
APPLICATION OF OPENMP IN COMPLEXITY REDUCTION OF

INTER FRAME CODING

 IN HEVC

by

KARTHIK SURESH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2014

ii

Acknowledgements

Firstly, I would like to thank my Professor Dr. K.R.Rao wholeheartedly for being

my supervisor and for giving me the inspiration and support needed throughout the

timeline of my thesis. I would like extend my heartfelt thanks to Dr. Howard Russel and

Dr. Kambiz Alavi for serving on my committee.

 I would also like to thank Bhavana Prabhakar, Sudeep Gangavati and all my

MPL lab mates for guiding me and providing me with valuable inputs throughout my

research.

Last but not least, I would like to thank my father, Suresh.A.N, my mother

Krishnaveni.M.V, my grandmother Jayamma.N and all my friends for supporting and

motivating me all along.

 November 24, 2014

iii

Abstract

APPLICATION OF OPENMP IN COMPLEXITY REDUCTION OF INTER FRAME

CODING IN HEVC

Karthik Suresh

University of Texas at Arlington, 2014

Supervising Professor: K.R.Rao

The International Telecommunication Union (ITU-T), Video Coding Experts

Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) standardization

organizations working in a partnership known as the Joint Collaborative Team on Video

Coding (JCT-VC) came up with the latest video project known as the High Efficiency

Video Coding (HEVC) standard. This standard, also known as the H.265 standard, is

based on the same architecture as that of the more widely implemented H.264/AVC

(Advance Video Coding). The HEVC has incorporated many improvements like increased

bitrate reduction, increased coding efficiency [7] and compression efficiency, but, at the

cost of increased complexity. The motion estimation (ME) process in the encoder is the

most time-consuming part in both H.264 and the HEVC.

The purpose of this thesis is to make use of parallel programming to achieve

faster encoding times with minimal losses. There are certain conditional statements in the

HM 13.0 code, which run in a sequential pattern for a long time. Those statements which

are having less or no dependencies are chosen as they are ideal for parallel

programming. The xTZSearch and TZ8PointDiamondSearch patterns in HM13.0 consist

of several conditional statements without dependencies. Running those statements in

parallel allows the program to check for different conditions simultaneously and jump

directly to the next step rather than checking them one-by-one. OpenMP is the API used

iv

to achieve parallel computing by making use of the multicore processor in the computer

used to run the test sequences. As expected, there was a reduction of 10% - 25% in

encoding time when compared to the original HM13.0. The proposed method was

evaluated using different metrics like encoding time, percentage reduction in encoding

time, BD-PSNR (Bjontegaard Delta Peak Signal to Noise Ratio), BD-bitrate (Bjontegaard

Delta bitrate) and RD (rate distortion). Experimental results based on several video

sequences suggest the negligible change in BD-PSNR and BD-bitrate with the

implementation of the proposed method. It can be concluded that, with the help of parallel

programming, the encoding time of the HEVC encoder can be reduced by a significant

amount.

v

Table of Contents

Acknowledgements ... ii

Abstract ...iii

List of Illustrations ... viii

List of Tables ... x

Chapter 1 Introduction... 1

1.1 Video Compression Basics ... 1

1.2 Necessity for video compression .. 2

1.2 Thesis Outline ... 3

Chapter 2 High Efficiency Video Coding ... 4

2.1 HEVC design and features ... 4

2.1.1 Description of Video Coding in HEVC ... 6

2.2 HEVC Encoder Description .. 14

2.2.1 Intra-picture prediction ... 14

2.2.2 Inter-picture prediction ... 15

2.2.3 Entropy Coding .. 16

2.2.4 In-loop Filtering .. 18

2.2.5 Transform, Scaling and Quantization .. 18

2.3 Summary .. 19

Chapter 3 Inter prediction and motion estimation ... 20

3.1 Introduction to Inter Prediction .. 20

3.2 Motion Vector Prediction .. 22

3.2.1 Spatial Motion Vector Candidates ... 24

3.2.2 Interpolation Filter .. 24

3.3 Summary .. 25

vi

Chapter 4 Parallel Programming ... 26

4.1 Concept of parallel computing .. 26

4.2 OpenMP .. 26

4.2.1 OpenMP directives .. 27

4.2.1.1 OpenMP parallel pragma [56] .. 27

4.2.1.2 OpenMP barrier pragma [56] ... 28

4.2.1.3 OpenMP for pragma [56] ... 28

4.2.1.4 OpenMP sections pragma [56] .. 29

4.3 Threads ... 29

4.4 Approach .. 29

4.5 Summary .. 30

Chapter 5 Implementation and results .. 31

5.1 Overview ... 31

5.2 Proposed solution ... 31

5.3 Test conditions.. 31

5.4 Results .. 32

5.4.1 Encoding time reduction .. 32

5.4.2 Percentage reduction in encoding time ... 37

5.4.3 BD-PSNR .. 42

5.4.4 BD-bitrate [68] ... 47

5.4.5 Rate Distortion plot (RD plot) .. 52

5.4.6 Summary ... 57

Chapter 6 Conclusions and Future work ... 58

6.1 Conclusions .. 58

6.2 Future Work .. 58

vii

Appendix A Test Sequences ... 60

A.1 Basketball Drill Text ... 61

A.2 BQ Mall ... 62

A.3 Racehorses .. 63

A.4 KristenAndSara .. 64

A.5 Kimono1 ... 65

Appendix B Test conditions .. 66

Appendix C BD-PSNR and BD-bitrate .. 68

Appendix D Acronyms ... 72

Appendix E Code changes ... 75

References .. 108

Biographical Information ... 115

viii

List of Illustrations

Figure 1-1: I, P and B – frames in a sequence of images [58].. 2

Figure 1-2: Evolution of video compression standards [1] .. 3

Figure 2-1: HEVC Encoder block diagram [1] ... 5

Figure 2-2: HEVC Decoder block diagram [1] .. 5

Figure 2-3: Division of an image into CTU [14] ... 7

Figure 2-4: Different sizes of CTU [14] ... 8

Figure 2-5: Formats for YUV components [57] ... 9

Figure 2-6: Quad tree CU structure in HEVC [1] .. 10

Figure 2-7: Splitting of coding unit into prediction units and transform units [59] 11

Figure 2-8: Splitting Coding tree units into Coding Blocks [1]... 12

Figure 2-9: CTB with its partitioning and corresponding quad tree [1] 12

Figure 2-10: Subdivision of picture into tiles and slices [1] ... 14

Figure 2-11: Mode decision for intra picture prediction [1].. 15

Figure 2-12: Partition modes in HEVC inter-prediction [1] .. 16

Figure 2-13: HEVC entropy coding [4] .. 17

Figure 2-14: Example of waveform processing [4] ... 17

Figure 3-1: Derivation process for motion merge candidate [4] .. 21

Figure 3-2: Overall flow of deblocking filter process [4] .. 23

Figure 4-1: Fork-join model, multithreading in OpenMP [13] [44] 27

Figure 5-1: Encoding time vs QP for RaceHorses .. 33

Figure 5-2: Encoding time vs QP for BasketballDrillText .. 34

Figure 5-3: Encoding time vs QP for BQMall .. 35

Figure 5-4: Encoding time vs QP for KristenAndSara .. 36

Figure 5-5: Encoding time vs QP for Kimono1 ... 37

file:///C:/Users/KTK/Dropbox/Thesis/Thesis_Report_Update_Nov26.docx%23_Toc404796920
file:///C:/Users/KTK/Dropbox/Thesis/Thesis_Report_Update_Nov26.docx%23_Toc404796922
file:///C:/Users/KTK/Dropbox/Thesis/Thesis_Report_Update_Nov26.docx%23_Toc404796928

ix

Figure 5-6: Percentage reduction in encoding time vs QP for Racehorses 38

Figure 5-7: Percentage reduction in encoding time vs QP for BasketballDrillText 39

Figure 5-8: Percentage reduction in encoding time vs QP for BQMall 40

Figure 5-9: Percentage reduction in encoding time vs QP for KristenAndSara................ 41

Figure 5-10: Percentage reduction in encoding time vs QP for Kimono1 42

Figure 5-11: BD-PSNR vs QP for RaceHorses .. 43

Figure 5-12: BD-PSNR vs QP for BasketballDrillText .. 44

Figure 5-13: BD-PSNR vs QP for BQMall ... 45

Figure 5-14: BD-PSNR vs QP for KristenAndSara ... 46

Figure 5-15: BD-PSNR vs QP for Kimono1 .. 47

Figure 5-16: BD-bitrate vs QP for RaceHorses .. 48

Figure 5-17: BD-bitrate vs QP for BasketballDrillText .. 49

Figure 5-18: BD-bitrate vs QP for BQMall ... 50

Figure 5-19: BD-bitrate vs QP for KristenAndSara ... 51

Figure 5-20: BD-bitrate vs QP for Kimono1 .. 52

Figure 5-21: PSNR vs bitrate for RaceHorses .. 53

Figure 5-22: PSNR vs bitrate for BasketballDrillText .. 54

Figure 5-23: PSNR vs bitrate for BQMall .. 55

Figure 5-24: PSNR vs bitrate for KristenAndSara .. 56

Figure 5-25: PSNR vs bitrate for Kimono1.. 57

x

List of Tables

Table 3-1: Coefficients for DCT based luma interpolation filter [27] 25

Table 3-2: Coefficients for DCT based chroma interpolation filter [60] 25

Table 5-1: Standard test sequences used [16] ... 32

1

Chapter 1

Introduction

1.1 Video Compression Basics

 A video is a sequence of images put in a proper order. In turn, an image

consists of pixels or picture elements which are known as the basic elements defining the

picture. The number of pixels along the horizontal and vertical axes gives the respective

width and height of the image. Each pixel is also characterized by its color and

brightness.

 The sequence of images are put together in an order and displayed in quick

succession to create the effect of movement of images, which is known as a video. The

individual images are also known as frames, and a collection of sequential frames

constitute a video. The rate at which each frame is displayed is known as frame rate,

which is another important characteristic of a given video.

 Video compression is mostly about transmitting information by making use

of the redundancies existing between the images. The redundancies that are exploited

are temporal and spatial redundancies. In a sequence of images used for a video, there

is very little change between each of the images. Temporal redundancy exploits this

characteristic for compression purposes. When it comes to a single frame or image, the

neighboring pixels for a given pixel will usually have same or similar information. Spatial

redundancy exploits this property for compression.

 There are three types of frames: intra frame or I – frame, inter frame or P –

frame (predicted frame) and the bi-directionally interpolated frame or B – frame. If a

frame is compressed using its own pixels for reference, then it is an I – frame. If an I –

frame is used as the reference frame for a sequence of successive frames; those frames

2

are called P – frames. If a frame is compressed by considering both I – frame (previous)

and P – frames (future) for reference, then it is called a B – frame.

Figure 1-1: I, P and B – frames in a sequence of images [58]

1.2 Necessity for video compression

 Usually, videos are large sequences of images that take up a huge amount

of memory to store. The bandwidth required to transmit the video is also huge. Hence,

there is a need to compress these videos before being transmitted. By developing better

compression techniques, the memory and bandwidth requirements needed for video

transmission and storage can be reduced. This makes transmission of data in

applications like online video streaming, video telephony, etc. easier and economical.

 There are several compression schemes that were developed in order to

address the aforementioned problem. HEVC [1] [12] [17] [18] is a new video compression

scheme that is projected to be widely used around the world soon. Compared to its

predecessor H.264 [24] [27], HEVC has about 50% bitrate savings and more paralleling

options while maintaining the same visual quality [5].

3

1.2 Thesis Outline

Chapter 2 details the HEVC compression scheme and gives an overview of the

HEVC encoder. Chapter 3 describes the existing inter frame prediction process and a

proposal of faster method to do this using paralleling of code structure. Chapter 4 shows

the results and conclusions comparing both the existing and the proposed faster scheme.

Chapter 5 contains ideas which can be used as future work in improving the performance

of the encoder.

Figure 1-2: Evolution of video compression standards [1]

4

Chapter 2

High Efficiency Video Coding

2.1 HEVC design and features

HEVC [1] [12] [17] [18] is the latest video compression standard developed by

the Joint Collaborative Team on Video Coding (JCT –VC) during early 2013. It has 3

profiles – main (for 8-bit data), main10 (for 10-bit data) and 4:2:2, 4:4:4 formats (Figure 2-

5), bit depths higher than 10 – bit, scalability, and 3D video are being finalized in 2014.

Ultra HD, stereo and multi vision encoding, 3-D video and scalable video coding,

which are few of the trending topics in the multimedia processing industry can make use

of HEVC and benefit extensively in areas like parallel processing [2][6] using latest

architectures, bit-rate savings, coding efficiency and many more. Concepts like wave

front parallel processing, tiles and slices are introduced in the new standard. Flexible

prediction modes, transform block sizes, improved interpolation and deblocking filters,

and better partitioning options make HEVC standout from its predecessor, the H.264 [27].

A combined result of optimizing many processes in the standard led to all these

improvements in HEVC. But, these advantages come at the price of higher encoder

complexity. Basic design of the HEVC [1] standard remained the same as that of the

H.264/AVC with the block based hybrid coding approach being a significant factor in

temporal and spatial dependencies. The basic description of the HEVC encoder is shown

in Figure 2.1.

5

Figure 2-1: HEVC Encoder block diagram [1]

Figure 2-2: HEVC Decoder block diagram [1]

6

2.1.1 Description of Video Coding in HEVC

A novel hybrid approach (inter/ intra picture prediction and 2-D transform coding)

is used in HEVC and has been used in all compression standards since H.261. Each

picture is split into block shaped regions and the exact block partitioning will be

conveyed to the decoder. The first picture of a video sequence will be coded using only

‘intra picture prediction’ mode which is a spatial prediction within the frame and the

remaining pictures are coded using ‘inter picture prediction’ mode which is a temporal

prediction between the frames.

The encoder duplicates the decoder processing loop such that it generates an

identical prediction of a decoder. This is done by inverse scaling and inverse transforming

of the encoded data to produce the decoder approximation of the residual signal. This

residual signal is then added to the prediction signal and the result of this addition is fed

to one or two loop filters which smoothen out the artifacts generally induced by the block-

wise processing and quantization step. The final picture representation which is the

duplicate of the possible output in the decoder is stored in a ‘decoded picture buffer’ and

is used for prediction of subsequent pictures.

The signal of intra/inter prediction which is the difference between original and

predicted block is further transformed by a linear spatial transform which is scaled,

quantized, entropy coded and transmitted along with prediction information. This residual

signal is also inverse transformed, inverse quantized and filtered to duplicate the decoder

processing loop and added with predicted signal to produce decoded picture which is

stored in buffer for further predictions. As shown in Figure 2-2 in the block diagram of

HEVC [1] decoder, the residual signal is added to the prediction, and the result is fed to

the deblocking filter to reduce the artifacts and finally stored in decoded picture buffer

which can be used for further decoding of remaining pictures.

7

Unlike H.264 [27] which contains 16 by 16 size macro blocks, HEVC employs

quad tree structure which contains coding tree unit (CTU), size of which is selected by

the encoder and can be larger than traditional macro block. H EVC has been designed to

address essentially all existing applications of H.264/MPEG-4 AVC and to particularly

focus on two key issues: increased video resolution and increased use of parallel

processing architectures.

Figure 2-3: Division of an image into CTU [14]

Figure 2-3 shows the basic division of image into multiple CTUs. The width and

height of CTU are signaled in a sequence parameter set hence all the CTUs in a video

sequence have the same size i.e. 64x64, 32x32, or 16 by 16 as shown in Figure 2-4.

8

Figure 2-4: Different sizes of CTU [14]

Each coding unit basically consists of luma and chroma prediction blocks and

each block is called coding tree block (CTB) having the same size as CTU. But CTBs are

too big to decide the type of prediction method to be used. So CTBs are further divided

into coding blocks (CB) which are the decision points where decision is taken whether to

perform inter-picture or intra-picture prediction. CBs are good enough for prediction type

decision but too large to store motion vectors. Thus each CB can be split into prediction

blocks (PB) differently depending on the temporal and/ or spatial predictability.

9

The HEVC code uses YCbCr color space with a 4:2:0 color format with 8 bps (bits

per color sample). Y is symbol for luma component, Cb is symbol for the blue chroma

component and Cr is symbol for the red chroma component as shown in figure 2-5.

Figure 2-5: Formats for YUV components [57]

10

Figure 2-6: Quad tree CU structure in HEVC [1]

As the picture resolution of videos increase from standard definition to HD and

beyond, the chances are that the picture will contain larger smooth regions, which can be

encoded more effectively using large

block sizes. This is the reason that the HEVC standard supports encoding blocks

l a r g e r than i n H .264/AVC, while it also has a more flexible partitioning structure

to allow smaller blocks to be used for more textured and in general uneven regions.

Each CU can be further split into smaller units, which form the basis for

prediction. These units are called PUs. Each CU may contain one or more PUs, and

each PU can be as large as its root CU or as small as 4x4 in luma block sizes. While an

LCU can recursively split into smaller and smaller CUs, the splitting of a CU into PUs is

nonrecursive. PUs can be symmetric or asymmetric. Symmetric PUs can be square or

rectangular and are used in both intra prediction and inter prediction. In particular, a CU

11

of size 2Nx2N can be split into two symmetric PUs of size Nx2N or 2NxN or four PUs

of size NxN. Asymmetric PUs are used only for inter prediction. Starting at the level of a

CU, a CB (coding block) can have one transform block (TB) of the same size as the CB

or be split into smaller TBs as shown in figures 2-6, 2-7 and 2-8.

Figure 2-7: Splitting of coding unit into prediction units and transform units [59]

12

Figure 2-9: CTB with its partitioning and corresponding quad tree [1]

This allows partitioning, which matches the boundaries of the objects in the picture.

2.1.2 Tiles and Slices

The HEVC standard introduced tiles as a means to support parallel processing,

with more flexibility than the normal slices in the H.264/AVC standard but considerably

lower complexity than the flexible macro block ordering (FMO) standard. Tiles are

Figure 2-8: Splitting Coding tree units into Coding Blocks [1]

13

specified by vertical and horizontal boundaries with intersections that partition a picture

into rectangular regions. Figure 2-9 shows an example of tile partitions that contain

slices. The spacing of the row and column boundaries of tiles need not be uniform. This

offers greater flexibility and can be useful for error resilience applications. In each tile,

LCUs are processed in a raster scan order. Similarly, the tiles themselves are processed

in a raster scan order within a picture.

The HEVC standard also supports slices, similar to slices found in the

H.264/AVC standard, but without FMO. Slices and tiles may be used together within the

same picture. To support parallel processing, each slice in HEVC can be subdivided into

smaller slices called entropy slices. Each entropy slice can be independently entropy

decoded without reference to other entropy slices. Therefore, each core of a CPU can

handle an entropy-decoding process in parallel.

The slices are processed in the order of a raster scan. A picture may be split into

one or several slices as shown in figure 2-9 so that a picture is a collection of one or

more slices. Slices are self-contained in the sense that, given the availability of the

active sequence and picture parameter sets, their syntax elements can be parsed

from the bit stream and the values of the samples in the area of the picture that the

slice represents can be correctly decoded without the use of any data from other slices

in the same picture.

Tiles are self-contained and independently decodable rectangular regions of the

picture. The main purpose of tiles is to enable the use of parallel processing

architectures for encoding and decoding. Multiple tiles may share header information by

being contained in the same slice. Alternatively, a single tile may contain multiple slices.

A tile consists of a rectangular arranged group of CTUs as shown in figure 2-10.

14

Figure 2-10: Subdivision of picture into tiles and slices [1]

2.2 HEVC Encoder Description

2.2.1 Intra-picture prediction

Intra-picture prediction [21] [23] [24] [25] operates according to the TB size and

previously decoded boundary samples from spatially neighboring TBs which are used to

form the prediction signal. Directional prediction with 33 different directional orientations

is defined for (square) TB sizes from 4×4 up to 32×32. The possible prediction directions

are show in figure 2-11. Alternatively, planar prediction and DC prediction can also be

used. For chroma the horizontal, vertical, planar, and DC prediction modes can be

explicitly signaled, or the chroma prediction mode can be indicated to be the same as the

luma prediction mode.

15

Figure 2-11: Mode decision for intra picture prediction [1]

The HEVC standard also includes a planar intra-prediction mode which is useful

for predicting smooth picture regions. In planar mode, the prediction is generated from

the average of two linear interpolations.

2.2.2 Inter-picture prediction

Compared to intra-picture predicted CBs, the HEVC standard supports more PB

partition shapes for inter-picture predicted CBs. The partitioning modes of PART_2N×2N,

PART_2N×N and PART_N×2N as shown in Figure 2-11 indicate the cases when the CB

is not split, split into two equal-size PBs horizontally, and split into two equal-size PBs

vertically, respectively. PART−N×N specifies that the CB is split into four equal size PBs,

but this mode is only supported when the CB size is equal to the smallest allowed CB

size. In addition, there are four partitioning types that support splitting the CB into two

PBs having different sizes: PART−2N×nU, PART−2N×nD, PART−nL×2N, and

PART−nR×2N (U=up, D=down, L=left and R=right) as shown in figure 2-12. These

types are known as asymmetric motion partitions.

16

Figure 2-12: Partition modes in HEVC inter-prediction [1]

2.2.3 Entropy Coding

A new and improved CABAC (context adaptive binary arithmetic coding) is used for the

entropy coding of the bitstreams. This coding has improved speed, compression and

requires less memory then entropy coding used in the H.264/AVC standard (figure

2-13). Instead of implementing the normal CABAC re-initialization for every CTB row,

the context state from the second CTU in the previous row is used to start the

processing of a brand new CTB row Figure 2-14), and thus taking huge advantage of

17

parallel processing.

Figure 2-13: HEVC entropy coding [4]

Figure 2-14: Example of waveform processing [4]

18

2.2.4 In-loop Filtering

In the HEVC standard, two processing steps, namely a deblocking filter (DBF)

followed by a sample adaptive offset (SAO) filter are applied to the reconstructed

samples before writing them into the decoded picture buffer in the decoder loop. The

DBF is intended to reduce the blocking artifacts due to block-based coding. The

deblocking filter is applied to all samples adjacent to a PU or TU boundary except the

case when the boundary is also a picture boundary, or when deblocking is disabled

across slice or tile boundaries. It should be noted that both PU and TU boundaries

should be considered since PU boundaries are not always aligned with TU boundaries in

some cases of interpicture-predicted CBs. Syntax elements in the SPS and slice headers

control whether the deblocking filter is applied across the slice and tile boundaries. The

SAO is a process that modifies the decoded samples by conditionally adding an offset

value to each sample after the application of the deblocking filter. This is based on

values in look-up tables transmitted by the encoder.

2.2.5 Transform, Scaling and Quantization

The HEVC standard uses transform coding of the prediction error residual in a

similar manner as in prior standards [1]. The residual block is partitioned into multiple

square TBs. The supported transform block sizes are 4×4, 8×8, 16×16, and 32×32.

Pre-scaling operation is not needed when using HEVC code since the rows of the

transform matrix are close approximations of values of uniformly scaled basis functions

of the orthonormal DCT (discrete cosine transform) [1] [22]. Uniform reconstruction

quantization (URQ) is used in the HEVC standard, with quantization scaling matrices

supported for the various transform block sizes [1]. The range of the QP values is defined

from 0 to 51, and an increase by 6 doubles the quantization step size such that the

mapping of QP values to step sizes is approximately logarithmic.

19

2.3 Summary

This chapter gives an outline of the various coding tools of the HEVC codec.

HEVC is meant to create a standard capable of providing good video quality at

substantially lower bit rates than previous standards. Chapter 3 outlines the description

of inter-prediction and the proposed usage of parallel programming to reduce the time

taken for motion vector prediction. Chapter 3 gives the description of inter prediction and

motion estimation.

20

Chapter 3

Inter prediction and motion estimation

3.1 Introduction to Inter Prediction

Each inter coded PU shall have a set of motion parameters consisting of motion

vector, reference picture index, reference picture list usage flag to be used for inter

prediction sample generation, in an explicit or implicit way of signaling. When a CU is

coded with skip mode (i.e., PredMode == MODE_SKIP), the CU shall be represented as

one PU that has no significant transform coefficients and motion vectors, reference

picture index and reference picture list usage flag obtained by motion merge. The motion

merge is to find neighboring inter coded PU such that its motion parameters (motion

vector, reference picture index, and reference picture list usage flag) can be inferred as

the ones for the current PU. Encoder can select the best inferred motion parameters from

multiple candidates formed by spatial neighboring PUs and temporally neighboring PUs,

and transmits corresponding index indicating chosen candidate. Not only for skipmode,

the Motion Merge can be applied to any inter coded PU (i.e., PredMode ==

MODE_INTER). In any inter coded PUs, encoder can have freedom to use motion merge

or explicit transmission of motion parameters, where motion vector, corresponding

reference picture index for each reference picture list and reference picture list usage flag

are signaled explicitly per each PU. For inter coded PU, significant transform coefficients

are sent to the decoder.

21

Figure 3-1: Derivation process for motion merge candidate [4]

Figure 3-1 summarizes derivation process for motion merge candidates. Two

types of merge candidates are considered in motion merge: spatial merge candidate and

temporal merge candidate. For spatial merge candidate derivation, four merge

candidates are selected among candidates that are located in five different positions. In

the process of candidate selection, redundant partition shape is avoided in order not to

emulate virtual 2Nx2N partition by merging two 2NxN or two Nx2N partitions. For

temporal merge candidate derivation, one merge candidate is selected among two

candidates. After a list of spatio-temporal candidates is made, duplicated candidates

which have same motion parameters in the list are removed in order to have distinctive

candidates only. Since constant number of candidates for each PU is assumed at

decoder, additional candidates are generated when the number of candidates does

not reach to maximum number of merge candidate (MaxNumMergeCand) which is

22

signaled in slice header. For B-Slices, combined bi-predictive and non-scaled bi-predictive

candidates are generated utilizing the candidates from list of spatio-temporal candidates.

For both P- and B- slices, zero merge candidates are added at the end of the list.

Between each generation step, derivation process is stopped if the number of candidates

reaches to MaxNumMergeCand. In current common test condition, MaxNumMergeCand

is set equal to 5. Since the number of candidates is constant, index of best motion

merge candidate is encoded using truncated unary binarization (TU).

3.2 Motion Vector Prediction

Motion vector prediction exploits spatio-temporal correlation of motion vector with

neighboring PUs, which is used for explicit transmission of motion parameters. It

constructs motion vector candidate list by firstly checking availability of left, above

temporally neighboring PU positions, removing redundant candidates and adding zero

vector to make the candidate list to be constant length as a normative process. Then,

encoder can select the best predictor from the candidate list and transmits corresponding

index indicating chosen candidate. Similarly with merge index signaling, index of the

best motion vector candidate is encoded using truncated unary as maximum number is

equal to 2. In the following sections, details about derivation process of motion vector

prediction candidate are provided.

23

Figure 3-2: Overall flow of deblocking filter process [4]

Figure 3-2 summarizes derivation process for motion vector prediction candidate.

In motion vector prediction, 2 types of motion vector candidates are considered: spatial

motion vector candidate and temporal motion vector candidate. For spatial motion vector

candidate derivation, 2 motion vector candidates are derived based on motion vectors of

each PU located in 5 different positions. In the process of derivation, 1 motion vector

candidate is selected utilizing PUs in the left side of current PU and 1 motion vector

candidate is derived utilizing Pus in the above side of current PU. For temporal motion

vector candidate derivation, 1 motion vector candidate is selected between 2 candidates,

which are derived based on 2 different co-located positions. After the first list of spatio-

temporal candidates is made, duplicated motion vector candidates in the list are

removed. If the number of candidates is larger than 2, motion vector candidates whose

index is greater than 1 are removed from the list. If the number of spatio-temporal motion

vector candidates is smaller than 2, additional zero motion vector candidates are added

to the list.

24

3.2.1 Spatial Motion Vector Candidates

In the derivation of spatial motion vector candidates, maximum 2 candidates are

considered among 5 candidates, which are derived from PUs located in positions. The

candidate positions of motion vector prediction are same with those of motion merge. The

order of derivation for left side of current PU is set as A0 A1 scaled A0 scaled

A1. The order of derivation for above side of current PU is set as B0 B1 B2

scaled B0 scaled B1  scaled B2. For each side, there are 4 cases which can

be used for motion vector candidate. Even though two cases are not required to do

spatial scaling, the other 2 cases are required to do spatial scaling. 4 different cases are

summarized as follows.

No spatial scaling

(1) Same reference picture list, and same reference picture index (same POC)

(2) Different reference picture list, but same reference picture (same POC)

Spatial scaling

(3) Same reference picture list, but different reference picture (different POC)

(4) Different reference picture list, and different reference picture (different POC)

Spatial scaling is considered when POC is different between reference picture

of neighboring PU and that of current PU regardless of reference picture list. If all PUs

of left candidates is not available or intra coded, scaling for above motion vector is allowed

to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is

not allowed for above motion vector.

3.2.2 Interpolation Filter

For the luma interpolation filter, an 8-tap separable DCT-based interpolation filter

is used, as shown in Table 3-1.

25

Table 3-1: Coefficients for DCT based luma interpolation filter [27]

Position Filter coefficients

1/4 { -1, 4, -10, 58, 17, -5, 1 }

2/4 { -1, 4, -11, 40, 40, -11, 4, -1 }

3/4 { 1, -5, 17, 58, -10, 4, -1 }

Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma

interpolation filter, as shown in Table 3-2.

Table 3-2: Coefficients for DCT based chroma interpolation filter [60]

Position Filter coefficients

1/8 { -2, 58, 10, -2 }

2/8 { -4, 54, 16, -2 }

3/8 { -6, 46, 28, -4 }

4/8 { -4, 36, 36, -4 }

5/8 { -4, 28, 46, -6 }

6/8 { -2, 16, 54, -4 }

7/8 { -2, 10, 58, -2 }

For the bi-directional prediction, the bit-depth of the output of the interpolation

filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the

averaging of the two prediction signals

3.3 Summary

This chapter explains the inter prediction method in HEVC and its improvements

compared to H.264 [26] inter prediction method. Chapter 4 will explain about parallel

processing and OpenMP.

26

Chapter 4

Parallel Programming

4.1 Concept of parallel computing

In order to reduce the time taken by a computational process, operations are

done in parallel so that more than one process is happening simultaneously. Parallel

computing is a technique in which multiple computations are done simultaneously, either

with the help of hardware or software. The basic approach for parallel processing is to

break the task into multiple smaller tasks and further assign each task to each thread

which performs required operations in parallel.

Earlier, programs were running on serial computing platforms, with a single

processor running those instructions from start to finish. These sequences of instructions

were executed one after the other.

In the present day scenario, in order to achieve maximum performance in the

least time possible, serial computing is replaced with parallel computing. With the use of

multi-core processors, GPUs and software, it is possible to implement parallel computing

to a large extent. Parallelization can sometimes get complicated due to race conditions,

data dependency, synchronization and communication among different threads.

4.2 OpenMP

OpenMP [40], short for Open Multi-processing, is an API (application program

interface) which supports multi-platform parallel programming in C/C++. The API has a

simple interface for developing parallel applications.

27

Figure 4-1: Fork-join model, multithreading in OpenMP [13] [44]

In OpenMP, fork-join model is used for parallel execution where taks are

performed by multiple threads defined by OpenMP directives [15] as shown in Figure .

The intention of the OpenMP API is to support programs that can run both in sequential

and parallel executions.

4.2.1 OpenMP directives

4.2.1.1 OpenMP parallel pragma [56]

For creating the threads that execute the block of code following the directive in

parallel, this directive is used, which also helps the programmer choose the partitioning of

the code segment.

For example:

#include <omp.h>

…

…

 void main()

{

 …

 #pragma omp parallel

28

 { //parallel work begins

 …

 …

 } //parallel work ends

}

The header file omp.h should be included in the program so that it includes and

initiates the OpenMP functions. The pragma directive is used to execute the task

enclosed within the curly braces, in parallel.

4.2.1.2 OpenMP barrier pragma [56]

This directive does the synchronization of all threads in a team. When the thread

reaches a barrier, it will wait until all threads reach the barrier point. Then, it continues

executing the code in parallel after the barrier.

For example:

#pragma omp barrier newline

4.2.1.3 OpenMP for pragma [56]

This directive is used to run multiple iterations of the for loop in parallel by

assigning iterations to threads. Each of the threads will then execute one or more

iterations simultaneously. This is helpful only when the iterations are independent of each

other.

For example:

#pragma omp parallel for [clauses]

29

4.2.1.4 OpenMP sections pragma [56]

This directive identifies the code sections to be divided among all the threads.

This way each of the threads will take up the task of executing a particular section

simultaneously.

For example:

#pragma omp sections [clauses]

{

 #pragma omp section

 {

 //code

 }

 }

4.3 Threads

Thread is the basic unit of processing that happens in an operating system. The

use of threads allows the user to improve performance significantly by allowing two or

more activities to occur at the same time. However, managing simultaneous activities and

their possible interaction will lead to the addition of complexity into the program. The

concept of multithreading enables the running of processes and sub-processes

concurrently, with most processes having multiple threads [47].

4.4 Approach

Parallelization can sometimes get complicated due to race conditions, data

dependency, synchronization and communication among different threads.

The basic approach in deciding parallelization approach is to first analyze the

part of the program that needs to be parallelized and then decide the type of parallel

30

programming technique that needs to be implemented. It should also be determined

whether or not the problem is one that can be parallelized. Parallel programming models

are not limited to particular type of machinery but can be implemented on any underlying

hardware.

4.5 Summary

Chapter 4 gives an introduction to parallel computing in general and OpenMP in

particular. In this thesis, OpenMP API is used in the HEVC code to run certain code

segments in parallel. Chapter 5 will show the results which compare various parameters

observed before and after the usage of OpenMP in the HEVC [1] code.

31

Chapter 5

Implementation and results

5.1 Overview

One of the biggest advantages of HEVC [1] over H.264 [27] is the ability to

provide very high compression ratios which are helpful in a variety of applications. But,

this comes at the cost of increasing the complexity of the compression scheme. It also

increases the time taken to encode a given video sequence. In the encoder, motion

estimation by itself takes up to 70% of the total encoding time. The comparison and

results provided below show that the use of OpenMP for running multiple segments of

code in parallel will reduce the encoding time significantly [1] [31].

5.2 Proposed solution

The proposed approach will make use of the directive ‘#pragma omp sections’

[56], ‘#pragma omp parallel for’ [56] and ‘#pragma omp nowait’ [56] along with certain

code changes to account for the parallel execution of the code segments. Here, the code

segments are chosen in such a way that there is no dependency on other threads that

are running in parallel on the other segments. This way, the conditional segments take

less time to run when multiple threads check for multiple conditions at the same time. The

directive #pragma omp sections was used to create sections in particular segments of the

code that can be run in parallel. The directive #pragma omp nowait will ensure that the

implied barrier will be avoided at the end of the loop when there are multiple independent

loops within a parallel region. The #pragma omp parallel for will create threads to run the

‘for loop’ in parallel. All these parallel executions lead to a reduction in the encoding time.

5.3 Test conditions

The performance of this implementation was evaluated using HEVC reference

software HM13.0 [12]. A total of five standard video sequences [16] were used with

32

different QP values of 22, 27, 32 and 37 as recommended by the JCT-VC with encoder

random access main being the configuration for encoding.

Table 5-1: Standard test sequences used [16]

No. Sequence Resolution Type No. of

frames

Frame

rate(Hz)

1. RaceHorses_416x240_30.yuv 416x240 WQVGA 50 30

2. BasketballDrillText_832x480_50.yuv 832x480 WVGA 50 50

3. BQMall_832x480_60.yuv 832x480 WVGA 50 60

4. KristenAndSara_1280x720_60.yuv 1280x720 SD 50 60

5. Kimono1_1920x1080_24.yuv 1920x1080 WQHD 50 24

5.4 Results

5.4.1 Encoding time reduction

The proposed approach gives a encoding time reduction in the range of 10-25%

when encoding the standard test sequences for various QP when compared to the

standard encoder in HM 13.0 [12]. The results are presented in Figure 5-1 through Figure

5-5.

33

Figure 5-1: Encoding time vs QP for RaceHorses

292.37

241.5

202.4

173.5

261.6

208.7

165.2
154.8

0

50

100

150

200

250

300

350

22 27 32 37

En
co

d
in

g
ti

m
e

 (
se

co
n

d
s)

QP

RaceHorses

original proposed

34

Figure 5-2: Encoding time vs QP for BasketballDrillText

345.9

309.13
285.9

240.82

306.35

253.38
230.7

207.1

0

50

100

150

200

250

300

350

400

22 27 32 37

En
co

d
in

g
ti

m
e

 (
se

co
n

d
s)

QP

BasketballDrillText

original proposed

35

Figure 5-3: Encoding time vs QP for BQMall

751.5

634.94

552.6
505.39

677.2

565.16

463.98 451.82

0

100

200

300

400

500

600

700

800

22 27 32 37

En
co

d
in

g
ti

m
e

 (
se

co
n

d
s)

QP

BQMall

original proposed

36

Figure 5-4: Encoding time vs QP for KristenAndSara

1197.3

1064.55

962.14 970.04
933.6

819.7 821.9
873.6

0

200

400

600

800

1000

1200

1400

22 27 32 37

En
co

d
in

g
ti

m
e

 (
se

co
n

d
s)

QP

KristenAndSara
original proposed

37

Figure 5-5: Encoding time vs QP for Kimono1

5.4.2 Percentage reduction in encoding time

Figures 5-6 through 5-10 shows the percentage reduction in encoding time for

different values of QP by using the proposed method run on the standard test sequences.

3318.6

3645.8 3681.9
3819.5

2953.54
3208.3

2762.4

3131.97

0

500

1000

1500

2000

2500

3000

3500

4000

4500

22 27 32 37

En
co

d
in

g
ti

m
e

 (
se

co
n

d
s)

QP

Kimono1 original proposed

38

Figure 5-6: Percentage reduction in encoding time vs QP for Racehorses

-10.52

-13.58

-18.37

-10.77

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

22 27 32 37

%
 d

e
cr

e
as

e
 in

 e
n

co
d

in
g

ti
m

e

QP

RaceHorses

original vs proposed

39

Figure 5-7: Percentage reduction in encoding time vs QP for BasketballDrillText

-11.43

-18.03
-19.3

-14

-25

-20

-15

-10

-5

0

22 27 32 37

%
 d

e
cr

e
as

e
 in

 e
n

co
d

in
g

ti
m

e

QP

BasketballDrillText

original vs proposed

40

Figure 5-8: Percentage reduction in encoding time vs QP for BQMall

-9.88
-10.99

-16.03

-10.59

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

22 27 32 37

%
 d

e
cr

e
as

e
 in

 e
n

co
d

in
g

ti
m

e

QP

BQMall

original vs proposed

41

Figure 5-9: Percentage reduction in encoding time vs QP for KristenAndSara

-22.04
-23.01

-14.57

-9.94

-25

-20

-15

-10

-5

0

22 27 32 37

%
 d

e
cr

e
as

e
 in

 e
n

co
d

in
g

ti
m

e

QP

KristenAndSara

original vs proposed

42

Figure 5-10: Percentage reduction in encoding time vs QP for Kimono1

5.4.3 BD-PSNR

BD-PSNR is a metric that will provide an evaluation of the rate distortion

performance of the video sequence. But, coding complexity is not taken into account,

which actually is a prime factor in the HEVC encoder. Figures 5-11 through 5-15 shows

the BD-PSNR vs QP graphs for the standard test sequences.

-11.02
-12

-24.97

-18

-30

-25

-20

-15

-10

-5

0

22 27 32 37

%
 d

e
cr

e
as

e
 in

 e
n

co
d

in
g

ti
m

e

QP

Kimono1

original vs proposed

43

Figure 5-11: BD-PSNR vs QP for RaceHorses

1

3

0.13
0.23

0

0.5

1

1.5

2

2.5

3

3.5

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

RaceHorses

original vs proposed

44

Figure 5-12: BD-PSNR vs QP for BasketballDrillText

0.46

0.61

0.08
0.11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

BasketballDrillText

original vs proposed

45

Figure 5-13: BD-PSNR vs QP for BQMall

1.5

0.58

0.27
0.33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

BQMall

original vs proposed

46

Figure 5-14: BD-PSNR vs QP for KristenAndSara

1.3

1.8

0.04

0.29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

KristenAndSara

original vs proposed

47

Figure 5-15: BD-PSNR vs QP for Kimono1

5.4.4 BD-bitrate [68]

It is a metric that determines the quality of an encoded video sequence. The

bitrate changes for the proposed method are negligible increments and can be seen in

Figure 5-16 through 5-20.

1.9

1.7

0.5

0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

Kimono1

original vs proposed

48

Figure 5-16: BD-bitrate vs QP for RaceHorses

0.014

0.037

0.059

0.082

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

22 27 32 37

B
D

-b
it

ra
te

 (
K

b
p

s)

QP

RaceHorses

original vs proposed

49

Figure 5-17: BD-bitrate vs QP for BasketballDrillText

0.046

0.061

0.08

0.11

0

0.02

0.04

0.06

0.08

0.1

0.12

22 27 32 37

B
D

-b
it

ra
te

 (
K

b
p

s)

QP

BasketballDrillText

original vs proposed

50

Figure 5-18: BD-bitrate vs QP for BQMall

0.027

0.035

0.058

0.096

0

0.02

0.04

0.06

0.08

0.1

0.12

22 27 32 37

B
D

-b
it

ra
te

 (
K

b
p

s)

QP

BQMall

original vs proposed

51

Figure 5-19: BD-bitrate vs QP for KristenAndSara

0.091

0.13

0.17

0.23

0

0.05

0.1

0.15

0.2

0.25

22 27 32 37

B
D

-b
it

ra
te

 (
K

b
p

s)

QP

KristenAndSara

original vs proposed

52

Figure 5-20: BD-bitrate vs QP for Kimono1

5.4.5 Rate Distortion plot (RD plot)

 It is used to evaluate the performance of an algorithm based on the

variation in PSNR value against bitrate. In the proposed method, there is negligible

change in PSNR and bitrate which can be seen in Figures 5-21 through Figure 5-25.

0.14

0.17

0.22

0.28

0

0.05

0.1

0.15

0.2

0.25

0.3

22 27 32 37

B
D

-b
it

ra
te

 (
K

b
p

s)

QP

Kimono1

original vs proposed

53

Figure 5-21: PSNR vs bitrate for RaceHorses

30

33

36

39

42

45

500 700 900 1100 1300 1500

P
SN

R
 (

d
B

)

Bitrate (kbps)

RaceHorses

Proposed

Original

54

Figure 5-22: PSNR vs bitrate for BasketballDrillText

30

33

36

39

42

45

1000 1500 2000 2500 3000 3500 4000 4500 5000

P
SN

R
 (

d
B

)

Bitrate (kbps)

BasketballDrillText

Proposed

Original

55

Figure 5-23: PSNR vs bitrate for BQMall

30

34

38

42

46

1000 1500 2000 2500 3000 3500 4000 4500 5000

P
SN

R
 (

d
B

)

Bitrate (kbps)

BQMall

Proposed

Original

56

Figure 5-24: PSNR vs bitrate for KristenAndSara

40

43

46

49

52

2000 4000 6000 8000 10000 12000

P
SN

R
 (

d
B

)

Bitrate (kbps)

KristenAndSara

Proposed

Original

57

Figure 5-25: PSNR vs bitrate for Kimono1

5.4.6 Summary

In this chapter, numerous results and graphs show the differences observed in

various parameters before and after the implementation of parallel programming in HEVC

using OpenMP. The results shown in terms of encoding time, percentage decrease in

encoding time, BD-PSNR, BD-bitrate and rate distortion plot for the standard test

sequences show the improvement in the implemented method.

40

43

46

49

3000 5000 7000 9000 11000 13000 15000 17000 19000

P
SN

R
 (

d
B

)

Bitrate (kbps)

Kimono1

Proposed

Original

58

Chapter 6

Conclusions and Future work

6.1 Conclusions

This thesis gives an introduction to parallel programming and utilizes this concept

to optimize motion estimation process for inter prediction in HEVC. Motion estimation in

inter prediction has significantly improved performance at the cost of increasing the

complexity and processing time. The proposed approach of using parallel programming

shows the possible performance improvement in HEVC by reducing the encoding time

with negligible reduction in image quality. Based on the results, it can be said that the

encoding time can by reduced by approximately 10-25% on an average as compared to

HM 13.0 [12] encoder. The image quality drops negligibly for various quantization

parameters while using the various test sequences. The proposed technique is also

evaluated by means of BD-PSNR, BD-bitrate, bitstream size and rate distortion plot.

6.2 Future Work

There are many different ways to achieve parallel computing. Through software,

several APIs are used to obtain parallel processing. OpenMP is just one of the several

APIs that are available to apply parallel programming. When more effective parallel

programming is to be implemented, dedicated hardware like GPU is used and APIs like

OpenCL and OpenCV are used to achieve parallel programming. Several software

development kits are available from Intel and AMD which can be used along with these

APIs. Also, NVIDIA invented a parallel computing model known as Computer Unified

Device Architecture (CUDA) [41] where the overheads and thread creation times are

minimized. When it comes to parallel programming using software, POSIX threads (p-

threads) and Windows threads APIs are also used in place of OpenMP, which are known

59

to reduce overhead in creation of threads and execute the program faster by pre-

allocating the threads.

60

Appendix A

Test Sequences

61

In order to obtain the results for the proposed method, the following test

sequences [16] have been used in this thesis.

A.1 Basketball Drill Text

62

A.2 BQ Mall

63

A.3 Racehorses

64

A.4 KristenAndSara

65

A.5 Kimono1

66

Appendix B

Test conditions

67

The reference software used for the proposed method was HM 13.0 [11]. This thesis was

implemented on a computer with Intel Core i7 processor running at 1.9 GHz and 8 GB memory

and a 64 bit Windows 7 OS.

68

Appendix C

BD-PSNR and BD-bitrate

69

BD-PSNR (Bjontegaard – PSNR) and BD-bit rate (Bjontegaard – bit rate)

metrics are used to compute the average gain in PSNR and the average per cent saving

in bit rate between two rate-distortion graphs respectively and is an ITU-T approved

metric [24]. This method was developed by Bjontegaard and is used to gauge

compression algorithms from a visual aspect in media industry and referenced by many

multimedia engineers. The MATLAB code is available online [25].

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

%BJONTEGAARD Bjontegaard metric calculation

% R1,PSNR1 - RD points for curve 1

% R2,PSNR2 - RD points for curve 2

% mode -

% 'dsnr' - average PSNR difference

% 'rate' - percentage of bitrate saving between data set 1 and

% data set 2

% avg_diff - the calculated Bjontegaard metric ('dsnr' or 'rate')

% (c) 2010 Giuseppe Valenzise

% convert rates in logarithmic units lR1 = log(R1);

lR2 = log(R2);

switch lower(mode)

case 'dsnr'

% PSNR method

p1 = polyfit(lR1,PSNR1,3);

p2 = polyfit(lR2,PSNR2,3);

% integration interval min_int = min([lR1; lR2]); max_int = max([lR1; lR2]);

70

% find integral p_int1 = polyint(p1); p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

 int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_diff = (int2-int1)/(max_int-min_int);

case 'rate'

% rate method

p1 = polyfit(PSNR1,lR1,3);

p2 = polyfit(PSNR2,lR2,3);

% integration interval

min_int = min([PSNR1; PSNR2]);

max_int = max([PSNR1; PSNR2]);

% find integral p_int1 = polyint(p1); p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_diff = (int2-int1)/(max_int-min_int);

case 'rate'

% rate method

p1 = polyfit(PSNR1,lR1,3);

p2 = polyfit(PSNR2,lR2,3);

% integration interval

min_int = min([PSNR1; PSNR2]);

max_int = max([PSNR1; PSNR2]);

% find integral

71

p_int1 = polyint(p1);

p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_exp_diff = (int2-int1)/(max_int-min_int);

avg_diff = (exp(avg_exp_diff)-1)*100;

end

72

Appendix D

Acronyms

73

API: Application Programming Interface

AVC: Advanced Video Coding

BD: Bjontegaard Delta

CABAC: Context Adaptive Binary Arithmetic Coding

CB: Coding Block

CPU: Central Processing Unit

CSVT: Circuits and Systems for Video Technology

CTB: Coding Tree Block

CTU: Coding Tree Unit

CU: Coding Unit

CUDA: Compute Unified Device Architecture

DCC: Data Compression Conference

DCT: Discrete Cosine Transform

DST: Discrete Sine Transform

FPGA: Field Programmable Gate Array

GOP: Group Of Pictures

GPU: Graphic Processing Unit

HEVC: High Efficiency Video Coding

ICIP: International Conference on Image Processing

ISO: International Organization for Standardization

ITU-T: International Telecommunication Union – Telecommunication Standardization

Sector

JCT-VC: Joint Collaborative Team on Video Coding

MC: Motion Compensation

MCP: Motion Compensated Predication

74

MPEG: Moving Picture Experts Group

MPL: Multimedia Processing Lab

NGVC: Next Generation Video Coding

OPENMP: Open Multiprocessing

PB: Prediction Block

POC: Phase-Only Correlation

PCM: Pulse Code Modulation

PU: Prediction Unit

SAO: Sample Adaptive Offset

SIMD: Single Instruction Multiple Data

TB: Transform Block

VCEG: Video Coding Experts Group

VCIP: Visual Communication and Image Processing

75

Appendix E

Code changes

76

/** \file TEncSearch.cpp
 \brief encoder search class

+ */

#include "TLibCommon/TypeDef.h"

#include "TLibCommon/TComRom.h"

#include "TLibCommon/TComMotionInfo.h"

#include "TEncSearch.h"

#include <math.h>

#include <omp.h>

//! \ingroup TLibEncoder

//! \{

int threadID;

static const TComMv s_acMvRefineH[9] =

{

 TComMv(0, 0), // 0

 TComMv(0, -1), // 1

 TComMv(0, 1), // 2

 TComMv(-1, 0), // 3

 TComMv(1, 0), // 4

 TComMv(-1, -1), // 5

77

 TComMv(1, -1), // 6

 TComMv(-1, 1), // 7

 TComMv(1, 1) // 8

};

static const TComMv s_acMvRefineQ[9] =

{

 TComMv(0, 0), // 0

 TComMv(0, -1), // 1

 TComMv(0, 1), // 2

 TComMv(-1, -1), // 5

 TComMv(1, -1), // 6

 TComMv(-1, 0), // 3

 TComMv(1, 0), // 4

 TComMv(-1, 1), // 7

 TComMv(1, 1) // 8

};

static const UInt s_auiDFilter[9] =

{

 0, 1, 0,

 2, 3, 2,

 0, 1, 0

};

78

TEncSearch::TEncSearch()

{

 m_ppcQTTempCoeffY = NULL;

 m_ppcQTTempCoeffCb = NULL;

 m_ppcQTTempCoeffCr = NULL;

 m_pcQTTempCoeffY = NULL;

 m_pcQTTempCoeffCb = NULL;

 m_pcQTTempCoeffCr = NULL;

#if ADAPTIVE_QP_SELECTION

 m_ppcQTTempArlCoeffY = NULL;

 m_ppcQTTempArlCoeffCb = NULL;

 m_ppcQTTempArlCoeffCr = NULL;

 m_pcQTTempArlCoeffY = NULL;

 m_pcQTTempArlCoeffCb = NULL;

 m_pcQTTempArlCoeffCr = NULL;

#endif

 m_puhQTTempTrIdx = NULL;

 m_puhQTTempCbf[0] = m_puhQTTempCbf[1] = m_puhQTTempCbf[2] = NULL;

 m_pcQTTempTComYuv = NULL;

 m_pcEncCfg = NULL;

 m_pcEntropyCoder = NULL;

 m_pTempPel = NULL;

 m_pSharedPredTransformSkip[0] = m_pSharedPredTransformSkip[1] =

m_pSharedPredTransformSkip[2] = NULL;

 m_pcQTTempTUCoeffY = NULL;

79

 m_pcQTTempTUCoeffCb = NULL;

 m_pcQTTempTUCoeffCr = NULL;

#if ADAPTIVE_QP_SELECTION

 m_ppcQTTempTUArlCoeffY = NULL;

 m_ppcQTTempTUArlCoeffCb = NULL;

 m_ppcQTTempTUArlCoeffCr = NULL;

#endif

 m_puhQTTempTransformSkipFlag[0] = NULL;

 m_puhQTTempTransformSkipFlag[1] = NULL;

 m_puhQTTempTransformSkipFlag[2] = NULL;

 setWpScalingDistParam(NULL, -1, REF_PIC_LIST_X);

}

TEncSearch::~TEncSearch()

{

 if (m_pTempPel)

 {

 delete [] m_pTempPel;

 m_pTempPel = NULL;

 }

 if (m_pcEncCfg)

 {

 const UInt uiNumLayersAllocated = m_pcEncCfg->getQuadtreeTULog2MaxSize()-

m_pcEncCfg->getQuadtreeTULog2MinSize()+1;

80

 for(UInt ui = 0; ui < uiNumLayersAllocated; ++ui)

 {

 delete[] m_ppcQTTempCoeffY[ui];

 delete[] m_ppcQTTempCoeffCb[ui];

 delete[] m_ppcQTTempCoeffCr[ui];

#if ADAPTIVE_QP_SELECTION

 delete[] m_ppcQTTempArlCoeffY[ui];

 delete[] m_ppcQTTempArlCoeffCb[ui];

 delete[] m_ppcQTTempArlCoeffCr[ui];

#endif

 m_pcQTTempTComYuv[ui].destroy();

 }

 }

 delete[] m_ppcQTTempCoeffY;

 delete[] m_ppcQTTempCoeffCb;

 delete[] m_ppcQTTempCoeffCr;

 delete[] m_pcQTTempCoeffY;

 delete[] m_pcQTTempCoeffCb;

 delete[] m_pcQTTempCoeffCr;

#if ADAPTIVE_QP_SELECTION

 delete[] m_ppcQTTempArlCoeffY;

 delete[] m_ppcQTTempArlCoeffCb;

 delete[] m_ppcQTTempArlCoeffCr;

 delete[] m_pcQTTempArlCoeffY;

 delete[] m_pcQTTempArlCoeffCb;

81

 delete[] m_pcQTTempArlCoeffCr;

#endif

 delete[] m_puhQTTempTrIdx;

 delete[] m_puhQTTempCbf[0];

 delete[] m_puhQTTempCbf[1];

 delete[] m_puhQTTempCbf[2];

 delete[] m_pcQTTempTComYuv;

 delete[] m_pSharedPredTransformSkip[0];

 delete[] m_pSharedPredTransformSkip[1];

 delete[] m_pSharedPredTransformSkip[2];

 delete[] m_pcQTTempTUCoeffY;

 delete[] m_pcQTTempTUCoeffCb;

 delete[] m_pcQTTempTUCoeffCr;

#if ADAPTIVE_QP_SELECTION

 delete[] m_ppcQTTempTUArlCoeffY;

 delete[] m_ppcQTTempTUArlCoeffCb;

 delete[] m_ppcQTTempTUArlCoeffCr;

#endif

 delete[] m_puhQTTempTransformSkipFlag[0];

 delete[] m_puhQTTempTransformSkipFlag[1];

 delete[] m_puhQTTempTransformSkipFlag[2];

 m_pcQTTempTransformSkipTComYuv.destroy();

 m_tmpYuvPred.destroy();

}

82

void TEncSearch::init(TEncCfg* pcEncCfg,

 TComTrQuant* pcTrQuant,

 Int iSearchRange,

 Int bipredSearchRange,

 Int iFastSearch,

 Int iMaxDeltaQP,

 TEncEntropy* pcEntropyCoder,

 TComRdCost* pcRdCost,

 TEncSbac*** pppcRDSbacCoder,

 TEncSbac* pcRDGoOnSbacCoder

)

{

 m_pcEncCfg = pcEncCfg;

 m_pcTrQuant = pcTrQuant;

 m_iSearchRange = iSearchRange;

 m_bipredSearchRange = bipredSearchRange;

 m_iFastSearch = iFastSearch;

 m_iMaxDeltaQP = iMaxDeltaQP;

 m_pcEntropyCoder = pcEntropyCoder;

 m_pcRdCost = pcRdCost;

 m_pppcRDSbacCoder = pppcRDSbacCoder;

 m_pcRDGoOnSbacCoder = pcRDGoOnSbacCoder;

 for (Int iDir = 0; iDir < 2; iDir++)

83

 {

 for (Int iRefIdx = 0; iRefIdx < 33; iRefIdx++)

 {

 m_aaiAdaptSR[iDir][iRefIdx] = iSearchRange;

 }

 }

 m_puiDFilter = s_auiDFilter + 4;

 // initialize motion cost

#if !FIX203

 m_pcRdCost->initRateDistortionModel(m_iSearchRange << 2);

#endif

 for(Int iNum = 0; iNum < AMVP_MAX_NUM_CANDS+1; iNum++)

 {

 for(Int iIdx = 0; iIdx < AMVP_MAX_NUM_CANDS; iIdx++)

 {

 if (iIdx < iNum)

 m_auiMVPIdxCost[iIdx][iNum] = xGetMvpIdxBits(iIdx, iNum);

 else

 m_auiMVPIdxCost[iIdx][iNum] = MAX_INT;

 }

 }

84

 initTempBuff();

 m_pTempPel = new Pel[g_uiMaxCUWidth*g_uiMaxCUHeight];

 const UInt uiNumLayersToAllocate = pcEncCfg->getQuadtreeTULog2MaxSize()-

pcEncCfg->getQuadtreeTULog2MinSize()+1;

 m_ppcQTTempCoeffY = new TCoeff*[uiNumLayersToAllocate];

 m_ppcQTTempCoeffCb = new TCoeff*[uiNumLayersToAllocate];

 m_ppcQTTempCoeffCr = new TCoeff*[uiNumLayersToAllocate];

 m_pcQTTempCoeffY = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight];

 m_pcQTTempCoeffCb = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

 m_pcQTTempCoeffCr = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

#if ADAPTIVE_QP_SELECTION

 m_ppcQTTempArlCoeffY = new Int*[uiNumLayersToAllocate];

 m_ppcQTTempArlCoeffCb = new Int*[uiNumLayersToAllocate];

 m_ppcQTTempArlCoeffCr = new Int*[uiNumLayersToAllocate];

 m_pcQTTempArlCoeffY = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight];

 m_pcQTTempArlCoeffCb = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

 m_pcQTTempArlCoeffCr = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

#endif

 const UInt uiNumPartitions = 1<<(g_uiMaxCUDepth<<1);

 m_puhQTTempTrIdx = new UChar [uiNumPartitions];

 m_puhQTTempCbf[0] = new UChar [uiNumPartitions];

 m_puhQTTempCbf[1] = new UChar [uiNumPartitions];

85

 m_puhQTTempCbf[2] = new UChar [uiNumPartitions];

 m_pcQTTempTComYuv = new TComYuv[uiNumLayersToAllocate];

 for(UInt ui = 0; ui < uiNumLayersToAllocate; ++ui)

 {

 m_ppcQTTempCoeffY[ui] = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight];

 m_ppcQTTempCoeffCb[ui] = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

 m_ppcQTTempCoeffCr[ui] = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

#if ADAPTIVE_QP_SELECTION

 m_ppcQTTempArlCoeffY[ui] = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight];

 m_ppcQTTempArlCoeffCb[ui] = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

 m_ppcQTTempArlCoeffCr[ui] = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight>>2];

#endif

 m_pcQTTempTComYuv[ui].create(g_uiMaxCUWidth, g_uiMaxCUHeight);

 }

 m_pSharedPredTransformSkip[0] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_pSharedPredTransformSkip[1] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_pSharedPredTransformSkip[2] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_pcQTTempTUCoeffY = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_pcQTTempTUCoeffCb = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_pcQTTempTUCoeffCr = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT];

#if ADAPTIVE_QP_SELECTION

 m_ppcQTTempTUArlCoeffY = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_ppcQTTempTUArlCoeffCb = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT];

 m_ppcQTTempTUArlCoeffCr = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT];

#endif

86

 m_pcQTTempTransformSkipTComYuv.create(g_uiMaxCUWidth, g_uiMaxCUHeight);

 m_puhQTTempTransformSkipFlag[0] = new UChar [uiNumPartitions];

 m_puhQTTempTransformSkipFlag[1] = new UChar [uiNumPartitions];

 m_puhQTTempTransformSkipFlag[2] = new UChar [uiNumPartitions];

 m_tmpYuvPred.create(MAX_CU_SIZE, MAX_CU_SIZE);

}

#if FASTME_SMOOTHER_MV

#define FIRSTSEARCHSTOP 1

#else

#define FIRSTSEARCHSTOP 0

#endif

#define TZ_SEARCH_CONFIGURATION

\

const Int iRaster = 5; /* TZ soll von aussen ?ergeben werden */

\

const Bool bTestOtherPredictedMV = 0; \

const Bool bTestZeroVector = 1; \

const Bool bTestZeroVectorStart = 0; \

const Bool bTestZeroVectorStop = 0; \

const Bool bFirstSearchDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 =

xTZ8PointSquareSearch */ \

87

const Bool bFirstSearchStop = FIRSTSEARCHSTOP;

\

const UInt uiFirstSearchRounds = 3; /* first search stop X rounds after best match

(must be >=1) */ \

const Bool bEnableRasterSearch = 1; \

const Bool bAlwaysRasterSearch = 0; /* ===== 1: BETTER but factor 2 slower =====

*/ \

const Bool bRasterRefinementEnable = 0; /* enable either raster refinement or star

refinement */ \

const Bool bRasterRefinementDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 =

xTZ8PointSquareSearch */ \

const Bool bStarRefinementEnable = 1; /* enable either star refinement or raster

refinement */ \

const Bool bStarRefinementDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 =

xTZ8PointSquareSearch */ \

const Bool bStarRefinementStop = 0; \

const UInt uiStarRefinementRounds = 2; /* star refinement stop X rounds after best

match (must be >=1) */ \

__inline Void TEncSearch::xTZSearchHelp(TComPattern* pcPatternKey,

IntTZSearchStruct& rcStruct, const Int iSearchX, const Int iSearchY, const UChar

ucPointNr, const UInt uiDistance)

{

 UInt uiSad;

88

 Pel* piRefSrch;

 piRefSrch = rcStruct.piRefY + iSearchY * rcStruct.iYStride + iSearchX;

 //-- jclee for using the SAD function pointer

 m_pcRdCost->setDistParam(pcPatternKey, piRefSrch, rcStruct.iYStride,

m_cDistParam);

 // fast encoder decision: use subsampled SAD when rows > 8 for integer ME

 if (m_pcEncCfg->getUseFastEnc())

 {

 if (m_cDistParam.iRows > 8)

 {

 m_cDistParam.iSubShift = 1;

 }

 }

 setDistParamComp(0); // Y component

 // distortion

 m_cDistParam.bitDepth = g_bitDepthY;

 uiSad = m_cDistParam.DistFunc(&m_cDistParam);

 // motion cost

89

 uiSad += m_pcRdCost->getCost(iSearchX, iSearchY);

 if(uiSad < rcStruct.uiBestSad)

 {

 rcStruct.uiBestSad = uiSad;

 rcStruct.iBestX = iSearchX;

 rcStruct.iBestY = iSearchY;

 rcStruct.uiBestDistance = uiDistance;

 rcStruct.uiBestRound = 0;

 rcStruct.ucPointNr = ucPointNr;

 }

}

__inline Void TEncSearch::xTZ2PointSearch(TComPattern* pcPatternKey,

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB)

{

 Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();

 Int iSrchRngHorRight = pcMvSrchRngRB->getHor();

 Int iSrchRngVerTop = pcMvSrchRngLT->getVer();

 Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();

 // 2 point search, // 1 2 3

 // check only the 2 untested points // 4 0 5

 // around the start point // 6 7 8

 Int iStartX = rcStruct.iBestX;

90

 Int iStartY = rcStruct.iBestY;

 switch(rcStruct.ucPointNr)

 {

 case 1:

 {

 if ((iStartX - 1) >= iSrchRngHorLeft)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY, 0, 2);

 }

 if ((iStartY - 1) >= iSrchRngVerTop)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2);

 }

 }

 break;

 case 2:

 {

 if ((iStartY - 1) >= iSrchRngVerTop)

 {

 if ((iStartX - 1) >= iSrchRngHorLeft)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2);

 }

 if ((iStartX + 1) <= iSrchRngHorRight)

 {

91

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2);

 }

 }

 }

 break;

 case 3:

 {

 if ((iStartY - 1) >= iSrchRngVerTop)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2);

 }

 if ((iStartX + 1) <= iSrchRngHorRight)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2);

 }

 }

 break;

 case 4:

 {

 if ((iStartX - 1) >= iSrchRngHorLeft)

 {

 if ((iStartY + 1) <= iSrchRngVerBottom)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2);

 }

92

 if ((iStartY - 1) >= iSrchRngVerTop)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2);

 }

 }

 }

 break;

 case 5:

 {

 if ((iStartX + 1) <= iSrchRngHorRight)

 {

 if ((iStartY - 1) >= iSrchRngVerTop)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2);

 }

 if ((iStartY + 1) <= iSrchRngVerBottom)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2);

 }

 }

 }

 break;

 case 6:

 {

 if ((iStartX - 1) >= iSrchRngHorLeft)

93

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY , 0, 2);

 }

 if ((iStartY + 1) <= iSrchRngVerBottom)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2);

 }

 }

 break;

 case 7:

 {

 if ((iStartY + 1) <= iSrchRngVerBottom)

 {

 if ((iStartX - 1) >= iSrchRngHorLeft)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2);

 }

 if ((iStartX + 1) <= iSrchRngHorRight)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2);

 }

 }

 }

 break;

 case 8:

94

 {

 if ((iStartX + 1) <= iSrchRngHorRight)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2);

 }

 if ((iStartY + 1) <= iSrchRngVerBottom)

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2);

 }

 }

 break;

 default:

 {

 assert(false);

 }

 break;

 } // switch(rcStruct.ucPointNr)

}

__inline Void TEncSearch::xTZ8PointSquareSearch(TComPattern* pcPatternKey,

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB,

const Int iStartX, const Int iStartY, const Int iDist)

{

 Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();

 Int iSrchRngHorRight = pcMvSrchRngRB->getHor();

95

 Int iSrchRngVerTop = pcMvSrchRngLT->getVer();

 Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();

 // 8 point search, // 1 2 3

 // search around the start point // 4 0 5

 // with the required distance // 6 7 8

 assert(iDist != 0);

 const Int iTop = iStartY - iDist;

 const Int iBottom = iStartY + iDist;

 const Int iLeft = iStartX - iDist;

 const Int iRight = iStartX + iDist;

 rcStruct.uiBestRound += 1;

 if (iTop >= iSrchRngVerTop) // check top

 {

 if (iLeft >= iSrchRngHorLeft) // check top left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft, iTop, 1, iDist);

 }

 // top middle

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iTop, 2, iDist);

 if (iRight <= iSrchRngHorRight) // check top right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight, iTop, 3, iDist);

96

 }

 } // check top

 if (iLeft >= iSrchRngHorLeft) // check middle left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist);

 }

 if (iRight <= iSrchRngHorRight) // check middle right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight, iStartY, 5, iDist);

 }

 if (iBottom <= iSrchRngVerBottom) // check bottom

 {

 if (iLeft >= iSrchRngHorLeft) // check bottom left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft, iBottom, 6, iDist);

 }

 // check bottom middle

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist);

 if (iRight <= iSrchRngHorRight) // check bottom right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight, iBottom, 8, iDist);

 }

 } // check bottom

}

97

__inline Void TEncSearch::xTZ8PointDiamondSearch(TComPattern* pcPatternKey,

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB,

const Int iStartX, const Int iStartY, const Int iDist)

{

 Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();

 Int iSrchRngHorRight = pcMvSrchRngRB->getHor();

 Int iSrchRngVerTop = pcMvSrchRngLT->getVer();

 Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();

 // 8 point search, // 1 2 3

 // search around the start point // 4 0 5

 // with the required distance // 6 7 8

 assert (iDist != 0);

 const Int iTop = iStartY - iDist;

 const Int iBottom = iStartY + iDist;

 const Int iLeft = iStartX - iDist;

 const Int iRight = iStartX + iDist;

 rcStruct.uiBestRound += 1;

 if (iDist == 1) // iDist == 1

 {

98

 if (iTop >= iSrchRngVerTop) // check top

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iTop, 2, iDist);

 }

 if (iLeft >= iSrchRngHorLeft) // check middle left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist);

 }

 if (iRight <= iSrchRngHorRight) // check middle right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight, iStartY, 5, iDist

);

 }

 if (iBottom <= iSrchRngVerBottom) // check bottom

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iBottom, 7,

iDist);

 }

 }

 else // if (iDist != 1)

 {

 if (iDist <= 8)

 {

 const Int iTop_2 = iStartY - (iDist>>1);

 const Int iBottom_2 = iStartY + (iDist>>1);

99

 const Int iLeft_2 = iStartX - (iDist>>1);

 const Int iRight_2 = iStartX + (iDist>>1);

 if (iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft &&

 iRight <= iSrchRngHorRight && iBottom <=

iSrchRngVerBottom) // check border

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iTop,

2, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft_2,

iTop_2, 1, iDist>>1);

 xTZSearchHelp(pcPatternKey, rcStruct, iRight_2,

iTop_2, 3, iDist>>1);

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft,

iStartY, 4, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iRight,

iStartY, 5, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft_2,

iBottom_2, 6, iDist>>1);

 xTZSearchHelp(pcPatternKey, rcStruct, iRight_2,

iBottom_2, 8, iDist>>1);

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX,

iBottom, 7, iDist);

 }

 else // check border

100

 {

 // changes made here

 #pragma omp sections nowait

 {

 #pragma omp section

 {

 if (iTop >= iSrchRngVerTop) // check top

 {

 xTZSearchHelp(pcPatternKey, rcStruct,

iStartX, iTop, 2, iDist);

 }

 if (iTop_2 >= iSrchRngVerTop) // check half top

 {

 if (iLeft_2 >= iSrchRngHorLeft) // check half

left

 {

 xTZSearchHelp(pcPatternKey,

rcStruct, iLeft_2, iTop_2, 1, (iDist>>1));

 }

 if (iRight_2 <= iSrchRngHorRight) // check

half right

 {

 xTZSearchHelp(pcPatternKey,

rcStruct, iRight_2, iTop_2, 3, (iDist>>1));

 }

101

 } // check half top

 }

 #pragma omp section

 {

 if (iLeft >= iSrchRngHorLeft) // check left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft,

iStartY, 4, iDist);

 }

 if (iRight <= iSrchRngHorRight) // check right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight,

iStartY, 5, iDist);

 }

 if (iBottom_2 <= iSrchRngVerBottom) // check half

bottom

 {

 if (iLeft_2 >= iSrchRngHorLeft) // check half

left

 {

 xTZSearchHelp(pcPatternKey,

rcStruct, iLeft_2, iBottom_2, 6, (iDist>>1));

 }

 if (iRight_2 <= iSrchRngHorRight) // check

half right

102

 {

 xTZSearchHelp(pcPatternKey,

rcStruct, iRight_2, iBottom_2, 8, (iDist>>1));

 }

 } // check half bottom

 }

 #pragma omp section

 {

 if (iBottom <= iSrchRngVerBottom) // check bottom

 {

 xTZSearchHelp(pcPatternKey, rcStruct,

iStartX, iBottom, 7, iDist);

 }

 }

 } // check border

 }

 }

 else // iDist > 8

 {

 if (iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft &&

 iRight <= iSrchRngHorRight && iBottom <=

iSrchRngVerBottom) // check border

 {

103

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX, iTop,

0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft, iStartY,

0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iRight,

iStartY, 0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct, iStartX,

iBottom, 0, iDist);

 for (Int index = 1; index < 4; index++)

 {

 Int iPosYT = iTop + ((iDist>>2) * index);

 Int iPosYB = iBottom - ((iDist>>2) * index);

 Int iPosXL = iStartX - ((iDist>>2) * index);

 Int iPosXR = iStartX + ((iDist>>2) * index);

 xTZSearchHelp(pcPatternKey, rcStruct,

iPosXL, iPosYT, 0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct,

iPosXR, iPosYT, 0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct,

iPosXL, iPosYB, 0, iDist);

 xTZSearchHelp(pcPatternKey, rcStruct,

iPosXR, iPosYB, 0, iDist);

 }

 }

 else // check border

104

 {

 #pragma omp sections nowait

 {

 #pragma omp section

 { if (iTop >= iSrchRngVerTop) // check top

 {

 xTZSearchHelp(pcPatternKey, rcStruct,

iStartX, iTop, 0, iDist);

 }

 }

 #pragma omp section

 {

 if (iLeft >= iSrchRngHorLeft) // check left

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iLeft,

iStartY, 0, iDist);

 }

 }

 #pragma omp section

 {

 if (iRight <= iSrchRngHorRight) // check right

 {

 xTZSearchHelp(pcPatternKey, rcStruct, iRight,

iStartY, 0, iDist);

 }

105

 }

 #pragma omp section

 {

 if (iBottom <= iSrchRngVerBottom) // check bottom

 {

 xTZSearchHelp(pcPatternKey, rcStruct,

iStartX, iBottom, 0, iDist);

 }

 }

 }

 //changes made here

 #pragma omp parallel for

 for (Int index = 1; index < 4; index++)

 {

 Int iPosYT = iTop + ((iDist>>2) *

index);

 Int iPosYB = iBottom - ((iDist>>2) *

index);

 Int iPosXL = iStartX - ((iDist>>2) *

index);

 Int iPosXR = iStartX + ((iDist>>2) *

index);

 #pragma omp sections nowait

 {

106

 #pragma omp section

 {

 if (iPosYT >= iSrchRngVerTop) //

check top

 {

 if (iPosXL >= iSrchRngHorLeft

) // check left

 {

 xTZSearchHelp(

pcPatternKey, rcStruct, iPosXL, iPosYT, 0, iDist);

 }

 if (iPosXR <=

iSrchRngHorRight) // check right

 {

 xTZSearchHelp(

pcPatternKey, rcStruct, iPosXR, iPosYT, 0, iDist);

 }

 } // check top

 }

 #pragma omp section

 {

 if (iPosYB <= iSrchRngVerBottom) //

check bottom

 {

107

 if (iPosXL >= iSrchRngHorLeft

) // check left

 {

 xTZSearchHelp(

pcPatternKey, rcStruct, iPosXL, iPosYB, 0, iDist);

 }

 if (iPosXR <=

iSrchRngHorRight) // check right

 {

 xTZSearchHelp(

pcPatternKey, rcStruct, iPosXR, iPosYB, 0, iDist);

 }

 } // check bottom

 }

 }

 } // for ...

 } // check border

 } // iDist <= 8

 } // iDist == 1

 }

108

References

[1] G.J. Sullivan et al, “Overview of the high efficiency video coding (HEVC) standard”,

IEEE Trans. CSVT, vol. 22, pp.1649-1668, Dec.2012.

[2] C.C.Chi et al, “Parallel scalability and efficiency of HEVC parallelization approaches”,

IEEE Trans. CSVT, vol. 22, pp.1827-1838, Dec.2012.

[3] J. Lainema et al,”Intra coding of the HEVC standard”, IEEE Trans. CSVT, vol.22,

pp.1792-1801, Dec.2012.

[4] F. Bossen et al, “HEVC complexity and implementation analysis”, IEEE Trans. CSVT,

vol. 22, pp.1685-1696, Dec.2012.

[5] P.Hanhart et al, “Subjective quality evaluation of the upcoming HEVC video

compression standard” SPIE Applications of digital image processing XXXV, vol.8499,

pp.8499-30, Aug.2012.

[6] J.-R Ohm et al, “Comparison of the coding efficiency of video coding standards-

including high efficiency video coding (HEVC)” , IEEE Trans. CSVT , vol.22, pp.1669-

1684, Dec.2012.

[7] X. Zhang, S. Liu and S. Lei,”Intra mode coding in HEVC standard”, Visual

Communications and Image Processing, VCIP 2012, pp. 1-6, San Diego, CA, Nov.2012.

[8] Y.Duan, “An optimized real time multi-thread HEVC decoder”, Visual Communications

and Image Processing, VCIP 2012, San Diego, CA, Nov.2012.

[9] G. Correa et al, “Performance and computational complexity assessment of high

efficiency video encoders”, IEEE Trans.CSVT, vol.22, pp.1899-1909, Dec.2012.

[10] A.Saxena, F. Fernandes and Y. Reznik, "Fast transforms for intra-prediction-based

image and video coding,” in Proc. IEEE Data Compression Conference (DCC’13), pp.13-

22, Snowbird, UT, March 2013.

109

[11] K.R.Rao, D.N.Kim and J.J.Hwang, "Video Coding Standards: AVS China,

H.264/MPEG-4 Part10, HEVC, VP6, DIRAC and VC-1", Springer, 2014.

[12] HEVC open source software (encoder/decoder)

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-13.0

[13]Introduction to parallel computing

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

[14] Information about quad tree structure of HEVC

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

[15] Guide to OpenMP: Easy multithreading programming for C++

http://bisqwit.iki.fi/story/howto/openmp/

[16] Website for downloading test sequence for research purposes

http://media.xiph.org/video/derf/

[17] Information on developments in HEVC NGVC- Next generation video coding

http://bisqwit.iki.fi/story/howto/openmp/

[18] H.265 standard finalized

http://www.extremetech.com/extreme/147000-h-265-standard-finalized-could-finally-

replace-mpeg-2-and-usher-in-uhdtv

[19] F. Bossen, D. Flynn and K. Suhring (July 2012), “HEVC reference software manual

online available:

http://phenix.intevry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip

 [20] JCT-VC documents are publicly available at http://ftp3.itu.ch/av-arch/jctvc-site and

http://phenix.it-sudparis.eu/jct/

[21] T.L Silva et al,”HEVC intra coding acceleration based on tree inter-level mode

correlation”, SPA 2013, Poznan, Poland, Sep.2013

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-13.0
https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
http://bisqwit.iki.fi/story/howto/openmp/
http://media.xiph.org/video/derf/
http://bisqwit.iki.fi/story/howto/openmp/
http://www.extremetech.com/extreme/147000-h-265-standard-finalized-could-finally-replace-mpeg-2-and-usher-in-uhdtv
http://www.extremetech.com/extreme/147000-h-265-standard-finalized-could-finally-replace-mpeg-2-and-usher-in-uhdtv
http://phenix.intevry.fr/jct/doc_end_user/documents/6_Torino/wg11/JCTVC-F634-v2.zip
http://ftp3.itu.ch/av-arch/jctvc-site
http://phenix.it-sudparis.eu/jct/

110

[22] A. Saxena and F. Fernandes, “Mode dependent DCT/DST for intra prediction in

block based image/video coding”, IEEE ICIP, pp. 1685-1688, Sept. 2011.

[23] H. Zhang and Z. Ma, ”Fast intra prediction for high efficiency video coding ”, Pacific

Rim Conf. on Multimedia, PCM2012, Singapore, Dec.2012.

[24] M. Zhang, C. Zhao and J. Xu, ”An adaptive fast intra mode decision in HEVC ”, IEEE

ICIP 2012, pp.221-224, Orlando, FL, Sept.- Oct.2012.

[25] K. Chen et al,”Efficient SIMD optimization of HEVC encoder over X86 processors”,

APSIPA, pp. 1732-1745, Los Angeles, CA, Dec. 2012.

[26] Y. Kim et al, “A fast intra-prediction method in HEVC using rate-distortion estimation

based on Hadamard transform”, ETRI Journal, vol.35, #2, pp.270-280, Apr.2013.

[27] T. Wiegand et al., ”Overview of the H.264”, IEEE Trans. Circuits Syst. Video

Technol., vol. 13, no. 7, pp. 560-576, July 2003.

[28] M. Khan et al, “An adaptive complexity reduction scheme with fast prediction unit

decision for HEVC Intra encoding”, IEEE ICIP, pp. 1578-1582, Sept. 2013.

[29] Il-Koo Kim et al, "HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder

Description", JCTVC-K1002-vl, 11th Meeting: Shanghai, CN, 10-19 October, 2012.

[30] "Introduction to the issue on video coding: HDTV and beyond IEEE journal of

selected topics in Signal Processing", vol 7, Dec 2013.

[31] G.J.Sullivan, et al, "HEVC Range Extensions Draft 5", JCT-VC, version 1, Geneva,

Nov. 2013.

[32] Official website for information on OpenMP

http://openmp.org/

[33] M.Mrak, A. Gabriellini and D.Flynn, “Parallel processing for combined intra prediction

in high efficiency video coding”, IEEE ICIP, pp.3489 -3492, Sept. 2011.

http://openmp.org/

111

[34] J.Rehman and Y. Zhang,”Fast Intra Prediction mode decision using parallel

processing”, Proceedings of the fourth international conference on machine learning and

cybernetics, pp.5094 -5098, Aug. 2005

[35] Overhead in openMP parameters http://www.embedded.com/design/mcus-

processors-and-socs/4007155/Using-OpenMP-for-programming-parallelthreads-in-

multicore-applications-Part-2

[36] X. Li et al, “Rate-Complexity-Distortion evaluation for hybrid video coding”, IEEE

Transactions on CSVT, vol. 21, pp. 957- 970, July 2011.

[37] V.Sze, M.Budagavi and G.J. Sullivan, “High Efficiency Video Coding (HEVC) -

Algorithms and Architectures”, Springer, 2014.

[38] S.N.Agathos, P. Hadjidoukas and V. Dimakopoulos,“Task based execution of Nested

OpenMP loops”, Springer, 2012.

[39] R.Chandra et al, “Parallel programming in OpenMP”, Academic Press, 2001.

[40] R.Eigenmann and B. Supinski, “OpenMP in a New Era of Parallelism”, 4th

International Workshop, IWOMP 2008 West Lafayette, IN, USA proceedings, Springer

2008.

[41] Getting Started with CUDA

http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_

NVISION08.pdf

[42] Multithreaded programming guide

http://docs.oracle.com/cd/E19253-01/816-5137/ggedn/index.html

[43] Information about Pthread

http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread.h.html

[44] Introduction to parallel programming

https://computing.llnl.gov/tutorials/parallel_comp/

http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-parallelthreads-in-multicore-applications-Part-2
http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-parallelthreads-in-multicore-applications-Part-2
http://www.embedded.com/design/mcus-processors-and-socs/4007155/Using-OpenMP-for-programming-parallelthreads-in-multicore-applications-Part-2
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://docs.oracle.com/cd/E19253-01/816-5137/ggedn/index.html
http://pubs.opengroup.org/onlinepubs/007908775/xsh/pthread.h.html
https://computing.llnl.gov/tutorials/parallel_comp/

112

[45] Introduction to parallel programming and MapReduce

https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallel

ProgrammingAndMapReduce.pdf

[46] Information about shared memory

http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html

[47] Definition of thread

http://www.techopedia.com/definition/27857/thread

[48] Information about message passing interface

http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface

[49] Information about Data parallel programming model

http://insidehpc.com/2006/03/what-is-data-parallel-programming/

[50] Information about Load imbalance

https://software.intel.com/en-us/articles/load-balancing-between-threads

[51] Description about race around condition and deadlocks

http://support.microsoft.com/kb/317723

[52] Information and example for deadlock

http://www.roseindia.net/java/thread/deadlocks.shtml

[53] Open MP components

http://www.capsl.udel.edu/courses/cpeg421/2012/slides/openmp_tutorial_04_06_2012.pd

f

[54] OpenMP Run time library routines

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-

lin/GUID-D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm

[55] OpenMP environment variable

http://msdn.microsoft.com/en-us/library/6sfk977f.aspx

https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
https://courses.cs.washington.edu/courses/cse490h/07wi/readings/IntroductionToParallelProgrammingAndMapReduce.pdf
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html
http://www.techopedia.com/definition/27857/thread
http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface
http://insidehpc.com/2006/03/what-is-data-parallel-programming/
https://software.intel.com/en-us/articles/load-balancing-between-threads
http://support.microsoft.com/kb/317723
http://www.roseindia.net/java/thread/deadlocks.shtml
http://www.capsl.udel.edu/courses/cpeg421/2012/slides/openmp_tutorial_04_06_2012.pdf
http://www.capsl.udel.edu/courses/cpeg421/2012/slides/openmp_tutorial_04_06_2012.pdf
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-D3FC1F0B-DD99-4176-B9B5-56EEE72E81A7.htm
http://msdn.microsoft.com/en-us/library/6sfk977f.aspx

113

[56] OpenMP tutorial

https://computing.llnl.gov/tutorials/openMP/#Abstract

[57] Basics of video: http://lea.hamradio.si/~s51kq/V-BAS.HTM

[58] I. Richardson, “the H.264 advanced video compression standard”, Wiley, 2010.

[59] K. Choi et al, “Fast coding unit decision method based on coding tree

pruning for high efficiency video coding”, Proc. SPIE Optical Engineering, vol. 51,

030502 , March 2012.

[60] JCT-VC documents can be found in JCT-VC document management system

http://phenix.int-evry.fr/ict

[61] Thesis by S.Gangavati on “Complexity reduction of H.264 using parallel

programming” which describes significant speed-up in encoding time on GPU using

CUDA and CPU combined than on CPU by data and task parallelization, 2012. Access

from www.uta.edu/faculty/krrrao/dip

[62] Thesis by T.Saxena on “Reducing the encoding time of H.264 Baseline profile using

parallel programming techniques” which describes task based parallelism using OpenMP

software without any degradation of quality, 2012. Access from

www.uta.edu/faculty/krrrao/dip

[63] Thesis by S.Muniyappa on “Implementation of complexity reduction algorithm for

intra mode selection in H.264/AVC Video coding” which describes complexity reduction

algorithm which is much faster than JM reference software, 2011. Access from

www.uta.edu/faculty/krrrao/dip

[64] Thesis by T.Sathe on “Complexity reduction in H.264 encoder using OpenMP” which

basically makes use of parallel processing approach using threads that are managed by

OpenMP, 2012. Access from www.uta.edu/faculty/krrrao/dip

https://computing.llnl.gov/tutorials/openMP/#Abstract
http://lea.hamradio.si/~s51kq/V-BAS.HTM
http://phenix.int-evry.fr/ict
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip

114

[65] Thesis by P.K.Gajalla on “Efficient HEVC lossless coding using sample based

angular intra prediction” which describes use of sample based angular prediction

approach which can be used for better intra prediction accuracy compared to HEVC

block angular intra prediction, 2013. Access from www.uta.edu/faculty/krrrao/dip

[66] Thesis by Parashar Nayana Karunakar on Implementation of an out-of-the-loop

post-processing technique for HEVC compressed depth maps, 2013. Access from

www.uta.edu/faculty/krrrao/dip

[67] Thesis by Sapna Vasudevan on Implementation of ROT and fast intra prediction in

HEVC, 2013. Access from www.uta.edu/faculty/krrrao/dip

[68] G. Bjontegaard, “Calculation of average PSNR differences between

RD-curves”, Q6/SG16, VCEG, April 2013.

http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip
http://www.uta.edu/faculty/krrrao/dip

115

Biographical Information

Karthik Suresh was born in Chikkamagaluru, Karnataka, India in1990. After

completing his schooling at Sadvidya School, Mysuru in 2008, he went on to obtain his

Bachelor’s degree in Electrical and Electronics Engineering from The National Institute of

Engineering, Mysuru in the year 2012.

He joined University of Texas at Arlington to pursue his M.S in Electrical

Engineering in Fall 2012. This was around the time he joined the Multimedia Processing

Lab. He is currently working as an intern in Intel Corp.

