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ABSTRACT

ADVANCED SPARSITY TECHNIQUES IN MEDICAL IMAGING AND IMAGE

PROCESSING

Chen Chen, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Junzhou Huang

In the past decades, sparsity techniques has been widely applied in the fields

of medical imaging, computer vision, image processing, compressive sensing, machine

learning etc., and gained great success. In this work, we propose new models of

sparsity techniques, which is an extension to the standard sparsity used in the existing

works and in the vein of structure sparsity families. First, we introduce the wavelet

tree sparsity in natural images. It shows that the tree sparsity regularization often

outperforms the existing standard sparsity based techniques in magnetic resonance

imaging. Second, we extend the tree sparsity to forest sparsity on multi-channel

data. A new theory is developed for forest sparsity, which is compared with the

standard sparsity, tree sparsity and joint sparsity both empirically and theoretically.

Motivated by the special datasets in remote sensing, we propose a new sparsity model

called dynamic gradient sparsity to improve the fusion results. Moreover, a novel

model called deep sparse representation is investigated and successfully used in image

registration. Finally, we propose a set of fast reweighted least squares algorithms for

different optimization problems based on sparsity regularization.
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CHAPTER 1

INTRODUCTION

1.1 Problem

We are facing a era of big data. Over 350 million new photos are uploading

to Facebook each day 1. Based on the statistic of Youtobe, “100 hours of video are

uploaded to YouTube every minute and over 6 billion hours of video are watched each

month, that’s almost an hour for every person on Earth”2. It is a challenging task

to store and transmit such data efficiently. In medical imaging, such as magnetic

resonance imaging (MRI) patient has to stay in the machine for more than 30 min-

utes, for a scan of the majority parts3. To obtain a high quality image, it is almost

unavoidable to accept some dose of X-rays in computed tomography (CT scans)4. If

we could find a more efficient way to represent the visual information we needed, the

tasks of image processing and medical imaging will become easier and less painful.

1.2 Sparse Representation in Medical Imaging and Image Processing

1.2.1 Compressed Sensing

Actually, most of the information in the natural images is redundant. Our

human eyes can quickly obtain key information of an image without looking the

details of each pixel. Our interested data pieces are relatively very sparse compared

with the whole data. In compressed sensing (CS), the capture of a sparse signal and

1http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
2https://www.youtube.com/yt/press/statistics.html
3http://info.shields.com/bid/43435/MRI-CT-and-PET-Scan-Times
4http://www.xrayrisk.com
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compression are integrated into a single process [18, 19]. Mathematically speaking,

if the data is denoted as a vector x ∈ RN , we can exactly reconstruct the data with

only M linear measurements b instead of N total entries under mild assumptions:

b = Φx+ e (1.1)

where Φ ∈ RM×N is a random projection matrix, with M < N . This enables us to

avoid the process of acquiring whole data and then compressing it. CS also provides

the theoretical support for image recovery from limited number of measurements.

1.2.2 Sparse MRI

In medical imaging (or more precisely, MRI), the scanning of a typical image

often costs long time due to both physical and physiological reasons [1]. Local motions

e.g. breathing, heart beating during the long time scanning may result in ghosting,

smearing, streaking on the reconstructed MR image.

Compressive sensing has received abundant attention in the MRI community

since it is first studied in MRI by Lustig et al. [1]. The MR image reconstruction

process can be formulated as:

x̂ = arg min
x
{1

2
‖Fx− b‖2 + α‖x‖TV + β‖Φx‖1} (1.2)

where x is a MR image to be reconstructed, F is the undersampled Fourier transform,

y is the vector of k-space measurements, Φ is the wavelet basis, ||x||TV is the total

variation defined as ‖x‖TV =
∑N

i=1

√
((∇1xi)2 + (∇2xi)2). Here, ∇1 and ∇2 denote

the forward finite difference operators on the first and second coordinates. α and β

are two parameters to be tuned. Such conventional CS-MRI method can reconstruct

a MR image accurately from undersampled k-space data by utilizing the sparsity of

the image in the wavelet or gradient domain. Therefore the sampling processing (i.e.,

the scanning) can be significantly reduced.

2



1.2.3 Applications in image processing and computer vision

In addition to the great success in medical image, sparsity based techniques

are also very useful in image processing and computer vision, such as image registra-

tion [20] face recognition [21], image super-resolution [22], background substraction

[23], photometric stereo [24] etc. The ability of sparse representations to uncover

semantic information in image processing and computer vision is based on that, the

images (naturally very high dimensional) often lie on or near low-dimensional sub-

spaces, submanifolds, or stratifications [25]. The optimization methods such as `1

norm minimization can efficiently extract such key structures, and then recover the

original image without or with little information lost. Algorithms based on sparse

representation can often achieve state-of-the-art performance if the sparsity properly

applied [25].

1.3 Motivation

The above mentioned methods have achieved great success in medical imaging

and image processing, but they often merely use the sparsity prior to solve the prob-

lems. In a lot of practical data, the sparsity patterns are not randomly distributed

but follow some special structures. For example, in diffuse optical imaging [26], the

activation area of human brain corresponding to a finger tapping task often is sparse

among the whole brain. In addition, such activation is often clustered in certain re-

gion(s). In dynamic MR images [27], all the images of a cardiac motion have very

similar structures along the temporal direction. In background subtraction [28], the

foreground objects are often consisted of mutually connected pixels but not randomly

distributed ones. Theoretically, it has been shown that better performance can be

obtained if we could exploit more prior information about the data [29, 30, 31].
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Although both the theories and intuitions encourage advanced methods beyond

sparsity techniques for practical applications, the existing structured sparsity based

models are still very limited. To bridge this gap, we study several different applica-

tion and propose advanced data-driven sparsity models to improve the performance.

In MRI, we observe the wavelet tree structure of the MR images, which enables us

to incorporate the wavelet structure in reconstruction to reduce the sampling rate.

This is then extended to the multi-channel images. In remotely sensed images, we

find the strong correlations between the panchromatic image and the multispectral

image. Thus, the high resolution multispectral image to be recovered can be accu-

rately modeled based on the prior information of the panchromatic image. Unlike the

medical images and the remotely sensed images, the natural photos may be captured

at significantly different illumination environments and contain partial occlusions and

big noise. Therefore it is intuitively to overcome such difficulties separately in a hier-

archical architecture. Finally, the existing optimization algorithms are often `1 norm

based minimization. When we need to solve complex sparsity inducing problems,

many of the existing algorithms may not work efficiently. This motivate us to de-

velop new efficient algorithms for the challenging optimization problems. The works

in this thesis may inspirit more and more advanced work in medical imaging and

image processing.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 investigates the benefit

of tree sparsity in accelerated MRI. We extend the tree sparsity to forest sparsity

on multi-channel data in Chapter 3. Theorems of the advantages of forest sparsity

are developed. We also show several potential applications of forest sparsity. In

Chapter 4, we propose the dynamic gradient sparsity for remotely sensed images. It
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shows that the image to be recovered can be more efficiently represented by using

the gradient prior information in a reference image. To overcome the difficulties in

image registration, we proposed a novel model called deep sparse representation in

Chapter 5. It can handle partial occlusions, outliers and intensities distortions in a

unified framework. In Chapter 6, a set of fast reweighted least squares algorithms

are proposed to solve the convex optimization problems based on sparsity techniques.

Finally, we conclude the contributions of this thesis in Chapter 7.
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CHAPTER 2

Tree Sparsity in Accelerated Magnetic Resonance Imaging

This chapter investigates the benefits of the tree sparsity in Accelerated Mag-

netic Resonance Imaging (MRI). In contrast to conventional Compressed Sensing

Magnetic Resonance Imaging (CS-MRI) that only relies on the sparsity of MR images

in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-

MRI. Simulations and experiments on human brain data demonstrate the significant

improvement of the proposed method compared to conventional CS-MRI algorithms.

This work was presented under a slightly modification from [88].

2.1 Introduction

Magnetic Resonance Imaging provides a non-invasive manner to aid clinic di-

agnosis while its limitation is the slow scanning speed. Local motions e.g. breathing,

heart beating during the long time scanning may result in ghosting, smearing, streak-

ing on the reconstructed MR image. Parallel MRI (pMRI) [32, 33, 34, 35, 36]and

compressed sensing MRI [1] techniques are developed to reduce MR scanning time

by undersampling. CS-MRI addresses the issue of recovering images from undersam-

pled k-space data based on compressed sensing (CS) theory [37][18], while the image

domain pMRI methods (e.g. SENSE [32]) reconstruct the field of view (FOV) by the

aliased images obtained from all coils. This difference makes it possible to combine

them in the two-step CS-SENSE scheme to further accelerate MRI scanning [38].

After data is acquired by hardware, the k-space data is first recovered by CS-MRI

6



methods to aliased images, and then final FOV is unfolded by SENSE from all the

aliased images in the first step.

Although both steps are essential to rapid MRI, CS-MRI attracts more atten-

tions recently due to the emerging of CS and sparsity theories and a lot of efficient

algorithms (e.g. FISTA [39] and SPGL1 [40]). SparseMRI [1] is the first work to re-

construct MR images from undersampled data based on CS theory, which models MR

image reconstruction as a linear combination of least squares fitting, wavelet spar-

sity and total variation (TV) regularization. The non-smooth terms in their model

are smoothed with positive smoothing parameters and then the whole problem is

solved by conjugate gradient (CG) method. To improve the reconstruction accuracy

and speed, TVCMRI [2] and RecPF [3] use an operator-splitting method and a vari-

able splitting method to solve this problem respectively. FCSA [41] [4] decomposes

the original problem into two easy subproblems and separately solves each of them

with FISTA [42][39]. They are the state-of-the-art algorithms for CS-MRI. However,

such methods may be still limited in clinic MRI due to their reconstruction speed

and accuracy. Therefore, algorithms that are both efficient and accurate are quite

desirable.

It can be observed that all of the above methods solve the same model as

SparseMRI, where the structure of wavelet coefficients are not exploited. Actually,

the wavelet coefficients of MR images are not only compressible, but also yield a hier-

archical quadtree structure, which is widely applied on image compression [43][44] and

signal processing [45]. A typical relationship in the wavelet tree structure is that, if a

parent coefficient has a large/small value, its children also tend to be large/small. Re-

cent works on structured sparsity show that the sampling bound could be reduced to

O(K+log(N/K)) by fully exploiting the tree structure instead ofO(K+K log(N/K))

for standard sparsity [29][30], where K represents the non-zero elements of the sparse
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data and N is the length of the data. This benefit also can be interpreted as that tree

sparsity-inducing penalties encourage tree structure compared with standard sparsity

penalties [46][47]. Intuitively, less k-space data is required for the same reconstruc-

tion quality, or more accurate reconstruction can be achieved for the same number

of k-space samples. Some methods have been proposed to improve compressed sens-

ing imaging by utilizing the tree sparse prior and generally can be divided into three

types: greedy algorithms [29][30][48], convex programming [49] and Bayesian learning

[50][51][13]. Although these algorithms provide better reconstruction accuracy than

those with standard sparsity, they are slow in general due to the intricate tree struc-

ture. Apart from this, the sampling matrix is partial Fourier transform in CS-MRI

but not random Gaussian matrix that they assumed. Finally, these methods have

been validated only on real-valued images while practical MR data is complex-valued.

Therefore, no evidence can guarantee the success of these methods in MRI.

In this chapter, we propose a new model to improve conventional CS-MRI

[1][2][3][41] [4], where the tree sparsity is combined with standard sparsity and total

variation seamlessly. We approximate the tree sparsity as overlapping group sparsity

[52]. Due to trade-off between accuracy and computational cost, every coefficient and

its parent coefficient are assigned into one group, which force them to be zeros or

non-zeros simultaneously. With this configuration, the algorithm will encourage the

reconstructed wavelet coefficients to be tree-sparse, but not randomly distributed as

by standard sparsity. To solve this overlapping group sparsity problem, an auxiliary

variable is introduced to decompose it to three simpler subproblems. Then each

of subproblems has a closed form solution or can be solved efficiently by existing

techniques. After the data from each coil is reconstructed in the image domain, it is

easily to combine pMRI method (e.g. SENSE) in practical applications. Numerical

simulations and experiments on human brain MR data demonstrate that the proposed
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method always outperforms previous methods on various MR images in terms of both

accuracy and computational cost.

2.2 Related Work

2.2.1 CS-MRI

Generally, MR images are sparse in the wavelet domain and the gradient do-

main, and can be reconstructed with sub-Nyquist-Shannon sampling ratio based on

compressed sensing theory. The MRI is first modeled as a CS problem in SparseMRI

[1]. Suppose b is the undersampled k-space data, A is the sampling matrix (partial

Fourier transform in MRI), then the CS-MRI can be formulated as the linear combi-

nation of a least square fitting, total variation and wavelet sparsity regularization:

x̂ = arg min
x
{1

2
‖Ax− b‖2

2 + α‖x‖TV + β‖Φx‖1} (2.1)

where α and β are two positive parameters, x is the image to be reconstructed and Φ

denotes the wavelet transform. ‖x‖TV =
∑

i

∑
j

√
(∇1xij)2 + (∇2xij)2, where ∇1 and

∇2 denote the forward finite difference operators on the first and second coordinates.

Due to the non-smoothness of `1 norm and total variation, there is no closed form

solution for this problem.

In SparseMRI, the non-smooth terms are transformed to smooth ones by in-

troducing positive smoothing parameters. For example, ||Φx||1 ≈
√

(Φx)T (Φx) + µ

where µ is positive and close to zero. Then the approximated problem is solved by

classical conjugate gradient (CG) method. Recently, two fast methods TVCMRI [2]

and RecPF [3] use an operator-splitting method and a variable splitting method to

solve this problem respectively. Both of them have lower time complexity in each

iteration, which can substantially reduce the reconstruction time. Accelerated by

FISTA [42][39], FCSA [41][4] decomposes the original problem into two subproblems
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and then each of them can be solved by existing techniques or has closed form solu-

tion. Apart from these, some methods tried to reconstruct compressed MR images

by performing `p-quasinorm (p < 1) regularization optimization [53][54][55], which

are relatively slow although a little bit of higher compression ratio can be achieved.

Overall, all the above methods only improve CS-MRI on the algorithmic level. No

structured prior information is utilized other than sparsity.

2.2.2 Theoretical Benefit of Wavelet Tree Structure

The wavelet coefficients for natural data (signals or images) are often approx-

imately sparse, with only a small number of the coefficients have large values and

a large fraction of them are approximate zeros. Apart from this, the wavelet coeffi-

cients also yield a quadtree structure for a 2D image. The coefficients in the coarsest

scale can be seen as the root nodes and the coefficients in the finest scale are the leaf

nodes. Each coefficient (non leaf) has four children in the finer scale below it. Figure

2.1 shows the wavelet quadtree structure of an MR image. If this structure can be

utilized, the result will be better as more prior information exploited.

(a) (b) (c)

Figure 2.1. Wavelet quadtree structure: a) A cardiac MR image; (b)(c) The corre-
sponding tree structure of the wavelet coefficients.
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Based on structured sparsity theories, only O(K + log(N/K)) measurements

is needed to recover tree-sparse data rather than O(K + K log(N/K)) for standard

K-sparse data [30, 31, 29]. Once the location of a non-zero element is fixed, all its

ancestors should be non-zeros. Therefore the number of the solution subspaces for

Rx = b is significantly limited. The wavelet coefficients also tend to have this good

property. If a parent coefficient has a large/small value, its children also tend to

be large/small. By exploiting wavelet tree structure, significant improvement can be

achieved especially when the data is very compressible (K << N).

2.2.3 Algorithmic Benefit of Wavelet Tree Structure

Rao et al. [49] consider the wavelet tree structure as overlapping group lasso

regularization [52]:

min
x
{F (x) =

1

2
‖Aθ − b‖2

2 + β
∑
g∈G

||θg||2} (2.2)

where θ is the wavelet coefficients. A = RΦT for MR image reconstruction problem,

ΦT is an inverse wavelet transform. β is positive parameter, G denotes the all parent-

child groups and g is one of such groups. When θ is recovered, it can be transferred

to the image by an inverse wavelet transform. By geometric interpretation, `1 norm

ball has some singular values at the axes, which only encourages sparseness with no

constrains on the selection of axes. The singular values appears on `2,1 norm ball

only when all coordinates in the same group are zeros. Intuitively, overlapping group

inducing norm ball encourages overlapping group sparsity [52]. Our work is motivated

by Rao’s method [49], however, we do not introduce this method to CS-MRI, because

the replicating of the sampling matrix in their algorithm is not preferred. Moreover,

its solver SpaRSA [56] only achieves the convergence rate O(1/k) in function value,

which is unable to be comparable with the fastest ones with O(1/k2).
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2.3 Algorithm

To validate the benefit of tree sparsity in accelerated MRI, we propose two

algorithms to efficiently solve the constrained and unconstrained tree-based CSMRI

problems respectively. The tree structure in MR images is approximated as overlap-

ping groups [52, 49]. The unconstrained problem is solved in FISTA [39] framework

and the constrained problem is solved in NESTA [5] framework. Both FISTA and

NESTA have the optimal convergence rate for first order methods, that is, O(1/k2)

in function value where k is the iteration number [57].

2.3.1 Unconstrained Tree-based MRI

Following overlapping group sparsity algorithms [52, 49], The unconstrained

MRI problem with tree sparsity can be formulated as:

x̂ = min
x
{1

2
‖Rx− b‖2

2 + β
∑
g∈G

||Φx||2} (2.3)

where x is the MR image to be reconstructed, R is the partial Fourier transform, b is

the measurement vector, Φ denotes the wavelet transform, β is a positive parameter

need to be tuned. Here, g denotes one of the groups that encourages tree sparsity

(e.g. one node and its parent) and G denotes the set of all such groups. Due to the

nonsmoothness and nonseparability of the overlapping group penalty, it is not easy

to solve the problem directly. Instead, we introduce a variable z to constrain the

problem:

x̂ = arg min
x,z
{1

2
‖Rx− b‖2

2 + β
∑
g∈G

||zg||2 +
λ

2
||z −GΦx||22} (2.4)

where λ is another positive parameter, G is a binary matrix to duplicate the over-

lapped entries. z is the extended vector of wavelet coefficients x without overlapping.
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All terms in our model are convex. For the z subproblem:

zg = arg min
zg
{β||zg||2 +

λ

2
||zg − (GΦx)g||22}, g ∈ G (2.5)

It has closed form solution by soft thresholding:

zg = max(||r||2 −
β

λ
, 0)

r

||r||2
, g ∈ G (2.6)

where r = (GΦx)g. We denote this step by z = shrinkgroup(GΦx, β
λ
) for conve-

nience. For the x-subproblem:

x = arg min
x
{1

2
‖Rx− b‖2

2 +
λ

2
||z −GΦx||22} (2.7)

This is a combination of two quadratic terms and has closed form solution: x =

(RTR + λΦTGTGΦ)−1(RT b + ΦTGT z). However, the inverse of RTR + λΦTGTGΦ

is not easily obtained. In order to validate the benefit of tree structure, we apply

FISTA to solve the x subproblem, which can match the convergence rate of FCSA.

Let f(x) = 1
2
‖Rx− b‖2

2 + λ
2
||z −GΦx||22, which is a convex and smooth function with

Lipschitz Lf , and g(x) = 0. Then our algorithm can be summarized in Algorithm 1,

which called FISTA Tree. Here∇f(rk) = RT (Rrk−b)+λΦTGT (GΦrk−z). RT and

Algorithm 1 FISTA Tree

Input: ρ = 1/Lf , r
1 = x0, t1 = 1, β, λ,N

for k = 1 to N do
z = shrinkgroup(GΦxk−1, β/λ)
xk = rk − ρ∇f(rk)
tk+1 = [1 +

√
1 + 4(tk)2]/2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for

ΦT denote the inverse partial Fourier transform and the inverse wavelet transform.
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Computational complexity. Note that G ∈ RN ′×N is a sparse matrix with each

row containing only one nonzero element 1. Therefore, the multiplication by G only

cost O(N ′) = O(N) with our group configuration. Suppose x is an image with N

pixels. The shrinkgroup step can implemented in only O(N logN) time and the

gradient step also takes O(N logN). We can find the total time complexity in each

iteration is still O(N logN), the same as that of TVCMRI, RecPF and FCSA. This

good feature guarantees the proposed algorithm could be comparable with the fastest

MRI algorithms in terms of execution speed.

2.3.2 Constrained Tree-based MRI

NESTA [5] solves the constrained problem of standard sparsity:

min
θ
||θ||1, s.t. ||b− Aθ||2 ≤ ε (2.8)

where θ denotes the set of wavelet coefficients with θ = Φx, A = RΦT , ΦT denotes the

inverse wavelet transform, ε is a small constant. It reaches the optimal convergence

rate for first order methods. Similar as the previous subsection, we extend it to solve

the tree-based MRI problem:

min
θ
||Gθ||2,1, s.t. ||b− Aθ||2 ≤ ε (2.9)

where ||Gθ||2,1 =
∑

g∈G ||(Gθ)g||2, and g,G are the same as those in Algorithm 1.

Recall `2,1 norm also have the form:

||Gθ||2,1 = max
u∈Q

< u,Gx > (2.10)

where the dual feasible set is:

Q = {u : ||u||2,∞ 6 1} = {u : max
g∈G
||ug||2 6 1} (2.11)

We relax the non-smooth `2,1 norm to smooth function with:
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fµ(θ) = max
u∈Q

(< u,Gθ > −µ
2
||u||22) (2.12)

where µ is a small fixed number.

Note that (Gθ)g = Ggθ where Gg the rows of G correspond to group g. The

first order gradient of fµ(θ) with Lipschitz constant Lµ is given by:

5fµ(θ)g =

 µ−1GT
gGgθ, ||Ggθ||2 < µ

GT
gGgθ/||Ggθ||2, otherwise

(2.13)

NESTA assumes the rows of the sampling matrix A are orthogonal, that is, AAT = I

where I denotes the identical matrix. Fortunately, the partial Fourier transform in

compressed sensing MRI satisfies this assumption: AAT = RΦTΦRT = RRT = I,

where RT denotes the inverse operator of R. The whole algorithm based in NESTA

[5] framework is given in Algorithm 2.

Computational complexity. As shown in Algorithm 2, the complexity of the pro-

posed algorithm the same as the original NESTA algorithm [5]. It is 6C+O(N), where

C denotes the complexity of applying A or AT . In CSMRI, C = O(N logN) if fast

Fourier transform (FFT) is applied. Therefore, the total computational complexity

is O(N logN) for each iteration, the same as that of Algorithm 1.

If we compare the two types of algorithms, the parameters can be manually

set in the unconstrained algorithm to determine how sparse the data is. Or the

weights between sparseness and the least square fitting can be controlled. However,

the constrained algorithm always seeks for the sparsest solution that satisfy the con-

strain. In the application of MRI, we find that if good parameters can be tuned,

the unconstrained algorithm (Algorithm 1) performs better, or vice versa. In con-

trast, the constrained algorithm (Algorithm 2) has the convenience without tuning

the parameter.
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Algorithm 2 NESTA Tree

Input: θ0, ε, k = 1, Lµ, µ
while not meet the stopping criterion do

1. Compute 5fµ(θ)
2. Compute yk

q = θk − L−1
µ 5 fµ(θ)

λε = max(0, ε−1||b− Aq||2 − Lµ)
yk = (I − λε

λε+Lµ
ATA)( λε

Lµ
AT b+ q)

3. Compute zk

αk = 1/2(k + 1)
q = x0 − L−1

µ

∑
i≤k5αifµ(θ)

λε = max(0, ε−1||b− Aq||2 − Lµ)
zk = (I − λε

λε+Lµ
ATA)( λε

Lµ
AT b+ q)

4. Update θk

τ k = 2(k + 3)
θk = τ kzk + (1− τ k)yk

5. k = k + 1
end while

2.4 Experiments

2.4.1 Experiment Setup

We compare the unconstrained algorithm FISTA Tree with CG [1], TVCMRI

[2], RecPF [3], FCSA [4] and compare the constrained algorithm NESTA Tree with

the original NESTA [5] algorithm for CSMRI. For fair comparisons, all code are down-

loaded from the authors’ websites and we carefully follow their experiment setup. We

apply all these methods on four real-valued MR images: cardiac, brain, chest and

shoulder respectively (shown in Figure 2.2). In addition, a complex valued MR brain

image1 is added to validate the benefit of tree sparsity on complex-valued data. Sup-

pose R is a partial Fourier transform with M rows and N columns. The sampling ratio

1http://www.eecs.berkeley.edu/∼mlustig/CS.html
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(a) (b) (c) (d)

Figure 2.2. MR images: (a) cardiac; (b) brain; (c) chest and (d) shoulder.

is defined as M/N . For simulations with real-valued images, we follow the sampling

strategy of previous works [2, 4], which randomly choose more Fourier coefficients

from low frequency and less on high frequency. For complex-valued data, the radial

sampling mask is used [3], which is more feasible in practical.

In order to study the benefit of tree structure in CSMRI, we remove the TV

term in all algorithms. The parameters for real-valued images and complex-valued

image are tuned separately. There is no continuation step [5] in the NESTA Tree

algorithm. All experiments are on a desktop with 3.4GHz Intel core i7 3770 CPU.

Matlab version is 7.8(2009a). Measurements are added by Gaussian white noise with

0.01 standard deviation. Signal-to-Noise Ratio (SNR) is used for result evaluation:

SNR = 10 log10(Vs/Vn) (2.14)

where Vn is the Mean Square Error between the original image x0 and the solution

x; Vs denotes the variance of the values in x0.

2.4.2 Group Configuration for Tree Sparsity

In all previous works, the tree structure are approximated as overlapping groups

[49, 58]. In additional, all of them only consider each wavelet coefficient and its parent

are assigned into one group. However, the relationship between one coefficient and its

grandparent is not exploited. We first conduct an experiment to validate the influence
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Table 2.1. Comparisons of SNR (db) on different group sizes for tree sparsity

β\ group size 1 2 3 4

5× 10−2 17.30 17.94 16.45 15.33
10−2 16.49 16.99 16.95 16.53

5× 10−3 16.36 16.62 16.66 16.48
10−3 16.21 16.27 16.29 16.27

Table 2.2. Comparisons of computational costs (s) on different group sizes for tree
sparsity

β\ group size 1 2 3 4

5× 10−2 0.69 0.99 1.11 1.17
10−2 0.70 0.95 1.09 1.15

5× 10−3 0.72 0.97 1.07 1.11
10−3 0.70 0.97 1.07 1.11

of the group size to the reconstruction result. Four group sizes are compared: (a)

each group one contains one coefficient, which is the same case as standard sparsity;

(b) each group contains a coefficient and its parent, which is the same as previous

works [49, 58]; (c) each group contains a coefficient, its parent and its grandparent;

(d) each group contains 4 coefficients, where the grandparent’s parent is also assigned

in the same group.

With these group configurations, we test their performance on the FISTA Tree

algorithm, except the standard sparsity case is performed on FISTA. The parameter

β determines how strong the tree sparsity assumption is. Table 2.1 and Table 2.2

show the average SNRs and CPU time on the four MR images with various param-

eter settings. With smaller parameters, the third group configuration performs the
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best, while the second group configuration is the best with larger parameters. The

computational time increase monotonously as the size of group becomes bigger. Due

to the above two reasons, we encourage the use of the second group configuration on

CS-MRI.

2.4.3 Visual Comparisons

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3. Cardiac MR image reconstruction from 20% sampling. (a) The original
image. Recovered by : (b) CG [1]; (c) TVCMRI [2]; (d) RecPF [3]; (e) FCSA [4];
(f) FISTA Tree; (g) NESTA [5]; (h) NESTA Tree. All algorithms are without total
variation regularization. Their SNR are 9.86, 14.70, 15.14, 17.31, 17.93, 16.31 and
16.96 respectively. Their computational time costs are 1.34 s, 1.12 s, 1.25 s, 0.67 s,
0.85 s, 0.88 s and 1.05 s.

We compare proposed tree-based algorithms with the fastest MRI algorithms

to validate how much the tree structure can improve existing results. To perform fair

comparisons, all methods run 50 iterations except that the CG runs only 8 iterations
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4. Brain MR image reconstruction from 20% sampling. (a) The original
image. Recovered by : (b) CG [1]; (c) TVCMRI [2]; (d) RecPF [3]; (e) FCSA [4];
(f) FISTA Tree; (g) NESTA [5]; (h) NESTA Tree. All algorithms are without total
variation regularization. Their SNR are 10.25, 13.81, 14.22, 15.65, 16.13, 15.05 and
15.52 respectively. Their computational time costs are 1.36 s, 1.11 s, 1.17 s, 0.71 s,
1.02 s, 0.91 s and 1.03 s.

due to its higher computational complexity. Total variation terms are removed in all

algorithms, as we only want to validate how much benefit the wavelet tree sparsity

can bring compared to standard wavelet sparsity. In this case, FCSA [4] is similar as

FISTA [39]. Figure 2.3-2.6 shows the visual results on the four MR images with 20%

sampling. It can be found that the proposed unconstrained algorithm FISTA Tree

is always better than CG [1], TVCMRI [2], RecPF [3] and FCSA [4]. These results

are consistent with previous observations [4]. Compared the proposed NESTA Tree

with NESTA, our method is still much better. These results are reasonable because

no structured prior information has been exploited in previous algorithms other than

sparsity, while the tree structure in our algorithms is utilized. Any coefficient that
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5. Chest MR image reconstruction from 20% sampling. (a) The original
image. Recovered by : (b) CG [1]; (c) TVCMRI [2]; (d) RecPF [3]; (e) FCSA [4];
(f) FISTA Tree; (g) NESTA [5]; (h) NESTA Tree. All algorithms are without total
variation regularization. Their SNR are 11.82, 15.09, 15.36, 15.98, 16.35, 15.91 and
16.30 respectively. Their computational time costs are 1.28 s, 1.12 s, 1.23 s, 0.67 s,
0.96 s, 0.84 s and 1.07 s.

disobeys the tree structure will be penalized in our algorithms, which makes the

results closer to the original ones.

2.4.4 SNRs and CPU time

Figure 2.7 gives the performance comparisons between different methods in

terms of SNR with 50 iterations. Due to the faster convergence rate of FISTA and

NESTA, they always outperforms CG, TVCMRI and RecPF. Moreover, the tree-

based algorithms approximated by overlapping group sparsity are always better than

those with standard sparsity. Table 2.3 shows all computational costs of different algo-

rithms. CG has the highest computational complexity. TVCMRI and RecPF is much
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6. Shoulder MR image reconstruction from 20% sampling. (a) The original
image. Recovered by : (b) CG [1]; (c) TVCMRI [2]; (d) RecPF [3]; (e) FCSA [4];
(f) FISTA Tree; (g) NESTA [5]; (h) NESTA Tree. All algorithms are without total
variation regularization. Their SNR are 12.31, 16.80, 17.90, 20.77, 21.04, 20.17 and
20.62 respectively. Their computational time costs are 1.36 s, 1.07 s, 1.25 s, 0.67 s,
0.95 s, 0.82 s and 1.07 s.

faster than CG and slower than FCSA. It is to be expected that tree based algorithms

FISTA Tree and NESTA Tree are slower than FISTA and NESTA respectively, since

the overlapping structure needs more time for computing than non-overlapping struc-

ture. However, applying the wavelet transform and the Fourier transform is still the

dominant cost, which is the same for all algorithms. As a result, FISTA Tree and

NESTA Tree are comparable to the corresponding standard sparsity algorithms in

term of reconstruction speed, and bring much more improvement on accuracy.
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Figure 2.7. Performance comparisons (SNRs) on different MR images: (a) cardiac
image; (b) brain image; (c) chest image and (d) shoulder image.

Table 2.3. Comparisons of average computational costs (s) on different MR images
with 20% sampling

Cardiac Brain Chest Shoulder
CG 9.14 8.87 9.21 9.17

TVCMRI 1.12 1.11 1.12 1.07
RecPF 1.25 1.17 1.23 1.25
FCSA 0.67 0.71 0.67 0.67

FISTA Tree 0.85 1.02 0.96 0.95
NESTA 0.88 0.91 0.84 0.82

NESTA Tree 1.05 1.03 1.07 1.07
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2.4.5 Sampling Ratios

All algorithms are compared under different sampling ratios on the four MR

images. Since we have shown that the CG method is far less efficient than other

methods, we do not include it in this experiment. To reduce the randomness, we

run each experiments 100 times to obtain the average results of each method. The

sampling ratio ranges from 17% to 25%. Figure 3.4 shows these results on the four

images. We could observe that TVCMRI and RecPF are not comparable to recent

algorithms with fast convergence rate. Under the same framework and with similar

convergence rate, the tree-based algorithms (i.e. FISTA Tree and NESTA Tree) are

always better than the corresponding standard sparsity algorithms (i.e. FCSA and

NESTA) respectively. These results further demonstrate the benefit of tree sparsity

in accelerated MRI.

2.4.6 Complex-valued with Radial Sampling Mask

We have observed the superior performance for tree-based MRI algorithms from

numerical simulations. In this subsection, we validate their performance on a complex-

valued MR image with 512× 512 pixels. The sampling mask is radial mask, which is

more feasible than the random sampling mask in practical. With previous results, we

only compare the classical method CG [1] and the fastest algorithm FCSA [4] with

the proposed tree-based algorithms.

Figure 2.9 presents the visual results reconstructed by difference methods. The

image with full sampling is used as reference image. We could observe that tree-based

algorithms FISTA Tree and NESTA Tree achieve higher SNR than standard sparsity

algorithms CG and FCSA. Due to the relative slow convergence rate of CG, it is still

not converged after 50 iterations. That is why it has inferior performance to FCSA.

This data is scanned with noise. Therefore, we also compare image quality besides
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Figure 2.8. Performance comparisons on the four MR images with different sampling
ratios: (a) cardiac image; (b) brain image; (c) chest image and (d) shoulder image.

SNR. From the zoomed in areas, image details are lost in the image reconstructed by

CG and blurred in that reconstructed by FCSA. However, both tree-based algorithms

can preserve significant features on the MR image even with a low sampling ratio.

2.5 Summary

In order to validate the benefit of wavelet tree sparsity in MR image recon-

struction, we propose two tree-based algorithms for CS-MRI and compare them with

the state-of-the-art algorithms based on standard sparsity. In order to observe the
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(a) (b) (c) (d) (e)

Figure 2.9. Reconstruction on complex-valued MR image with 20% sampling. The
first shows the visual results of by different algorithm. The second row shows the
zoomed in areas indicated by the white boxes. (a) Inverse FFT with full sampling.
(b) CG. (c) FCSA. (d) FISTA Tree. (e) NESTA Tree. Their SNRs are 15.31, 16.32,
16.65, 16.68, respectively.

benefit of tree sparsity more clearly, total variation terms are removed in all algo-

rithms. Extensive experiments are conducted to show the practical improvement of

the proposed tree-based algorithm on MR images. The results tell that the benefit

of the proposed algorithm is far from the conclusion in structured sparsity theory.

That is because the tree structure is not as strictly as the structured sparsity theories

assumed on practical data. In addition, the approximation in our implementations

may be not precise enough. To bridge the gap between the theories and practice,

future work will weight the wavelet coefficients on different levels differently, but not

treat them equally.
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CHAPTER 3

Forest Sparsity for Multi-channel Compressive Sensing

This chapter extends the tree sparsity idea to forest sparsity on multi-channel

data. A theory is developed for forest sparsity based on compressed sensing. It shows

the theoretical benefits of forest sparsity. This work was presented under a slightly

modification from [59].

3.1 Introduction

Sparsity techniques are becoming more and more popular in machine learning,

statistics, medical imaging and computer vision as the emerging of compressed sens-

ing. Based on compressed sensing theory [37, 18], a small number of measurements

are enough to recover the original data, which is an alternative to Shannon/Nyquist

sampling theorem for sparse or compressible data acquisition.

3.1.1 Standard Sparsity and Algorithms

Suppose A ∈ RM×N is the sampling matrix and b ∈ RM is the measurement

vector, the problem is to recover the sparse data x ∈ RN by solving the linear system

Ax = b. Sometimes the data is not sparse but compressible under some base Φ such

as wavelet, and the corresponding problem is AΦ−1θ = b where θ denotes the set

of wavelet coefficients. Although the problem is underdetermined, the data can be

perfectly reconstructed if the sampling matrix satisfy restricted isometry property
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(RIP) [19] and the number of measurements is larger than O(k + k log(N/k)) for

k-sparse data1 [60, 61].

To solve the underdetermined problem, we may find the sparsest solution via `0

norm regularization. However, because the problem is NP-hard [62] and impractical

for most applications , `1 norm regularization methods such as the lasso [63] and basis

pursuit (BP) [64] are first used to pursue the sparse solution. It has been proved

that the `1 norm regularization can exactly recover the sparse data for CS inverse

problem under mild conditions [65, 37]. Therefore, a lot of efficient algorithms have

been proposed for standard sparse recovery. Generally speaking, those algorithms

can be classified into three groups: greedy algorithms [66, 67], convex programming

[42, 68, 69] and probability based methods [70, 71].

3.1.2 Joint Sparsity and Algorithms

Beyond standard sparsity, the non-zeros components of x often tend to be in

some structures. This comes to the concept of structured sparsity or model-based

compressed sensing [30, 29, 31]. In contrast to standard sparsity that only relies on

the sparseness of the data, structured sparsity models exploit both the non-zero values

and the corresponding locations. For example, in the multiple measurement vector

(MMV) problem, the data is consisted of several vectors that share the same support

2. This is called joint sparsity that widely arise in cognitive radio networks [72],

direction-of-arrival estimation in radar [73], multi-channel compressed sensing [74, 75],

remote sensing [76] and medical imaging [77, 78]. If the data X ∈ RTN×1 is consist of

T k-sparse vectors, the measurement bound could be substantially reduced to O(Tk+

k log(N/q)) instead of O(Tk + Tk log(N/q)) for standard sparsity [79, 30, 29, 80].

1We mean there are at most k non-zero components in the data.
2The set of indices corresponding to the non-zero entries is often called the support
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A common way to implement joint sparsity in convex programming is to replace

the `1 norm with `2,1 norm, which is the summation of `2 norms of the correlated

entries [81, 82]. `2,1 norm for joint sparsity has been used in many convex solvers

and algorithms [83, 78, 40, 16]. In Bayesian sparse learning or approximate message

passing [84, 85, 86], data from all channels contribute to the estimation of parameters

or hidden variables in the sparse prior model.

3.1.3 Tree Sparsity and Algorithms

Another common structure would be the hierarchical tree structure, which has

already been successfully utilized in image compression [43], compressed imaging [50,

13, 49, 14], and machine learning [87]. Most nature signals/images are approximately

tree-sparse under the wavelet basis. A typical relationship with tree sparsity is that,

if a node on the tree is non-zero, all of its ancestors leading to the root should be

non-zeros. For multi-channel data X = [x1;x2, ...;xT ]3 ∈ RNT×1, O(Tk+T log(N/k))

measurements are required if each channel xt is tree-sparse.

Due to the overlapping and intricate structure of tree sparsity, it is much harder

to implement. For greedy algorithms, StructOMP [30] and TOMP [48] are developed

for exploiting tree structure where the coefficients are updated by only searching the

subtree blocks instead of all subspace. In statistical models [50, 13], hierarchical infer-

ence is used to model the tree structure, where the value of a node is not independent

but relies on the distribution or state of its parent. In convex programming [49, 88],

due to the tradeoff between the recovery accuracy and computational complexity,

this is often approximated as overlapping group sparsity [52], where each node and

its parent are assigned into one group.

3In this article, [;] denotes concatenating the data vetically.
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3.1.4 Forest Sparsity

Although both joint sparsity and tree sparsity have been widely studied, un-

fortunately, there is no work that study the benefit of their combinations so far.

Actually, in many multi-channel compressed sensing or MMV problems, the data has

joint sparsity across different channels and each channel itself is tree-sparse. Note

that this differs from C-HiLasso [89], where sparsity is assumed inside the groups. No

method has fully exploited both priors and no theory guarantees the performance. In

practical applications, researchers and engineers have to choose either joint sparsity

algorithms by giving up their intra tree-sparse prior, or tree sparsity algorithms by

ignoring their inter correlations.

In this chapter, we propose a new sparsity model called forest sparsity to bridge

this gap. It is a natural extension of existing structured sparsity models by assuming

that the data can be represented by a forest of mutually connected trees. We give

the mathematical definition of forest sparsity. Based on compressed sensing theory,

we prove that for a forest of T k-sparse trees, only O(Tk + log(N/k)) measurements

are required for successful recovery with high probability. That is much less than the

bounds of joint sparsity O(Tk+k log(N/k)) and tree sparsity O(Tk+T log(N/k)) on

the same data. The theory is further extended to the case on MMV problems, which

is ignored in existing structured sparsity theories [30, 29, 31]. Finally, we derive an

efficient algorithm to optimize the forest sparsity model. The proposed algorithm is

applied on medical imaging applications such as multi-contrast magnetic resonance

imaging (MRI), parallel MRI (pMRI), as well as color images, multispectral image

reconstruction. Extensive experiments demonstrate the advantages of forest sparsity

over the state-of-the-art methods in these applications.
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3.2 Background and Related Work

In compressed sensing (CS), the capture of a sparse signal and compression are

integrated into a single process [18, 19]. We do not capture sparse data x ∈ RN

directly but rather capture M < N linear measurements b = Ax based on a mea-

surement matrix A ∈ RM×N . To stably recover the k-sparse data x from M mea-

surements, the measurement matrix A is required to satisfy the Restricted Isometry

Property (RIP) [19]. Let Ωk denote the union k-dimensional subspaces where x lives

in.

Definition 1: (k-RIP) An M × N matrix A has the k-restricted isometry

property with restricted isometry constant 1 > δk > 0, if for all x ∈ Ωk, and

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22. (3.1)

CS result shows that, ifM = O(k+k log(N/k)), a sub-Gaussian random matrix4

A can satisfy the RIP with high probability [91, 92].

Recently, structured sparsity theories demonstrate that when there is some

structured prior information (e.g. group, tree, graph) in x, the measurement bound

could be reduced [29, 30]. Suppose x is in the union of subspaces A, then the k-RIP

can be extended to the A-RIP [92]:

Definition 2: (A-RIP) An M × N matrix A has the A-restricted isometry

property with restricted isometry constant 1 > δA > 0, if for all x ∈ A, and

(1− δA)||x||22 ≤ ||Ax||22 ≤ (1 + δA)||x||22. (3.2)

A-RIP property has been proved to be sufficient for robust recovery of structured-

sparse signals under noisy conditions [29]. The required number of measurements M

has been quantified for a sub-Gaussian random matrix A that has the A-RIP [92]:

4It includes Gaussian and Bernoulli random matrices etc. [90].
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Theorem 1: (A-RIP) Let A be the union of L subspaces of k dimension in

RN . For any t > 0, let

M ≥ 2

cδAk
(ln(2L) + k ln

12

δAk
+ t), (3.3)

then there exists a constant c > 0 and a randomly generated sub-Gaussian matrix

A ∈ RM×N satisfies the A-RIP with probability at least 1− e−t.

From (3.3), we could intuitively observe that M can be less by reducing the

number of subspacesA. It coincides with the intuition that the result will be improved

when more priors are utilized. For standard k-sparse data, there is no more constraint

to reduce the number of possible subspaces Ck
N . Let L = Ck

N ≈ (eN/k)k, the CS result

for standard sparsity can be derived from Theorem 1.

Now we consider structured sparse data. Following [29], if a k-sparse data

x ∈ RN can form a tree or can be sparsely represented as a tree under one orthogonal

sparse basis Φ (e.g. wavelet), and the k non-zero components naturally form a subtree,

then it is called tree-sparse data.

Definition 3: Tree-sparse data in RN is defined as

Tk={x = Φ−1θ: θ|ΩC = 0, |Ω| = k, where Ω forms a connected subtree. }.

Here Ω ⊆ {1, 2, ..., N} denotes a subspace of the data as and the support is

in Ω. ΩC denotes the complement of Ω and θ denotes the coefficients under Φ. It

implies that, if an entry of θ is in Ω , all its ancestors on the tree must be in Ω.

For tree-sparse data, we say it has the tree sparsity property. Most natural

signals or images have tree sparsity property, since they can be sparsely represented

with the wavelet tree structure. Specially, the wavelet coefficients of a 1D signal form

a binary tree and those of a 2D image yield a quadtree. If the union of all subspaces

are denoted by ΩTree, it is obviously that ΩTree ⊂ Ωk and the number of subspaces

LTree < Ck
N .
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Theorem 2: For tree-sparse data, there exists a sub-Gaussian random matrix

A ∈ RM×N that has the Tk-RIP with probability 1−e−t if the number of measurements

satisfies that:

M ≥



2
c1δTk

(k + ln(N/(k + 1)) + k ln(12/δTk)

+ ln 2 + t) if k ≤ blog2Nc ,
2

c1δTk
(k ln 4 + ln(c2N/k) + k ln(12/δTk)

+ ln 2 + t) if k > blog2Nc .

(3.4)

where c1 and c2 denote absolute constants.

For both case, we have M = O(k + log(N/k)). Similar conclusion has been

drawn in previous articles [30][29].

So far, we have reviewed standard sparsity and tree sparsity on single chan-

nel data. For multi-channel data that contains T channels or vectors (i.e. X =

[x1;x2; ...;xT ] ∈ RNT×1), each of which is standardly k-sparse, the bound for the

number of measurement should be O(Tk + Tk log(N/k)). If each channel is tree-

sparse and independently, the measurement bound for a sub-Gaussian random matrix

A ∈ RTM×TN is TM = O(Tk + T log(N/k)).

It is important to note that the T-channel k-sparse data has sparsity Tk but not

k. Different from the above independent channels, another case is that all channels

of the data may be highly correlated, which corresponds to joint sparse data:

Definition 4: Joint-sparse data is defined as

JT,k={X = [x1;x2; ...;xT ]: xi = Φ−1θi, θi|ΩC = 0, |Ω| = k, i = 1, 2, ..., T } .

Similar as tree-sparse data, joint-sparse data has the joint sparsity property.

It has to be clarified that joint sparsity does not rely on tree sparsity. The former

utilizes the structure across different channels, while the later utilizes the structure

33



within each channel. Previous works implies that the minimum measurement bound

for such joint sparse data is TM = O(Tk + k log(N/k)) [79, 30, 29].

3.3 Forest Sparsity

In practical applications, it happens usually that multi-channel images, such as

color images, multispectral images and MR images, have the joint sparsity and tree

sparsity simultaneously. It is because: (a) the wavelet coefficients of each channel

naturally yield a quadtree; (b) all channels represent the same physical objects (e.g.

nature scenes or human organs), and the wavelet coefficients of each channel tend

to be large/small simultaneously due to same boundaries of the objects. Therefore,

the support of such data is consist of several connected trees and like a forest. Fig.

3.1 shows the forest structure in multi-contrast MR images. We could find that

the non-zero coefficients are not random distributed but forms a connected forest.

Unfortunately, existing tree-based algorithms can only recover multi-channel data

channel-by-channel separately, and it is unknown how to model the tree structure

in existing joint sparsity algorithms. In addition, there are no theoretical results

in previous works showing how much better the recovery can be improved by fully

exploiting the prior information.

Motivated by this limitation, we extend previous works to a more special but

widely existed case. For multi-channel data, if it is jointly sparse, and more impor-

tantly, the common support of different channels yields a subtree structure, we call

this kind of data forest-sparse data:

Definition 5: Forest-sparse data is defined as

FT,k={X = [x1;x2; ...;xT ]: xi = Φ−1θi, θi|ΩC = 0, |Ω| = k, where Ω forms a con-

nected subtree, i = 1, 2, ..., T } .
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(a) (b) (c)

Figure 3.1. Forest structure on multi-contrast MR images. (a) Three multi-contrast
MR images. (b) The wavelet coefficients of the images. Each coefficient tends to be
consistent with its parent and children, and the coefficients across different trees at
the same position. (c) One joint parent-child group across different trees that used
in our algorithm.

Similarly, the forest-sparse data has forest sparsity property. This definition

implies that if the coefficients at the same position across different channels are non-

zeros, all their ancestor coefficients are all non-zeros. Learning with forest sparsity, we

search the sparsest solution that follow the forest structure in the CS inverse problem.

Any solution that violates the assumption will be penalized. Intuitively, the solution

will be more accurate. We obtain our main result in the following theorem:

Theorem 3: For forest-sparse data, there exists a sub-Gaussian random ma-

trix A ∈ RTM×TN that has the FT,k-RIP with probability 1 − e−t if the number of

measurements satisfies that:

TM ≥



2
c1δFT,k

(k + ln(N/(k + 1)) + Tk ln(12/δFT,k)

+ ln 2 + t) if k ≤ blog2Nc ,
2

c1δFT,k
(k ln 4 + ln((c2N)/k) + Tk ln(12/δFT,k)

+ ln 2 + t) if k > blog2Nc .

(3.5)

where c1 and c2 are absolute constants.

35



For both cases, the bound is reduced to M = O(Tk+ log(N/k)). The proofs of

Lemma 1 as well as Lemma 2, 4 are included in the appendices. Using the FT,k-RIP,

forest-sparse data can be robustly recovered from noisy compressive measurements.

Table 3.1 lists all the measurement bounds for the forest-sparse data with dif-

ferent models. Standard sparsity model only exploits the sparseness while no prior

information about the locations of the non-zero elements is involved. It is the classical

but worst model for forest-sparse data. These location priors are partially utilized

in joint sparsity and tree sparsity models. One of them only studies the correlations

across channels, while the other one only learns the intra structure. Our result is

significantly better than those of joint sparsity and tree sparsity, and far better than

that of standard sparsity, especially when N/k is large. Only the proposed model

fully exploits all these structures.

Table 3.1. Measurement bounds for forest-sparse data

Sparse Models Measurement Bounds
Standard Sparsity O(Tk + Tk log(N/k))

Joint Sparsity O(Tk + k log(N/k))
Tree Sparsity O(Tk + T log(N/k))

Forest Sparsity O(Tk + log(N/k))

So far, we have analyzed the result by forest sparsity over previous results. In

all these results, the measurement matrix A is assumed to be a dense sub-Gaussian

matrix. However, in many practical problems, each data channel xt ∈ RN is measured

by a distinct compressive matrix A′t ∈ RM×N , t = 1, 2, ..., T , which are called multiple

measurement vectors (MMV) problems or multi-task learning ( e.g., [74, 93, 94]).

Here and later, we assume that {A′t}Tt=1 follow the same distribution but may be
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different. Therefore, the matrix A is actually a block-diagonal matrix rather than a

dense matrix. The linear system b = Ax can be written as:

b1

b2

...

bT


=



A′1

A′2

...

A′T





x1

x2

...

xT


(3.6)

The non-diagonal blocks in A are all zeros. Intuitively, such block-diagonal matrices

have no better results than the dense matrices that discussed above, due to the less

randomness. Unfortunately, the performance of the random block-diagonal matrices

has not been analyzed on structured sparse data before, as all existing structured

sparsity theories concentrate on the dense random matrix [30, 29, 31]. In this article,

we extend the theoretical result to the block-diagonal matrix in the MMV problems.

Theorem 4: For forest-sparse data, there exists a block-diagonal matrix A

composed by sub-Gaussian random matrices {A′t}Tt=1 as in (3.6), that has the FT,k-

RIP with probability 1− e−t if the number of measurements satisfies that:

TM ≥



2T
c1W

(ln 2 + ln(N/(k + 1)) + Tk ln(12/δFT,k)

+k + t), if k ≤ blog2Nc ,
2T
c1W

(ln 2 + ln((c3N)/k) + Tk ln(12/δFT,k)

+k ln 4 + t), if k > blog2Nc .

(3.7)

where W = min(c2
2δ

2
FT,kΓ2, c2δFT,kΓ∞); Γ2 =

(
∑T
t=1 ||xt||22)2∑T
t=1 ||xt||42

and Γ∞ =
∑T
t=1 ||xt||22

maxTt=1 ||xt||22
; c1, c2

and c3 are absolute constants.

For both cases, the bound can be written as TM = O(T
2k+T log(N/k)
min(Γ2,Γ∞)

). In con-

trast to previous results on dense matrices with i.i.d sub-Gaussian entries, this bound

also depends on the energy of the data. It is not hard to find that 1 ≤ Γ2 ≤ T and

1 ≤ Γ∞ ≤ T . In the best case, when ||x1||2 = ||x2||2 = ... = ||xT ||2 and Γ2 = Γ∞ = T ,
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the measurement bound is TM = O(Tk + log(N/k). It shows a similar performance

as the dense sub-Gaussian matrix in Theorem 3. In the worst case, the energy of

the data concentrate on one single channel/task, i.e., all ||xt||2 = 0 except a single

index ||xt′ ||2 6= 0. The measurement bound then is TM = O(T 2k + T log(N/k),

which is even worse than that in Theorem 2 for independent tree sparse channels.

Even for the same block-diagonal matrix, the analysis makes clear that its perfor-

mance may varies significantly depending on the data being measured. In the worst

case, their measurement bound can increase T times. However, the increased fac-

tor T/min(c2
2δ

2Γ2, c2δΓ∞) for block-diagonal matrices also applies to standard sparse

data, joint sparse data and tree sparse data. For the same measurement matrix and

the same data, the advantage of forest sparsity still exists. Due to this reason, we do

not evaluate the term min(c2
2δ

2Γ2, c2δΓ∞) in the experiments, while focus our interest

on comparing different sparsity models on the same data.

3.4 Algorithm

In this chapter, the forest structure is approximated as overlapping group spar-

sity [52] with mixed `2,1 norm. Although it may not be the best approximation, it

is enough to demonstrate the benefit of forest sparsity. To evaluate the forest spar-

sity model, we need to compare different models via a similar framework. From the

definition of forest-sparse data, we could find that a coefficient is large/small, its

parent and ”neighbors”5 also tend to be large/small. All parent-child pairs in the

same position across different channels are assigned into one group, and the problem

becomes overlapping group sparsity regularization. Similar scheme has been used in

5Parent denotes the parent node on the same channel while neighbors mean coefficients at the

same position on other channels.
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approximating tree sparsity [49, 14], where each node and its parent are assigned into

one group. We write the approximated problem as:

min
x

1

2
||Ax− b||22 + λ

∑
g∈G

||(Φx)g||2 (3.8)

where g denotes one of the coefficient groups discussed above (an example is demon-

strated in Fig.1(c)), (·)g denotes the coefficients in group g and G is the set of all

groups.

The mixed `2,1 norm encourages all the components in the same group g to be

zeros or non-zeros simultaneously. With our group configuration, it encourages forest

sparsity. We present an efficient implementation based on fast iterative shrinkage-

thresholding algorithm (FISTA) [42] framework for this problem. This is because

FISTA can be easily applied for standard sparsity and joint sparsity, which could make

the validation of the benefit of the proposed model more convenient. In addition, the

formulation (3.8) can be easily extended to the combination of total variation (TV)

via the Fast Composite Splitting Algorithms (FCSA) scheme [4]. Note that other

algorithms may be used to solve the forest sparsity problems, e.g. [16, 52, 95], but

determining the optimal algorithm for forest sparsity is not the scope of this article.

FISTA [42] is a accelerated version of proximal method which minimizes the

object function with the following form:

min{F (x) = f(x) + g(x)} (3.9)

where f(x) is a convex smooth function with Lipschitz constant Lf and g(x) is a

convex but usually nonsmooth function. It comes to the original FISTA when f(x) =

1
2
||Ax − b||22 and g(x) = λ‖Φx‖1, which is summarized in Algorithm 3, where, AT

denotes the transpose of A.

For the second step, there is closed form solution by soft-thresholding. For

joint sparsity problem where g(x) = λ‖Φx‖2,1, the second step also has closed form
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Algorithm 3 FISTA [42]

Input: ρ = 1/Lf , λ, n = 1, t1 = 1 r1 = x0

while not meet the stopping criterion do
y = rn − ρAT (Arn − b)
x = arg minx{ 1

2ρ
‖x− y‖2 + λ‖Φx‖1}

tn+1 = 1 +
√

1 + 4(tn)2/2
rn+1 = xn + tn−1

tn+1 (xn − xn−1)
n = n+ 1

end while

solution. We call the version as FISTA Joint for joint sparsity. However, for the

problem (3.8) with overlapped groups, we can not directly apply FISTA to solve it.

In order to transfer the problem (3.8) to non-overlapping version, we introduce

a binary matrix G ∈ RD×TN (D > TN) to duplicate the overlapped coefficients. Each

row of G only contains one 1 and all else are 0s. The 1 appears in the i-th column

corresponds to the i-th coefficient of Φx. Intuitively, if the coefficient is included in

j groups, G will contains j such rows. An auxiliary variable z is used to constrain

GΦx. This scheme is widely utilized in the alternating direction method (ADM) [16].

The alternating formulation becomes:

min
x,z
{1

2
‖Ax− b‖2

2 + λ
∑
g∈G

||zg||2 +
γ

2
||z −GΦx||22} (3.10)

where γ is another positive parameter. We iteratively solve this alternative formula-

tion by minimizing x and z subproblems respectively. For the z subproblem:

ẑg = arg min
zg
{λ||zg||2 +

γ

2
||zg − (GΦx)g||22}, g ∈ G (3.11)

which has the closed form solution:

ẑg = max(||(GΦx)g||2 −
λ

γ
, 0)

(GΦx)g
||(GΦx)g||2

, g ∈ G (3.12)
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We denote it as a shrinkgroup operation. For the x-subproblem:

x̂ = arg min
x
{1

2
‖Ax− b‖2

2 +
γ

2
||z −GΦx||22} (3.13)

The optimal solution is x = (ATA+λΦTGTGΦ)−1(AT b+λΦTGT z), which contains a

large scale inverse problem. Actually, this problem can be efficient solved by various

methods. In order to compare with FISTA and FISTA Joint, we apply FISTA to

solve (3.13). This could demonstrate the benefit of forest sparsity more clearly. Let

f(x) = 1
2
‖Ax − b‖2

2 + λ
2
||z − GΦx||22 and g(x) = 0. Supposing its Lipschitz constant

to be Lf , the whole algorithm is summarized in Algorithm 4.

Algorithm 4 FISTA Forest

Input: ρ = 1/Lf , r
1 = x0, t1 = 1, λ, γ, n = 1

while not meet the stopping criterion do
z = shrinkgroup(GΦxn−1, λ/γ)
xn = rn − ρ[AT (Arn − b) + γΦTGT (GΦrn − z)]
tn+1 = [1 +

√
1 + 4(tn)2]/2

rn+1 = xn + tn−1
tn+1 (xn − xn−1)

n = n+ 1
end while

For the first step, we solve (3.11) while 1
2
‖Ax− b‖2

2 keeps the same. The object

function value in (3.10) decreases. For the second step, (3.13) is solved by FISTA

iteratively while λ
∑

g∈G ||zg||2 keeps the same. Therefore, the object function value

in (3.10) decreases in each iteration and the algorithm is convergent. Algorithm 4

is also used to implement tree sparsity by recovering the data channel-by-channel

separately. We call it FISTA Tree.
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In some practical applications, the data tends to be forest-sparse but not strictly.

We can soften and complement the forest assumption with other penalties, such as

joint `2,1 norm or TV. For example, after combining TV, problem (3.10) becomes:

min
x,z
{1

2
‖Ax− b‖2

2 + λ
∑
g∈G

||zg||2 +
γ

2
||z −GΦx||22

+µ||x||TV } (3.14)

where ||x||TV =
∑TN

i=1

√
(∇1xi)2 + (∇2xi)2; ∇1 and ∇2 denote the forward finite

difference operators on the first and second coordinates respectively; µ is a positive

parameter. Compared with Algorithm 4, we only need to set g(x) = µ||x||TV and

the corresponding subproblem has already been solved [42, 4, 96]. This TV combined

algorithm is called FCSA Forest, which will be used in the experiments. To avoid

repetition, it is not listed.

3.5 Applications and Experiments

We conduct experiments on the RGB color image, multi-contrast MR images,

MR image of multi-channel coils and the multispectral image to validate the benefit

of forest sparsity. All experiments are conducted on a desktop with 3.4GHz Intel core

i7 3770 CPU. Matlab version is 7.8(2009a). If the sampling matrix A is M by N , the

sampling ratio is defined as M/N . All measurements are mixed with Gaussian white

noise of 0.01 standard deviation. Signal-to-Noise Ratio (SNR) is used as the metric

for evaluations:

SNR = 10 log10(Vs/Vn) (3.15)

where Vn is the Mean Square Error between the original data x0 and the reconstructed

x; Vs = var(x0) denotes the power level of the original data where var(x0) denotes

the variance of the values in x0.
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3.5.1 Multi-contrast MRI

Multi-contrast MRI is a popular technique to aid clinical diagnosis. For exam-

ple T1 weighted MR images could distinguish fat from water, with water appearing

darker and fat brighter. In T2 weighted images fat is darker and water is lighter,

which is better suited to imaging edema. Although with different intensities, T1/T2

or proton-density weighted MR images are scanned at the same anatomical position.

Therefore they are not independent but highly correlated. Multi-contrast MR im-

ages are typically forest-sparse under the wavelet basis. Suppose {xt}Tt=1 ∈ RN are

the multi-contrast images for the same anatomical cross section and {bt}Tt=1 are the

corresponding undersampled data in Fourier domain, the forest-sparse reconstruction

can be formulated as:

x̂ = arg min
x
‖Φx‖F ,T + λ

T∑
s=1

‖Rtxt − bt‖2 (3.16)

where x is the vertorized data of [x1, ..., xT ] and Rt is the measurement matrix for

the image xt. This is an extension of conventional CS-MRI [1]. Fig. 3.1 shows an

example of the forest structure in multi-contrast MR images.

Figure 3.2. (a)-(c): the original multi-constrast images. (d): the sampling mask.

The data is extracted from the SRI24 Multi-Channel Brain Atlas Dataset [97].

In the Fourier domain, we randomly obtain more samples in low frequencies and less
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samples in higher frequencies. This sampling scheme has been widely used for CS-

MRI [1, 2, 4]. Fig. 3.2 shows the original multi-contrast MR images and the sampling

mask.

We compare four algorithms on this dataset: FISTA, FISTA Joint, FISTA Tree

and FISTA Forest. The parameter λ is set 0.035, and γ is set to 0.5λ. We run each

algorithm 400 iterations. Fig. 3.3 (a) demonstrates the performance comparisons

among different algorithms. From the figure, we could observe that modeling with

forest sparsity achieves the highest SNR after convergence. Although the algorithm

for forest sparsity takes more time due to the overlapping structure, it always out-

performs all others in terms of accuracy.

In addition, as total variation is very popular in CS-MRI [1, 4, 78], we compare

our FCSA Forest algorithm with FCSA [4] (TV is combined in FISTA), FCSA Joint

[78] (TV is combined in FISTA Joint) and FCSA Tree. The parameter µ for TV is

set 0.001, the same as that in previous works [2, 4]. Fig. 3.3 (b) demonstrates the

performance comparison including TV regularization. Compared with Fig. 3.3 (a),

all algorithms improve at different degrees. However, the ranking does not change,

which validates the superiority of forest sparsity. As FCSA has been proved to be

better than other algorithms for general compressed sensing MRI (CS-MRI) [1, 2, 3]

and FCSA Joint [78] better than [77, 98] in multi-contrast MRI, the proposed method

further improves CS-MRI and make it more feasible than before.

In order to validate the benefit of forest sparsity in terms of measurement num-

ber, we conduct an experiment to reconstruct multi-contrast MR images from differ-

ent sampling ratios. Fig. 3.4 demonstrates the final results of four algorithms with

sampling ratio from 16% to 26%. With more sampling, all algorithms have better

performance. However, The forest sparsity algorithm always achieves the best recon-

struction. For the same reconstruction accuracy, the FISTA Forest algorithm only
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Figure 3.3. Performance comparisons among different algorithms. (a) Multi-constrast
MR images reconstruction with 20% sampling. Their final SNRs are 28.05, 29.69,
29.22 and 30.42 respectively. The time costs are 13.11s, 14.43s, 22.08s and 25.11s
respectively. (b) Multi-constrast MR images reconstruction with 20% sampling by
both wavelet sparsity and TV regularization. Their final SNRs are 28.75, 30.30,
29.65 and 30.83 respectively. The time costs are 19.00 s, 19.68 s, 29.11 s and 31.41 s,
respectively.

requires about 16% measurements to achieve SNR 28, which is approximately 2%,

3%, 5% less than that of FISTA Joint, FISTA Tree and FISTA respectively. More

results of forest sparsity on multi-contrast MRI can be found in [99].

3.5.2 parallel MRI

To improve the scanning speed of MRI, an efficient and feasible way is to acquire

the data in parallel with multi-channel coils. The scanning time depends on the

number of measurements in Fourier domain, and it will be significantly reduced when

each coil only acquires a small fraction of the whole measurements. The bottleneck

is how to reconstruct the original MR image efficiently and precisely. This issue

is called pMRI in literature. Sparsity techniques have been used to improve the

classical method SENSE [32]. However, when the coil sensitivity can not be estimated
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Figure 3.4. Reconstruction performance with different sampling ratios.

precisely, the final image would contain visual artifacts. Unlike previous CS-SENSE

[38] which reconstructs the images of multi-coils individually, calibrationless parallel

MRI [100, 101] recovers the aliased images of all coils jointly by assuming the data is

jointly sparse.

Let T equal to the number of coils and bt be the measurement vector from coil

t. It is therefore the same CS problem as (3.16). The final result of CaLM-MRI

is obtained by a sum of square (SoS) approach without coil sensitivity and SENSE

encoding. It shows comparable results with those methods which need precise coil

configuration. As shown in Fig. 3.5, the appearances of different images obtained

from multi-coils are very similar. This method can be improved with forest sparsity,

since the images follow the forest sparsity assumption.

There are two steps for compressed sensing pMRI reconstruction in CaLM-MRI

[100]: 1) the aliased images are recovered from the undersampled Fourier signals of

different coil channels by CS methods; 2) The final image for clinical diagnosis is

synthesized by the recovered aliased images using the sum-of-square (SoS) approach.

As discussed above, these aliased images should be forest-sparse under the wavelet

basis. We compare our algorithm with FISTA Joint and SPGL1 [40] which solves the
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(a) (b) (c) (d)

Figure 3.5. The aliased MR images of multi-coils. Due to the different locations of
the coils, they have different sensitivities to the same image.

joint `2,1 norm problem in CaLM-MRI. For the second step, all methods use the SoS

approach from the aliased images that they recovered. All algorithms run enough

time until it has converged.

Table 3.2. Comparisons of SNRs (dB) on different sampling ratios with 4 coils

sampling ratios 25% 20% 17% 15%
SNR of SPGL1 26.72 24.59 23.08 22.31

Aliased Images FISTA Joint 26.95 24.73 23.06 22.21
FISTA Forest 27.47 25.22 23.37 22.59

SNR of SPGL1 20.64 20.35 19.12 18.64
Final Image FISTA Joint 20.79 20.41 19.75 18.49

FISTA Forest 22.62 22.29 21.03 20.47

Table 3.3. Comparisons of SNRs (dB) on different number of coils with 20% sampling
ratio

number of coils 2 4 6 8
SNR of SPGL1 23.33 24.61 24.74 25.16

Aliased Images FISTA Joint 23.41 24.71 24.89 25.23
FISTA Forest 24.25 25.12 25.29 25.52

SNR of SPGL1 21.76 18.95 21.05 21.32
Final Image FISTA Joint 21.90 18.94 21.15 21.87

FISTA Forest 22.44 22.22 22.52 22.52
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Table 3.2 and Table 3.3 show all the comprehensive comparisons among these

algorithms. For the same algorithm, more measurements or more number of coils tend

to increase the SNRs of aliased images, although it does not result in linear improve-

ment for the final image reconstruction. Another observation is that FISTA Joint

and SPGL1 have similar performance in terms of SNR on this data. This is because

both of them solve the same joint sparsity problem, even with different schemes.

Upgrading the model to forest sparsity, significant improvement can be gained. Fi-

nally, it is unknown how to combine TV in SPGL1. However, both FISTA Joint and

FISTA Forest can easily combine TV, which can further enhance the results [78].

3.5.3 Color Image Reconstruction

Color images captured by optical camera can be represented as combinations of

red, green, blue three colors. Different colors synthesized by these three colors seems

realistic to human eyes. By observing the color channels are highly correlated, joint

sparsity prior is utilized in recent recovery [75]. Modeling with `2,1 norm regularization

can gain additional SNR to standard `1 norm regularization. Further more, each color

channel tends to be wavelet tree-sparse. If we model the problem with forest sparsity,

this result would be reasonably better.

For color images, we compare our algorithm with FISTA, FISTA Joint and

FISTA Tree. Fig. 3.6 shows the visual results recovered by different sparse penalties.

Only after 50 iterations, the image recovered by our algorithm is very close to the

original one with the fewest artifacts (shown in the zoomed region of interest).

3.5.4 Multispectral Image Reconstruction

Different from common color images, a multispectral or hyperspectral image

is consisted of much more bands, which provides both spatial and spectral repre-
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Figure 3.6. Visual comparisons on the lena image reconstruction after 50 iterations
with about 20% sampling. (a) the original image and the patch detail; (b) recovered
by FISTA; (c) recovered by FISTA Joint; (d) the patch details for each recovered
image; (e) recovered by FISTA Tree; (f) recovered by FISTA Forest. Their SNRs are
16.65, 17.41, 17.66 and 18.92, respectively.

sentations of scenes. It is widely utilized on remote sensing with applications to

agriculture, environment detection etc. However, the collection of large amount of

data costs both huge imaging time and storage space. By compressed sensing data

acquisition, the cost of imaging for remote sensing data could be significantly reduced

[102]. Like RGB images, the bands of multispectral image should represent the same

scene. Each band has tree sparsity property. Therefore, they follow the forest sparsity
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Figure 3.7. The original multispectral image: band 6 to band 14 .

assumption. Fig. 3.7 shows bands 6 to 14 of a multispectral image of 1992 AVIRIS

Indian Pine Test Site 3 6.
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Figure 3.8. Multispectral image reconstruction results by different sparse models with
about 20% sampling.

6The data is downloaded from https://engineering.purdue.edu

/∼biehl/MultiSpec/hyperspectral.html
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For multispectral image, we test a dataset of 1992 AVIRIS image Indian Pine

Test Site 3 (examples shown in Fig. 3.7). It is a 2 × 2 mile portion of Northwest

Tippecanoe County of Indiana. There are total 220 bands. Each band is recovered

separately for standard sparsity and tree sparsity, while every 3 bands are recon-

structed simultaneously by joint-sparse model and forest-sparse model. Each image

is cropped to 128× 128 for convenience. The number of wavelet decomposition levels

is set to 3. The SNRs of all recovered images for band 6 to 66 are shown in Fig.

3.8. One could observe that modeling with forest sparsity always achieves the highest

SNRs, which validates the benefit of forest sparsity.

3.6 Summery

In this chapter, we have proposed a novel model forest sparsity for sparse learn-

ing and compressed sensing. This model enriches the family of structured sparsity

and can be widely applied on numerous fields of sparse regularization problems. The

benefit of the proposed model has been theoretically proved and empirically vali-

dated in practical applications. Under compressed sensing assumptions, significant

reduction of measurements is achieved with forest sparsity compared with standard

sparsity, joint sparsity or independent tree sparsity. A fast algorithm is developed

to efficiently solve the forest sparsity problem. While applying it on practical ap-

plications such as multi-contrast MRI, pMRI, multispectral image and color image

reconstruction, extensive experiments demonstrate the superiority of forest sparsity

over standard sparsity, joint sparsity and tree sparsity in terms of both accuracy and

computational complexity.
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3.7 Appendix: Proofs of Theorems

3.7.1 Proof of Theorem 2

The proof is conducted on the binary tree case for convenience. The bound for

quadtree can be easily extended.

First, we need to figure out the number of subtrees (size k) of a binary tree

(size N). Note that the root of the subtrees should be the binary tree’s root.

Case 1: when k ≤ blog2Nc, the number of subtrees of size k is just the Catalan

number:

LT =
1

k + 1

(
2k

k

)
≤ (2e)k

k + 1
≤ ekN

k + 1
. (3.17)

Case 2: when k > blog2Nc, the number of subtrees of size k should follow [29]:

LT ≤
4k

k
(

6√
πk

ln
log2N

blog2 kc)
+

128

e2 blog2 kc
)

≤ 4k

k
(
c1 log2N

blog2 kc)
+

c2

blog2 kc
)

≤ 4k

k

c1 log2(c3N)

log2 k

≤ 4k(c4N)

k
. (3.18)

where c1, c2, c3, c4 are some constants. Therefore we have:

LT ≤


ekN
k+1

if k ≤ blog2Nc ,
4k(c4N)

k
if k > blog2Nc .

(3.19)

According to Theorem 1:

M ≥ 2

cδ
(ln(2L) + k ln

12

δ
+ t). (3.20)

With (3.20), the number of measurements should satisfy:
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M ≥



2
cδTk

(k + ln(N/(k + 1)) + k ln(12/δTk)

+ ln 2 + t) if k ≤ blog2Nc ,
2

cδTk
(k ln 4 + ln(c4N/k) + k ln(12/δTk)

+ ln 2 + t) if k > blog2Nc .

(3.21)

For both cases, we have M = O(k + log(N/k)) as the minimum number of

measurements. Similar bound also has been proved in previous papers [29] [30].

3.7.2 Proof of Theorem 3

If the data is forest-sparse, the support set of different trees are dependent. It

means if the support set for one tree is fixed, then all support sets for other trees are

fixed. Accordingly, the number of combinations is still LT . Note that the sparsity

number is Tk as there are T trees. Therefore,

TM ≥



2
cδFT,k

(k + ln(N/(k + 1)) + Tk ln(12/δFT,k)

+ ln 2 + t) if k ≤ blog2Nc ,
2

cδFT,k
(k ln 4 + ln((c4N)/k) + Tk ln(12/δFT,k)

+ ln 2 + t) if k > blog2Nc .

(3.22)

For both cases, the bound is reduced to TM = O(Tk + log(N/k)).

3.7.3 Proof of Theorem 4

We first derive the sufficient condition that guarantees the RIP for block-

diagonal matrices.
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Theorem 5. Let a matrix A ∈ RTM×TN be composed by sub-Gaussian random

matrices {A′t ∈ RM×N}Tt=1 as in (3.6). For any fixed subset S ⊂ {1, 2, ..., TN} with

|S| = TK and 0 < δ < 1, we have with probability exceeding 1−2(12/δ)TKe−c1
M
2

min(c22δ
2Γ2,c2δΓ∞):

(1− δ)||X||2 ≤ ||ASX||2 ≤ (1 + δ)||X||2, (3.23)

for all X = [x1;x2; ...;xT ] ∈ RTk×1. c1 and c2 are absolute constants, Γ2 =
(
∑T
t=1 ||xt||22)2∑T
t=1 ||xt||42

and Γ∞ =
∑T
t=1 ||xt||22

maxTt=1 ||xt||22
.

Proof. Let’s denote X̄ = X/||X||2 and we have ||X̄||2 = 1. We choose a finite

set of points Q = {qi}, such that qi ∈ RTk×1 and ||qi||2 = 1 for all i. We have

mini ||X̄ − qi||2 ≤ ε1 and covering number satisfies |Q| ≤ (1 + 2/ε1)TK for any ε1 > 0

(see Chap 13 of [103]).

As the block-diagonal matrix A is composed by sub-Gaussian random matrices,

we have for each i and any ε2 > 0:

P(|||Aqi||22 − ||qi||22| ≥ε2||qi||22)

≤ 2e−c1
M
2

min(c22ε
2
2Γ2,c2ε2Γ∞), (3.24)

with Γ2 and Γ∞ defined above. This probability is indicated in Theorem III.1 of [104].

Taking union bound, we obtain with probability exceeding

1− 2(1 + 2/ε1)TKe−c1
M
2

min(c22ε
2
2Γ2,c2ε2Γ∞):

(1− ε2) ≤ ||ASqi||22 ≤ (1 + ε2), for all qi ∈ Q, (3.25)

which gives

(1− ε2) ≤ ||ASqi||2 ≤ (1 + ε2), for all qi ∈ Q. (3.26)

Now we define ρ as the smallest nonnegative number such that

||ASX̄||2 ≤ (1 + ρ), (3.27)
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for all X̄ ∈ RTk×1 and ||X̄||2 = 1. We have

||ASX̄||2 ≤ ||ASqi||2 + ||As(X̄ − qi)||2

≤ ||ASqi||2 + ||As(X̄ − qi)||2

≤ (1 + ε2) + (1 + ρ)ε1. (3.28)

As ρ as the smallest nonnegative number for (3.27), we have:

1 + ρ ≤ (1 + ε2) + (1 + ρ)ε1, (3.29)

and

ρ ≤ (ε1 + ε2)/(1− ε1). (3.30)

Note the above result holds for any ε1 and ε2. We choose ε1 = δ/4 and ε2 = δ/2.

Since 0 < δ < 1, it is easy to see that ρ ≤ δ, which proves

||ASX̄||2 ≤ (1 + δ). (3.31)

Similar, (1− δ) ≤ ||ASX̄||2 can be proved using the same way. Finally, we

obtain with probability exceeding 1− 2(12/δ)TKe−c1
M
2

min(c22δ
2Γ2,c2δΓ∞):

(1− δ) ≤ ||ASX||2
||X||2

≤ (1 + δ), (3.32)

which completes the proof as 1 + 2/ε1 = (δ + 8)/δ ≤ 12/δ.

Based on this theorem, we know that any Tk-sparse X ∈ RTN×1 satisfies

(1− δ)||X||2 ≤ ||AX||2 ≤ (1 + δ)||X||2, (3.33)

with probability exceeding 1− 2(12/δ)TKe−c1
M
2

min(c22δ
2Γ2,c2δΓ∞).

Suppose there are L combinations of such set S, from appendix A and B we

know that

L ≤


ekN
k+1

if k ≤ blog2Nc ,
4k(c4N)

k
if k > blog2Nc .

(3.34)
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for forest sparse data.

By taking the union bound, we known that (3.23) fails with probability less

than

2L(12/δFT,k)
TKe

−c1M2 min(c22δ
2
FT,k

Γ2,c2δFT,kΓ∞) ≤ e−t, (3.35)

which gives

TM ≥



2T (ln 2+k+ln(N/(k+1))+Tk ln(12/δFT,k )+t)

c1 min(c22δ
2
FT,k

Γ2,c2δFT,kΓ∞)
,

if k ≤ blog2Nc ,
2T (ln 2+k ln 4+ln((c3N)/k)+Tk ln(12/δFT,k )+t)

c1 min(c22δ
2
FT,k

Γ2,c2δFT,kΓ∞)
,

if k > blog2Nc .

(3.36)

From this one theorem 4 can be easily derived. For both cases, the bound can be

written as TM = O(T
2k+T log(N/k)
min(Γ2,Γ∞)

).
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CHAPTER 4

Dynamic Gradient Sparsity in Remote Sensing Image Fusion

In this chapter, we introduce a new sparsity induce term called Dynamic Gra-

dient Sparsity. We also show how this method can be used to image fusion in remote

sensing. Finally, this method is evaluated via extensive experiments with comparisons

to the existing approaches. This work was presented under a slightly modification

from [76].

4.1 Introduction

Multispectral (MS) images are widely used in many fields of remote sensing

such as environmental monitoring, agriculture, mineral exploration etc. However,

the design of MS sensors with high resolution is confined by infrastructure limits in

onboard storage and bandwidth transmission [105]. In contrast, panchromatic (Pan)

gray-scaled images with high spatial resolution can be obtained more conveniently

because they are composed of much reduced numbers of pixels. The combinations of

Pan images with high spatial resolution and MS images with high spectral resolution

can be acquired simultaneously from most existing satellites. Therefore, we expect to

obtain images in both high spatial resolution and high spectral resolution via image

fusion (also called pan-sharpening). A fusion example on Quickbird satellite images

is shown in Figure 4.1.

Image fusion is a typical inverse problem and generally difficult to solve. A num-

ber of conventional methods use projection and substitution, which include principal

component analysis (PCA) [106], intensity hue saturation (IHS) [107], wavelet [108]
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(a) (b)

(c) (d)

Figure 4.1. (a) A high resolution panchromatic image. (b) The corresponding low res-
olution multi-spectral image. (c) Our fusion result. (d) The ground-truth. Copyright
DigitalGlobe.

and their combinations. These methods work in the following scheme: upsampling,

forward transform, intensity matching, component substitution and reverse transform

[109]. Other methods such as Brovey [110], assume the Pan image is a linear com-

bination of all bands of the fused image. A detailed survey of existing methods can

be found in [109]. While these previous methods provided some good visual results,

they are very likely to suffer from spectral distortion since their strong assumptions

are not realistic in remote sensing physics [105].

In order to overcome the issue caused by spectral distortion, a suite of vari-

ational approaches have emerged recently [111][112][113]. Each method formulates

an energy function based on somewhat weak assumptions, and minimizing such a

function leads to the optimum. The first variational method P+XS [111] is based on
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the linear combination assumption in Brovey [110] and also assumes the upsampled

MS image is the fusion result after blurring. As an accurate blur kernel is difficult

to pre-estimate, AVWP [112] replaces this term with a spectral ratio constraint to

preserve spectral information. It also forces the fused image to be close to the wavelet

fused image [108]. Another variational model is engaged in estimating the fused im-

age and the blurring model parameters iteratively [113]. Promising results have been

achieved in these variational methods, especially they can reduce spectral distortion.

However, due to the lack of an effective model to preserve spatial information, visible

artifacts may appear on the fusion results.

In this chapter, we propose a new variational model for image fusion to bridge

this gap. Motivated by the geographical relationship between the fused image and Pan

image, a dynamic gradient sparsity property is discovered, defined and then exploited

to improve spatial quality. In addition, we assume the fused image after downsam-

pling should be close the MS image, which is formulated as a least squares fitting

term to keep spectral information. The combined model does not violate remote

sensing physics. This is a key difference compared with previous methods. Moreover,

our method incorporates the inherent correlation of different bands, which has not

been considered before. To optimize our entire energy function, a new algorithm is

proposed in the fast iterative shrinkage-thresholding algorithm (FISTA) [42] frame-

work, with a very fast convergence rate. Extensive experimental results demonstrate

our method can significantly reduce spectral distortion while preserving sharp objects

boundaries in the fused images.

4.2 Notations and Related Work

Scalers are denoted by lowercase letters. Bold letters denote matrices. Specially,

P ∈ Rm×n denotes the Pan image and M ∈ Rm
c
×n
c
×s denotes the low resolution MS
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image. c is a constant. For example c = 4 when the resolution of Pan image is 0.6m

and that of MS image is 2.4m in Quickbird acquisition. Let M̄ ∈ Rm×n×s denote the

upsampled MS image and the image to be fused is denoted by X ∈ Rm×n×s. Operator ·

denotes the element-wise product and ·/ denotes the element-wise division. Operator

∗ denotes convolution. || · ||F denotes the Frobenius norm. For simpleness, Xi,j,d

denotes the element in i-th row, j-th column and d-th band in X. And Xd denotes

the whole d-th band, which is therefore a matrix.

4.2.1 P+XS

Ballester et al. proposed the first variational P+XS for pan-sharpening, where

P and XS stand for Pan and MS images, respectively [111]. They formulate the

pan-sharpening as an optimization problem:

min
X

s∑
d=1

||θ⊥ · ∇Xd||2F + λ||
s∑

d=1

αdXd −P||2F + µ
s∑

d=1

||Πs(kd ∗Xd − M̄d)||2F , (4.1)

where µ and λ are two positive parameters. Πs is a Dirac comb which selects mul-

tispectral pixel values. kd denotes a blurring kernel for band d. αd denotes a weight

for band d and
∑s

d=1 αd = 1. θ = ∇P · /‖∇P| represents the gradient direction of P

and θ⊥ denotes its rotation by π/2.

It is based on three assumptions: 1) in the ideal case, the gradients of the fused

images should be in the same directions as those of the Pan image, which is equivalent

to θ⊥ ·∇Xd = 0; 2) the Pan image is assumed to be a linear combination of the bands

of X; 3) the upsampled MS image can be viewed as the fused image X after blurring.

The classical gradient descent method is used to solve this problem.
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4.2.2 AVWP

Derived from P+XS, a wavelet-based variational pan-sharpening called AVWP

is proposed [112]. To reduce blurriness, AVWP constrains the fused image to be close

to the wavelet fused image. In addition to preserve spectral correlation, it assumes

the ratios between two spectral bands should be consistent for fused image X and the

MS image, that is, Xd · /Xr = M̄d · /M̄r for every pixel. The problem is to solve:

min
X

s∑
d=1

||θ⊥ · ∇Xd||2F + λ
s∑

d=1

||Xd − Zd||2F + µ

s∑
d,r=1,d<r

||Xd · M̄r −Xr · M̄d||2F , (4.2)

where Z ∈ Rm×n×s denotes a combination of the MS image and the wavelet fused

image.

4.2.3 FVP

Very recently, Fang et al. proposed a new variational approach [113], which we

call Fang’s variational pan-sharpening (FVP). The problem can be formulated as:

min
X,a,b

|
s∑

d=1

αdXd −P|TV + τ
s∑

d=1

||ad||2F + λ
s∑

d=1

||ad · (uk ∗Xd) + bd − M̄d||2F

+µ
s−1∑
d=1

s∑
r=s+1

||Xd −Xr − M̄d + M̄r||2F , (4.3)

where the total variation (TV) is defined as ‖X‖TV =
∑m

i=1

∑n
j=1

√
(∇1Xi,j)2 + (∇2Xi,j)2.

∇1 and ∇2 denote the forward finite difference operators on the first and second co-

ordinates, respectively. a,b ∈ Rm×n×s are two deblurring model parameters. uk is a

unit constant kernel. Different from the pre-defined deblurring kernel in P+XS, the

deblurring model is updated during each iteration. The third term is derived by the

spectral gradient similarity assumption: ∇dX = ∇dM̄, where ∇d denotes the gradi-

ent in the spectrum direction. Both (4.2) and (4.3) are solved by the spilt Bregman

method [114].
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4.2.4 Analysis

Although these methods provide remarkable results for pan-sharpening over the

conventional ones, a common drawback of these three methods is the use of upsampled

MS image as prior information. However, M̄ is not accurate to be a good reference

image (see Figure 4.1). Secondly, these methods place constraints on the estimated

blurring kernel and wavelet fused image, both of which will result in errors in the

final output. Finally, all these methods are based on band-by-band fusion. The intra-

correlations among multiple spectral bands are neglected. In the following section,

we will show that all of these shortcomings are overcome in our method.

4.3 Proposed Method

4.3.1 Local Spectral Consistency

As discussed above, we’d like to avoid considering an upsampled MS image

as prior knowledge to preserve spectral information. Therefore, we only assume the

fused image after downsampling is close to the original MS image. Least squares

fitting is used to model this relationship:

E1 =
1

2
||ψX−M||2F , (4.4)

where ψ denotes a downsampling operator. Local spectral information is forced to

be consistent with each MS pixel. Similar as in previous works, the input images are

assumed to be geometrically registered during preprocessing.

Minimizing E1 would be a severely ill-posed problem, due to the very low un-

dersampling rate (e.g. 1/16 when c = 4). Without strong prior information, X

is almost impossible to be estimated accurately. This may be the reason that all

previous methods do not use this energy function.
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4.3.2 Dynamic Gradient Sparsity

Fortunately, the Pan image provides such prior information. Due to the strong

geographical correlation with the fused image X, the Pan image has already provided

us with clear boundary information of land objects. Many researchers attempt to

build this relationship mathematically. From recent reviews [109][105], however, no

model exists that can effectively characterize this relationship.

As remotely sensed images are often piece-wise smooth, their gradients tend to

be sparse and the non-zeros corresponds to the boundaries. In addition, the positions

of such boundaries should be the same as those on the Pan image. It demonstrates

that the sparsity property is not fixed but dynamic according to a reference image.

This property has not been studied in sparsity theories yet. We call the data with

such a property a dynamic gradient sparse signal/image.

Definition: Let x ∈ RN and r ∈ RN denote the signal and the reference signal.

Ωx and Ωr denote the support sets1 of their gradients, respectively. The set of dynamic

gradient sparse signals is defined as:

Sx = {x ∈ RN : |Ωx| = K,Ωx = Ωr, with K << N}.

Using similar logic, it can be extended to multi-channel/spectral signals and

images. The first term in P+XS [111] and AVWP [112] does not induce sparseness

and tends to over-smooth the image by penalizing large values. In FVP [113], the first

term is derived from the linear combination assumption in P+XS; it does not promote

sparsity for each band. Different from previous work, dynamic gradient sparsity

is encouraged in our method. Beside the prior information that previous methods

attempt to use, we also notice the intra- correlations across different bands as they

are the representations of the same land objects. Therefore, the gradients of different

1Here we mean the indices of the non-zero components.
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bands should be group sparse. It is widely known that the `1 norm encourages sparsity

and the `2,1 norm encourages group sparsity [81]. Thus we propose a new energy

function to encourage dynamic gradient sparsity and group sparsity simultaneously:

E2 = ||∇X−∇D(P)||2,1 (4.5)

=
∑

i

∑
j

√∑
d

∑
q(∇qXi,j,d −∇qPi,j)2, (4.6)

where q = 1, 2 and D(P) means duplicating P to s bands. Interestingly, when there

is no reference image, i.e. P = 0, the result is identical to that of vectorial total

variation (VTV) [115], which is widely used in color image denoising/deblurring.

To demonstrate why E2 encourages dynamic gradient sparsity, we show a simple

example on a 1D multi-channel signal in Figure 4.2. We could observe that, if the so-

lution has a different support set from the reference, the total sparsity of the gradients

will be increased. Cases (a)-(d) have group sparsity number 8, 4, 4, 2 respectively.

Therefore, (a)-(c) will be penalized because they are not the sparsest solution in our

method.

Combining the two energy functions, the image fusion problem can be formu-

lated as:

min
X
{E(X) = E1 + λE2

=
1

2
||ψX−M||2F + λ||∇X−∇D(P)||2,1}, (4.7)

where λ is a positive parameter.
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(d)

(c)

(b)

(a)

Figure 4.2. Illustration of possible solutions for different gradient based penalties. The
black denotes a reference signal. RGB color lines denotes the solutions of different
models. Left: 1D signals. Right: the corresponding gradients. (a) A possible solution
of TV: the gradients of RGB channels are sparse but may not be correlated. (b) A
possible solution of VTV: the gradients of R, G, B channels are group sparse, but
may not be correlated to the reference signal. (c) A possible solution of (4.3): it
does not encourage sparseness for each channel individually. (d) A possible solution
of dynamic gradient sparsity regularization: the gradients can only be group sparse
following the reference.

Comparing our method with existing methods [111][112][113], the first benefit

of our method comes from the local spectral constraint. It does not rely on the

upsampled MS image and linear-combination assumption. Therefore, only accurate

spectral information is kept. It can be further applied to image fusion from different

sources or different time acquisitions. Second, the proposed dynamic gradient sparsity

only forces the support sets to be the same, while the sign of the gradients as well as
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the magnitudes of the signal are not required to be the same. These properties make

it invariant under contrast inversion [105] and not sensitive to illumination conditions.

Last but not least, only our method can jointly fuse multiple bands simultaneously,

which provides robustness to noise. These advantages exist in our method uniquely.

4.3.3 Algorithm

It is obviously that problem (4.7) is convex and has a global optimal solution.

The first term is smooth while the second term is non-smooth. This motivates us

to solve the problem in the FISTA framework [42]. It has been proven that FISTA

can achieve the optimal convergence rate for first order methods. That is, E(Xk) −

E(X∗) ∼ O(1/k2), where X∗ is the optimal solution and k is the iteration counter.

We summarize the proposed algorithm for pan-sharpening in Algorithm 5.

Here ψT denotes the inverse operator of ψ. L is the Lipschitz constant for

ψT (ψX −M), which can be set as 1 in this problem. We could observe that the

solution is updated based on both Xk and Xk−1, while the Bregman method that

used in previous methods [111][113] updates X only based on Xk. This is a reason

why our method converges faster. For the second step, L = 1 and

Xk = arg min
X
{1

2
‖X−Y‖2

F + λ||∇X−∇D(P)||2,1}. (4.8)

Let Z = X−D(P) and we can rewrite the problem:

Zk = arg min
Z
{1

2
‖Z− (Y−D(P))‖2

F + λ||∇Z||2,1}. (4.9)

This alternative problem is therefore a VTV denoising problem [115] and Xk can

be updated by Zk + D(P). The slow version of the VTV denoising algorithm [115]

is accelerated based on FISTA framework to solve (4.8), which is summarized in

Algorithm 6. It can be proven that Algorithm 6 reaches the optimal convergence rate

if the step size is set as 1/(8λ).

66



Algorithm 5 DGS-Fusion

Input: L, λ, t1 = 1, Y0

for k = 1 to Maxiteration do

Y = Yk − ψT (ψX−M)/L

Xk = arg minX{L2 ‖X−Y‖2
F + λ||∇X−∇D(P)||2,1}

tk+1 = [1 +
√

1 + 4(tk)2]/2

Yk+1 = Xk + tk−1
tk+1 (Xk −Xk−1)

end for

The linear operator is defined as: L(R,S)i,j,d = Ri,j,d−Ri−1,j,d+Si,j,d−Si,j−1,d

The corresponding inverse operator is defined as LT (X) = (R,S) with Ri,j,d = Xi,j,d−

Xi+1,j,d and Si,j,d = Xi,j,d −Xi,j+1,d. P is a projection operator used to ensure that∑s
d=1(R2

i,j,d + S2
i,j,d) ≤ 1, |Ri,n,d| ≤ 1, and |Sm,j,d| ≤ 1.

Algorithm 6 VTV-Denoising

Input: λ, Y, P, (U,V) = (R,S) = (0,0), t1 = 1

B = Y−D(P)

for k = 1 to Maxiteration do

(Rk,Sk) = P[(Uk,Vk) + 1
8λ
LT (B− λL(Uk,Vk))]

tk+1 =
1+
√

1+4(tk)2

2

(Uk+1,Vk+1) = (Rk,Sk) + tk−1
tk+1 (Rk −Rk−1,Sk − Sk−1)

end for

Z = B− λL(Rk,Sk)

X = Z +D(P)
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If the subproblem is solved exactly by Algorithm 6, Algorithm 5 also can reach

the optimal convergence rate O(1/k2). However, due to the tradeoff between con-

vergence rate and computational cost, the inner loop of Algorithm 6 only runs 3

iterations in all experiments.

Table 4.1. Comparison of Different Algorithms for Pan-sharpening. Tw denotes the
time for wavelet fusion. R denotes the size of the blurring kernel.

Method Scheme Convergence Rate Time Complexity

P+XS Gradient Descent very slow O(N logR)

AVWP Split Bregman < O(1/k) O(N) + Tw

FVP Split Bregman < O(1/k) O(N logR)

Proposed FISTA O(1/k2) O(N)

The comparison for different algorithms is presented in Table 1. In terms of

convergence rate, FISTA [42] is much faster than the split Bregman method [114].

Also, only our method has linear complexity which makes it scalable for large datasets.

There is only one insensitive parameter that needs to be tuned for our method while

there are 2,4,4 parameters for the algorithms using X+PS [111], AVWP [112] and

FVP [113], respectively. Without the need to estimate the blurring kernel and wavelet

fused image, our method can be applied on different tasks more easily.

4.4 Experiment

The proposed method is validated on datasets from Quickbird, Geoeye, SPOT

and IKONOS satellites. The resolution of Pan images ranges from 0.41 m to 1.5

m. All the corresponding MS images have lower resolutions with c = 4 and contain

blue, green, red and near-infrared bands. For convenience, only the RGB bands
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are presented. Due to the lack of multi-resolution images of the same scene, low

resolution images are downsampled from the ground-truth. This strategy is common

for comparing fusion algorithms (e.g. [116][117][111][112][113]).

We compare our method with classical methods PCA [106], IHS [107], wavelet

[108], Brovey [110] and variation methods P+XS [111], AVWP [112]. We do not

include FVP [113] as there is a serious mistake in the algorithm (Eq. (23) of [113])

and we can not reproduce their results. The parameters for each method are tuned

individually according to the authors’ suggestion and the best set is selected for each

method, respectively. All experiments are conducted using Matlab on a desktop with

3.4GHz Intel core i7 3770 CPU.

4.4.1 Visual Comparison

Ground-truth MS Pan PCA IHS

Wavelet Brovey P+XS AVWP Proposed

Figure 4.3. Fusion Results comparison (source: Quickbird). The Pan image has
200× 160 pixels. Copyright DigitalGlobe .

First, we compare the fusion result by our method with those of previous works

[106][107][108][110][111][112]. Figure 4.3 shows the results as well as the original
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Ground-truth MS Pan PCA IHS

Wavelet Brovey P+XS AVWP Proposed

Figure 4.4. Fusion Results comparison (source: IKONOS). The Pan image has 256×
256 pixels. Copyright DigitalGlobe.

images captured by the Quickbird satellite. All the methods can produce much better

visual images than the original MS image. Obviously, PCA [106] performs the worst.

No artifacts can be found on the images produced by IHS [107] and Brovey [110].

However, a closer look shows that the color on these images tends to change, especially

on the trees and grass. This is a sign of spectral distortion [105]. Wavelet fusion [108]

suffers from both spectral distortion and blocky artifacts (e.g. on the swimming

poor). Blurred edges is a general issue in the image fused by P+XS [111]. AVWP

[112] performs much better than all of them but it inherits the blocky artifacts of the

wavelet fusion. The results of another experiment on a IKONOS image are shown in

Figure 4.4, with similar performance by each algorithm. The difference is that some

visible bright pixels can be found at the top-left corner of Brovey.

For better visualization, the error images compared with the ground-truth are

presented in Figure 4.5 and Figure 4.6 at the same scale. From these error images,

the spectral distortion, blocky artifacts, and blurriness can be clearly observed. These
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PCA IHS Wavelet Brovey

P+XS AVWP Proposed

Figure 4.5. The corresponding error images to those in Figure 4.3. Brighter pixels
represent larger errors.

PCA IHS Wavelet Brovey

P+XS AVWP Proposed

Figure 4.6. The corresponding error images to those in Figure 4.4. Brighter pixels
represent larger errors.
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results are consistent with those presented in previous work [112]. Due to the spec-

tral distortion, the conventional methods are not adapted to vegetation study [105].

Previous variational methods [111][112] try to break such hard assumptions by com-

bining a few weak assumptions. However, their assumption on the upsampled MS

image always results in inaccuracy. In contrast, we only constrain the spectral infor-

mation of the fused image to be locally consistent with the original MS image. The

fusion results are impressively good on these two images.

4.4.2 Quantitative Analysis

Quickbird

Geoeye

SPOT

IKONOS

Figure 4.7. Example images used in our experiments. Copyright DigitalGlobe for
Quickbird, Geoeye and IKONOS. Copyright CNES for SPOT.

In addition to the two images used previously, 156 test images of different sizes

(from 128 × 128 to 512 × 512) are cropped from Quickbird, Geoeye, IKONOS and

SPOT datasets, which contain vegetation (e.g. forest, farmland), bodies of water

(e.g. river, lake) and urban scenes (e.g. building, road). This test set is much larger

72



than the size of all datasets considered in previous variational methods (31 images in

[111], 7 images in [112] and 4 images in [113]). Example images are shown in Figure

4.7.

To evaluate the fusion quality of different methods, we use four metrics that

measure spectral quality and one metric that measures spatial quality. The spectral

metrics include the relative dimensionless global error in synthesis (ERGAS) [118],

spectral angle mapper (SAM) [118], universal image quality index (Q-average) [119]

and relative average spectral error (RASE) [120]. The filtered correlation coefficients

(FCC) [108] is used as spatial quality metric. In addition, peak signal-to-noise ra-

tio (PSNR), and root mean squared error (RMSE) and mean structural similarity

(MSSIM) [121] are used to evaluate the fusion accuracy when compared with the

ground-truth.

The average results and the variance on this test set are listed in Table 2. The

ideal value for each metric is shown in the last row. The results of variational methods

[111][112] have much lower values in ERGAS and RASE than those of conventional

methods [106][107][108][110]. From QAVE and SAM, the results are comparable to

conventional methods. We can conclude that these variational methods can preserve

more spectral information. Due to the blurriness, P+XS has the worse spatial res-

olution in terms of FCC. In terms of error and similarity metrics (PSNR, MSSIM,

RMSE), AVWP and P+XS are always the second best and second worst, respec-

tively. Except for the same FCC as the wavelet fusion, our method is consistently

better than all previous methods in terms of all metrics. These results are enough

to demonstrate the success of our method, where the dynamic gradient sparsity can

preserve sharp edges and the spectral constraint keeps accurate spectral information.

In terms of PSNR, it can outperform the second best method AVWP by more than

7 dB.
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If we consider the prior information that is used, the performance of each al-

gorithm is easy to explain. Conventional projection-substitution methods only treat

the input images as vectorial information (i.e. 1D). The difference is the substitution

performed on various projection spaces. However, 2D information such as boundaries

is not utilized. The boundary information has been considered in both variational

methods P+XS [111] and AVWP [112], although their models can not effectively ex-

ploit this prior information. Promising results, especially by AVWP, have already

achieved over conventional methods. By using the proposed dynamic gradient spar-

sity, our method has successfully learned the prior knowledge provided by the Pan

image. Due to the group sparsity across different bands, our method is less sensitive

to noise. These are why our method consistently outperforms the others.

4.4.3 Efficiency Comparison

To evaluate the efficiency of the proposed method, we compare the proposed

method with previous variational methods P+XS [111] and AVWP [112] in terms of

both accuracy and computational cost. PSNR is used to measure fusion accuracy.

Figure 4.8 demonstrates the convergence rate comparison of these algorithms corre-

sponding to the images in Figure 4.3 and 4.4. Inheriting the benefit of the FISTA [42]

framework, our method often converges in 100 to 150 outer iterations. AVWP often

converges in 200 to 400 iterations. P+XS that uses classic gradient decent method

has not converged even with 600 iterations. After each algorithm converged, our

method can approximately outperform AVWP by more than 5 dB and 8 dB on these

two image in terms of PSNR. Note that the later one is the second best method from

previous analysis.

The average computational costs of these three methods are listed in Table 3

for different sizes of test images. Both the proposed method and AVWP terminate
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Figure 4.8. Convergence rate comparison among P+XS, AVWP and the proposed
method. (a) Result corresponds to Figure 4.3. (b) Result corresponds to Figure 4.4.

when a fixed tolerance is reached (e.g. 10−3 of the relative change on X). The

computational cost of our method tend to be linear from these results. Even the

second fastest method AVWP takes about 50% more time than ours on an image of

512 by 512 pixels. These comparisons are sufficient to demonstrate the efficiency and

effectiveness of our method.

Table 4.3. Computational time (second) comparison.

128× 128 256× 256 384× 384 512× 512
P+XS 6.7 16.0 48.3 87.4
AVWP 1.7 8.3 28.2 54.7

Proposed 1.4 5.0 19.3 36.8

4.5 Summery

We have proposed a novel and powerful variational model for pan-sharpening

with local spectral consistency and dynamic gradient sparsity. The model naturally
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incorporates the gradient prior information from a high resolution Pan image and

spectral information from an MS image. Moreover, our model also exploits the band

correlations of the fused image itself, which has not yet considered in any previous

method. An efficient optimization algorithm has been devised to solve the problem,

with sufficient implementation details. Extensive experiments are conducted on 158

images stemming from a variety of sources. Due to the proposed unique techniques,

our methods is corroborated to consistently outperforms the state-of-the-arts in terms

of both spatial and spectral qualities.

The proposed method is not sensitive to an exact downsampling scheme. When

the actual downsampling is cubic interpolation, the same result can be obtained if

we use either cubic or bilinear interpolation. It is only sightly worse when we use an

averaging strategy.

Parallel programming can further accelerate the speed of our method. No in-

formation from another patch is required for fusion. As our method does not require

strong correlation between the input images, it can be used in fusing images from

different capture times (shadows should be taken into account), different sources (e.g.

images from different satellites). Conventional TV in medical image fusion (e.g. CT

and MRI) [122] may be enhanced by the proposed dynamic gradient sparsity.
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CHAPTER 5

Deep Sparse Representation for Robust Image Registration

This chapter introduces a hierarchical sparsity model called deep sparse rep-

resentation for image registration. The proposed method is motivated by that the

optimally registered images can be deeply sparsified in the gradient domain and fre-

quency domain, with the separation of a sparse tensor of errors. One of the key

advantages of the proposed similarity measure is its robustness to severe intensity

distortions, which widely exist on medical images, remotely sensed images and natu-

ral photos due to the difference of acquisition modalities or illumination conditions.

This work was presented under a slightly modification from [123].

5.1 Introduction

Image registration is a fundamental task in image processing and computer

vision [124, 125, 126, 6, 127]. It aims to align two or more images into the same

coordinate system, and then these images can be processed or compared. Accuracy

and robustness are two of the most important metrics to evaluate a registration

method. It has been shown that a mean geometric distortion of only 0.3 pixel will

result in noticeable effect on a pixel-to-pixel image fusion process [128]. Robustness

is defined as the ability to get close to the accurate results on different trials under

diverse conditions. Based on the feature used in registration, existing methods can be

classified into feature-based registration (e.g., [129, 130]) and pixel-based registration

(e.g., [131, 9, 11, 132]). Feature-based methods rely on the landmarks extracted from

the images. However, extracting reliable features is still an open problem and an
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active topic of research [127]. In this chapter, we are interested in image registration

by directly using their pixel values. In addition, we wish to successfully register

the images from a variety of applications in subpixel-level accuracy, as precisely as

possible.

One key component for image registration is the energy function to measure

(dis)similarity. The optimized similarity should lead to the correct spatial alignment.

However, finding a reliable similarity measure is quite challenging due to the unpre-

dicted variations of the input images. In many real-world applications, the images to

be registered may be acquired at different times and locations, under various illumi-

nation conditions and occlusions, or by different acquisition modalities. As a result,

the intensity fields of the images may vary significantly. For instance, slow-varying

intensity bias fields often exist in brain magnetic resonance images [133]; the remotely

sensed images may even have inverse contrast for the same land objects, as multiple

sensors have different sensitivities to wavelength spectrum [105]. Unfortunately, many

existing pixel-based similarity measures are not robust to these intensity variations,

e.g., the widely used sum-of-squared-difference (SSD) [6].

Recently, the sparsity-inducing similarity measures have been repeatedly suc-

cessful in overcoming such registration difficulties [7, 134, 135, 136]. In RASL [134]

(robust alignment by sparse and low-rank decomposition), the images are vectorized

to form a data matrix. The transformations are estimated to seek a low rank and

sparse representation of the aligned images. Two online alignment methods, ORIA

[135] (online robust image alignment) and t-GRASTA [136] (transformed Grassman-

nian robust adaptive subspace tracking algorithm), are proposed to improve the scal-

ability of RASL. All of these methods assume that the large errors among the images

are sparse (e.g., caused by shadows, partial occlusions) and separable. However, as

we will show later, many real-world images contain severe spatially-varying intensity
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distortions. These intensity variations are not sparse and therefore difficult to be

separated by these methods. As a result, the above measures may fail to find the

correct alignment and thus are less robust in these challenging tasks.

The residual complexity (RC) [7] is one of the best measures for registering two

images corrupted by severe intensity distortion [137], which uses the discrete cosine

transform (DCT) to sparsify the residual of two images. For a batch of images, RC

has to register them pair-by-pair and the solution may be sub-optimal. In addition,

DCT and inverse DCT are required in each iteration, which slows down the overall

speed of registration. Finally, although RC is robust to intensity distortions, the

ability of RC to handle partial occlusions is unknown.

Unlike previous works that vectorize each image into a vector [134, 135, 136],

we arrange the input images into a 3D tensor to keep their spatial structure. With

this arrangement, the optimally registered image tensor can be deeply sparsified into

a sparse frequency tensor and a sparse error tensor (see Fig. 5.1 for more details).

Severe intensity distortions and partial occlusions will be sparsified and separated out

in the first and second layers, while any misalignment will increase the sparseness of

the frequency tensor (third layer). We propose a novel similarity measure based on

such deep sparse representation of the natural images. Compared with the low rank

similarity measure which requires a batch of input images, the proposed similarity

measure still works even when there are only two input images. An efficient algorithm

based on the Augmented Lagrange Multiplier (ALM) method is proposed for the

batch mode, while the gradient descent method with backtracking is presented to

solve the pair registration problem. Both algorithms have very low computational

complexity in each iteration. We compare our method with 9 traditional and state-

of-the-art algorithms on a wide range of natural image datasets, including medical

images, remotely sensed images and photos. Extensive results demonstrate that our
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method is more robust to different types of intensity variations and always achieves

higher sub-pixel accuracy over all the tested methods.

1st layer2nd layer

3rd layer

Sparse

decomposition

+

Sparsifying in the frequency domain

Sparsifying in the gradient domain

…...

…...

Figure 5.1. Deep sparse representation of the optimally registered images. First we
sparsify the image tensor into the gradient tensor (1st layer). The sparse error tensor
is then separated out in the 2nd layer. The gradient tensor with repetitive patterns are
sparsified in the frequency domain. Finally we obtain an extremely sparse frequency
tensor (composed of Fourier coefficients) in the 3rd layer.

5.2 Image registration via deep sparse representation

In this chapter, we use bold letters denote multi-dimensional data. For example,

x denotes a vector, X denotes a matrix and X is a 3D or third-order tensor. X(i,j,t)
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denotes the entry in the i-th row, j-th column and t-th slice. X(:,:,t) denotes the whole

t-th slice, which is therefore a matrix. The `1 norm is the summation of absolute values

of all entries, which applies to vector, matrix and tensor.
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Figure 5.2. A toy registration example with respect to horizontal translation using
different similarity measures (SSD [6], RC [7], SAD [6], CC [8], CD2 [9], MS [10], MI
[11] and the proposed pair mode). (a) The Lena image (128× 128). (b) A toy Lena
image under a severe intensity distortion. Blue curves: registration between (a) and
(a); red curves: registration between (b) and (a).

5.2.1 Batch mode

We introduce our deep sparsity architecture in the inverse order for easy un-

derstanding. Suppose we have a batch of grayscale images I1, I2, ..., IN ∈ Rw×h to

be registered, where N denotes the total number of images. First, we consider the

simplest case that all the input images are identical and perturbed from a set of

transformations τ = {τ1, τ2, ..., τN} (it can be affine, non-rigid, etc.).

We arrange the input images into a 3D tensor D ∈ Rw×h×N , with

D(:,;,t) = It, t = 1, 2, ..., N, (5.1)
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After removing the transformation perturbations, the slices show repetitive patterns.

Such periodic signals are extremely sparse in the frequency domain. Ideally the

Fourier coefficients from the second slice to the last slice should be all zeros. We can

minimize the `1 norm of the Fourier coefficients to seek the optimal transformations:

min
A,τ
||FNA||1, s.t. D ◦ τ = A, (5.2)

where FN denotes the Fourier transform in the third direction.

The above model can be hardly used on practical cases, due to the corruptions

and partial occlusions in the images. Similar as previous work [134], we assume the

noise is negligible in magnitude as compared to the error caused by occlusions. Let E

be the error tensor. We can separate it from the image tensor if it is sparse enough.

Similar, we use the `1 norm to induce sparseness:

min
A,E,τ

||FNA||1 + λ||E||1, s.t. D ◦ τ = A + E , (5.3)

where λ > 0 is a regularization parameter.

The above approach requires that the error E is sparse. However, in many

real-world applications, the images are corrupted with spatially-varying intensity dis-

tortions. Existing methods such as RASL [134] and t-GRASTA [136] may fail to

separate these non-sparse errors. The last stage of our method comes from the intu-

ition that the locations of the image gradients (edges) should almost keep the same,

even under severe intensity distortions. Therefore, we register the images in the

gradient domain:

min
A,E,τ

||FNA||1 + λ||E||1, s.t. ∇D ◦ τ = A + E , (5.4)

where ∇D =
√

(∇xD)2 + (∇yD)2 denotes the gradient tensor along the two spatial

directions. This is based on a mild assumption that the intensity distortion fields of

natural images often change smoothly.
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With this rationale, the input images can be sparsely represented in a three

layer architecture, which is shown in Fig. 5.1. We call it deep sparse representation of

images. Comparing with existing popular low rank representation [134], our modeling

has two major advantages. First, the low rank representation treats each image as

a 1D signal, while our modeling exploits the spatial prior information (piece-wise

smoothness) of natural images. Second, when the number of input images is not

sufficient to form a low rank matrix, our method is still effective. Next, we will

demonstrate how does our method register only two input images.

5.2.2 Pair mode

For registering a pair of images, our model can be simplified and the registration

can be accelerated. After two-point discrete Fourier transform (DFT), the first entry

is the sum and the second entry is the difference. The difference term is much sparser

than the sum term when the two images have been registered. We can discard the

sum term to seek a sparser representation. Let I1 be the reference image, and I2 be

the source image to be registered. The problem (5.4) can be simplified to

min
A1,A2,E,τ

||A1 −A2||1 + λ||E||1,

s.t. ∇I1 = A1,∇I2 ◦ τ = A2 + E. (5.5)

Both `1 norms in (5.5) implies the same property, i.e., sparseness of the residual image

E. Therefore, we can further simplify the above energy function:

min
τ
||∇I1 −∇I2 ◦ τ ||1. (5.6)

It’s interesting that (5.6) is equivalent to minimizing the total variation (TV) of the

residual image. The TV has been successfully utilized in many image denoising,
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debluring, and reconstruction problems. To our best knowledge, this is the first

attempt to define TV as a similarity measure1.

We compare the proposed similarity measure with SSD [6], RC [7], sum-of-

absolute value (SAD) [6], correlation coefficient (CC) [8], CD2 [9], MS [10] and mutual

information (MI) [11] on a toy example. The Lena image is registered with itself

with respect to the horizontal translations. The blue curves in Fig. 5.2 show the

responses of different measures, all of which can find the optimal alignment at the

zero translation. After adding intensity distortions and rescaling, the appearance of

source image shown in Fig. 5.2(b) is not consistent with that of the original Lena

image. The results denoted by the red curves show that only RC and the proposed

pair mode can handle this intensity distortion while other methods fail.

5.3 Algorithms

5.3.1 Batch mode

Problem (5.4) is difficult to solve directly due to the non-linearity of the trans-

formations τ . We use the local first order Taylor approximation for each image:

∇It ◦ (τt +4τt) ≈ ∇It ◦ τt + Jt ⊗4τt (5.7)

for t = 1, 2, ..., N , where Jt = ∂
∂ζ

(∇It ◦ ζ)|ζ=τt ∈ Rw×h×p when τt is defined by p

parameters. The Tensor-Vector Product of the last term is defined by:

Definition 1. Tensor-Vector Product. The product of a tensor A ∈ Rn1×n2×n3

and a vector b ∈ Rn3 is a matrix C ∈ Rn1×n2 . It is given by C = A ⊗ b, where

C(i,j) =
∑n3

t=1 A(i,j,t)b(t), for i = 1, 2, ..., n1 and j = 1, 2, ..., n2.

1It is substantially different from the TV regularization methods [138, 139], where the widely

used SSD is their actual similarity measure.
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Based on this, the batch mode (5.4) can be rewritten as:

min
A,E,4τ

||FNA||1 + λ||E||1,

s.t. ∇D ◦ τ + J ⊗4τ = A + E , (5.8)

This constrained problem can be solved by the augmented Lagrange multiplier

(ALM) algorithm [134, 140]. The augmented Lagrangian problem is to iteratively

update A,E ,4τ and Y by

(Ak+1,Ek+1,4τ k+1) = arg min
A,E,4τ

L(A,E ,4τ,Y),

Yk+1 =Yk + µkh(Ak,Ek,4τ k), (5.9)

where k is the iteration counter and

L(A,E ,4τ,Y) =< Y , h(A,E ,4τ) > +||FNA||1

+ λ||E||1 +
µ

2
||h(A,E ,4τ)||2F , (5.10)

where the inner product of two tensors is the sum of all the element-wise products

and

h(A,E ,4τ) = ∇D ◦ τ + J ⊗4τ −A− E . (5.11)

A common strategy to solve (5.9) is to minimize the function against one unknown

at one time. Each of the subproblem has a closed form solution:

Ak+1 = T1/µk(∇D ◦ τ + J ⊗4τ +
1

µk
Yk − Ek)

Ek+1 = Tλ/µk(∇D ◦ τ + J ⊗4τ +
1

µk
Yk −Ak+1)

4τ k+1
t = J T

t ⊗ (Ak+1
(:,:,t) + Ek+1

(:,:,t) −∇D(:,:,t) ◦ τ

− 1

µk
Yk

(:,:,t)), for t = 1, 2, ..., N (5.12)
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where the Tα() denotes the soft thresholding operation with threshold value α. In

the third equation of (5.12), we use the Tensor-Matrix Product and Tensor Transpose

defined as follows:

Definition 2. Tensor-Matrix Product. The product of a tensor A ∈ Rn1×n2×n3

and a matrix B ∈ Rn2×n3 is a vector c ∈ Rn1 . It is given by c = A ⊗ B, where

c(i) =
∑n2

j=1

∑n3

t=1 A(i,j,t)B(j,t), for i = 1, 2, ..., n1.

Definition 3. Tensor Transpose. The transpose of a tensor A ∈ Rn1×n2×n3 is

the tensor AT ∈ Rn3×n1×n2 .

The registration algorithm for the batch mode is summarized in Algorithm 7.

Let M = w × h be the number of pixels of each image. We set λ = 1/
√
M and µk =

1.25kµ0 in the experiments, where µ0 = 1.25/||∇D||2. For the inner loop, applying

the fast Fourier transform (FFT) costs O(N logN). All the other steps cost O(MN).

Therefore, the total computation complexity of our method is O(N logN + MN),

which is significantly faster than O(N2M) when applying SVD decomposition in

RASL (if M >> N).

5.3.2 Pair mode

Similar as that in the batch mode, we have:

∇I2 ◦ (τ +4τ) ≈ ∇I2 ◦ τ + Jp ⊗4τ (5.13)

where Jp ∈ Rw×h×p denotes the Jacobian. Thus, the pair mode (5.6) is to minimize

the energy function with respect to 4τ :

E(4τ) = ||∇I1 −∇I2 ◦ τ −Jp ⊗4τ ||1 (5.14)

The `1 norm in (5.14) is not smooth. We can have a tight approximation for the

absolute value: |x| =
√
x2 + ε, where ε is a small constant (e.g. 10−10). Let r =
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Algorithm 7 Image registration via DSR - batch mode

input: Images I1, I2, ..., IN , initial transformations τ1, τ2, ..., τN , regularization pa-

rameter λ.

repeat

1) Compute Jt = ∂
∂ζ

(∇It ◦ ζ)|ζ=τt , t = 1, 2, ..., N ;

2) Warp and normalize the gradient images:

∇D ◦ τ = [ ∇I1◦τ1
||∇I1◦τ1||F

; ...; ∇IN◦τN
||∇IN◦τN ||F

];

3) Use (5.12) to iteratively solve the minimization problem of ALM:

A∗,E∗,4τ ∗ = arg minL(A,E ,4τ,Y);

4) Update transformations: τ = τ +4τ ∗;

until Stop criteria

∇I1 −∇I2 ◦ τ −Jp ⊗4τ , and we can obtain the gradient of the energy function by

the chain rule:

∇E(4τ) = J T
p ⊗

r√
r ◦ r + ε

(5.15)

where ◦ denotes the Hadamard product. Note that the division in (5.15) is element-

wise.

Gradient descent with backtracking is used to minimize the energy function

(5.14), which is summarized in Algorithm 8. We set the initial step size µ0 = 1

and η = 0.8. The computational complexity of each iteration is O(M), which is

much faster than O(M logM) in RC when fast cosine transform (FCT) is applied

[7]. Similar as the batch mode, we use the normalized images to rule out the trivial

solutions. For non-rigid registration, the transformation is implemented using the

free form deformation (FFD) transformation with B-spline control points [141]. We

use a coarse-to-fine hierarchical registration architecture for both the batch mode and

pair mode [142].
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Algorithm 8 Image registration via DSR - pair mode

input: I1, I2, η < 1, τ , µ0.

repeat

1) Warp and normalize I2 with τ ;

2) µ = µ0;

3) Compute 4τ = −µ∇E(0);

4) If E(4τ) > E(0),

set µ = ηµ and go back to 3);

5) Update transformation: τ = τ +4τ ;

until Stop criteria

5.4 Experimental results

In this section, we validate our method on a wide range of applications. We

compare our batch mode with RASL [134] and t-GRASTA [136], and compare our pair

mode with RC [7] and SSD [6]. One of the most important advantages of our method

is its robustness and accuracy on natural images under spatially-varying intensity

distortions. As shown in [7] and Fig. 5.2, SAD [6], CC [8], CD2 [9], MS [10], MI [11]

are easy to fail in such cases. We do not include them in the following experiments.

All experiments are conducted on a desktop computer with Intel i7-3770 CPU with

12GB RAM.

5.4.1 Batch image registration

To evaluate the performance of our batch mode, we use a popular database

of naturally captured images [143]. We choose the four datasets with the largest

lighting variations: ”NUTS”, ”MOVI”, ”FRUITS” and ”TOY”. These datasets are

very challenging to register, as they have up to 20 different lighting conditions and are
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occluded by varying shadows. Random translations on both directions are applied

on the four datasets, which are drawn from a uniform distribution in a range of 10

pixels.

After registration on the ”NUTS” dataset, the two components of each algo-

rithm is shown in Fig. 5.3. RASL [134] and t-GRASTA [136] fail to separate the

shadows and large errors, while we can successfully find the deep sparse representa-

tion of the optimally registered images. The average of perturbed images and results

are shown in Fig. 5.4, where the average image by the proposed method has sig-

nificantly sharper edges than those by the two existing methods. The quantitative

comparisons on the four datasets are listed in Table 5.1 over 20 random runs. The

overall average errors of our method are consistently lower than those of RASL and t-

GRASTA. More importantly, only our method can always achieve subpixel accuracy.

For 20 images with size 128×128 pixels, the registration time is around 7 seconds for

both RASL and our method, while t-GRAST costs around 27 seconds. RASL should

be much slower on larger datasets due to the higher complexity of SVD, although we

did not test.

Table 5.1. The mean/max registration errors in pixels of RASL, t-GRASTA and our
method on the four lighting datasets. The first image is fixed to evaluate the errors.

RASL t-GRASTA Proposed
NUTS 0.670/2.443 1.153/3.842 0.061/0.488
MOVI 0.029/ 0.097 0.568/ 2.965 0.007/0.024

FRUITS 0.050/0.107 1.094/4.495 0.031/0.076
TOY 0.105/ 0.373 0.405/2.395 0.038/0.076

We evaluate these three methods on the Multi-pie face database [144]. This

database contains 20 images of each subject captured at different illumination con-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3. Batch image registration on the NUTS datasets. (a) The low rank
component by RASL. (b) The sparse errors by RASL. (c) The subspace representation
by t-GRASTA. (d) The sparse errors by t-GRASTA. (e) The visualization of A by
our method. (f) The sparse error E by our method.
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(a) (b) (c) (d)

Figure 5.4. Registration results on the ”NUTS” dataset. (a) The average image
of perturbed images. (b) The average image by RASL. (c) The average image by
t-GRASTA. (d) The average image by our method.

ditions. We add random artificial rotations in a range of 10◦ and translations in 10

pixels on the first 100 subjects from the Session 1. As the optimal alignment is not

unique (e.g, all images shift by 1 pixel), we compare the standard derivation (STD)

of the transformations after registration. Ideally, the STD should be zero when all

the perturbations have been exactly removed. Fig. 5.5 shows the average registration

results over 20 runs for each subject. Our method is more accurate than RASL and

t-GRASTA for almost every subject.

5.4.2 Pair image registration

5.4.2.1 Simulations

We conduct a simulation on a brain MRI image [145]. The source image is

warped by a non-rigid transformation, perturbed from random zero-mean Gaussians

with three pixels standard deviation [146]. We add a few Gaussian intensity fields

to simulate the distortion and rescale the images to [0,1]. Fig. 5.6 shows the input

images and the results by RC [7] and the proposed method. SSD is not compared in

non-rigid registration, as it always failed although different settings were tried. As we

could see, both results are very close to the ground truth. A visible artifact can be
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(a) (b)

(c) (d)

Figure 5.5. (a) An example input of the multipie image database. (b) The STD (in
degrees) of rotations after registration. (c) The STD (in pixels) of X-translation after
registration. (d) The STD (in pixels) of Y-translation after registration .

observed in the image recovered by RC, which is highlighted by the blue circle. The

estimated transformation by our method is more smooth, and closer to the Gaussion

perturbations.

For quantitative comparisons, we evaluate SSD, RC and the proposed method

with random intensity distortions and random transformations like Fig. 5.6. The ref-

erence image without intensity distortions is used as ground-truth. Non-rigid transfor-

mations are applied on the brain image in Fig. 5.6, and random affine transformations
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(a) (b) (c)

(d) (e) (f)

Figure 5.6. Synthetic experiment with non-rigid transformation. (a) The reference
image. (b) The source image with intensity distortion. (c) Registration result by RC.
(d) Registration by our method. (e) The transformation estimated by RC. (f) The
transformation estimated by our method. Best viewed in ×2 sized color pdf file.

are applied on the Lena image in Fig. 5.2 (with a similar range as the previous set-

tings). The root-mean-square error (RMSE) is used as the metric for error evaluation

of both image intensities and transformations.

The number of Gaussian intensity fields K is from 1 to 6. We run each setting

50 times and the results are plotted in Fig. 5.7. It can be observed that the proposed

method is consistently better than SSD and RC, for both types of transformation.

The registration speed of our method is often faster than that of RC. The average

speed for the pair mode is 6.5 seconds per registration on the brain image (216×180)

while that of RC is 13.7 seconds per registration.
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Figure 5.7. Registration performance comparisons with random transformation per-
turbations and random intensity distortions. (a) Intensity RMSE on the brain image.
(b) Transformation (non-rigid) RMSE on the brain image. (c) Intensity RMSE on
the Lena image. (d) Transformation (affine) RMSE on the Lena image.

5.4.2.2 Multisensor remotely sensed image registration

Multisensor image registration is a key preprocessing operation in remote sens-

ing, e.g., for image fusion, change detection. The same land objects may be ac-

quired at different times, under various illumination conditions by different sensors.

Therefore, it is very possible that the input images have significant dissimilarity in

terms of intensity values. Here, we register a panchromatic image to a multispectral

image acquired by IKONOS multispectral imaging satellite [147], which have been

pre-registered at their capture resolutions. The multispectral image has four bands:
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(b)(a)

(f)(e)

(d)(c)

Figure 5.8. Registration of a multispectral image and a panchromatic image. (a)
Reference image. (b) Source image. (c) The difference image before registration. (d)
The difference image by SSD. (e) The difference image by RC. (f) The difference
image by our method. Visible misalignments are highlighted by the yellow circles.
Best viewed in ×2 sized color pdf file.
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(b) (a) (c) (d) (e)

A

B

Figure 5.9. Registration of an aerial photograph and a digital orthophoto. From
left to right, the images are: the reference image, the source image, the overlay by
MATLAB, the overlay by RC, the overlay by our method. The second row shows the
zoomed-in areas of streets A and B. Best viewed in ×2 sized color pdf file.

blue, green, red and near-infrared, with 4 meter resolution (Fig. 5.8 (a)). The Pan

image has 1 meter resolution (Fig. 5.8 (b)). The different image resolutions make

this problem more difficult. From the difference image in Fig. 5.8 (c), we can observe

that there exists misalignment in the northwest direction.

We compare our method with SSD [6] and RC [7], and the results are shown

in Fig. 5.8 (d)-(f). It is assumed that the true transformation is formed by pure

translation. Although we do not have the ground-truth, from the difference image, it

can be clearly observed that our method can reduce the misalignment. In contrast,

SSD and RC are not able to find better alignments than the preregistration method.

We register an aerial photograph to a digital orthophoto. The reference image

is the orthorectified MassGIS georegistered orthophoto [148]. The source image is a

digital aerial photograph, which does not have any particular alignment or registration

with respect to the earth. The input images and the results are shown in Fig. 5.9.

MATLAB uses manually selected control points for registration, while RC and our

registrations are automatic. At the first glance, all the methods obtain registration
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with good quality. A closer look shows that our method has higher accuracy than the

others. In the source image, two lanes can be obviously observed in streets A and B.

After registration and composition, street B in the result by MATLAB and street A

in the result by RC are blurry due to the misalignment. Our method is robust to the

local mismatches of vehicles.

5.4.2.3 Multimodal medical image registration

We further validate the performance of different methods on real-world medical

images. Temporal and multimodal registration are performed on two retina images

taken two years apart [12]. The reference image and source image are shown in Fig.

5.10 (a) and (b). These retina images are quite difficult to register with intensities.

In order to avoid local minimum, we use affine transformation for preregistration and

the result is shown in 5.10 (c). From the overlay in 5.10 (d), we could observe that

there still exist misalignments for the vessels at the bottom half of the overlay. A

local error can be found in the result by RC, while our method can eliminate the

misalignments.

We validate the performance of our method on real-world applications. The

proposed method is compared with RC on two images from a iris video sequence

[7] (shown in Fig. 5.11). The deformation between the source image and reference

image is highly nonlinear. The intensity artifact in the source image makes this

problem more challenging. The composition image without registration is shown in

Fig. 5.11(c) using green and magenta colors. The vessels are blurry due to the

misalignment. After registration, both RC and the proposed DTV provide accurate

alignments on the vessels. However, the image registered by RC has been partially

distorted due to the severe intensity variance.
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(b)(a)

(f)(e)

(d)(c)

Figure 5.10. Registration of two retina images [12]. (a) Reference image. (b) Source
image. (c) The source image after affine preregistration. (d) The overlay before reg-
istration. (e) The overlay after registration by RC. (f) The overlay after registration
by our method. Visual artifact is highlighted by the blue circle.
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(a) (b)

(c) (e)(d)

Figure 5.11. Registration of two iris images [7]. (a) Reference image. (b) Source
image. (c) The overlay before registration. (d) The overlay after registration by RC.
(e) The overlay after registration by our method. Visible artifact is highlighted by
the blue circle. Best viewed in ×2 sized color pdf file.

5.5 Summary

In this chapter, we have proposed a novel similarity measure for robust and

accurate image registration. It is motivated by the deep sparse representation of the

optimally registered images. The benefit of the proposed method is three fold: (1)

compared with existing approaches, it can handle severe intensity distortions and

partial occlusions simultaneously; (2) it can be used for registration of two images or

a batch of images, with various types of transformations; (3) its low computational

complexity makes it scalable to large datasets. We have conducted extensive exper-

iments to test our method on multiple challenging datasets. The promising results

demonstrate the robustness and accuracy of our method over the state-of-the-art

batch registration methods and pair registration methods, respectively. We also show
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that our method can be used to reduce the registration errors in many real-world

applications.

Due to the local linearization in the optimization, our method as well as all

the compared methods cannot handle large transformations. However, this is not a

big issue for many real-world applications. For example, the remotely sensed images

can be coarsely georegistered by their geographical coordinates. A good initialization

also can be found on medical images, as the objects (e.g., brain) are easy to recognize

and the image size is relatively smaller. For images with large transformations, we

can use the FFT-based algorithm [132] to coarsely register the images and then apply

our method as a refinement. Therefore, we did not test the maximum amount of

transformations that our method can handle. So far, the proposed method can only

be used for offline registration. How to extend this method to the online mode is an

interesting topic of future research.
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CHAPTER 6

Fast Iteratively Reweighted Least Squares Algorithms for Analysis-Based Sparsity

Learning

In this chapter, we propose a novel algorithm for analysis-based sparsity recon-

struction. It can solve the generalized problem by structured sparsity regularization

with an orthogonal basis and total variation regularization. The proposed algorithm

is based on the iterative reweighted least squares (IRLS) model, which is further ac-

celerated by the preconditioned conjugate gradient method.This work was presented

under a slightly modification from [158].

6.1 Introduction

Ill-posed problems widely exist in medical imaging and computer vision. In

order to seek a meaningful solution, regularization is often used if we have certain

prior knowledge. With the emerging of compressive sensing (CS) [37], sparsity reg-

ularization has been an active topic in recent years. If the original data is sparse or

compressible, it can be recovered precisely from a small number of measurements.

The `1 norm is usually used to induce sparsity and gains great success in many real

applications. The optimization problems can be written as:

min
x
{F (x) =

1

2
||Ax− b||22 + λ||x||1}, (6.1)

where A ∈ RM×N is the measurement matrix and b ∈ RM is the vector of measure-

ments; x ∈ RN is the data to be recovered; λ is a positive parameter.

According to structured sparsity theories [29, 30], more benefits can be achieved

if we could utilize more prior information about the sparsity patterns. For example,
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the components of the data may be clustered in groups, which is called group sparse

data. Components within the same group tend to be zeros or non-zeros. Sometimes

one component may appear in several groups simultaneously, which corresponds to

the overlapping group sparsity [52]. A favorable method would be replacing the `1

norm with `2,1 norm to model the group sparsity [81]:

||x||2,1 =
∑
||xgi ||2, i = 1, 2, ..., s, (6.2)

where xgi denotes the components in i-th group and s is the total number of groups. It

has been proven that, less measurements are required for structured sparsity recovery,

or more precise solution can be obtained with the same number of measurements

[29, 30, 149].

In many real-world applications, the data itself is not sparse, but it can be

sparsely represented in some transformation domains. This leads to the analysis-

based sparsity regularization problem:

min
x
{F (x) =

1

2
||Ax− b||22 + λ||Ψx||2,1}, (6.3)

where Ψ denotes some sparifying basis, e.g. the wavelet or finite difference basis. In

this article, we are interested in this generalized sparsity regularization problem (6.3),

which may contain overlapped groups. The standard sparsity and non-overlapping

group sparsity minimization problem are special cases of problem (6.3). In our work,

we focus on the image reconstruction applications, e.g. CS imaging [150], image in-

painting [151], compressive sensing magnetic resonance imaging (CS-MRI) [1], where

A is an undersampling matrix/operator.

When Ψ is an orthogonal basis, problem (6.3) corresponds to the Lasso problem

[63]. In the literature, many efficient algorithms can be used to solve the standard

Lasso and non-overlapping group Lasso, such as FISTA [42], SPGL1 [40], SpaRSA
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[56], FOCUSS [17]. However, there are relatively much fewer algorithms for overlap-

ping group Lasso, due to the non-smoothness and non-separableness of the overlapped

`2,1 penalty. SLEP [15, 152], GLO-pridu [153] solve the overlapping group sparsity

problem by identifying active groups, and YALL1 [16] solves it with the alternating

direction method (ADM). Both SLEP and GLO-pridu are based on the proximal

gradient descent method (e.g. FISTA [42]), which cannot achieve a convergence rate

better than F (xk) − F (x∗) ∼ O(1/k2), where x∗ denotes the optimal solution and

k is the iteration number. YALL1 relaxes the original problem with augmented La-

grangian and iteratively minimizes the subproblems based on the variable splitting

method. Generally, the convergence rate of ADM is no better than O(1/k) in sparse

recovery problems. Although they are very efficient in each iteration, a large num-

ber of iterations may be required due to the relatively slow convergence rate. On

the other hand, the iterative reweighted least squares (IRLS) algorithms have been

proven that they converge exponentially fast [154] [155]. Unfortunately, conventional

IRLS algorithms contain a large scale inverse operation in each step, which makes

them still much more computationally expensive than the fastest proximal methods

such as FISTA [149]. In addition, it is unknown how to extend these IRLS based

algorithms to solve the overlapping group Lasso problems.

Another special case of (6.3) is the total variation (TV) reconstruction prob-

lem, where Ψ denotes the first-order finite difference matrices and is non-orthogonal.

There are several efficient algorithms specially designed for TV reconstruction, in-

cluding the RecPF [3] and SALSA [156]. Both of them are relaxed by the ADM. The

efficient transformation in RecPF [3] requires that ATA can be diagonalized by the

Fourier transform, while SALSA [156] requires AAT = I. Due to these restrictions,

these two methods can not be applied to certain reconstruction applications, e.g. CS

imaging [150]. Moreover, it is unknown how to extend them to solve the joint to-
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tal variation (JTV) problems. Moreover, the ADM-based methods often have slower

convergence rate. Of course, generalized minimization methods can be used, such

as the split Bregman method [114], FISTA [39] and IRN [157], but they have their

own inferiority without considering the special structure of undersampling matrix A

in reconstruction.

In this article, we propose a novel scheme for the analysis-based sparsity re-

construction (6.3) based on the IRLS framework. It preserves the fast convergence

performance of traditional IRLS, which only requires a few reweighted iterations

to achieve an accurate solution. We call our method fast iterative reweighted least

squares (FIRLS). Moreover, we propose a new “pseudo-diagonal” type preconditioner

to significantly accelerate the inverse subproblem with preconditioned conjugate gra-

dient (PCG) method. This preconditioner is based on the observation that ATA

is often diagonally dominant in the image reconstruction problems. With the same

computation complexity, the proposed preconditioner provides more precise results

than conventional Jacobi diagonal preconditioner. In addition, the proposed pre-

conditioner can be applied even when A is an operator, e.g., the Fourier or wavelet

transform, which is not feasible for most existing preconditioners of the PCG meth-

ods. Besides the efficiency and fast convergence rate, the proposed method can be

easily applied to different sparsity patterns, e.g. overlapping group sparsity, TV and

JTV. We validate the proposed method on CS-MRI for tree sparsity, joint sparsity,

TV and JTV based reconstruction. Extensive experimental results demonstrate that

the proposed algorithm outperforms the state-of-the-art methods in terms of both

accuracy and computational speed. Part of results in this work has been presented

in [158].
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6.2 Related Work: IRLS

The conventional IRLS algorithms solve the standard sparse problem in this

constrained form:

min
x
||x||1, subject to Ax = b. (6.4)

In practice, the `1 norm is replaced by a reweighted `2 norm [155]:

min
x
xTWx, subject to Ax = b. (6.5)

The diagonal weight matrix W in the k-th iteration is computed from the solution

of the current iteration xk, in particular, the diagonal elements W k
i = |xki |−1. With

current weights W k, we can derive the closed form solution for xk+1:

xk+1 = (W k)−1AT (A(W k)−1AT )−1b. (6.6)

The algorithm can be summarized in Algorithm 9. It has been proven that the IRLS

algorithm converges exponentially fast under mild conditions [154]:

||xk − x∗||1 ≤ µ||xk−1 − x∗||1 ≤ µk||x0 − x∗||1, (6.7)

where µ is a fixed constant with µ < 1. However, this algorithm is rarely used in

compressive sensing applications especially for large scale problems. That is because

the inverse of A(W k)−1AT takes O(M3) if A is a M × N sampling matrix. Even

with higher convergence rate, traditional IRLS still cannot compete with the fastest

first-order algorithms such as FISTA [42] (some results have been shown in [149]).

Moreover, none of existing IRLS methods [159, 154, 17] could solve the overlapping

group sparsity problems, which significantly limits the usage.
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Algorithm 9 IRLS

Input: A,b,x1,k = 1

while not meet the stopping criterion do

Update W : W k
i = |xki |−1 ∀ W k

i

Update x: xk+1 = (W k)−1AT (A(W k)−1AT )−1b

Update k = k + 1

end while

6.3 FIRLS for overlapping group sparsity

6.3.1 An alternative formulation for overlapping group sparsity

We consider the overlapping group Lasso problem first [81, 52]. The mixed `2,1

norm in (6.3) may contain overlapping groups. It can be rewritten in the analysis-

based sparsity form:

min
x
{F (x) =

1

2
||Ax− b||22 + λ||GΦx||2,1}, (6.8)

where Φ denotes an orthogonal sparse basis and is optional. A good choice of Φ for

natural images/signals would be the orthogonal wavelet transform. G is a binary ma-

trix for group configuration, which is constructed by the rows of the identity matrix.

With different settings of G, this model can handle overlapping group, non-overlaping

group and standard sparsity problems. Tree sparsity can also be approximated by

this model [160, 161, 47]. Simple examples of G for different types of group sparse

problems are shown in Fig. 6.1. Although G may have large scales, it can be effi-

ciently implemented by a sparse matrix. This kind of indexing matrix has been used

in the previous work YALL1 [16]. With this reformulation, Ψ = GΦ and the `2,1

norm in (6.8) is now non-overlapping.
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Figure 6.1. Examples of group configuration matrix G for a signal of size 8. The red
elements denote ones and white elements denote zeros. (a) standard sparsity case
where G is the identical matrix. (b) non-overlapping groups of [1,3,5,7] and [2,4,6,8].
(c) overlapping groups of [1,2,3,4], [3,4,5,6] and [5,6,7,8]. Their group sizes are 1,4
and 4, respectively.

Consider the Young’s inequality holding for a general function g(·) : R 7−→ R:

√
g(x) ≤

√
g(y)

2
+

g(x)

2
√
g(y)

, (6.9)

with g(y) > 0 and g(x) ≥ 0. The equality holds only when g(x) = g(y). Based on

this, we have

||GΦx||2,1 =
s∑
i=1

||(GΦx)gi ||2 ≤
s∑
i=1

[ ||(GΦxk)gi ||2
2

+
||(GΦx)gi ||22

2||(GΦxk)gi ||2
]
. (6.10)

Writing it in matrix form and we can majorize F (x) by the majorization minimization

(MM) method [162]:

Q(x,W k) =
1

2
||Ax− b||22 +

λ

2
xTΦTGTW kGΦx

+
λ

2

s∑
i=1

1

W k
gi

, (6.11)

where ΦT denotes the inverse transform of Φ; W k is the group-wise weights. The

weight of i-th group W k
gi

can be obtained by:

W k
gi

= (||(GΦxk)gi ||22 + ε)−1/2. (6.12)
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ε is very small number (e.g. 10−10) to avoid infinity. Suppose that the signal x to be

recovered is of length N and G is a N ′-by-N matrix, then W k is a N ′-by-N ′ diagonal

matrix and has the following form:

W k =



W k
g1

...

W k
g1

...

W k
gs

W k
gs



, (6.13)

where each group-wise weight W k
gi

is duplicated |gi| times and |gi| denotes the size

of the i-th group. One can find that the group-wise weights are all related to G.

With different settings of G, the group-wise weights are directly derived. Variant-size

group sparsity problems also can be flexibly handled in this model. An interesting

case would be the standard sparse problem, where each group contains only one

element and the group-wise weight matrix W is the same as that in IRLS algorithm

[154, 159].

Now the problem becomes:

xk+1 = arg min
x
Q(x,W k). (6.14)

Note that W k
gi

is independent of x and can be considered as a constant. We iteratively

update W k with xk and solve xk+1 based on current W k. Our algorithm is also a

IRLS type algorithm with exponentially fast convergence rate.
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6.3.2 Accelerating with PCG

In each iteration, W k can be easily updated with (6.13) and (6.12). To solve

(6.14), a simple way is to let the first order derivative of Q(x|xk) be zero as it is a

quadratic convex function:

(ATA+ λΦTGTW kGΦ)x − AT b = 0. (6.15)

The way to solve (6.15) determines the efficiency of the whole algorithm. The exact

inverse of the system matrix S = ATA + λΦTGTW kGΦ takes O(N3) time. It is

impractical to compute S−1 for many cases especially when the size of S is large.

An alternative way is to approximate the solution of (6.15) with classical conjugate

gradient (CG) decent method. It is much faster than computing the exact solution.

Besides CG, a better way is the preconditioned conjugate gradient (PCG) method

[163]. The design of preconditioner is problem-dependent, which should be as close

as possible to the system matrix S and can be inversed efficiently. Therefore, it is

not an easy task to design a good preconditioner in general due to this tradeoff. For

signal/image reconstruction, such preconditioner has not been found in existing IRLS

algorithms [159, 154, 17].

By observing that S is usually diagonally dominant in reconstruction problems,

e.g. CS imaging, image inpainting and CS-MRI, we define a new preconditioner for

best approximation in Frobenius norm || · ||F :

P = arg min
X∈D
||S −X||F , (6.16)

where D denotes the class of diagonal or “pseudo-diagonal” matrices. Here, the

pseudo-diagonal matrix means a non-diagonal matrix whose inverse can be obtained

efficiently like a diagonal matrix with O(N) time. Please note that the GTW kG is

always diagonal for any kind of G in Fig. 6.1. Due to the strong constraint, the
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possible diagonal or “pseudo-diagonal” candidates for (6.16) are enumerable. In ad-

dition, we observe that ATA is often diagonally dominant in the image reconstruction

problems. For example, in CS-MRI, A = RF where F denotes the Fourier transform

and R ∈ RM×N (M < N) is a selection matrix containing M rows of the identity

matrix. Therefore, ATA = F TRTRF is diagonally dominant as RTR is diagonal. For

the image inpainting problem, ATA = RTR is diagonal. This structure also holds

when A is a random projection matrix.

Based on this diagonally dominant effect, it is not hard to find an accurate

solution

P = (ATAI + λΦTGTW kGΦ), (6.17)

where ATA is the mean of diagonal elements of ATA and I denotes the identity

matrix. The preconditioning error in Frobenius norm ||S−P ||F is very small, due to

diagonally dominant structure of ATA.

As A is known for the application, ATA can be pre-estimated before the first it-

eration and is fixed for each iteration. Therefore in each iteration, P−1 = ΦT (ATAI+

λGTW kG)−1Φ can be obtained with linear time.

Several advantages of the proposed preconditioner can be found when com-

pared with existing ones [164, 165]. To get the inverse, fast Fourier transforms are

used in recent circulant preconditioners for image deblurring [164] [165], while our

model only requires linear time to obtain P−1. Compared with conventional Jacobi

preconditioner, we do not discard all non-diagonal information and therefore the pre-

conditioner is more accurate. Moreover, our model can also handle the case when A

or Φ is an operator, while other preconditioners [164, 165, 157] cannot because they

require the exact values of S. Interestingly, the conventional Jacobi preconditioner
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can be derived by (6.16), when the original data is sparse (i.e. Φ = 1) and A is a

numerical matrix.

Algorithm 10 FIRLS OG

Input: A,b,x1, G, λ, k = 1

while not meet the stopping criterion do

Update W k by (6.38) (6.12)

Update S = ATA+ λΦTGTW kGΦ

Update P = ΦT (ATAI + λGTW kG)Φ,

P−1 = ΦT (ATAI + λGTW kG)−1Φ

while not meet the PCG stopping criterion do

Update xk+1 by PCG for Sx = AT b with preconditioner P

end while

Update k = k + 1

end while

Our method can be summarized in Algorithm 10. We denote this overlapping

group sparsity version as FIRLS OG. Although our algorithm has double loops, we

observe that only 10 to 30 PCG iterations are sufficient to obtain a solution very

close to the optimal one for the problem (6.15). In each inner PCG iteration, the

dominated cost is by applying S and P−1, which is denoted by O(CS + CP ). When

A and Φ are dense matrices, O(CS + CP ) = O(N2). When A and Φ are the partial

Fourier transform and wavelet transform in CS-MRI [1], it is O(N logN).
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6.3.3 Convergence analysis

Theorem 1. The global optimal solution x∗ of (6.11) is the global optimal

solution of original problem (6.8).

Proof. Suppose x∗1 is the global optimal solution of (6.11) and x∗2 is the global

optimal solution of (6.8). Consider Q as a function corresponds to x and W . We

have:

Q(x∗1,W
∗
1 ) ≤ Q(x∗2,W ), ∀ W ; (6.18)

F (x∗2) ≤ F (x∗1). (6.19)

Based on the inequalities (6.9)(6.10), we have

F (x) ≤ Q(x,W k) ∀ x; (6.20)

F (xk) = Q(xk,W k). (6.21)

Therefore,

F (x∗2) ≤ F (x∗1) = Q(x∗1,W
∗
1 ) ≤ Q(x∗2,W

∗
2 ) = F (x∗2), (6.22)

which indicates F (x∗1) = F (x∗2). Here W ∗
1 and W ∗

1 are weights of x∗1, x∗2 based on

(6.12) and (6.13).

Theorem 2. F (xk) is monotonically decreased by Algorithm 2, i.e. F (xk+1) ≤

F (xk). In particular, we have limk→∞(F (xk)− F (xk+1)) = 0.

Proof. With the property (6.20), we have

F (xk+1) ≤ Q(xk+1,W k). (6.23)

To balance the cost and accuracy when solving (15), we apply the PCG method to

decrease Q(x,W k) and efficiently obtain the solution xk+1. Because xk is the initial

guess for xk+1, based on the property of PCG we have:

Q(xk+1,W k) ≤ Q(xk,W k). (6.24)
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And we finally get:

F (xk+1) ≤ Q(xk+1,W k) ≤ Q(xk,W k) = F (xk). (6.25)

F (x) is convex and bounded. Due to the monotone convergence theorem, we

have:

lim
k→∞

(F (xk)− F (xk+1)) = 0. (6.26)

Theorem 3. Any accumulation point of {xk} is a stationary point of problem

(6.11).

Proof. When we have any accumulation point xk = xk+1 for k → ∞, it

demonstrates the inner PCG loop has converged for problem (6.15). Therefore, it

indicates

(ATA+ λΦTGTW kGΦ)xk − AT b = 0. (6.27)

Consider Q as a function corresponding to x and W . We have

∂Q(xk,W k)

∂x
= 0. (6.28)

In addition,

∂Q(xk,W k)

∂W

=∂{λ
2

(xk)TΦTGTWGΦxk +
λ

2

s∑
i=1

1

W k
gi

}/∂W

=
λ

2
[(xk)TΦTGTGΦxk −

s∑
i=1

(W k
gi

)−2]. (6.29)
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Based on (6.12) and (6.13), it can be rewritten as:

λ

2

s∑
i=1

[||(GΦxk)gi ||22 − (||(GΦxk)gi ||22 + ε)] = λsε/2. (6.30)

Note that ε is negligible and we finally have

∂Q(xk,W k)

∂x
=
∂Q(xk,W k)

∂W
≈ 0. (6.31)

Hence xk is a stationary point of (6.11) when k →∞.

It indicates that the algorithm converges to a local minimum of the problem.

In our experiments, if we let the initial guess x0 = AT b, an accurate solution can be

always obtained. Note that Theorems 1, 2 and 3 always hold no matter how many

inner PCG iterations are used.

6.4 FIRLS for Total Variation

We have presented an efficient algorithm for overlapping group sparsity under

an orthogonal sparse basis Φ. In image reconstruction problems, another widely used

sparsity regularizer is the TV. Due to the non-orthogonality of the TV semi-norm,

the FIRLS OG algorithm can not be applied to solve the TV problem. In this section,

we will present an efficient algorithm for TV based image reconstruction. For brevity

and clarity, we first present the algorithm for single channel image reconstruction and

then extended it to multi-channel reconstruction [115].
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6.4.1 An alternative formulation for total variation

TV minimization exploits the sparsity of the image in the gradient domain. For

brevity, we assume the image is n by n with n× n = N . Let D1, D2 be two N -by-N

two first-order finite difference matrices in vertical and horizontal directions.

D1 =



1

−1 1

−1 1

... ...

... ...

−1 1

−1 1



, (6.32)

D2 =



1

... ...

−1 ... 1

−1 ... 1

... ...

−1 ... 1

−1 ... 1



. (6.33)

The main diagonal elements of D1 and D2 are all ones. The first diagonal elements

below the main diagonal are all minus ones in D1, while in D2 n-th diagonal elements

below the main diagonal are all minus ones. With these notations, the `1 and isotropic

TV based image reconstruction can be reformulated as:

min
x
{1

2
||Ax− b||22 + λ||D1x||1 + λ||D2x||1}, (6.34)
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and

min
x
{F (x) =

1

2
||Ax− b||22 + λ||[D1x,D2x]||2,1}. (6.35)

Here, the `2,1 norm is the summation of the `2 norm of each row, which is a special

case of (6.2). Here and later, we denote [ , ] as the concatenating of the matrices

horizontally. To avoid repetition, all the following derivations only consider isotropic

TV function (6.35). `1-based TV function can be derived in the same way.

Considering the Young’s inequality in (6.9), we majorize (6.35) by the MM

method [162]:

Q(x,W k) =
1

2
||Ax− b||22 +

λ

2
xTDT

1 W
kD1x

+
λ

2
xTDT

2 W
kD2x+

λ

2
Tr((W k)−1), (6.36)

where Tr() denotes the trace. W k is a diagonal weight matrix in the k-th iteration:

W k
i = 1/

√
(∇1xki )

2 + (∇2xki )
2 + ε, i = 1, 2, ..., N, (6.37)

and

W k =



W k
1

W k
2

...

W k
N


. (6.38)

When D1 = D2 = I, it is identical to the `1 norm minimization as in the conventional

IRLS methods [159, 154, 17].
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6.4.2 Accelerating with PCG and incomplete LU decomposition

After the weight matrix is updated by (6.37) and (6.38), the problem is to

update x. With the same rule as that in the overlapping group sparsity regularization,

we have

(ATA+ λDT
1 W

kD1 + λDT
2 W

kD2)x = AT b. (6.39)

Similar to (6.15), the system matrix here is in large scale. We have discussed that

the system matrix is not dense but follows some special structure in image recon-

struction. A good solver should consider such special structure of the problem. In

TV based image deblurring problems, by observing that A has a circulant structure

(under periodic boundary conditions), many efficient algorithms have been proposed

to accelerate the minimization [165, 166, 167]. However, these algorithms can not be

applied to the TV reconstruction problems.

Based on the diagonally dominant prior information in image reconstruction,

we can obtained an accurate preconditioner like (6.17).

P = ATAI + λDT
1 W

kD1 + λDT
2 W

kD2 (6.40)

However, the inverse can not be efficiently obtained for this preconditioner, due to

the non-orthogonality of D1 and D2.
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Fortunately, P has a sparse structure due to the forms ofD1 andD2. We observe

that preconditioner P in (6.40) is a penta-diagonal matrix [163] and is symmetric,

which has the following form:

P =



a1 b1 c1

b1 a2 b2 c2

b2 a3 ... ...

... ... cN−n

c1

c2 ...

... ... ... bN−1

cN−n bN−1 aN



. (6.41)
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Such penta-diagonal matrix has incomplete LU decomposition P ≈ LU , where

L =



1

b1
a1

1

b2
a2

1

... ...

c1
a1

bn
an

1

... ... ...

cN−n
aN−n

... bN−1

aN−1
1



, (6.42)

U =



a1 b1 ... c1

a2 b2 ... c2

... ... ...

aN−n bN−n ... cN−n

... ...

aN bN−1

aN



. (6.43)

The decomposition is very accurate as P is diagonally dominated with ai � b2
i , ai �

c2
i and ai � bici for all i. To the best of our knowledge, this incomplete LU decom-

position is first proposed for TV minimization. Due to the special structure of P ,

the incomplete LU decomposition only takes O(N) time. Therefore, the total time

to obtain P−1 ≈ U−1L−1 is O(N). We can conclude the proposed method for TV

reconstruction in Algorithm 11. The convergence of this algorithm can be proven in

a similar way as Section 6.3.3, which is omitted to avoid repetition.
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Algorithm 11 FIRLS TV

Input: A, b, x1, λ, k = 1

while not meet the stopping criterion do

Update W k by (6.37) and (6.38)

Update S = ATA+ λDT
1 W

kD1 + λDT
2 W

kD2

Update P = ATAI + λDT
1 W

kD1 + λDT
2 W

kD2 ≈ LU , P−1 ≈ U−1L−1

while not meet the PCG stopping criterion do

Update xk+1 by PCG for Sx = AT b with preconditioner P

end while

Update k = k + 1

end while

6.4.3 Extension to JTV

In many multiple measurement vector problems (MMV), the image with multi-

ple channels has the joint sparsity property. In these cases, the TV can be extended

to joint total variation (JTV) [115, 78]:

min
x
{1

2

T∑
t=1

||AtXt − bt||22 + λ||[D1X,D2X]||2,1}, (6.44)

where X ∈ RN×T is a T -channel image with X = [X1, X2, ..., XT ]; At is the under-

sampling matrix for channel t and bt is the measurement vector for channel t. Similar

as (6.36), we have:

Q(X,W k) =
1

2

T∑
t=1

||AtXt − bt||22 +
λ

2
[
T∑
t=1

XT
t D

T
1 W

kD1Xt

+
T∑
t=1

XT
t D

T
2 W

kD2Xt + Tr((W k)−1)], (6.45)
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where

W k
i = 1/

√√√√ T∑
t=1

(∇1Xk
t,i)

2 + (∇2Xk
t,i)

2 + ε,∀ i, (6.46)

and

W k =



W k
1

W k
2

...

W k
N


. (6.47)

It indicates that the weights for X1 to XT are the same. Similar, Xt can be updated

by solving:

(ATt At + λDT
1 W

kD1 + λQT
2W

kD2)x = ATt bt. (6.48)

It also can be solved efficiently by the PCG method with the proposed preconditioner.

Again to avoid repetition, the algorithm for JTV based reconstruction is not listed

here.

6.5 Experiments

6.5.1 Experiment setup

The experiments are conducted using MATLAB on a desktop computer with

3.4GHz Intel core i7 3770 CPU. We validate different versions of our method on

wavelet tree sparsity based reconstruction, wavelet joint sparsity reconstruction, TV

and JTV reconstruction. To avoid confusion, we denote the tree sparsity version

as FIRLS OG and non-overlapping joint sparsity version FIRLS MT. The version for

standard `1 norm minimization is denoted by FIRLS L1. FIRLS TV and FIRLS JTV

denotes the TV and JTV reconstruction, respectively.

122



Table 6.1. Computational cost comparison between FOCUSS [17] and the proposed
method

FOCUSS [17] FIRLS L1
Time (seconds) 64.8 110.8 727.7 10.5 29.8 120.2
MSE 0.0485 0.0442 0.0432 0.0481 0.0440 0.0427

Note that some algorithms need a very small number of iterations to converge

(higher convergence rate), while they cost more time in each iteration (higher com-

plexity). The others take less time in each iteration; however, more iterations are

required. As we are interested in fast reconstruction, an algorithm is said to be

better if it can achieve higher reconstruction accuracy with less computational time.

6.5.2 The accuracy of the proposed preconditioner
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Figure 6.2. Convergence rate comparison among standard CG, Jacobi PCG and the
proposed PCG for `1 norm minimization.

One of our contributions is the proposed pseudo-diagonal preconditioner for

sparse recovery. First, we conduct an experiment to validate its effectiveness with the
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orthogonal wavelet basis. Without loss of generality, a patch (64× 64) cropped from

the cameraman image is used for reconstruction, which is feasible to obtain the closed

form solution of S−1 for evaluation. As most existing preconditioners cannot support

the inverse of operators, the sampling matrix is set as the random projection and Φ is

a dense matrix for wavelet basis here. Fig. 6.2 demonstrates the performance of the

proposed PCG compared with Jacobi PCG and standard CG for the problem (6.15).

The performance of the proposed PCG with less than 50 iterations is better than

that of CG and Jacobi PCG with 200 iterations. Although Jacobi preconditioner is

diagonal, it removes all the non-diagonal elements which makes the preconditioner

less precise.

To validate the effectiveness of the proposed preconditioner in TV reconstruc-

tion, we take experiments on the Shepp-Logan phantom image with 64 × 64 pixels.

The Shepp-Logan phantom image is very smooth and is an ideal example to vali-

date TV reconstruction. The relative errors of CG, PCG Jacobi and the proposed

method are shown in Fig. 6.3. It shows that only 20 iterations of PCG with the

proposed preconditioner can outperform conventioanal CG with 200 iterations. Ja-

cobi PCG requires approximately 2 times of iterations to reach the same accuracy

as our method, because it discards all non-diagonal information directly and makes

the preconditioning less precise. Comparing with the results in Fig. 6.2, our precon-

ditioner seems less powerful on TV reconstruction. This is expected as we further

decompose the preconditioner into two triangle matrices L and U, which introduces

minor approximation error. However, it still converges much faster than the existing

Jacobi PCG. These experiments demonstrate that the inner loop subproblem in our

method is solved efficiently with the proposed preconditioner.
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Figure 6.3. Convergence rate comparison among standard CG, Jacobi PCG and the
proposed PCG for TV minimization.

6.5.3 Convergence Rate and Computational Complexity

One of the properties of the proposed FIRLS is its fast convergence rate, i.e.,

only a small number of iterations can achieve high reconstruction accuracy. In addi-

tion, each iteration has low computational cost. To validate its fast convergence rate,

we compare it with three existing algorithms with known convergence rate. They

are the IST algorithm SpaRSA [56], FISTA [42] and IRLS algorithm FOCUSS [17],

with O(1/k), O(1/k2) and exponential convergence rates, respectively. Mean squared

error (MSE) is used as the evaluation metric.

The test data is a random 1D signal of length 4000, with 10% elements being

non-zeros. The number of measurements are 800. Fig. 6.4 demonstrates the compar-

ison. In each iteration, FOCUSS needs to compute the inverse of a large-scale matrix,

and the proposed method uses 30 PCG iterations to approximate the inverse. Both

FOCUSS and the proposed method converge within 200 iterations. FISTA tends to

converge at about 800 iterations. However, SpaRSA requires much more than 800

iterations to converge. Table 6.1 lists the reconstruction results at different CPU

time between FOCUSS and the proposed method. The proposed algorithm always
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Figure 6.4. Convergence Rate Comparison among FOCUSS, FISTA and SpaRSA for
`1 norm minimization .

achieves more accurate result in much less time. After convergence, the 0.0005 dif-

ference in terms of MSE may be caused by approximation or rounding errors. With

the size of the data becomes larger, the time cost of FOCUSS will increase at a cubic

speed. More importantly, it is not known how to solve the overlapping group sparsity

problem with FOCUSS.

6.5.4 Application: compressive sensing MRI

Compressive sensing MRI (CS-MRI) [1] is one of the most successful applica-

tions of compressive sensing and sparsity regularization. There are various sparsity

patterns on MR images. Therefore, we validate the performance of different versions

of our method on CS-MRI as a concrete reconstruction instance. Partial but not full

k-space data is acquired and the final MR image can be reconstructed by exploiting

the sparsity of the image. With little information loss, this scheme can significantly

accelerate MRI acquisition. In CS-MRI, A = RF is an undersampled Fourier opera-

tor, where F is the Fourier transform and R ∈ RM×N is a selection matrix containing

M rows of the identity matrix. Therefore, ATA = F TRTRF is diagonally dominant
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as RTR is diagonal. Based on (6.16), ATA is identical to the sampling ratio (a fixed

scalar).

Following previous works, Signal-to-Noise Ratio (SNR) are used as metric for

result evaluation:

SNR = 10 log10(Vs/Vn), (6.49)

where Vn is the Mean Square Error between the original image x0 and the recon-

structed x; Vs = var(x0) denotes the variance of the values in x0.

6.5.5 CS-MRI

6.5.5.1 CS-MRI with wavelet tree sparsity

The MR images are often piecewise smooth, which are widely assumed to be

sparse under the wavelet basis or in the gradient domain [1, 2, 3, 4]. Furthermore,

the wavelet coefficients of a natural image yield a quadtree. If a coefficient is zero

or nonzero, its parent coefficient also tends to be zero or nonzero. This wavelet tree

structure has already been successfully utilized in MR image reconstruction, approx-

imated by the overlapping group sparsity [14, 88]. Tree-structured CS-MRI method

[14, 88] has been shown to be superior to standard CS-MRI methods [1, 2, 4]. There-

fore, we compare our algorithm with two latest and fastest tree-based algorithms,

turbo AMP [13] and WaTMRI [14]. In addition, overlapping group sparsity solvers

SLEP [15, 152] and YALL1 [16] are also compared. The total number of iterations is

100 except that turbo AMP only runs 10 iterations due to its higher time complexity.

Followed by the previous works [2, 4, 14], four MR images with the same size 256×256

are used for testing, which are shown in Fig. 6.5. Using a similar sampling strategy,

we randomly choose more Fourier coefficients from low frequency and less on high
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(a) (b)

(c) (d)

Figure 6.5. The original images: (a) Brain; (b) Cardiac; (c) Chest; (d) Shoulder.

frequency. The sampling ratio is defined as the number of sampled measurements

divided by the total size of the signal/image.

A visual comparison on the Brain image is shown in Fig. 6.6, with a 25%

sampling ratio. Visible artifacts can be found on the results by YALL1 [16]. The

image reconstructed by the AMP [13] tends to be blurry when compared with the

original. The image recovered by SLEP [15] is noisy. Our method and WaTMRI [14]

produce the most accurate results in terms of SNR. Note that WaTMRI has more

parameters required to be tuned due to its variable splitting strategy. Besides SNR,

we also compare the mean structural similarity [121] (MSSIM) of different images,

which mimics the human visual system. The MSSIM for the images recovered by
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Original AMP WaTMRI

SLEP YALL1 FIRLS_OG

Figure 6.6. Visual comparison on the Brain image with 25% sampling. The SNRs
of AMP [13], WaTMRI [14], SLEP [15], YALL1 [16] and the proposed method are
15.91, 16.72, 16.49, 12.86 and 18.39, respectively.

AMP [13], WaTMRI [14], SLEP [15], YALL1 [16] and the proposed method are

0.8890, 0.8654, 0.8561, 0.7857 and 0.9009. In terms of MSSIM, our method still has

the best performance, which is consistent with the observation in terms of SNR.

The corresponding convergence speed of the this experiment is presented in Fig.

6.7. From SNR versus outer loop iterations, the proposed algorithm far exceeds that

of all other algorithms, which is due to the fast convergence rate of IRLS. However,

there is no known convergence rate better than O(1/k2) for WaTMRI and SLEP, and

O(1/k) for YALL1, respectively. These results are consistent with that in previous

work [14]. For the same number of total iterations, the computational cost of our

method is comparable to the fastest one YALL1, and it significantly outperforms
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Figure 6.7. Convergence speed comparison on the Brain image with 25% sampling.
Left: SNR vs outer loop iterations. Right: SNR vs CPU time. The SNRs of re-
constructed images with these algorithms are 15.91, 16.72, 16.49, 12.86 and 18.39
respectively. The time costs are 4.34 s, 5.73 s, 6.28 s, 4.71 s and 4.80 s, respectively.

YALL1 in terms of reconstruction accuracy. SLEP has the same formulation as ours.

To reach our result in this experiment, it requires around 500 iterations with about

43 seconds. Similar results can be obtained on the other testing images. The results

on the four images with different sampling ratios are listed in Table 2. Our results

are consistently more accurate.

Table 6.2. Average SNR (dB) comparisons on the four MR images with wavelet tree
sparsity.

Sampling Ratio 20% 23% 25% 28% 30%
AMP [13] 11.64 15.7 16.43 17.08 17.44

WaTMRI [14] 15.56 17.43 18.23 19.22 20.45
SLEP [15] 11.59 16.51 17.36 18.51 20.07

YALL1 [16] 12.13 13.29 14.12 15.29 16.07
FIRLS OG 15.67 18.78 19.43 20.53 21.52
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6.5.5.2 CS-MRI by TV reconstruction

TV is another popular regularizer for MRI reconstruction and the images re-

covered by TV tend to be less noisy [1]. For TV based reconstruction, we compare

our method with classical method CG [1] and the fastest ones TVCMRI [2], RecPF

[3], FCSA [4] and SALSA [156].

The convergence speed of different algorithms on the Chest image is presented

in Fig. 6.8. It is worthwhile to note that no closed form solutions exist for the

subproblems of these algorithms. Therefore, the subproblems in these algorithms

are often solved in an approximate way. Therefore, it is important to evaluate the

accuracies of these algorithms. From the figure, the final results of our method and

TVCMRI are almost the same while the others converges to different results. We

further found that only TVCMRI has analyzed their global convergence (in Section

2.3 of [2]), while the accuracy of all the other methods [1, 3, 4, 156] has not been

discussed in details. For the four MR images, the average SNRs of CG [1], TVCMRI

[2], RecPF [3], FCSA [4], SALSA [156] and the proposed algorithm are 19.45, 21.78,

21.70, 21.53 21.95 and 23.07, respectively.
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Figure 6.8. Convergence rate comparison for TV minimization on the Chest image
with 25% sampling.
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Original CG TVCMRI RecPF

FCSA SALSA FIRLS_TV

Figure 6.9. Chest MR image reconstruction from 25% sampling. All methods termi-
nate after 4 s. The SNRs for CG, TVCMRI, RecPF, FCSA, SALSA and the proposed
are 17.13, 17.32, 16.18, 18.28, 16.96 and 21.63, respectively.

We then terminate each algorithm after a fixed toleration is reached, e.g. 10−3

of the relative solution change. The final SNR and convergence speed of different

methods are listed in Table 6.3. To produce a similar result of TVCMRI, our method

only requires about its 1/70 computational time. These convergence performances

are not surprising. FIRLS is converges exponentially fast (as shown in Fig. 6.4)

and require the fewest iterations. FCSA is a FISTA based algorithm, which has

O(1/k2) convergence rate. It converges with the second fewest iterations. For the

rest algorithms, there is no known convergence rate better than O(1/k).

Due to the relatively slower convergence speed, we note that previous methods

[1, 2, 3, 4] often terminate after a fixed number of iterations (e.g. 200) in practice.

This is because the exactly convergence is time consuming that may not be feasible
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Table 6.3. Quantitative comparison of convergence speed on the Chest image by TV
regularization with 25% sampling.

Iterations CPU time (sec) SNR (dB)
CG [1] 3181 397.8 19.23

TVCMRI [2] 21392 495.1 21.54
RecPF [3] 7974 163.4 18.86
FCSA [4] 1971 39.6 18.96

SALSA [156] 9646 882.4 20.13
FIRLS TV 29 6.9 21.65

for clinic applications. Following by this scheme, we run TVCMRI 200 iterations. All

the other algorithms terminate after the same running time of TVCMRI (i.e. around

4 seconds). The reconstruction results on the Chest MR image are shown in Fig. 6.9.

A close look shows that our method preserve highest organ-to-background contrast

without contaminated by reconstruction noise. Such results are expected if we take

a review on Figure 6.8. Similar results can be obtained on the Brain, Cardiac and

Artery images.

6.5.6 Multi-contrast MRI

6.5.6.1 Multi-contrast MRI with wavelet joint sparsity

To assist clinic diagnose, multiple MR images with different contrasts are often

acquired simultaneously from the same anatomical cross section. For example, T1

and T2 weighted MR images could distinguish fat and edema better, respectively.

Different from the CS-MRI for individual MR imaging, multi-contrast reconstruction

for weighted MR images means the simultaneous reconstruction of multiple T1/T2-

weighted MR images. Joint sparsity of the wavelet coefficients and JTV across differ-

ent contrasts have been used in recent multi-contrast reconstruction methods [98, 78].
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Here, the multi-contrast MR images are extracted from the SRI24 Multi-Channel

Brain Atlas Data [168]. An example of the test images is shown in Fig. 6.10. We

compare our method with the fastest multi-contrast MRI methods [98, 78], which use

the algorithms SPGL1 MMV [40] and FCSA to solve the corresponding problems, re-

spectively. The experiment setup is the similar as in the previous experiments, except

group setting is constructed for joint sparsity (non-overlapping) case. FCSA MT and

FIRLS MT denotes the algorithm in [78] and the proposed method in this setting.

(a) (b) (c)

Figure 6.10. The original images for multi-contrast MRI.

Fig. 6.11 shows the performance comparisons among SPGL1 MMV [40], FCSA MT

[78] and FIRLS MT on the example images shown in Figure 6.10. Each algorithm

runs 100 iterations in total. After convergence, three algorithms achieve similar accu-

racy for 20% sampling and SPGL1 is only slightly worse than others for 25% sampling.

From the curves, our method always ourperforms SPGL1 MMV and FCSA MT, i.e.,

higher accuracy for the same reconstruction time.

To quantitatively compare the convergence speed of these three methods, we

conduct experiments on 20 set images (i.e. total 60 images) that are from SRI24. Dif-

ferent from the tree-based CS-MRI, each algorithm for non-overlapping group sparsity

converges much faster. To reduce randomness, all algorithms run 100 times and the
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Figure 6.11. (a) Performance comparison for multi-contrast MRI with 25% sampling.
The average time costs of SPGL1 MMV, FCSA MT, and the proposed method are
10.38 s, 8.15 s, 5.19 s. Their average SNRs are 31.58, 33.12 and 33.69. (b) Performance
comparison for multi-contrast MRI with 20% sampling. Their average time costs are
9.98 s, 7.54 s, 5.23 s. Their average SNRs are 29.31, 29.69 and 30.01.

reconstruction results are shown in Fig. 6.12. With 25% sampling, the accuracy of

our method is almost the same as FCSA MT, and always better than SPGL1. In the

process to achieve the convergence, our method is consistently faster than the other

two algorithms. These results demonstrate the efficiency of proposed method.

6.5.6.2 Multi-contrast MRI with JTV

Finally, we reconstruct multi-contrast MR images with JTV. It is unknown how

to extend existing methods CG [1], TVCMRI [2], RecPF [3] and SALSA [156] to the

JTV versions. Here, we only compare our method FIRLS JTV with FCSA JTV [78].

Fig. 6.13 shows the performance comparison on the example images (in Fig.

6.10) from 25% and 30% sampling, without setting stoping criteria. After conver-

gence, the accuracy of our results are slightly higher than those of FCSA JTV. Also,

it is clearly that FIRLS JTV requires much less time to converge in both cases. We
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Figure 6.12. Performance comparison on 60 images from SRI24 dataset with 25%
sampling. (a) SNR comparison. (b) CPU time comparison. The average conver-
gence time for SPGL1, FCSA MT and the proposed FIRLS MT is 9.3 s, 7.2 s, 4.6 s,
respectively.

then let each algorithm terminate with the 10−3 tolerance. FCSA JTV cost 35.6

seconds and 19.7 seconds to converge for the two sampling cases, while the proposed

FIRLS JTV only requires 6.7 seconds and 4.6 seconds for the two cases, respectively.

6.5.7 Discussion

The first and second experiments validate the fast convergence speed of our

method due to the proposed preconditioner. The advantages over the state-of-the-

arts are further validated on practical application CS-MRI with four sparsity patterns:

overlapping groups with tree sparsity, non-overlapping groups with joint sparsity, TV

and JTV. Although results on these problems are promising, some difference can

be found. The non-overlapping group sparsity problem is often easier to solve. For

example, the subproblem in FISTA has the closed form solution for joint sparsity but

not for overlapping group sparsity. However, our method has similar difficulty for non-

overlapping and overlapping group sparsity. That is why our method outperforms the
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Figure 6.13. Multi-contrast MRI with JTV reconstruction. (a) The performance
comparison with 25% sampling. (b) The performance comparison with 30% sampling
.

fastest methods on joint sparsity reconstruction, and significantly outperforms those

for tree-sparsity reconstruction, TV and JTV reconstruction. We do not compare

the performance between the wavelet transform and TV, since their performances

are data-dependent. In this work, we only focus on fast minimization of the given

functions.

The superior performance of the proposed preconditioner also attributes to the

structure of the system matrix S, which is often diagonally dominant in reconstruction

problems (e.g. A is random projection or partial Fourier transform). It can be applied

to other applications where S is not diagonally dominant (e.g. image blurring), and

will be still more accurate than Jacobi preconditioner as it keeps more non-diagonal

information.
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CHAPTER 7

Conclusion

In this thesis, we have developed the tree sparsity model for MRI and for-

est sparsity model for sparse learning and compressed sensing. A dynamic gradient

sparsity model is developed to improve image fusion. To overcome the difficulties in

image registration, we propose a new method based on the deep sparse representa-

tion of images. Finally, a set of efficient algorithms are derived to solve the sparsity

regularization problems. The main contributions of this thesis are summarized as

follows:

• MRI has been one of the most successful applications of sparsity techniques and

compressed sensing. While most of exiting methods only exploit the sparsity of

the MR images, we proposed a new model based on the wavelet tree structure

for CSMRI. We developed an efficient algorithm for the tree-based MR image

reconstruction. This method can be easily extended to other medical imaging

problems, such as CT image reconstruction. The extensive experiments have

demonstrated the effectiveness and efficiency of our method over the previous

works.

• Although the wavelet tree sparsity can significantly improve the reconstruction

accuracy of a single-channel image, it is not able to utilize the structure correla-

tions in multiple/multi-channel image reconstruction. Therefore, we extended

the tree sparsity to the forest sparsity on multi-channel data. Under compres-

sive sensing assumptions, significant reduction of measurements is achieved with

forest sparsity compared with standard sparsity, joint sparsity or independent
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tree sparsity. The benefit of the proposed model has been theoretically proved

and empirically validated in practical applications.

• The above sparse models assumes that the images themselves can be sparsely

represented in some transforming domain. In some applications, the data is

has strong correlations to some known patterns. More precisely, the data to

be recovered can be more sparsely represented based on the information of the

reference. We proposed the dynamic gradient sparsity model for such data.

We have validated the proposed dynamic gradient sparsity model on image

fusion of remote sensing data. In the experiments, our method is shown to

impressively outperform the classical methods and the recent methods in terms

of both accuracy and computational complexity.

• In the images registration problem, the images to be registered may have dif-

ferent intensity fields due to the various illumination conditions. In addition,

the contents in these images may be slightly different, as the images may be

formed in different times. To overcome such difficulty, we proposed a hierarchi-

cal sparsity model for images registration. Through multiple sparse represen-

tation layers, the model can handle intensity distortions, outliers and partial

occlusions. With these advantages, this model has been shown to be superior

than the existing models in a wide range of applications.

• The optimization problem by using the advanced sparsity models is often more

difficult to solve. Motivated by the special data structures in image process-

ing and medical imaging. We proposed a set of fast iterative reweighted least

squares algorithms for the analysis-based sparsity reconstruction problems. The

proposed method inherit the fast convergence rate of the traditional IRLS al-

gorithms, that is, exponentially fast. Moreover, with the devised precondi-

tioner, the computational cost for each iteration is significantly less than that

139



of traditional IRLS algorithms, which makes it feasible for large scale problems.

Extensive results demonstrate that the proposed method achieves superior per-

formance over 14 state-of-the-art algorithms in terms of both accuracy and

computational cost.

Although each of the above models can not be applied to all the medical imaging

and image processing applications, the success of our work provides new possibilities

for future research. It implies that developing new methods with the suggestions of

theoretical results, as well as exploiting the prior information of the data, may lead

impressive results.
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[157] P. Rodŕıguez and B. Wohlberg, “Efficient minimization method for a generalized

total variation functional,” IEEE Transactions on Image Processing, vol. 18,

no. 2, pp. 322–332, 2009.

[158] C. Chen, J. Huang, L. He, and H. Li, “Preconditioning for accelerated iteratively

reweighted least squares in structured sparsity reconstruction,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2014, pp. 2713–2720.

[159] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive

sensing,” in Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2008.

[160] S. Kim and E. P. Xing, “Tree-guided group lasso for multi-task regression with

structured sparsity,” in Proceedings of the International Conference on Machine

Learning (ICML), 2010, pp. 543–550.

[161] J. Liu and J. Ye, “Moreau-yosida regularization for grouped tree structure learn-

ing.” in Proceedings of the Annual Conference on Advances in Neural Informa-

tion Processing Systems (NIPS), vol. 23, 2010, pp. 1459–1467.

[162] D. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statis-

tician, vol. 58, pp. 30–37, 2004.

[163] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

159



[164] G. Papandreou and A. Yuille, “Efficient variational inference in large-scale

bayesian compressed sensing,” in IEEE International Conference on Computer

Vision Workshops (ICCV Workshops), 2011.

[165] A. B. S. Lefkimmiatis and M. Unser, “Hessianbased norm regularization for

image restoration with biomedical applications,” IEEE Transactions on Image

Processing, vol. 21, no. 3, pp. 983–995, 2012.

[166] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-preserving

variational multichannel image restoration,” SIAM Journal on Imaging Sci-

ences, vol. 2, no. 2, pp. 569–592, 2009.

[167] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen,

“An augmented lagrangian method for total variation video restoration,” IEEE

Transactions on Image Processing, vol. 20, no. 11, pp. 3097–3111, 2011.

[168] T. Rohlfing, N. Z. NM, E. Sullivan, and A. Pfefferbaum, “The sri24 multi-

channel atlas of normal adult human brain structure,” Human Brain Mapping,

vol. 31, pp. 798–819, 2010.

160



BIOGRAPHICAL STATEMENT

Chen Chen was born in Jingshan, Hubei, China in 1987. He received the B.E.

degree and M.S. degree both from Huazhong University of Science and Technology,

Wuhan, China, in 2008 and 2011, respectively. He has been a graduate student in

the Department of Computeter Science and Engineering at the University of Texas at

Arlington since 2012. His major research interests include image processing, medical

imaging, computer vision and machine learning. He has published more than 20

papers during his study in he University of Texas at Arlington, including the ones in

top tier conferences CVPR, NIPS, MICCAI and journals such as IEEE transactions.

He is a student member of several IEEE societies.

161


