

Start 
Point 

Point 
Definition 

Design Variable Definition Function 
Value 

(penalized) 
gmax 

Stop 
Criteria 

L1 
(in) 

L2 
(in) 

K1 
(lbf/in) 

K2 
(lbf/in) 

K3 
(lbf/in) 

K4 
(lbf/in) 

C1 C2 C3 C4 

14 

X0 34.875 65.778 25052 44083 34045 39749 0.3304 0.1394 0.3512 0.0745 39.5374 -8.6E-02 

(2) Jump 1 end 35.810 64.502 25052 44083 34045 39749 0.3305 0.1394 0.3514 0.0745 24.2341 -1.3E-03 

Jump 2 end 37.586 65.611 25052 44083 34045 39749 0.3307 0.1394 0.3512 0.0772 16.1061 -8.9E-02 

15 

X0 46.688 53.630 11984 22003 13182 40627 0.4795 0.1682 0.2024 0.2457 2.3867 -4.1E-02 

(2) Jump 1 end 46.500 52.226 11984 22003 13182 40627 0.4792 0.1681 0.2024 0.2457 1.9251 -1.9E-04 

Jump 2 end 46.500 48.001 11984 22003 13182 40627 0.4791 0.1682 0.2024 0.2457 1.6110 -1.9E-04 

16 

X0 60.188 69.630 23864 15942 40182 14266 0.1609 0.3245 0.3316 0.3482 3.7861 -3.3E-02 

(2) Jump 1 end 60.661 70.494 23864 15942 40182 14266 0.1609 0.3245 0.3316 0.3479 3.6010 -4.3E-03 

Jump 2 end 61.497 70.494 23864 15942 40182 14266 0.1608 0.3242 0.3316 0.3477 3.5543 -1.9E-03 

17 

X0 53.438 67.852 579 46248 18537 33598 0.1917 0.2998 0.2249 0.1610 6.6213 -5.8E-02 

(2) Jump 1 end 55.080 70.351 579 46248 18537 33598 0.0050 0.2998 0.2251 0.1610 4.2305 -7.1E-03 

Jump 2 end 55.103 70.414 579 46248 18537 33598 0.0050 0.2998 0.2251 0.1610 4.2004 -1.5E-05 

18 

X0 47.531 60.741 48099 15076 28355 26568 0.3972 0.4314 0.2474 0.0762 13.5771 -3.8E-02 

(2) Jump 1 end 47.441 61.497 48099 15076 28355 26568 0.3972 0.4319 0.2474 0.0763 10.6653 -2.2E-03 

Jump 2 end 46.501 61.497 48099 15076 28355 26568 0.3973 0.4332 0.2474 0.0763 10.3250 -6.0E-04 

19 

X0 52.594 58.370 19587 32394 8719 1694 0.0273 0.3327 0.3147 0.3164 8.4744 -1.6E-01 

(2) Jump 1 end 53.761 55.262 19587 32394 8719 1694 0.0280 0.3330 0.3149 0.2536 1.9539 -8.0E-04 

Jump 2 end 53.761 55.262 19587 32394 8719 1694 0.0337 0.3330 0.3141 0.0060 1.9537 -8.0E-04 

20 

X0 53.016 55.210 27190 18539 43529 22783 0.3271 0.3656 0.4046 0.4718 2.4888 -5.7E-02 

(1) Jump 1 end 53.288 54.800 27190 18539 43529 22783 0.3271 0.3656 0.4046 0.4718 1.8908 -7.7E-03 

Jump 2 end 53.288 54.800 27190 18539 43529 22783 0.3125 0.0124 0.4101 0.4597 1.8908 -7.7E-03 

21 

X0 64.617 68.181 5426 29549 4033 48062 0.0122 0.1244 0.3438 0.1263 3.4690 -3.9E-02 

(2) Jump 1 end 66.311 67.815 5426 29549 4033 48062 0.0121 0.1244 0.3349 0.1263 3.1904 -3.0E-03 

Jump 2 end 66.311 67.815 5426 29549 4033 48062 0.0121 0.1234 0.0128 0.1258 3.1903 -3.0E-03 

22 

X0 66.410 69.761 41541 7778 9388 2100 0.2588 0.4206 0.4570 0.1121 3.0474 -3.1E-02 

(2) Jump 1 end 67.564 69.065 41541 7778 9388 2100 0.2587 0.4163 0.4557 0.0080 2.9586 -3.1E-04 

Jump 2 end 67.564 69.065 41541 7778 9388 2099 0.2699 0.0055 0.3551 0.0080 2.9585 -3.1E-04 

23 

X0 65.988 68.971 27856 21632 15231 8589 0.2298 0.4934 0.2325 0.0839 3.3869 -1.3E-02 

(1) Jump 1 end 67.320 68.827 27856 21632 15231 8589 0.2298 0.4931 0.2325 0.0830 3.2970 -4.3E-03 

Jump 2 end 67.320 68.827 27856 21632 15231 8589 0.2298 0.4931 0.2325 0.0830 3.2970 -4.3E-03 

24 

X0 65.145 70.288 14550 48351 20586 15618 0.4474 0.2699 0.3672 0.0698 3.4558 -2.4E-02 

(2) Jump 1 end 65.265 70.497 14550 48351 20586 15618 0.4474 0.2699 0.3673 0.0697 3.4457 -2.1E-03 

Jump 2 end 68.995 70.497 14550 48351 20586 15618 0.4472 0.2697 0.3692 0.0686 3.3988 -1.4E-03 
 

Direct Search (SQP) Results 

Start Point 29.245 50.478 44060 2520 14409 4601 0.4126 0.3347 0.3063 0.2403 1.4511 (1) 
Constraints 

Satisfied 
Iteration 0 29.245 50.478 44060 2520 14409 4601 0.4126 0.3347 0.3063 0.2413 1.4511 

Iteration 1 (end point) 29.245 50.417 44060 2520 14409 4601 0.4126 0.3344 0.3063 0.2403 1.4511 

Stopping Criteria:  (1) Convergence achieved, (2) Convergence not achieved, max jumps completed, (3) No feasible results found 
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Table D-2 Sn Vectors by starting point and jump 

Start 
Point 

Jump 
Sn Vector Component 

L1 L2 K1 K2 K3 K4 C1 C2 C3 C4 

1 
1 2.64E-01 9.65E-01 0.00E+00 2.29E-05 0.00E+00 0.00E+00 -9.18E-07 -2.75E-06 -3.90E-06 -2.25E-05 

2 2.11E-01 9.77E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.05E-05 0.00E+00 -1.05E-05 

2 1 Sn=[0] 

3 1 Sn=[0] 

4 
1 -2.66E-01 -9.64E-01 0.00E+00 -1.06E-04 0.00E+00 -3.53E-05 -1.18E-06 -4.12E-03 -4.71E-06 -4.33E-04 

2 Sn=[0] 

5 
1 2.06E-01 9.79E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.70E-05 1.18E-05 0.00E+00 -2.59E-04 

2 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -4.51E-03 -4.68E-03 -4.76E-03 -3.85E-03 

6 
1 3.28E-02 -9.99E-01 0.00E+00 0.00E+00 0.00E+00 4.63E-05 1.90E-06 2.78E-05 -1.39E-05 1.06E-04 

2 9.98E-01 -5.92E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.47E-06 9.24E-05 0.00E+00 2.59E-03 

7 
1 1.88E-01 9.82E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.08E-05 0.00E+00 0.00E+00 -2.15E-05 

2 Sn=[0] 

8 
1 2.93E-01 9.56E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.98E-05 2.07E-04 4.97E-03 9.15E-04 

2 3.10E-01 9.51E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.53E-04 5.95E-03 8.88E-05 

9 
1 -3.37E-01 8.92E-01 0.00E+00 0.00E+00 0.00E+00 -3.82E-03 7.65E-05 3.06E-05 1.29E-04 -3.01E-01 

2 -9.87E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.53E-02 -3.18E-05 3.18E-05 1.72E-04 -1.58E-01 

10 
1 8.10E-01 5.86E-01 -6.36E-05 -1.40E-04 -1.27E-05 0.00E+00 6.31E-05 -2.20E-03 8.90E-05 5.09E-06 

2 0.00E+00 1.00E+00 0.00E+00 -2.01E-04 0.00E+00 0.00E+00 -1.66E-04 -3.52E-03 -4.22E-04 1.00E-05 

11 
1 -2.15E-01 -9.77E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.74E-07 0.00E+00 8.68E-06 

2 Sn=[0] 

12 
1 -5.20E-01 -8.54E-01 0.00E+00 0.00E+00 -3.08E-04 0.00E+00 0.00E+00 2.80E-06 -1.90E-02 -1.12E-05 

2 -1.00E+00 0.00E+00 0.00E+00 -8.88E-06 -3.91E-04 -1.78E-05 8.88E-07 -1.86E-05 -2.01E-02 -2.55E-04 

13 
1 2.57E-01 9.66E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.27E-03 

2 1.00E+00 0.00E+00 0.00E+00 -7.66E-06 0.00E+00 -3.07E-04 6.05E-06 -3.83E-06 -2.30E-06 -5.19E-03 

14 
1 5.91E-01 -8.07E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.90E-05 6.32E-06 1.01E-04 1.26E-05 

2 8.48E-01 5.29E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.19E-04 0.00E+00 -8.59E-05 1.28E-03 

15 
1 -1.32E-01 -9.91E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.98E-04 -2.12E-05 -7.06E-06 0.00E+00 

2 0.00E+00 -1.00E+00 -2.37E-05 0.00E+00 0.00E+00 0.00E+00 -2.13E-05 4.73E-06 -7.10E-06 -4.73E-06 

16 
1 4.81E-01 8.77E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.02E-05 -4.06E-05 0.00E+00 -2.54E-04 

2 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.20E-04 -1.32E-04 -3.35E-04 2.39E-05 -2.51E-04 

17 
1 5.48E-01 8.34E-01 -8.68E-04 0.00E+00 0.00E+00 0.00E+00 -6.23E-02 3.34E-06 5.01E-05 1.00E-05 

2 3.39E-01 9.41E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -5.33E-04 0.00E+00 1.51E-04 0.00E+00 
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Table D-2- Continued 

Start 
Point 

Jump 
Sn Vector Component 

L1 L2 K1 K2 K3 K4 C1 C2 C3 C4 

18 
1 -1.18E-01 9.93E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.31E-05 5.78E-04 1.31E-05 4.47E-05 

2 -1.00E+00 0.00E+00 0.00E+00 2.13E-04 0.00E+00 0.00E+00 1.06E-05 1.42E-03 4.25E-05 4.25E-05 

19 
1 3.51E-01 -9.36E-01 -3.01E-05 0.00E+00 0.00E+00 -6.62E-04 2.13E-04 9.94E-05 4.22E-05 -1.89E-02 

2 0.00E+00 0.00E+00 -9.28E-03 -4.04E-03 -4.04E-04 -2.70E-02 2.32E-02 -8.07E-05 -2.99E-03 -9.99E-01 

20 
1 5.53E-01 -8.33E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.03E-05 -8.12E-05 0.00E+00 0.00E+00 

2 0.00E+00 0.00E+00 -1.75E-01 -4.35E-01 -4.99E-04 -5.74E-03 -3.64E-02 -8.82E-01 1.39E-02 -3.01E-02 

21 
1 9.77E-01 -2.11E-01 -1.15E-04 0.00E+00 -2.31E-04 0.00E+00 -1.50E-05 -1.15E-05 -5.14E-03 0.00E+00 

2 0.00E+00 0.00E+00 -6.04E-02 -5.26E-03 -4.52E-02 -9.29E-04 -1.55E-04 -3.13E-03 -9.97E-01 -1.39E-03 

22 
1 8.54E-01 -5.15E-01 0.00E+00 -2.22E-04 -7.40E-05 -5.18E-03 -5.18E-05 -3.19E-03 -1.01E-03 -7.70E-02 

2 0.00E+00 0.00E+00 -6.40E-04 -6.74E-02 -1.41E-02 -7.33E-01 1.78E-02 -6.57E-01 -1.61E-01 0.00E+00 

23 
1 9.94E-01 -1.08E-01 0.00E+00 -7.46E-05 0.00E+00 -2.24E-04 -7.46E-06 -2.31E-04 2.99E-05 -6.79E-04 

2 Sn=[0] 

24 
1 4.99E-01 8.67E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.15E-04 -1.12E-04 

2 1.00E+00 0.00E+00 0.00E+00 0.00E+00 -5.36E-05 -2.14E-04 -6.70E-05 -5.36E-05 4.93E-04 -3.16E-04 
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Table D-3 Line search results by starting point and jump 

Start 
Point 

Jump 

Location of 
minimum 
along 1D 
search 
vector 

Maximum 
length of 1D 

search 
vector 

Polynomial 
correlation 

(R
2
) 

Polynomial 
error at 

identified 
minimum 

(%) 

Function 
evaluations 

per jump 

1 
1 4.359 13.989 0.99965 0.1349 15 

2 0.190 9.510 0.99984 -0.1377 25 

2 1 0.000 0.000 0.00000 0.0000 15 

3 1 0.000 0.000 0.00000 0.0000 15 

4 
1 8.493 12.614 1.00000 0.0000 25 

2 0.000 4.061 1.00000 0.0162 16 

5 
1 0.851 0.851 0.99997 0.0022 15 

2 0.791 39.572 0.99996 -0.0821 25 

6 
1 2.161 2.161 1.00000 0.0000 25 

2 0.108 0.108 1.00000 0.0000 15 

7 
1 0.466 8.313 0.99631 -0.3897 25 

2 0.000 7.382 1.00000 0.0000 25 

8 
1 0.251 4.306 0.99999 -0.9621 16 

2 0.225 3.414 1.00000 -0.2857 16 

9 
1 1.308 1.308 1.00000 -0.0001 15 

2 0.315 0.315 1.00000 0.0000 15 

10 
1 7.865 7.865 0.99988 0.0257 15 

2 0.996 0.996 1.00000 0.0000 15 

11 
1 1.152 5.176 0.99816 -0.3671 25 

2 0.000 4.312 0.99998 0.0240 25 

12 
1 3.577 3.577 1.00000 -0.0005 15 

2 11.264 11.264 1.00000 0.0001 15 

13 
1 0.283 0.283 1.00000 -0.0001 15 

2 13.049 13.049 1.00000 0.0001 15 

14 
1 1.582 1.582 0.99984 0.0113 15 

2 2.095 9.065 0.99980 -0.1138 25 

15 
1 1.416 1.416 1.00000 0.0001 15 

2 4.225 4.225 - 0.0000 25 

16 
1 0.985 0.985 1.00000 0.0000 15 

2 0.836 0.836 1.00000 0.0000 15 

17 
1 2.997 2.997 1.00000 0.0004 15 

2 0.066 0.066 1.00000 0.0000 15 

18 
1 0.761 0.761 1.00000 0.0001 15 

2 0.940 0.940 0.99987 -0.0005 15 

19 
1 3.321 3.321 1.00000 0.0075 15 

2 0.248 0.248 1.00000 0.0000 15 

20 
1 0.493 0.493 1.00000 0.0000 15 

2 0.401 0.404 1.00000 0.0000 15 

21 
1 1.733 1.733 1.00000 -0.0001 15 

2 0.323 0.323 1.00000 0.0000 20 
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Table D-3- Continued    

Start 
Point 

Jump 

Location of 
minimum 
along 1D 
search 
vector 

Maximum 
length of 1D 

search 
vector 

Polynomial 
correlation 

(R
2
) 

Polynomial 
error at 

identified 
minimum 

(%) 

Function 
evaluations 

per jump 

22 
1 1.352 1.352 1.00000 0.0000 15 

2 0.625 0.625 1.00000 0.0000 15 

23 
1 1.340 1.340 1.00000 0.0000 15 

2 0.000 2.818 1.00000 -0.0056 15 

24 
1 0.241 0.241 0.99986 0.0000 15 

2 3.730 3.730 1.00000 0.0000 15 
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