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ABSTRACT

Weight Modules of Orthosymplectic Lie Superalgebras

THOMAS LYNN FERGUSON, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Dimitar Grantcharov

A long-standing problem in representation theory is the classification of all sim-

ple weight modules of the classical Lie superalgebras. This problem was reduced to the

classification of simple bounded highest weight modules. The latter classification has

been accomplished for all classical Lie superalgebras except for the orthosymplectic

series osp(m|2n) where m = 1, 3, 4, 5, 6. In this thesis, we complete the classifica-

tion of the simple bounded highest weight modules of osp(1|2n) (i.e., for m = 1).

The classification is obtained by developing constraints on primitive vectors in tensor

products of bounded (Weyl) and finite-dimensional osp(1|2n)-modules.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 History and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Examples of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 The Lie Algebra gl(V ) . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 The Lie Algebra sl(n) . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 The Lie Algebra sp(2n) . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Representations of Lie Algebras . . . . . . . . . . . . . . . . . . . . . 7

2.4 Cartan Subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Root Systems of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . 10

3. Lie Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 The General Linear Lie Superalgebra . . . . . . . . . . . . . . . . . . 16

3.4 Representations of Lie Superalgebras . . . . . . . . . . . . . . . . . . 17

4. Universal Enveloping Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



4.1 Associative Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Universal Enveloping Algebras . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Weyl Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. Orthosymplectic Lie Superalgebras . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Definition of osp(1|2n) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Root System of osp(1|2n) . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Root Vectors of osp(1|2n) . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Root Vector Relations for osp(1|2n) . . . . . . . . . . . . . . . . . . . 28

5.5 The Space C1|2n as an osp(1|2n)-representation . . . . . . . . . . . . . 30

5.6 Highest Weight Modules and Primitive Vectors . . . . . . . . . . . . . 31

5.7 Finite-Dimensional Representations . . . . . . . . . . . . . . . . . . . 32

5.8 Tensor Products of Weight Modules . . . . . . . . . . . . . . . . . . . 33

6. Weyl Representations of osp(1|2n) . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Weyl Algebra Homomorphism . . . . . . . . . . . . . . . . . . . . . . 34

6.2 The osp(1|2)-module M = C[x±1] . . . . . . . . . . . . . . . . . . . 39

6.3 Shifted Laurent Polynomials of One Variable . . . . . . . . . . . . . . 43

6.4 The osp(1|2n)-module of Shifted Laurent Polynomials of n Variables . 45

7. Simple Weight osp(1|2n)-modules . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Primitive Vectors of Tensor Products of osp(1|2n)-modules . . . . . . 50

7.2 Classification of Bounded Weights of osp(1|2n) . . . . . . . . . . . . . 58

7.3 Classification of Simple Weight Modules of osp(1|2n) . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



LIST OF ILLUSTRATIONS

Figure Page

2.1 A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Universal Enveloping Algebra diagram . . . . . . . . . . . . . . . . . 20

7.1 Bounded Weights for osp(1|4) . . . . . . . . . . . . . . . . . . . . . . 62

viii



CHAPTER 1

Introduction

1.1 History and Motivation

Lie superalgebras are of great importance in modern physics, in particular, the

study of elementary particle theory. Lie superalgebras are a generalization of Lie

algebras based on a Z2-grading. In the 1950s, an important milestone in the de-

velopment of modern physics occurred when the relationship between representation

theory of Lie groups and Lie algebras to elementary particle theory was discovered.

In the 1970s, the concept of supersymmetry in particle theory led to specific interest

in Lie superalgebras. In 1977, Victor Kac [15] classified all finite-dimensional simple

Lie superalgebras over typical fields.

The study of general (not necessarily finite-dimensional) weight representations

of Lie algebras emerged in the early 1980s as a part of a fundamental effort in the

structure theory of representations of Lie algebras and Lie groups. This effort has

been motivated significantly by theoretical physics. Weight representations have been

studied in the works of Georgia Benkart, Dan Britten, Suren Fernando, Vyacheslav

Futorny, and Frank Lemire over the last 20 years, [2, 8, 9]. A major breakthrough

in the representation theory of reductive Lie algebras was made by Olivier Math-

ieu. In 2000, he classified all irreducible weight representations with finite weight

multiplicities [16].

Following Mathieu’s classification, it is natural to aim at classifying all simple

weight modules with finite weight multiplicities of all classical Lie superalgebras g.

That classification was obtained in [6] for all g except for the Lie superalgebra series

1



osp(m; 2n), m = 1, 3, 4, 5, 6; psq(n), D(2, 1, α). On the other hand, the classification

of simple weight modules with finite weight multiplicities was reduced to the classifi-

cation of the so-called bounded highest weight modules [12]. The latter classification

was obtained for g = psq(n) and g = D(2, 1, α) in [10] and [13], respectively, which

leaves the orthosymplectic series as the only remaining classical Lie superalgebras to

consider.

In 2006, Dimitar Grantcharov and Vera Serganova [11] discovered that the cat-

egory of all weight representations of the symplectic Lie algebras sp(2n) is wild, i.e.,

its indecomposable objects cannot be parameterized. On the other hand, some cate-

gories of bounded weight representations of sp(2n) are tame, i.e., the indecomposable

objects can be parameterized. Examples of bounded representations of sp(2n) are

the so-called Weyl representations, which appear as Laurent polynomial representa-

tions. This class arises naturally from the Weyl presentation of sp(2n) in terms of

differential operators.

In this thesis, we make the first important step toward classifying bounded high-

est weight osp(m|2n)-modules. We complete the classification in the case m = 1, i.e.,

for osp(1|2n). We employ techniques based on Weyl representations and constraints

on primitive vectors within tensor products of Lie superalgebra representations, while

exploiting the fact that the symplectic Lie algebra can be considered as the even part

of the orthosymplectic Lie superalgebra. More precisely, we consider tensor products

of Weyl representations and finite-dimensional representations of osp(1|2n). By find-

ing primitive vectors in such a tensor product, we obtain necessary conditions for a

simple highest weight module to be bounded. Such a technique was used by Kevin

Coulembier [5] for some special finite-dimensional representations of osp(1|2n). Our

methods can be used to obtain character formulae for bounded highest weight mod-
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ules. In our recent preprint [7], we find such formulas and also provide an alternative

method of classifying the simple bounded highest weight representations of osp(1|2n).

The content of the thesis is as follows. In Chapter 2, we record the definition

of a Lie algebra and some of the associated basic definitions and results. Chapter 3

introduces the Lie superalgebras and illustrates both the parallelism and distinctions

between the structures. In Chapter 4, we provide some background material on the

universal enveloping algebra for Lie superalgebras, as it will be needed in many of the

later results. In Chapter 5, we introduce the orthosymplectic Lie superalgebra; the

remainder of the thesis then focuses on these structures. We develop the concept of a

Cartan subalgebra, root, weights, and weights of bounded multiplicities of osp(1|2n).

In Chapter 6, we exhibit a Weyl representation, and several classification results flow

from the associated homomorphism. Finally, in Chapter 7, we present results that

classify the bounded weights and simple weight modules of osp(1|2n).

1.2 Notation and Conventions

In the following, all vector spaces will be assumed to have ground field C (the

complex numbers). Vector spaces will be denoted by Roman letters (e.g., V,W ), and

V ∗ will be used to denote the dual space to V . Gothic characters (e.g., g, h) will

be used to represent Lie algebras and Lie superalgebras. Associative algebras and

superalgebras will be denoted by Roman letters (e.g, A, B). Eij will be used to denote

the (i, j)th elementary matrix. We expect that the reader is familiar with basic notions

from linear algebra such as the direct sum of vector spaces, linear transformations,

and matrices of linear transformations. Unless otherwise noted, the expression ±α±β

will be used to represent four possible values, i.e., α+ β, α− β,−α− β,−α + β.

3



CHAPTER 2

Lie Algebras

We begin with the definition of a Lie algebra and some of the associated con-

cepts. We also give specific examples of Lie algebras that will be useful in the sequel.

The goal is to have enough machinery to define modules and weights.

2.1 Definitions

Definition 2.1.1 [14, 1.1] A vector space g over C, with a binary operation [·, ·] :

g × g → g, called the Lie bracket or commutator, is a Lie algebra if the following

axioms are satisfied:

(L1) [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y] (bilinearity)

(L2) [x, y] = −[y, x] (skew symmetry)

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity) for every a, b ∈ C and for

every x, y, z ∈ g

Definition 2.1.2 [14, 1.1] A vector subspace a of a Lie algebra g is called a Lie

subalgebra if a is closed under the Lie bracket.

Definition 2.1.3 [14, 2.1] A subspace a of a Lie algebra g is an ideal of g if for

every g ∈ g, for every a ∈ a, [g, a] ∈ a. The maximal solvable ideal of g is known as

the radical of g and is denoted Rad g. If Rad g = 0, then g is said to be semisimple

(cf. [14] §3.1).

Definition 2.1.4 [14, 2.1] The center of a Lie algebra g is the set of elements that

commute with every element in g; that is,

Z(g) := {z ∈ g|[x, z] = 0 for all x ∈ g}.
4



If Rad g = Z(g), then g is said to be reductive.

Definition 2.1.5 [14, 2.1] A Lie algebra g is called simple if its only ideals are itself

and 0.

Definition 2.1.6 [14, 2.2] A map φ : g → a is called a Lie algebra homomorphism if

it is a homomorphism of vector spaces and φ([x, y]) = [φ(x), φ(y)] for every x, y ∈ g.

2.2 Examples of Lie Algebras

2.2.1 The Lie Algebra gl(V )

The general linear Lie algebra gl(V ) consists of all endomorphisms of V . If dim

V = n, then the dimension of gl(V ) is n2. By fixing a basis for V , we will show that

gl(V ) is isomorphic to the Lie algebra as gl(n,C) (all n × n matrices with complex

entries).We define the Lie bracket as [x, y] = xy − yx for x, y ∈ gl(V ), where xy is

given by function composition.

Proposition 2.2.7 [14, 1.1] Let V be a vector space over C with dim V = n, then

gl(V ) is isomorphic to gl(n,C).

Proof: The proof is standard but for completeness we outline the important steps.

Fix a basis B:={v1, v2, ..., vn} of V . Define the linear map φ : gl(V ) 7−→ gl(n,C)

by: x 7−→ [x]B , where [x]B represents the matrix of x with respect to B. Clearly,

φ is a vector space isomorphism. It remains to show that φ([x, y]) = [φ(x), φ(y)].

Considering the left hand side, we have φ([x, y]) = φ(xy − yx) = φ(xy) − φ(yx)

by the linearity of φ. On the right hand side, [φ(x), φ(y)] = [x]B[y]B − [y]B[x]B by

the definition of φ. From the correspondence between matrix multiplication and the

composition of endomorphisms, we have [x]B[y]B − [y]B[x]B = φ(xy)− φ(yx). �

2.2.2 The Lie Algebra sl(n)

Definition 2.2.8 [14, 1.1] sl(n) := {A ∈ gl(n) | tr(A) = 0}.
5



The special linear Lie algebra, which is denoted by sl(n), consisting of all trace-

less endomorphisms of V (here we rely on the fact that the trace of a matrix is inde-

pendent of the basis).

Proposition 2.2.9 sl(n) is an ideal of gl(n).

Proof: Let a ∈ sl(n), g ∈ gl(n). Consider [g, a] = ga− ag. Since Tr(ga) = Tr(ag), it

follows that Tr([g, a]) = 0. Thus, [g, a] ∈ sl(n) as required. �

Remark 2.2.10 It follows that gl(n) is not simple but is reductive (cf. [14],§6.4),

while sl(n) is simple.

Remark 2.2.11 Of particular interest in the sequel is sl(2) with standard basis e, f, h

defined as follows e = E12, f = E21, h = E11 − E22. Then [h, e] = 2e, [h, f ] =

−2f, [e, f ] = h.

2.2.3 The Lie Algebra sp(2n)

We define a skew-symmetric bilinear form (i.e., B(v,w)= −B(w,v)) B on V by

the matrix s:

s =




0 In

−In 0


 ,

B(v, w) = vtsw.This leads to the definition of sp(2n), the symplectic Lie algebra.

Definition 2.2.12 [14, 1.1] sp(2n):={x ∈ gl(2n) | sx = −xts}.

An element of sp(2n) in matrix form is




A X

Y −At


 whereX = X t and Y = Y t.

We note that dim(sp(2n)) = 2n2 + n. (cf. [14],§1.2). The following proposition is

included as an example of a Lie subalgebra.

Proposition 2.2.13 sp(2n) is a Lie subalgebra of gl(2n).
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Proof: Clearly sp(2n) is a subspace of gl(2n) by dimension. It remains to show

that sp(2n) is closed under the bracket operation. Let x, y ∈ sp(2n) and let v, w ∈

C2n.Then

B([x, y](v), w) = B((xy − yx)(v), w)

= B((xy)(v), w)− B((yx)(v), w)

= −B(v, (xy)(w)) +B(v, (yx)(w))

= B(v, (yx− xy)(w))

= −B(v, [x, y](w))

as required. �

Definition 2.2.14 The diagonal matrices (denoted d(n)), are another example of a

subalgebra of gl(n). The diagonal subalgebras of sl(n) and sp(2n) are

hsl(n) := {A ∈ sl(n) | A ∈ d(n)}

and

hsp(2n) := {A ∈ sp(2n) |A ∈ d(2n)},

respectively.

2.3 Representations of Lie Algebras

Definition 2.3.15 [14, 6.1] Let g be a Lie algebra and V a vector space. We say that

V is a g-module (or a representation of g) if there is a binary operation g× V → V ,

(x, v) 7→ x · v such that the following axioms are satisfied:

(M1) (ax+ by) · v = a(x · v) + b(y · v),

(M2) x · (av + bw) = a(x · v) + b(x · w),

(M3) [x, y] · v = x · (y · v)− y · (x · v), for every x, y ∈ g and a, b ∈ C and for every

v, w ∈ V .

7



Proposition 2.3.16 [14, 6.1] The vector space V is a g-module if ρ : g → gl(V ),

ρ(g)(v) = g · v is a homomorphism of Lie algebras.

Proof: The first two axioms follow easily; we verify the third here for completeness.

Let x, y ∈ g and v ∈ V , then:

ρ([x, y](v) = [ρ(x), ρ(y)](v)

= ρ(x)(ρ(y)(v))− ρ(y)(ρ(x)(v))

= x · (y · v)− y · (x · v)

Since ρ([x, y])(v) = [x, y]v we have that V is a g-module. �

Definition 2.3.17 [14, 1.3] Let g be a Lie algebra. For x ∈ g, define the adjoint

map ad x : g → g by y 7→ [x, y], y ∈ g.

Proposition 2.3.18 [14, 2.2] The map ad: g → End g given by x 7→ ad x is a

representation of g called the adjoint representation of g.

Proof: For convenience in this proof we write adx for ad(x). Clearly ad is a linear

map so it suffices to show that ad[x,y] = [adx, ady]. Let x, y, z ∈ g, then using the

definition of ad, the skew-symmetric property, and the Jacobi identity we have:

[adx, ady](z) = adxady(z)− adyadx(z)

= adx[y, z]− ady[x, z]

= [x, [y, z]− [y, [x, z]]

= [x, [y, z]] + [[x, z], y]

= −[y, [z, x]− [z, [x, y]] + [[x, z], y]

= [[x, y], z]

= ad[x,y](z).

�
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Definition 2.3.19 A subrepresentation (submodule) W of V is a vector space which

is itself a g-representation.

Definition 2.3.20 Let W be a subrepresentation of V over a Lie algebra g. Then the

quotient vector space V/W is a representation of g defined by x · (v+W ) := x · v+W

and is a quotient representation.

Definition 2.3.21 [14, 6.1] A representation is called simple (irreducible) if its only

subrepresentations are itself and 0. A representation M is called indecomposable if

M = M1 ⊕M2 implies M1 = 0 or M2 = 0.

2.4 Cartan Subalgebras

Definition 2.4.22 [14, 3.2] Define the derived algebra of g, denoted [g,g], as the

span of all commutators [x, y]. Then the descending central series of g is a sequence

of ideals defined as: g0 = g, g1 = [g, g] and gn = [gn−1, g]. g is said to be nilpotent if

gn = 0, for some n ∈ Z.

Example 2.4.23 The Heisenberg Lie algebra Hn is the Lie algebra with basis

{x1, ..., xn, y1, ..., yn, z}

subject to the relations: [xi, yj] = δijz; [xi, xj ] = [yi, yj] = [z, xi] = [z, yi] = 0, for all

i, j. Note that the Heisenberg Lie algebras are nilpotent and dim Hn=2n+ 1.

Example 2.4.24 The set of strictly upper triangular n × n matrices, denoted n(n)

is another example of a nilpotent Lie algebra. When n = 3, n(n) is isomorphic to the

Heisenberg Lie algebra H1. We will later extend this to a Lie superalgebra.

Definition 2.4.25 [14, 2.1] The normalizer of a subalgebra t of a Lie algebra g is

defined by Ng(t) := {x ∈ g|[x, t] ⊂ t}. If t = Ng(t) then t is said to be self-normalizing.

With these definitions in hand, we can now define a Cartan subalgebra.

9



Definition 2.4.26 [14, 15.3] Let g be a Lie algebra and let h be a subalgebra of g such

that h is nilpotent and self-normalizing. Then h is said to be a Cartan subalgebra of

g.

Remark 2.4.27 We note that a Cartan subalgebra need not exist and need not be

unique (cf. [14],§8.1). The diagonal subalgebras introduced in Definition 2.2.14 are

examples of Cartan subalgebras of sl(n) and sp(2n).

From now on we fix the Cartan subalgebras of g = sl(n) to be the diagonal ones:

hsl(n) = {a1E11 + a2E22 + ... + anEn,n|a1 + a2 + ...+ an = 0}

and g = sp(2n):

hsp(2n) = {a1E11 + a2E22 + ...+ anEn,n − a1En+1,n+1 − ...− anE2n,2n|ai ∈ C}.

Definition 2.4.28 [14, 20.1] Let g be a Lie algebra, h be a Cartan subalgebra of g,

and M be a g-module. For λ ∈ h∗ define Mλ := {v ∈ M |hv = λ(h)v, for all h ∈ h}.

Then

(i) We say that λ is a weight of M if Mλ 6= 0.

(ii) Mλ is the λ–weight space of M .

(iii) M is a weight module if M =
⊕

λ∈h∗ M
λ and Mλ is finite-dimensional for every

weight λ of M .

2.5 Root Systems of Lie Algebras

Let V be a vector space over C with a positive definite symmetric bilinear form

〈, 〉 defined on V .

Definition 2.5.29 [14, 9.2] A subset Φ of V is a root system of V if:

(i) Φ is finite, spans V , and does not contain the zero vector.

(ii) If α ∈ Φ, the only scalar multiples of α ∈ Φ are ±α.

10
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Figure 2.1. A2.
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Figure 2.2. C2.

(iii) If α ∈ Φ, then the reflection σα leaves Φ invariant (σα is the reflection in V

associated with α).

(iv) If α, β ∈ Φ, then 〈β, α〉 ∈ Z.

Example 2.5.30 Let Φ = {ǫi − ǫj |1 ≤ i 6= j ≤ n} where {ǫ1, ǫ2, ..., ǫn} is a basis of

Cn. Here V = {∑n
i=1 xiǫi|

∑n
i=1 xi = 0}. We denote Φ by An.

The root system Φ = A2 is depicted in Figure 2.5.

Example 2.5.31 Let Φ = {±ǫi ± ǫj ,±2ǫi|1 ≤ i < j ≤ n}, with V = Cn.

We denote Φ by Cn.

The root system Φ = C2 is depicted in Figure 2.5.
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Definition 2.5.32 Let g be a semisimple Lie algebra and h be a Cartan subalgebra

of g. We define the root system ∆(g, h) of g relative to h as follows. For α ∈ h∗,

define gα := {x ∈ g|[h, x] = α(h)x, for all h ∈ h}. Then ∆(g, h) := {α ∈ h∗|gα 6= 0}.

The elements of ∆(g, h) are called the roots of g. A nonzero element Xα ∈ gα is a

root vector. We note that g = h ⊕ (
⊕

α∈∆ gα) (cf. [Hum72], § 8.1). We call this

decomposition the root space decomposition of g.

Example 2.5.33 Let g = sl(n) and h = d(n) ∩ sl(n). The root system ∆(g, h) is

An = {ǫi − ǫj |1 ≤ i 6= j ≤ n}. To relate ∆(g, h) to An, we define ǫi ∈ h∗ by:

ǫi(a1E11 + a2E22 + ...+ anEnn) = ai Here,
∑n

i=1 ai = 0.

Example 2.5.34 Let g = sp(2n) and h = d(2n) ∩ sp(2n). Here the root system

∆(g, h) is Cn = {±ǫi ± ǫj ,±2ǫi, i 6= j}. Define ǫi ∈ h∗ by:

ǫi(a1E11 + ... + anEnn − a1En+1,n+1 − ...− anE2n,2n) = ai.

Definition 2.5.35 [2, 1.1] Let g be a semisimple Lie algebra and h be a Cartan

subalgebra of g with root system ∆. Let M be a weight g-module.

(i) M is called bounded if there is K > 0 such that dimMλ < K for all λ.

(ii) M is called torsion free if the action of every root vector Xα ∈ gα on M ; Xα :

M → M , is injective.

(iii) If M is simple, then M is said to be pointed if M has at least one one-

dimensional weight space.

(iv) M is said to be completely pointed if all weight spaces of M are one-dimensional.

12



CHAPTER 3

Lie Superalgebras

We introduce the definition of a Lie superalgebra and exhibit the general linear

Lie superalgebra. We then reprise definitions associated with Lie algebras - some are

extended in a natural way through the concept of supersymmetry while others are

unchanged.

3.1 Notation

We set Z2 to be Z/2Z and denote the elements of Z2 by 0 and 1.

3.2 Definitions

Definition 3.2.1 [17, 1.1] A vector space V is said to be Z2-graded if there exist

subspaces V0, V1 such that V = V0 ⊕ V1. V0 is the even part of V and V1 is the odd

part of V

The vector space Cm|n= V = V0⊕V1 plays an important role in the sequel. We

define it as follows:

Definition 3.2.2 Cm|n:={(z1, z2, ..., zm; zm+1, ..., zm+n)|zi ∈ C, for i = 1, 2, ..., m+ n

with m,n ∈ Z≥0}

We note here that Cm|n is a Z2-graded vector space by defining:

V0 := span{(0, 0, ..., 0; zm+1, ..., zm+n)|zi ∈ C}

and

V1 := span{(z1, z2, ..., zm; 0, 0, ..., 0)|zi ∈ C}.

13



Definition 3.2.3 [17, 1.1] Let V be a Z2-graded vector space and x ∈ Vi. Then

p(x) = i is the parity of x. The element x is odd if p(x)=1 and even otherwise. An

element that has parity is said to be homogeneous.

Remark 3.2.4 Not every element in a Z2-graded vector space has parity. For exam-

ple, (1, 1; 1) ∈ C2|1 is not homogeneous.

Definition 3.2.5 Let V,W be Z2-graded vector spaces. A map φ : V → W is grade-

preserving if for every x ∈ V , p(x) = p(φ(x)) (or, φ(Vi) ⊂ Wi).

Definition 3.2.6 V is a Z2-graded subspace of W = W0 ⊕W1 if V = V0 ⊕ V1 and

Vi is a subspace of Wi for i ∈ Z2.

Definition 3.2.7 [17, 1.1] A Z2-graded space g = g0 ⊕ g1, with a binary operation

[·, ·] : g× g → g, (called the Lie superbracket or supercommutator), is a Lie superal-

gebra if the following axioms are satisfied:

(i) [gī, gj̄] ⊂ gī+j̄, for every ī, j̄ ∈ Z2;

(ii) [ , ] is bilinear;

(iii) [x, y] = −(−1)p(x)p(y)[y, x]; skew-supersymmetry;

(iv) [x, [y, z]] = [[x, y], z] + (−1)p(x)p(y)[y, [x, z]] for all homogeneous x, y, z ∈ g. This

is known as the the super Jacobi identity.

Definition 3.2.8 A Z2-graded space a of a Lie superalgebra g is called a Lie subsu-

peralgebra if a is closed under the Lie superbracket.

Definition 3.2.9 A map φ : g → a is called a Lie superalgebra homomorphism if it

is a grade-preserving homomorphism of Z2-graded spaces and φ([x, y]) = [φ(x), φ(y)]

for all x, y ∈ g.

Lemma 3.2.10 Let g, a be Lie superalgebras and let φ : g → a be a linear map of

Z2-graded vector spaces. Let B = {v1, v2, ...vn} be a set that spans the vector space

g. If φ([vi, vj]) = [φ(vi), φ(vj)], for all vi, vj ∈ B, then φ is a Lie superalgebra homo-

morphism.
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Proof. Let x, y ∈ g with x :=
∑n

i=1 αivi and y :=
∑n

i=1 βivi, where αi, βi ∈ C.

The result then follows readily from the bilinearity of the Lie superbracket and the

linearity of φ.

φ([x, y]) = φ([

n∑

i=1

αivi,

n∑

i=1

βivi])

=

n∑

i=1

n∑

j=1

αiβjφ([vi, vj ])

=
n∑

i=1

n∑

j=1

αiβj([φ(vi), φ(vj)])

= [

n∑

i=1

αiφ(vi),

n∑

i=1

βiφ(vi)]

= [φ(x), φ(y)]

�

Definition 3.2.11 Let X be a subset of a Lie algebra (or Lie superalgebra) g. Then

the Lie subalgebra (subsuperalgebra) of g generated by X is

〈X〉g :=
{

n∑

i=1

αiyi| yi = [x1, [x2, ...[xk, xk+1]...]], for some xi ∈ X,αi ∈ C, n > 0

}
.

We say that X generates g (X is a generating set of g) if 〈X〉g = g.

Corollary 3.2.12 Let g, a be Lie superalgebras and let φ : g → a be a linear map

of Z2-graded vector spaces. Let X = {v1, v2, ..., vn} be a generating set of g. If

φ([vi, vj]) = [φ(vi), φ(vj)], for all vi, vj ∈ X, then φ is a Lie superalgebra homomor-

phism.

Proof. By definition of generating set, the setB consisting of all [x1, [x2, ...[xk, xk+1]...]],

xi ∈ X , spans g. On the other hand, it is easy to show that φ([v, w]) = [φ(v), φ(w)],

for v, w ∈ B. Now we apply Lemma 3.2.10 to complete the proof. �

Definition 3.2.13 A map φ : g → a is called a Lie superalgebra isomorphism if it

is a Lie superalgebra homomorphism of vector spaces and φ is bijective.
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3.3 The General Linear Lie Superalgebra

The general linear Lie superalgebra gl(V ) is defined as follows:[17, 2.2]

gl(V )0 := {x : V 7−→ V | x(Vi) ⊂ Vi}

and

gl(V )1 := {x : V 7−→ V | x(Vi) ⊂ Vi+1}.

A particular example of a general linear Lie superalgebra is gl(m|n), i.e. the

Lie superalgebra consisting of block matrices X =




A B

C D


, where the size of A is

m×m, of B ism×n, of C is n×m, and of D is n×n. The supercommutator is defined

as [f, g] = fg − (−1)p(f)p(g)gf . We have gl(m|n)0̄ ≃ glm ⊕ gln (when B = C = 0).

Proposition 3.3.14 gl(m|n) is isomorphic to gl(Cm|n).

Proof: The proof is analogous to Proposition 2.2.7 (the Lie algebra case). �

Definition 3.3.15 Let X =




A B

C D


 be a matrix in gl(m|n). The supertrace of

X is str(X) := tr(A)− tr(D).

The Lie superalgebra analog of sl(n) is the Lie superalgebra sl(m|n) consisting

of all X in gl(m|n) such that strX = 0.

Lemma 3.3.16 The Lie superbracket is defined on basis elements of gl(m|n) as fol-

lows:

[Eij , Ekl] = δj,kEij − (−1)p(Eij)p(Eij)δl,iEkj

Proof: Follows by direct computation. �
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3.4 Representations of Lie Superalgebras

Definition 3.4.17 Let g be a Lie superalgebra and V a vector space. We say that V

is a g-module (or a representation of g) if there is a binary operation g × V → V ,

(x, v) 7→ x · v such that the following axioms are satisfied:

(M1) gi · Vj ⊂ Vi+j for every i, j ∈ Z2,

(M2) (ax+ by) · v = a(x · v) + b(y · v),

(M3) x · (av + bw) = a(x · v) + b(x · w),

(M4) [x, y] · v = x · (y · v) − (−1)p(x)p(y)y · (x · v), for all x, y ∈ g and a, b ∈ C and

v, w ∈ V .

Remark 3.4.18 The first axiom ensures that the action of g on V is compatible with

the Z2-gradings of g and V .

Proposition 3.4.19 The Z2-graded vector space V is a g-module if and only if ρ :

g → gl(V ), ρ(g)(v) = g · v is a homomorphism of Lie superalgebras.

Proof: This is a standard statement; we will prove the reverse direction. The first

three axioms follow easily. We verify the fourth for completeness. Let x, y ∈ g and

v ∈ V , then:

ρ([x, y](v) = [ρ(x), ρ(y)](v)

= ρ(x)(ρ(y)(v))− (−1)p(x)p(y)ρ(y)(ρ(x)(v))

= x · (y · v)− (−1)p(x)p(y)y · (x · v)

Since ρ([x, y])(v) = [x, y] · v we have that V is a g-module. �

Definition 3.4.20 Let V be a Z2-graded vector space and let g be a Lie subsuperal-

gebra of gl(V ). The inclusion map ι: g → gl(Cm|n) is the standard representation of

g.

Definition 3.4.21 Let g be a Lie superalgebra. For x ∈ g, we define the adjoint map

as follows: ad x : g → g by y 7→ [x, y], y ∈ g.
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Proposition 3.4.22 The map ad: g → End g given by x 7→ ad x is a representation

of g. It is called the adjoint representation of g.

Proof: The proof is very similar to the one for the Lie algebra case (Proposition

2.3.18). Recall that adt = ad(t). The result follows readily from the super Jacobi

identity.

[adx, ady](z) = adx ady(z)− (−1)p(x)p(y) ady adx(z)

= adx[y, z]− (−1)p(x)p(y) ady[x, z]

= [x, [y, z]− (−1)p(x)p(y)[y, [x, z]]

= [[x, y], z]

= ad[x,y](z)

�

Definition 3.4.23 A subrepresentation (submodule) W of a representation V of g

is a vector space which is itself a g-representation.

Definition 3.4.24 Let W be a subrepresentation of V over a Lie superalgebra g.

Then the quotient vector space V/W is Z2-graded and is a representation of g defined

by x · (v +W ) := x · v +W . We call V/W a quotient representation.

Definition 3.4.25 A representation of g is called simple (irreducible) if its only

subrepresentations are itself and 0. A representation M is called indecomposable if

M = M1 ⊕M2 implies M1 = 0 or M2 = 0.
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CHAPTER 4

Universal Enveloping Algebras

We define associative superalgebras and construct the corresponding universal

enveloping algebra. The Weyl superalgebra is defined and a key result is provided

that will be useful for proving a module is simple.

4.1 Associative Superalgebras

Definition 4.1.1 An associative superalgebra over C is a Z2-graded vector space

A = A0 ⊕ A1, with a binary operation (a, b) 7−→ ab, such that:

(i) r(a+ b) = ra+ rb

(ii) (r + s)a = ra+ sa

(iii) r(sa) = rsa

(iv) 1a = a

(v) r(ab) = (ra)b = a(rb)

(vi) AiAj ⊂ Ai+j (i.e, p(ab)=p(a)+p(b))

for all a, b ∈ A and for all r, s ∈ C.

Remark 4.1.2 Any associative superalgebra L over F can be considered as a Lie

superalgebra over F by defining the Lie superbracket as [x, y]=xy − (−1)p(x)p(y)yx.

Definition 4.1.3 Let A and B be associative superalgebras. A map φ : A → B

is a homomorphism of associative superalgebras if φ is a Z2-graded vector space

homomorphism and φ(xy) = φ(x)φ(y), for all x, y ∈ A.
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Figure 4.1. Universal Enveloping Algebra diagram.

4.2 Universal Enveloping Algebras

Definition 4.2.4 [17, 6.1] Let g be a Lie superalgebra. A universal enveloping alge-

bra of g is a pair (U, i) where U is an associative superalgebra with identity and i: g

→ U is a homomorphism of Z2-graded vector spaces such that:

i([x, y]) = i(x)i(y)− (−1)p(x)p(y)i(y)i(x) (4.2.5)

with the following universal property:

For any associative superalgebra A with identity and any Z2-graded vector space

homomorphism j : g → A satisfying 4.2.5, there exists a unique homomorphism of

associative superalgebras φ : U → A such that φ(1) = 1 and φ ◦ i = j.

In other words, there exists unique φ such that the diagram in Figure 4.2 commutes

(here i is the inclusion map).

One way to explicitly describe the universal enveloping algebra of g is using the

tensor algebra given as follows.

Definition 4.2.6 T (g) =
⊕∞

k=0 T
k(g), where T k(g) = g ⊗ g ⊗ ... ⊗ g, k times, and

T 0(g) = C. We call T (g) the tensor algebra of g.

If I(g) = 〈x ⊗ y − (−1)p(x)p(y)y ⊗ x − [x, y]|x, y ∈ g〉, π : T (g) → T (g)/I(g) is the

natural projection, and i = π|g and U(g)=T (g)/I(g), then (T (g)/I(g), i) is a universal

enveloping algebra of g. Hence, for every Lie superalgebra g there exists a universal

enveloping algebra of g. On the other hand, any two such algebras are isomorphic.
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The proof for the Lie superalgebra case(cf. [17], §6.1) is similar to that of the Lie

algebra case (cf. [14], §17.]).

4.3 Weyl Superalgebras

Let Wn be the subalgebra of End C[x1, x2, ..., xn] generated by xi and ∂j , for

i, j = 1, 2, ..., n, where ∂j :=
∂

∂xj
. Explicitly,

Wn := spanC{1, xi1 ...xik∂j1...∂jℓ |i1, ..., ik, j1, ..., jℓ ≤ n and k, l ≥ 0}.

We call Wn the n-th Weyl algebra. We note that Wn is an associative algebra with

identity. To define parity on Wn, we establish a Z-grading of Wn as follows. Set deg

xi = 1 and deg ∂j = −1 and extend deg on Wn multiplicatively. Namely,

deg(xi1...xik∂j1...∂jℓ) :=

k∑

m=1

im −
ℓ∑

t=1

jt.

We then define (Wn)0=span{D ∈ Wn|deg D is even} and (Wn)1=span{D ∈ Wn|deg D

is odd}.

Example 4.3.7 x3
2∂1−x1∂2

2 ∈ (W2)1 because deg(x3
2∂1) = 1 and deg(x1∂2

2) = −1.

Recall the definition of the Heisenberg Lie algebra, cf. §2.4.23.

Proposition 4.3.8 The vector space homomorphism φ : Hn → Wn defined by φ(ai) =

xi, φ(bi) = ∂i, φ(z) = 1 extends to a homomorphism of associative algebras φ :

U(Hn) → Wn (cf. §4.2.4). Furthermore, φ is surjective and has a kernel 〈z − 1〉. In

particular, U(Hn)/〈z − 1〉 ≃ Wn as associative algebras.

Proof: It is easy to check that φ satisfies (4.2.5), that φ is surjective and that

〈z − 1〉 ⊂ kerφ. To show that kerφ ⊂ 〈z − 1〉 we take u ∈ kerφ with u =

∑
I,J,k z

kai11 a
i2
2 ...a

in
n bj11 b

j2
2 ...b

jn
n where I = (i1, i2, ..., in); J = (j1, j2, ..., jn), k ∈ Z then

φ(u) = 0 implies
∑

I,J,k CI,J,kx
i1
1 x

i2
2 ...x

in
n ∂j1

1 ∂j2
2 ...∂jn

n = 0. By comparing coefficients,

we have that
∑

I,J,k CI,J,k = 0, for all I, J . Therefore, z−1 is a multiple of u, that is,
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u = (z−1)u1 for some u1 ∈ U(Hn). Thus, u ∈ 〈z−1〉. It follows that 〈z−1〉 = ker φ.

� The following lemma provides a key mechanism for proving that modules are simple

and will be used frequently in the sequel.

Lemma 4.3.9 Let g be a Lie superalgebra with universal enveloping algebra U(g) and

let M be a g-module. Assume that there is u ∈ M such that (i) for every w ∈ M

there exists X ∈ U(g) such that w = X(u); (ii) for every v ∈ M there exists Y ∈ U(g)

such that u = Y (v). Then M is a simple module.

Proof. Suppose that K is a non-trivial submodule of M . It then suffices to show

that K = M . Let v ∈ K, with v 6= 0. Then u = Y (v) for some Y ∈ U(g). Therefore

u ∈ K. But then for any w ∈ M there exists X ∈ U(g) such that w = X(u). Thus

w ∈ K which implies that K = M . �
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CHAPTER 5

Orthosymplectic Lie Superalgebras

A class of Lie superalgbras preserving a nondegenerate bilinear form are the or-

thosymplectic Lie superalgebras, which we will denote by osp(m|2n). In this chapter

we first introduce the necessary general definitions for orthosymplectic Lie superalge-

bras, and then focus on the case osp(1|2n). The latter case is considered in the rest

of the thesis. In order to develop certain examples and motivation, in some cases the

study will be restricted to osp(1|2) or osp(1|4).

5.1 Definition of osp(1|2n)

Definition 5.1.1 Let g be a Lie superalgebra. A bilinear form B on g is said to be

supersymmetric if B(x, y) = (−1)p(x)p(y)B(y, x) for all x, y ∈ g.

Definition 5.1.2 Let g be a Lie superalgebra. A supersymmetric bilinear form B on

g is said to be nondegenerate if radB = 0 where

radB := {x ∈ g | B(x, y) = 0 for all y ∈ g}.

Definition 5.1.3 [17, 2.3] The orthosymplectic Lie superalgebra is defined as fol-

lows:

osp(Cm|2n, B) := {g ∈ gl(Cm|2n)|B(g(x), y) = −(−1)p(g)p(x)B(x, g(y)) for all x, y ∈ C
m|2n},
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where B is a nondegenerate supersymmetric bilinear form. Alternatively, if we use

the matrix s =




G 0

0 H


 of B relative to the standard basis we will have that

osp(Cm|2n, B) is isomorphic to

osp(m|2n) :=








A B

C D


 ∈ gl(m|2n) | AtG+GA = BtG−HC = DtH +HD = 0





.

We note that for g = osp(m|2n), we have that g0 ≃ o(m)
⊕

sp(2n). In the

particular cases examined, the orthogonal part of the sum will be 0, so we will exploit

the isomorphism osp(1|2n)0 ≃ sp(2n).

In the remainder of the thesis, we will be concerned only with osp(1|2n):

osp(1|2n) :=








0 W

U Y


 ∈ gl(1|2n) | Y ∈ sp(2n),W, U ∈ C

2n





. (5.1.4)

Here W is realized as a row vector formed from W1,W2 ∈ Cn and U is a column

vector formed from W t
2 and −W t

1 .

Remark 5.1.5 From (5.1.4), we can easily compute the dimension of osp(1|2n) as

follows:

dim(osp(1|2n)) = dim(sp(2n)) + 2n = 2n2 + 3n.

In particular, dim(osp(1|2)) = 5 and dim(osp(1|4)) = 14.

One can naturally extend the definitions of nilpotent algebra and normalizer in

the superalgebras case. Using these new definitions we can introduce the following.

Definition 5.1.6 A Cartan subalgebra h of g = osp(1|2n) is a self-normalizing nilpo-

tent subalgebra of g. In what follows we fix h to be the standard Cartan subalgebra

of g, i.e.

h = {a1E11 + a2E22 + ...+ anEn,n − a1En+1,n+1 − ...− anE2n,2n|ai ∈ C}.
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Weight modules of osp(1|2n) play a crucial role in this thesis. Although the defi-

nition of a weight module is identical to Definition 2.4.28, for the reader’s convenience

we include it below.

Definition 5.1.7 [17, 8.2] An osp(1|2n)-module M is a weight module if M =

⊕
λ∈h∗ M

λ, and dimMλ < ∞. Here, Mλ = {v ∈ M |hv = λ(h)v, for all h ∈ h}

is the λ–weight space of M and dimMλ is the weight multiplicity of λ.

We note here that for the remainder of the thesis, g = osp(1|2n) unless other-

wise specified.

Lemma 5.1.8 Let V be a weight module of g and W a submodule of V . Then W is

also a weight module.

Proof. Clearly
⊕

λ∈h∗ W
λ ⊂ W . Let v ∈ W , v 6= 0. Since v ∈ V , then v =

∑p
i=1 vi

with vi ∈ V λi . Assume also that λi are pairwise distinct. It remains to show that

vi ∈ W . Choose h ∈ h such that λi(h) 6= λj(h) for all i, j. To choose such h, note

that for fixed i and j, the set of all x ∈ h such that (λi − λj)(x) = 0 is a hyperplane

in h. We then construct a linear system by repeated action of h on v as follows:

h(v) =
∑p

i=1 λi(h)vi

h2(v) =
∑p

i=1 λi
2(h)vi

...

hp−1(v) =
∑p

i=1 λi
p−1(h)vi.

We can then write the system as a matrix equation as follows:



1 · · · 1

λ1 · · · λn

...
...

...

λ1
p−1 · · · λn

p−1







v1

v2
...

vp




=




v1

h2v2
...

hp−1vp
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Consider the p× p system as Av = w. Then using the Vandermonde determi-

nant formula, we have

detA =
∏

k>ℓ

(λk − λℓ).

Since λi are distinct, we have that detA 6= 0. Therefore, A is invertible, hence

v = A−1w, which implies that vi ∈ W . �

Definition 5.1.9 Let M be a weight g-module.

(i) We say M is a module of bounded multiplicities or bounded g-module if there

exists k ∈ N such that dim Mλ ≤ k for all weights λ of M . The minimal such

k is the degree of M . Note that a module of degree 1 is completely pointed. (see

Definition 2.5.35).

(ii) If v ∈ Mλ we say that the weight of v is λ and write λ = wt(v).

5.2 Root System of osp(1|2n)

Recall the definition of a root system of a Lie algebra (Definition 2.5.29). We

extend this definition specifically for osp(1|2n) as follows. (See [4],§1.2 for details

about the more general cases.) We first define δi ∈ h∗ by the map

δi(a1, a2, ..., an,−a1,−a2, ...,−an) = ai,

for i = 1, 2, ..., n.

Definition 5.2.10 [17, 8.1] Let α ∈ h∗, with α 6= 0, then α is a root of osp(1|2n)

if gα 6= 0, where gα = {x ∈ osp(1|2n)|[h, x] = α(h)x, for all h ∈ h}. The set of all

roots of osp(1|2n) will be denoted by ∆. The even roots are ∆0 = {α ∈ ∆|gα ∩ g0}

and the odd roots are ∆1 = {α ∈ ∆|gα ∩ g1}.

The roots of g are listed in the following proposition.

Proposition 5.2.11 ∆0 = {±δi ± δj;±2δi} and ∆1 = {±δi} for i = 1, 2, 3, ..., n,

i 6= j.
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Note that, in future, when we identify sp(2n) as the even part of osp(1|2n), we will

use δi’s instead of ǫi’s for the roots.

Definition 5.2.12 [17, 3.4] Let g = osp(1|2n) and ∆ be the set of roots of (g, h). A

subset Π of ∆ is a base of ∆ if:

(i) Π is a basis of h∗,

(ii) Each β ∈ ∆ can be written as β = Σkαα, with α ∈ Π such that the coefficients

kα are either all nonnegative or all nonpositive.

If all kα are nonnegative then β is a positive root. Otherwise we call β a negative

root. The sets of positive and negative roots are denoted by ∆+ and ∆−, respectively.

For our convenience, and mostly due to the Weyl homomorphism, (see Proposition

6.1.1), we fix the following bases of the root systems of sp(2n) and osp(1|2n), respec-

tively:

Πsp = {−2ǫ1, ǫ1 − ǫ2, ..., ǫn−1 − ǫn} (5.2.13)

and

Πosp = {−δ1, δ1 − δ2, ..., δn−1 − δn}.

We should note that our choice of base of ∆ is different from the one in [17]. Once

the choice of a base of ∆ is fixed, we can identify the positive and negative roots as

follows:

∆+ = {−δi,−δi − δj , δi − δj ,−2δi | 1 ≤ i < j ≤ n}

∆− = −∆+

Definition 5.2.14 [17, 3.2] Let g = osp(1|2n) and let ∆+ be the set of positive roots

associated with Πosp. Then the subalgebra b = h ⊕ n+ with n+ =
⊕

α∈∆+ gα is the

Borel subalgebra of g corresponding to Π.
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5.3 Root Vectors of osp(1|2n)

Let g = osp(1|2n). In this section we fix elements Xα in gα for all α ∈ ∆.

First, we list the even elements Xα, i.e. those in osp(1|2n)0̄ ≃ sp(2n):

Xδi−δj =




Eij 0

0 −Eji


 , X2δi =




0 Eii

0 0


 , X−2δi =




0 0

Eii 0


 ,

Xδi+δj =




0 Eij + Eji

0 0


 , X−δi−δj =




0 0

Eij + Eji 0




The odd elements X±δi are of the form




0 W1 W2

W t
2 0 0

−W t
1 0 0



where

• W1 = (0, ..., 1, ..., 0) (1 on the ith position) and W2 = (0, 0, ..., 0) for X−δi;

• W1 = (0, 0, ..., 0) and W2 = (0, ..., 1, ..., 0) (1 on the ith position) for Xδi.

Finally we fix the following elements in h:

hδi−δj =




Eii − Ejj 0

0 −Eii + Ejj


 , h2δi =




Eii 0

0 −Eii


 .

Note that {h2δ1 , hδ1−δ2 , ..., hδn−1−δm} forms a basis of h.

5.4 Root Vector Relations for osp(1|2n)

It will be convenient to have root vector relations for [Xα, Xβ] available for later

use. They are grouped in the order odd-odd, even-odd, and even-even based on the

parity of the root vectors Xα, Xβ. Note that if the sum α+ β of the roots α, β is not

a root, then the corresponding Lie superbracket is zero.
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The odd-odd relations are symmetric.

[X±δi , X±δi] = ±2X±2δi

[X±δi , X±δi+1
] = ±X±δi±δi+1

[Xδi , X−δi] = h2δi

[X±δi , X∓δi+1
] = ±X±δi∓δi+1

The even-odd relations.

[X2δi , X−δi ] = −Xδi

[Xδi−δi+1
, Xδi+1

] = Xδi

[Xδi−δi+1
, X−δi ] = −X−δi+1

[X−2δi , Xδi ] = −X−δi

[X−δi−δi+1
, Xδi ] = −X−δi+1

[X−δi−δi+1
, Xδi+1

] = −X−δi

[Xδi+δi+1
, X−δi ] = −Xδi+1

[Xδi+δi+1
, X−δi+1

] = −Xδi

[Xδi+1+δi, Xδi ] = Xδi+1

[Xδi+1−δi, X−δi+1
] = −X−δi
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The even-even relations are antisymmetric.

[X2δi , X−2δi ] = h2δi

[X2δi , Xδi+1−δi ] = −Xδi+δi+1

[X2δi+1
, Xδi−δi+1

] = −Xδi+δi+1

[X−2δi+1
, Xδi+1−δi ] = X−δi−δi+1

[Xδi+1−δi , Xδi−δi+1
] = −hδi−δi+1

[X−2δi , Xδi−δi+1
] = −Xδi−δi+1

The following specific computations will be referred to later in the document:

[Xδ1 , X−δ1 ] = h2δ1 (5.4.15)

[X−δ1 , X2δ1 ] = Xδ1 (5.4.16)

[Xδk−δk+1
, Xδ1 ] = 0 (5.4.17)

Remark 5.4.18 We will identify h∗ with Cn via the vector space isomorphism h∗ 7→

Cn, λ 7→ (λ(h2δ1), ..., λ(h2δn)). Note that λ =
∑n

i=1 λ(h2i)δi.

5.5 The Space C1|2n as an osp(1|2n)-representation

We introduce the standard representation here for use as an example of concepts

in the next section. In addition, this representation plays an important role in Chapter

7.

We denote the standard basis of C1|2n by {v0, v1, ..., vn, vn+1, ..., v2n}, with v0

being even and the remaining elements odd. The action of the basis root vectors X−δ1

and Xδi−δi+1
, i ≥ 1, on C1|2n is given by matrix multiplication. For completeness, we

write down the action of X±δi , Xδi−δi+1
:
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X−δi(vj) =





−vn+i if j = 0

v0 if j = i

0 otherwise

Xδi(vj) =





−vi if j = 0

v0 if j = n+ i

0 otherwise

Xδi−δi+1
(vj) =





vi if j = i+ 1

−vn+i+1 if j = n+ i

0 otherwise.

5.6 Highest Weight Modules and Primitive Vectors

Definition 5.6.19 Let M be a g-module, then 0 6= v ∈ M is a primitive vector

if xv = 0 for all x ∈ n+. Equivalently, v is a primitive vector if Xαv = 0 for

α = −δ1, δ1 − δ2, ..., δn−1 − δn.

Example 5.6.20 Let n = 2 and M = C1|4. In this case, we have

X−δ1(v4) = Xδ2−δ1(v4) = 0,

thus v4 is a primitive vector of M of weight wt(v4) = (0,−1).

Definition 5.6.21 [17, 8.2] By Cλ we denote the one-dimensional U(b)-module Cvλ

with action defined by hvλ = λ(h)vλ, for h ∈ h and xvλ = 0 for x ∈ n+.

Definition 5.6.22 [17, 8.2]

1. The Verma module with highest weight λ ∈ h∗ is defined by M(λ) = U(g)⊗U(b)

Cλ. Every quotient module M of M(λ) is by definition a highest weight module

of highest weight λ. If M is a highest weight module, any v ∈ Mλ is called a

highest weight vector of M .

2. The quotient of M(λ)/M+ where M+ is the maximal proper submodule of M(λ)

is the simple highest weight module of weight λ, and it will be denoted by L(λ).
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3. We say λ is a g-bounded weight (or, simply, bounded weight) if L(λ) is a

bounded g-module.

Lemma 5.6.23 Every highest weight vector of a highest weight module is a primitive

vector.

Proof. Let M be a highest weight module of weight λ. Then M = M(λ)/M ′ for

some submodule M ′ of M(λ). Every highest weight vector of M is a multiple of

u = 1⊗ vλ +M ′. Let x ∈ n+, then we have:

xu = x1⊗ vλ ± 1⊗ xvλ +M ′

= 1⊗ xvλ ± 1⊗ xvλ +M ′

= 0 +M ′.

Therefore, u is primitive as required. �

Lemma 5.6.24 Let v be a primitive vector of weight λ of a module V . Then L(λ)

is isomorphic to a subquotient of V .

Proof. This is a standard fact, but for reader’s convenience we outline the proof.

We take the submodule M of V generated by v, i.e. M = U(g) · v. This module

is a highest weight module. Indeed, the map M(λ) → M , u ⊗ vλ 7→ u · v, is a

surjective module homomorphism. If M ′ is the kernel of this homomorphism, then

M ≃ M(λ)/M ′. On the other hand, L(λ) = M(λ)/M+, where M+ is a maximal

submodule of M(λ). Then L(λ) ≃ (M(λ)/M ′) / (M+/M
′). Hence, L(λ) is a quotient

of the submodule M of V , which completes the proof. �

5.7 Finite-Dimensional Representations

Definition 5.7.25 A weight (λ1, λ2, ..., λn) is a dominant integral weight if λi ∈ Z≤0

and λ1 ≥ λ2 ≥ ... ≥ λn.

The following result can be found in ([17], §14.1 et seq) and ([4], Lemma 2.8).
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Theorem 5.7.26 A weight module L(λ) is finite-dimensional if and only if λ is a

dominant integral weight.

5.8 Tensor Products of Weight Modules

The action of g on the tensor product V ⊗W of two g-modules V,W is given

by the formula

x(v ⊗ w) = xv ⊗ w + (−1)|x||v|v ⊗ xw with x ∈ U(g) and v ∈ V, w ∈ W. (5.8.27)

(see, for example, [17], §A.2)

Lemma 5.8.28 Let u ∈ V ⊗W , with u = v ⊗ w, wt(v) = λ and wt(w) = µ. Then

the wt(u) = λ + µ. Furthemore, if v and w are highest weight vectors of V and W

respectively, then v ⊗ w is a primitive vector of V ⊗W .

Proof. Let h ∈ h (the Cartan subalgebra of osp(1|2n)) and note that h ∈ h is even

since h = h0. Then h(u) = hv ⊗w + v ⊗ hw = (λ+ µ)(h)(v⊗w) by definition of the

action. Thus h(u) = (λ+ µ)(h)(u).

If v, w are highest weight, then both are also primitive (see Lemma 5.6.23). Let

X ∈ n+, then X (v ⊗ w) = Xv ⊗ w ± v ⊗Xw = 0. Therefore, v ⊗ w is primitive. �
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CHAPTER 6

Weyl Representations of osp(1|2n)

We provide a homomorphism from U(osp(1|2n)) to the Weyl superalgebra Wn.

We use this homomorphism to study osp(1|2n)-modules corresponding to modules of

Wn of shifted Laurent polynomials.

6.1 Weyl Algebra Homomorphism

Proposition 6.1.1 The following correspondence defines a homomorphism

φ : U(osp(1|2n)) → Wn of associative superalgebras with identity:

Xδi−δj 7−→ xi∂j ; i 6= j;

X2δi 7−→
1

2
x2
i ;

X−2δi 7−→
−1

2
∂2
i ;

Xδi+δj 7−→ xixj ;

X−δi−δj 7−→ −∂i∂j ;

hδi−δj 7−→ xi∂i − xj∂j ;

h2δi 7−→ xi∂i +
1

2
;

Xδi 7−→
1√
2
xi;

X−δi 7−→
1√
2
∂i.

Proof. According to Definition 4.2.4, in order to show that φ is a homomor-

phism of associative superalgebras, it is sufficient to show that

φ([x, y]) = φ(x)φ(y)− (−1)p(x)p(y)φ(y)φ(x)
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for any basis elements x, y ∈ osp(1|2n) (cf. Lemma 3.2.10). We do this case by case

for x, y as follows: (odd,odd), (odd, even), and (even,even).

Case 1: (odd,odd)

Subcase 1: x = Xδi , y = Xδj , i = j.

φ([Xδi , Xδi]) = φ(2Xδ2i) = 2(
1

2
x2
i ) = x2

i

[φ(Xδi), φ(Xδi)] = [
1√
2
xi,

1√
2
xi] = x2

i

Subcase 2: x = Xδi , y = Xδj , i 6= j.

φ([Xδi, Xδj ]) = φ(Xδi+δj ) = xixj

[φ(Xδi), φ(Xδj)] = [
1√
2
xi,

1√
2
xj ] = xixj

Subcase 3: x = X−δi , y = X−δj , i = j.

φ([X−δi, X−δi]) = φ(−2X−δ2i) = ∂2
i

[φ(X−δi), φ(X−δi)] = [
1√
2
∂i,

1√
2
∂i] = ∂2

i

Subcase 4: x = X−δi , y = X−δj , i 6= j.

φ([X−δi, X−δj ]) = φ(−X−δi−δj ) = ∂i∂j

[φ(X−δi), φ(X−δj)] = [
1√
2
∂i,

1√
2
∂j ] = ∂i∂j

Subcase 5: x = Xδi , y = Xδj , i = j.

φ([Xδi, X−δi ]) = φ(hδ2i) = xi∂i +
1

2

[φ(Xδi), φ(X−δi)] = [
1√
2
∂i,

1√
2
xi] = xi∂i +

1

2

As an example, we demonstrate the action of [ 1√
2
∂i,

1√
2
xi] on f ∈ C[x±1

1 , ..., x±1
n ].
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[
1√
2
∂i,

1√
2
xi](f) =

1

2
xi∂i(f) +

1

2
∂ixi(f) =

1

2
xi∂i(f) +

1

2
(xi∂i(f) +

1

2
(f)] = (xi∂i +

1

2
)(f)

Subcase 6: x = Xδi , y = X−δj , i 6= j.

φ([Xδi , X−δj ]) = φ(Xδi−δj ) = xi∂j

[φ(Xδi), φ(X−δj)] = [
1√
2
xi,

1√
2
∂j ] = xi∂j

Case 2: (odd,even)

Subcase 1: x = X2δi , y = X−δj , i = j.

φ([X2δi , X−δi]) = φ(−Xδi) = − 1√
2
xi

[φ(X2δi), φ(X−δi)] = [
1

2
x2
i ,

1√
2
∂i] = − 1√

2
xi

Subcase 2: x = Xδi−δi+1
, y = X−δi.

φ([Xδi−δi+1
, X−δi]) = φ(−X−δi+1

) =
1√
2
∂i+1

[φ(Xδi−δi+1
), φ(X−δi)] = [xi∂i+1,

1√
2
∂i] =

1√
2
∂i+1

Subcase 3: x = Xδi−δi+1
, y = Xδi+1

.

φ([Xδi−δi+1
, Xδi+1

]) = φ(Xδi) =
1√
2
xi

[φ(Xδi−δi+1
), φ(Xδi+1

)] = [xi∂i+1,
1√
2
xi+1] =

1√
2
xi

Subcase 4: x = X−2δi , y = Xδj , i = j.

φ([X−2δi , Xδi]) = φ(−Xδi) = − 1√
2
xi

[φ(X−2δi), φ(Xδi)] = [
1

2
x2
i ,

1√
2
∂i] = − 1√

2
xi
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Subcase 5: x = X−δi−δi+1
, y = Xδi.

φ([X−δi−δi+1
, Xδi]) = φ(−X−δi+1

) = − 1√
2
∂i+1

[φ(X−δi−δi+1
), φ(Xδi)] = [−∂i∂i+1,

1√
2
xi] = − 1√

2
∂i+1

Subcase 6: x = X−δi−δi+1
, y = Xδi+1

.

φ([X−δi−δi+1
, Xδi+1

]) = φ(−X−δi) = − 1√
2
∂i

[φ(X−δi−δi+1
), φ(Xδi+1

)] = [−∂i∂i+1,
1√
2
xi+1] = − 1√

2
∂i

Subcase 7: x = Xδi+δi+1
, y = X−δi.

φ([Xδi+δi+1
, X−δi]) = φ(−Xδi+1

) = − 1√
2
xi+1

[φ(Xδi+δi+1
), φ(X−δi] = [xixi+1,

1√
2
∂i] = − 1√

2
xi+1

Subcase 8: x = Xδi+δi+1
, y = X−δi+1

.

φ([Xδi+δi+1
, X−δi+1

]) = φ(−Xδi) = − 1√
2
xi

[φ(Xδi+δi+1
), φ(X−δi+1

] = [xixi+1,
1√
2
∂i+1] = − 1√

2
xi

Subcase 9: x = Xδi+1−δi , y = Xδi.

φ([Xδi+1−δi , Xδi]) = φ(Xδi+1
) =

1√
2
xi+1

[φ(Xδi+1−δi), φ(Xδi)] = [xi+1∂i,
1√
2
xi] =

1√
2
xi+1

Subcase 10: x = Xδi+1−δi, y = X−δi+1
.

φ([Xδi+1−δi , X−δi+1
]) = φ(−X−δi) = − 1√

2
∂i

[φ(Xδi+1−δi), φ(X−δi+1
)] = [xi+1∂i,

1√
2
∂i+1] = − 1√

2
∂i
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Case 3: (even,even)

Subcase 1: [X2δi , Xδi+1−δi ].

φ([X2δi , Xδi+1−δi ]) = φ(−Xδi+δi+1
) = −xixi+1

[φ(X2δi), φ(Xδi+1−δi)] = [−1

2
x2
i , xi+1∂i] = −xixi+1

Subcase 2: [X2δi+1
, Xδi+1−δi ].

φ([X2δi+1
, Xδi+1−δi ]) = φ(−Xδi+δi+1

) = −xixi+1

[φ(X2δi+1
), φ(Xδi+1−δi)] = [−1

2
x2
i+1, xi∂i+1] = −xixi+1

Subcase 3: [X2δi , X−2δi].

φ([X2δi, X−2δi ]) = φ(h2δi) = xi∂i +
1

2

[φ(X2δi), φ(X−2δi)] = [
1

2
x2
i ,−

1

2
∂2
i ] = xi∂i +

1

2

Subcase 4: [Xδi+1−δi , X−2δi+1
].

φ([Xδi+1−δi, X−2δi ]) = φ(−Xδi−δi+1
) = ∂i∂i+1

[φ(Xδi+1−δi), φ(X−2δi+1
)] = [xi+1∂i,−

1

2
∂2
i+1] = ∂i∂i+1

Subcase 5: [Xδi+1−δi , Xδi−δi+1
].

φ([Xδi+1−δi, Xδi−δi+1
]) = φ(−hδi−δi+1

) = −xi∂i + xi+1∂i+1

[φ(Xδi+1−δi), φ(Xδi−δi+1
)] = [xi+1∂i, xi∂i+1] = −xi∂i + xi+1∂i+1

Subcase 6: [X−2δi , Xδi−δi+1
].

φ([X−2δi), Xδi−δi+1
]) = φ(−Xδi−δi+1

) = −xi∂i+1

[φ(X−2δi), φ(Xδi−δi+1
)] = [−1

2
∂2
i , xi∂i+1] = −xi∂i+1

�
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6.2 The osp(1|2)-module M = C[x±1]

In this sectionM=C[x±1] will be the ring of Laurent polynomials of one variable

over C. Then M = M0 ⊕M1 where M0 =span{x2i | i ∈ Z} and M1=span{x2i+1 | i ∈

Z}. This defines a Z2-graded vector space structure on M . We define an osp(1|2)-

module structure on M using the homomorphism φ defined in Proposition 6.1.1. We

set for convenience x = x1 and ∂ = ∂1.

Example 6.2.2 h2δ1(x
j) = (x∂ + 1

2
)xj = (j + 1

2
)xj, X2δ1(x

0) = 1
2
x2, X−2δ1(x

2) =

(−1
2
∂2)x2 = −x0 = −1

Remark 6.2.3 M will be considered as a module of osp(1|2)0 ∼= sl(2) in a natural

way. M0 is also an sl(2)-module. Based on Remark 2.2.11 we will identify e with

X2δ1, f with X−2δ1, and h with h2δ1 .

Our main theorem in the section is the following.

Theorem 6.2.4 Let M be defined as above, and define M+ and M− as follows:

M+ :=spanC{xi|i ≥ 0} and M−:= M/M+=spanC{xi +M+|i < 0}.

Then we have:

(i) M+ (and, hence, M−) is an osp(1|2)-submodule of M ;

(ii) M+ and M− are simple osp(1|2)-modules;

(iii) The sequence 0 −→ M+ −→ M −→ M− −→ 0 is a non-split exact sequence of

osp(1|2)-modules. In particular, M is indecomposable.

Proof.

(i) Clearly M+ is a subspace M . It suffices then to show that M+ is closed under

the action of osp(1|2). In fact, we need only to verify closure for a generating

set of elements of osp(1|2) acting on a basis element of M+, cf. Corollary 3.2.12.

We use the basis and representation information from 6.1.1 above and note that

Xδ1 and X−δ1 generate the other three basis elements. Let xi, i ≥ 0, be a basis

39



element of M+. Then Xδ1(x
i) = ( 1√

2
x)(xi) = 1√

2
xi+1 ∈ M+. On the other hand,

X−δ1(x
i) = ( 1√

2
∂)(xi) = 1√

2
xi−1. If i ≥ 1, then 1√

2
xi−1 ∈ M+. If i = 0, then we

have ( 1√
2
∂)(x0) = 0 ∈ M+.

(ii) First, we will establish that M+ is simple. Suppose that K is a non-trivial

submodule of M+. It then suffices to show that K = M+. Let w ∈ K, with

w 6= 0, then w =
∑n

i=0 aix
i with an 6= 0. Define u ∈ U(osp(1|2)) as follows:

u :=
(
√
2X

−δ1
)
n

n!an
. Since X−δ1 acts as 1√

2
∂, we have u(w) = n!anx0

n!an
= x0. Hence

x0 ∈ K. Now let v ∈ M+ with v 6= 0. Let v =
∑m

i=0 bix
i and bm 6= 0. Then

u1(x
0) = v for u1 =

∑m

i=0 bi(
√
2Xδ1)

i. Therefore, v ∈ K, hence, K = M+.

Thus, M+ is simple (by Lemma 4.3.9). Now for the assertion that M− is

simple. Let K be a non-trivial submodule of M−. Let w ∈ K, w /∈ M+,

w :=
∑0

i=n aix
i + M+ with an 6= 0 and n < 0. Define u ∈ U(osp(1|2)) as

follows: u :=
(
√
2Xδ1

)
−n−1

an
. Then u(w) = x−1 + M+. Hence, x−1 ∈ K. Now

let v ∈ M−, v /∈ M+. Let v =
∑−1

i=m bix
i + M+ and bm 6= 0, m < 0. Then

u1(x
−1) = v + M+ for u1 =

∑−1
i=m bi

(
√
2X

−δ1
)−i−1

(−1)i+1(−i−1)!
. Hence, v ∈ K and thus

K = M− which implies M− is simple.

(iii) Since M+ is a submodule ofM , it is a standard fact that the inclusion map ι and

canonical projection π make the sequence 0−→M+ ι−→ M
π−→ M/M+ −→ 0

exact. Suppose the sequence does split. By definition, this implies that M ∼=

M+
⊕

M/M+. This implies that M has a non-trivial submodule N isomorphic

toM/M+. Let φ : M/M+ → N be the corresponding isomorphism and let m0 =

φ(x−1 + M+). Then Xδ1m0 = Xδ1φ(x
−1 + M+) = φ(Xδ1x

−1 + M+) = φ(x0 +

M+) = 0. But Xδ1 is injective on M which implies that m0 = 0 contradicting

that φ is an isomorphism. Hence, the sequence does not split and, in particular,

M is indecomposable. �
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Proposition 6.2.5 The even and the odd parts parts M+
0
,M+

1
and M−

0
,M−

1
of M+,

and M−, respectively, satisfy the identities: M+
j

= span{x2i+j |i ≥ 0, i ∈ Z} and

M−
j
= Mj/M

+
j
. Furthermore:

(i) M+
j
, and hence, M−

j
, is an sl(2)-submodule of Mj.

(ii) M+
j

and M−
j
, j = 0, 1, are simple sl(2)-modules.

(iii) The sequences 0 −→ M+
j

−→ Mj −→ Mj/M
+
j

−→ 0, j = 0, 1, are non-split

exact sequences of sl(2)-modules. In particular, Mj, j = 0, 1, are indecomposable

sl(2)-modules.

Proof.

(i) We prove this item for j = 0. The proof in the case j = 1 is similar.Clearly

M+
0

is a subspace M0. It suffices then to show that M+
0

is closed under the

action of sl(2). As above, we need only to verify closure for a generating set

of sl(2) acting on a basis element of M+
0
, cf. Corollary 3.2.12. We use the

generating set {e, f} of sl(2) as described in 2.2.11, cf. Remark 6.2.3. Let x2i,

i ≥ 0, be a basis element of M+
0
. Then e(x2i) = 1

2
x2i+2 ∈ M+

0
. Similarly,

f(x2i) = −i(2i− 1)x2i−2 ∈ M+
0

if i > 0. If i = 0 then f(x0) = 0 ∈ M+
0
.

(ii) We now prove thatM+
0
is simple. Using Lemma 4.3.9, let u = x0 ∈ M+

0
. Let w ∈

M+
0
, with w 6= 0, then w =

∑n

i=0 a2ix
2i with a2n 6= 0. Define X ∈ U(sl(2)) by

X =
∑m

i=0 a2i(2X2δ1)
i. Then w = X(u). Now let v ∈ M+

0
, with v =

∑m
i=0 b2ix

2i,

b2m 6= 0. Define Y ∈ U(sl(2)) by Y =
(−2X

−2δ1
)m

(2m)!b2m
. Then, u = Y (v). Therefore,

M+
0

is simple.

For M+
1
, let u = x ∈ M+

1
, w =

∑n

i=0 a2i+1x
2i+1, with a2n+1 6= 0 and v =

∑m

i=0 b2i+1x
2i+1, with b2m+1 6= 0. Define X =

∑m

i=0 a2i+1(2X2δ1)
i and Y =

(−2X
−2δ1

)m

(2m+1)!b2m+1
and we have that w = X(u) and u = Y (v) and thus M+

1
is simple.

For M−
0
, let u = x−2 +M+

0
∈ M−

0
. In this case, w =

∑−1
i=−n a−2ix

2i +M+
0

and

v =
∑−1

i=−m b−2ix
2i + M+

0
, with b2m 6= 0. Let X =

∑n
i=1 a2i

(−2X
−2δ1

)i−1

(2i−1)!
, then
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w = X(u). Let Y =
(2X2δ1

)m−1

b2m
. Then, u = Y (v). Therefore, M−

0
is simple. For

M−
1
, let u = x−1 +M+

1
∈ M−

1
. In this case, w =

∑−1
i=−n a−2i−1x

2i+1 +M+
1

and

v =
∑−1

i=−m b−2i−1x
2i+1 +M+

1
, with b2m−1 6= 0. Let X =

∑n

i=1 a2i−1
(−2X

−2δ1
)i−1

(2i−2)!
,

then w = X(u). Let Y =
(2X2δ1

)m−1

b2m−1
. Then, u = Y (v). Therefore, M−

1
is simple.

(iii) Let first j = 0. Since M+
0

is a submodule of M0, we have that

0 −→ M+
0
−→ M0 −→ M0/M

+
0
−→ 0

is an exact sequence. Suppose the sequence does split. By definition, this implies

that M0
∼= M+

0

⊕
M0/M

+
0
. This implies that M0 has a non-trivial submodule N

isomorphic to M0/M
+
0
. Let φ : M0/M

+
0
→ N be the corresponding isomorphism

and let m0 = φ(x−2 +M+
0
). Then,

X2δ1(m0) = X2δ1(φ(x
−2 +M+

0
))

= φ(X2δ1(x
−2 +M+

0
))

= φ(0 +M+
0
)

= 0.

But X2δ1 is injective on M which implies that m0 = 0 contradicting that φ is

an isomorphism. Hence, the sequence does not split and, in particular, M0 is

indecomposable.

For j = 1 we apply the same reasoning as in the case j = 0 to prove that

0 −→ M+
1
−→ M1 −→ M1/M

+
1
−→ 0

is a nonsplit exact sequence. �
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6.3 Shifted Laurent Polynomials of One Variable

We now turn attention to the ring of shifted Laurent polynomials. For a ∈ C

we define

F(a) := xa
C[x±1] = span{xa+k|k ∈ Z}.

Define F(a)0̄ := span{xa+2i | i ∈ Z}, and F(a)1̄ := span{xa+2i+1 | i ∈ Z}. We

observe that F(a) = F(a)0̄ ⊕ F(a)1̄ is a Z2-graded vector space and that if a ∈ Z,

then F(a) = F(0) = C[x±1].

Lemma 6.3.6 Let a, b ∈ C. Then the following hold.

(i) F(a) is an osp(1|2)-module.

(ii) F(a) = F(b) if and only if a− b ∈ Z.

Proof.

(i) Following the approach of Theorem 6.2.4 above we show that F(a) is closed

under the action of osp(1|2). We may assume that a /∈ Z since the case of

an integer a is considered in Theorem 6.2.4. Consider now a basis vector xi+a

in F(a). Then Xδ1(x
i+a) = ( 1√

2
x)(xa+i+j) = 1√

2
xa+i+j+1 and X−δ1(x

a+i) =

( 1√
2
∂)(xa+i) = 1√

2
xa+i−1 are in F(a). If i ≥ 1, then 1√

2
xa+i−1 ∈ F(a).

(ii) Suppose F(a) = F(b), a, b ∈ C. Let p ∈ F(a) then p =
∑n

i=m αix
i+a,with

i,m, n ∈ Z. Since p ∈ F(b) as well, p can also be written as p =
∑s

k=r αkx
k+b.

Comparing the two expressions of p term-by-term, we have that for every i, there

is k such that xa+i = xb+k. Hence a+i−b−k = 0 and thus a−b = k−i ∈ Z. Now

suppose a − b ∈ Z. Let p ∈ F(a) with p =
∑n

i=m αix
i+a =

∑n

i=m αix
i+b−b+a.

Since a − b ∈ Z, we can let k = i + a − b and re-index p as follows: p =

∑n
k=m αkx

k+b. Thus, we have p ∈ F(b) which implies that F(a) ⊂ F(b). An

analogous argument shows that F(b) ⊂ F(a) and thus F(a) = F(b). �
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For b ∈ C, set F(b) = span{xb+2i | i ∈ Z}. Note that F(a)0̄ = F(a) and

F(a)1̄ = F(a+ 1).

Theorem 6.3.7 If a /∈ Z then the following hold:

(i) F(a) is a simple osp(1|2)-module.

(ii) F(a) and F(a + 1) are simple sl(2)-modules.

(iii) As an sl(2)-module, F(a) ∼= F(a)⊕ F(a+ 1).

Proof.

(i) F(a) is an osp(1|2)-module as in Lemma 6.3.6. Let a ∈ C. Suppose that K is

a non-trivial submodule of F(a). It then suffices to show that K = F(a).

Let w ∈ K, with w 6= 0. Want to show that w ∈ F(a). Let w =
∑n

i=1 aix
ti+a

with ai 6= 0 and the ti’s are distinct integers. Since x
ti+a are in the (ti+a+1/2)-

weight space of F(a) (see Remark 5.4.18), by Lemma 5.1.8, xti+a ∈ K. Now

using consecutive applications of Xδ1 and X−δ1 on xti+a we can obtain xt+a ∈ K

for every integer t. Hence, K = F(a) by Lemma 4.3.9.

(ii) Let p ∈ F(a), p =
∑n

i=1 αix
a+2ti . Recall 〈e, f〉 = sl(2) and e = X2δ1 , f = X−2δ1 .

Then e(p) =
∑n

i=1
αi

2
xa+2ti+2 ∈ F(a). Similarly for f(p). Therefore, F(a) is an

sl(2)-module. To show that F(a) is simple, we take a nontrivial sl(2)-submodule

L of F(a) and ℓ ∈ L with ℓ 6= 0. Then by consecutive applications of X−2δ1

we conclude that xa ∈ L. Now using consecutive applications of X2δ1 on xa we

obtain that xt+a ∈ L for every t ∈ Z. Hence, L = F(a) by Lemma 4.3.9. By

analogous argument, F(a+ 1) is also simple.

(iii) Let p ∈ F(a), p =
∑n

i=m αix
a+2i, i ∈ Z. We choose m,n ∈ 2Z by letting the cor-

responding αm, αn = 0 if necessary. Then let r = m/2 and s = n/2 and rewrite

p as follows: p =
∑s

j=r α2jx
a+2j +

∑r
j=r α2j+1x

a+2j+1 = p1 + p2 where p1 ∈
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F(a) and p2 ∈ F(a+1). Let p ∈ F(a)∩F(a+1). Comparing coefficients term by

term, it is clear the p is the zero polynomial. Therefore, F(a) ∼= F(a)
⊕

F(a+1).

�

6.4 The osp(1|2n)-module of Shifted Laurent Polynomials of n Variables

We now turn to considering shifted Laurent polynomials as osp(1|2n)-modules.

Since the polynomials will now have multiple variables and exponents, we will exten-

sively use the following multi-index notation: for x = (x1, ..., xn) and a = (a1, ..., an)

we write xa = xa1
1 ...xan

n . Also, we write C[x] and C[x±1] for C[x1, ..., xn] and C[x±1
1 , ..., x±1

n ],

respectively.

Definition 6.4.8 Let a = (a1, ..., an) ∈ Cn. We define the following:

(i) F(a) := xaC[x±1].

(ii) F(a)0̄ := span{xa+i | i ∈ Zn, i1 + ...+ in is even}.

(iii) F(a)1̄ := span{xa+i | i ∈ Zn, i1 + ...+ in is odd}.

(iv) F(0)+ := C[x1, x2, ..., xn].

We note that the monomials xi+a, i ∈ Zn, form a basis of F(a) and that F(a) =

F(a)0̄ ⊕ F(a)1̄ is a Z2-graded vector space.

Lemma 6.4.9 Let a,b ∈ C
n.

(i) F(a) is an osp(1|2n)-module.

(ii) F(a) = F(b) if and only if ai − bi ∈ Z for every i (equivalently, a− b ∈ Zn).

(iii) The monomials xti+a are weight vectors of F(a) of weight (ti + a)+(1/2, ..., 1/2).

(iv) As an sp(2n)-module, F(a) = F(a)0̄ ⊕ F(a)1̄ = F(a)⊕ F(a+ δ1).

Proof.

(i) We already saw that F(a) is a Z2-graded vector space. Following the approach

of Theorem 6.2.4 above we show that F(a) is closed under the action of the
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generators Xδk and X−δk , 1 ≤ k ≤ n, of osp(1|2n). Consider now a basis vector

xi+a in F(a). Here i = (i1, ..., in) ∈ Z
n.

Then

Xδk(x
i+a) = (

1√
2
xk)(x

i+a) =
1√
2
xa1
1 ...xk

ak+ik+1...xan
n ∈ F(a)

and

X−δk(x
i+a) = (

1√
2
∂k)(x

i+a) =
1√
2
(xi + ai)x

a1
1 ...xk

ak+ik−1...xan
n ∈ F(a)

are in F(a). Note that, alternatively, we can show that F(a) is an osp(1|2n)-

module by proving that it is an Wn-module.

(ii) Suppose F(a) = F(b),with a,b ∈ Cn. Let p ∈ F(a) then p =
∑m

r=0 αrx
ir+a,where

ir ∈ Zn, r ∈ Z. Since p ∈ F(b) as well, p can also be written as p =

∑s
ℓ=0 αℓx

kℓ+b where kℓ ∈ Zn, ℓ ∈ Z. Comparing the two expressions of p term-

by-term, we have that for every ir, there is kℓ such that xa+ir = xb+kℓ . Hence

a + ir − b− kℓ = 0 and thus a− b = kℓ − ir ∈ Zn. The converse follows from

an argument analogous to Lemma 6.3.6.

(iii) Note that h2δk(x
i+a) = (xk∂k+

1

2
)(xi+a) = (ik+ak+

1

2
)xi+a. See Remark 5.4.18.

(iv) Let p ∈ F(a), p =
∑n

i=m αix
a+2ti, i ∈ Z. We choosem,n ∈ 2Z by letting the cor-

responding αm, αn = 0 if necessary. Then let r = m/2 and s = n/2 and rewrite

p as follows: p =
∑s

j=r α2jx
a+2j +

∑r

j=r α2j+1x
a+2j+1 = p1 + p2 where p1 ∈

F(a)0̄ and p2 ∈ F(a)1̄. Let p ∈ F(a)0̄ ∩ F(a)1̄. Comparing coefficients term by

term, it is clear the p is the zero polynomial. Therefore, F ∼= F(a)0̄
⊕

F(a)1̄.

�

For a ∈ Cn, we set F(a) = span{xa+i | i ∈ Zn, i1 + ... + in is even}. Note that

F(a)0̄ = F(a) and F(a)1̄ = F(a+ δ1) (recall that δ1 = (1, 0, ..., 0)).
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Lemma 6.4.10 Let a ∈ Cn with ai /∈ Z, and let i ∈ Zn.

(i) There exists X ∈ U(osp(1|2n)) such that xa+i = X(xa) in F(a).

(ii) There exists Y ∈ U(osp(1|2n)) such that xa = Y (xa+i) in F(a).

Proof. Recall that the action of osp(1|2n) on F(a) is defined through the correspon-

dences Xδj 7−→ 1√
2
xj , X−δj 7−→ 1√

2
∂j .

(i) We let X = X1X2...Xn where Xj is given as follows, for j = 1, 2, ..., n:

Case 1: ij > 0. Xj = (
√
2Xδi)

ij .

Case 2: ij = 0. Xj = 1.

Case 3: ij < 0. Xj =
(
√
2X

−δi
)−ij

(aj)(aj−1)...(aj+ij+1)
.

(ii) We let Y = Y1Y2..Yn where Yj is given as follows, for j = 1, 2, ..., n:

Case 1: ij > 0. Yj =
(
√
2X

−δi
)ij

(aj+ij)(aj+ij−1)...(aj+1)
.

Case 2: ij = 0. Yj = 1.

Case 3: ij < 0. Yj = (
√
2Xδi)

−ij .

�

We now generalize Theorem 6.3.7 to the osp(1|2n) case. Recall osp(1|2n)0̄ ≃

sp(2n). We previously have taken advantage of the fact that sp(2) ∼= sl(2).

Theorem 6.4.11 If a ∈ Cn with ai /∈ Z for all i. Then

(i) F(a) is a simple osp(1|2n)-module,

(ii) F(a)0̄ and F(a)1̄ are simple sp(2n)-modules.

Proof.

(i) F(a) is an osp(1|2n)-module as in Lemma 6.4.9. Let a ∈ Cn. Suppose that K

is a non-trivial submodule of F(a). It then suffices to show that K = F(a).

Let w ∈ K, with w 6= 0. Want to show that w ∈ F(a). Let w =
∑n

i=1 aix
ti+a

with ai 6= 0 and the ti’s are distinct multi-indices. Since xti+a are weight vectors

of F(a) of weight (ti + a) + (1/2, ..., 1/2) (by Lemma 6.4.9), we have xti+a ∈ K

by Lemma 5.1.8. Now using consecutive applications of Xδi and X−δi on xti+a
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and that ai /∈ Z, we can obtain xt+a ∈ K for every multiindex t as in Lemma

6.4.10. Since xt+a span F(a), we have K = F(a).

(ii) Let p ∈ F(a)0̄, p =
∑n

i=1 αix
a+ti, where ti = (ti1, ..., tin) is in Zn are such that

ti1 + ... + tin is even. Then X2δi(p) =
∑n

i=1
αi

2
xa+ti+2δi ∈ F(a). Similarly for

X−2δi(p). Therefore, F(a)0̄ is an sp(2n)-module. To show that F(a)0̄ is simple,

we take a nontrivial sp(2n)-submodule L of F(a)0̄ and ℓ ∈ L with ℓ 6= 0. Then,

as in Lemma 6.4.10, applying consecutive applications of X2δi and X2δi to ℓ, we

have that xa+t ∈ L for all t such that t1 + · · · tn is even. Hence L = F(a)0̄. By

analogous argument, F(a)1̄ is also simple.

�

Definition 6.4.12 A g-module M is a weight module, respectively torsion free mod-

ule if it is a weight module, respectively torsion free module, as a g0̄-module.

Remark 6.4.13 If M is a torsion free module it is easy to check that Xα acts injec-

tively on M for all roots α (not only for the even ones). Indeed, this follows from the

identities X±2δi = X2
±δi

.

Remark 6.4.14 For a more general definition of a torsion free module the reader is

referred to [6].

Theorem 6.4.15 Let ai /∈ Z for every i. Then F(a) is a simple torsion free osp(1|2n)-

module. Moreover, F(a) is a pointed weight module.

Proof. The nonzero weight spaces of F(a) are those of weights t+ a+(1/2, ..., 1/2),

t ∈ Zn (see Lemma 6.4.9). Moreover the weight space of F(a) of weight t+ a +

(1/2, ..., 1/2) is spanned by xt+a. In particular, F(a) is a weight module and since

xt+a is a weight vector, F(a) is pointed.

It remains to show that F(a) is torsion free. It is enough to check that all root

elements Xα are injective on the weight spaces of F(a). However , every weight space
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is one dimensional and spanned by an element xi+a for some i ∈ Zn. We will denote

by δk the kth standard basis vector of Rn. Then we have the following:

Xδk−δj (x
i+a) = (ij + aj)x

i+a+δk−δj

X2δk(x
i+a) =

1

2
xi+a+2δk

X−2δk(x
i+a) =

−1

2
(ik + ak)(ik + ak − 1)xi+a−2δk

Xδk+δj (x
i+a) = xi+a+δk+δj

X−δk−δj (x
i+a) = −(ij + aj)(ik + ak)x

i+a−δk−δj .

Since none of the i + a are integers, it follows that Xα is injective for each α. There-

fore, F(a) is torsion free. �
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CHAPTER 7

Simple Weight osp(1|2n)-modules

By identifying constraints on primitive vectors in osp(1|2n)-modules, we are able

to establish necessary and sufficient conditions for osp(1|2n)-weights to be bounded.

Using these conditions we complete the classification of simple weight osp(1|2n)-

modules.

7.1 Primitive Vectors of Tensor Products of osp(1|2n)-modules

Recall the definition of M = F(0) and M+ = F(0)+ (Definition 6.4.8). We

begin by considering the tensor products of M+ with C1|2n. Recall that the action of

the osp(1|2n) on M+ ⊗ V is given by Xα(f ⊗ v) = Xα(f)⊗ v + (−1)|Xα||f |f ⊗Xα(v)

with f ∈ M+ and v ∈ C
1|2n, see (5.8.27).

Theorem 7.1.1 Let W = M+ ⊗V with V = C1|2n. Then any primitive vector in W

is a linear combination of w1 and w2 defined as follows:

w1 := 1⊗ v2n, w2 := 1⊗ v0 +
√
2

n∑

i=1

xi ⊗ vn+i.

Proof. Recall thatM+ is a highest weight module with highest weight λ = (1
2
, 1
2
, ..., 1

2
).

The module V has 2n+1 weights: wt (V ) = {δ1, δ2, ..., δn, 0,−δ1,−δ2, ...,−δn} as fol-

lows:

wt(vi) =





0 if i = 0

δi for i = 1 to n

−δi for i = n+ 1 to 2n.
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To prove vector w in W is primitive, it will suffice to show that Xδi−δi+1
(w) =

X−δi(w) = 0 for i = 1, 2, ..., n because of the specific Borel subalgebra chosen. First,

we show that 1⊗ vj is primitive if and only if j = 2n. X−δi(1⊗ vj) = 0 unless j = 0

or j = i, that is, X−δi(1 ⊗ vj) = 0 for j = n + 1 to 2n. Xδi−δi+1
(1 ⊗ vj) = 0 unless

j = 0 or j = n + i. It follows that X−δi(1⊗ vj) = Xδi−δi+1
(1⊗ vj) = 0 for i = 1 to n

if and only if j = 2n.

Let w2 = 1⊗ v0 +
√
2
∑n

i=1 xi ⊗ vn+i. We consider the action of X−δj on w2 for

j = 1, 2, ..., n:

X−δj (w2) = 1⊗ (−vn+j)− 2

n∑

i=1

(X−δj(
1√
2
xi)⊗ (−vn+i) +

1√
2
xi ⊗X−δj (−vn+j))

= 1⊗ (−vn+j)− 2(

n∑

i=1

1

2
⊗ (−vn+j) + 0)

= 1⊗ (−vn+j) + 1⊗ (vn+j)

= 0

Similarly, Xδj−δj+1
(w2) = 0, for j = 1, 2, ..., n− 1. Therefore, w2 is primitive.

Assume now that

w =
n∑

i=1

aix
µ1

1 ...xµi−1
i ..xµn

n ⊗ vi +
n∑

i=1

bix
µ1

1 ...xµi+1
i ..xµn

n ⊗ vn+i + a0x
µ1

1 ...xµi

i ..xµn

n ⊗ v0

is primitive. We then derive the following sets of equations. First, from the constraint

that X−δi(w) = 0 for i = 1, 2, ..., n:

a0
1√
2
µi − ai = 0 for i = 1, 2, ..., n (7.1.2)

bi
1√
2
µi − a0 = 0 for i = 1, 2, ..., n (7.1.3)

akµi = 0 for k = 1, 2, ..., n (7.1.4)

bkµi = 0 for k = 1, 2, ..., n, k 6= i. (7.1.5)
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Then, from the constraint that Xδi−δi+1
(w) = 0 for i = 1, 2, ..., n− 1:

aiµi+1 + ai+1 = 0 for i = 1, 2, ..., n (7.1.6)

bi+1µi − bi = 0 for i = 1, 2, ..., n

akµi = 0 for k = 1, 2, ..., n, k 6= i

bkµi+1 = 0 for k = 1, 2, ..., n, k 6= i+ 1.

These equations yield three cases for µ as follows.

Case 1: µ = δi. In this case, 7.1.4 implies a1 = a2 = ... = an = 0 except for i = n

and 7.1.6 implies ai + ai+1 = 0; therefore, ai = 0. This fact and 7.1.2 yield a0 = 0

and then 7.1.3 gives bi = 0 for all i. We thus have no primitive vectors in this case.

Case 2: µ = 0. In this case, 7.1.2 yields a1 = a2 = ... = an = 0 and 7.1.3 gives

bi =
√
2a0. Choose a0 = 1 and then bi =

√
2; this is vector w2 above, which we have

already shown to be primitive.

Case 3: µ = −δi. The only vectors in W with weight λ − δi are scalar multiples of

1 ⊗ vi, see Lemma 5.8.28. We have already shown that the only vector of this form

that is primitive is 1⊗ v2n. �

Our next goal is to find explicitly a primitive vector of the osp(1|2n)-module

L(
1

2
, ...,

1

2
)⊗ L(−β, ...,−β),

with β ∈ Z>0.

Lemma 7.1.7 Let v be a highest weight vector of the osp(1|2n)-representation:

L(−β,−β, ...,−β), β, j ∈ Z>0.

Then the following hold.

(i) [h2δ1 , X
j
δ1
] = jXj

δ1
for j > 0.

(ii) X−δ1X
j
δ1
(v) = j

2
Xj−1

δ1
(v) if j is even.

X−δ1X
j
δ1
(v) = ( j−1

2
− β)Xj−1

δ1
(v) if j is odd.
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(iii) Xδk−δk+1
Xj

δ1
(v) = 0 for k = 1, 2, ..., n− 1.

Proof.

(i) For j = 1, [h2δ1 , Xδ1 ] = Xδ1 by direct computation. If j > 1, then we use the

super Jacobi identity as follows:

[h2δ1 , [X
j−1
δ1

, Xδ1 ]] = [h2δ1 , X
j−1
δ1

], Xδ1 ] + [Xj−1
δ1

, [h2δ1 , Xδ1 ]]

The left hand side is 2[h2δ1 , X
j
δ1
]. On the right hand side, the induction hypoth-

esis gives us: (j − 1)Xj−1
δ1

+ 2Xj
δ1
. Divide both sides by 2 and we have:

[h2δ1 , X
j
δ1
] = jXj

δ1

as required.

(ii) Case 1: j = 1. We have [X−δ1 , Xδ1](v) = X−δ1Xδ1(v) +Xδ1X−δ1(v). The left-

hand side is h2δ1(v) see (5.4.15). From the fact that v is highest weight, the

second term on the right hand side is 0; therefore we have:

X−δ1Xδ1(v) = −β(v).

Case 2: j = 2. We have [X−δ1 , X
2
δ1
](v) = X−δ1X

2
δ1
(v) − X2

δ1
X−δ1(v). From

(5.4.16), the left-hand side is [X−δ1 , X2δ1 ](v) = Xδ1(v). From the fact that v is

highest weight, the second term on the right hand side is 0; therefore we have:

X−δ1X
2
δ1
(v) = Xδ1(v)

Case 3: j > 2. Finally,

X−δ1X
j
δ1
= (−Xδ1X−δ1 + h2δ1)X

j−1
δ1

= −Xδ1X−δ1X
j−1
δ1

+Xj+1
δ1

h2δ1 + [h2δ1 , X
j−1
δ1

]
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If j is even, then j − 1 is odd, we use the induction hypothesis and apply to v:

X−δ1X
j
δ1
(v) = −Xδ1

(
j − 2

2
− β

)
Xj−2

δ1
(v) +Xj−1

δ1
h2δ1(v) + (j − 1)Xj−1

δ1
(v)

=

(
β − j − 2

2

)
Xj−1

δ1
(v) +Xj−1

δ1
h2δ1(v) + (j − 1)Xj−1

δ1
(v)

=

(
β − j − 2

2

)
Xj−1

δ1
(v)− βXj−1

δ1
(v) + (j − 1)Xj−1

δ1
(v)

Thus: Xj
−δ1

Xδ1(v) =
j

2
Xj−1

δ1
(v). If j is odd, j−1 is even, the induction hypothesis

yields and apply to v:

X−δ1X
j
δ1
(v) = −Xδ1

(
j − 2

2

)
Xj−1

δ1
(v) +Xj−1

δ1
h2δ1(v) + (j − 1)Xj−1

δ1
(v)

= −
(
j − 2

2

)
Xj−1

δ1
(v) +Xj−1

δ1
h2δ1(v) + (j − 1)Xj−1

δ1
(v)

= −
(
j − 2

2

)
Xj−1

δ1
(v)− βXj−1

δ1
(v) + (j − 1)Xj−1

δ1
(v).

Thus:

Xj
−δ1

Xδ1(v) =

(
j − 1

2
− β

)
Xj−1

δ1
(v).

(iii) Consider

[Xδk−δk+1
, Xδ1 ](v) = Xδk−δk+1

Xδ1(v) +Xδ1Xδk−δk+1
(v).

The final term is 0, and also by (5.4.17) the Lie superbracket is 0, thus we have

Xδk−δk+1
Xδ1(v) = 0. Now for j > 1,

Xδk−δk+1
Xj

δ1
= (Xδ1Xδk−δk+1

+ [Xδk−δk+1
, Xδ1 ])X

j−1
δ1

= Xδk−δk+1
Xj

δ1
(v)

= Xδ1Xδk−δk+1
Xj−1

δ1
(v) + [Xδk−δk+1

, Xδ1 ]X
j−1
δ1

(v).
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By the induction hypothesis, Xδ1Xδk−δk+1
Xj−1

δ1
(v) = 0 and [Xδk−δk+1

, Xδ1] = 0.

Therefore

Xδk−δk+1
Xj

δ1
(v) = 0.

�

The next theorem plays an important role in this thesis, as it will lead to the

classification of the osp(1|2n)-bounded weights.

Theorem 7.1.8 Let β ∈ Z>0 and v be a highest weight vector of L(−β,−β, ...,−β).

Then the vector

u = x2β
1 ⊗ v +

2β∑

k=1

c2β−kx
2β−k
1 ⊗Xk

δ1
(v)

is a primitive vector of U = L(1
2
, 1
2
, ..., 1

2
) ⊗ L(−β,−β, ...,−β), where the scalars ci

are defined as follows:

c2β = 1

c2β−2j =
(2β − 1)(2β − 3)...(2β − (2j − 1))

j!
, j > 0

c2β−(2j+1) = −
√
2c2β−2j , j ≥ 0

Proof. First let β = 1. Then

u = x1
2 ⊗ v + c1x1 ⊗Xδ1(v) + c01⊗X2

δ1
(v).

It suffices to show that X−δ1(u) = Xδ1−δ2(u) = 0.

X−δ1(u) =
√
2x1 ⊗ v +

c1√
2
⊗Xδ1(v)− c1x1 ⊗X−δ1Xδ1(v) + c01⊗X−δ1X

2
δ1
(v).

Applying Lemma 7.1.7 we have:

X−δ1(u) =
√
2x1 ⊗ v + c1x1 ⊗ v + c1

√
2⊗Xδ1(v) + c01⊗Xδ1(v).

Since c2 = 1, c1 = −
√
2, c0 = 1, we have X−δ1(u) = 0.
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Since Xδ1−δ2 acts as x1∂2, each power of x1 is annihilated Xδ1−δ2 . Hence:

Xδ1−δ2(u) = x2
1 ⊗Xδ1−δ2(v) + c1x1 ⊗Xδ1−δ2Xδ1(u) + c01⊗Xδ1−δ2X

2
δ1
(u).

By Lemma 7.1.7, Xδ1−δ2X
j
δ1
(v) = 0, for all j ∈ Z≥0. Therefore Xδ1−δ2(u) = 0.

Assume now that β > 1. We must show that Xδk−δk+1
(u) = 0 for k = 1, ...., n−1

and X−δ1(u) = 0. Because xk∂k+1(x
j
1) = 0, we have:

Xδk−δk+1
(u) =

2β−1∑

k=1

c2β−kx
2β−k
1 ⊗Xδk−δk+1

Xk
δ1(v).

Applying Lemma 7.1.7 once again, we find Xδk−δk+1
(u) = 0.

Now, we show X−δ1(u) = 0. We note that X−δ1(u) contains even number of

terms, two of which are always zero. Namely, x2β
1 ⊗X−δ1(v) = 0 since v is a highest

weight vector, and X−δ11 ⊗ X2β
−δ1

(v) = 0 because the action of X−δ1 on 1 is zero.

This leaves a sequence with an even number of nonzero terms with coefficients of the

form: c2β, c2β−1,−c2β−1, ...,−c1, c1, c0 with c2β = 1. The claim is that this sequence

telescopes to zero since each pair of consecutive terms cancel. We have to consider

two cases; one for the case of even-odd subscripts and then odd-even subscripts.

Case 1: Even-odd subscript pair (2β − 2j, 2β − (2j + 1)).

Note that the sign between the two terms is negative due to parity considera-

tions(the second term came from the action of X−δ1 on x
2β−(2j+1)
1 ). We apply Lemma

7.1.7 on the right-hand side of the tensor product (using the odd case):

c2β−2jX−δ1(x
2β−2j
1 )⊗Xδ1

2j(v)− c2β−(2j+1)x
2β−(2j+1)
1 ⊗X−δ1X

2j+1
δ1

(v)

= c2β−2j
2β − 2j√

2
(x

2β−(2j+1)
1 )⊗X2j

δ1
(v)− c2β−(2j+1)x

2β−(2j+1)
1 ⊗ (j − β)X2j

δ1
(v).
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By hypothesis, c2β−(2j+1) = −
√
2c2β−2j , thus:

c2β−2j
2β − 2j√

2
(x

2β−(2j+1)
1 )⊗X2j

δ1
(v) +

√
2c2β−(2j)x

2β−(2j+1)
1 ⊗ (j − β)X2j

δ1
(v)

= c2β−2j
2β − 2j√

2
(x

2β−(2j+1)
1 )⊗X2j

δ1
(v) +

√
2
(2j − 2β)

2
c2β−(2j)x

2β−(2j+1)
1 ⊗X2j

δ1
(v)

= 0

as required.

Case 2: Odd-even subscript pair (2β − (2j + 1), 2β − (2j + 2)).

c2β−(2j+1)X−δ1(x
2β−(2j+1)
1 )⊗X2j+1

δ1
(v) + c2β−(2j+2)x

2β−(2j+2)
1 ⊗X−δ1X

2j+2
δ1

(v)

= −(2β − 1)(2β − 3)...(2β − (2j − 1)(2β − (2j + 1))

j!
(x

2β−(2j+2)
1 )⊗X2j+1

δ1
(v)+

(2β − 1)(2β − 3)...(2β − (2j + 1))

j!
x
2β−(2j+2)
1 ⊗X2j+1

δ1
(v)

= 0

as required. Therefore, u is a primitive vector. �

Lemma 7.1.9 Let V be a finite-dimensional g-module and W be a bounded g-module,

then V ⊗W is bounded.

Proof. Let λ be a weight of V ⊗ W . The vectors in (V ⊗W )λ are of the form

v =
∑

i vi ⊗ wi, where vi ∈ V µi , wi ∈ W νi, where µi + νi = λ. Therefore,

(V ⊗W )λ ⊂
∑

µ∈wt(V )

(
V µ ⊗W λ−µ

)
.

The sum above is over all weights µ of V and, since wt(V ) is finite, the sum is finite.

Also, we have that

V =
⊕

µ∈wt(V )

V µ

and therefore dimV =
∑

µ∈wt(V ) dimV µ. We thus have
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dim (V ⊗W )λ ≤ dim


 ∑

µ∈wt(V )

(
V µ ⊗W λ−µ

)

 ≤

∑

µ∈wt(V )

dim
(
V µ ⊗W λ−µ

)
.

Since dim
(
V µ ⊗W λ−µ

)
= dimV µ dimW λ−µ and dimW νi ≤ C for some C, we obtain

dim (V ⊗W )λ ≤
∑

µ∈wt(V )

dim V µ dimW λ−µ ≤ C
∑

µ∈wt(V )

dim V µ = C dim V.

Therefore the weight multiplicities of V ⊗W are bounded by C dimV . �

Corollary 7.1.10 If β ∈ Z>0, then the weight (β,−β, ...,−β)+(1
2
, 1
2
, ..., 1

2
) is osp(1|2n)-

bounded.

Proof. Let v be a highest weight vector of L(−β,−β, ...,−β), β ∈ Z>0 and consider

the action of osp(1|2n) on the tensor product M = L(1
2
, 1
2
, ..., 1

2
)⊗L(−β,−β, ...,−β).

Let u be as specified in Theorem 7.1.8. Using Lemma 5.8.28, we have:

wt(u) = wt(x2β
1 ) + wt(v)

=

(
2β +

1

2
,
1

2
, ...,

1

2

)
+ (−β,−β, ...,−β)

=

(
β +

1

2
,−β +

1

2
, ...,−β +

1

2

)

Since u is primitive, L(β + 1
2
,−β + 1

2
, ...,−β + 1

2
) is a subquotient of M by Lemma

5.6.24. By Lemma 7.1.9, we have that (β+ 1
2
,−β+ 1

2
, ...,−β+ 1

2
) is osp(1|2n)-bounded

as required. �

7.2 Classification of Bounded Weights of osp(1|2n)

In this section we will classify all osp(1|2n)-bounded weights. We first recall

the classification of the sp(2n)-bounded weights obtained by Britten and Lemire in

[3], Theorem 2.15 and Lemma 2.1.
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Definition 7.2.11 Let λ be a weight. By L̇(λ) we denote the simple highest weight

sp(2n)-module of highest weight λ relative to the base Πsp of sp(2n) (see (5.2.13)).

We note that the choice of simple root system in [3] is different from the one in

the present thesis. We will write L̇BL(λ) for the simple highest module of sp(2n) of

weight λ relative to the choice of simple roots in [3]. The “change of base formula” is

L̇BL(−λn,−λn−1, ...,−λ1)
θ = L̇(λ1, λ2, ..., λn).

where θ is an automorphism of sp(2n) defined on the generators by X±δi 7→ X∓δn+1−i
,

and Mθ stands for the sp(2n)-module obtained from M after twisting by θ.

Definition 7.2.12 Let λ be a weight. We say that λ is sp(2n)-bounded if the sp(2n)-

module L̇(λ) is bounded.

Theorem 7.2.13 (Theorem 2.15, [3]) If the simple highest weight module

L̇BL(ν1 + · · · νn, ν2 + · · ·νn, ..., νn) of sp(2n) is infinite-dimensional, then it is sp(2n)-

bounded if and only if

(A1) νn = 2k+1
2

with k ∈ Z,

(A2) νn−1 + 2νn + 3 ∈ Z>0.

(A3) νi ∈ Z≥0 for every i, 1 ≤ i ≤ (n− 1),

Proposition 7.2.14 If λ is an osp(1|2n)-bounded weight and µ is a dominant integral

weight, then λ+ µ is an osp(1|2n)-bounded weight.

Proof.Since λ is bounded, L(λ) is also bounded. Also, L(µ) is finite-dimensional by

Theorem 5.7.26 since µ is dominant integral weight. Thus, L(λ)⊗L(µ) is bounded by

Lemma 7.1.9. On the other hand, L(λ+µ) is a subquotient of L(λ)⊗L(µ). Indeed this

follows from the fact that v⊗w is a highest weight vector of L(λ)⊗L(µ), whenever v

and w are highest weight vectors of L(λ) and L(µ), respectively (see Lemma 5.8.28).

Hence, L(λ+ µ) is bounded. �
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Lemma 7.2.15 Let ki ∈ Z>0 for i = 1, 2, ..., n−1. Then the weight λ = (1
2
, 1
2
, ..., 1

2
)+

β(1,−1, ...,−1) + k1(−1,−1, ...,−1) + k2(0,−1, ...,−1,−1) + ...+ kn(0, 0, ..., 0,−1) is

osp(1|2n)-bounded.

Proof. By Corollary 7.1.10, we have that (1
2
, 1
2
, ..., 1

2
) + β(1,−1, ...,−1) is a bounded

weight. Define

(γ1, γ2, ..., γn) = k1(−1,−1, ...,−1) + k2(0,−1, ...,−1,−1) + ...+ kn(0, 0, ..., 0,−1).

By construction, γi = −
∑i

j=1 kj, hence, γi ≤ 0. Also, γi − γi+1 = ki+1 ≥ 0, so

we have γi ≥ γi+1. Thus, γ = (γ1, ..., γn) is a dominant integral weight and L(γ)

is finite-dimensional. Thus, L((1
2
, 1
2
, ..., 1

2
) + β(1,−1, ...,−1)) ⊗ L(−γ) is a bounded

module by Lemma 7.1.9. Now applying Proposition 7.2.14 we complete the proof. �

Theorem 7.2.16 Let λ = (λ1, λ2, ..., λn) be such that

(B1) λi − 1
2
∈ Z, for i = 1, 2, ..., n

(B2) λ1 + λ2 ≤ 1

(B3) λi − λi+1 ≥ 0 for i = 1, 2, ..., n− 1

Then λ is bounded.

Proof. For convenience, we set λ̃i := λi− 1
2
and αk =

∑n

j=k δj . Using Lemma 7.2.15,

it suffices to show that there exist ki, β ∈ Z≥0 for i = 1, 2, ..., n such that:

(
1

2
,
1

2
, ...,

1

2
) + (λ̃1, λ̃2, ..., λ̃n) = (

1

2
,
1

2
, ...,

1

2
) + β(1,−1, ...,−1)−

n∑

i=1

kiαk.

We treat the above identity as a set of n equations in the n+1 variables β, k1, ..., kn.

We proceed with a case-by-case consideration.

Case 1: λ̃1 + λ̃2 is even. We need to solve the system:

β − kn = λ̃1

−β − kn − kn−1 = λ̃2

−β − kn − kn−1 − ...− k1 = λ̃n
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We will find β, k1, k2, ..., kn with kn−1 = 0. We first easily find kn = −λ̃1−λ̃2

2
. Since

λ̃1 + λ̃2 is even and λ1 + λ2 ≤ 1, kn ∈ Z≥0 as required. Furthermore, we obtain:

kn−i = λ̃i − λ̃i+1.

By hypothesis, kn−i ∈ Z≥0, for all i. Also, β = λ̃1−λ̃2

2
, and since, λ̃1 + λ̃2 is even, we

have β ∈ Z≥0.

Case 2: λ̃1 + λ̃2 is odd. Contrary to Case 1, we will find β, k1, k2, ..., kn but with

kn−1 = 1. Again, we obtain kn = −λ̃1−λ̃2+1
2

. Since λ̃1 + λ̃2 is odd and λ1 + λ2 ≤ 1,

kn ∈ Z≥0 as required. As above, we obtain kn−i = λ̃i − λ̃i+1; therefore by condition

ii., kn−i ∈ Z≥0. Finally, β = λ̃1−λ̃2+1
2

. λ̃1 + λ̃2 is odd implies λ̃1 − λ̃2 + 1 even. �

Theorem 7.2.17 If L(λ) is infinite-dimensional bounded osp(1|2n)-module, then λ

and λ+ δ1 are sp(2n)-bounded.

Proof. Since L̇(λ) is an sp(2n)-subquotient of L(λ), L̇(λ) is sp(2n)-bounded. It re-

mains to prove that L̇(λ+δ1) is sp(2n)-bounded. Since L̇(λ) is an infinite-dimensional

bounded sp(2n)-module, by Theorem 7.2.13, we have that λ1 6= 0. But then one eas-

ily checks that Xδ1v is a nonzero sp(2n)-primitive vector in L(λ), where v is a highest

weight vector of L(λ) and Xδ1 is in gδ1 . Hence, by Lemma 5.6.24, L(λ) has an

sp(2n)-subquotient isomorphic to L̇(λ+ δ1). �

Theorem 7.2.18 Let λ = (λ1, λ2, ..., λn). Then the following are equivalent.

(i) λ satisfies conditions (B1), (B2), and (B3), in Theorem 7.2.16.

(ii) L(λ) is infinite-dimensional bounded osp(1|2n)-module.

(iii) L̇(λ) and L̇(λ+ δ1) are infinite-dimensional bounded sp(2n)-modules.

Proof. We have that (i) implies (ii) by Theorem 7.2.16 and that (ii) implies (iii) by

Theorem 7.2.17.

It remains to show that (iii) implies (i). Let L̇(λ) and L̇(λ + δ1) be infinite-

dimensional sp(2n)-bounded modules. By [3] Theorem 2.15, we have conditions (A1),
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(A2), and (A3) for νi, where λi = −
∑n

k=n−i+1 νk. Since νn a half-integer by (A2), we

easily obtain (B1). For (B2), we use crucially the fact that λ+ δ1 is sp(2n)-bounded.

We apply (A3) for λ + δ1 and obtain νn + (νn−1 + νn) + 3 > 0. From here we have

λ1 + λ2 ≤ 1, as needed in (B2). For (B3), we have

λi − λi+1 = −
n∑

k=n−i+1

νk +

n∑

k=n−i+2

νk = νn−i

which is in Z≥0 (by A1) as required. �

Example 7.2.19 The set of osp(1|4)-bounded weights and sp(4)-bounded weights cor-

responding to infinite-dimensional highest weight modules are pictured on Figure 7.1.

The grey part corresponds to the osp(1|4)-bounded weights.
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, 1
2
) (3

2
, 1
2
)

(5
2
,−1

2
)

(7
2
,−3

2
)

(9
2
,−5

2
)

(−1
2
,−1

2
)

(−3
2
,−3

2
)

(−5
2
,−5

2
)

(3
2
,−1

2
)

(5
2
,−3

2
)

(7
2
,−5

2
)

Figure 7.1. Bounded Weights for osp(1|4).
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7.3 Classification of Simple Weight Modules of osp(1|2n)

The classification of the infinite-dimensional bounded simple osp(1|2n)-modules

obtained in the previous section leads to another important classification. Namely we

obtained a classification of all simple weight modules M of osp(1|2n). This follows

from the theorem that every such M is isomorphic to a twisted localization of a

bounded infinite-dimensional module L(λ), see Theorem 5.10 in [12].
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