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Abstract 

APPLICATION OF OPENMP IN COMPLEXITY REDUCTION OF INTER FRAME  

CODING IN HEVC 

 
Karthik Suresh 

 

University of Texas at Arlington, 2014 

 

Supervising Professor: K.R.Rao 
 

The International Telecommunication Union (ITU-T), Video Coding Experts 

Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) standardization 

organizations working in a partnership known as the Joint Collaborative Team on Video 

Coding (JCT-VC) came up with the latest video project known as the High Efficiency 

Video Coding (HEVC) standard. This standard, also known as the H.265 standard, is 

based on the same architecture as that of the more widely implemented H.264/AVC 

(Advance Video Coding). The HEVC has incorporated many improvements like increased 

bitrate reduction, increased coding efficiency [7] and compression efficiency, but, at the 

cost of increased complexity. The motion estimation (ME) process in the encoder is the 

most time-consuming part in both H.264 and the HEVC.  

The purpose of this thesis is to make use of parallel programming to achieve 

faster encoding times with minimal losses. There are certain conditional statements in the 

HM 13.0 code, which run in a sequential pattern for a long time. Those statements which 

are having less or no dependencies are chosen as they are ideal for parallel 

programming. The xTZSearch and TZ8PointDiamondSearch patterns in HM13.0 consist 

of several conditional statements without dependencies. Running those statements in 

parallel allows the program to check for different conditions simultaneously and jump 

directly to the next step rather than checking them one-by-one. OpenMP is the API used 
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to achieve parallel computing by making use of the multicore processor in the computer 

used to run the test sequences. As expected, there was a reduction of 10% - 25% in 

encoding time when compared to the original HM13.0. The proposed method was 

evaluated using different metrics like encoding time, percentage reduction in encoding 

time, BD-PSNR (Bjontegaard Delta Peak Signal to Noise Ratio), BD-bitrate (Bjontegaard 

Delta bitrate) and RD (rate distortion). Experimental results based on several video 

sequences suggest the negligible change in BD-PSNR and BD-bitrate with the 

implementation of the proposed method. It can be concluded that, with the help of parallel 

programming, the encoding time of the HEVC encoder can be reduced by a significant 

amount.  
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Chapter 1  

Introduction 

 
1.1 Video Compression Basics 

        A video is a sequence of images put in a proper order. In turn, an image 

consists of pixels or picture elements which are known as the basic elements defining the 

picture. The number of pixels along the horizontal and vertical axes gives the respective 

width and height of the image. Each pixel is also characterized by its color and 

brightness. 

        The sequence of images are put together in an order and displayed in quick 

succession to create the effect of movement of images, which is known as a video. The 

individual images are also known as frames, and a collection of sequential frames 

constitute a video. The rate at which each frame is displayed is known as frame rate, 

which is another important characteristic of a given video. 

        Video compression is mostly about transmitting information by making use 

of the redundancies existing between the images. The redundancies that are exploited 

are temporal and spatial redundancies. In a sequence of images used for a video, there 

is very little change between each of the images. Temporal redundancy exploits this 

characteristic for compression purposes. When it comes to a single frame or image, the 

neighboring pixels for a given pixel will usually have same or similar information. Spatial 

redundancy exploits this property for compression.  

        There are three types of frames: intra frame or I – frame, inter frame or P – 

frame (predicted frame) and the bi-directionally interpolated frame or B – frame. If a 

frame is compressed using its own pixels for reference, then it is an I – frame. If an I – 

frame is used as the reference frame for a sequence of successive frames; those frames 
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are called P – frames. If a frame is compressed by considering both I – frame (previous) 

and P – frames (future) for reference, then it is called a B – frame.  

 

Figure 1-1: I, P and B – frames in a sequence of images [58] 

 

 

1.2 Necessity for video compression 

        Usually, videos are large sequences of images that take up a huge amount 

of memory to store. The bandwidth required to transmit the video is also huge. Hence, 

there is a need to compress these videos before being transmitted. By developing better 

compression techniques, the memory and bandwidth requirements needed for video 

transmission and storage can be reduced. This makes transmission of data in 

applications like online video streaming, video telephony, etc. easier and economical. 

        There are several compression schemes that were developed in order to 

address the aforementioned problem. HEVC [1] [12] [17] [18] is a new video compression 

scheme that is projected to be widely used around the world soon. Compared to its 

predecessor H.264 [24] [27], HEVC has about 50% bitrate savings and more paralleling 

options while maintaining the same visual quality [5].  
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1.2 Thesis Outline 

Chapter 2 details the HEVC compression scheme and gives an overview of the 

HEVC encoder. Chapter 3 describes the existing inter frame prediction process and a 

proposal of faster method to do this using paralleling of code structure. Chapter 4 shows 

the results and conclusions comparing both the existing and the proposed faster scheme. 

Chapter 5 contains ideas which can be used as future work in improving the performance 

of the encoder.  

 

 

 

Figure 1-2: Evolution of video compression standards [1] 
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Chapter 2  

High Efficiency Video Coding 

2.1 HEVC design and features 

HEVC [1] [12] [17] [18] is the latest video compression standard developed by 

the Joint Collaborative Team on Video Coding (JCT –VC) during early 2013. It has 3 

profiles – main (for 8-bit data), main10 (for 10-bit data) and 4:2:2, 4:4:4 formats (Figure 2-

5), bit depths higher than 10 – bit, scalability, and 3D video are being finalized in 2014. 

Ultra HD, stereo and multi vision encoding, 3-D video and scalable video coding, 

which are few of the trending topics in the multimedia processing industry can make use 

of HEVC and benefit extensively in areas like parallel processing [2][6] using latest 

architectures, bit-rate savings, coding efficiency and many more. Concepts like wave 

front parallel processing, tiles and slices are introduced in the new standard. Flexible 

prediction modes, transform block sizes, improved interpolation and deblocking filters, 

and better partitioning options make HEVC standout from its predecessor, the H.264 [27]. 

A combined result of optimizing many processes in the standard led to all these 

improvements in HEVC. But, these advantages come at the price of higher encoder 

complexity. Basic design of the HEVC [1] standard remained the same as that of the 

H.264/AVC with the block based hybrid coding approach being a significant factor in 

temporal and spatial dependencies. The basic description of the HEVC encoder is shown 

in Figure 2.1. 
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Figure 2-1: HEVC Encoder block diagram [1] 

 

Figure 2-2: HEVC Decoder block diagram [1] 
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2.1.1 Description of Video Coding in HEVC 

A novel hybrid approach (inter/ intra picture prediction and 2-D transform coding) 

is used in HEVC and has been used in all compression standards since H.261. Each  

picture  is  split  into  block  shaped  regions  and  the  exact block partitioning will be 

conveyed to the decoder.  The first picture of a video sequence will be coded using only 

‘intra picture prediction’ mode which is a spatial prediction within the frame and the 

remaining pictures are coded using ‘inter picture prediction’ mode which is a temporal 

prediction between the frames.  

The encoder duplicates the decoder processing loop such that it generates an 

identical prediction of a decoder. This is done by inverse scaling and inverse transforming 

of the encoded data to produce the decoder approximation of the residual signal. This 

residual signal is then added to the prediction signal and the result of this addition is fed 

to one or two loop filters which smoothen out the artifacts generally induced by the block-

wise processing and quantization step. The final picture representation which is the 

duplicate of the possible output in the decoder is stored in a ‘decoded picture buffer’ and 

is used for prediction of subsequent pictures. 

The signal of intra/inter prediction which is the difference between original and 

predicted block is further transformed by a linear spatial transform which is scaled, 

quantized, entropy coded and transmitted along with prediction information. This residual 

signal is also inverse transformed, inverse quantized and filtered to duplicate the decoder 

processing loop and added with predicted signal to produce decoded picture which is 

stored in buffer for further predictions. As shown in Figure 2-2 in the block diagram of 

HEVC [1] decoder, the residual signal is added to the prediction, and the result is fed to 

the deblocking filter to reduce the artifacts and finally stored in decoded picture buffer 

which can be used for further decoding of remaining pictures. 
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Unlike H.264 [27] which contains 16 by 16 size macro blocks, HEVC employs 

quad tree structure which contains coding tree unit (CTU), size of which is selected by 

the encoder and can be larger than traditional macro block. H EVC has been designed to 

address essentially all existing applications of H.264/MPEG-4 AVC and to particularly 

focus on two key issues: increased video resolution and increased use of parallel 

processing architectures. 

 

Figure 2-3: Division of an image into CTU [14] 

Figure 2-3 shows the basic division of image into multiple CTUs. The width and 

height of CTU are signaled in a sequence parameter set hence all the CTUs in a video 

sequence have the same size i.e. 64x64, 32x32, or 16 by 16 as shown in Figure 2-4. 
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Figure 2-4: Different sizes of CTU [14] 

Each coding unit basically consists of luma and chroma prediction blocks and 

each block is called coding tree block (CTB) having the same size as CTU. But CTBs are 

too big to decide the type of prediction method to be used. So CTBs are further divided 

into coding blocks (CB) which are the decision points where decision is taken whether to 

perform inter-picture or intra-picture prediction. CBs are good enough for prediction type 

decision but too large to store motion vectors. Thus each CB can be split into prediction 

blocks (PB) differently depending on the temporal and/ or spatial predictability. 
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The HEVC code uses YCbCr color space with a 4:2:0 color format with 8 bps (bits 

per color sample). Y is symbol for luma component, Cb is symbol for the blue chroma 

component and Cr is symbol for the red chroma component as shown in figure 2-5. 

 

 

Figure 2-5: Formats for YUV components [57] 
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Figure 2-6: Quad tree CU structure in HEVC [1] 

 

As the picture resolution of videos increase from standard definition to HD and 

beyond, the chances are that the picture will contain larger smooth regions, which can be 

encoded more effectively using large  

block sizes. This is the reason that the HEVC standard supports encoding blocks 

l a r g e r  than i n  H .264/AVC, while it also has a more flexible partitioning structure 

to allow smaller blocks to be used for more textured and in general uneven regions. 

Each CU can be further split into smaller units, which form the basis for 

prediction. These units are called PUs. Each CU may contain one or more PUs, and 

each PU can be as large as its root CU or as small as 4x4 in luma block sizes. While an 

LCU can recursively split into smaller and smaller CUs, the splitting of a CU into PUs is 

nonrecursive. PUs can be symmetric or asymmetric. Symmetric PUs can be square or 

rectangular and are used in both intra prediction and inter prediction. In particular, a CU 
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of size 2Nx2N can be split into two symmetric PUs of size Nx2N or 2NxN or four PUs 

of size NxN. Asymmetric PUs are used only for inter prediction. Starting at the level of a 

CU, a CB (coding block) can have one transform block (TB) of the same size as the CB 

or be split into smaller TBs as shown in figures 2-6, 2-7 and 2-8. 

 

 

Figure 2-7: Splitting of coding unit into prediction units and transform units [59] 
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Figure 2-9: CTB with its partitioning and corresponding quad tree [1] 

This allows partitioning, which matches the boundaries of the objects in the picture.  

 

2.1.2 Tiles and Slices 

The HEVC standard introduced tiles as a means to support parallel processing, 

with more flexibility than the normal slices in the H.264/AVC standard but considerably 

lower complexity than the flexible macro block ordering (FMO) standard.  Tiles are 

Figure 2-8: Splitting Coding tree units into Coding Blocks [1] 
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specified by vertical and horizontal boundaries with intersections that partition a picture 

into rectangular regions. Figure 2-9 shows an example of tile partitions that contain 

slices. The spacing of the row and column boundaries of tiles need not be uniform. This 

offers greater flexibility and can be useful for error resilience applications. In each tile, 

LCUs are processed in a raster scan order. Similarly, the tiles themselves are processed 

in a raster scan order within a picture. 

The HEVC standard also supports slices, similar to slices found in the 

H.264/AVC standard, but without FMO. Slices and tiles may be used together within the 

same picture. To support parallel processing, each slice in HEVC can be subdivided into 

smaller slices called entropy slices. Each entropy slice can be independently entropy 

decoded without reference to other entropy slices. Therefore, each core of a CPU can 

handle an entropy-decoding process in parallel.  

The slices are processed in the order of a raster scan. A picture may be split into 

one or several slices as shown in figure 2-9 so that a picture is a collection of one or 

more slices. Slices are self-contained in the sense that, given the availability of the 

active sequence and picture parameter sets, their syntax elements can be parsed 

from the bit stream and the values of the samples in the area of the picture that the 

slice represents can be correctly decoded without the use of any data from other slices 

in the same picture. 

Tiles are self-contained and independently decodable rectangular regions of the 

picture. The main purpose of tiles is to enable the use of parallel processing 

architectures for encoding and decoding. Multiple tiles may share header information by 

being contained in the same slice. Alternatively, a single tile may contain multiple slices. 

A tile consists of a rectangular arranged group of CTUs as shown in figure 2-10. 
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Figure 2-10: Subdivision of picture into tiles and slices [1] 

 

2.2 HEVC Encoder Description 

2.2.1 Intra-picture prediction 

Intra-picture prediction [21] [23] [24] [25] operates according to the TB size and 

previously decoded boundary samples from spatially neighboring TBs which are used to 

form the prediction signal. Directional prediction with 33 different directional orientations 

is defined for (square) TB sizes from 4×4 up to 32×32.  The possible prediction directions 

are show in figure 2-11. Alternatively, planar prediction and DC prediction can also be 

used. For chroma the horizontal, vertical, planar, and DC prediction modes can be 

explicitly signaled, or the chroma prediction mode can be indicated to be the same as the 

luma prediction mode. 
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Figure 2-11: Mode decision for intra picture prediction [1] 

 

The HEVC standard also includes a planar intra-prediction mode which is useful 

for predicting smooth picture regions. In planar mode, the prediction is generated from 

the average of two linear interpolations. 

2.2.2 Inter-picture prediction 

Compared to intra-picture predicted CBs, the HEVC standard supports more PB 

partition shapes for inter-picture predicted CBs. The partitioning modes of PART_2N×2N, 

PART_2N×N and PART_N×2N as shown in Figure 2-11 indicate the cases when the CB 

is not split, split into two equal-size PBs horizontally, and split into two equal-size PBs 

vertically, respectively. PART−N×N specifies that the CB is split into four equal size PBs, 

but this mode is only supported when the CB size is equal to the smallest allowed CB 

size. In addition, there are four partitioning types that support splitting the CB into two 

PBs having different sizes: PART−2N×nU, PART−2N×nD, PART−nL×2N, and 

PART−nR×2N (U=up, D=down, L=left and R=right) as shown in figure 2-12. These 

types are known as asymmetric motion partitions. 
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Figure 2-12: Partition modes in HEVC inter-prediction [1] 

 

2.2.3 Entropy Coding 

A new and improved CABAC (context adaptive binary arithmetic coding) is used for the 

entropy coding of the bitstreams. This coding has improved speed, compression and 

requires less memory then entropy coding used in the H.264/AVC standard (figure 

2-13). Instead of implementing the normal CABAC re-initialization for every CTB row, 

the context state from the second CTU in the previous row is used to start the 

processing of a brand new CTB row Figure 2-14), and thus taking huge advantage of 
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parallel processing.

 

Figure 2-13: HEVC entropy coding [4] 

 

 

Figure 2-14: Example of waveform processing [4] 
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2.2.4 In-loop Filtering 

In the HEVC standard, two processing steps, namely a deblocking filter (DBF) 

followed by a sample adaptive offset (SAO) filter are applied to the reconstructed 

samples before writing them into the decoded picture buffer in the decoder loop. The 

DBF is intended to reduce the blocking artifacts due to block-based coding. The 

deblocking filter is applied to all samples adjacent to a PU or TU boundary except the 

case when the boundary is also a picture boundary, or when deblocking is disabled 

across slice or tile boundaries. It should be noted that both PU and TU boundaries 

should be considered since PU boundaries are not always aligned with TU boundaries in 

some cases of interpicture-predicted CBs. Syntax elements in the SPS and slice headers 

control whether the deblocking filter is applied across the slice and tile boundaries. The 

SAO is a process that modifies the decoded samples by conditionally adding an offset 

value to each sample after the application of the deblocking filter. This is based on 

values in look-up tables transmitted by the encoder. 

2.2.5 Transform, Scaling and Quantization 

The HEVC standard uses transform coding of the prediction error residual in a 

similar manner as in prior standards [1]. The residual block is partitioned into multiple 

square TBs. The supported transform block sizes are 4×4, 8×8, 16×16, and 32×32.  

Pre-scaling operation is not needed when using HEVC code since the rows of the 

transform matrix are close approximations of values of uniformly scaled basis functions 

of the orthonormal DCT (discrete cosine transform) [1] [22]. Uniform reconstruction 

quantization (URQ) is used in the HEVC standard, with quantization scaling matrices 

supported for the various transform block sizes [1]. The range of the QP values is defined 

from 0 to 51, and an increase by 6 doubles the quantization step size such that the 

mapping of QP values to step sizes is approximately logarithmic. 
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2.3 Summary 

This chapter gives an outline of the various coding tools of the HEVC codec. 

HEVC is meant to create a standard capable of providing good video quality at 

substantially lower bit rates than previous standards. Chapter 3 outlines the description 

of inter-prediction and the proposed usage of parallel programming to reduce the time 

taken for motion vector prediction. Chapter 3 gives the description of inter prediction and 

motion estimation. 
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Chapter 3  

Inter prediction and motion estimation 

3.1 Introduction to Inter Prediction 

Each inter coded PU shall have a set of motion parameters consisting of motion 

vector, reference picture index, reference picture list usage flag to be used for inter 

prediction sample generation, in an explicit or implicit way of signaling. When a CU is 

coded with skip mode (i.e., PredMode == MODE_SKIP), the CU shall be represented as 

one PU that has no significant transform coefficients and motion vectors, reference 

picture index and reference picture list usage flag obtained by motion merge. The motion 

merge is to find neighboring inter coded PU such that its motion parameters (motion 

vector, reference picture index, and reference picture list usage flag) can be inferred as 

the ones for the current PU. Encoder can select the best inferred motion parameters from 

multiple candidates formed by spatial neighboring PUs and temporally neighboring PUs, 

and transmits corresponding index indicating chosen candidate. Not only for skipmode, 

the Motion Merge can be applied to any inter coded PU (i.e., PredMode == 

MODE_INTER). In any inter coded PUs, encoder can have freedom to use motion merge 

or explicit transmission of motion parameters, where motion vector, corresponding 

reference picture index for each reference picture list and reference picture list usage flag 

are signaled explicitly per each PU. For inter coded PU, significant transform coefficients 

are sent to the decoder. 
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Figure 3-1: Derivation process for motion merge candidate [4] 

 

Figure 3-1 summarizes derivation process for motion merge candidates. Two 

types of merge candidates are considered in motion merge: spatial merge candidate and 

temporal merge candidate. For spatial merge candidate derivation, four merge 

candidates are selected among candidates that are located in five different positions. In 

the process of candidate selection, redundant partition shape is avoided in order not to 

emulate virtual 2Nx2N partition by merging two 2NxN or two Nx2N partitions. For 

temporal merge candidate derivation, one merge candidate is selected among two 

candidates. After a list of spatio-temporal candidates is made, duplicated candidates 

which have same motion parameters in the list are removed in order to have distinctive 

candidates only. Since constant number of candidates for each PU is assumed at 

decoder, additional candidates are generated when the number of candidates does 

not reach to maximum number of merge candidate (MaxNumMergeCand) which is 
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signaled in slice header. For B-Slices, combined bi-predictive and non-scaled bi-predictive 

candidates are generated utilizing the candidates from list of spatio-temporal candidates. 

For both P- and B- slices, zero merge candidates are added at the end of the list. 

Between each generation step, derivation process is stopped if the number of candidates 

reaches to MaxNumMergeCand. In current common test condition, MaxNumMergeCand 

is set equal to 5. Since the number of candidates is constant, index of best motion 

merge candidate is encoded using truncated unary binarization (TU). 

3.2 Motion Vector Prediction 

Motion vector prediction exploits spatio-temporal correlation of motion vector with 

neighboring PUs, which is used for explicit transmission of motion parameters. It 

constructs motion vector candidate list by firstly checking availability of left, above 

temporally neighboring PU positions, removing redundant candidates and adding zero 

vector to make the candidate list to be constant length as a normative process. Then, 

encoder can select the best predictor from the candidate list and transmits corresponding 

index indicating chosen candidate. Similarly with merge index signaling, index of the 

best motion vector candidate is encoded using truncated unary as maximum number is 

equal to 2. In the following sections, details about derivation process of motion vector 

prediction candidate are provided. 
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Figure 3-2: Overall flow of deblocking filter process [4] 

Figure 3-2 summarizes derivation process for motion vector prediction candidate. 

In motion vector prediction, 2 types of motion vector candidates are considered: spatial 

motion vector candidate and temporal motion vector candidate. For spatial motion vector 

candidate derivation, 2 motion vector candidates are derived based on motion vectors of 

each PU located in 5 different positions. In the process of derivation, 1 motion vector 

candidate is selected utilizing PUs in the left side of current PU and 1 motion vector 

candidate is derived utilizing Pus in the above side of current PU. For temporal motion 

vector candidate derivation, 1 motion vector candidate is selected between 2 candidates, 

which are derived based on 2 different co-located positions. After the first list of spatio-

temporal candidates is made, duplicated motion vector candidates in the list are 

removed. If the number of candidates is larger than 2, motion vector candidates whose 

index is greater than 1 are removed from the list. If the number of spatio-temporal motion 

vector candidates is smaller than 2, additional zero motion vector candidates are added 

to the list. 
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3.2.1 Spatial Motion Vector Candidates 

In the derivation of spatial motion vector candidates, maximum 2 candidates are 

considered among 5 candidates, which are derived from PUs located in positions. The 

candidate positions of motion vector prediction are same with those of motion merge. The 

order of derivation for left side of current PU is set as A0 A1 scaled A0 scaled 

A1. The order of derivation for above side of current PU is set as B0 B1 B2 

scaled B0 scaled B1  scaled B2. For each side, there are 4 cases which can 

be used for motion vector candidate. Even though two cases are not required to do 

spatial scaling, the other 2 cases are required to do spatial scaling. 4 different cases are 

summarized as follows. 

No spatial scaling 

(1) Same reference picture list, and same reference picture index (same POC) 

(2) Different reference picture list, but same reference picture (same POC) 

Spatial scaling 

(3) Same reference picture list, but different reference picture (different POC) 

(4) Different reference picture list, and different reference picture (different POC) 

Spatial scaling is considered when POC is different between reference picture 

of neighboring PU and that of current PU regardless of reference picture list. If all PUs 

of left candidates is not available or intra coded, scaling for above motion vector is allowed 

to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is 

not allowed for above motion vector. 

3.2.2 Interpolation Filter 

For the luma interpolation filter, an 8-tap separable DCT-based interpolation filter 

is used, as shown in Table 3-1. 
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Table 3-1: Coefficients for DCT based luma interpolation filter [27] 

Position Filter coefficients 

1/4 { -1, 4, -10, 58, 17, -5, 1 } 

2/4 { -1, 4, -11, 40, 40, -11, 4, -1 } 

3/4 { 1, -5, 17, 58, -10, 4, -1 } 

 

Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma 

interpolation filter, as shown in Table 3-2. 

Table 3-2: Coefficients for DCT based chroma interpolation filter [60] 

Position Filter coefficients 

1/8 { -2, 58, 10, -2 } 

2/8 { -4, 54, 16, -2 } 

3/8 { -6, 46, 28, -4 } 

4/8 { -4, 36, 36, -4 } 

5/8 { -4, 28, 46, -6 } 

6/8 { -2, 16, 54, -4 } 

7/8 { -2, 10, 58, -2 } 

For the bi-directional prediction, the bit-depth of the output of the interpolation 

filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the 

averaging of the two prediction signals 

3.3 Summary 

This chapter explains the inter prediction method in HEVC and its improvements 

compared to H.264 [26] inter prediction method. Chapter 4 will explain about parallel 

processing and OpenMP. 
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Chapter 4  

Parallel Programming 

4.1 Concept of parallel computing 

In order to reduce the time taken by a computational process, operations are 

done in parallel so that more than one process is happening simultaneously. Parallel 

computing is a technique in which multiple computations are done simultaneously, either 

with the help of hardware or software. The basic approach for parallel processing is to 

break the task into multiple smaller tasks and further assign each task to each thread 

which performs required operations in parallel.  

Earlier, programs were running on serial computing platforms, with a single 

processor running those instructions from start to finish. These sequences of instructions 

were executed one after the other. 

In the present day scenario, in order to achieve maximum performance in the 

least time possible, serial computing is replaced with parallel computing. With the use of 

multi-core processors, GPUs and software, it is possible to implement parallel computing 

to a large extent. Parallelization can sometimes get complicated due to race conditions, 

data dependency, synchronization and communication among different threads. 

4.2 OpenMP 

OpenMP [40], short for Open Multi-processing, is an API (application program 

interface) which supports multi-platform parallel programming in C/C++. The API has a 

simple interface for developing parallel applications.  
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Figure 4-1: Fork-join model, multithreading in OpenMP [13] [44] 

In OpenMP, fork-join model is used for parallel execution where taks are 

performed by multiple threads defined by OpenMP directives [15] as shown in Figure . 

The intention of the OpenMP API is to support programs that can run both in sequential 

and parallel executions.  

4.2.1 OpenMP directives 

4.2.1.1 OpenMP parallel pragma [56] 

For creating the threads that execute the block of code following the directive in 

parallel, this directive is used, which also helps the programmer choose the partitioning of 

the code segment.  

For example: 

#include <omp.h> 

… 

… 

 void main() 

{ 

 … 

 #pragma omp parallel  
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 {      //parallel work begins 

 

 …  

 …  

 }     //parallel work ends 

} 

The header file omp.h should be included in the program so that it includes and 

initiates the OpenMP functions. The pragma directive is used to execute the task 

enclosed within the curly braces, in parallel.  

4.2.1.2 OpenMP barrier pragma [56] 

This directive does the synchronization of all threads in a team. When the thread 

reaches a barrier, it will wait until all threads reach the barrier point. Then, it continues 

executing the code in parallel after the barrier. 

For example: 

#pragma omp barrier newline 

4.2.1.3 OpenMP for pragma [56] 

This directive is used to run multiple iterations of the for loop in parallel by 

assigning iterations to threads. Each of the threads will then execute one or more 

iterations simultaneously. This is helpful only when the iterations are independent of each 

other.  

For example:  

#pragma omp parallel for [clauses] 
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4.2.1.4 OpenMP sections pragma [56] 

This directive identifies the code sections to be divided among all the threads. 

This way each of the threads will take up the task of executing a particular section 

simultaneously.  

For example: 

#pragma omp sections [clauses] 

{ 

 #pragma omp section   

  { 

   //code 

  } 

 } 

4.3 Threads  

Thread is the basic unit of processing that happens in an operating system. The 

use of threads allows the user to improve performance significantly by allowing two or 

more activities to occur at the same time. However, managing simultaneous activities and 

their possible interaction will lead to the addition of complexity into the program. The 

concept of multithreading enables the running of processes and sub-processes 

concurrently, with most processes having multiple threads [47].  

 

4.4 Approach   

Parallelization can sometimes get complicated due to race conditions, data 

dependency, synchronization and communication among different threads. 

The basic approach in deciding parallelization approach is to first analyze the 

part of the program that needs to be parallelized and then decide the type of parallel 
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programming technique that needs to be implemented. It should also be determined 

whether or not the problem is one that can be parallelized. Parallel programming models 

are not limited to particular type of machinery but can be implemented on any underlying 

hardware. 

4.5 Summary 

Chapter 4 gives an introduction to parallel computing in general and OpenMP in 

particular. In this thesis, OpenMP API is used in the HEVC code to run certain code 

segments in parallel. Chapter 5 will show the results which compare various parameters 

observed before and after the usage of OpenMP in the HEVC [1] code. 
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Chapter 5  

Implementation and results 

5.1 Overview 

One of the biggest advantages of HEVC [1] over H.264 [27] is the ability to 

provide very high compression ratios which are helpful in a variety of applications. But, 

this comes at the cost of increasing the complexity of the compression scheme. It also 

increases the time taken to encode a given video sequence. In the encoder, motion 

estimation by itself takes up to 70% of the total encoding time. The comparison and 

results provided below show that the use of OpenMP for running multiple segments of 

code in parallel will reduce the encoding time significantly [1] [31]. 

5.2 Proposed solution 

The proposed approach will make use of the directive ‘#pragma omp sections’ 

[56], ‘#pragma omp parallel for’ [56] and ‘#pragma omp nowait’ [56] along with certain 

code changes to account for the parallel execution of the code segments. Here, the code 

segments are chosen in such a way that there is no dependency on other threads that 

are running in parallel on the other segments. This way, the conditional segments take 

less time to run when multiple threads check for multiple conditions at the same time. The 

directive #pragma omp sections was used to create sections in particular segments of the 

code that can be run in parallel. The directive #pragma omp nowait will ensure that the 

implied barrier will be avoided at the end of the loop when there are multiple independent 

loops within a parallel region. The #pragma omp parallel for will create threads to run the 

‘for loop’ in parallel. All these parallel executions lead to a reduction in the encoding time. 

5.3 Test conditions  

The performance of this implementation was evaluated using HEVC reference 

software HM13.0 [12]. A total of five standard video sequences [16] were used with 
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different QP values of 22, 27, 32 and 37 as recommended by the JCT-VC with encoder 

random access main being the configuration for encoding.  

Table 5-1: Standard test sequences used [16] 

No. Sequence Resolution Type No. of 

frames 

Frame 

rate(Hz) 

1. RaceHorses_416x240_30.yuv 416x240 WQVGA 50 30 

2. BasketballDrillText_832x480_50.yuv 832x480 WVGA 50 50 

3. BQMall_832x480_60.yuv 832x480 WVGA 50 60 

4. KristenAndSara_1280x720_60.yuv 1280x720 SD 50 60 

5. Kimono1_1920x1080_24.yuv 1920x1080 WQHD 50 24 

 

5.4 Results 

5.4.1 Encoding time reduction 

The proposed approach gives a encoding time reduction in the range of 10-25% 

when encoding the standard test sequences for various QP when compared to the 

standard encoder in HM 13.0 [12]. The results are presented in Figure 5-1 through Figure 

5-5. 
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Figure 5-1: Encoding time vs QP for RaceHorses 
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Figure 5-2: Encoding time vs QP for BasketballDrillText 
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Figure 5-3: Encoding time vs QP for BQMall 
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Figure 5-4: Encoding time vs QP for KristenAndSara 
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Figure 5-5: Encoding time vs QP for Kimono1 

 

5.4.2 Percentage reduction in encoding time  

Figures 5-6 through 5-10 shows the percentage reduction in encoding time for 
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Figure 5-6: Percentage reduction in encoding time vs QP for Racehorses 
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Figure 5-7: Percentage reduction in encoding time vs QP for BasketballDrillText 
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Figure 5-8: Percentage reduction in encoding time vs QP for BQMall 
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Figure 5-9: Percentage reduction in encoding time vs QP for KristenAndSara 
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Figure 5-10: Percentage reduction in encoding time vs QP for Kimono1 
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Figure 5-11: BD-PSNR vs QP for RaceHorses 

 

1

3

0.13
0.23

0

0.5

1

1.5

2

2.5

3

3.5

22 27 32 37

B
D

-P
SN

R
 (

d
B

)

QP

RaceHorses

original vs proposed



 

44 
 

 

Figure 5-12: BD-PSNR vs QP for BasketballDrillText 
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Figure 5-13: BD-PSNR vs QP for BQMall 
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Figure 5-14: BD-PSNR vs QP for KristenAndSara 
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Figure 5-15: BD-PSNR vs QP for Kimono1 
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Figure 5-16: BD-bitrate vs QP for RaceHorses 
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Figure 5-17: BD-bitrate vs QP for BasketballDrillText 
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Figure 5-18: BD-bitrate vs QP for BQMall 
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Figure 5-19: BD-bitrate vs QP for KristenAndSara 
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Figure 5-20: BD-bitrate vs QP for Kimono1 
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Figure 5-21: PSNR vs bitrate for RaceHorses 
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Figure 5-22: PSNR vs bitrate for BasketballDrillText 
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Figure 5-23: PSNR vs bitrate for BQMall 
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Figure 5-24: PSNR vs bitrate for KristenAndSara 
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Figure 5-25: PSNR vs bitrate for Kimono1 

 

5.4.6 Summary 

In this chapter, numerous results and graphs show the differences observed in 

various parameters before and after the implementation of parallel programming in HEVC 
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sequences show the improvement in the implemented method.  

  

40

43

46

49

3000 5000 7000 9000 11000 13000 15000 17000 19000

P
SN

R
 (

d
B

)

Bitrate (kbps)

Kimono1

Proposed

Original



 

58 
 

Chapter 6  

Conclusions and Future work 

6.1 Conclusions 

This thesis gives an introduction to parallel programming and utilizes this concept 

to optimize motion estimation process for inter prediction in HEVC. Motion estimation in 

inter prediction has significantly improved performance at the cost of increasing the 

complexity and processing time. The proposed approach of using parallel programming 

shows the possible performance improvement in HEVC by reducing the encoding time 

with negligible reduction in image quality. Based on the results, it can be said that the 

encoding time can by reduced by approximately 10-25% on an average as compared to 

HM 13.0 [12] encoder. The image quality drops negligibly for various quantization 

parameters while using the various test sequences. The proposed technique is also 

evaluated by means of BD-PSNR, BD-bitrate, bitstream size and rate distortion plot. 

6.2 Future Work 

There are many different ways to achieve parallel computing. Through software, 

several APIs are used to obtain parallel processing. OpenMP is just one of the several 

APIs that are available to apply parallel programming. When more effective parallel 

programming is to be implemented, dedicated hardware like GPU is used and APIs like 

OpenCL and OpenCV are used to achieve parallel programming. Several software 

development kits are available from Intel and AMD which can be used along with these 

APIs. Also, NVIDIA invented a parallel computing model known as Computer Unified 

Device Architecture (CUDA) [41] where the overheads and thread creation times are 

minimized. When it comes to parallel programming using software, POSIX threads (p-

threads) and Windows threads APIs are also used in place of OpenMP, which are known 
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to reduce overhead in creation of threads and execute the program faster by pre-

allocating the threads.    
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Appendix A 

Test Sequences
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In order to obtain the results for the proposed method, the following test 

sequences [16] have been used in this thesis. 

A.1 Basketball Drill Text 
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A.2 BQ Mall 
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A.3 Racehorses 
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A.4 KristenAndSara 
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A.5 Kimono1 
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Appendix B 

Test conditions
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The reference software used for the proposed method was HM 13.0 [11]. This thesis was 

implemented on a computer with Intel Core i7 processor running at 1.9 GHz and 8 GB memory 

and a 64 bit Windows 7 OS. 
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Appendix C 

BD-PSNR and BD-bitrate
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BD-PSNR (Bjontegaard – PSNR) and BD-bit rate (Bjontegaard – bit rate) 

metrics are used to compute the average gain in PSNR and the average per cent saving 

in bit rate between two rate-distortion graphs respectively and is an ITU-T approved 

metric [24]. This method was developed by Bjontegaard and is used to gauge 

compression algorithms from a visual aspect in media industry and referenced by many 

multimedia engineers. The MATLAB code is available online [25]. 

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode) 

%BJONTEGAARD   Bjontegaard metric calculation 

%  R1,PSNR1 - RD points for curve 1 

%  R2,PSNR2 - RD points for curve 2 

%  mode - 

%      'dsnr' - average PSNR difference 

%      'rate' - percentage of bitrate saving between data set 1 and 

%        data set 2 

%  avg_diff - the calculated Bjontegaard metric ('dsnr' or 'rate') 

%  (c) 2010 Giuseppe Valenzise 

% convert rates in logarithmic units lR1 = log(R1); 

lR2 = log(R2); 

switch lower(mode) 

case 'dsnr' 

% PSNR method 

p1 = polyfit(lR1,PSNR1,3); 

p2 = polyfit(lR2,PSNR2,3); 

% integration interval min_int = min([lR1; lR2]); max_int = max([lR1; lR2]); 
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% find integral p_int1 = polyint(p1); p_int2 = polyint(p2); 

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int); 

         int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int); 

% find avg diff 

avg_diff = (int2-int1)/(max_int-min_int); 

case 'rate' 

% rate method 

p1 = polyfit(PSNR1,lR1,3); 

p2 = polyfit(PSNR2,lR2,3); 

% integration interval 

min_int = min([PSNR1; PSNR2]); 

max_int = max([PSNR1; PSNR2]); 

% find integral p_int1 = polyint(p1); p_int2 = polyint(p2); 

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int); 

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);  

% find avg diff  

avg_diff = (int2-int1)/(max_int-min_int);  

case 'rate'  

% rate method  

p1 = polyfit(PSNR1,lR1,3);  

p2 = polyfit(PSNR2,lR2,3);  

% integration interval  

min_int = min([PSNR1; PSNR2]);  

max_int = max([PSNR1; PSNR2]);  

% find integral  
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p_int1 = polyint(p1);  

p_int2 = polyint(p2);  

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);  

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);  

% find avg diff  

avg_exp_diff = (int2-int1)/(max_int-min_int);  

avg_diff = (exp(avg_exp_diff)-1)*100;  

end  
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Appendix D 

Acronyms 
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API:  Application Programming Interface 

AVC:  Advanced Video Coding 

BD:  Bjontegaard Delta 

CABAC:  Context Adaptive Binary Arithmetic Coding 

CB: Coding Block 

CPU: Central Processing Unit 

CSVT: Circuits and Systems for Video Technology  

CTB: Coding Tree Block 

CTU:  Coding Tree Unit 

CU: Coding Unit 

CUDA: Compute Unified Device Architecture 

DCC: Data Compression Conference 

DCT: Discrete Cosine Transform 

DST: Discrete Sine Transform 

FPGA: Field Programmable Gate Array 

GOP: Group Of Pictures 

GPU: Graphic Processing Unit 

HEVC: High Efficiency Video Coding 

ICIP: International Conference on Image Processing 

ISO: International Organization for Standardization 

ITU-T:  International Telecommunication Union – Telecommunication Standardization 

Sector 

JCT-VC:  Joint Collaborative Team on Video Coding 

MC: Motion Compensation 

MCP:  Motion Compensated Predication 
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MPEG: Moving Picture Experts Group 

MPL: Multimedia Processing Lab 

NGVC: Next Generation Video Coding 

OPENMP:  Open Multiprocessing 

PB: Prediction Block 

POC: Phase-Only Correlation 

PCM: Pulse Code Modulation  

PU: Prediction Unit 

SAO: Sample Adaptive Offset 

SIMD: Single Instruction Multiple Data 

TB: Transform Block 

VCEG: Video Coding Experts Group 

VCIP: Visual Communication and Image Processing 
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Appendix E 

Code changes 
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/** \file     TEncSearch.cpp 
 \brief    encoder search class 

+ */ 

 

#include "TLibCommon/TypeDef.h" 

#include "TLibCommon/TComRom.h" 

#include "TLibCommon/TComMotionInfo.h" 

#include "TEncSearch.h" 

#include <math.h> 

#include <omp.h> 

 

 

 

//! \ingroup TLibEncoder 

//! \{ 

 

int threadID; 

 

static const TComMv s_acMvRefineH[9] = 

{ 

  TComMv(  0,  0 ), // 0 

  TComMv(  0, -1 ), // 1 

  TComMv(  0,  1 ), // 2 

  TComMv( -1,  0 ), // 3 

  TComMv(  1,  0 ), // 4 

  TComMv( -1, -1 ), // 5 
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  TComMv(  1, -1 ), // 6 

  TComMv( -1,  1 ), // 7 

  TComMv(  1,  1 )  // 8 

}; 

 

static const TComMv s_acMvRefineQ[9] = 

{ 

  TComMv(  0,  0 ), // 0 

  TComMv(  0, -1 ), // 1 

  TComMv(  0,  1 ), // 2 

  TComMv( -1, -1 ), // 5 

  TComMv(  1, -1 ), // 6 

  TComMv( -1,  0 ), // 3 

  TComMv(  1,  0 ), // 4 

  TComMv( -1,  1 ), // 7 

  TComMv(  1,  1 )  // 8 

}; 

 

static const UInt s_auiDFilter[9] = 

{ 

  0, 1, 0, 

  2, 3, 2, 

  0, 1, 0 

}; 
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TEncSearch::TEncSearch() 

{ 

  m_ppcQTTempCoeffY  = NULL; 

  m_ppcQTTempCoeffCb = NULL; 

  m_ppcQTTempCoeffCr = NULL; 

  m_pcQTTempCoeffY   = NULL; 

  m_pcQTTempCoeffCb  = NULL; 

  m_pcQTTempCoeffCr  = NULL; 

#if ADAPTIVE_QP_SELECTION 

  m_ppcQTTempArlCoeffY  = NULL; 

  m_ppcQTTempArlCoeffCb = NULL; 

  m_ppcQTTempArlCoeffCr = NULL; 

  m_pcQTTempArlCoeffY   = NULL; 

  m_pcQTTempArlCoeffCb  = NULL; 

  m_pcQTTempArlCoeffCr  = NULL; 

#endif 

  m_puhQTTempTrIdx   = NULL; 

  m_puhQTTempCbf[0] = m_puhQTTempCbf[1] = m_puhQTTempCbf[2] = NULL; 

  m_pcQTTempTComYuv  = NULL; 

  m_pcEncCfg = NULL; 

  m_pcEntropyCoder = NULL; 

  m_pTempPel = NULL; 

  m_pSharedPredTransformSkip[0] = m_pSharedPredTransformSkip[1] = 

m_pSharedPredTransformSkip[2] = NULL; 

  m_pcQTTempTUCoeffY   = NULL; 
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  m_pcQTTempTUCoeffCb  = NULL; 

  m_pcQTTempTUCoeffCr  = NULL; 

#if ADAPTIVE_QP_SELECTION 

  m_ppcQTTempTUArlCoeffY  = NULL; 

  m_ppcQTTempTUArlCoeffCb = NULL; 

  m_ppcQTTempTUArlCoeffCr = NULL; 

#endif 

  m_puhQTTempTransformSkipFlag[0] = NULL; 

  m_puhQTTempTransformSkipFlag[1] = NULL; 

  m_puhQTTempTransformSkipFlag[2] = NULL; 

  setWpScalingDistParam( NULL, -1, REF_PIC_LIST_X ); 

} 

 

TEncSearch::~TEncSearch() 

{ 

  if ( m_pTempPel ) 

  { 

    delete [] m_pTempPel; 

    m_pTempPel = NULL; 

  } 

   

  if ( m_pcEncCfg ) 

  { 

    const UInt uiNumLayersAllocated = m_pcEncCfg->getQuadtreeTULog2MaxSize()-

m_pcEncCfg->getQuadtreeTULog2MinSize()+1; 
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    for( UInt ui = 0; ui < uiNumLayersAllocated; ++ui ) 

    { 

      delete[] m_ppcQTTempCoeffY[ui]; 

      delete[] m_ppcQTTempCoeffCb[ui]; 

      delete[] m_ppcQTTempCoeffCr[ui]; 

#if ADAPTIVE_QP_SELECTION 

      delete[] m_ppcQTTempArlCoeffY[ui]; 

      delete[] m_ppcQTTempArlCoeffCb[ui]; 

      delete[] m_ppcQTTempArlCoeffCr[ui]; 

#endif 

      m_pcQTTempTComYuv[ui].destroy(); 

    } 

  } 

  delete[] m_ppcQTTempCoeffY; 

  delete[] m_ppcQTTempCoeffCb; 

  delete[] m_ppcQTTempCoeffCr; 

  delete[] m_pcQTTempCoeffY; 

  delete[] m_pcQTTempCoeffCb; 

  delete[] m_pcQTTempCoeffCr; 

#if ADAPTIVE_QP_SELECTION 

  delete[] m_ppcQTTempArlCoeffY; 

  delete[] m_ppcQTTempArlCoeffCb; 

  delete[] m_ppcQTTempArlCoeffCr; 

  delete[] m_pcQTTempArlCoeffY; 

  delete[] m_pcQTTempArlCoeffCb; 
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  delete[] m_pcQTTempArlCoeffCr; 

#endif 

  delete[] m_puhQTTempTrIdx; 

  delete[] m_puhQTTempCbf[0]; 

  delete[] m_puhQTTempCbf[1]; 

  delete[] m_puhQTTempCbf[2]; 

  delete[] m_pcQTTempTComYuv; 

  delete[] m_pSharedPredTransformSkip[0]; 

  delete[] m_pSharedPredTransformSkip[1]; 

  delete[] m_pSharedPredTransformSkip[2]; 

  delete[] m_pcQTTempTUCoeffY; 

  delete[] m_pcQTTempTUCoeffCb; 

  delete[] m_pcQTTempTUCoeffCr; 

#if ADAPTIVE_QP_SELECTION 

  delete[] m_ppcQTTempTUArlCoeffY; 

  delete[] m_ppcQTTempTUArlCoeffCb; 

  delete[] m_ppcQTTempTUArlCoeffCr; 

#endif 

  delete[] m_puhQTTempTransformSkipFlag[0]; 

  delete[] m_puhQTTempTransformSkipFlag[1]; 

  delete[] m_puhQTTempTransformSkipFlag[2]; 

  m_pcQTTempTransformSkipTComYuv.destroy(); 

  m_tmpYuvPred.destroy(); 

} 

 



 

82 
 

void TEncSearch::init(TEncCfg*      pcEncCfg, 

                      TComTrQuant*  pcTrQuant, 

                      Int           iSearchRange, 

                      Int           bipredSearchRange, 

                      Int           iFastSearch, 

                      Int           iMaxDeltaQP, 

                      TEncEntropy*  pcEntropyCoder, 

                      TComRdCost*   pcRdCost, 

                      TEncSbac*** pppcRDSbacCoder, 

                      TEncSbac*   pcRDGoOnSbacCoder 

                      ) 

{ 

  m_pcEncCfg             = pcEncCfg; 

  m_pcTrQuant            = pcTrQuant; 

  m_iSearchRange         = iSearchRange; 

  m_bipredSearchRange    = bipredSearchRange; 

  m_iFastSearch          = iFastSearch; 

  m_iMaxDeltaQP          = iMaxDeltaQP; 

  m_pcEntropyCoder       = pcEntropyCoder; 

  m_pcRdCost             = pcRdCost; 

   

  m_pppcRDSbacCoder     = pppcRDSbacCoder; 

  m_pcRDGoOnSbacCoder   = pcRDGoOnSbacCoder; 

 

  for (Int iDir = 0; iDir < 2; iDir++) 
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  { 

    for (Int iRefIdx = 0; iRefIdx < 33; iRefIdx++) 

    { 

      m_aaiAdaptSR[iDir][iRefIdx] = iSearchRange; 

    } 

  } 

   

  m_puiDFilter = s_auiDFilter + 4; 

   

  // initialize motion cost 

#if !FIX203 

  m_pcRdCost->initRateDistortionModel( m_iSearchRange << 2 ); 

#endif 

   

  for( Int iNum = 0; iNum < AMVP_MAX_NUM_CANDS+1; iNum++) 

  { 

    for( Int iIdx = 0; iIdx < AMVP_MAX_NUM_CANDS; iIdx++) 

    { 

      if (iIdx < iNum) 

        m_auiMVPIdxCost[iIdx][iNum] = xGetMvpIdxBits(iIdx, iNum); 

      else 

        m_auiMVPIdxCost[iIdx][iNum] = MAX_INT; 

    } 

  } 
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  initTempBuff(); 

   

  m_pTempPel = new Pel[g_uiMaxCUWidth*g_uiMaxCUHeight]; 

   

  const UInt uiNumLayersToAllocate = pcEncCfg->getQuadtreeTULog2MaxSize()-

pcEncCfg->getQuadtreeTULog2MinSize()+1; 

  m_ppcQTTempCoeffY  = new TCoeff*[uiNumLayersToAllocate]; 

  m_ppcQTTempCoeffCb = new TCoeff*[uiNumLayersToAllocate]; 

  m_ppcQTTempCoeffCr = new TCoeff*[uiNumLayersToAllocate]; 

  m_pcQTTempCoeffY   = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight   ]; 

  m_pcQTTempCoeffCb  = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

  m_pcQTTempCoeffCr  = new TCoeff [g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

#if ADAPTIVE_QP_SELECTION 

  m_ppcQTTempArlCoeffY  = new Int*[uiNumLayersToAllocate]; 

  m_ppcQTTempArlCoeffCb = new Int*[uiNumLayersToAllocate]; 

  m_ppcQTTempArlCoeffCr = new Int*[uiNumLayersToAllocate]; 

  m_pcQTTempArlCoeffY   = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight   ]; 

  m_pcQTTempArlCoeffCb  = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

  m_pcQTTempArlCoeffCr  = new Int [g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

#endif 

   

  const UInt uiNumPartitions = 1<<(g_uiMaxCUDepth<<1); 

  m_puhQTTempTrIdx   = new UChar  [uiNumPartitions]; 

  m_puhQTTempCbf[0]  = new UChar  [uiNumPartitions]; 

  m_puhQTTempCbf[1]  = new UChar  [uiNumPartitions]; 
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  m_puhQTTempCbf[2]  = new UChar  [uiNumPartitions]; 

  m_pcQTTempTComYuv  = new TComYuv[uiNumLayersToAllocate]; 

  for( UInt ui = 0; ui < uiNumLayersToAllocate; ++ui ) 

  { 

    m_ppcQTTempCoeffY[ui]  = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight   ]; 

    m_ppcQTTempCoeffCb[ui] = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

    m_ppcQTTempCoeffCr[ui] = new TCoeff[g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

#if ADAPTIVE_QP_SELECTION 

    m_ppcQTTempArlCoeffY[ui]  = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight   ]; 

    m_ppcQTTempArlCoeffCb[ui] = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

    m_ppcQTTempArlCoeffCr[ui] = new Int[g_uiMaxCUWidth*g_uiMaxCUHeight>>2]; 

#endif 

    m_pcQTTempTComYuv[ui].create( g_uiMaxCUWidth, g_uiMaxCUHeight ); 

  } 

  m_pSharedPredTransformSkip[0] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_pSharedPredTransformSkip[1] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_pSharedPredTransformSkip[2] = new Pel[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_pcQTTempTUCoeffY  = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_pcQTTempTUCoeffCb = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_pcQTTempTUCoeffCr = new TCoeff[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

#if ADAPTIVE_QP_SELECTION 

  m_ppcQTTempTUArlCoeffY  = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_ppcQTTempTUArlCoeffCb = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

  m_ppcQTTempTUArlCoeffCr = new Int[MAX_TS_WIDTH*MAX_TS_HEIGHT]; 

#endif 
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  m_pcQTTempTransformSkipTComYuv.create( g_uiMaxCUWidth, g_uiMaxCUHeight ); 

 

  m_puhQTTempTransformSkipFlag[0] = new UChar  [uiNumPartitions]; 

  m_puhQTTempTransformSkipFlag[1] = new UChar  [uiNumPartitions]; 

  m_puhQTTempTransformSkipFlag[2] = new UChar  [uiNumPartitions]; 

  m_tmpYuvPred.create(MAX_CU_SIZE, MAX_CU_SIZE); 

} 

 

#if FASTME_SMOOTHER_MV 

#define FIRSTSEARCHSTOP     1 

#else 

#define FIRSTSEARCHSTOP     0 

#endif 

 

#define TZ_SEARCH_CONFIGURATION                                                                                 

\ 

const Int  iRaster                  = 5;  /* TZ soll von aussen ?ergeben werden */                            

\ 

const Bool bTestOtherPredictedMV    = 0;                                                                      \ 

const Bool bTestZeroVector          = 1;                                                                      \ 

const Bool bTestZeroVectorStart     = 0;                                                                      \ 

const Bool bTestZeroVectorStop      = 0;                                                                      \ 

const Bool bFirstSearchDiamond      = 1;  /* 1 = xTZ8PointDiamondSearch   0 = 

xTZ8PointSquareSearch */        \ 
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const Bool bFirstSearchStop         = FIRSTSEARCHSTOP;                                                        

\ 

const UInt uiFirstSearchRounds      = 3;  /* first search stop X rounds after best match 

(must be >=1) */     \ 

const Bool bEnableRasterSearch      = 1;                                                                      \ 

const Bool bAlwaysRasterSearch      = 0;  /* ===== 1: BETTER but factor 2 slower ===== 

*/                     \ 

const Bool bRasterRefinementEnable  = 0;  /* enable either raster refinement or star 

refinement */            \ 

const Bool bRasterRefinementDiamond = 1;  /* 1 = xTZ8PointDiamondSearch   0 = 

xTZ8PointSquareSearch */        \ 

const Bool bStarRefinementEnable    = 1;  /* enable either star refinement or raster 

refinement */            \ 

const Bool bStarRefinementDiamond   = 1;  /* 1 = xTZ8PointDiamondSearch   0 = 

xTZ8PointSquareSearch */        \ 

const Bool bStarRefinementStop      = 0;                                                                      \ 

const UInt uiStarRefinementRounds   = 2;  /* star refinement stop X rounds after best 

match (must be >=1) */  \ 

 

 

__inline Void TEncSearch::xTZSearchHelp( TComPattern* pcPatternKey, 

IntTZSearchStruct& rcStruct, const Int iSearchX, const Int iSearchY, const UChar 

ucPointNr, const UInt uiDistance ) 

{ 

  UInt  uiSad; 
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  Pel*  piRefSrch; 

   

  piRefSrch = rcStruct.piRefY + iSearchY * rcStruct.iYStride + iSearchX; 

   

  //-- jclee for using the SAD function pointer 

  m_pcRdCost->setDistParam( pcPatternKey, piRefSrch, rcStruct.iYStride,  

m_cDistParam ); 

   

  // fast encoder decision: use subsampled SAD when rows > 8 for integer ME 

  if ( m_pcEncCfg->getUseFastEnc() ) 

  { 

    if ( m_cDistParam.iRows > 8 ) 

    { 

      m_cDistParam.iSubShift = 1; 

    } 

  } 

 

  setDistParamComp(0);  // Y component 

 

  // distortion 

  m_cDistParam.bitDepth = g_bitDepthY; 

  uiSad = m_cDistParam.DistFunc( &m_cDistParam ); 

   

  // motion cost 
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  uiSad += m_pcRdCost->getCost( iSearchX, iSearchY ); 

   

  if( uiSad < rcStruct.uiBestSad ) 

  { 

    rcStruct.uiBestSad      = uiSad; 

    rcStruct.iBestX         = iSearchX; 

    rcStruct.iBestY         = iSearchY; 

    rcStruct.uiBestDistance = uiDistance; 

    rcStruct.uiBestRound    = 0; 

    rcStruct.ucPointNr      = ucPointNr; 

  } 

} 

 

__inline Void TEncSearch::xTZ2PointSearch( TComPattern* pcPatternKey, 

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB ) 

{ 

  Int   iSrchRngHorLeft   = pcMvSrchRngLT->getHor(); 

  Int   iSrchRngHorRight  = pcMvSrchRngRB->getHor(); 

  Int   iSrchRngVerTop    = pcMvSrchRngLT->getVer(); 

  Int   iSrchRngVerBottom = pcMvSrchRngRB->getVer(); 

   

  // 2 point search,                   //   1 2 3 

  // check only the 2 untested points  //   4 0 5 

  // around the start point            //   6 7 8 

  Int iStartX = rcStruct.iBestX; 
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  Int iStartY = rcStruct.iBestY; 

  switch( rcStruct.ucPointNr ) 

  { 

    case 1: 

    { 

      if ( (iStartX - 1) >= iSrchRngHorLeft ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY, 0, 2 ); 

      } 

      if ( (iStartY - 1) >= iSrchRngVerTop ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2 ); 

      } 

    } 

      break; 

    case 2: 

    { 

      if ( (iStartY - 1) >= iSrchRngVerTop ) 

      { 

        if ( (iStartX - 1) >= iSrchRngHorLeft ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2 ); 

        } 

        if ( (iStartX + 1) <= iSrchRngHorRight ) 

        { 
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          xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2 ); 

        } 

      } 

    } 

      break; 

    case 3: 

    { 

      if ( (iStartY - 1) >= iSrchRngVerTop ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2 ); 

      } 

      if ( (iStartX + 1) <= iSrchRngHorRight ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2 ); 

      } 

    } 

      break; 

    case 4: 

    { 

      if ( (iStartX - 1) >= iSrchRngHorLeft ) 

      { 

        if ( (iStartY + 1) <= iSrchRngVerBottom ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2 ); 

        } 
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        if ( (iStartY - 1) >= iSrchRngVerTop ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2 ); 

        } 

      } 

    } 

      break; 

    case 5: 

    { 

      if ( (iStartX + 1) <= iSrchRngHorRight ) 

      { 

        if ( (iStartY - 1) >= iSrchRngVerTop ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2 ); 

        } 

        if ( (iStartY + 1) <= iSrchRngVerBottom ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2 ); 

        } 

      } 

    } 

      break; 

    case 6: 

    { 

      if ( (iStartX - 1) >= iSrchRngHorLeft ) 
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      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY , 0, 2 ); 

      } 

      if ( (iStartY + 1) <= iSrchRngVerBottom ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2 ); 

      } 

    } 

      break; 

    case 7: 

    { 

      if ( (iStartY + 1) <= iSrchRngVerBottom ) 

      { 

        if ( (iStartX - 1) >= iSrchRngHorLeft ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2 ); 

        } 

        if ( (iStartX + 1) <= iSrchRngHorRight ) 

        { 

          xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2 ); 

        } 

      } 

    } 

      break; 

    case 8: 
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    { 

      if ( (iStartX + 1) <= iSrchRngHorRight ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2 ); 

      } 

      if ( (iStartY + 1) <= iSrchRngVerBottom ) 

      { 

        xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2 ); 

      } 

    } 

      break; 

    default: 

    { 

      assert( false ); 

    } 

      break; 

  } // switch( rcStruct.ucPointNr ) 

} 

 

__inline Void TEncSearch::xTZ8PointSquareSearch( TComPattern* pcPatternKey, 

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, 

const Int iStartX, const Int iStartY, const Int iDist ) 

{ 

  Int   iSrchRngHorLeft   = pcMvSrchRngLT->getHor(); 

  Int   iSrchRngHorRight  = pcMvSrchRngRB->getHor(); 
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  Int   iSrchRngVerTop    = pcMvSrchRngLT->getVer(); 

  Int   iSrchRngVerBottom = pcMvSrchRngRB->getVer(); 

   

  // 8 point search,                   //   1 2 3 

  // search around the start point     //   4 0 5 

  // with the required  distance       //   6 7 8 

  assert( iDist != 0 ); 

  const Int iTop        = iStartY - iDist; 

  const Int iBottom     = iStartY + iDist; 

  const Int iLeft       = iStartX - iDist; 

  const Int iRight      = iStartX + iDist; 

  rcStruct.uiBestRound += 1; 

   

  if ( iTop >= iSrchRngVerTop ) // check top 

  { 

    if ( iLeft >= iSrchRngHorLeft ) // check top left 

    { 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iTop, 1, iDist ); 

    } 

    // top middle 

    xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist ); 

     

    if ( iRight <= iSrchRngHorRight ) // check top right 

    { 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight, iTop, 3, iDist ); 
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    } 

  } // check top 

  if ( iLeft >= iSrchRngHorLeft ) // check middle left 

  { 

    xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist ); 

  } 

  if ( iRight <= iSrchRngHorRight ) // check middle right 

  { 

    xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist ); 

  } 

  if ( iBottom <= iSrchRngVerBottom ) // check bottom 

  { 

    if ( iLeft >= iSrchRngHorLeft ) // check bottom left 

    { 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iBottom, 6, iDist ); 

    } 

    // check bottom middle 

    xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist ); 

     

    if ( iRight <= iSrchRngHorRight ) // check bottom right 

    { 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight, iBottom, 8, iDist ); 

    } 

  } // check bottom 

} 
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__inline Void TEncSearch::xTZ8PointDiamondSearch( TComPattern* pcPatternKey, 

IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, 

const Int iStartX, const Int iStartY, const Int iDist ) 

{ 

  Int   iSrchRngHorLeft   = pcMvSrchRngLT->getHor(); 

  Int   iSrchRngHorRight  = pcMvSrchRngRB->getHor(); 

  Int   iSrchRngVerTop    = pcMvSrchRngLT->getVer(); 

  Int   iSrchRngVerBottom = pcMvSrchRngRB->getVer(); 

   

  // 8 point search,                   //   1 2 3 

  // search around the start point     //   4 0 5 

  // with the required  distance       //   6 7 8 

  assert ( iDist != 0 ); 

  const Int iTop        = iStartY - iDist; 

  const Int iBottom     = iStartY + iDist; 

  const Int iLeft       = iStartX - iDist; 

  const Int iRight      = iStartX + iDist; 

  rcStruct.uiBestRound += 1; 

   

 

     

  

   if ( iDist == 1 ) // iDist == 1 

   { 
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    if ( iTop >= iSrchRngVerTop ) // check top 

    { 

     xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist ); 

    } 

    if ( iLeft >= iSrchRngHorLeft ) // check middle left 

    { 

     xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist ); 

    } 

    if ( iRight <= iSrchRngHorRight ) // check middle right 

    { 

     xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist 

); 

    } 

    if ( iBottom <= iSrchRngVerBottom ) // check bottom 

    { 

     xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, 

iDist ); 

    } 

   } 

   else // if (iDist != 1) 

   { 

    if ( iDist <= 8 ) 

    { 

     const Int iTop_2      = iStartY - (iDist>>1); 

     const Int iBottom_2   = iStartY + (iDist>>1); 
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     const Int iLeft_2     = iStartX - (iDist>>1); 

     const Int iRight_2    = iStartX + (iDist>>1); 

 

     if (  iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft && 

      iRight <= iSrchRngHorRight && iBottom <= 

iSrchRngVerBottom ) // check border 

     { 

      xTZSearchHelp( pcPatternKey, rcStruct, iStartX,  iTop,      

2, iDist    ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2,  

iTop_2,    1, iDist>>1 ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, 

iTop_2,    3, iDist>>1 ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft,    

iStartY,   4, iDist    ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight,   

iStartY,   5, iDist    ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2,  

iBottom_2, 6, iDist>>1 ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, 

iBottom_2, 8, iDist>>1 ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iStartX,  

iBottom,   7, iDist    ); 

     } 

     else // check border 
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     { 

      // changes made here 

      #pragma omp sections nowait  

               { 

       #pragma omp section 

    { 

      if ( iTop >= iSrchRngVerTop ) // check top 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iStartX, iTop, 2, iDist ); 

      } 

      if ( iTop_2 >= iSrchRngVerTop ) // check half top 

      { 

       if ( iLeft_2 >= iSrchRngHorLeft ) // check half 

left 

       { 

        xTZSearchHelp( pcPatternKey, 

rcStruct, iLeft_2, iTop_2, 1, (iDist>>1) ); 

       } 

       if ( iRight_2 <= iSrchRngHorRight ) // check 

half right 

       { 

        xTZSearchHelp( pcPatternKey, 

rcStruct, iRight_2, iTop_2, 3, (iDist>>1) ); 

       } 
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      } // check half top 

    } 

    #pragma omp section 

    { 

      if ( iLeft >= iSrchRngHorLeft ) // check left 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, iLeft, 

iStartY, 4, iDist ); 

      } 

      if ( iRight <= iSrchRngHorRight ) // check right 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, iRight, 

iStartY, 5, iDist ); 

      } 

      if ( iBottom_2 <= iSrchRngVerBottom ) // check half 

bottom 

      { 

       if ( iLeft_2 >= iSrchRngHorLeft ) // check half 

left 

       { 

        xTZSearchHelp( pcPatternKey, 

rcStruct, iLeft_2, iBottom_2, 6, (iDist>>1) ); 

       } 

       if ( iRight_2 <= iSrchRngHorRight ) // check 

half right 



 

102 
 

       { 

        xTZSearchHelp( pcPatternKey, 

rcStruct, iRight_2, iBottom_2, 8, (iDist>>1) ); 

       } 

      } // check half bottom 

    } 

       

     #pragma omp section 

                 { 

         if ( iBottom <= iSrchRngVerBottom ) // check bottom 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iStartX, iBottom, 7, iDist ); 

      } 

     } 

    } // check border 

     } 

    } 

    else // iDist > 8 

    { 

     if ( iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft && 

      iRight <= iSrchRngHorRight && iBottom <= 

iSrchRngVerBottom ) // check border 

     { 
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      xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop,    

0, iDist ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iLeft,   iStartY, 

0, iDist ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iRight,  

iStartY, 0, iDist ); 

      xTZSearchHelp( pcPatternKey, rcStruct, iStartX, 

iBottom, 0, iDist ); 

      for ( Int index = 1; index < 4; index++ ) 

      { 

       Int iPosYT = iTop    + ((iDist>>2) * index); 

       Int iPosYB = iBottom - ((iDist>>2) * index); 

       Int iPosXL = iStartX - ((iDist>>2) * index); 

       Int iPosXR = iStartX + ((iDist>>2) * index); 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iPosXL, iPosYT, 0, iDist ); 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iPosXR, iPosYT, 0, iDist ); 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iPosXL, iPosYB, 0, iDist ); 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iPosXR, iPosYB, 0, iDist ); 

      } 

     } 

     else // check border 
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     { 

             #pragma omp sections nowait     

    {   

     #pragma omp section  

     { if ( iTop >= iSrchRngVerTop ) // check top 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iStartX, iTop, 0, iDist ); 

      } 

     }  

     #pragma omp section   

     { 

        if ( iLeft >= iSrchRngHorLeft ) // check left 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, iLeft, 

iStartY, 0, iDist ); 

      } 

     } 

     #pragma omp section   

     { 

      if ( iRight <= iSrchRngHorRight ) // check right 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, iRight, 

iStartY, 0, iDist ); 

      } 
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     } 

     #pragma omp section   

     { 

         if ( iBottom <= iSrchRngVerBottom ) // check bottom 

      { 

       xTZSearchHelp( pcPatternKey, rcStruct, 

iStartX, iBottom, 0, iDist ); 

      } 

                 } 

     } 

    //changes made here 

                  #pragma omp parallel for   

       

       for ( Int index = 1; index < 4; index++ ) 

       { 

        Int iPosYT = iTop    + ((iDist>>2) * 

index); 

        Int iPosYB = iBottom - ((iDist>>2) * 

index); 

        Int iPosXL = iStartX - ((iDist>>2) * 

index); 

        Int iPosXR = iStartX + ((iDist>>2) * 

index); 

                       #pragma omp sections nowait 

        { 
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                        #pragma omp section 

         { 

        if ( iPosYT >= iSrchRngVerTop ) // 

check top 

        { 

         if ( iPosXL >= iSrchRngHorLeft 

) // check left 

         { 

          xTZSearchHelp( 

pcPatternKey, rcStruct, iPosXL, iPosYT, 0, iDist ); 

         } 

         if ( iPosXR <= 

iSrchRngHorRight ) // check right 

         { 

          xTZSearchHelp( 

pcPatternKey, rcStruct, iPosXR, iPosYT, 0, iDist ); 

         } 

        } // check top 

      } 

 

                        #pragma omp section 

         { 

        if ( iPosYB <= iSrchRngVerBottom ) // 

check bottom 

        { 
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         if ( iPosXL >= iSrchRngHorLeft 

) // check left 

         { 

          xTZSearchHelp( 

pcPatternKey, rcStruct, iPosXL, iPosYB, 0, iDist ); 

         } 

         if ( iPosXR <= 

iSrchRngHorRight ) // check right 

         { 

          xTZSearchHelp( 

pcPatternKey, rcStruct, iPosXR, iPosYB, 0, iDist ); 

         } 

        } // check bottom 

          } 

         } 

       } // for ... 

       

     } // check border 

    } // iDist <= 8 

   } // iDist == 1 

  } 
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