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Abstract 

USING AERIAL RANGE FEATURE DESCRIPTOR (ARFD) FOR LIDAR STRIP 

ADJUSTMENT AND MOSAICING 

Yanyan Hu, M.S. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Venkat Devarajan  

Light Detection and Ranging (LiDAR) has become the primary surface data 

extraction mapping technique. Airborne LiDAR system consists of three major 

components, which are laser ranging and scanning unit, Global Position System (GPS) 

and Inertia Measurement Unit (IMU). LiDAR data are collected in a rectangular strip-wise 

pattern with 10% - 30% overlapping ratio between adjacent strips. When the calibration 

parameters within the system components are not accurately determined, systematic 

errors might occur within LiDAR strips. The systematic errors lead to strip discrepancies, 

which further affect the quality of end-user products like Digital Elevation Map (DEM) or 

Digital Surface Map (DSM). In order to reduce or eliminate the discrepancies, various 

LiDAR strip adjustment methods have been proposed. 

Aerial Range Feature Descriptor (ARFD) and a corresponding ARFD-based 

LiDAR strip matching algorithm have been developed to solve the strip adjustment 

problem for two LiDAR strips. The algorithm transforms one strip onto the other in such a 

way that relative discrepancies between the two LiDAR strips are minimized. The 

transform model is equivalent to the homography matrix relating the two strips and can 

be determined by taking advantage of feature-based image registration technique like 

Scale Invariant Feature Transformation (SIFT). However, with the presence of more than 
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two LiDAR strips, the strip matching problem becomes a strip mosaicing problem and a 

more sophisticated algorithm is required to mosaic multiple LiDAR strips. 

In this thesis, a LiDAR strips mosaicing algorithm is proposed and implemented 

and its performance is evaluated under various conditions. It takes advantages of the 

ARFD-based LiDAR strip matching algorithm and extends it to multiple strips. The novelty 

of the proposed algorithm is that it borrows and modifies the concept of bundle 

adjustment from the Photogrammetry and Computer Vision community and utilizes the 

systematic bias model to reduce/eliminate the global strip discrepancies. 
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Chapter 1  

Introduction 

Airborne Light Detection and Ranging (LiDAR) is a kind of topographic laser 

profiling and ranging system, which is used to measure continuous profiles of the terrain 

from aircraft. Over the last decade, the airborne LiDAR system has been proven as a 

cost-effective tool for the generation of surface models with dense/accurate irregular 

points [1]. Because of its relatively high accuracy and modest complexity, the airborne 

LiDAR system has been found useful in various applications recently [4]-[6]. In this 

chapter, background information of an Airborne LiDAR system, including the general 

equipment description, data acquisition and data post-processing, is presented. In 

addition, data biases problem and its solutions are discussed.  

 

1.1 Airborne LiDAR System  

An airborne LiDAR system consists of both a ground segment and an airborne 

segment. The ground segment contains multiple Global Position System (GPS) reference 

stations and off-line processing hardware and software. The airborne segment typically 

contains a laser ranging and scanning unit, a Position and Orientation System (POS) 

which integrates another GPS and an Inertial Measurement Unit (IMU) – all mounted on 

an airplane. 

During a flight, the laser ranging and scanning unit emits a beam of light pulse 

from a mounted laser emitter and receives the returned pulse after it reflects off the target 

area on earth. The traveling time between emitted and received pulse is measured and 

converted to the line-of-sight slant range by equation (1)  

    
 

 
     (1) 

where, 
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R is the distance between the laser ranging and scanning unit and target area. 

c is the speed of light. 

tL is the travelling time of a light pulse.  

Instead of discrete pulses, It is also possible to determine the range if the laser 

unit emits light continuously. Such a signal is called continuous wave signal. In this 

configuration, the intensity of laser light has to be modulated in order to carry out ranging 

[7]. While the laser ranging and scanning unit measures the range, the onboard POS 

independently stores the carrier phase information of GPS and the orientation data of the 

IMU. At the same time, the on-ground GPS stations gather the necessary data at known 

fixed positions on earth for later off-line computing of differential GPS (DGPS) positions 

of the airborne platform. With the aid of DGPS and IMU, the position and orientation of 

the airborne platform can be determined with very high accuracy (centimeter to decimeter 

accuracy for position and one-hundredth degree accuracy for orientation [7]). Then the 

position and orientation data are post-processed with the range data and the scanning 

angle from the laser ranging and scanning unit to determine the 3D coordinate, which are 

X (latitude), Y (longitude) and Z (elevation) of the target area. The detailed-explanation of 

the post-processing will be provided in later sections. Besides the 3D coordinates, the 

amplitude of the returned pulse, marked as I, is also recorded as the intensity value of the 

target area.  

Since the laser ranging and scanning unit emits beams of laser to the ground, 

ideally the target area detected by the laser beam should be a point or as small as the 

cross section of the laser beam. However, in reality, the laser beam is not perfectly 

cylindrical and therefore some divergence of the laser beam is inevitable. As shown in 

Figure 1-1, the beam waist is the narrowest part of the beam. From the waist, the beam 

diverges by an angle  , which is known as the beam divergence angle, thus causing a 
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significant footprint to form on the ground. The calculation of the area of the LiDAR 

footprint can be found in [8]. The size of footprint varies according to the applications. 

Typically, the footprint diameters and footprint spacing are less than 0.5m and 1.5m 

respectively [9]. The sensor receives the entire return from the footprint and respectively 

assigns an average value as the elevation and intensity of the target area. 

 

Figure 1-1 Illustration of LiDAR Beam Divergence [2] 

One important fact to note here is that the LiDAR range data has multiple returns 

and the number of returns depends on the natural characteristic of the target area. For 

example, as shown in Figure 1-2, a tree may have multiple returns because each level of 

the tree may reflect a certain portion of the light pulse, plus that the bare ground can 

reflect the rest of light pulse as well. Each one of the multiple returns can be found useful 

in different applications. Therefore, care must be taken to consider the correct return 

based on the end application. 

 

Figure 1-2 Multiple LiDAR Returns [3] 
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1.2 Airborne LiDAR Data Acquisition  

Airborne LiDAR data collection is usually conducted in a rectangular strip-wise 

pattern. The rectangular strip is also called a swath. The width of each swath is 

determined by the flight height and the maximum scanning angle, given in equation (2).  

         
 

 
 (2) 

where, 

SW is the width of the swath. 

h is the height of the airborne platform from the ground. 

  is the scanning angle. 

Within each swath, the data acquired by a specific airborne LiDAR system is 

determined by the following parameters. 

1.2.1 Scanning Frequency 

Scanning Frequency is the number of light pulses emitted by the laser unit per  

second [10]. Older instruments emitted a few thousand pulses per second, while modern 

systems are able to support frequency up to 200 KHz [9]. The scanning frequency is 

directly related to the density of returned light pulses, a.k.a. returns, obtained by the laser 

unit. Given that the flight height and speed are constant, an airborne LiDAR system 

operating at higher scanning frequency will generate a higher number of returns than a 

system operating at lower frequency. Equivalently, a high-frequency system can generate 

desired return density by operating on an aircraft that flies higher and faster than an 

aircraft carrying a lower frequency system, thereby reducing flying time and acquisition 

costs [10].  

1.2.2 Scanning Pattern  

Scanning pattern is the spatial arrangement of the light pulses emitted to and 

returning from a flat surface while the airborne platform is flying forward. It depends on 
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the movement of the laser unit across the flight line. Four scanning patterns, which are 

zigzag, parallel across the swath, elliptical and parallel along the swath are shown in 

Figure 1-3  

.  

Figure 1-3 Scanning Patterns and Devices [2] 

The scanning pattern is affected by the scanning device. As shown above, the 

zigzag pattern is generated by using an oscillating mirror. Returns are generated 

continuously in both scanning direction. The parallel across the swath pattern is 
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generated by a rotating polygon and the returns are generated in one direction of the 

scan only. The elliptical pattern is generated by using a nutating mirror, which moves the 

laser beam along an elliptical path below the aircraft. In this pattern, the ground is 

scanned twice from different direction. The parallel along swath pattern is generated by a 

fiber scanner, which consists of two arrays of glass fibers (transmitting and receiving 

arrays) arranged at one end in a circle and at the other end in a line [2]. Among all the 

scanning devices, the most popular ones in the commercial LiDAR systems are the 

oscillating mirror and rotating polygon, both of which are linear scanners [11-12]  

1.2.3 Beam Divergence Angle 

As mentioned in the previous section, the laser beam emitted by a LiDAR system 

deviates from the center line of beam propagation and forms a larger footprint. Because 

the total amount of energy per pulse remains constant, larger beam divergence angle will 

lead to a larger footprint area, and eventually a lower signal-to-noise ratio.  

1.2.4 Scanning Angle  

The scanning angle is the maximum angle of the beam which is directed away 

from the “focal” plane of the LiDAR instrument [10]. Typically, the scanning angle 

supported by most systems does not exceed 15 degree.  

1.2.5 Footprint Diameter 

Footprint diameter is the diameter of the intersection of a laser beam and a 

perpendicular plane from a distance equal to the flight height. As discussed above, the 

foot print diameter is affected by the beam divergence angle. With a constant beam 

divergence angle, higher flight height will generate a larger footprint. Moreover, as the 

laser unit scans to the side, the footprint becomes larger depending on the instantaneous 

scanning angle [29]. With all the factors considered, equation for calculating the footprint 

diameter is shown as follows: 
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 (3) 

where, 

  is the footprint diameter. 

  is the flight height 

  is the beam divergence angle and 

  is the instantaneous laser unit scanning angle. 

1.2.6 Pulse Length 

Pulse length describes the duration of each complete laser pulse. It is used to 

determine the range resolution of the pulse in multiple return systems, or the minimum 

distance between consecutive returns from a pulse [10]. The pulse length is measured in 

nanoseconds (ns). Smaller pulse length gives higher range resolution.  

1.2.7 Number of Returns 

As discussed previously, the LiDAR range data has multiple returns. The number 

of returns determines the maximum number of returns that can be recognized from a 

single laser beam. Most modern systems can identify up to five multiple returns. 

1.2.8 Footprint Spacing  

Footprint spacing is the nominal distance between the center of two consecutive 

footprints in the same scanning line. It is determined by the scanning frequency, the flight 

height and the speed of the airborne platform. The footprint spacing determines the 

spatial resolution of LiDAR data  

 

1.3 LiDAR Data Post Processing 

The final LiDAR point coordinates is the product of combining the range 

measurement with DGPS and IMU. The DGPS provides the position information of the 
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platform with respect to the reference and, the IMU provides the roll, pitch and yaw 

parameters of the platform. At each timestamp, the laser scanner picks up the returned 

pulse; the corresponding measurement from DGPS and IMU is also recorded. With 

proper calibration, the exact coordinates of the target point on the ground is determined 

by the following LiDAR equation [13]  

                                                          
 
 

  
  (4) 

where, 

    is the position of laser point on the ground 

    is the vector from the origin of the reference 

               is the rotation matrix relating the ground and the IMU coordinate   

system 

     is the lever-arm which is defined by the spatial offset between the laser unit 

and the IMU 

          is the rotation matrix defined by the boresight angle          which 

are rotation offsets between the IMU and the laser unit coordinate 

     is the rotation matrix relating the laser unit to the laser beam coordinate 

where α  is the encoder angle along the flight path and β is the encoder angle 

perpendicular to the flight path, as shown in Figure 1-4.. 

    is the laser range whose magnitude is equivalent to the distance from the laser 

firing point to its footprint. 
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Figure 1-4 Illustration Encoder Angles [2] 

Figure 1-5 illustrates the coordinate system of each component (ground, IMU, 

laser unit and laser beam ) and the quantities involved in the LiDAR equation (4). 

As mentioned in previous section, linear scanner is the most popular device in 

modern LiDAR systems, and therefore it is the focus of this research as well. For linear 

scanner, the laser beam direction can be represented by the encoder angle β only with α 

set to be zero. 

Post processing is performed offline to obtain the ground points using the above 

equation. The LiDAR point cloud will be obtained after the post processing. There are 

multiple chances for the above setup to falter, such as the following  

1. The calibration has to be up to date to have the correct parameters for the 

laser scanning unit and the offsets and rotations. 

2. The IMU needs to have been calibrated properly to supply the correct roll, 

pitch and yaw parameters.  

The above set of steps constitutes quality assurance. However, during flight 

mission, random errors can occur in properly calibrated systems too. Therefore, once the 

points have been obtained, quality control must be performed in order to ascertain the 
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accuracy of the data in hand. There is a likelihood that the system might need to be 

recalibrated based on the quality control steps [9].  

 

Figure 1-5 Coordinate Systems and Involved Quantities in the LiDAR Equation [14] 

 

 
1.4 LiDAR Systematic Biases and Strip Adjustment 

As mentioned in previous section, the LiDAR data are collected in strips. The 

adjacent LiDAR strips are required to have 10% - 30 % [15] overlapping area for the 

purpose of Quality Assurance and Quality Control (QA/QC). Ideally, there should be no 

visible or measurable differences between overlapping LiDAR strips, except for some 

random noise. However, strip differences frequently occur, due to systematic biases.  

Systematic biases mainly refer to the biases in the boresight angles and lever-

arm offsets relating the system components as well as the biases in the system 
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measurement such as encoder angles and laser ranges. The boresight angles, lever-

arm, encoder angle and laser range have been defined in equation (4). The impact of 

these biases can be derived though mathematical analysis of the LiDAR equation and the 

details of the analysis will be discussed in Chapter 3. These system biases result in 

discrepancies between the LiDAR strip and the ground truth, where ground truth refers to 

the actual X, Y and Z values of an identifiable point.  

With the purpose of reducing, or ultimately eliminating these discrepancies found 

in strip overlap areas, various LiDAR strip adjustment methods have been proposed in 

the past. For the first generation of commercial LiDAR system, strip adjustment was firstly 

aimed at removing only the elevation difference, because only vertical accuracy of the 

LiDAR data was specified [16]. As the LiDAR equipment improved, horizontal precision 

evaluation is now part of the process.  

Theoretically, the concept of the LiDAR strip adjustment process is simple and 

can be divided into the following steps: firstly, the difference in the overlap area should be 

identified and the transformation parameters can be determined by using a suitable 

geometric model. Then the transformation parameters can be applied to correct/adjust 

the strips. However, in practice, LiDAR points are irregularly distributed, which means 

that the same object space is randomly sampled in the spatial domain in every strip, and 

therefore it is very unlikely (nearly impossible) to have point to point correspondence in 

the overlap areas of two strips. The lack of conjugate points makes it difficult to correctly 

identify the strip difference and increases the complexity of strip adjustment. 

To explain the strip adjustment process mathematically, let      
 
   

 
   

 
    

         and      
 
   

 
   

 
             each be a LiDAR point cloud in 3D and belong 

to different LiDAR strips.   and   are the irregular spatial samples of the same area. As 

mentioned earlier, there is no exact conjugate points between   and  . The task in strip 
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adjustment therefore is finding a transformation T that minimizes the relative distance 

between the two point clouds. This is described by the following equation [15] 

     
 

         (5) 

The transformation              
  can be established between two overlapping LiDAR 

strips or between a reference surface and a LiDAR strip [15]. In the first case, the 

transform is only applied on one data set, thus only the relative strip discrepancies 

between two strips is reduced. In the second case, the transformation is applied on all the 

strips in order to improve the absolute accuracy of the LiDAR data cloud. With the first 

case being accomplished in [9], the focus of this research is on the second case. 

 

1.5 ARFD and Image Mosaicing 

Aerial Range Feature Descriptor (ARFD) [9], as its name suggests, is a feature 

descriptor for LiDAR range features. Together with its corresponding LiDAR strip 

matching algorithm, ARFD is used to solve strip adjustment problem for two LiDAR strips 

by combining the power of LiDAR 2.5D elevation data with keypoint detector and 

descriptor.  

The LiDAR 2.5D elevation data is obtained by rescanning an irregular grid and 

interpolating the data onto a regular raster grid [9]. Its advantages are 1) LiDAR data can 

be represented directly in the regular raster grid. 2) Digital image processing technique 

can be directly applied on. The keypoint detector finds interesting keypoints in the 2.5D 

representation of LiDAR strip by using the scale-space blob-detection technique. 

Elevation statistics obtained from subdivisions of the neighborhood patch surrounding a 

keypoint are defined as the keypoint descriptor. Each element of such a descriptor is 

referred to as one feature dimension and all elements together form the feature space. 

Once all the keypoints and descriptors are obtained from the overlapping area of two 
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overlapping strips, correspondences are found using the nearest neighbors of each point 

in the feature space. These matches can be used to find the homography that is used to 

transform one strip onto another [9]. Details of ARFD and the corresponding LiDAR strip 

matching algorithm will be introduced in Chapter 2.  

Despite of its outstanding performance [9] in matching two LiDAR strips, the 

ARFD-based strip matching algorithm reaches to its limitation with the presence of 

multiple strips which partially overlap at least two other strips. The difficulty lies in the 

need of minimizing global discrepancies among all the LiDAR strips, while the strip 

matching algorithm can only eliminate the relative discrepancies between two strips.  

In the image processing and computer vision communities, similar problems are 

tackled by many researchers and various solutions have been proposed. For example, 

Brown and Lowe [35] proposed an image stitching technique that mosaics several photos 

taken at different positions into a panoramic image. The basic idea of their approach is to 

obtain the camera parameters of each photo by minimizing differences of all the 

correspondences jointly from all the images, which is the similar to the criteria of solving 

the problem of matching multiple LiDAR strips. Therefore, adopting the image mosaicing 

concepts and techniques is a reasonable approach to extend the ARFD-based LiDAR 

strips algorithm to multiple strips. Detailed reasoning and speculation will be provided in 

Chapter 3. 

 

1.6 Thesis Goal and Outlines 

In this thesis, by exploiting the advantage of AFRD in matching LiDAR strips and 

the analysis of systematic biases, a method is proposed that mosaics multiple LiDAR 

strips which are contaminated by the system bias. The goal is to eliminate the horizontal 
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discrepancies among the LiDAR strips and directly/indirectly estimate the system bias 

parameters.  

The structure of the thesis is as follows: 

Chapter 2 presents an overview of the ARFD and the algorithm to match two 

overlap LiDAR strips.  

Chapter 3 reviews the literature of image mosaicing and proposes the LiDAR 

strip mosaicing method based on the systematic biases model.  

Chapter 4 describes the experiment carried out and analysis of result.  

Chapter 5 summarizes the study of the proposed method and provides 

recommendation for future work. 
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Chapter 2  

ARFD and LiDAR Strip Matching 

Aerial Range Feature Descriptor (ARFD) [9] is a newly developed feature 

descriptor for the LiDAR range features, aiming to match overlapping LiDAR strips by 

feature detection and matching techniques. The range features are defined as keypoint 

features from the interpolated range data. The details of ARFD and the LiDAR strip 

Matching algorithm will be discussed in this chapter. 

 

2.1 Introduction to ARFD  

Inspired by SIFT [17], GLOH [18], and SURF [19], which are image intensity 

based feature descriptors and widely used in the computer vision community, ARFD is 

designed to be based on the elevation data of the LiDAR strip but still takes advantage of 

feature-based image matching technique. ARFD evaluates the statistics of elevation data 

in the neighborhood of the detected key point location (the key point detection algorithm 

will be discussed in the LiDAR strip matching algorithm). For every key point location, a 

      patch centered at the key point is extracted in the corresponding elevation data. 

Then the patch is subdivided into 16 sub-patches of size    . The extracted patch and 

sub-patches are shown in Figure 2-1. For each sub-patch, the mean, variance, skewness 

and kurtosis of the 16 samples inside are calculated, which form a 4 dimensional 

descriptor. Following the order of top-left-to-bottom-right, every inside sub-patch 

generates a 4 dimensional descriptor.  All 16 descriptors are concatenated to form the 

final 64 dimensional descriptor, which is the ARFD for the corresponding keypoint.  
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Figure 2-1 Extracted Patch and Sub-patches [9] 

 
2.2 ARFD Based LiDAR Strip Matching Algorithm 

The goal of the ARFD based LiDAR strip matching algorithm is to establish the 

transformation between two overlapping LiDAR strips to minimize the relative horizontal 

discrepancy between the strips.  The algorithm can be summarized into the following 

steps: 

1. Interpolate LiDAR data clouds into regular raster grid.  

2. Automatically detect the overlap area.  

3. Automatically detect keypoints in the overlap area from each LiDAR strip. 

4. Generate ARFD for each keypoint 

5. Find likely keypoint matches in both LiDAR strips. 

6. Use RANdom Sample Consensus (RANSAC) to eliminate outliers from the 

likely matches and estimate the homography/projective transformation 

7. Apply homography transformation on one of the strips and then align them 

with each other. 
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2.2.1 LiDAR Data Interpolation 

Since the LiDAR points cloud are irregularly sampled, it is necessary to 

interpolate the LiDAR data of both strips into an independent regularly-spaced raster grid. 

By introducing the interpolation process, each LiDAR swath data creates two regular 

LiDAR images, which are intensity (I value) image and elevation (Z value) image. One 

important fact to note here is that the size of the LiDAR image not only depends on the 

area covered by the LiDAR strip, but also on the arbitrarily selected resolution, which is 

defined as the actual area represented by each pixel. The interpolation technique 

employed in the strip matching algorithm is the Inverse Distance Weighting (IDW) 

interpolation algorithm. Firstly, after the grid is set, the intensity and elevation data of 

each point is assigned to the nearest cell as well as its closest 8 neighbor cells, as shown 

in Figure 2-2. After the first round of assignment, in the next round, each empty cell is 

identified and it “borrows” the data from its non-empty 8 neighbor cells, with the 

corresponding Euclidean distance recorded. The “borrowing” process will repeat 3 times 

and the Euclidean distance will be updated. Once the iteration is finished, most of the 

cells will be assigned some points, and then the elevation and intensity value in each cell 

is determined as a weighted average of the data of the points assigned to the cell, with 

the weights being a function of the inverse Euclidean distance between the current cell 

and the cells from which the current cell “borrows” data. The functions for calculating the 

interpolated elevation and intensity values are shown in equation (6) and (7), 

respectively. 



18 

 

Figure 2-2 Adaption of Inverse Distance Weighting Interpolation Algorithm [9] 
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where, 

     and      are the elevation and intensity at current cell location        

   and    are the elevation and intensity values of the individual data points that 

have been assigned to the cell location. 

n is the number of cells from which data is lent 

   is the distance between the current cell and the cells from which the current 

cell borrows data 

2.2.2 Automatic Overlap Area Detection 

The overlap area between two LiDAR strips is detected automatically by 

comparing boundaries of both strips. For two horizontal parallel strips configuration, as 

shown in Figure 2-3 , the shape of the overlap area, is rectangle. The top boundary of the 
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overlap area is the maximum value of both the strips’ top boundaries and similarly, the 

bottom boundary is the minimum value of both the strips’ bottom boundaries. The left and 

right boundaries are also determined in the similar way. 

 

Figure 2-3 Strip Overlap Configuration 

2.2.3 Automatic Keypoint Detection  

After determining the overlap area, keypoints are extracted from the interpolated 

LiDAR elevation images. In the LiDAR strip matching algorithm, the scale-space blob 

detection is selected and proved as “best suited for extracting the most interesting 

features (a.k.a. keypoints) for LiDAR data matching” [9]. The scale-space blob detection 

is generalized as following. 

Firstly, a pyramid of image is constructed for multiple octaves, as shown in 

Figure 2-4. Each Octave contains multiple LiDAR images of the same scale, starting with 

2 times the initial size of the image and shrinking by a factor of 2 each time. A total of 4 

such octaves are created for the purpose of covering multiple scaling variations between 

images being matched. 
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After construing the image pyramid, a series of 2D Gaussian filters with different 

variance are applied to the octaves to obtain various blurring levels. This is followed by 

the subtraction between the adjacent images within the same octave to obtain the 

Difference of Gaussian (DoG) image (see Figure 2-4). The DoG is an approximation of 

the Laplacian of Gaussian (LoG) multiplied by a constant factor [17] and the LoG is used 

to extract the scale-space blobs. 

 

Figure 2-4 Image Pyramid and DoG Image [17] 

After the DoG images are obtained, a 3D non-maxima suppression is performed. 

For each sample in the DoG images, its 26 3D neighbor samples (8 in the current scale 

and 18 in the two adjacent scales) are considered, as shown in Figure 2-5. The samples 

which are the extremes among the 26 neighbors and exceed a threshold are selected as 

the strong keypoints. Finally, after removing the points on the edges, the surviving points 

are the scale-space blob keypoints. 
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Figure 2-5 3D Neighbor Samples [17] 

2.2.4 Descriptor Generation 

For every keypoint detected in the previous step, a corresponding ARFD is 

generated. Details of ARFD have been introduced in the previous section. In addition, in 

the LiDAR strip matching algorithm, an adaptive technique is also adopted. The 

descriptor is selected for each keypoint in an adaptive fashion by choosing to use the 

elevation or intensity data based on a higher kurtosis value of either of the modalities [9]. 

It turns out that this adaptive technique helps improve the final LiDAR strip matching 

performance.  

2.2.5 Keypoints Matching Algorithm 

 The keypoints matching method adopted in the LiDAR strip matching algorithm 

is based on the Nearest-Neighbor Distance Ratio (NNDR).  

1. For each keypoint and its corresponding descriptor in the first strip, the 

Euclidean distances in descriptor space between this point and all the points 

in the second strip are calculated.  

2. The NNDR of the current keypoint in the first strip is the ratio of the smallest 

distance over the second smallest distance.  
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3. If the ratio is greater than the threshold (normally in the range of 1.2 to 1.5), 

the keypoint corresponding to the smallest distance is picked as the best 

match. Otherwise, no best match is selected for the current key point.  

In the end, all of the best matches are identified as positive matches and the rest 

are identified as negative matches. 

2.2.6 Removing Outlier and Homography Estimation by Using RANSAC  

RANSAC [20] is a general parameter estimation approach designed to cope with 

a large proportion of outliers in the input data [21]. In the LiDAR strip matching algorithm, 

the RANSAC is adopted to eliminate the outliers of keypoint correspondences from the 

positive matches and estimate the homography matrix. The algorithm of RANSAC is 

generalized as following [21]: 

1. Select randomly the minimum number of points required to determine the 

model parameters. 

2. Solve for the parameters of the model. 

3. Determine how many points from the set of all points fit with a predefined 

tolerance  . 

4. If the fraction of the number of inliers over the total number points in the set 

exceeds a predefined threshold  , re-estimate the model parameters using all 

the identified inliers and terminate 

5. Otherwise, repeat steps1 through 4 (maximum of N times). 

After the outliers are eliminated by the RANSAC algorithm, the homography 

matrix is estimated again by using all the inliers. 

The homography between a pair of corresponding keypoints is defined as: 



23 

   
  

  

 

   

      

      

      

  
 
 
 
   (8) 

          (9) 

where       
  

  

 

  and          
 
 
 
  are two keypoints in homogenous form,   is the 

    homography matrix and,   is a non-zero constant.  

Dividing the first and second row of equation (8) by the third row leads to the 

following equations: 

                                 (10) 

                                 (11) 

then the two equations above can be written in matrix form as: 

         (12) 

Where, 

     
      
   

    
   

      
    

        

           

                                  

The homography matrix contains 8 degrees of freedom. Since each keypoint 

correspondence provides 2 equations, at least 4 pairs of keypoint correspondences are 

required. Finally the least square problem of equation (12) can be solved by finding the     

that minimizes      . This method is called the Direct Linear Transform (DLT) [43] 

algorithm for homography calculation. 

2.2.7 Homography Application and Strip Alignment  

After the homography matrix is determined, the transformation is applied on one 

of the LiDAR strips. Then the two LiDAR strips are aligned with each other to present the 
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final matching result, an example of which is shown in Figure 2-6. The green square in 

the middle highlights the detected overlapping area. 

 
Figure 2-6 LiDAR Strip Matching Final Result [9] 
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Chapter 3  

ARFD-based LiDAR Strip Mosaicing Algorithm  

The result of the ARFD-based LiDAR strip matching algorithm in the previous 

chapter showed a successful alignment of two overlapping LiDAR strips. Naturally, one 

reasonable question could then arise: will this algorithm work if there are more than two 

LiDAR overlapping strips? This is an especially significant question to answer since, in 

practice, due to the limitations of flight height and scanning angle, two LiDAR strips are 

far from enough to cover the whole target region or a region of interest.  Multiple LiDAR 

overlapping strips are always required. Besides, as mentioned previously, the LiDAR 

strip-matching algorithm presented in Chapter 2 merely minimizes the relative horizontal 

discrepancies between the two LiDAR strips. In other words, there is an assumption that 

one of the two strips is considered as completely correct in terms of its representation of 

the ground truth. The assumption could be valid for only two strips, because the biases 

within each strip are very small and can be ignored.  

At this point in the discussion, we want to make a distinction between photo-

based photogrammetry and LiDAR based Lidargrammetry. In photogrammetry, especially 

before the arrival of differential GPS, two photos matched using key point matching 

approaches never really got very close in terms of representing the ground truth. This is 

because, there were no inherent Z values collected using photos. Errors associated with 

the generation of Z values from photos were caused by many factors: scanning errors, 

internal camera calibration errors, lack of accurate orientation information for the airplane 

that took the pictures etc. The last mentioned issue was effectively removed after 

differential GPS systems came in to vogue. Nevertheless, the generation of Z values 

from photos still needed matching overlapping regions of a pair of photos and calculating 

heights of ground points in that overlapping area using parallax information. Even then, 
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additional ground control points were needed to anchor the whole model to the real world 

(earth).  

The situation with LiDAR is different for many reasons. First of all, the LiDAR 

system calculates height information from measurement of a laser unit. Thus the outputs 

of the system as mentioned before are the X, Y and most importantly Z, in addition to the 

intensity. The main error left is the calibration errors or what we refer to as “biases”. This 

is true even when we use just two strips and match them using key point matching 

techniques. Although such a match is far more accurate and connected to the real earth 

than would a photo pair be, when multiple strips are aligned together, the ignored small 

biases will propagate along each strip and finally could lead to significant errors.  

Therefore, multiple LiDAR strips matching problem, or more accurately, the LiDAR strip 

mosaicing problem, cannot be solved by directly applying the strip-matching algorithm on 

the consecutive pairs. 

The difficulty in the LiDAR strip mosaicing problem is similar to the one existing in 

the digital image mosaicing problem. When creating mosaicing of digital images, 

concatenation of pairwise homographies would cause accumulated errors and disregard 

multiple constraints among images. In the computer vision community, adopting the 

bundle adjustment technique to estimate the camera parameters jointly solves this 

problem. However, the bundle adjustment method could not be directly applied to the 

LiDAR strips because the proper “camera model” for LiDAR strip does not exist. 

Therefore, it is necessary to develop a LiDAR version of bundle adjustment technique in 

order to solve the LiDAR strip mosaicing problem. 

 In this chapter, because of the similarity between LiDAR strip mosaicing and the 

digital image mosaicing, the literature of image mosaicing methods and bundle 

adjustment is briefly reviewed. Then the mathematical model of LiDAR systematic biases 
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is introduced. Finally, a LiDAR strip mosaicing algorithm, which is based on the 

systematic biases model and takes advantages of the ARFD, is proposed. 

 

3.1 Brief Review of Image Mosaicing Methods  

Image mosaicing is a synthetic process, which generates a composition from a 

sequence of images by understanding geometric relationships among them [22]. 

Mosaicing of images has been in practice for a long time; even before the digital image 

technology came about. For example, in the photogrammetry community, the aerial 

mosaic was widely used to show the relative horizontal positions of terrain features. It is a 

series of overlapping vertical or near vertical photographs assembled in sequence on a 

mounting board to form one continuous picture of the terrain [23]. During that time, the 

mosaic is generated by manually laying down the succeeding photographs according to 

some index on a piece of plywood or fiberboard and then stapling them into place. With 

the development of computer technology and the adoption of digital image, automatic 

image mosaicing has been found to be important in many fields, including remote 

sensing, virtual reality, visual systems for flight simulation, mission rehearsal, video and 

image processing, and computer vision. A variety of image mosaicing methods have 

been proposed in the last two decades. In general, various steps needed in image 

mosaicing methods are image registration, stitching and blending. 

3.1.1 Image Registration 

Image registration refers to the geometric alignment of a set of images. The set 

may consist of two or more digital image taken of a single scene at different times, from 

different sensors, or from different viewpoints. The goal of registration is to establish 

geometric correspondence between the images so that they may be transformed, 

compared and analyzed in a common reference frame [22]. In general, the image 
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registration methods could be classified into frequency domain method and spatial 

domain method. 

3.1.1.1 Frequency Domain Registration Method 

The frequency domain image registration method prevails in the 1990’s but now 

only being found in limited applications after decades. One of the most famous frequency 

domain registration methods is proposed by Reddy and Chatter [25]. It is based on the 

Fast Fourier Transform (FFT-based) and the Fourier translation rotation and scale 

properties, which are shown in the following equations: 

                 (13) 
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where  

       ,         represent images in the spatial domain.         is equal to 

        after translation, rotation and scaling transform 

       ,         represent images in the Fourier domain 

  represents the 2D Fourier transform correspondence. Expression on the left 

side is in spatial domain and expression on the right side is in Fourier domain. 

   is the rotation parameter 

  ,   are the translation parameters and 

    are the scaling parameters. 

By using the polar coordinate transformation and cross-power spectrum, this 

method managed to determine the value of translation, rotation and scaling parameters. 
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In this method, the phase correlation technique is simple and accurate, but significant 

overlap ratio between images is required [25]. 

3.1.1.2 Spatial Domain Registration Method 

Spatial domain registration methods can be either non-feature-based or feature 

based. The non-feature-based method is also called the direct method [31], where pixel 

values are used directly for matching purposes. For example, cross-correlation [26][31] is 

the basic approach for registration. One of the images is called a template and the other 

target image or simply “image”. By calculating the normalized cross-correlation coefficient 

between the image and templates with various incremental translations and rotations of 

the template with respect to the image, one can get a series of measures of the degree of 

similarity between the two. The template, which gives the highest value of cross 

correlation, is the desired match. This method is useful for images, which are misaligned 

only by a small rigid or affine transforms.  

In the feature-based methods, features, also called keypoints, are the point 

representatives, which represent the salient and distinctive objects (close-boundary 

regions, edges, contours, line intersections, corners, etc.) that are detected automatically 

from the image [30]. Distinctive features are detected from the overlapping part of images 

(to be matched) to establish global or pair-wise correspondences. Schmid et al [32] 

evaluated several low-level feature detectors including Harris [33], improved version of 

Harris (ImpHarris) [32], Cottier [44], Horaud [41], Heitger [27] and Förstner [28]. The 

evaluation criteria used in this research are repeatability rate and information content, 

which represent the stability and distinctiveness of key points, respectively. The 

repeatability rate is defined as the number of points repeated between two images with 

respect to the total number of detected points, while the information is the entropy 

measurement of the post-processed descriptor formed by combinations of the first and 
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second derivatives of local pixel value. The result shows that with presence of image 

rotation, scale change, illumination variation, viewpoint change and camera nose, the 

Harris detector and its improved version have both higher repeatability rate and 

information content.  

After detecting the feature, matching is required to determine which features 

come from corresponding locations in different images. The matching process can be 

accomplished by means of the image intensity values in their close neighborhood, the 

feature spatial distribution, or the feature symbolic descriptions. The feature descriptor is 

a kind of feature point representation, which can be invariant to different orientations 

and/or scales, thus is widely used as an auxiliary step in matching. Mikolajczyk and 

Schmid [18] reviewed and evaluated multiple descriptors including SIFT, GLOH, PCA-

SIFT, and etc. The evaluation criterion is based on the number of correct matches and 

the number of false matches obtained for an image pair, under various conditions 

including affine transformations, scale changes, rotations, blur, jpeg compression, and 

illumination change. Among all the local descriptors, they found that David Lowe’s Scale 

Invariant Feature Transform (SIFT) generally performs the best. Details of SIFT 

implementation can be found in [17]. 

By using the descriptors, the simplest way to find all corresponding points in an 

image is to compare all the features in one image against all the features in the other.  

However, the computational cost will be       if both of the images contain n feature 

points. To reduce the computation complexity, the SIFT algorithm adopts the Best Bin 

First (BBF) algorithm [34] to speed up the matching process. The BBF algorithm is based 

on the k-d tree algorithm, while the bins in feature space are searched in the order of 

their closest distance from the query location [17] and the search process stops after the 
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first 200 nearest neighbor candidates. Besides, utilizing the NNDR, discussed in the 

previous chapter as a comparison criterion, also speeds up the matching process. 

Feature point correspondences are extracted after applying the selected 

matching technique. However, the matched correspondences contain both inliers and 

outliers. Inliers can be explained by a model with a particular set of parameter values, 

while outliers do not fit that model in any circumstance. To remove the outliers, RANSAC, 

discussed in Chapter 2, and its more sophisticated variations like PROgressive Sample 

Consensus (PROSAC) [42] are widely used. 

The transformation matrix between images can be automatically calculated 

during the RANSAC process. To get a more precise result, the inliers can be used to 

calculate the homography matrix again after RANSAC, The major difference among 

various homography calculation algorithms is the choice of cost function to be minimized. 

As discussed in Chapter 2, the cost function in the DLT method is the algebraic distance 

between all the correspondences. Other cost functions like geometric distance or its 

approximation, Sampson error [43] can be used. Besides, techniques like data 

normalization and adopting nonlinear least square algorithm can further improve the 

result.  

3.1.2 Image Stitching    

Given an image set I, which contains N images                 with a partial 

overlap at least two images. The outputs from image registration are the set of matrices 

H that contains all the homography matrices                                            , 

between every pair of overlapping images and each     will satisfy equation (16), 

              (16) 

where               and                are the homogeneous image position of image 

   and   . 
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The next step is to stitch the images together to create a larger mosaic. Based on 

whether the common reference is directly given or not, the image stitching can be 

classified as two cases. 

3.1.2.1 Directly Sequential Stitching 

This case takes place when one image of I is considered as the common 

reference or the homography matrix relating the common reference with one or more 

images of I is known. In this case, the homography matrix between the common 

reference and each image of I can be easily calculated by chaining the pair-wise 

homography matrices. New images after proper transformation can be directly aligned 

with the previously composited mosaic. 

Using the same notation as in the beginning of this section, let     be the 

corresponding homography matrix from the image    to the best adjacent image    and    

be the corresponding matrix from the image    to the common reference plan. If the 

common reference plane is    itself, the    becomes a diagonal matrix     . Otherwise    

is just an ordinary projective transformation matrix. Then, the    that is the corresponding 

homography matrix from the image    to the common reference plane can be calculated 

by equation (17) 

              (17) 

In the case that the    does not directly overlap   , the    can be calculated by 

considering all the intermediate images              that connect    and   , as is given in 

equation (18) 

                      (18) 

After calculating the all the homography matrices            , each image    is 

warped and resampled according to    .to generated a converted image     , which is 

related to     by the equation (19) 
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             (19) 

Finally all the converted images can be directly stitched on the common 

reference for further processing. Figure 3-1 shows the 3 images (a) (b) and (c) before 

mosaicing. During the registration step, the homography matrices     and     are 

calculated and    is known as well. Figure 3-2 demonstrates result of stitching (plus 

further blending) all the images on the common reference (the black background). 

 

Figure 3-1 Images before Mosaicing [24] 
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Figure 3-2 Mosaicing Result [24] 

3.1.2.2 Bundle Adjustment Based Stitching 

Bundle adjustment is often used when a large number of images need to be 

stitched together. In this case, the common reference is not directly available. One could 

argue that a possible solution is to arbitrarily choose one image from the set as the 

common reference and then directly apply the sequential stitching, as described in the 

previous section for three images. Unfortunately, in this situation, the sequential stitching 

will suffer from the problem of accumulated misregistration errors over the large number 

of images. The problem is particularly severe for panoramic mosaics, where a visible gap 

(or overlap) will exit between the first and last images in a sequence [31] or the ends of a 

panoramic will join up [35]. 

To solve this problem, algorithms [35]-[37] based on bundle adjustment are 

proposed in the computer vision community. Bundle adjustment [38] was originally 

developed as a technique, which refines a visual reconstruction to produce jointly optimal 

3D structure and viewing parameters (like the camera pose and/or calibrations). The 
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word ‘bundle’ refers to the bundle of light rays leaving each 3D feature and converging on 

each camera center. A camera projection model is adopted. The goal of implementing 

bundle adjustment is to minimize the global alignment error. 

Let                be the i-th 3D feature point. Then the projection of the 3D point 

    onto a point                 in the image    is (assuming central projection): 

                    and           
    

        (20) 

Or similarly,  
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where, 

      

       

       

   

  is a calibration matrix containing the camera focal length 

  . 

     

         

         

         
  is the rotation matrix describing the rotation of the 

camera. 

  denotes the meaning of being proportional to.  

Using equation (20), the projection of     onto another point      in image    can 

be written as: 

                           
    

                  (22) 

and therefore, 

     =         
    

   (23) 

where, as mentioned earlier,     is the homography matrix from image     to image   . 
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Given an initial set of           , the rest of the camera parameters can be 

estimated by minimizing the following energy   through nonlinear iterative minimization 

technique like Levenberg-marquardt (LM) and Gauss-Newton methods [39], if the true 

bundle adjustment is used [31]:  

                                       
     (24) 

where,                  is the predict location of the i-th feature in image    given by 

equation (20);      is the observed location; and     is the weight parameter. 

However, the disadvantage of full bundle adjustment is that there are more 

variables to solve for each iteration and the overall convergence may be slower. In 

practice, equation (25) is suggested for simplicity and speed: 

             

   

                                         (25) 

where                  and                   are given by the second half of equation (20). 

Again, the non-linear least square minimization methods like LM or Gauss-Newton can 

be applied to get the updated camera parameters for each image. 

3.1.3 Image Blending  

Because of a number of unmodelled effects, such as vignetting (intensity 

decreases towards the edges of the image), parallax effects due to unwanted motion of 

the optical center and misregistration errors due to mismodelling [35],  image blending is 

important to create the satisfactory final image mosaic. However, since the goal of the 

research is to eliminate the horizontal discrepancies between multiple LiDAR strips, 

image blending is irrelevant to what has been proposed. Therefore, no further discussion 

will be provided here. 
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3.2 LiDAR Systematic Biases Model 

As discussed in the beginning of Chapter 3, despite of the fact that bundle 

adjustment is a very powerful tool for decreasing the global alignment error, it is not 

entirely applicable to LiDAR strip mosaicing problem due to the following reasons.  

1. The bundle adjustment approach is based on the pinhole camera projection 

model. However, for the LiDAR strip and the interpolated image, the camera 

model is not applicable. 

2. Although an initial set of           is required for the nonlinear least square 

iterative minimization method to initiate, indicating the image    is the initial 

common reference, the final common reference for image stitching will not 

necessarily be image     . In fact, the final common reference will be 

determined implicitly by all the camera parameters for each image and these 

camera parameters are updated after every iteration in order to minimize the 

global alignment error. However, in the LiDAR strip, if there is no bias, all the 

LiDAR points will be registered perfectly within the common reference, which 

is the ground coordinate system preset by the ground segment of the 

airborne LiDAR system. Since the common reference is already given 

indirectly, if the bundle adjustment technique is applied, the updated final 

common reference is not guaranteed to converge to the ground reference 

system. The discrepancies between them will propagate over the whole 

mosaic.  

Although the bundle adjustment cannot be directly applied on the LiDAR strip 

mosaicing, the concept of reducing global errors and decomposing the homography is 

still very helpful. In the literature of LiDAR strip adjustment, some the systematic biases 
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models were proposed and they relate the biased data with the true data, which can be 

viewed as a kind of ‘camera model’ for LiDAR.  

As mentioned earlier, systematic biases exist in both system measurements and 

system parameters. This research is focused only on the biases in the LiDAR system 

parameters, which are the bore sight angles and the lever-arm offset. Let       and    

be the pitch, roll and yaw boresight angles and       and    be the lever-arm offset 

along X, Y and Z axis. The directions of X, Y and Z axes will be defined later in this 

section. Besides, in the research, only the LiDAR point cloud containing merely the 3D 

coordinate and intensity of the points is used because the raw LiDAR, which also 

contains additional information like the laser range measurement and trajectory position 

of the flying platform and time-tags, is not always available to the end users.  

Habib et al [13] proposed a ‘simplified method’ which only utilizes the LiDAR 

point cloud for strip adjustment. In their proposed method, the mathematical model of the 

systematic biases is created under the following conditions: 

1. The method only deals with linear scanner with mirror scanning in the 

across-flight direction 

2. Flying direction are parallel to the positive and negative directions of the Y-

axis of the ground coordinate system 

3. The flight lines is straight with constant attitude 

4. The onboard LiDAR system is almost vertical (i.e.                       if the 

system flying along the positive direction of the Y-axis) 

5. The LiDAR system has relatively small boresight angles 

6. The mapped area is comprised of a relatively flat terrain, where the height 

variation are much smaller than the flying height above ground 



39 

7. The Y-axis of the ground coordinate system is defined half-way between the 

overlapping strips at the ground level. 

8. The convention used for the laser scanner and IMU local coordinate is right 

forward-up (right-handed) 

This systematic biases model forms the basis for the LiDAR strip mosaicing 

algorithm proposed in the thesis and it will be introduced in the following section.  

Under the conditions above, the LiDAR equation (4) can be rewritten as: 
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(27) 

where, 

Equation (26) is valid for a system flying along the positive direction of the Y-axis 

(this flight line will be denoted as the forward strip). 

Equation (27) is valid for a system flying along the negative direction of the Y-

axis (this flight line will be denoted as the backward strip). 

      and    are the components of the lever-arm offset vector      

  is the scale factor for the mirror angle  .  

  is the flight height above ground, and  

  is the lateral distance between the LiDAR point in question and the projection 

of the flight trajectory onto the ground. 
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The LiDAR point coordinates    , as shown above, are function of the system 

parameter    and measurement    and represent the true point coordinates         . 

Therefore, equation (26) and (27) can also be shown as: 

                       (28) 

where, 

                      , and 

                                

In the presence of biases in the system parameters, the LiDAR point system will 

become biases          and will be function of the system parameter and measurements 

as well as biases in the system parameters    , as shown in equation (29).The lever-arm 

offset biases are represented by             ) and the boresight angle biases are 

represented by              .  

                       (29) 

where,                               

To analyze the impact of the biases, equation (29) is linearized with respect to 

the system parameters using a Taylor series expansion, yielding the form of equation 

(30) and (31), after ignoring the second and higher order terms. The term 
  

   
  represents 

the partial derivative with respect to the system parameters, while the term  
  

   
    

represents the impact of the system biases onto the derived point cloud     . 

                    
  

   
            

   

   

   

  (30) 

                  

   

   

   

 

           

  

   

   

   

 

           

         

   

   

   

 

     

 (31) 
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By differentiating the equation (26) and (27) with respect to the system 

parameters, the terms  

   

   

   

 

           

and  

   

   

   

 

           

 can be represented in the 

following equations: 

  

   

   

   

 

           

    
  

   
    

  

   
    

  

   
      

    
    
   

  (32) 

  

   

   

   

 

           

  
  

   
    

  

   
    

  

   
      

     
          

     
  (33) 

And therefore, the equation (31) would lead to the following equation: 

  

   

   

   

 

     

                    

             

             

             

   
         

              
        

  (34) 

In equation (32), (33) and (34), the multiple signs indicate the impact for the 

forward (equation (26)) and backward strips (equation (27)), with top sign referring to the 

forward strip. By subtracting the equation (34) from each other, the mathematical 

relationship between conjugate points in overlapping strips, which are flown in opposite 

or the same directions, can be derived.  

3.2.1 Strips flown in Opposite Direction 

The relationship for two strips (noted as strip A and strip B), which are flown in 

opposite directions is shown in equation (35) (36) and (37), where A is the forward strip 

and B is the backward strip. The configuration is shown in Figure 3-3 

  

        

        

        

   

        
              

         
  (35) 

  

        

        

        

   

         
               

         
  (36) 
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  (37) 

Since the goal of this research is to eliminate the horizontal strip discrepancies, only the 

first two rows in equation (37) are considered: 

  
     

     
   

          
                     

  (38) 

Equation (38) can be further simplified. The Figure 3-4 illustrates two cases of 

the backward strip B, where BL is the backward strip on the left side of the forward strip A 

and BR is the backward strip on the right side. Let   be the lateral distance between the 

two flight lines. In the case of BL, it can be shown that             because both    

and    are negative values. In the case of BR,           . Therefore, the equation 

(38) can be written as equation (39) after simplification: 

  
     

     
   

          

                
  (39) 

where multiple signs represent the two cases BL and BR, with the top sign referring to BL 

 

Figure 3-3 Conjugate Point in Overlapping Strips Flown in Opposite Directions [2] 
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Figure 3-4 Two Cases of the Backward Strip [2] 

3.2.2 Strips flown in the Same Direction 

Following a similar procedure, the relationship between two overlapping strips 

(noted as strip A and strip B again), which are flown in the same directions, is shown in 

equation (40) with all the intermediate steps skipped. The configuration is shown in 

Figure 3-5. 

   
     

     
   

 
     

  (40) 
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Figure 3-5 Conjugate Point in Overlapping Strips Flown in the Same Directions [2] 

 
3.3 Proposed LiDAR Strip Mosaicing Algorithm 

In this section, A LiDAR strip mosaicing algorithm is proposed. The algorithm is 

based on the mathematical model of the systematic biases in the previous section; 

therefore, it must be utilized under the corresponding conditions for the model as well. 

For simplicity and clearance, the algorithm is explained though the process of mosaicing 

three parallel overlapping LiDAR strips, noted as A, B and C. As shown in Figure 3-6, the 

strip A overlaps the strip B and the strip B overlaps the strip C. The   ,    and    are the 

flight lines in the middle of each strip.  

Two scenarios are considered in the algorithm. In the first scenario, the strip A 

and Strip C are flown in the backward direction and the strip B is flown in the forward 

direction. This scenario is noted as Backward-Forward-Backward (BFB) strip 

configuration and represents the practical case when multiples strips are flown in 
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opposite directions alternatively. In the second scenario, all the strips are flown in the 

forward direction. This scenario is noted as Forward-Forward-Forward (FFF) strip 

configuration and represents the case when all the strips are flown in the same 

directions. 

 

Figure 3-6 Configuration of Three LiDAR Strips 

3.3.1 BFB Strip Configuration 

Assuming that the direction of    axis is from left to right in Figure 3-6, the strip A 

is equivalent to the BR strip and strip C is equivalent to the BL strip. Using the equation 

(39), biases between strip pairs of BA and BC are shown as: 

  
     

     
   

          
                 

  (41) 

  
     

     
   

          
                 

  (42) 

where,     is the distance between    and   .     is the distance between    and    

For simplicity , the following notation are used: 

  
  

  

  
      

     

     
  (43) 

                 and                 (44) 

Then the equation (41) and (42) will lead to equation (45) and (46) 
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  (45) 

  
  

  

  
      

   
          

  (46) 

Subtracting the second row of equation (45) from (46) would lead to equation  

   
      

                  (47) 

Therefore, 

       
  

      
  

        

 (48) 

where      is the estimation of the system boresight roll angle bias     

As shown in the equation above, the estimated bias in the boresight yaw angle 

     can be directly calculated in this strip configuration. The variables   
   and   

   

represent the strip discrepancies between AB and BC along the Y-axis. After the      is 

calculated, the estimated value     and     can be calculated as 

       
  

     
   

 
 (49) 

      
   

     
               

     
 (50) 

Recall the equations (35) and (30), which describes the discrepancies between the true 

coordinates and biased coordinates. By introducing the definition of    and    from 

equation (44), the estimated true values can be then calculated by equation (51) for 

forward strip and (52) for backward strip. 

  
      

      

    
            

                   
  (51) 

  
      

      

    
            

                   
  (52) 



47 

where the    is determined approximately by the distance from the biased point to the 

flight line.  

Equations (51) and (52) indicate that a complete horizontal LiDAR strip 

adjustment can be achieved in the BFB strip configuration. Although only one of the 

system bias parameters       is directly calculated, the true coordinates can still be 

estimated as long as          and     are available. 

In order to calculate          and    , the values of   
  ,   

  ,   
   and   

  , which 

are the strip discrepancies along X-axis and Y-axis for each pair of strips, must be 

obtained. By applying the ARFD-based LiDAR strip matching method, the homography 

matrix between each strip pair can be calculated. Let     be the corresponding      

homography matrix from the strip A to strip B. If an affine transform is assumed, strip A 

and strip B can be related as: 

  
  

  

 
       

  

  

 
    

  
  

  
  

  

 
   (53) 

where, 

  is the     rotational matrix. 

  is the     translation vector. 

Equation (40) shows that for every conjugate point pair in the overlapping area, 

the horizontal bias is   
          

                
 . Since all the parameters involved are 

system constants, the transformation between strip A and strip B can be represented by 

pure translation. Therefore, the     can be expressed as: 

       
    

    

   

  (54) 

              
   (55) 
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   (56) 

Once the Homography matrix     is obtained by applying the ARFD-based 

LiDAR strip matching algorithm, the horizontal strip discrepancies   
   and   

   can be 

found by extracting the translation vector from the    . Following the same procedure, 

the   
   and    

  can be found from    . After finding these four parameters,          and 

    can be calculated using equation (48), (49) and (50). Finally, for every point in the 

strips, its true coordinates can be estimated by equation (51) and (52).  

Since the true coordinates with respect to the ground coordinate system are 

estimated in this scenario, the global alignment errors are eliminated automatically and 

the common ground, with respect to which all points are registered, is the ground 

coordinate system itself. By interpolating all the estimated LiDAR points together, the 

LiDAR strip mosaic task is implicitly accomplished. 

3.3.2 FFF Strip Configuration 

Similar to BFB strip configuration, the direction of    axis is set from left to right, 

again. In this case, equation (40) is used to represent the biases between the strip pair 

AB and BC: 

  
     

     
   

 
       

  (57) 

  
     

     
   

 
       

  (58) 

Again, the notation in equation (43) is used for simplicity. Then the equation (57) 

and (58) will lead to equation (59) and (60) 

  
  

  

  
      

 
       

  (59) 

  
  

  

  
      

 
       

  (60) 

Adding up the second row of equation (59) and (60) helps      as  
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 (61) 

It is obvious that the estimation of      actually does not need more than two 

strips. For example, without the presence of strip C, the      can be calculated by 

      
  

  

   
 . The reasons of using 3 strips are: 

1. To be consistent with the BFB strip configuration where 3 strips are used.  

2. Allowing equation (61) which gives an average value of      by using all 

strips, thereby reducing the global error.  

Similar to the steps in the BFB scenario, the value of   
  ,   

  ,   
   and   

  can 

be found from the homography matrices    and     in order to calculate     . However, 

the estimates of    and    from BFB are not applicable to FFF, as can be seen by 

comparing the equation pairs (45), (46) for BFB and (59), (60) for FFF. Thus estimation of 

the true coordinates is not possible for FFF. Despite this, the strip mosaic can still be 

achieved indirectly. 

Consider the first two rows of equation (35), which describes the relationship 

between the true coordinate and biased coordinate. If the parameter positions are 

rearranged on both sides of the equality sign, the equation (35) can be re-written as: 

   
                
                

    
       

             
  (62) 

Using the notation in equation (44) leads to 

  
        
        

    
       

             
  (63) 

Introducing two new terms      
  and      

  which are defined as 

      
               and         

            (64) 

the estimated value of      
 and      

  can be calculated by the following equation: 
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  (65) 

where the    is determined approximately by the distance from the biased point to the 

flight line and      can be calculated though equation (61). 

Since  
     

     
  is the point registered with respect to the ground coordinate 

system,  
      

 

      
 

  can be viewed as the point registered with respect to a shifted version of 

ground coordinate system with the shift equal to  
  
  

 . It is important to note that for every 

estimated point  
      

 

      
 

 , the shift  
  
  

  is a constant. Therefore, by interpolating all the 

estimated points together, the global alignment errors can be eliminated but the common 

reference becomes a shifted version of the ground coordinate system. Since the shift is 

constant along both X and Y axis, its effect on the LiDAR strip mosaic can be modeled as 

a pure translation, with all the strips translated by the same unit. This translation will not 

be noticeable in the image domain.   
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Chapter 4  

Experiment and Implementation and Results  

In this chapter, we describe the details of the experiments that were used to 

validate our thesis algorithm related to LiDAR strip mosaicing. The implementation 

requires several steps. Before implementing the algorithm, the initial data set needs to be 

preprocessed. Next, two LiDAR strip mosaicing methods are implemented with different 

bias parameters and the corresponding results are discussed. The overall experiment is 

implemented on MATLAB 2013a with the aid of the Image Processing Toolbox from 

MathWorks Inc.  

 

4.1 LiDAR Data Preprocessing 

The goal of the data preprocessing is to output the pair-wise homography 

matrices for further strip mosaicing. Firstly, simulated systematic biases are added to the 

initial LiDAR dataset and then the modified ARFD-based LiDAR image-matching 

algorithm is applied on every pair of overlapping strips in order to obtain the homography 

matrices for each pair. 

4.1.1 Initial LiDAR Dataset 

The dataset used for the experiment is obtained from the National Resource 

Conversation Service (NRCS), which is a part of the US Department of Agriculture. The 

details of the LiDAR data are the following: 

1. Covered area: Saginaw Bay, Michigan, USA. 

2. Flight height: 6500 feet 

3. Footprint spacing: 0.7m.  

4. Vertical accuracy: 0.135m at a 95% confidence level 

5. Horizontal accuracy:      foot (1.16m) at a 95% confidence level.  
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6. Flight Directional Information: The swaths are flown in the east-west 

directions, therefore the Y-axis is along east-west and X-axis is along north-

south. The direction of    is manually selected to be toward west and the 

direction of    is toward the north.  

7. Number of swaths: A set of 9 flight swaths is available in LiDAR points cloud 

data. Each swath contains millions of points and each point contains four 

values       and  , which are the 3D coordinates and the intensity 

measurement.  

Since each swath covers a large geographic area, small sub-patches of 

rectangular shape, also called verticals, were extracted, as shown in Figure 4-1. Because 

some swaths are smaller than the others thereby offering lesser number of strips, not all 

verticals contain all the 9 strips. In this experiment, vertical 1, which contains 5 strips, and 

vertical 2, which contains 7 strips, are utilized.  

 

Figure 4-1 Patch Extraction from Individual Strips [9] 

4.1.2 Adding Simulated System Biases 

The data was calibrated by a vendor company using a proprietary method. At the 

virtual environment lab in UTA, interpolated images of the vertical 1 and vertical 2 are 

firstly generated in order to visualize the original data, as shown in Figure 4-2 and Figure 
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4-3, because LiDAR points are irregularly sampled and stored as point cloud. The 

intensity data is used during interpolation due to its high contrast. As the footprint spacing 

is     , the 1D resolution for interpolation is selected to be           , meaning each 

pixel occupies an area of size equal to                 . Besides, in the Figure 4-2, 

an area on the boundary of two strips is enlarged to show details, where a road across 

two strips is considered as an indicator of strip discrepancies. Since there are not any 

noticeable horizontal discrepancies between the strips and the road in the enlarged area 

is straight, the initial dataset is regarded as the true data       . 

To conduct the experiment, systematic biases are added to the initial dataset by 

using equation (34) to generate the simulated biases that might have contaminated data 

cloud before the vendor processed it. The initial system biases parameters 

                           are arbitrarily selected. The flight height               

        is given in the metadata. In order to obtain  , which is the lateral distance 

between the LiDAR point in question and the projection of the flight line onto the ground, 

the flight line should be determined initially. Let            denote 3D coordinate of a 

LiDAR point with respect to the ground coordinate system. Since the flight line is in the 

middle of each swath, the position of the middle line         can be calculated by taking 

the average value of X-axis coordinates of the topmost point       and the bottommost 

point         , which can be mathematically expressed as          
             

 
 . Then 

the   value of each point    is equivalent to              for forward strip and      

          for backward strip. After the value of   is determined, bias can be added to the 

original data by following equation (34).  
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Figure 4-2 Original Vertical 1 with an Enlarged Area 



55 

 
Figure 4-3 Original Vertical 2 
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4.1.3 Modified ARFD based Image Matching Algorithm 

A modified ARFD based Image matching algorithm is applied on the data cloud 

(with simulated biases added) in order to get the homography matrices. Apart from the 

original algorithm introduced in the Chapter 2, the modifications are described in the 

following. 

4.1.3.1 Interpolation with User-defined Fixed resolution 

The interpolation process is modified to output LiDAR images with user-defined 

fixed resolution instead of the non-fixed resolution in the original implementation. In the 

interpolation step, the range of the strip is firstly determined by finding the leftmost, 

rightmost, topmost and bottommost point within the strip. The four points are noted as 

                     and         . The 1D resolution (     is manually selected. The number 

of pixels along each row      is equivalent to  
             

   
  and the number of pixels along 

each column (    is equivalent to  
             

   
 , where     denotes the ceiling operation. 

Then the raster of size       is create by starting at the position (               with the 

increment equal to     along both row and column directions. 

4.1.3.2 Using Intensity Data for Keypoints Extraction 

The original algorithm has shown that using intensity data to generate key points 

leads to very low matching performance [9]. However, in some cases, very few key points 

can be extracted from the elevation image if the strip is flown over large flat region, like 

crop fields. Since at least 4 correspondences are required to calculate the homography 

matrix, the intensity data may have to be used to extract more key points. Figure 4-4  

shows the comparison of the extracted keypoint pairs by different method between two 

adjacent strips. Each keypoint pair is connected by a straight line from one strip to the 
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other. It is obvious that using both elevation and intensity data (Figure 4-4 (b)) gives more 

keypoint pairs than using elevation data only (Figure 4-4 (a))  

4.1.3.3 Pruning and Re-selecting Inliers by Using Spatial Information 

Since key points from intensity data are used, several outliers could result among 

the matched points. Depending on the number of outliers, evaluating the degenerate 

cases in RANSAC can lead to erroneous homography matrix [40]. In order to obtain a 

precise homography matrix, an additional inlier pruning and re-selecting algorithm is 

added after the RANSAC. The basis of the additional pruning algorithm is described 

below. 

The system bias model implies that the transformation between the overlapping 

strips is purely translational. This information could be used to reduce the outliers and 

increase the inliers. The inlier pruning and re-selecting algorithm could be generalized in 

the following steps:  

1. After the RANSAC algorithm, the number of correspondences extracted from 

elevation data in the inliers is counted. If the number is greater than an 

arbitrary threshold (set as 2 in the implementation), go to step 2; otherwise 

go to step 3. 

2. Calculate the translation vectors of the inliers, which are extracted only from 

the elevation data. Determine both the magnitude and the direction of each 

translation vector. Determine the average and standard deviation of the 

magnitudes and the average of directions.  

3. Calculate the translation vectors of the inliers, which are extracted from both 

the elevation and intensity data. Determine both the magnitude and the 

direction of each translation vector. Determine the average and standard 

deviation of the magnitudes and the average of directions. 
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4. The three values either from step 2 or step 3 are noted as             . 

Calculate the translation vector of every correspondence in both inliers and 

outliers. Calculate the magnitude and direction of each translation vector as 

well. For each translation vector   , its magnitude is    and direction is     

5. Evaluate each pair of         . If both conditions                     

and               are satisfied, the corresponding point correspondence is 

picked as inlier; otherwise, it becomes an outlier.  

6. Repeat step 5 for every vector    

Finally, the algorithm will pick the correspondences, which follow the translational 

model and reject most of the outliers. Figure 4-4 (c) shows the keypoint pairs extracted 

by using both elevation and intensity data with pruning and re-selection technique. It 

shows that much more keypoints are extracted. Figure 4-5 shows the comparison of strip 

matching result by using keypoint pairs from Figure 4-4 (b) and Figure 4-4 (c), 

respectively. It shows that the technique of pruning and re-selecting keypoints by using 

spatial information can help improve the matching result. 
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Figure 4-4 Comparison of Keypoints Extracted by (a) Using Elevation Data Only (b) 

Using Both Elevation and Intensity Data (c) Using Both Elevation and Intensity Data with 

Pruning and Re-selection 
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Figure 4-5 Comparison of Strip Matching Result by (a) Using Keypoint Pairs from Figure 

4-4 (b) and (b) Using Keypoints Pairs from Figure 4-4 (c) 

 
4.2 Pair-wise LiDAR strip Mosaicing 

In this section, the pair-wise LiDAR strip mosaicing method and result are 

presented. This method is based on Section 3.1.2.1, where the homography matrix 

between the common reference and each strip is calculated by chaining the pair-wise 

homography matrices.  

4.2.1 Preprocessing Parameters 

Vertical 1 (Figure 4-2) is used in this experiment. The five strips inside Vertical 1 

are numbered 1,2,3,4 and 5 from top to bottom. The value of the system biases 

parameters are chosen to be very large in order to demonstrate biases clearly and the 

values are                                   . The strip configuration 

is selected to be the FFF pattern, where all the five strips are flown forward. The 1D 

resolution for interpolation is still 0.7m. The interpolation of the biased data is shown in 

Figure 4-6 with the same area enlarged as in Figure 4-2. By implementing the modified 
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ARFD-based LiDAR strip matching algorithm, four pair-wise homography matrix are 

obtained, which are                    . 

4.2.2 Results and Conclusion 

It is obvious that in the Figure 4-6, the simulated biases cause the horizontal 

discrepancies between all the strips, as the straight road in the enlarged area of Figure 

4-2 becomes discontinuous. In the pair-wise mosaicing method, the strip 5 is selected as 

the common reference. Therefore, the homography matrix relating each strip except strip 

5 can be calculated by chaining homography matrices. For example, the homography 

matrix, relating strip 4 is    ; the homography matrix relating strip 3 is equivalent to 

      ; and the homography matrix relating to strip 2 is          . The coordinate of 

every point within each strip is transformed by applying equation (19). Finally, all the 

transformed points are interpolated together in the mosaic space, with the common 

reference strip 5. The interpolated image mosaic is shown in Figure 4-7 with the area 

enlarged. 

Figure 4-7 shows that the horizontal discrepancies between all the strips are 

eliminated, as the discontinuous road in Figure 4-6 becomes straight again. However, 

comparing the Figure 4-7 with Figure 4-2, it is obvious that the overall strip mosaic of 

Figure 4-7 is a sheared version of Figure 4-2. The shearing effect originates from the 

discrepancies between strip 5 and the ground coordinate system. Since strip 5 is chosen 

as the common ground, the shearing effect then propagates over all the strips after 

mosaicing. The result reveals the disadvantages of the pair-wise mosaicing method, 

implying that the pair-wise strip mosaicing method is not able to fully solve the LiDAR 

strip mosaicing problem 
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Figure 4-6 Simulated Biases-Added Vertical 1 with the Same Enlarged Area under FFF 

Strip Configuration 
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Figure 4-7 Pair-wise Strip Mosaicing Result with the Same Enlarged Area  
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4.3 Systematic-Bias-Model-Based LiDAR strip Mosaicing 

In this section, the systematic-bias-model-based LiDAR strip mosaicing method 

and results are presented. In addition, the performance of this method is quantitatively 

evaluated under various values of systematic biases.  

4.3.1 Preprocessing Parameters 

Both Vertical 1 and Vertical 2 are used in this experiment and tested multiple 

times under various bias parameters. For simplicity, only Vertical 1 is used for the 

following explanation. Similarly, the five strips inside Vertical 1 are numbered 1,2,3,4 and 

5 from top to bottom. Both BFB and FFF strip configuration are considered in this 

experiment. The system bias parameters are chosen from multiple sets of candidate 

values. Let the lever-arm offset biases                 always have equal value 

               and so do the boresight angle biases                       

         .  

The set of candidate values for lever-arm offset biases is                     ; 

the set of candidate values for boresight angle offset biases is             ; and the set 

of candidate values for 1D interpolation resolution is                             

      . The choice of all the candidate values depends on the nominal pulse spacing, 

which is equal to 0.7m. For example, out of all the four candidate values of the lever-arm 

offset biases,       is much less than the nominal pulse spacing while 

                 are approximately equal to, twice as large as and three times as large 

as the nominal pulse spacing. Then, a single test is conducted by individually choosing 

one value from each of the 3 sets under either of the two strip configuration. Therefore, a 

total of            tests have been conducted. Figure 4-8 shows the block 

diagram of the workflow of each test. Detail of each block can be found in previous 

sections. 
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Figure 4-8 Block Diagram of the Workflow of Each Test 

 
4.3.2 Results and Conclusion 

By following the block diagram in Figure 4-8, the estimated values (               

in the BFB strip configuration and      in the FFF strip configuration) can be obtained and 

then used to estimate the true value of the coordinate of each point ( 
      

      

  in the BFB 

strip configuration and  
      

 

      
 

  in the FF configuration). Finally, the reconstructed strip 
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mosaic image can be obtained by interpolating the estimated true value. Figure 4-9 

shows the strip mosaic result with the same area enlarged, by using the systematic-bias-

model-based LiDAR strip mosaicing algorithm. The strips are under the same simulated 

system biases as in Figure 4-6. As the result shows, there is not any noticeable 

difference between the mosaic result and the original data (Figure 4-2), indicating the 

proposed algorithm performs very well under the corresponding systematic bias 

parameters.  

Figure 4-10 Shows the Vertical 1 after adding simulated biases under the BFB 

strip configuration. The bias parameters are                             

        and the interpolation resolution is equal to           . Figure 4-11 shows the 

final strip mosaic by using the proposed method. Comparing Figure 4-11 with the original 

data (Figure 4-2) shows again there is not any noticeable difference between the two 

mosaics.  
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Figure 4-9 Systematic-Bias-Model-Based Strip Mosaicing Result with the Same Enlarged 

Area 
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Figure 4-10 Simulated Biased-Added Vertical 1 under BFB Strip Configuration 
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Figure 4-11 Systematic-Bias-Model-Based Strip Mosaicing Result under BFB Strip 

Configuration 
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To evaluate the performance of each test, absolute errors between simulated 

parameters and estimated parameters from each test is used. The error is calculated in 

terms of absolute distance of the strip discrepancies. In other words, the error is equal to 

the difference between the estimated and simulated parameters converted to pixels. 

The error between the estimated values                and the simulated values 

            in the BFB strip configuration can be calculated by using equation (66), (67) 

and (68), respectively. 

                             (66) 

                                               (67) 

                                                (68) 

Where, 

   is the maximum value of the lateral distance between the LiDAR point in and 

the projection of the flight trajectory onto the ground. Since the maximum strip width is 

650m and the flight line is in the middle of each strip, the value of    is equal to 325m. 

    is the selected 1D interpolation resolution, whose unit is meter-per-pixel. 

  is the flight height, which is a constant equal to 6500 feet. 

                and     are the selected bias parameters. 

        and      are the estimated parameters in BFB strip configuration. 

The absolute error between the estimated values      and the simulated values 

    in the FFF strip configuration can be calculated by using equation (66). 

4.3.2.1 Effect of Biases in Lever-arm Offset and Boresight Angles 

In this subsection, the effect of the different bias values in the lever-arm offset 

and boresight angle on the performance of every test is analyzed. Both FFF and BFB 



71 

strip configurations are considered. The interpolation resolution value is fixed at      

      because the nominal pulse spacing is equal to     . 

4.3.2.1.1 FFF Strip Configuration  

The absolute error between      and     under various lever-arm offset bias and 

boresight angle bias is shown below. 

Table 4-1 Absolute Error between      and     (FFF,               ) 

Absolute Error (pixel) 

  
Lever-arm Offset Bias (m) 

0.05 0.6 1.2 2 

B
o

re
si

gh
t 

A
n

gl
e

 B
ia

s 50'' 0.202 0.220 0.207 0.204 

5' 0.058 0.058 0.049 0.060 

30' 0.029 0.028 0.032 0.032 

 

In Table 4-1, boresight angle bias is presented in terms of angle in seconds and 

minutes. In terms of discrepancies in ground distances, 50” corresponds to 0.13 pixel at 

the maximum lateral distance of 325m. The corresponding numbers for 5’ and 30’ are 

0.86 pixel and 5.1 pixels, respectively. All errors are in the sub-pixel level, indicating that 

there are hardly any noticeable strip discrepancies in the final mosaic. This shows that 

the proposed algorithm can output high quality LiDAR strip mosaics 

By examining the errors along each row of the table, we can conclude that the 

bias in lever-arm offset does not significantly affect the absolute error. As can be seen 

from equation (59) and (60) and Figure 4-12, the lever-arm offset biases cancel each 

other in the adjacent strips. On the contrary, the bias in boresight angle has significant 

influence on the absolute error as can be seen by examining the error along each column 
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of the table. We speculate that this is possibly because larger boresight angle bias 

introduces larger discrepancies between strips, which are easier detected as seen from 

equation (45) and (46) and Figure 4-13. As mentioned above, 50”, 5’ and 30’ in boresight 

angle biases correspond to 0.13 pixel, 0.86 pixel and 5.1 pixels, respectively. For 

example, the discrepancy caused by the bias is equal to 0.13 pixels when the boresight 

angle bias is equal to 50”. Since the discrepancy is in the sub-pixel level, it vanishes 

during the interpolation process, leading to large difference between the estimation and 

simulated value.  

 

Figure 4-12 Same Enlarged Area Shows Lever-arm Offset Biases Cancellation for 

Different Bias Values (a) 0.05m (b) 0.6m (c) 1.2m and (d) 2.0m 

 

Figure 4-13 Same Enlarged Area Shows Boresight Angle Biases Influence for Different 

Bias Values (a) 50’’ (b) 5’ and (c) 30’ 
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4.3.2.1.2 BFB Strip Configuration 

The absolute error between      and     under various lever-arm offset bias and 

boresight angle bias is shown below. 

Table 4-2 Absolute Error between      and     (BFB,               ) 

Absolute Error (pixel) 

  
Lever-arm Offset Bias (m) 

0.05 0.6 1.2 2 

B
o

re
si

gh
t 

A
n

gl
e

 B
ia

s 

50'' 0.218 0.218 0.206 0.214 

5' 0.358 0.360 0.062 N/A 

30' 0.385 0.027 0.029 0.391 

 

Unlike the FFF strip configuration, the effect of bias in level-arm offset and 

boresight angle bias appears to be random. However, the actual values of the errors for a 

range of boresight angle biases appears to be less than half a pixel and therefore 

invisible in a mosaic. Similar conclusions can be reached from Table 4-3 and 4-4 below.  

The absolute error between     and    under various lever-arm offset bias and 

boresight angle bias is shown below. 

Table 4-3 Absolute Error between     and    (BFB,               ) 

Absolute Error (pixel) 

  
Lever-arm Offset Bias (m) 

0.05 0.6 1.2 2 

B
o

re
si

gh
t 

A
n

gl
e

 

B
ia

s 

50'' 0.193 0.107 0.109 0.297 

5' 0.512 0.379 0.283 N/A 

30' 0.009 0.402 0.301 0.000 
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  The absolute error between     and    under various lever-arm offset bias and 

boresight angle bias is shown below. 

Table 4-4 Absolute Error between     and    (BFB,               ) 

Absolute Error (pixel) 

  
Lever-arm Offset Bias (m) 

0.05 0.6 1.2 2 

B
o

re
si

gh
t 

A
n

gl
e

 

B
ia

s 

50'' -0.049 -0.120 0.019 0.463 

5' -0.015 0.060 0.200 N/A 

30' -0.213 -0.137 -0.140 -0.139 
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Chapter 5  

Conclusions and Recommendation for Future Work  

In this thesis, a technique to mosaic multiple LiDAR strips is developed and 

implemented. The technique is based on the LiDAR systematic biases model and takes 

advantages of ARFD-based LiDAR strip matching algorithm.  The proposed method was 

successfully implemented to create LiDAR mosaics with matching errors of less than half 

a pixel, even when significant errors were synthetically introduced into the original strips. 

The ARFD based point matching algorithm together with the modified bundle adjustment 

method derived specifically for the modern LiDAR strips worked well to result in such 

minimal errors. The assumptions in the derivation of the modified bundle adjustment were 

also validated by the mosaicing results. 

In the future, advanced version of the LiDAR strip mosaicing technique can be 

developed in order to deal with more types of systematic biases, like the bias in encoder 

angle and range measurement [2]. Besides, if the mosaicing technique is extended to 3D, 

which includes tasks like detecting 3D point correspondences, estimating the 3D rigid 

body transformation and determining the 3D discrepancies, a full LiDAR adjustment can 

be achieved. 
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