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Abstract
SPATIAL VARIABILITY MODELS AND PREDICTION ANALYSIS OF SOIL

PROPERTIES USING GEOSTATISTICS

Tejo Vikash Bheemasetti, PhD

The University of Texas at Arlington, 2014

Supervising Professors: Anand J. Puppala and Xinbao Yu

Soils are composed of solid, water and air phases whose characteristics are
highly variable. The interactions of these phases in the soil matrix can lead to different
types of topographical formations and characteristics. Due to the uncertainty and
complex interactions among these phases, studies on soils have always been a
challenging problem for engineers. These variations and uncertainties make it necessary
for engineers to adopt new techniques and methods to analyze soil properties in order to
determine or interpret their generalized behaviors and patterns. Existing research in
variability analysis tends to focus on the distribution of the soil properties, reliability-based
design, and simulation of random fields. Despite an increase in the probabilistic and
statistical analysis, many challenges remain in incorporating the spatial variability present
in the soil properties into prediction analysis. In this research study, a framework was
developed using univariate statistics and randomized random variable theory for
analyzing the spatially-varied soil properties. The spatial variability present in the soil
properties was modeled using the geostatistical tool, Variograms. The variability models
were utilized to interpret the soil properties in three different studies in geotechnical

engineering, encompassing natural soils, man-made soils, and natural soils rich with



chemicals such as sulfates. This research highlights the adaptability of the framework for

analyzing the soil properties varying from low-to-high variability.
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Chapter 1
Introduction
1.1 General

Geological formations of the earth’s crust date back to several millions of years.
The top most layer of the earth’s crust, where vegetation grows, is called soil, which is
derived from a Latin word called Solum (Venkatramaiah, 2006). The formations of soils
can be broadly classified into two categories, which are residual soils and transported
soils. Residual soils are native soils which are derived from the disintegration of rock
particles. The disintegrated particles, which are transferred from one location to another
through weathering agencies like air, water, glaciers and other physical events or forces,
are called transported soils. The various geological processes involved in soil formation,
such as physical, chemical, and biological weathering and deposition, govern the
physical and chemical characteristics of the soils, such as the shape of the particle, size
of the particle, and mineralogical composition of the particle (Hyunki, 2005). These
physiochemical characteristics govern the engineering properties of soils such as shear
strength, compressive strength, consolidation, relative density, modulus, and permeability
(Mitchell and Soga, 2005).

Soils are inherently heterogeneous in nature. Most of the geotechnical studies
are based on the limited soil samplings performed in the field. Even though several
extensive laboratory tests are available to evaluate the properties of soil, all are
performed on limited soil samples. Therefore, uncertainty is always an issue in the
geotechnical studies due to inherent spatial variability present in soils. Several statistical
studies have been conducted to evaluate the uncertainty present in geotechnical studies
(Spry et al., 1988; Soulie et al, 1990; Phoon et al., 1995). The statistical characteristics of

a soil property, such as the mean and the variance, cannot be ascertained with precision



if the number of tests is circumscribed, nor can the distribution function associated with
the given data be well established.

Existing statistical analysis in geotechnical projects makes use of univariate and
bivariate analyses, which doesn’t account for the spatial variability present in the soll
properties. In earlier studies conducted by researchers using conventional statistics, the
measured soil property values on the field were typically described by a normal
distribution (Kuroda et al., 1983; Hannah et al., 2006; White et al., 2008b). However, this
distribution only described the sample values measured at particular locations; it did not
offer any information on which zones were likely to have high values and which zones
had low values. The lack of incorporating spatial variability of the soil properties into the
analysis brought inevitable uncertainties to the geotechnical designs (Einstein et al.,
1982; Lacasse et al., 1996).

In this research study, geostatistics, a stochastic interpretation tool, was used for
addressing and incorporating spatial variability into the geotechnical analysis.
Geostatistics is the separate branch of statistics which deals with spatial analysis of the
data sets. Spatial analysis or spatial statistics refers to the techniques which allow us to
understand the data sets with respect to space, such as location of extreme values and
the overall trend or degree of continuity (Isaaks and Srivastava, 1989). The use of
geostatistics gained prominence in the 1960’s with the work of French professor Georges
Matheron on regionalized random variables, which originated from the work of Danie G.
Krige in the 1950’s (Davidovic et al., 2010).

The application of geostatistics is used mainly in the mining industry to predict
the location of ore by describing the probability distribution of the existing ore locations
(Krige, 1951). Due to its various successful applications, it is now widely adopted in

various disciplines related to earth sciences, e.g., petroleum geology, hydrogeology,



hydrology, geography, soil sciences, forestry, oceanography, meteorology, landscape
geology, geochemistry, and others (Holdaway, 2014). Its ability to deal with uncertainties
and variations in material properties attracted geotechnical engineers to adopt this tool
for better understanding the variability of soil (Hammah and Curran, 2006).

Numerous attempts were made from the late 1970’s forward to apply
geostatistics to the field of geotechnical engineering; still, geostatistics is not any part of
geotechnical design procedures. However, in recent years the use of the geostatistics
techniques has been emerging strongly and has been proven important, when compared
with univariate statistics in the field of geotechnical engineering, in areas related to
intelligent compaction of subgrades over a wider region (White et al., 2008; Vennapusa et
al., 2010; White et al., 2011).

1.2 Research Objectives

The main objective of this research was to evaluate the variability of geotechnical
properties in field conditions by using geostatistics and by utilizing the available spatial
information. The geostatistical tool, Kriging, was used comprehensively, along with
various variogram models developed to effectively deal with the high variability in
geotechnical engineering projects. In order to accomplish this goal, two main objectives
were formulated. These are:

1. Develop a framework for spatial variability analysis.
2. Evaluate and assess the developed framework in various geotechnical problems
of interest, focusing on characterization of natural and man-made soil properties.
1.3 Thesis Organization

This thesis is comprised of seven sections: Introduction (Chapter 1), Literature

review (Chapter 2), Formulation of framework (Chapter 3), Validation of spatial variability

analysis framework on natural soils (Chapter 4), Validation of spatial variability analysis



framework on man-made materials (Chapter 5), Validation of spatial variability analysis
framework on natural mineral deposits (Chapter 6) and Summary, conclusions and future
research recommendations (Chapter 7).

Chapter 1 provides the introduction to spatial variability in soil properties,
geostatistics, research scope, and thesis organization.

Chapter 2 provides a summary of the uncertainties of geotechnical parameters,
spatial variability in soil properties, a summary of various statistical parameters in
probability theory that account for the uncertainty, and a summary of various conventional
estimation methods, followed by a summary of geostatistical estimation tools.

Chapter 3 presents the framework developed for incorporating the spatial
variability in the prediction analysis. The framework was developed so that the
geostatistical tools, such as variogram and kriging, in combination with univariate
statistics could potentially be used in estimating the properties with minimum estimation
error.

Chapters 4, 5 & 6 present the validation of the formulated framework using three
geotechnical problems of interest: one that focuses on natural subsoils, another on
artificially chemically-treated controlled low-strength material (CLSM) made of native
clayey soil, and another on sulfate-rich natural soils.

In Chapter 4, a study using CPTU bore holes data was considered for analyzing
the spatial variability in the strength parameter of soils for prediction analysis, using the
formulated framework in Chapter 3.

In Chapter 5, the formulated framework was used in evaluating the uniform
stiffness development in the CLSM material along the pipeline by incorporating the

spatial variability into the data.



In Chapter 6, the formulated framework was used in evaluating the spatial
variability of sulfate concentration levels and assessing the sulfate levels at unsampled
locations.

Chapter 7 presents the summary of the research, conclusions, and

recommendations for future research.



Chapter 2
Literature Review
2.1 Introduction

Uncertainty and variability in soil properties are two primary concerns that are
intrinsically present in geotechnical engineering projects. The uncertainty in the soll
properties remains undetermined due to constrained soil investigation (Amundaray,
1994). Various researchers in the past have implemented statistics and reliability-based
methods to incorporate uncertainties of soil properties in geotechnical designs, which
resulted in increased cost savings (Parsons et al., 2002). These methods enhanced the
geotechnical design analysis by providing better understanding the acquired soil data
(Lacasse et al., 1996). However, the soil properties vary from space to space and time to
time.

The soil properties determined through laboratory and field tests represent only a
sample set of data from which inferences are drawn on the population data or whole
project area. Therefore, the statistical characterization of the spatial variability is
extremely important and should be considered in geotechnical practice. In this chapter, a
detailed literature review on the uncertainties and variabilities associated with soil
properties, univariate statistics that are used to describe soil properties, spatial variability
in soil properties, and a comprehensive summary of estimation methods that incorporate
spatial variability are presented.

2.2 Uncertainties in Geotechnical Engineering

Uncertainties are present in every single extend that is associated with
geotechnical engineering projects. Various past researchers have classified the
uncertainties in geotechnical properties into three categories (Vanmarcke, 1977;

Baecher, 1982; Tang, 1984; Baecher et al., 2003; Kulhawy et al., 1992; Phoon et al.,



1999). These are: inherent variability, in-situ measurement and transformation model.

Details of each them are described below.

SOIL  —» IN-SITU ~ —»  TRANSFORMATION — ESTIMATED
MEASUREMENT MODEL SOIL PROPERTY

— |

inherent| | gata | | staisical model
variability scatter | [uncertainty uncertainty

]

inherent
soil
variability error

measurement

Figure 2-1 Uncertainty associated with soil property (Kulhawy, 1992)

2.2.1 Inherent Variability

The variability that is associated within the material is referred to as inherent
variability. In soils, this variability could have evolved due to the influence of various
geological processes, past stress history, and/or variations in moisture content (Phoon
and Kulhawy, 1999). These physical processes influence the mineralogical composition
of the particle and physiochemical characteristic of the particle. Different approaches
were used by the researchers for modeling the inherent variability present in soll
properties (Vanmarcke 1977; Baecher 1985; Spry et al. 1988; Filippas et al. 1988).
Comprehensive studies were conducted on various soil properties by Phoon and
Kulhawy (1999), where the inherent soil variability was modeled as a random field, using
the scale of fluctuation and coefficient of variation as descriptive tools. Tables 2-1, 2-2
and 2-3 summarize the inherent variability present in strength properties, index
properties, and field measurements for different types of soils and field tests (Phoon et al.

1995).



Table 2-1 Summary of inherent variability of strength properties (Phoon et al. 1995)

No. of data | No. of tests per group | Property value | Property COV (%)
Property Soil type
groups Range Mean Range | Mean | Range Mean
S, (UC) (kN/m?) | Fine Grained 38 2-538 101 6-412 100 6-56 33
S, (UU) (kN/m?) Clay, silt 13 14-82 33 15-363 276 11-49 22
S, (CIUC) (kN/m?) Clay 10 12-86 47 130-713 | 405 18-42 32
o (°) Sand 7 29-136 62 35-41 37.6 5-11 9
Q) Clay, silt 12 5-51 16 9-33 15.3 0-50 21
o (°) Clay, silt 9 - - 17-41 33.0 4-12 9
tan® (TC) Clay, silt 4 - - 0.24-0.69 | 0.50 6-46 20
tan® (DS) Clay, silt 3 - - - 0.61 6-46 20
tan @ Sand 13 6-111 45 0.65-0.92 | 0.74 5-14 9

* Sy, undrained shear strength; @, effective stress friction angle; UC, Unconfined compression test; UU, unconsolidated-undrained triaxial

compression test; CIUC, consolidated isotropic undrained triaxial compression test; DS, direct shear test; TC, triaxial compression test




Table 2-2 Summary of Inherent variability of index parameters (Phoon et al. 1995)

No. of data | No. of tests per group | Property value | Property COV (%)
Property Soil type
groups Range Mean Range | Mean | Range Mean
W, (%) Fine Grained 40 17-439 252 13-105 29 7-46 18
w (%) Fine Grained 38 15-299 19 27-89 51 7-39 18
Wp (%) Fine Grained 23 32-299 201 14-27 22 6-34 16
PI (%) Fine Grained 33 15-299 12 1244 25 9-7 29
LI Clay, Silt 2 32-118 75 - 0.094 60-8 74
vy (kN/m®) | Fine Grained 6 5-3200 54 14-20 17.5 3-20 9
Va (kN/m®) | Fine Grained 8 4-315 12 13-18 15.7 2-13 7
D: (%)° Sand 5 - - 30-70 50 11-36 19
D, (%)° Sand 5 - - 30-70 50 49-74 61

*wy, natural water content; wy, Liquid limit; wp, plastic limit; Pl, Plasticity Index; LI, Liquidity Index; y, total unit weight; yq, dry unit weight; Dy,
relative density; ° Total variability for direct method of determination; 4 Total variability for indirect determination using standard penetration test

(SPT) values.
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Table 2-3 Summary of Inherent variability of field measurements (Phoon et al. 1995)

No. of tests per group Property value Property COV (%)
No. of data
Test type | Property | Soil type
Groups Range Mean Range | Mean | Range Mean
CPTU qc (MPa) Sand 57 10-2039 115 0.4-29.2 4.1 10-81 38
CPTU gc (MPa) | Silty Clay 12 30-53 43 0.5-2.1 1.59 5-40 27
CPTU q: (Mpa) Clay 9 - - 0.4-2.6 1.32 2-17 8
VST Su(kPa) Clay 31 4-31 16 6-375 105 4-44 24
SPT N Sand 22 2-300 123 7-74 35 19-62 54
SPT N Clay, loam 2 2-61 2 7-63 32 37-57 44
DMT A (ka) | Sandto SC 15 12-25 17 64-1335 | 512 20-53 33
DMT A(kPa) Clay 13 10-20 17 119-455 | 358 12-32 20
DMT B (kPa) | Sandto SC 15 12-25 17 346-2435 | 1337 13-59 37
DMT B (kPa) Clay 13 10-20 17 502-876 | 690 12-38 20
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Table 2.3 - Continued

No. of data | No. of tests per group Property value Property COV (%)
Test type | Property Soil type
Groups Range Mean Range Mean | Range Mean
DMT Ep(MPa) | Sandto SC 15 10-25 15 9.4-46.1 254 9-92 50
DMT Ep(MPa) Sand, silt 16 - - 10.4-53.4 | 21.6 7-67 36
DMT I Sand to SC 15 10-25 15 0.8-84 285 | 16-130 53
DMT I Sand, silt 16 - - 2.1-54 3.89 8-48 30
DMT Kp Sand to SC 15 10-25 15 0.8-8.4 285 | 16-130 53
DMT Ko Sand, silt 16 - - 1.3-9.3 41 17-67 38
PMT P. (kPa) Sand 4 - 17 1617-3566 | 228 23-50 40
PMT P. (kPa) Cohesive 5 10-25 - 428-2779 | 104 10-32 15
PMT Epmt (MPa) Sand 4 - - 5.2-15.6 8.97 28-68 42

*CPTU, cone penetration test; VST, vane shear test; SPT, standard penetration test; DMT, dilatometer test; PMT, pressure meter test; q., CPTU
tip resistance; q, corrected tip resistance; Sy, undrained shear strength; N, SPT blow count number; Ep, DMT modulus; Ip, DMT material index;

Kb, DMT horizontal stress index; PMT limit stress; Epyt, PMT modulus



2.2.2 In-Situ Measurement Error

The in-situ error is mainly caused during the soil testing operations. As shown in
Figure 2-1, this variability is associated with data scatter, statistical uncertainty,
measurement error, and inherent variability. Lumb (1971) and Orchant et al. (1988)
quantified the variability in measured soil property into a summation of in situ property
and measurement error. The measurement error could arise mainly because of two
reasons: equipment error and procedural-operator error. Equipment error is caused by
improper calibration of the equipment or damage in the testing tools, and the operator
error is related to the skills of the operator. In the studies conducted by Phoon and
Kulhawy (1999), it was observed that the variability due to measurement error for
undrained shear strength ranges from 5 to 15%. Unlike the inherent variability, this error
can be controlled by using extensive field measurement tools and skilled operators. In the
studies conducted by Kulhway et al. (1992), the inherent soil variability and
measurement error can be collectively summed up as a data scatter.
2.2.3 Transformation Uncertainty

Transformation uncertainty is associated with the transformation of field or
laboratory measurements into soil properties by using various theoretical and empirical
equations. The empirical correlations are usually developed based on testing of limited
soils at a particular location. These soils are already accompanied with the measurement
error variability and inherent variability. So, when the field or laboratory measurements
are evaluated using these empirical equations, the uncertainty rises to a new level.

2.3 Univariate Statistics in Geotechnical Engineering

In order to apply the concepts of statistics to model the uncertainty and variability
in soil properties, a basic understanding of the fundamental aspects of probability and

statistics is required. In this section, a brief overview of the basic concepts is presented;
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more detailed descriptions of these topics can be found in any introductory textbook on
probability and statistics.
2.3.1 Random Variable

A random variable is a variable that can take any value in the data set. It is
usually expressed as a real function, Z(x), where x; denotes a real number. The real
number, x;, will correspond to every outcome of an experiment; the function {Z(x) < x;} is
an event for any real number x;. The probability of an event to occur is described by P {Z
(x) = xi}, where the outcome takes a value between 0 and 1. A probability of 1 indicates a
100 % chance of that particular event occurring, and 0 refers to 0% chance of the event
occurring.

Two types of random variables, discrete and continuous, exist in probability
theory. The discrete random variable is one which takes on only a countable number of
distinct values. In geotechnical engineering, the standard penetration test values (N-
values) usually represent a discrete random variable. However, the continuous random
variable takes on values from the continuous probability space. Friction angle and
undrained shear strength of a soil layer usually represent a continuous random variable.
2.3.2 Probability Distributions

Probability distributions usually represent the probabilities of all the possible
events that a random variable can take. Two types of the probability functions are
generally utilized to describe the probability distribution; they are probability distribution
function and cumulative distribution function.
2.3.2.1 Probability distribution function

The probability density function (pdf) is used for describing the probabilities
associated with an event for a continuous random variable. The probability mass function

(pmf) is used for describing the probability distribution of a discrete random variable

13



(Montgomery et al, 2010). The pmf and pdf are denoted as P(x) and f(x), respectively,
where X’ is the random variable itself and ‘X’ is the value that the random variable can
take on. The probability density function f(x) of a continuous random variable is used to

determine probability of areas as follows:
P(a <X <b)=[ f(x)dx (2.1)
The properties of probability density function are
(1 fx)=0
@) [ f =1

2.3.2.1 Cumulative distribution function

The cumulative distribution function (cdf) is another way of describing the
probabilities associated with an event to occur. It is used to describe the probability
distribution of a random variable that provides the probability that X is less than or equal

to x.
F)=PX <x)= [*_f(x)dx (2.2)
for —oo <x < o

Since, the probabilities associated with it are cumulative, the probability of an event
increases with an increase in the value of x, and finally, as x tends to oo, F(x) =
P(X < x)tendsto 1.
2.3.3 Elementary Statistical Parameters

The probability distribution function provides the description of probabilities
associated with the random variables for different events to occur. In order to summarize

the distribution of a random variable, three important statistical parameters, i.e., mean,

variance and standard deviation, are necessary.
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2.3.3.1 Mean
The mean or expected value of a random variable X is denoted by p or E(x). It is
the simplest description of a sample of data {x4, X2, X3, X4.......... Xn}, Wwhere mean (X) is

given as
S 1
X=X (2.3)
Where, n is the number of observations in a sample data set
X; is the i observation in a sample data set
From the above expression, it can be understood that the mean X provides equal

weight factors to all the values. Similarly, the mean is also used to summarize a

probability distribution function where p or E(x) is given by
p=EX) = [ xf(x) dx (2.3a)

Where, x is a random variable
f(x) is the distribution function of the random variable
2.3.3.2 Variance
Variance is another important parameter used to summarize the data or the
distribution function. It is mainly used to describe the scatter of the data (Montgomery,

2010). The sample variance of a data set can be estimated by the expression,

Variance (X) = — Y7 X; — X)? (2.4)

n-1 <=1
Where, X is the random variable
X is the sample mean
X; is the ith observation of the random variable
n is the number of observations
The variance of a random variable X is a measure of dispersion or scatter, which is

denoted as o or V(X).
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o2 =V(X) = [7 (x— W?f(x)dx (2.4a)

Where, u is the mean of the random variable

f(x) is the probability density distribution function of the random variable

x is the random variable
The standard deviation of a random variable X is denoted by 0. The standard deviation is
a measure of the deviation of the random variable from the mean or expected value. The
standard deviation is obtained by taking the square root of the variance value.
2.3.4 Typical Probability Distributions

Most of the conventional statistical tests were developed based upon the normal
distribution having a mean p and variance o°. However, to model the distribution of
geotechnical properties, the normal distribution may not be appropriate in all the cases. In
studies conducted by Amundaray (1987), Harr (1987), Ang and Tang (1975), Hahn and
Shapiro (1967) various distributions that can be used for modelling different geotechnical
properties were presented. In this section, various probability distribution functions will
be briefly discussed, along with the estimates of mean and variance. These estimates will
provide the values that should be incorporated into geotechnical analysis.
2.3.4.1 Uniform Distribution

Uniform distribution refers to the probability distributions, where the probability of
any event at a certain interval is most likely same. The uniform distribution function is

expressed using the equation below
f(X)=ﬁ; a<X <b (2.5)

Where, a and b are real constants with a < b, and f (x) is equal to zero for X < a

and X > b.
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The probability density function and cumulative distribution function of a uniformly
distributed random variable are shown in Figure 2-2. If a random variable is distributed
uniformly, then the mean and variance of the uniform distribution is given using the

expressions below

b -a)

X = - (2.5a)
Variance (X) = ® 1_2a)2 (2.5b)
Fx(x) fx(x)
10 b-a) |~
a b X
(a) (b)

Figure 2-2 Uniform distribution: (a) Probability density function, (b) Cumulative distribution
function
If a geotechnical property is distributed uniformly, then the value of the property

that has to be used in the geotechnical analysis can discovered by using the expressions
for X. This distribution can be used if the information about the measured data is poor

and only the values in a certain region can be identified (Amundaray, 1994).
2.3.4.2 Normal distribution
Normal distribution, also called as Gaussian distribution, is the most commonly

used distribution. The primary reason for this is the simplicity of defining the distribution
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function with only two parameters mean (u) and standard deviation (g). The probability
density function of a random variable is expressed as below,

~(e=w)?

e 207 (2.6)

f)= 7=

Where, —o0 < x < o
—00 < u < oo
>0
The random variable X is said to be normally distributed with the parameters
mean (u) and variance (02), and is denoted X ~ N(u, 02). The probability density function

of the cumulative distribution function for a normal distributed random variable is shown

in Figure 2-3.

fy(x) Fx(¥

10 ------------
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(a) (b)
Figure 2-3 (a) Probability density function and (b) cumulative distribution function for a
normally distributed random variable
In the research studies conducted by Corotis et. al. (1975), Holtz & Krizek (1972)
and Harr (1977), it was shown that most of the geotechnical properties were modeled
using the normal distribution. If the number of observations was greater than 30, then the
inherent variations of the geotechnical properties could be modelled using the normal

distribution (Amundaray, 1994). The usage of the normal distribution enables the
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researcher to learn the probability of any value by transforming the variable to a standard
normal variable using the equation below,

zZ = &-w (2.6a)

o
Where, z is a standard normal variable

U is the mean of the random variable

o is the standard deviation of the random variable

The standard normal variable has the properties mean, gy = 0 and variance, o’=1.The

probabilities associated with the standard normal variable are given in Figures 2-4.
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z .00 01 02 03 04 2
0 50000 .50399 50798 51197 51595 0
1 53983 54379 54776 55172 55567 A
2 57926 58317 38706 59095 59483 2
3 61791 62172 62551 62930 63307 |
4 65542 65910 66276 66640 67003 4
5 69146 69497 69847 70194 70540 5
6 12575 72907 73237 73565 73891 6
q 75803 76115 76424 76730 77035 N
8 78814 79103 79389 79673 79954 B
9 81594 81859 82121 82381 82639 9
1.0 84134 84375 84613 84849 85083 1.0
1.1 86433 86650 86864 87076 87285 1.1
12 88493 88686 88877 89065 89251 12
13 90320 90490 90658 50824 90988 1.3
14 91924 92073 92219 92364 92506 14
1.3 93319 93448 93574 93699 93822 1.5
1.6 94520 94630 94738 94845 94950 1.6
1.7 95543 95637 95728 95818 95907 1.7
1.8 96407 96485 96562 96637 96711 1.8
19 97128 97193 97257 97320 97381 19
20 97725 97778 97831 97882 97932 20
2.1 98214 98257 98300 98341 93882 2.1
22 98610 98645 98679 98713 98745 2.2
23 98928 98956 98983 99010 99036 23
24 99180 99202 99224 99245 99266 24
2.5 99379 99396 99413 99430 99446 2.5
26 99534 99547 99560 99573 99585 26
27 99653 99664 99674 99683 99693 27
28 99744 99752 99760 99767 99774 28
29 99813 99819 99825 99831 99836 29
30 99865 99869 99874 99878 99882 30
3l 99903 99906 99910 99913 99916 il
32 99931 99934 99936 99938 99940 2
33 99952 99953 99955 99957 99958 33
34 99966 99968 99969 99970 9997 34
3.5 99977 99978 99978 99979 99980 s
36 99984 99985 99985 99986 99986 36
7 99989 99990 99990 99990 99991 7
38 99993 99993 99993 99994 99994 is
9 99995 99995 99996 99996 99996 39

Figure 2-4 Cumulative distribution function of the standard normal variable

(Montgomery et al. 2010)
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z 05 .06 07 08 09 z
0 51994 52392 52790 53188 53586 0
" | 55962 .56356 56749 S7142 57534 B |
2 59871 60257 60642 61026 61409 2
3 63683 64058 64431 64803 65173 3
A 67364 67724 68082 68438 68793 4
5 70884 71226 71566 TJ1904 72240 3
6 74215 74537 74857 5175 754% 6
a J7337 77637 77935 78230 78523 g
8 80234 80510 80785 81057 81327 8
9 82894 83147 83397 83646 83891 9
1.0 85314 85543 85769 .85993 86214 1.0
1.1 87493 87697 87900 88100 88297 1.1
1.2 89435 89616 89796 89973 90147 1.2
1.3 91149 91308 91465 91621 91773 1.3
14 92647 92785 92922 93056 93189 14
1.5 93943 50462 94179 94295 94408 1.5
1.6 95053 95154 95254 95352 95448 1.6
1.7 95994 96080 96164 96246 96327 L7
18 96784 96856 96926 96995 97062 1.8
19 97441 97500 97558 97615 97670 1.9
20 97982 98030 98077 98124 98169 20
21 98422 98461 98500 98537 98574 2.1
22 98778 98809 98840 98870 98899 2.2
23 99061 99086 99111 99134 99158 23
24 99286 99305 99324 99343 99361 24
25 99461 99477 99492 99506 99520 25
26 99598 99609 99621 99632 99643 26
27 99702 99711 99720 99728 99736 2.7
28 99781 99788 99795 99801 99807 28
29 99841 99846 99851 99856 99861 29
30 99886 G9RE9 99893 99897 99900 30
31 99918 99921 99924 99926 99929 3.1
32 99942 99944 99946 99948 99950 32
33 99960 99961 99962 99964 99965 i3
34 99972 99973 99974 99975 99976 34
35 99981 99981 99982 99983 99983 35
3.6 99987 99987 99988 99988 99989 36
37 99991 99992 99992 99992 99992 37
38 99994 99994 99995 99995 99995 38
39 99996 99996 99996 99997 99997 39

Figure 2-5 Cumulative distribution function of the standard normal variable

(Montgomery et al. 2010)
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2.3.4.3 Log-Normal Distribution

The log-normal distribution is another way of representing the normal distribution
of a random variable. The name follows by transforming the random variable (X) using
natural logarithms (Ln). The probability density function for the log-normal distribution is

expressed below,

[_(zn(x)— 6)2
202 (2.7)

1
f() = s~ exp

Where, 0 < x < o
w is the standard deviation of the random variable

0 is the mean of the random variable

The probability density function and cumulative distribution function of a random

variable that is log-normally distributed are shown in Figures 2-5.

fx X) fx(x

nx) X
(a) (b)
Figure 2-6 (a) Probability density function and (b) cumulative distribution function for a
log-normal distributed random variable
This distribution is particularly useful for large variations in the data, where the lower
bound is close to zero and upper bound is infinite, as shown in Figure 2-6 (b). The

geotechnical properties, like hydraulic conductivity, are well described using this
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distribution (Amundaray, 1994). If the soil property of interest is distributed using log-
normal distribution, then the value that needs to be used in further analysis is found by

using the expression below,

2

E(X) = % (2.7a)
2.3.4.4 Exponential Distribution
The exponential distribution is primarily used to model the number of flaws in a
considered physical system. In geotechnical engineering, this distribution can be useful to
model the discontinuities in the rock (Amundaray, 1994). If the parameter A represents
the number of discontinuities in a rock of certain length, then the probability density
function for an exponential distribution can be expressed as below,
f(x) = Ae ™ (2.8)
Where, 0 <x < o
The probability density function and cumulative distribution function of a random

variable that is exponentially modeled are shown in Figure 2-6.

o (a) Fl (b)

X X
Figure 2-7 (a) Probability density function and (b) cumulative distribution function for an

exponentially distributed random variable
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2.3.4.5 Gamma distribution

The gamma distribution is used to model a variety of random experiments

(Montgomery, 2010). The probability density function of a gamma distribution function is

expressed as below,

r—-1,-Ax

fo) = X (2.9)

[ xT=1le~*dx
Where, x>0;A>0;and r>0

The probability density function and cumulative distribution function of a random variable

for gamma distribution are as shown in Figure 2-7.
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Figure 2-8 (a) Probability density function and (b) Cumulative distribution function for a
random variable that has a gamma distribution
2.4 Characterization of Spatial Variability

Spatial variability refers to the measurements of a random variable that varies
across the space. In the earlier sections, the uncertainties associated with the soil
properties and various distributions to model the uncertainties were discussed. However,
the univariate statistics that were discussed do not reflect the spatial correlation present

in the soil properties. With the consideration of spatial correlation in the properties, more
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realistic estimates and conclusions can be drawn. In this section, different approaches to
characterizing the spatial variability present in the soil properties are presented.
2.4.1 Trend or Drift

Trend or drift refers to constant variation of the soil property along the subsurface
profile. Computationally, the trend present in the random variable can be calculated as
the weighted average of all the points within the neighborhood around the point (Davis,
1986). In the research study conducted by Cuba et al (2011), the expression for semi-
variogram (tool in geostatistics for modeling spatial variability) had three components: (1)
mean trend, (2) variance trend and (3) the stationary component. The mean and variance
trend represents locally varying mean and variance values. The mean trend is obtained
by calculating the expected value of the random variable in the original scale. Kanevski et
al. (1996) utilized neural networks to obtain the mean trend present in the random
variable. According to the studies conducted by Phoon et al. (1999), the soil property
(¢(2)) at any depth (z) can be modeled as the summation of deterministic trend function,
deviation from trend, and measurement error, as shown in Figure 2-8.

§(2) =t(2) +w(2) +e(2) (2.10)

Where, zis the depth along the subsurface;

&(z) is the in-situ soil property;

t(z) is deterministic trend function;

w(z) is the deviation from trend;

e(z) is the measurement error.
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Figure 2-9 Spatial variation of soil properties (Davidovic et al., 2010)

2.4.2 Scale of fluctuation

The scale of fluctuation refers to the fluctuations in the random variable values.
VanMarcke (1984) introduced the scale of fluctuation (6) as a descriptive tool for
characterizing the variability present in the random field.

6= [""p@d@) =2 [ px)d(x) (2.11)

In Figure 2-8, the scale of fluctuation, denoted, as d,, refers to gentle variation in
the soil property about the trend line (t (z)). The scale of fluctuation estimates the
maximum distance over which a random variable shows strong correlation. In layman

terms, if two points in a random field are separated by a distance greater than the scale

of fluctuation implies, the two points are largely unrelated; and if two points are separated
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by a distance smaller than the scale of fluctuation, a strong correlation is indicated
(Fenton, 2002). In the research study conducted by Jones et al (2002), an example
calculation was provided for estimating the scale of fluctuation for cone tip resistance (qc)

along the sub surface profile, as shown in Figure 2-9.

q. (MPa)

i

Depth (m)
(=]
W

(a)

©

o o

[
L] L)

Scale of Fluctuation (m)
o
o
S

01 H
—_
0.05 b .
0
0 1 2 3 4 5 :

Window Length (m)
(b)
Figure 2-10 (a) Cone tip resistance along the depth, (b) Scale of fluctuation for

corresponding window length
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From the Figure 2-9 (b), it can be understood that for a window length of 1 meter,
the scale of fluctuation reaches a peak value of 0.26m. So, at any distance greater than
0.26m, the tip resistance is not correlated. The detailed steps for calculation of the scale
of fluctuation were explained in the technical report of Jones et al (2002). Various
approaches, such as regression technique, spectral analysis, moment estimation and
maximum likelihood estimation have been suggested by past researchers to discover the
scale of fluctuation. DeGroot (1996) conducted and summarized extensive studies to
obtain a scale of fluctuation for various in-situ tests, as shown in Table 2-4.

Table 2-4 Scale of fluctuation of soil properties in various in situ tests (Degroot, 1996)

Soil . . . Scale of
Property Soil Direction Fluctuation (m) Reference
Dune ; Hilldale-Cunningham
SPTN Sand Horizontal 40.00 (1971)
Value Ag”"'a' Horizontal 33.40 DeGroot (1996)
and
DMT P, Vggid Vertical 2.28 DeGroot (1996)
. Hoeg and Tang (1976);
Sea Clay | Horizontal 60.00 Tang (1979)
. . Lacasse and de
Silty Clay | Horizontal 10.00 ~ 24.00 Lamballerie (1995)
TCO.F’per Vertical 1.00 Baecher (1987)
ailings
Sensitive | yyortical | 400f0rdefe | cpiasson et al. (1995)
Clay and u,
CPTU . . Lacasse and de
C_one Silty Clay | Vertical 2.00 Lamballerie (1995)
Resistance Clay Vertical 2.00 Vanmarcke (1977)
Mexico . Alonzo and Krizek
Clay Vertical 2.00 (1975)
Clean . Alonzo and Krizek
Sand Vertical 6.00 (1975)
Clean . Kulatilake and Ghosh
Sand Vertical 3.20 (1988)
Nog:nf’jea Horizontal | 28.00~76.00 | Keaveny et al. (1989)




Table 2.4 - Continued

Vane Shear |  Clay Vertical 2.00 ~ 6.00 Asao"""(?gggG”"as
Test —
Undrained | S5 | vertical 2.00 Baecher (1987)
Shear Sensi’zve DeGroot and Baecher
Strength Clay Horizontal 46.00 (1993)
1.00
Chicago . (Unconfined
Labora!tory Clay Vertical Compression Wu 91974)
Undrained
Test)
Shear 0.60 ~ 7.20
Strength offghore Vertical (Triaxial and Keaveny et al. (1989)
Sites
DSS)
Hydraulic | Compacted , 5
Conductivity Clay Horizontal 1.00 ~4.00 Benson (1991)

2.4.3 Coefficient of Variation

The standard deviation gives an absolute measure of the dispersion in the data;
whereas, the coefficient of variation is a relative measure of the spread or variability in
the data. The coefficient of variation is calculated by expressing the standard deviation as

a percentage of the mean.

Standard devitaion (o)

cov = o (2.12)
Where, Standard deviation (¢) = ﬁ X - X)?
1
Mean (1) = 157, X,

Where, X is the random variable; X is the sample mean; X; is the ith observation of the
random variable, and n is the number of observations
Due to its simplicity, coefficient of variation is the most widely used statistical tool

for characterizing the variability in civil engineering projects. The American Institute of
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Concrete (1965) has suggested the coefficient of variation as a descriptive tool to
categorize the degree of variability present in concrete material.

Coefficient of Variation < 10% - Excellent

10% < Coefficient of Variation < 15% - Good

15% < Coefficient of Variation < 20% - Satisfactory

Coefficient of Variation > 20% - Poor

The different stages of soil formation inherently produce high variability when

compared to the britle materials such as concrete. Therefore, in geotechnical
engineering, if the coefficient of variation is less than 20%, the data can be regarded as
low degree of variability. Rethati (1988) studied the effects of a number of samples on the
coefficient of the variation of unconfined compressive strength. Figure 2-10 presents the
results of this study, where UCS strength and coefficient of variation values were plotted
against the number of samples. It can be clearly observed that there is a decrease in the
unconfined compressive strength value, along with coefficient of variation until the
number of samples is 30. The variation after 30 samples becomes more stable, following
a constant trend. Amundaray (1994) recommended that at least 30 samples should be

tested to obtain a realistic coefficient of variation of soil properties.
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Several researchers in the past have studied the coefficient of variation of

various soil properties obtained from field and laboratory measurements. Table 2-5 below

Number of samples (n)
Figure 2-11 Coefficient of variation for unconfined compressive strength values

summarizes the coefficient of variation values of different soil properties.

Table 2-5 Summary of coefficient of variation of different soil properties (Kim, 2011).

Soil Property Soil Direction | COV (%) Reference
Clay and : 25.00 ~ Phoon and Kulhawy
SPT N Value Sand Vertical 50.00 (1996)
River Vertical 25.00 ~ Reyna and
Sand 43.00 Chameau (1991)
River Vertical 25.00 ~ Reyna and
Sand 43.00 Chameau (1991)
CPTU Cone Cla Vertical 20.00 ~ Phoon and Kulhawy
Resistance y 40.00 (1996)
. 20.00 ~ Phoon and Kulhawy
Clay Vertical 40.00 (1996)
. 20.00 ~ Phoon and Kulhawy
Sand Vertical 60.00 (1996)
CPTU Sleeve River Vertical 26.00 ~ Reyna and
Friction Sand 43.00 Chameau (1991)

31




Table 2.5 - Continued

Clay Vertical 10.00 ~ Phoon and
DMT A Reading 35.00 Kulhawy (1996)
Sand Vertical 20.00 ~ Phoon and
50.00 Kulhawy (1996)
. 10.00 ~ Phoon and
. Clay | Vertical | 55 5 Kulhawy (1996)
DMT B Reading
Sand Vertical 20.00 ~ Phoon and
50.00 Kulhawy (1996)
. Sand Vertical 20.00 ~ Phoon and
DMT Dilatometer 60.00 Kulhawy (1996)
Modulus River Vertical 20.00 ~ Reyna and
Sand 60.00 Chameau (1991)
. 20.00 ~ Phoon and
. Sand | Vertical |~ o Kulhawy (1996)
DMT Material Index -
River Vertical 20.00 ~ Reyna and
Sand 60.00 Chameau (1991)
_ Sand Vertical 20.00 ~ Phoon and
DMT Horizontal Stress 60.00 Kulhawy (1996)
Index River Vertical 20.00 ~ Reyna and
Sand 60.00 Chameau (1991)
Clay Vertical 10.00 ~ Phoon and
. 35.00 Kulhawy (1996)
PMT Limit Pressure
Sand Vertical 20.00 ~ Phoon and
50.00 Kulhawy (1996)
PMT Young's Modulus Sand Vertical 1655(.)(())0~ Kulljhha?/t/); 8%%6)
_ Clay Vertical 18.00 ~ Ase.aoka and A-
Vane Test Undrained 30.00 Gricas (1982)
Shear Test Clay Vertical 10.00 ~ Phoon and
40.00 Kulhawy (1996)
Laboratory Relative Sand ) 11.00 ~ Haldar and Tang
Density 36.00 (1979)
Laboratory Natural Water | All Soll 9.00 ~ Kulhawy et al.
Content Types ) 32.00 (1991)
Laboratory Liquid Limit 'f‘r')'/sss" - oo K“'Q?‘ggﬁt al.
Laboratory Plastic Limit Arl;/s;s" - 71;)%0 KuIQ?\éngt al.
Laboratory Void Ratio AI'I)I/F?;s" - 1260(())0 Ku'??\ggﬁ al.
Laboratory Total Unit All Soil 2.00 ~ Kulhawy et al.
Weight Types ) 12.00 (1991)
Laboratory Effective All Soil 6.00 ~ Kulhawy et al.
Friction Angle Types ) 21.00 (1991)
Laboratory Compression All Sail 26.00 ~ Kulhawy et al.
Index Types ) 48.00 (1991)
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2.4.4 h-scatter plots

Spatial continuity is a geostatistical tool through which the variation between two
random variables can be discovered. If two data points are proximate to each other, they
are more likely to have homogeneous values than two data that are far apart. H-scatter
plots are used to describe the relationship between the value of one variable and the
value of the same variable at nearby locations, which are separated by a distance ‘h’
(Isaaks and Srivastava, 1989). To illustrate further, consider a sample data set with 25

observations distributed in a grid area.

X1 Xe X1 X16 X2
X, X5 X1z X17 X22
X3 Xg X13 X18 X23
Xa Xo X14 X19 X24
Xs X10 X1s X20 Xas

Figure 2-12 Sample data set in a grid area
In order to draw the h-scatter plot for the above case, label x-axis as X(i) and y-axis as
X(i+h). If both the values that are separated by the distance ‘h’ are identical, they fall on
the 45 degree straight line. Figure 2-12 represents an h-scatter plot for h (0, 0), where
every individual is paired with the same value, thus falling on the straight line. Similarly, a
separation distance of 2m gives a plot for h (0,2), where every individual is paired with
other data value which is 2m apart. As the separation distance increases, the values
become less similar, where the data points move away from the 45 degree straight line,

as shown in Figure 2-13. The fatter the cloud of the h-scatter plot, the more dissimilarity
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exists in the data values. Thus, h-scatter plot provides the spatial variation present in the
random values. In order to quantify the spatial variability in the h-scatter plots, three

important functions are used.

0 10 20 30 40 50
50 | | | | 50
Seperation distance, h=0 |
40 — + — 40
/
/
L + |
/
/
30 — /-F — 30
= /
x %
/
20 — =+ — 20
/
/
L + |
/
/
10 — =+ — 10
/
/
L * |
0 | | | | 0
0 10 20 30 40 50
X (i)

Figure 2-13 h-scatter plot for a separation distance of Om
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Figure 2-14 h-scatter plot for a separation distance of 2m
2.4.4.1 Covariance function
Covariance, in statistics, is used to find the similarity between two random
variables. The absolute value of the covariance increases with the correlation between
two variables. If the random variables are positively correlated, the covariance between
them will be positive. On the contrary, if the covariance is negative, the random variables

are negatively correlated.

Covariance (X,Y) = % G — mo)(y — my) (2.13)
Where, n is total number of observations
X,y is i™ observations of a random variables x and y
m,, m, is the mean of random variables x and y

The relationship between covariance of an h-scatter plot and h is called the

covariance function (Isaaks and Srivastava, 1989). In geostatistics, the covariance
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function is used to estimate the maximum lag distance that represents the spatial

correlation in the data. The covariance is expressed as follows,

1 1
X XiXirnl 5 X Xip Xisn

Cov(X;, Xiyn) = o1

(2.13a)

Where, h is the lag distance
X, is the i" observation
X,+n is the observation separated at a distance ‘h’ from X;
n is the total number of observations
From the covariance function, it is evident that when the lag distance (h) is zero,
the covariance function results in the variance of the random variable. As the lag distance
increases, the covariance of the random variable decreases and reaches a constant
value, depicting that the random variables are not correlated after that lag distance.
2.4.4.2 Correlation function
The relationship between the correlation coefficient of an h-scatter plot and
separation distance (h) is called the correlation function or correlogram (Isaaks and
Srivastava, 1989). The plot of correlogram provides the correlation between the two data

values that are separated at a particular distance.

%Z?zl(xi_ mx)(yi_ my) - c(h)

O'xO'y O_h-O4p

correlation coef ficient (p) = (2.14)

Where, n is total number of observations
X;, Y is i™ observations of a random variables x and y
m,, m, is the mean of random variables x and y

oy , 0y is the standard deviation of the random variables x &y
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Autocorrelation function is the relationship between the autocorrelation coefficient
of a h-scatter plot and separation distance (h). It is obtained by normalizing the auto
covariance with the variance of the random variable itself.

cov(Xi,Xi+n)

T Ty

(2.15)

Where, 1, is the autocorrelation function

cov(X;, X, 1) is the covariance between random variable separated at h

units apart

V(x) is the variance of the random variable itself.
The autocorrelation function is used to find the scale of fluctuation of soil properties
between two points. VanMarcke (1984) and Li et al. (1987) provided various
autocorrelation function models between the scale of fluctuation (6) and lag distance.
VanMarcke (1984) and Li et al. (1987) provided various auto-correlation functions for
measuring scale of fluctuation, as summarized in Table 2-6.

Table 2-6 Autocorrelation functions for measuring scale of fluctuation

Model No. Autocorrelation Function

T
pt=1—%for|‘r|<9;

pt =0 for|t| >0

2 p, = e2ll/8
3 pt =3 e_n(|T|/0)2
4 pe = e *l/® <1 + ?)
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The variability present in the soil properties, using lag distance and scale of
fluctuation, can be characterized using the above models for autocorrelation,
2.4.4.3 Variogram

Variogram is another plausible index for characterizing the spatial variability
present in the random variables (Amundaray, 1994) . The variogram or semi-variogram y
(h) is a traditional analysis tool used to describe the spatial continuity of the data in earth
science application. It is defined as one-half of the average squared differences between
the x and y coordinates of each pair of points in the h-scatter plot (Isaaks and Srivastava,

1989). The mathematical expression for calculating a variogram value is given as below:

Y() = s SiPle(y + b)) —2G)? (216)

Where, z(x;) = measurement taken at a location x;
z(x; + h) = measurement taken at a location h distance away
n(h) = number of data pairs h units apart in the direction of the vector
h = lag distance
y(h) = variogram value
Using the above expression, an experimental variogram value can be obtained
for each h-scatterplot, and a series of such values for different h-scatter plots gives rise to
the variogram plot. Figure 2-14 shows a typical variogram, where each circle is

represented by an experimental variogram value for an individual h-scatter plot.
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Effective Range Exponential Semivariogram
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Figure 2-15 Typical Sample Variogram (Vennupusa et al., 2010)

The three main characteristics by which a variogram is often summarized are
Range, Sill and Nugget (Isaaks and Srivastava, 1989).

Range (a): As the separation distance between pairs increases, the
corresponding semivariogram value will also generally increase. EEventually, however, an
increase in the distance no longer causes a corresponding increase in the semivariogram
value and reaches a plateau. The distance at which the semivariogram reaches this
plateau is called the range. The longer range value suggests greater spatial continuity
(vennapusa, 2010).

Sill (Co+C): The plateau that the semivariogram reaches at the range is called the
sill. A semi-variogram (which is one-half of the variogram) generally has a sill that is

approximately equal to the variance of the data (Srivastava 1996).
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Nugget effect (Cy): Though the value of the semvariogram at h=0 is strictly zero,
several factors, such as sampling error and very short scale variability, may cause
sample values separated by extremely short distances to be quite dissimilar. This causes
a discontinuity at the origin of the semivariogram and is called the nugget effect.

2.5 Simulations of Spatial Variability

In earlier sections, different statistical approaches to characterizing the
uncertainty and spatial variability were discussed. Incorporating these statistical
parameters into geotechnical analysis is often considered quite complex. Therefore,
geotechnical engineers are sometimes required to perform conservative designs, which
results in a significant increase in project cost. One alternative to this problem is to
simulate the actual field conditions and study its behavior under different circumstances.

In geotechnical engineering, simulations are performed to replicate the actual
field conditions. Simulations are not new in the field of geotechnical engineering; most of
the slope stability analyses are performed by modeling the soil conditions in different
layers. However, the layer properties are a result of the average mean value or the
minimum value of the property of interest. Vanmarcke (1977) attempted to replicate
actual field conditions by implementing the random field theory. In this section, various
simulation techniques employed to represent the actual field conditions will be briefly
discussed.

2.5.1 Random Field

Random field by name represents a field, where all the realizations z(x) are
obtained from a random function Z(X). The random field theory is used in geotechnical
engineering to simulate the field conditions by incorporating the spatial variability. Various
statistical tools such as correlation distance, scale of fluctuation, and coefficient of

variation were used to simulate a random field (Vanmarcke 1977; Fenton 1999a; Gui et
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al. 2000; Elkateb et al.2003; Huang et al. 2010; Cho 2012; Zhu and Zhang 2012). The
inferences obtained from the random field are used to solve the deterministic problems of
interest. Fenton (1993) suggested that based on the first order moments, the random
fields can be classified as Gaussian field and non-Gaussian field. The Non-Gaussian
random fields can be created by using the nonlinear transformation of the data. Provided
below are brief descriptions of various random field generators, where only the first two
moments of the random fields, mean and covariance, are constant.
2.5.1.1 Moving average (MA) method

Moving average is the simplest method to generate a random field. The moving
average technique constructs the random field Z(x) as a weighted average of a white
noise process (Fenton, 1993)

2(x) = [7 f(E = x)dw (&) (2.17)
Where, dW () is a zero mean incremental white-noise process with variance dé
f is a weighting function

In the studies conducted by Mignolet and Spanos (1992), it was mentioned that
the accuracy of the MA method depends upon the pace of the program. The moving
average technique is very time consuming because of the level of difficulty in finding the
weighting function f.
2.5.1.2 Fourier transform method

The Fourier transform method is used to generate continuous random fields. This
is performed based on the spectral representation of the mean square data for
homogeneous random fields. Yaglom (1962) expressed continuous distribution function

for generation of random field.

(00

Z(x) = [__e™® W(dw) (2.18)
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Where, W (dw) is an interval white-noise process with mean zero and variance

S(w)dw
S(w) is the spectral density function

The discrete Fourier transform is most generally used as the summation at a particular
point, where in the actual Fourier transform method, the n-dimensional integration
becomes n-dimensional sum (Gordon, 1993).
2.5.1.3 Fast Fourier transform method

The fast Fourier transform method is much more advanced and efficient than the
actual Fourier transform method. Cooley and Tukey (1965) suggested this method as an
alternative to the discrete Fourier transform method, where N? operations can be reduced

to N (logzN). A random field Z(x)can be expressed as (Gordon, 1993):
Z(xj) = limy L Z’,§=_k[A(Awk)cos(xjwk) + B(Awk)sin(xjwk)] (2.19)

Where, w, = kn/K

Aw,is an interval of length /K centered at wy,

=

=1

1 jik
Ak = E ' Z]'COSZH'?:A](:]{
j=0
k=1
1 k
Bk = E Z] Sin 277.'? = _Bk=k

=0

-

The detailed procedure and mathematical formulation of the above equation are
detailed in the studies conducted by Gordon (Gordon, 1993).
2.5.1.4 Decomposition matrix method

Decomposition matrix is another often-used technique for generating
homogeneous random fields. In this technique, the covariant matrix is decomposed into a
lower triangular matrix and an upper triangular matrix. The decomposition matrix is

expressed as:
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Ky = L. Uy (2.20)

Where, K,,is a covariance matrix

L,,is a lower triangular matrix
U,,is a upper triangular matrix

If K,,, the covariant matrix is positive definite, then the mean zero-discrete
process Z; = Z(x;) can be produced by:

Z=LpV

Where, L,,is a lower triangular matrix and V is the unit vector

The decomposition matrix is only used for small fields, as the round-off error and
time for programming increase with an increase in matrix size (Fenton, 1993).
2.5.1.5 Turning band method (TBM)

Matheron (1973) developed the turning band method for generation of random
field in two or more dimensional spaces by using the existing one-dimensional
techniques, such as fast Fourier transformation and decomposition matrix. The turning
band method generates more efficient and fast random fields in multi-dimensional
processes compared to the decomposition matrix and fast Fourier transform method
(Fenton, 1994). Gordon (1993) compared the process time for generating the random
field using three methods, as summarized in the table below.

Table 2-7 Comparison of processing time for generating random fields (Gordon, 1993)

Turning Band
Fast Fourier Local Average
Dimension Method
Transform Subdivision
16 lines | 64 lines
1 Dimension 1.0 0.70 - -
2 Dimension 1.0 0.55 0.64 2.6
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Gordon (1993) outlined a detailed procedure for generating a random field, using
a turning band method with reference to the below Figure 2-15. The random field-

generating equation is expressed as:

Z(x) = 1/VL Ty Zi(x + U) (2.21)

Figure 2-16 Random field generation using turning band theory (Gordon, 1993)
2.6 Predictions Using Conventional Estimation Methods

The spatial variability present in the random variables can be characterized using
any of the techniques discussed in the earlier section. In any analysis, the distributions
and statistical parameters of a property can be used to supplement the prediction
analysis. For instance, consider that a cohesive strength value of a subsurface profile is
fluctuating with a coefficient of variation of 0.32. In order to find the bearing capacity of a
layer, the primary question is what value of cohesive strength should be considered.
Always, as a worst case scenario, the minimum value of strength can be taken; however,
that leads to uneconomical costs and unrealistic field conditions. Using probabilistic

analysis, the raw estimates can be determined by evaluating the distribution of the
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cohesive strength values and incorporating the parameters E(x) into further analysis. In
this section, various conventional spatial estimation methods that have not been explored
in geotechnical engineering will be discussed.
2.6.1 Polygonal Estimation

Polygonal estimation is a spatial estimation technique used to predict the values
at unsampled point locations. This was developed from Voronoi diagrams and was later
introduced to geophysics by Alfred H. Thiessen. One of the primary applications of this
technique is to gauge the areal rainfall measurements (Thiessen, 1911). Later, this
method was introduced for estimating the point measurements for various applications
(Tabios and Salas, 1985; Dirks et al., 1998). In order to obtain the predictions, the
boundaries of a polygon are created at a halfway distance between the known values.
The polygonal area, as shown in Figure 2-16, represents the area of influence around the

known value.

40

60

Figure 2-17 Polygonal area of influence around the known value

(Isaaks and Srivastava, 1989)
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Using the polygonal technique, the estimate at any location will be the closest
observation to the point which can expressed as (Goovaerts (2000) :

Zpoi(W) = Z(ugr) with lu — uy| < lu— uy| Vo# (2.22)

Goovaerts (2000) used the Thiessen polygon technique to determine the

amount of annual rainfall, using 36 rain gage data. Figure 2-17 represents the location of

the 36 gages and the estimated values of the areal rainfall over the entire area. Since the

predictions were based on the polygonal figure, the effect of the stations and elevations

were ignored, leading to large prediction errors.

Annual rainfall data (mm)
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Figure 2-18 Thiessen polygonal estimation of rainfall data (Goovaerts, 2000)
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2.6.2 Triangulation Estimation
Triangulation is a spatial estimation technique, named after Boris Delaunay,

which is used for point estimations (Boris, 1934). A few estimation techniques, such as
polygonal technique, are inherently associated with some discontinuities, as shown in
Figure 2-18. By using the triangulation method, these discontinuities can be overcome by

fitting a plane. The equation of the plane can be expressed as (Isaaks and Srivastava,

1989):
z=ax+by+c (2.23)
Where, z is the value of the estimate
x and y are coordinates (such as easting/ northing)
c is constant.
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Figure 2-19 Inherent discontinuities present in polygonal estimation technique

(Isaaks and Srivastava, 1989)
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By knowing the values around the unknown location, a series of equations can
be developed through which the constants a, b, and ¢ are determined. Using the plane
equation and constants, the unknown values are determined. Figure 2-19 from Isaaks

and Srivastava (1989) provides the estimates, using the triangulation method for

predicting the concentrations of a material in ppm.

Estimated Value

Figure 2-20 Triangulation estimation technique (Isaaks and Srivastava, 1989)

2.6.3 Inverse Distance Method

The estimate at any location is heavily influenced by the proximate values. The
estimates made by using the polygonal technique make use of one closest value, and the
triangulation method makes use of three proximate values (Isaaks and Srivastava, 1989).
If the unknown value is surrounded by more than 3 points, the estimate at the unknown
location is obtained by finding the local mean of the data. However, this technique
provides equal weight factors to all the values and is mainly influenced by the extreme

values. In order to accommodate this problem, the inverse distance method is utilized
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where the distances from the unknown location to neighboring points are inversed and
standardized with the mean distance.

The US National Weather Service (1972) estimated the rainfall depth using the
inverse distance method (Bedient and Huber, 1992). The estimates using the inverse

distance method are expressed as:

* _ 1 n(u)
Zinp(u) = mzazl AeW)z(ug) (2.24)

1

Where the weights, 1, (u) = T
In the studies conducted by Goovaerts (2000), the area rainfall was estimated using the
polygonal estimation method, inverse distance method, and kriging. It was observed that
the estimates obtained from the kriging method resulted in minimal errors. followed by

inverse distance method and polygonal method. Figure 2-20 shows the predictions

obtained using the inverse distance method and kriging method.
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Figure 2-21 Estimations using (a) Inverse Distance Method (b) Ordinary Kriging

(Goovaerts, 2000)
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2.7 Predictions using Geostatistics
It is obvious that the estimate at any location is heavily influenced by the
neighboring values. In conventional estimation methods, expected value (E (z)) at any
point is found by providing equal weight to all the neighboring values or assigning the
weights as per the polygonal or triangulation method. However, this is not true if the
surrounding values are highly variable. Below is a hypothetical case presented to

understand the above discussed scenario.

Figure 2-22 Hypothetical example for highly varying random variables

Consider a parameter with an unknown value in location ‘z’ which is surrounded
by 4 different values at locations A, B, C and D. Through the univariate statistics, the
expected value at ‘Z’ will be an average of the neighboring values, which is 69. The

expected value is given by:
E(Z) = p= wx) (2.25)
The value of 69 is obtained by providing equal weight to all the neighboring values.

However, the values around ‘z’ are varied, with a minimum value of 23 and maximum

value of 120. So, providing equal weight to all the values would result in a rough and
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misleading estimate. By applying geostatistics to the above study, the variability in the
values is obtained by constructing and modelling a variogram. The weights of
neighboring values are determined through the variogram model and the kriging
algorithm.

Kumar et al (2006) summarized various applications of kriging in different fields,
such as in the field of soil sciences (Burgess and Webster, 1980; Vieria et al., 1981;
Berndtsson and Chen, 1994; Bardossy and Lehmann, 1998); hydrology (Goovaerts 2000;
Creutin and Obled, 1982; Storm et al., 1988; Ahmed and de Marsily, 1989; Germann and
Joss, 2001; Araghinejad and Burn, 2005); in depicting ground water levels (Delhomme,
1978; Volpi and Gambolati, 1978; Aboufirassi and Marino, 1983; Virdee and Kottegoda,
1984; Kumar, 1996); and in atmospheric science (Bilonick, 1988; Casado et al., 1994).

In this research study, Kriging, a best-linear, unbiased estimator (BLUE) in the
geostatistics field was used for prediction analysis. Kriging is best because of its ability to
reduce the error variance; linear because of the weighted linear combinations of data;
unbiased as the data is considered stationary (Isaaks and Srivastava, 1989). In this
section, the predictions based on geostatistical theory are discussed, with kriging used as
the estimation tool. Various types of kriging methods and their applications are discussed
in this section.

2.7.1 Simple Kriging

The kriging method is used to estimate the value of the unsampled locations by
incorporating the spatial variability into the random variable (Miller et al. 2007). The
spatial variability is obtained from the variogram model, where the maximum correlation
distance between the random variable is obtained. Simple kriging is the simplest form of
all kriging methods. This is mainly used in the mining industry, where the mean of the

mining panels is a known value (Armstrong 1994). The main underlying assumption in
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simple kriging is that the trend component is constant and the mean (m) is known, and
the sample data set is expressed as a realization of random function (Thomey, 2013).
Simple kriging is considered the least accurate of the various kriging methods, as it only
assumes the first order moments constant (Olea 2009).

The estimate of simple kriging is expressed using the expression:

E[Zy w)] =m = E[Z(u)] (2.26)

Where, estimation error Z;, (u) —Z(u) is a linear combination of random
variables.
2.7.2 Ordinary Kriging

Ordinary kriging is a type of kriging which is most widely when the first and
second order moments are constant values, satisfying the second order stationarity
(Haining et al. 2010; Olea 2009). In a research study conducted by Ahmed et al. (2012),
the ordinary kriging was evaluated for mapping the salinity present in soils. The ordinary
kriging was used to evaluate the depth of rock bed by incorporating the spatial variability
present in the data values (Pijush, 2008). Using ordinary kriging, the estimate at any

location is obtained by using the following equations:
Iy = Y, wix; (2.27)
Where, x; is the neighboring value around the unsampled location
w; are the weights of the corresponding neighbor values
Zy is the estimate of the random variable

Since, kriging is a linear unbiased estimator the sum of all the weights

corresponding to their neighboring locations is equal to 1.

Law; =10 (2.27a)
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Using the above estimation procedure will minimize the expected squared error
between the true and predicted values. The expression below shows the expected

squared error, e as:
s 12
Expected squared error,e = E {[Zx — in] } (2.27b)
However, E(Zy;) = X wiE[Z(x;)].

For an unbiased estimator, the estimated value should be equal to the true value.
E(Zy) = E[Z(x)] (2.27¢)
Therefore, resulting sum of weights for the neighboring values equal to

n

Z w; = 1.0

i=1

The above can be accomplished by finding a set of values for which the

differential equation for error with respect to each weight is 0.

=0 (2.27d)

The solution to the above partial differential equation is obtained by applying the

Lagrangian multipliers to the following set of simultaneous equations:

Z?:l a]CU + 1= Cxi’ and (2.276)
n
ZWL' =1.0
i=1

Where, C;; = C(h) is the spatial correlation obtained from the variogram model

A is a Lagrangian multiplier
C,; = C(h) all the data values and corresponding weights

In matrix form, the equations are:
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Cll ClZ Cln
Co1 an Cnnl [ (2.27)

1

C )\ Cxi
Therefore, the solution which yields the weighing factors, w;, is given by:
W= Cc'Cy (2.279)
The weights of the neighboring values obtained using the above equation will be used for
the estimation procedure.
2.7.3 Universal Kriging

Ordinary kriging, as discussed in the earlier section, is based on the condition

where the mean is constant in the spatial process (Z}l:l a;Cij + A = Cy;). However, in

some cases, the mean is not constant and is associated with the coordinates x and Y in
various forms such as linear, quadratic or higher order trends (Isaaks and Srivastava,
1989). The below expressions are examples of linear and quadratic form.

Z(S)) = Bo+ BiX; + B2Y; + 6(s;), linear (2.28)

Z(S) = o+ BiXi+ BoYy + BaX? + BuX;Y; + BsY + 8(s;), quadratic (2.29)

These trends in the data values effect the simple kriging estimations. Therefore,
a new approach was developed, called universal kriging, where the weights of the
neighboring values are estimated by accounting locally varying mean values. In universal
kriging, unlike the simple or ordinary kriging, the intrinsic stationary condition has to be
satisfied, accounting for trend in the mean as a deterministic component (Hohn, 1999;
Olea, 2009). In case of the above deterministic trends, the predicted value at a location

will again be expressed as a linear combination of the observed Z(S;), where i =1,.....n

values

2(So) = w1Z(s1) + 0 Z(53) + . +wrpZ(sy) = Y, 0, Z; (2.29)

54



Where, Y w; = 1.0
In case of linear trend present in the data, the value Z(SO) can be expressed as

2(s9) = Bo+ PL I 0 Xi + Bp Ximq i YV + Xy w; 8(sy) (2.29a)
Comparing the above equation with the linear trend, the following conditions have to be

satisfied.

n
w; X; = X
i=1

NI, Y; = Yo and

2.7.4 Factorial Kriging

Factorial kriging was developed by Georges Matheron, based on a variogram
filtering technique (Matheron, 1982). It is a multivariate geostatistical technique that is
extensively used in the petroleum engineering field to reduce the noise present in the
data (Magneron et al. 2009). Due to its ability to categorize the spatial components
separately, it is also used to identify various metals present in soils (Queiroz et al., 2008;
Jianshu et al.,, 2013; Benamghar et al., 2014)The main underlying assumption for
factorial kriging is that the random function z(x) is modeled using two independent
factors:

Z(x) = Z;(x) + Z,(x) (2.30)
Where, Z(x) is the random function
Z,(x) is the component of random variable due to noise

Z,(x) is the component of random variable due to signal
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This technique is efficient in reducing the global noise; however, the limitation of this
model is its inability to reduce the noise if the data is non-stationary.
2.8 Summary of Past Research Works
Variability in the soil properties is always a concern for geotechnical engineers.
With high variability in soil properties, the complexity in choosing the appropriate design
parameters escalates. Numerous studies were conducted to understand different types of
variability associated with the soil properties. Univariate statistics were successfully
utilized to analyze the distribution of the soil properties. However, spatial variability is one
aspect which was not ascertained using univariate statistics. Different techniques such as
random fields, Monte Carlo simulations, and turning band methods were used to simulate
the real field conditions and describe the spatial variability present in the soil properties.
However, the predictions made based on the random field theory had some limitations
and resulted in error between true values and estimated values.
In this research study, geostatistics, developed from regionalized random
variable theory, was implemented in various problems of interest. The spatial variability in
the real field conditions was simulated by constructing a variogram, and an unbiased

estimator kriging was applied for estimations.
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Chapter 3
Formulation of Framework for Spatial Variability Analysis in
Geotechnical Engineering
3.1 Introduction

Predictions in geotechnical engineering at unsampled locations are often based
on univariate statistics, such as finding the expected value of all the observations and
evaluating the distribution of its properties. The predictions obtained from the univariate
statistics are highly sensitive due to its inability to capture the spatial variability that is
distributed over the entire area. In this research study, geostatistics was used to
incorporate the spatial variability present into the soil properties for prediction analysis.

In order for the predictions to be unbiased, with minimum error, certain steps had
to be taken to ensure accurate simulation of the real field conditions. Any deviations or
violations of the assumptions of the test procedures would lead to unrealistic results. In
the current study, a framework was developed, using both the univariate statistics and
geostatistics, so that the spatial variability present in the soil properties was incorporated
into the prediction analysis. This chapter provides a detailed discussion of every step that
is required to incorporate spatial variability into prediction analysis.

3.2 Data Acquisition

Data acquisition is the primary step in any engineering analysis. The type of data,
quality of data, and quantity of the data play an important role in prediction analysis. In
geotechnical engineering, type of data refers to the raw data obtained from the field, such
as shear strength interpretations from field vane shear test or the data obtained from the
laboratory studies. The geostatistical modeling, when conducted using field data, would
give more accurate results when compared to the data obtained using empirical

correlations. This could be due to the uncertainties involved with the model, in situ
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measurement error, or calibration error. With the amount of uncertainty, the quality of
data gets affected, resulting in misleading predictions. Another important parameter that
affects the predictions is the quantity of data. A huge amount of data is usually more
desirable, as it allows more accurate simulation of the real field conditions. With a
minimum number of observations, the risk associated with the predictions usually
increases.
3.2.1 Data Organization

Once the data is collected from the field or developed using empirical correlation,
the next important step is to organize the data. In order to perform geostatistical
modelling, the data should be organized in the Cartesian coordinate system. The x, y of
the Cartesian system represents the spatial location of a particular data point in space;
whereas, z represents the value of the variable of interest. Since geostatistics depend on
the separation distance of the data points rather than location, the position of the data
point can be given to our own individual coordinate system rather than depending on
east, west, north or south or latitude and longitude. With the defined coordinates of the
data points, the data is further used for univariate statistics and geostatistical modelling,
as explained in the later sections.

3.3 Statistical Analysis

The statistical analysis of the data gives a fair understanding of the distribution of
the data, which governs the type of statistical tests to be adopted. Even though the
univariate statistics can’t incorporate the spatial variability present into the soil properties,
it helps in conducting several checks, such as constant mean value, constant variance,

and Gaussian distribution of the data.
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3.3.1 Histograms

Histograms provide a basic idea about the dispersion in the geotechnical data. A
histogram is a statistical tool, which provides a graphical representation of the distribution
of the data. Histograms are a plot of the frequency of the data against the class interval,
as shown in Figure 3.1. The height of each bin represents the number of observations
that fall in that particular bin size. The histogram plots are sensitive to the bin size and
number of bins selected. A proper selection of bin size provides a histogram, where the

frequency distribution of a continuous set of data and skewness of the data can be
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Figure 3-1 Plot of Histogram

In this research study, histograms were plotted to observe the distribution of the

data and skewness present in the data. The skewness present in the data directly affects
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the predictions analysis performed using geostatistics. The ideal condition, for the most
accurate predictions with minimum error, results when the skewness is equal to zero. The
number of class interval (Cl) for plotting the histogram is found using Sturges (1926)
Equation 3.1.

No.of Class Intervals = 1+ 3.3log,o N (3.1)

Where, N is the total number of observations in the data set

Once the class interval (Cl) is determined, the bin size is found by using Equation 3.2.
The bin size obtained can be rounded off to the nearest decimal point while plotting the
histogram.

L Maximum Value—Minimum Value
Bin Size = (3.2)
Number of Class Intervals

3.3.2 Check for Normal Distribution of Data

Soils are formed due to natural geological processes; consequently, the
distribution of the soil properties can vary from location to location. As most of the
statistical tests are based on normal distribution, the soil properties, should be checked
for having normal distribution of the data.

Statistical models are composed of a systematic component such as trend
(deterministic or structural) and a random component (error) to capture the natural
variation (Montgomery, 2010). Based on the central limit theorem, the random error
component is normally distributed with mean value, y and a standard deviation, 0. The
data is said to be normally distributed if the probability of any random variable falls in real
limits under the proper bell-shaped curve, with either of its ends approaching zero. The
most desirable condition for conventional statistical analysis of a random variable is the

when the data is normally distributed. Clark and Harper (2002), in their research study,
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stated that the violation of normality affects the spatial correlation of the random variable
and further impacts the final outcome of the predictions.

In this research study, the soil property under study was checked for the
normality assumption. Histogram plots are the simplest way to check for normal
distribution of the data; however, because of their sensitivity to the number of class
intervals and bin size, they were not employed. Normal-Quantile plot (n-q plot) and
Shapiro-Wilk test are two strong tests, among many, that were used in this study to check
the normality of the data.
3.3.2.1 Normal — Quantile plot (n-q plot)

Normal-Quantile (n-q) plot is the most commonly-used graphical tool to assess
how well the data fits the normal distribution. In an n-q plot, quantile values of a
theoretical distribution are plotted against the normal values from the data set, as shown
in Figure 3.2. Initially, the normal values for which the test was being performed were
arranged in the ascending order. The ranks for all the values were assigned in the
increasing order starting with 1. The rank proportion or theoretical quantile value was
calculated for each value using below Equation 3.3.

i—0.5
N

q~ (3.3)

Where, i is the rank of the observation
N is the total number of observations
The z-values or z-scores for all the theoretical quantile values were obtained using the
normality tables. The obtained z-values, which are theoretical quantile values, were
plotted against the normal values. Thereafter, the aim was to make a judgment as to
whether the actual values were normally distributed. If this was the case, then the plotted

points would create a straight diagonal line. Any systematic deviations from a straight
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line, other than natural random fluctuations, suggest that the data cannot be considered
to be normally distributed. Since, it is not always practically possible to obtain a straight
line, the best fit line linear straight line is drawn for the plotted data. The coefficient of
determination (R®), which determines how well the data fits a statistical model, was

determined using the equation below.

SS.
R2 = —Tes (3.4)
SStot

Where, SS, is called residual sum of squares
SSiotal is called total sum of squares
An assumption was made in this research, that if the R* value was greater than 80%, the

data was assumed to be in good fit with the normal distribution.
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Figure 3-2 Normal-Quantile plot (n-q)
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3.3.2.2 Shapiro-Wilk Test

The Shapiro-Wilk test is the most appropriate statistical test for evaluating the
normal distribution of the data. It was developed by Samuel Sanford Shapiro and Martin
Wilk in the year 1965. The test is based on the hypothesis testing that the sample data is
normally distributed. The detailed statistical procedure involved in developing the test is
given in the paper by Shapiro and Wilk (1965). The test statistic developed for verifying

the null hypothesis, i.e., whether data is normally distributed, is given below.

b2
W= (3.5)
Where, b = Z?ﬁ a;i(Xpp1-i — Xi) (3.5a)
§S = I — %)? (3.5b)

x; is the ith order statistic

x is the sample mean of the data

n is the number of observations

a; is the weight for individual observation
In this research study, the Shapiro-Wilk test, along with normal quantile plots, was used
for evaluating the normality of the geotechnical data of interest. Once the test statistic
was calculated, the corresponding P-value was obtained, which is the probability that the
sample average will take on a value that is at least as extreme as the observed value
when the null hypothesis Hy is true. If the p-value calculated for the above statistic is less
than the significance level (a-level), then the null hypothesis is rejected, concluding that
the data is normally distributed. If the p-value obtained is greater than the test statistics, it
is concluded that there is not enough evidence to assess the distribution of the data. In

this study, the significance level chosen for this statistical test is 0.05.
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3.4 Stationarity in Data

Stationarity in geotechnical engineering is referred to as statistical homogeneity
in soil parameters (Baecher and Christian, 2003). In an economic time series, stationarity
is defined as the quality of a process in which the statistical parameters, such as mean
and variance, do not change with the time (Challis and Kitney, 1991). In geostatistics, the
stationarity refers to the data having same joint probability distribution over the space with
constant mean and variance values. All pairs of random variables that are separated by a
distance h depend upon the lag distance, but not on their location (Isaaks and Srivastava,
1989).

The stationarity is divided into two categories :strongly stationary process and
intrinsic stationary process. The strongly stationary process, or truly stationary process, is
called when all the higher-order moments are constant, including the variance and mean.
In general terms, strongly stationary data can be described as data sets that have same
constant mean, constant variance, and equal probability distribution. The intrinsic
stationary process, or weak stationary process, refers to the data having a constant mean
and variance throughout the space.

The geostatistical methods are optimal when the data is normally distributed and
stationary (mean, variance, and joint probability distribution) do not vary significantly in
space. The truly stationary processes are mainly theoretical and are discussed only for
their mathematical properties, which are difficult to apply to practical problems. However,
the intrinsic stationary has to be satisfied in order to conduct geostatistical analysis. Cuba
et al (2011) discussed the various scenarios of the data with constant and varying

statistical parameters.
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Figure 3-3 Schematic 1D Gaussian Environments by Miguel, Oy & Julian (2011)

The above Figure 3-3 provides various scenarios of the data distribution with: (a)
constant local mean and local variance; (b) linear mean trend and constant variance; (c)
two sub-regions of constant local variance, but different local means; (d) two regions of
constant local mean, but different local variance with a transition zone; (e) two sub-
regions of different local means and different local variances; (f) two regions of different
local means and different variances with transition zone.

In this research study, the stationarity of the data was checked using different
approaches. The basic and simplest way to check for stationarity is through the

histograms. If the histograms are skewed to one side, it clearly depicts that the data does
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not have a constant mean. However, as discussed in earlier sections, the histogram plot
changes with the change in bin size and number of class intervals. Another standard
procedure is to detect the stationarity through the experimental variogram. If the
experimental variogram values continue to increase beyond the priori variance of the
sample data set without reaching a sill, the data can be concluded as non-stationary. In
this section, the intrinsic stationary process, i.e., constant mean and variance was
checked using univariate statistics. In order to supplement this check, the stationary was
also verified in the later sections by using experimental variogram.
3.4.1 Check for Stationarity in Data Using Univariate Statistics

In order to perform geostatistical analysis, the preliminary step is to check
whether the data is stationarity or non-stationary. In this study, two statistical approaches,
analysis of variance (ANOVA) and Bartlett’s test, were employed to check for stationarity
(constant mean and constant variance) in the data.
3.4.1.1 Check for Constant Mean using ANOVA

Analysis of variance (ANOVA) is a statistical test procedure developed by R.A.
Fisher to analyze the difference in group means. In this research study, this test was
used to evaluate the stationarity present in the data by testing whether the mean was
constant in all the treatments/sections under consideration. This was accomplished by
developing a statistical hypothesis, as shown below.

Null hypothesis: Hy: u4 = P2 = M3 = Mg ... Mn

Alternative hypothesis: H4: At least one mean is different
The difference in the mean values, or the variability present in the data values, was
attributed to different sources of variations, such as variability within the treatments or
variability between the treatments (Montgomery et al. 2010). The variability between the

treatments is obtained through treatment sum of squares (SSteatment), @and variability
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within the treatments is obtained by the error sum of squares (SSe). Therefore the total
variability i.e., total sum of squares (SStqa) Will be equal to the treatment sum of squares

and error sum of squares.
SStotal = SStreatment * SSgrror (3.6)
Where, SStotar = Z;-l:lZ}‘:l(yij — 37")2 = total sum of squares (3.6a)
SStreatment = N 21 (1. — ¥.)? = treatment sum of squares (3.6b)
SSerror = Z?=12?=1(yij — }71.)2 = error sum of squares (3.6¢)

Once the variability in the groups and between the groups is assessed the
hypothesis is tested using the statistics below. The detailed procedure of developing the

test statistic (F) is discussed in design and analysis of experiments text books.

_ MStreatments (3.7)
0 - .
MSError
ss
Where, MS;eqtments = % = Treatment Mean Square (3.7a)
ss
MSgyror = —29 = Error Mean square (3.7b)

a(n-1)

The test statistic (Fo) is compared to the critical value obtained from a f-
distribution table with (a -1) and (N — a) degrees of freedom. We reject the null hypothesis
(Ho) that if the test statistic (Fy) is greater than F, ,.1 n.a, the means are not equal in at
least one section. Tables 3-1 and 3-2 show the typical data arrangement for a single

factor ANOVA experiment and a summary of ANOVA test results.
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Table 3-1 Typical data for single-factor ANOVA experiment

Treatment Observations Totals | Averages
1 Y1 | Ya2 Yin | Y1 Vi,
2 Ya1 | Y22 Yon | Y2 Ya.
A Ya1 Ya2 Yan Yn. ya.
Y. Y.

Table 3-2 ANOVA for a single factor experiment, random effects model

Source of Sum of Degrees of Mean Square Fo
Variation Squares (SS) | Freedom )DF) (MS)
Treatments SSreatmentes a-1 MStreatments | MStreatments/MSE
Error SSe a(n-1) MSe
Total SSy an-1

Where a = number of different levels of a single factor

n = number of observations in respective treatment

N = Total number of observations

3.4.1.1.1 Model Adequacy check

The main underlying assumption in the ANOVA method is that the residual errors (e;) are

normally and independently distributed, and variance in all residual is structureless; that

is, it should contain no obvious pattern.

Where, e; is the residual error

€ij = Vij —
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y; is the observation in the ith treatment and jth row

y i is an estimate of the corresponding observation y;
3.4.1.2 Check for Constant Variance using Bartlett’s test

Bartlett’'s test is a statistical test procedure named after Maurice Stevenson
Bartlett to analyze ‘k’ samples from a population having equal variances or not. As a part
of the stationary requirement, in this research study, this test was used to evaluate the
constant variance present in the data in all the treatments/sections under consideration.
This was accomplished by developing a statistical hypothesis, as shown below.

Null hypothesis: Ho: 01 = 0,° = 03° = 04°....... On

Alternative hypothesis: H4: At least one variance is different
The basic procedure involved in Bartlett’s test is computing a test statistic whose sample
distribution can be approximated using a chi - square distribution with a-1 degrees of

freedom. The test statistic is

¥2 =2.3026 % (3.9)

Where, g = (N —a) log;oSZ — X (n; — 1) logy S7 (3.92)
c=1+ ﬁ L (-1t = (N—a)™) (3.9b)

Sp = Zazl(,:—__al)sz (3.9¢)

S? is the sample variance of the ith population

From the above statistic, it can be observed that the quantity q is large when the sample
variances have high variability, and q is zero if the sample variances are equal.
Therefore, the null hypothesis (Hp) shall be rejected when Xy > X2a, a1, concluding that

the variances are not equal.
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3.5 Non-Stationary Data

The condition of stationarity in geotechnical engineering, which is when the soil
properties have constant mean and variance at all locations, may not be applicable to all
conditions. In such cases, the soil properties are said to be non-stationary in nature. It is
extremely important to identify non-stationary behavior in soil parameters before
performing geostatistical analysis. Non-stationarity refers to the data having locally
varying means, variances, and covariance within the same population. Non-stationary
data are unpredictable and cannot be modeled or forecasted. For geostatistics, the basic
assumption is that the data is stationary.

In order to get reliable predictions in geotechnical engineering, the non-stationary
data needs to be transformed to stationary data, using appropriate transformation
methods. Before applying the transformation, it is important to identify different types of
non-stationary processes present in the data. Figure 3-4 below shows the different types
of non-stationary processes such as pure random walk; random walk with drift; trends
(trends can be constant, positive or negative, independent of location); and a combination

of any two that can present in the data.

Trend + Cycle

Random wak

Figure 3-4 Different non-stationary processes (Investopedia.com)
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3.5.1 Random Walk
Random walk refers to the arbitrary variation in the data when compared to the
mean or previous value. The random walk can be sub-divided into two categories: pure
random walk and random walk with a drift. Below are the two equations for random walk
that explain the value at any location, with and without drift.
Pure RandomWalk : Y, = Y, + & (3.10)
Random Walk with drift: Y, = a + Y,_; + & (3.11)
Where, ¢, is the stochastic component
a is the drift
Y. is the value at time t
Y1 is the value at time t-1
In pure random walk, the value at any location (Y;) is equal to the previous value (Y,)
plus a stochastic (non-systematic) component (g;). Whereas, if the random walk is
associated with the drift, the value at any location is governed by a constant or drift value
(a), along with previous value and stochastic component.
3.5.2 Trend
The trend can be defined as low-frequency, large-scale variations (Olea, 1991;
Cuba et al. 2011). In geostatistics, the trend refers to variation in the local mean and local
variance. In the time series, the trend is given by the following equations:
Deterministic Trend : Y, = a + St + ¢ (3.12)
Random Walk with Drift and Deterministic Trend: Y; = a + Y;_; + St + & (3.13)
Where, Bt is deterministic trend
In the deterministic trend, the value at any location is influenced by the stochastic
component (local variation), drift, and the trend pattern of the data. In geostatistics, the

trend present in the data develops a bad correlation between the variable values when

71



separated by large-lag distances. The trends present in the data can be identified by
plotting the semi-variogram. If the empirical semi-variogram values continue to increase
beyond the priori variance or global variance without reaching a sill, this often indicates
that the spatial trend is present in the data.

Cuba et al (2011) presented the experimental semi-variogram plots, through
which various trends that could present in the spatial data can be identified. Figure 3-5
shows the different conditions for the trends in the data by Cuba et al (2011). Figure 3-
5(a) displays a condition where the semi-variogram values are below the priori variance,
or global variance, reflecting no trend present in the data. In Figure 3-5(b), the semi-
variogram values follow a linear trend from the origin and continue to increase linearly
beyond the priori variance value. This linear increase, beyond the priori variance, reflects
the linear trend present in the spatial data. Similarly, Figures 3-5 (c) and (d) reflect the
parabolic and variance trend, where the semi-variogram values increase beyond the

priori variance, reflecting the parabolic and variance trend present in the spatial data.
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Figure 3-5 Trends present in the data by Miguel et al (2011)
3.6 Non-Stationary Data to Stationary Data

In order to perform geostatistical analysis, the primary requirement is to have
stationary data. However, the heterogeneous soils are highly variable, with varying
properties along the subsurface profile. This brings a limitation for applying geostatistics
to the geotechnical engineering field. In such cases, one approach is to apply
transformations to the data, so that the data behave close to stationary condition.
3.6.1 Transformations

Transforming geotechnical data is expressing the data in a different function. For

example, the effective stress in a consolidation curve is represented on a logarithmic
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scale instead of using a normal scale. Even though it is expressed in logarithmic function,
the inherent meaning does not change, i.e., void ratio is dependent on the vertical stress.

Transformations play a vital role in mathematical and statistical analysis. As the
name suggests, transformations are merely the expressions of the data in different forms.
By transforming the data, many underlying assumptions of the statistical tests can be
satisfied. The key for transformations is to use the right function. For example, by using
the square root function, the upper bound of the data can be reduced more than the
lower-bound data.

Howell (2007), in his study, suggested that the transformed data and the
untransformed data should not differ in their basic assumptions about the data.
Tabachick and Fidell (2007) provided the guidelines for selection of appropriate
transformation methods based on the skewness present in the data.

Table 3-3 Transformation Method Guidelines by Tabachick and Fidell

Skewness in data Transformation method

Square- Root
Moderately positive skewness

y = SQRT (Y)
Logarithmic
Substantially positive skewness
y =Log 10 (Y)
Substantially positive skewness (with zero Logarithmic
values) y=Log 10 (Y +C)

Square-Root
Moderately negative skewness
y = SQRT (K-Y)

Logarithmic (Log 1o)
Substantially negative skewness
y = Logqo(K-Y)

*Where C and K are constants, y is the transformed value
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In this research study, transformations were performed to stabilize the variance
in the ANOVA test and to convert the non-stationary data to stationary. Instead of using
the empirical methods to select the appropriate transformation, a more formal statistical
approach was employed.
3.6.1.1 Box- Cox Transformation

Douglas (2009) stated that the power family of transformations (i.e., y = y") are
extremely useful in stabilizing the variance, making the distribution normal and improving
the fit of the model. Box-Cox (1964) is a statistical test procedure used in selecting the
parameter ‘N’ along with other model parameters, such as overall mean and treatment
effects. The maximum likelihood estimate of A is the value at which the error sum of
squares is minimum. This is usually found by plotting a graph for the error sum of
squares for different values of A. In order to plot that graph, the data has to be
transformed for different values of A, using the equations below. Each value of A

produces a different set of data for which the error sum of squares is obtained.

y*-1 0
y(l) = AyA-1 (3.14)
yIny A=0

Where, y = In"1[(1/n) Y Iny] is the geometric mean of the observations

In this research study, the Box-Cox procedure was utilized to select the appropriate
transformation. The selected transformation was adopted for stabilizing the variance
present in the data and to convert the non-stationary data into stationary.
3.6.2 Detrending

Detrending refers to a mathematical technique for removing a trend present in
the data. The geotechnical models are often described as function of linear or non-linear
trends, such as exponential power. These trends provide biased predictions, which affect

the predictions at unsampled locations. The trends in the geotechnical data can be
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identified by constructing an experimental variogram plot, as shown in Figure 3-5. Once
the trend in the spatial data is determined, a trend surface is fitted using the least squares
method. The trend surface values are subtracted from the original data, resulting in the
residual values. These residual values are the detrended data that is used for
geostatistical analysis. Kitanidis (1994) presented the equations that are used for
detrending the data.

Linear Detrending: Z,,.,, = Z — [AX + BY + (] (3.15)

Quadratic Detrending: Z,,.,, = Z — [AX? + BY? + CXY + DX + EY + F] (3.16)
Where A, B, C, D, E, F are the constants and X, Y are spatial coordinates of the Z-value
Parabolic Detrending: Z,., = Z — [Ag + A X + AY + A3;X? + A, XY + AsY?] by Vieira
(2010) (3.17)
Where Aq, Ao, Ao, Ag, Ag are constants and X, Y are spatial coordinates of the Z-value

3.7 Spatial Variability Analysis

The variability present in the geotechnical data with spatial distance is referred
to as spatial variability. Spatial continuity is an important characteristic of geostatistics,
through which the spatial variability in the data is captured. The three functions that are
used to describe the spatial variability are covariance function, correlation function, or
correlogram and semi-variance function or variogram.

In the time series or temporal analysis, the correlogram and covariance functions
are often used. In geostatistics, semivariogram is the most commonly used tool to
describe the spatial variability present in the variable of interest. The primary reason for
using the variogram is because of its ability to filter the influence of spatially varying
mean. Also, the second-order stationarity shall be satisfied when using the covariance

function or correlation function, which is sometimes highly impractical to satisfy. Where
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else, the variogram works well with the data that satisfies the basic intrinsic stationarity
(constant mean, variance, joint probability distribution).

In this research study, variogram, a geostatistics tool is used to find the spatial
variability of the soil properties. The captured spatial variability was incorporated into the
prediction analysis through a stochastic interpretation tool called Kriging. Once the
collected data was checked for Gaussian distribution, stationarity, and any trend in the
data, it could be further used for spatial variability analysis. In this study, Surfer, a
commercially available software was utilized for spatial variability modelling and
prediction analysis.

3.7.1 Experimental Variogram

Variogram is defined as the average of the squared difference of the random

variable for different lag distances. The mathematical definition of the variogram or

semivariogram is

1

2n(h) Z?ﬁ’f)[Z(xi + h) —z(x))? (3.18)

y(h) =

Where, z(x;) = measurement taken at a location x; ;
z(x; + h) = measurement taken at a location h distance away;
n(h) = number of data pairs h units apart in the direction of the vector
h = lag distance
y(h) = variogram value
From the above equation, it can be clearly understood that the variogram value
depends on the separation distance/lag distance (h) and on the number of data pairs.
However, the number of pairs and separation distance are interrelated, which influences

the variogram value. With the given number of observations, the number of pairs can be

77



computed using Equation 3-19. For example, if there are 30 observations with a distance
of 3 meters apart, then 435 pairs can be formed using those 30 observations.

Number of pairs =n (n — 1)/2 (3.19)
Where, n is the number of observations in a sample data.

The type of grid selected for constructing the variogram influences the number of
pairs. In Surfer software, the variogram grid is divided based on the maximum lag
distance, radial, and angular divisions, as shown in the Figure 3-6. The maximum lag
distance governs the maximum spatial continuity that a variogram can capture. The
angular division specifies the number of divisions that is made by the spokes in the
variogram grid. The number of radial divisions specifies the area that is divided into a
number of concentric circles. The angular divisions of 180 and radial divisions of 100

usually meet the requirements for almost any project due to its broad spectrum of layout.

New Variogram (7 ]=S
| Data | General
Wariogram Grid

Max Lag Distance: 3.8

Angular Divisions: 180 =

Radial Divisions: 100

Detrend
@ Do not detrend the data
Linear: Znew = Z-[AX +BY +C]
Quadratic: Znew = Z -[Ax¢+ BY? + CXY + DX +EY + F ]

Generate Report

[ ok ][ cancl

Figure 3-6 Grid Selection for constructing experimental variogram (surfer)
The Surfer software pre-calculates all the pairs based on the number of observations,

and stores the information in the selected grid. Apart of the grid selected, the three most

78



important factors that heavily influence the variogram plot are lag distance, lag direction,
and lag tolerance.
3.7.1.1 Lag distance (h)

Lag distance, or separation distance, refers to the distance between the two pairs
of random variables. The mathematical equation for a variogram clearly indicates that as
the lag distance increases, the corresponding number of pairs can increase or decrease
and significantly influence variogram value. However, there are no standard procedures
or rules employed for selecting the lag distance. In this research study, a trial and error
procedure was adopted for selecting the lag distance. The lag distance that produced a
minimum number of 30 pairs was selected as the desirable lag distance for the
construction of a variogram. As an initial estimate, the minimum distance between two
bore holes, or the distance between two test locations, can be given as the lag distance.
3.7.1.2 Lag Direction

Lag direction is another important factor that influences the variogram value and
variogram plot. Lag direction signifies the direction in which the variogram should be
constructed. For example, the direction of zero degrees (0°) indicates the pairs that are
separated in x-direction, and direction of ninety degrees (900) indicates the pairs that are
separated in y-direction. In geotechnical engineering, the lag direction plays an important
role. Through the lag direction, the horizontal and vertical variability in the soil properties
can be modelled. In this research study, the variograms were constructed for different

directions to capture the spatial variability in all the directions, as shown in Figure 3-7.
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t i i i
Figur.; 3-7 Directional variogram's_: starting from left 0’, 30, 6_0 90, 120°,750°
(surfer software)

3.7.1.3 Lag Tolerance

Lag tolerance refers to the directional tolerance that needs to be considered for
the construction of an experimental variogram. By incorporating the tolerance value, the
nearby pairs of the random variables are also considered for the construction of the
experimental variogram. For example, 0 (direction) + 45’ (tolerance) considers all the
random variable values that are placed at 45 in the x-direction, along with variables that
are placed in 0 direction. The directional tolerance specifies the size of the angular
window for the experimental variogram. The angular window can be given as:

Direction — Tolerance < Angle < Direction + Tolerance

In this research study, the experimental variograms were constructed for different
directions, such as 0°, 30°, 45", 60, 90°". For every directional variogram, the tolerance
limits were given from 0” to 90°.
3.7.2 Variogram Modeling

The important properties of the variogram, which define the spatial variability or
spatial continuity present in the variable of interest, are range, sill, and nugget. These
three properties affect the predictions performed, using geostatistical analysis. In order to

model these properties, various standard variogram models should be used. Most of the

standard variogram models are based on the assumption that the experimental
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variogram will reach the sill value after certain lag distance. The global variance of the
observations in a sample is an estimate of the sill value (David, 1977; Journel and
Huijbregts, 1978). The distance at which the variogram value reaches sill value is called
range, which indicates the spatial correlation of the random variables until that distance.
Below are some standard models that are used to model a variogram with a sill.
3.7.2.1 Nugget Model
Nugget model, or nugget effect, is used to model the discontinuity at the origin.
Strictly, the variogram value should be equal to zero when the lag distance is zero;
however, due to small-scale variations and measurement variability, there will be specific
variogram value at h = 0.
y(h) =nC, ,whenh =0 (3.20)
Where, y(h) is the variogram value
h is the lag distance
C, is the Nugget
3.7.2.2 Linear Model
A simple linear model is the basic model to depict the spatial variability. In the
linear variogram model, the variogram value increases linearly from the origin and
reaches a constant value at the sill. Its variogram function is given by:
y(h) =0,whenh =0 (3.21)
y(h) = nCy + ph, when h >0 (3.21a)
Where, y(h) is the variogram value
h is the lag distance
C, is the Nugget

P is the slope of the line
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3.7.2.3 Spherical Model
Spherical model is another standard model used to capture the spatial variability
present in the variable of interest. The spherical model increases linearly from origin and
reaches the sill value with the normal transition. The spherical variogram function is given
by:
y(h) =0,whenh=0 (3.22)

3
y(h) = Co+C |5~ -] wheno<h<a (3.22a)

Where, y(h) is the variogram value; h is the lag distance; Cq is the Nugget; C is the scale
of the variogram; a is the range of the variogram
3.7.2.4 Exponential Model

Exponential model is modelled using a specific function where the model reaches
the sill asymptotically. Theoretically, the exponential model never reaches the sill value.
However, the range using exponential model is defined as the lag at which the
exponential variogram function reaches 95% of the sill value. The exponential function is
given by:

y(h) =0,whenh =0 (3.23)

y(h) = Cy +C [1 —exp (— g)] when h > 0 (3.23a)

Where, y(h) is the variogram value; h is the lag distance; Cq is the Nugget; C is the scale
of the variogram;

a is the range of the variogram
3.7.2.5 Gaussian Model

Gaussian Model is similar to the exponential model, where the model reaches
the sill asymptotically. The Gaussian model represents smoothly varying properties at the

origin, with parabolic behavior at the origin. However, when the Gaussian model is used
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without nugget effect, it can lead to numerical instabilities. The Gaussian function is given
by:
y(h) =0,whenh=0 (3.24)
y(h) = Gy +C [1 —exp (— Z—z)] when h > 0 (3.24a)
Where, y(h) is the variogram value; h is the lag distance; C, is the Nugget; C is the scale
of the variogram; a is the range of the variogram
In this research study, all the experimental variograms were modelled using
standard variogram models. All the models consisted of a finite sill, as shown in Figure 3-

8; however, in practice, the variogram values continued to increase beyond the sill value.

One has to be very careful, as every individual model presents different prediction values.

Exponential
Gaussian

Y(h)

2"/ Linear
ar" "~ Modified Linear
h h,
Figure 3-8 Variogram models (Jones et al., 2002)
3.7.2.6 Anisotropy

Anisotropy, by definition, refers to the soil properties in different directions. In
geostatistics, anisotropy refers to the different spatial correlation structure in different

directions. All the variogram models that were discussed in the earlier sections have
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assumed the same spatial correlation structure. However, in practice, the properties can
show the different spatial structure in different directions. One way to model anisotropy is
to use geometric anisotropy, where the variogram value reaches the same sill in all
directions. The most common approach to modelling geometric anisotropy is by finding
the ranges (a,, ay, a,) in three principal orthogonal directions and calculating the isotropic

lag distance using the equation below (Bohling, 2005):

h= JOu/a? + (hy/a,) + (h/a,) (3.25)
Where, h, is the lag distance in x- direction
h, is the lag distance in y- direction
h, is the lag distance in z- direction
ay, ay, a, are the ranges in three principal directions
In this research study, the Surfer software was used to construct an experimental
variogram and model the spatial variability. The geometric isotropy is a built-in option in
the software, and was used to incorporate the anisotropy while modelling the variogram.
3.7.3 Kriging Analysis
This research study is aimed at incorporating the spatial variability present in the
soil properties for prediction analysis. Surfer, commercially available software, was
utilized for performing the prediction analysis, using kriging. Kriging is an estimation
method that gives the best unbiased linear estimates to predict the values at unsampled
locations (Armstrong, 1994). This is because of its ability to reduce the error variance of
the predicted values.
Once the spatial variability is modelled using the accessible variogram models,
kriging analysis is then performed utilizing the surfer program. The output of the kriging

analysis is presented in the form of a contour map, where the estimates at unsampled
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locations can be found, using a digitizing method. Before performing the kriging analysis,
a grid should be created (this grid is different from the grid selected for constructing an

experimental variogram) in x-direction and y-direction, as shown below in Figure 3-9.

§ —
Grid Data - C:\Users\txb4184\Dropbox\Doctoral Project\Case Stud... -2 (IS

Data Columns (41 data points) E

X: | Column A v| [ Fiter Data... |
¥: Column B ] [ viewpata ]
z: [Column C v] [ staisics |  [@Gridreport
Gridding Method

(Kriging v| [Advanced Options....|  [Cross vaidate...
Output Grid File

C:\Users\txb4184\Dropbox\Doctoral Project\Case Study 3\Surfer Analysis\We¢ (2
Grid Line Geometry

Minimum Maximum Spacing # of Lines

X Direction:  -9664500 9617854 471.1717172 100

Y Direction: 3209010 3223934 466,375 33 =

Figure 3-9 Grid selection using Surfer software
The Surfer software provides an option for performing advanced kriging analysis
by incorporating the spatial variability model, as shown in Figure 3-10. If the model is not

selected, the kriging analysis will be performed based on the default linear variogram.

85



a8 - — I
Kriging Advanced Options s %
General [ Search | Breaklines |
Variogram Model
[Nugget Effect Emor=430, Micro=0
Exponential Scale=200, Length=50, Aniso=1, 0 _
Remove
Get Varogram...
Output Grid of Kriging Standard Deviations
=
Kriging Type: Drift Type: | None v
]
ok || Cancel || Aoply Help
» 14

I T T

Figure 3-10'S"e'leciti6n of Variog;'am Model using surfer software
3.7.8 Cross Validation

Cross validation is a validation technique used to assess efficacy of the models
developed using statistics. In geostatistics, cross validation refers to assessing and
evaluating the estimation methods used for prediction analysis. In this research study, a
cross validation exercise was performed to compare the true and estimated values, using
only the information available in our sample data set.

In order to perform the cross validation, a few observations were deleted from the
actual data set. Kriging analysis was performed using the new data set and contour maps
that were generated. The estimated values were compared to the true sample values that
were initially removed from the sample data set. A graphical plot was drawn to compare
the true and estimated values, as shown in Figure 3-11. These values were plotted
against the 45 degree line. If the true and estimated values are equal, the point will

exactly fall on the straight line. Any deviation from the 45 degree straight line reflects the
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error between the estimated and true value. Through this method, we can also judge

whether the kriging method overestimates or underestimates the data.
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Figure 3-11 Cross Validation plot

3.7.9 Formulated guideline for Spatial Variability Analysis

The formulated guideline for conducting spatial variability analysis on soil

properties is given below:
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Figure 3-12 Formulated flow chart for Spatial Variability Analysis
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3.8 Applications of spatial variability analysis flow chart
The spatial variability analysis flow chart provided earlier was utilized in this
research study to address the variability present in the geotechnical engineering projects.
The details of types of variability associated with soil properties are discussed in Chapter
2. However, the process of soil formation governs the variability present in the in-situ
soils. Therefore, in this research, the spatial variability analysis was performed on three

different types of materials which were formed under different conditions.

Types of Soils

v v K

Natural Man-made Natural soils with
Subsoils Soils chemicals

(clay, sand, mixed (treated/modified sulfate, chloride,
soils) soils) phosphate)

Figure 3-13 Types of materials associated with geotechntical engineering projects

The variability present in the natural soils is mainly governed by different
processes involved in soil formation. Due to different geological processes, the soils are
mostly heterogeneous in nature. The characterization of soil properties in heterogeneous
soil is difficult to ascertain over the entire area with limited borehole data. Through this
analysis, the spatial correlation of the known data can be established, using variograms.
The variogram models will be utilized along with kriging to predict the soil properties over
the entire area.

The man-made materials possess low variability when compared with the natural

heterogeneous soils. This is due to the control over the materials and constituents of the
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mixture. However, when the man-made materials are subjected to field conditions, it is
difficult to assess the properties with time. Through the developed framework analysis,
the spatial variability of in-situ properties can be modeled and the predictions can be
performed at untested locations. The framework developed can serve in this case as a
quality assurance and quality control tool.

The other application of this analysis is performed on the deposition of natural
mineral pockets. The natural deposition of the minerals is governed by several factors
such as subsurface conditions, ground water flow, and climatic conditions. With high
scale variability in proximate areas, engineers often face challenges. Through this
framework, the spatial variability in the mineral depositions can be captured, and the
spatial variability models will be utilized to evaluate the distribution of high density zones.

3.9 Summary

The incorporation of spatial variability in the prediction analysis is often
challenging in geotechnical engineering. In this chapter, a framework was developed to
incorporate the spatial variability of soil properties into prediction analysis. The framework
was developed by utilizing the concepts from univariate statistics and randomized
random variable theory. The framework was broadly divided into three steps:
geotechnical data collection, statistical analysis, and geostatistical analysis. The
geotechnical data was comprised of in-situ soil properties for three different types of
materials, as shown in Figure 3-13. The geostatistical analysis was performed using
commercially available Surfer software. Figure 3-12 represents the flowchart of the
analysis that was used in this study for developing spatial variability models and
performing prediction analysis using geostatistics. The developed framework is evaluated

and assessed in different geotechnical problems of interest in the following chapters.
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Chapter 4
Spatial Variability Analysis of Natural Soil Properties Evaluated from
Cone Penetration Test Data (Cptu)
4.1 Introduction

Cone penetration testing is the most extensively used test in geotechnical
engineering for evaluating the subsurface profile. From the day of its invention in the
1930’s to date, several types of cone penetrometers have been introduced (Mayne,
2007). Studies were conducted in developing correlations with the CPTU test
parameters: tip resistance, shaft resistance, and pore water pressure. In the recent
decade, researchers have focused on evaluating the variability of soil parameters
obtained from the CPTU test due to its continuous profiling.

Kulhawy and Trautmann (1996) signified the sources of variability in CPTU test
results where the type of cone (MCPTU or ECPTU) affects the test results significantly.
Orchant et al. (1988) and Kulhawy et al. (1996 provided the summary of inherent
measurement errors, with the CPTU test ranging from 5-25 (%) based upon the type of
CPTU test. Phoon et al. (1995) described the variability of CPTU test parameters using
coefficient of variation, where the tip resistance of a sandy soil varies from 10- 81
percent, silty clay layer from 5-40 percent and clayey soil from 2-17 percent.

Studies were conducted to address the variability in CPTU test parameters using
the scale of fluctuation. Hegazy et al. (1996) provided the spatial correlation in the CPTU
parameters using the auto-covariance distance (ry) for different types of soils, where the
maximum spatial correlation of tip resistance and sleeve friction is observed in the clayey
soils ranging from 3.05 to 4.57 m and minimum correlation distance in mixed soils
ranging from 0.34 t00.37m. So, the soil properties evaluated from the CPTU test results

are inconclusive due to the variability.
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In this research study, an attempt was made to incorporate the spatial variability
present into the soil properties evaluated from the CPTU test data. Since, strength
parameters of the soil layers govern the performance of a structure, spatial variability of a
strength parameter was evaluated in this study. The framework developed and described
in Chapter 3 was used to perform the spatial variability analysis, using univariate
statistics along with geostatistics.

4.2 Data Acquisition

Data collection is the primary step for any statistical analysis. In this study, the
CPTU test profiles were obtained from a soil exploration program conducted in China.
The cone penetration tests were conducted at different locations to study the subsurface
soils for the Sugian-Xinyi highway project. The layout of the CPTU bore hole locations

are presented in the Figure 4-1, and the basic information is summarized in Table 4-1.

K7+645 K7+665 K7+695 K7+730 K7+740
S N
«— —
Hole 1 (5 Hole 2 &) Hole 13 (5 Hole 11 (5 |
(Hole 15) (Hole4) (Hole7) (Hole 6) \Hole 17 1[ P
————————————————— Ctuterﬁnrof-Suqian-thyi-highmr'—-—'—-—'—-—'—-]—'—-—
Hole14 ()  Hole9 () Hole 12(™) i B 16C)—t e
i (Hole3) | (Hole 8) | (Hole 5) | i

Figure 4-1 Layout of CPTU soundings in Sugian-Xinyi highway

Table 4-1 Basic information of CPTU soundings in Sugian-Xinyi highway

No. Chainage Number | Penetration Depth (m)
Hole 1 K7+645 20.75
Hole 2 K7+665 21.00
Hole 9 K7+665 21.00
Hole 10 K7+730 20.00
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Table 4.1 - Continued

Hole 11 K7+730 19.00
Hole 12 K7+695 21.00
Hole 13 K7+695 21.25
Hole 14 K7+645 20.00
Hole 16 K7+740 20.00
Hole 17 K7+740 20.75

In total, the CPTU test was conducted at 10 different locations in an area of 3100
square feet. Basic soil classification was performed on all the CPTU test data, using the
Robertson et al. (1986) chart. The subsurface profile was predominantly composed of
silty sand layers with clay lenses. The idealized soil profiles for all the CPTU test data is
presented in Tables 4-2 to 4-12. The detailed CPTU profiles are provided in Appendix A.
In order to conduct spatial variability analysis, the friction angle parameter was selected
due to the dominance of silty sand layers throughout the subsurface profile.

Table 4-2 Idealized soil profile for CPTU data at bore hole-1

Cone Penetration Test at Hole 1 : k7+645
. Ti Friction

Layer Sail From | To Thlc(:rknn)ess Resistgnce Ratio
(MPa) (%)

1 SM- MS 0 2.2 2.2 3 1.5
2 MS-ML 2.2 5.2 3 1.9 0.9
3 MS-ML 5.2 8.3 3.1 4.4 1.2
4 SP-SM 8.3 10 1.7 7.8 14
5 SM- MS 10 11.6 1.6 5.3 1.4
6 SM-MS | 11.6 | 14.3 2.7 6.2 1.4
7 SP-SM 14.3 16 1.7 9.2 1.6
8 SM- MS 16 19 3 7.8 1.8
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Table 4-3 Idealized soil profile for CPTU data at bore hole-2

Cone Penetration Test at Hole 2 : k7+665

. Thickness .Tip Frictilon
Layer Saoll From To (m) resistance | Ratio
(MPa) (%)
1 SM-MS 0 1 1 1 1.8
2 Clay 1 14 0.4 1.1 4
3 SM-MS 1.4 4.6 3.2 4 1.1
4 SP-SM 4.6 7.6 3 7 1.1
5 MS-ML 7.6 9.6 2 3.5 2.8
6 SP-SM 9.6 11.8 2.2 6.5 1.2
7 SP-SM 11.8 21 9.2 9 1.3

Table 4-4 |dealized soil profile for CPTU data at bore hole-9

Cone Penetration Test at Hole 9 : k7+665

. Thickness _Tip Frictilon
Layer Soil From To (m) resistance | Ratio
(MPa) | (%)
1 ML 0 1.3 1.3 2.2 2.8
2 Clay/Org 1.3 1.6 0.3 0.3 13.5
3 ML 1.6 3 1.4 2.4 1.8
4 1 3 5 2 0.6 1.1
5 SM-MS 5 7.3 2.3 4.6 1.2
6 ML 7.3 11.6 4.3 2 1
7 SM-MS 11.6 21 9.4 3.8 1
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Table 4-5 |dealized soil profile for CPTU data at bore hole-10

Cone Penetration Test at Hole 10 : k7+730

. Thickness .Tip Frictilon
Layer Soil From To (m) resistance R?tlo
(MPa) (%)
1 SM-MS 0 1 1 3.5 1.6
2 SM-MS 1 25 1.5 6 1.2
3 SM-MS 25 4.1 1.6 3.6 1
4 ML 41 6.6 25 2 0.76
5 SM-MS 6.6 12.5 5.9 3.3 0.9
6 SM-MS 12.5 21 8.5 5.5 1.4

Table 4-6 Idealized soil profile for CPTU data at bore hole-11

Cone Penetration Test at Hole 11 : k7+730

Layer Saoil From To Thickness resil—’:gnce Frictilon
(m) (MPA) Ratio
1 SM-MS 0 5.2 5.2 4.5 1.3
2 SM-MS 5.2 7.4 2.2 5.4 1
3 SP-SM 7.4 9.2 1.8 8 1.1
4 Clay 9.2 9.7 1.3 1.2 2
5 SM-MS 9.7 20 10.3 8.5 1.5
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Table 4-7 Idealized soil profile for CPTU data at bore hole-12

Cone Penetration Test at Hole 12 : k7+695

Layer Sail From To Thickness resil—’:gnce Fricti.on
(m) (MPa) Ratio

1 SM-MS 0 0.5 0.5 6.4 1.6
2 ML 0.5 3.4 2.9 2.8 1.5
3 ML 3.4 6.5 3.1 1.9 0.7
4 SM-MS 6.5 10 3.5 4.6 1

5 SM-MS 10 12.2 2.2 2.6 0.9
6 SM-MS 12.2 21 8.8 5 1.2

Table 4-8 Idealized soil profile for CPTU data at bore hole-13

Cone Penetration Test at Hole 13 : k7+695

. Thickness .Tip Fricti.on
Layer Soil From To (m) resistance | Ratio
(MPa) | (%)
1 SM-MS 0 5.3 5.3 4 1.2
2 SP-SM 53 7.3 2 9.5 1
3 SM-MS 7.3 9.4 2.1 5.5 1.5
4 SM-MS 9.4 11.7 2.3 6.5 1.4
5 SM-MS 11.7 15.7 4 5.3 14
6 SP-SM 15.7 17.8 2.1 12 1.3
7 SM-MS 17.8 19.5 3.2 9 1.8
8 SM-MS 19.5 21 1.5 7.8 1.8
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Table 4-9 Idealized soil profile for CPTU data at bore hole-14

Cone Penetration Test at Hole 14 : k7+645

Thickness Tip Friction

Layer Saoil From To (m) resistance | Ratio
(MPa) (%)

1 ML 0 2 2 2.8 1.9
2 Clay 2 5.1 3.1 1.4 13
3 ML 51 8.2 3.1 3 1.7
4 SM-MS 8.2 9.6 1.4 5.4 1.3

5 SM-MS 9.6 11.5 1.9 5 1.5

Table 4-10 Idealized soil profile for CPTU data at bore hole-16

Cone Penetration Test at Hole 16 : k7+740

. Thickness _Tip Fricti.on
Layer Sail From To (m) resistance | Ratio
(MPa) (%)
1 SM-MS 0 1.9 1.9 4.9 1.2
2 SM-MS 1.9 3.5 1.6 5.2 1
3 Clay 3.5 6.1 2.6 3.3 2.8
4 Clay 6.1 8.2 21 0.4 26
5 SM-MS 8.2 10.8 26 5.8 1.1
6 SP-SM 10.8 21 10.2 6 0.9
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Table 4-11 Idealized soil profile for CPTU data at bore hole-17

Cone Penetration Test at Hole 17 : k7+740
. Tip Friction
Layer Sall From To Thickness resistance | Ratio
(m) (MPa) | (%)
1 SM-MS 0 2.5 2.5 5 1
2 ML 2.5 4.5 2 1.7 1.8
3 SM-MS 4.5 55 1 3.8 0.9
4 Clay 5.5 7.6 2.1 0.7 2.2
5 SM-MS 7.6 10.5 29 4.7 1.2
6 SP-SM 10.5 16.4 59 8 1
7 Clau 16.4 17.9 1.5 2.5 2.8
8 SP-SM 17.9 19.2 1.3 9.5 1.1

In order to perform spatial variability analysis of strength property, the friction
angle values were determined, using the expression proposed by Kulhawy and Mayne
(1990).

¢' = 17.6" + 11.0°X log(q.,) (4.1)
Where, q;1 is normalized tip resistance given by

Ge1r = (@e/0aem)/((050/ Tatm)®>) (4.2)
Where, 044, = 1 atm =1 bar = 100 kPa ~ 1 tsf ~ 14.7 psi
g, = effective vertical overburden stress at corresponding depth
Thus, the friction angle values for all the available test data were calculated using the
above expressions.
4.3 Data Organization

Due to the limitations involved in performing 3-dimensional variograms, only 5 of
10 bore holes were selected to analyze the spatial variability. The CPTU test data
obtained from bore holes 1, 2, 11, 13 and 17 were used. As mentioned in Chapter 3, the

data had to be organized in Cartesian coordinate system in order to perform spatial
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variability analysis. In order to assign coordinates to the data, certain assumptions were
made regarding the location of the bore holes. Bore hole 1 was assumed to be located at
the (5,0) in (x,y) coordinate, where 5 represents 5 meters in horizontal direction, and 0
represents depth of the subsurface in vertical direction. Corresponding coordinates for
bore hole 1 were obtained for rest of the bore holes. Figure 4-2 provides the schematic

representation and coordinates of the bore holes considered for analysis.

BH 1 BH 2 BH 13 BH 11 BH 17
1(5,0) (25,0) |(55.,0) (90,0) || (100,0)f:::
L G191 (25,21) || (85.21) (90.20)L__|" L

Figure 4-2 Bore hole layout with coordinates in Cartesian system

The friction angle values were calculated and represented in z-direction. For
example, a set of coordinates (5, 15, 35) represents a friction angle of 35 degrees at a
location 5 feet in horizontal direction and 10 feet in vertical direction. All the friction angle
values with their corresponding coordinates in the Cartesian system are provided in

Appendix A.
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4.4 Statistical Analysis

Statistical analysis involves evaluating the distribution of friction angle values and
checks, analyzing spatial variability in the data. The friction angle values were calculated
using Equation 4-1 for all the tip resistance values. However, it is cumbersome to involve
all the values to perform statistical tests; therefore, the random number generator tool
was utilized in this research to randomly select the values of the friction angle in all the
CPTU tests. The minimum and maximum values in a respective bore hole were given as
lower and upper bound to generate random numbers. The table below provides the
friction angle values generated using a random number generator that is used in
statistical analysis.

Table 4-12 Friction angle values generated using a random number generator

Bore

Hole Friction Angle (Degrees)

CPTU1 38 | 38 | 43 | 38 | 35 | 41 | 38 | 33 | 35 | 39

CPTU 2 20 | 41 | 42 | 38 | 34 | 33 | 41 | 44 | 42 | 44

CPTU 11 37 | 33 | 44 | 40 | 42 | 33 | 36 | 38 | 42 | 43

CPTU 13 29 | 42 | 33 |39 | 34 | 39 | 43 | 31 | 41 | 36

CPTU 17 46 | 30 | 43 | 31 | 36 | 46 | 33 | 38 | 36 | 39
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4.4.1 Histograms
Histograms are plotted to observe the distribution of the friction angle values and
skewness present in the data. The number of class intervals (Cl) for plotting the
histogram is found using Strugger’s equation

No.of Class Intervals = 1+ 3.3log;o N = 6.6

Where, N is the total number of observations in the data set = 50

The bin size is found out using below equation:

Maximum Value—Minimum Value _

Bin Size = Number of Class Intervals 35
24 28 32 36 40 44 48 52
25 — T T T T T T T T 25
| Number of Values: 50
Minimum Value : 27.9
Mean Value : 38.0
20 — Maximum Value : 46.9 — 20
Standard Deviation : 1.6
L. Variance : 2.6
Coefficient of Skewness: -0.12
15— —{15
1)
=
)
2 »
=3
p
%10 — 10
5 — 5
0 1 0
24 52

Friction Angle (Degrees)
Figure 4-3 Histogram for Friction Angle values
From the above histogram plot, it can be inferred that the friction angle values

are more or less distributed normally. The preliminary perspective of the distribution can
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be evaluated using Gaussian or normal distribution. The coefficient of skewness of the
friction angle values resulted in negative value, indicating that the data are skewed to one
side.
4.4.2 Check for Gaussian distribution

The earlier histogram plot provides a visual overview of the distribution of the
friction angle data. As most of the statistical tests rely on the normal distribution of the
data, in this section two different approaches were used to find the distribution of the
friction angle values.
4.4.2.1 Normal — Quantile plot

Normal-Quantile plots are the simplest way to evaluate how well the data fits a
Gaussian distribution. The normality values of all the friction angle values were calculated
using the expression stated in Chapter 3 and plotted against the corresponding friction
angle values. Figure 4-4 presents the normal-quantile plot for the friction angle values,
where the sample quantiles are plotted on the y-axis and theoretical quantile values are
plotted on x-axis. From the figure, it can be inferred that the values fall follows a straight
trend line. Using the regression approach, a best fit straight line was plotted for the data.
The coefficient of determination (r?), which determines the fit of a straight line to the data,
was observed at 0.85. The r? value obtained and the data points close to the straight line

depict that the values were normally distributed.
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Figure 4-4 Normal-Quantile for Friction Angle values
4.4.2.2 Shapiro-Wilk test
Shapiro-Wilk test is a more formal approach used to check for the Gaussian
distribution of the data. This test was conducted with a significance level alpha = 0.05. In
order to conduct this test a hypothesis was developed as shown below:
Hop : Sample data obtained from normally distributed population
H1 : Sample data not from a normally distributed population

The above hypothesis was tested using the statistic; W = b?/ SS.
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Below table summarizes the Shapiro-Wilk test results:

Table 4-13 Summary of Shapiro-Wilk test

Parameter Result

b’ 950.48

Sum of Squares (SS) 1002.72

Test Statistic (W = b*/SS) 0.947

P-value 0.08

Critical Region a=0.05
P- value from statistic > significance level

From the above test results, it is observed that the probability value of the data
was greater than the critical region. Hence, the null hypothesis could not be rejected,
concluding that the sample data was derived from normally distribution.

4.5 Check for Stationarity in the data

The stationarity is the data is evaluated by conducting two tests: one for checking
constant mean and another for checking constant variance in the data. As stated in
Chapter 3, these are evaluated using ANOVA method and Bartlett’s test.

4.5.1 Check for constant mean

The ANOVA test was used to check for constant mean in all the CPTU tests
conducted in bore holes 1, 2, 11, 13 and 17. This was evaluated by constructing a
hypothesis, as shown below:

Ho @ W1 = M2= Y11 = 13 = Pa7

H, : At least one mean is different
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The statistic that was used to evaluate the above hypothesis was F, which is the
ratio of mean square treatment to mean square error. This was compared with the value
at a significance level of 0.05. Table 4-14 below provides the summary of the ANOVA

test conducted for checking the constant mean in friction angle in all the bore holes.

Table 4-14 Summary of ANOVA results for checking constant mean

Analysis of Variance

?/C;L:ir;:?o?\f Sum of Squares DOF Mean Square Fo
Treatment 30.2 4 7.55 0.35
Error 971.8 45 21.60
Total 1002 49

From the above results, it can be inferred that the statistic was smaller than the
critical region. i.e., fy (0.35) < f.iical (2.57). Therefore, we did not reject the null hypothesis
developed, concluding that the means of friction angle was constant in all the data.
However to validate the conclusion, the assumptions of the model used to develop the
ANOVA test had to be satisfied.
4.5.1.1 Model Adequacy check

The ANOVA test was developed based on the assumption that the error residual
values were normally distributed and the residual variances in all the bore holes were
constant. The residuals were calculated using Equation 3.8. The fitted value in Equation
3.8 was obtained by determining the mean of the friction angle values in the individual
bore hole. Table 4.15 provides the residual values which were used for testing the model
adequacy of the ANOVA model. Figures 4.5 and 4.6 depict the plots for checking the

normality in the residual values and variance distribution.
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Table 4-15 Residual values for the friction angle values

Bore Residuals
hole 1 2 3 4 5 6 7 8 9 10
CPTU1 | 0.10 | 1.10 | 510 | 0.10 | -2.90 | 3.10 | 0.10 | -4.90 | -2.90 | 1.10
CPTU2 | -9.80 | 2.20 | 3.20 | -0.80 | -4.80 | -5.80 | 2.20 | 5.20 | 3.20 | 5.20
CPTU11 | -1.80 | -5.80 | 5.20 | 1.20 | 3.20 | -5.80 | -2.80 | -0.80 | 3.20 | 4.20
CPTU13 | -7.70 | 5.30 | -3.70 | 2.30 | -2.70 | 2.30 | 6.30 | -5.70 | 4.30 | -0.70
CPTU 17 | 8.20 | -7.80 | 5.20 | -6.80 | -1.80 | 8.20 | -4.80 | 0.20 | -1.80 | 1.20
12 8 0 8 12
3 1 I 1 1 I 1 1 I 1 3
B Normality Check for Residuals .
2+ —2
S — 1
o
3 F -
S
> 0 —o
=
© L -
£
o
z 1 Coefficient of —1 -1
determination, r2 = 0.97
2 — -2
[ ]
3 ] | ] ] | ] ] | ] 3
12 8 0 8 12
Residuals

Figure 4-5 Residual normality plot for model adequacy check
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From the above plot, it can be inferred that the residuals follow a straight line
trend, where the coefficient of determination of the best fit line is observed to be 0.97.

This depicts that the residual values are normally distributed.

35 36 37 38 39 40
12 I I I I I I I I I 12
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-4 [— A —1-4
Xk O
N A & .
X
-8 |- A X — -8
N & -
12 1 | 1 | 1 | 1 | 1 12
35 36 37 38 39 40

Fitted Values
Figure 4-6 Model Adequacy check for constant variance in residual values

From the visual inspection of the above plot, it can be inferred that the residual variance
in the friction angle values was constant. Thus, from the figures 4.5 and 4.6, the residual
values satisfies the model adequacy check, validating the conclusion obtained from the

ANOVA test.
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4.5.2 Check for Constant Variance
Bartlett’s test was used in evaluating the variation present in residual variance of
the friction angle values obtained from all the bore holes. This was performed by
developing a hypothesis, as shown below:
Ho : 021 = 022 = 0211 :0213 = 0217
H, : At least one variance is different
The hypothesis was evaluated using the statistic expressed in Equation 3.9. The
value obtained from the statistic was compared to a significance value 0.05. The
table below provides the summary of the results obtained from the Bartlett’s test.

Table 4-16 Summary of Bartlett’s test results

Parameter Result

Q 1.87

C 1.04

Test Statistic (x§ = 2.3026 7) 0.947

x§ = value 412

Critical Region 9.49
X7 (4.12) < X itical (9.49)

Based on the test results, it can be inferred that the statistic value was smaller

than the critical region, i.e., x2 (4.12) < X2 critical (9.49). Therefore, we do not reject the null

hypothesis developed, concluding the variances of friction angle were constant in all the

data.
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Therefore, based on the ANOVA test and Bartlett’s test, it was concluded that the friction
angle data was stationary, having constant mean and variance.
4.6 Geostatistical Analysis

After the statistical analysis and stationarity checks, spatial variability analysis
was performed on the friction angle data, as shown in the guideline presented in Chapter
3. In order to perform the spatial variability analysis, the Cartesian coordinate system was
given to all the friction angle values, as discussed in Section 4.3. The same coordinate
system was followed throughout the geostatistical variability analysis.
4.6.1 Experimental Variogram

Variograms or semi-variograms were used for capturing the spatial variability
present in the friction angle data. Figure 4-6 provides the experimental variogram plot for
the friction angle data, where lag distance values were plotted on x-axis and variogram
values were plotted on the y-axis. The variograms were calculated for different lag
distances and different lag widths. The maximum lag distance of 7m, with a lag width of
0.28m provided promising results. An effort was also made to capture the spatial
variability of the friction angle data, both horizontally and vertically. However, due to
constraints in the CPTU data, only the variability in the vertical direction was captured.

The variogram values for all the lag distances were calculated using Equation
3.8. The direction of 90 degrees in the experimental variogram plot in Figure 4-6 indicates
the variability captured in a vertical direction. A tolerance angle of 45 degrees was
provided for calculating the variogram values. The number beside every experimental
value indicates the number of pairs that was used to calculate the variogram value. The
dashed line in the plot indicates the global variance of the friction angle values. From the
plot it is evident, that the variogram values were around the global variance line,

indicating that the data was stationary and there were no trends present in the data.
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Figure 4-7 Experimental Variogram plot of friction angle data




4.6.2 Variogram Modelling of Friction Angle Data

From the experimental variogram plot in Figure 4-6, it can be observed that a
certain spatial correlation existed between the friction angle values. This spatial
correlation was depicted by modeling the characteristics of the variogram: range, sill, and
nugget. The variogram values appear to have a zero intercept, indicating there wasn’t
any nugget effect. From Figure 4-6, it is observed that the experimental variogram value
increased with an increase in lag distance.

The scale (C) or range (a) was used to model the spatial correlation distance,
where the variogram value increased linearly with an increase in lag value to a distance
of 0.86m. The effect of the range was observed from a distance of 2.58m (3a) to 4.3m
(5a). That means that no spatial correlation existed after the lag distance of 4.3m. The sill
indicates the vertical scale on the variogram plot, where the variogram value reached a
constant value. In this case, the sill of the variogram plot was observed to be 8.14. By
using these characteristics, the experimental variogram was modeled using an
exponential model.

Figure 4-7 presents the variogram model for the experimental variogram in
Figure 4-6. The blue line indicates the exponential model used to fit the experimental
variogram values obtained for a maximum lag distance of 7m. Since the subsurface
profile was mainly composed of silty sand layers, through this research, the spatial
correlation distance for a silty sand soils in vertical direction can be defined as 2.58m to

4.3m, using the range value.
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4.6.3 Kriging Analysis

Prediction of soil properties at unsampled locations is often challenging. In this
study, predictions of the friction angle values at unsampled locations were performed
using kriging analysis. The kriging analysis incorporates the spatial variability in the
available data, using the variogram model performed in the previous section. This model
was used to calculate the weights of the known values around the unknown values. The
output of the kriging analysis is provided in the form of contour maps, where all the
friction angle values over the entire area 10m X 95m are mapped. In order to perform
kriging analysis, the following grid was selected for plotting the contour map.

Table 4-17 Grid selected for Kriging analysis

Parameters selected

Maximum lag distance 7
Angular divisions 180
Radial divisions 100

Figure 4-8 provides the contour map of the friction angle values that were
obtained by performing kriging analysis. The x-axis on the contour map shows the
horizontal distance of the layout, and the y-axis depicts the depth of the subsurface
profile. It can be observed that the friction angle varies from 27 degrees to 48 degrees.
The top 0.5 to 1 meter of subsurface constitutes a friction angle value of 43 to 48
degrees, below which there existed a layer of 7 to 9.5 meters thick silty sand layer with a

friction angle of 6 to 39 degrees. This layer was followed by a thin clayey silt to silty sand
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layer for a thickness of 0.5 to 1 meter with a friction angle of 33 to 36 degrees, which is
underlain by a thick silty sand layer with a fiction angle value ranging from 35 to 37

degrees.
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Figure 4-9 Contour Map of Friction angle values obtained through kriging analysis



4.6.4 Cross Validation

A technique called cross validation was performed to validate the spatial
variability model. This technique involves the deletion of the actual values and performing
the kriging analysis to generate a new map over the entire area. The grid parameters
presented in Table 4-17 and the exponential variability model were used for performing
the kriging analysis.

In this study, 24 actual values chosen randomly were deleted from the original
data set. The new set of data was used to generate the contour map of friction angle
values, using the exponential model. Figure 4-9 represents the contour map of friction
angle generated by a new set of data. From the figure, it is evident that the new map and
original map depict almost the same range of friction angles over the depth of the
subsurface profile. The black rectangular boxes in Figure 4-9 represent the locations

where the actual values were deleted.
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Using the digitize tool available in the Surfer software, the precise value of the
friction angle was obtained at the deleted locations. Table 4-18 below provides the actual
values and predicted values from the cross-validation map.

Table 4-18 Comparison of friction angle values

Actual Predicted Actual Predicted
S.no S.no

Values Values Values Values
1 425 41.8 13 371 37.3
2 35.2 32.7 14 37.9 384
3 37.8 37.2 15 41.9 42.2
4 37.5 371 16 37.8 40.4
5 38.2 38.3 17 38.8 37.6
6 40.0 40.5 18 38.5 38.1
7 371 36.9 19 38.6 38.4
8 37.7 38.0 20 371 35.0
9 36.9 37.2 21 443 43.3
10 41.9 422 22 28.6 26.7
11 37.9 40.9 23 37.0 39.0
12 38.0 37.0 24 37.7 38.9

From the above table, it is evident that the predicted values were close to the
actual values. Figure 4-10 presents the validation plot for the friction angle values, where
actual values were plotted on x-axis and predicted values were plotted on y-axis. If both
the predicted and actual values are same, the point exactly falls on the 45 degree line. In

this case, all the 24 points were close to the 45 degree line and within 1 standard
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deviation. This concludes that the spatial variability model chosen was apt for this study,

and the spatial map generated using kriging analysis in Figure 4-8 was appropriate.
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Figure 4-11 Cross- Validation plot for actual and predicted friction angle values

In view of the results above, the spatial variability of the friction angle was further
used to optimize the number of bore holes. Considering the bore hole layout presented in
Figure 4-1, it can be observed that the CPTU test conducted in bore holes 11 and 17
were close to each other. Therefore, the kriging analysis was performed by deleting the
data obtained from CPTU test conducted in bore hole 11. Figure 4-11 presents a new
contour map generated by using the spatial variability model developed for silty sand

soils and the grid parameters that were presented in Table 4-17.
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The friction angle values at the bore hole 11 location were obtained from the
above map, using the digitize tool available in the Surfer software. The validation plots in
Figures 4-12 compare the predicted values to the original values. It was observed that
the predicted values were close to the 45 degree line, and most of the values were within
1 standard deviation. Also, it can be observed that the predicted values were a little lower

than the actual values, which is on the conservative side.
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4.7 Applications of the spatial variability model
In this section, a hypothetical example is provided where the spatial variability
analysis is conducted for the selection of friction angle value. Consider a footing with a
width of 10 meters, where the influence of the stress from the footing is distributed to a

depth of 20 meters. Since the soil is silty sand, the friction angle value governs the
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bearing capacity of the subsurface soil. Through the kriging analysis, the variation of
friction angle values to a depth of 20 meters is evaluated for both 2:1 stress distribution

and for an isobar of 0.1q.
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Figure 4-14 Friction Angle (Degrees) variation for 2:1 stress distribution

From the above chart, it can be observed that friction angle value varies from the 35.2 degrees to 42.6 degrees with a

standard deviation value of 0.9.
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From the above chart, it can be observed that friction angle value varies from the 35.2 degrees to 42.6 degrees, with a

standard deviation value of 1.2.



4.8 Summary
In this study, an attempt was made to capture the spatial variability of field soil
properties. Cone penetration tests were conducted in China as a part of a highway
project. The basic soil classification was performed, and idealized subsurface profiles
were provided for all the CPTU tests. Friction angle values of the soil were determined
using the CPTU test parameters. Statistical analysis and geostatistical analysis were
conducted according to the framework developed in the Chapter 3. Below are the
important findings and conclusions from this study:
e The spatial correlation distance for a silty sand layer was found to be 0.86m, with an
effective range from 2.58m to 4.3m.
e The spatial variability present in the silty sand layer is well explained with the
exponential model.
e The maximum lag distance was found to be approximately one-third the total
distance (i.e., 7m of maximum lag distance if the depth of bore hole is 21m).
e The friction angle design parameter evaluated from 2:1 stress distribution and
pressure bulb was 38 degrees, with a standard deviation of 0.9 to 1.2; whereas, in
the general case, it is found to be 37 degrees, with a standard deviation of 2.8.
e Mostly importantly, the framework developed in Chapter 3 was validated by using the
CPTU data. So, this framework can be used to perform spatial variability analysis

with any in-situ field data, provided the data is not less than 30 observations.
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Chapter 5
Spatial Variability Analysis of Man-Made Treated Soils
5.1 Introduction

The stiffness of the soil in field conditions largely depends on the stress state of
the soil, environmental changes, and internal and external conditions of the soil. Phoon
and Kulhawy (1999) demonstrated that the stiffness of soils in field conditions varies from
15 - 65 percent in sandy soils, 9 - 92 percent in sand-to-clayey sand soils, and 7- 67
percent in silty soils. The influence of field conditions becomes extremely critical,
especially in the case of buried pipelines. It is noted that external soil conditions are the
primary cause of water pipeline breaks (Vipulanandan et. al., 2011). The most commonly
occurring failure in pipelines is because of the circumferential stress developed due to the
swelling or settlement of the bedding material (Seica et al. 2001; Rajani et al. 2004).

The difficulties involved in compacting the bedding material around the pipeline
led to the use of controlled low strength material (CLSM) in the 1960’s. CLSM is a self-
compacted, cementitious material, used primarily as a backfill in lieu of compacted
backfill and has become a popular material for projects such as void fill, foundation
support, bridge approaches, and conduit bedding (Folliard et al., 2008). CLSM, with
cement and fly ash additives, has been demonstrated, by many researchers, to be an
effective bedding material for pipelines due to the material’s self-compacting behavior
and strength performance (Rajah et al., 2012; Boschert J. and Butler J., 2013).

A local water district has recently considered CLSMs as bedding material in the
process of constructing a 150-mile water pipeline. This pipeline is intended to collect
water from different lakes and bring additional water supplies to the Dallas/Fort Worth

Metroplex. Figure 5-1 provides the layout area of the project, with existing TRWD
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pipelines and a proposed new pipeline shown in yellow. The construction of the proposed

pipeline, which is 9 ft. in diameter, is shown in Figure 5-2.

Figure 5-2 Construction of the water pipeline at Line J

In this project, the bedding material, CLSM, was designed using native high

plasticity soil. The proportions of the soil, cement, water used in preparing the mix design
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were presented in the study conducted by Raavi (2012). The effective utilization of native
high plasticity soil reduces the project costs and minimizes the negative impacts on the
environment (Puppala and Hanchanloet, 1999; Abreu et al. 2008; Chittoori et al. 2012;
Puppala et al. 2012a). The stiffness of the CLSM material in field conditions, at any
particular stretch, depends upon the volume of CLSM occupied, which in turn depends on
the soil conditions. One of the primary concerns relating to the CLSM is the development
of uniform stiffness within the required time frame.

In this research study, a focus on geostatistics is used as a quality control tool to
study the variations in CLSM stiffness properties with time. Stiffness measurements of
the CLSM bedding material were determined using a non-destructive method in a 500ft.
Prove-out test section. However, the stiffness measurements performed at certain
intervals made it hard to predict the stiffness values throughout the pipeline or at untested
locations. The framework developed in Chapter 3 was used in this study to obtain the
stiffness values throughout the pipeline. The predictions were performed by incorporating
the spatial variability present into the field stiffness measurements determined after a
curing period of 1, 3, 7, 14 and 28 days. The spatial variability models developed, along
with kriging algorithms, were used to predict the stiffness of the bedding material
throughout the pipeline after 1, 3, 7, 14 and 28 days.

5.2 Data Acquisition

In this project, stiffness of the CLSM bedding material was determined using the
spectral analysis of surface saves (SASW) technique. SASW is a seismic non-destructive
method used to determine the small strain shear modulus of the materials. The detailed
steps of performing the stiffness measurements for this project are presented in Mothkuri

(2014).
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An overview of the method is discussed in this section. The SASW technique
was originally proposed and developed in the early 1980’s, (Nazarian and Stokoe 1984;
Stokoe et al. 1989). This method uses the dispersive characteristics of surface waves to
determine the variation of the surface wave velocity of layered systems with depth. Figure
5-3 presents the tools that were used in this project to obtain stiffness measurements.
The surface waves were generated using various types of hammers, depending upon the
spacing between the two receivers. When an impact was created on the surface, several
surface waves were generated with a wide spectrum of frequencies. At a known
frequency, the phase difference recorded between the two receivers was used to
calculate the travel time between two signals detected by the receivers, using Equation
5.1. With the known distance between the receivers and the travel time, the surface wave
velocity at a given frequency was calculated using Equation 5.2. The shear wave velocity,
which is correlated to surface wave velocity as shown in Equation 5.3, was used to
determine the shear modulus of the material using equation 5.4
t(f) = 8(f)/(360 X f) (5.1)
Where, f = frequency, Hz
t(f) = travel time for a given frequency,
@(f) = phase difference in degrees for a given frequency
Ve(f) = D/t(f) (5.2)
Where, Vi (f) = surface wave velocity at a given frequency
D = distance between two receivers
Vs(f) = 0.95* Vi(f) (5.3)
Where, V,(f) = shear wave velocity at a given frequency
G=pV? (5.4)

Where, G = shear modulus
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p = density of the material

V;2 = shear wave velocity
The stiffness measurements were determined along the 500 ft. pipeline which was
comprised of 10 pipe sections of 50 ft. each, as shown in Figure 5-4. Measurements were
taken at 85 test points (17 stations X 5 points each) along the seventeen established test
stations, as shown in Figure 5-5. The cross-sectional figure of the pipeline with test points

is shown in Figure 5-6.

Figure 5-3 SASW tools: (a) SASW bar with geophone (b) Cables

(c) Data logger (d) hammers

1066 1067 1068 1069 1070 1071 1072 1073 1074 107

50 50 50 50 50 50 50 50 50 50

500’
Figure 5-4 Top view of 500feet pipeline with 10 sections
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Figure 5-6 Cross-sectional view of the pipe and test points at each section
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The bedding material, CLSM, was allowed to cure for a period of 28 days to
reach its maximum strength. The stiffness measurements were taken continuously for the
first 14 days, and then on day 28, readings were taken again to monitor the stiffness
development of CLSM in field conditions. In this study, spatial variability analysis was
conducted to predict the stiffness at unsampled locations and to evaluate the uniform
stiffness development throughout the pipeline. Tables 5-1 to 5-5 provide the stiffness
measurements for days 1, 3, 7, 14 and 28. Based on the laboratory tests on strength of

CLSM, it was expected to achieve its maximum strength after 28 days of curing (Raavi,

2012).
Table 5-1 Stiffness measurements for Day
Stiffness Observations in MPa
Section
1 2 3 4 5 6

1066 264.4 238.1 281.1

1067 330.3 254 4 261.0 2453 308.7 270.7
1068 250.9 252.9

1069 250.9 259.5 297.5 252.8 256.6 244 5
1070 261.1 258.9 294.7 202.2 251.0 2754
1071 301.9 251.8 274.6 265.1 247.8 273.2
1072 217.7 248.6 273.4

1073 280.2 254.3 244 .4 270.4 255.0 319.0
1074 365.2 247.9 260.1

1075 312.2 251.5 2927
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Table 5-2 Stiffness Measurements Day 3

Stiffness Observations in MPa

Section
1 2 3 4 5 6 7 8 9 10

1066 | 276.5 | 275.1 | 272.7 | 289 | 271.9

1067 | 271.4 | 303.3 | 266.8 | 261 | 256.7 | 285.8 | 274.3 | 309.0 | 346.0 | 274.6

1068 | 251.0 | 257.6 | 282.3 | 275 | 252.6

1069 | 261.8 | 253.8 | 330.6 | 298 | 232.9 | 307.8 | 291.3 | 293.4 | 260.1 | 273.3

1070 | 293.9 | 261.1 | 261.2 | 295 | 276.2 | 276.1 | 268.7 | 275.4 | 275.0 | 264.5

1071 243.8 | 273.3 | 255.8 | 305 | 256.3 | 243.8 | 273.3 | 255.8 | 304.6 | 256.3

1072 | 275.8 | 260.0 | 293.7 | 277 | 255.4

1073 | 217.4 | 290.8 | 285.9 | 270 | 298.0 | 258.5 | 277.5 | 280.0 | 300.7 | 269.0

1074 | 310.9 | 287.1 | 279.3 | 275 | 264.4

1075 | 258.5 | 277.5 | 280.0 | 301 | 269.0

Table 5-3 Stiffness Measurements of Day 7

Stiffness Observations in MPa

Section
1 2 3 4 5 6 7 8 9 10

1066 | 327.0 | 350.0 | 324.2 | 329.8 | 320

1067 | 321.9 | 359.8 | 318.3 | 281.2 | 305 | 336.3 | 319.5 | 329.4 | 386.7 | 322.5

1068 | 301.4 | 302.8 | 333.9 | 295.4 | 300

1069 | 312.3 | 299.0 | 382.1 | 345.8 | 281 | 358.2 | 336.5 | 344.9 | 300.8 | 321.1

1070 | 344.4 | 301.6 | 312.8 | 317.5 | 324 | 326.6 | 313.9 | 327.0 | 335.7 | 3124

1071 | 294.3 | 318.5 | 307.4 | 345.3 | 304 | 294.3 | 318.5 | 307.4 | 345.3 | 304.2

1072 | 326.3 | 305.2 | 335.2 | 317.3 | 303

1073 | 267.9 | 316.0 | 307.5 | 291.1 | 346 | 309.0 | 312.7 | 331.6 | 341.4 | 316.9

1074 | 361.3 | 332.3 | 310.8 | 315.7 | 312

1075 | 309.0 | 312.7 | 331.6 | 341.4 | 317
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Table 5-4 Stiffness Measurements of Day 14

Stiffness Observations in MPa

Section | 2 | 3| 4 |56 | 7 | 8| 9 | 10
1066 | 398.4 | 388.0 | 398.8 | 386.5 | 391
1067 | 370.0 | 398.3 | 373.7 | 397.9 | 341 | 395.3 | 408.3 | 371.1 | 410.1 | 389.1
1068 | 372.1 | 367.1 | 382.9 | 347.5 | 390
1069 | 387.7 | 389.3 | 418.7 | 393.7 | 423 | 397.0 | 415.5 | 400.8 | 388.9 | 392.8
1070 | 390.5 | 393.6 | 399.1 | 397.1 | 407 | 361.9 | 356.0 | 407.3 | 380.7 | 386.0
1071 | 359.4 | 366.9 | 400.0 | 396.8 | 428 | 359.4 | 366.9 | 380.0 | 366.8 | 378.0
1072 | 377.5|394.8 | 385.3 | 379.6 | 415
1073 | 368.5 | 383.9 | 357.3 | 399.1 | 387 | 383.8 | 381.4 | 399.4 | 381.4 | 406.8
1074 | 396.2 | 399.6 | 362.5 | 360.0 | 404
1075 | 383.8 | 371.4 | 369.4 | 401.4 | 417
Table 5-5 Stiffness Measurements of Day 28
Stiffness Observations in MPa
Section 1 2 3 4 5 6 7 8 9 10
1066 | 432.3 | 465.9 | 458.7 | 447.5 | 432
1067 | 417.7 | 463.1 | 414.1 | 460.1 | 409 | 473.7 | 455.9 | 436.8 | 450.7 | 470.1
1068 | 455.5 | 407.6 | 437.3 | 410.2 | 446
1069 | 442.2 | 421.0 | 440.6 | 417.5 | 440 | 420.0 | 455.9 | 443.0 | 454.3 | 427.6
1070 | 434.7 | 444.8 | 452.4 | 439.2 | 434 | 446.5 | 471.5 | 453.1 | 440.8 | 441.7
1071 | 424.6 | 414.2 | 453.2 | 440.8 | 421 | 424.6 | 414.2 | 413.2 | 440.8 | 420.9
1072 | 461.9 | 457.7 | 419.8 | 432.7 | 461
1073 | 419.4 | 438.5 | 428.8 | 429.9 | 418 | 456.4 | 458.7 | 442.5 | 470.5 | 465.2
1074 | 449.5 | 478.2 | 420.2 | 468.1 | 450
1075 | 456.4 | 458.7 | 442.5 | 470.5 | 465
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5.3 Data Organization

The 500 ft. pipeline is composed of ten sections, starting from 1066 to 1075. In
order to conduct the spatial variability analysis of the stiffness measurements determined
in 10 sections, the data had to be organized in the Cartesian coordinate system. Certain
assumptions were made regarding the location of the test points. The test point at the
center ‘c’, as shown in Figure 5-6 of section 1066-25, is assumed to be located at (25,
25) in (x, y) coordinate system. This point was taken as the reference point, and
coordinates of the remaining test points were determined. Table 5-6 presents the total
sections and distances of the test points with previous points.

Table 5-6 Coordinates of the test points

Distance from Coordinates in (x,y) system
Section | Station No.
previous station for center points
1066 25’ 0 feet -Reference point (25,25)-Reference point
10° 35 feet (60,25)
1067
40’ 30 feet (90, 25)
1068 25’ 35 feet (125. 25)
10° 35 feet (160, 25)
1069
40’ 30 feet (190, 25)
10’ 20 feet (210, 25)
1070
25’ 15 feet (225, 25)
10’ 35 feet (260, 25)
1071
40’ 30 feet (290, 25)
1072 25’ 35 feet (325, 25)
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Table 5.6 - Continued

10° 35 feet (360, 25)
1073

40 30 feet (390, 25)
1074 10° 20 feet (410, 25)
1075 25’ 65 feet (475, 25)

Similarly, the coordinates of the test points at locations on either side of the
center were calculated. The horizontal distance from center to south 1 was 2.78 ft. and to
south 2 was 4.38 ft.; similarly, from center to north 1 was 2.78 ft. and to north 2 was 4.38
ft. To determine the spatial variability, the ‘z’ coordinate was given as the stiffness value.
For example, 25, 25, 238.1 shows that the stiffness of CLSM at section 1066-25 was
238.1 MPa. The coordinates for all the stiffness measurements utilized for the analysis
are presented in Appendix B.

5.4 Statistical Analysis

In this section, the statistical analysis for the stiffness values obtained on days 1,
3, 7, 14 and 28 was performed. The elementary statistical parameters such as mean,
variance, and standard deviation were evaluated to supplement the spatial variability
analysis.

5.4.1 Histograms

Histogram, in this analysis, was used to identify the distribution associated with
the stiffness values. It provided the visual aid for the distribution of the stiffness values,
along with the summary of elementary statistical parameters. The number of class
intervals that were required to construct a histogram plot were determined using Equation

3-1. The class intervals obtained were used in Equation 3-2 to determine the bin size.
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The table below summarizes the number of class intervals and bin sizes obtained for
stiffness values on days 1, 3, 7, 14 and 28.

Table 5-7 Summary of parameters used to construct histograms

Number of
Day | Observations Bin Size
Class Intervals

1 44 6.4 25

3 75 7.2 18

7 75 7.2 17
14 75 7.2 12.5
28 75 7.2 9.5

The above parameters were used to construct the histograms. Figures 5-7 to 5-
11 provided the histogram plot for the stiffness values determined on days 1, 3, 7, 14 and
28. The stiffness of CLSM values were plotted on x-axis and y-axis, representing
frequency of the observations. From the plots, it can be inferred that the distribution of
stiffness on 1, 3, 7 and 14 days were more closely related to Gaussian distribution, with a
litle skewness on either side. However, the histogram plot for day 28 is more uniformly
distributed. This can be because of reaching the maximum strength in almost all the test
points. The maximum frequency on all the plots depicts the stiffness reached in most of
the test point locations. On day 1, the maximum test points reached a stiffness value
ranging from 250 — 275 MPa; on day 3, the maximum test points reached stiffness value
of 270 — 280 MPa; on day 7, the maximum test points had a stiffness value of 300 — 320
MPa; on day 14, the stiffness of the maximum test points was 380 — 400 MPa; and on

day 28, the maximum test points reached a stiffness value of 410- 480 MPa. The
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increase in mean stiffness value from day 1 to day 28 was observed to be 39.5 percent;

however, the standard deviation of the stiffness values on all days varied from 18- 29

percent.
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Figure 5-7 Histogram plot for stiffness values determined on day 1
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5.4.2 Check for Gaussian Distribution

The histogram plots presented earlier provided the basic information on the
distribution of data. As most of the statistical tests rely on the Gaussian distribution, in
this section, the stiffness values determined for days 1, 3, 7, 14 and 28 were used to
check for Gaussian distribution. The Shapiro-Wilk test is a more formal approach to
checking for Gaussian distribution; however, the number of observations is limited to 50.
Hence, in this study, the normal-quantile plots were used to check for Gaussian
distribution in the data.
5.4.2.1 Normal- Quantile plot

Figures 5-12 to 5-16 present the normal-quantile plots for the stiffness values

obtained on days 1, 3, 7, 14 and 28, respectively. The theoretical quantiles for
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corresponding stiffness values were calculated using Equation 3-3. The theoretical
quantile values were plotted on the y-axis against the corresponding stiffness quantile
values on the x-axis. It can be inferred from the plots that the data values followed a
linear trend. Using the regression approach method, a best fit trend line was modelled for
the plotted data values. The coefficient of determination was calculated using Equation
(3-4) to measure the fit of the trend line. Table 5-8 below summarizes the coefficient of
determination values obtained for all the plots.

Table 5-8 Coefficient of determination for normal-quantile plots

Coefficient of
Day
determination (%)
1 0.92
3 0.96
7 0.97
14 0.99
28 0.97

The coefficient of determination values were more than 0.9 in all the plots,
demonstrating that the linear trend provided the best fit for the available data points. This
leads to the conclusion that the stiffness of all the data points were distributed normally or

had a Gaussian distribution.
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5.5 Check for Stationarity

As mentioned in Chapter 3, in order to perform geostatistical analysis, the data
has to be stationary. The stationarity in the data was evaluated by conducting two tests:
one for checking constant mean value and another for checking constant variance. The
ANOVA test method was used to determine the constant mean in the stiffness values,
and Bartlett’s test was used to evaluate the constant variance in stiffness values for days
1, 3, 7, 14 and 28. In order to perform ANOVA and Bartlett test, the stiffness values
obtained from 10 sections were analyzed and compared.
5.5.1 Check for Constant Mean Value

The ANOVA test was used to check for constant mean values in all the stiffness
measurements obtained in the 10 sections. This was performed by comparing mean
stiffness values in each section. Below is the hypothesis constructed for evaluating
constant mean in the data:

Ho : M1066 = M1067 = H10e8 = H1069 = M1070 = M1071 = H1072 = H1073 = M1o7a = H1o75

H, : At least one mean is different

The statistic that was used to evaluate the above hypothesis is Fo, which is the
ratio of mean square treatment to mean square error. This was compared to the critical
value at a significance level of 0.05. Tables 5-9 to 5-13 below provide the summary of the
ANOVA test results conducted for checking the constant mean in stiffness values in all

sections after 1, 3, 7, 14 and 28 days of curing.
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Table 5-9 Summary of ANOVA results for day 1 stiffness values

Analysis of Variance
Source of Sum of
Variation Squares DOF | Mean Square Fo
Treatment 6295.5 9 699.5 0.77
Error 30504.5 34 897.1
Total 36800.1 43
*DOF = Degrees of freedom
Table 5-10 Summary of ANOVA results for day 3 stiffness values
Analysis of Variance
Source of Sum of
Variation Squares DOF | Mean Square Fo
Treatment 2958.2 9 328.6 0.72
Error 29454 .4 65 453.1
Total 32412.6 74
*DOF = Degrees of freedom
Table 5-11 Summary of ANOVA results for day 7 stiffness values
Analysis of Variance
Source of
Variation Sum of Squares | DOF Mean Square Fo
Treatment 3650.1 9 405.5 0.87
Error 30208.5 65 464.7
Total 33858.6 74

*DOF = Degrees of freedom
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Table 5-12 Summary of ANOVA results for day 14 stiffness values

Analysis of Variance
Source of Sum of
Variation Squares DOF | Mean Square Fo
Treatment 3804.5 9 422.7 1.34
Error 20403.9 65 313.9
Total 24208.5 74

*DOF = Degrees of freedom

Table 5-13 Summary of ANOVA results for day 28 stiffness values

Analysis of Variance
Source of Sum of
Variation Squares DOF | Mean Square Fo
Treatment 5758.3 9 639.8 2.1
Error 19679.0 65 302.7
Total 25437.3 74

*DOF = Degrees of freedom

The statistic Fy that was calculated for the stiffness values, were compared with
critical value (foqy. The fe« value was obtained by using the f-distribution table at a
significance level (a) of 0.05. The fy for day 1 was 2.57 and for rest of the days was
2.16, as the number of observations for days 3, 7, 14 and 28 are equal. From the above
ANOVA test results for all days, it can be inferred that the statistic (Fo) was smaller than
the critical region. Therefore, we do not reject the null hypothesis developed, concluding
the means of the stiffness values were constant in all the sections for all days.
5.5.1.1 Model Adequacy check

In order to validate the conclusions obtained from the ANOVA tests, the basic
assumptions of the ANOVA model have to be met. The assumptions are: the residual

error values are normally distributed and the residual variances are structureless. The
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residuals of the stiffness values were calculated using Equation 3.8. The fitted value in

Equation 3.8 was obtained by determining the mean of the stiffness value in each

section. Tables 5-14 to 5-19 provide the residual values calculated for the stiffness values

of all days that were used for testing the model adequacy of the ANOVA model.

Table 5-14 Residual values for the day 1 stiffness values

. Residuals
Section
1 2 3 5 6

1066 -0.69 7.83 -7.14

1067 -0.48 45.38 -5.20 -48.26 10.96 -2.39

1068 -11.33 37.67 -26.33

1069 27.25 -24.75 -15.64 -9.36 -74.75 97.25

1070 249.67 -42.33 -47.33 -70.33 -13.69 -75.97

1071 7.72 -60.28 -78.28 -46.28 123.86 53.24
1072 140.20 -48.56 -91.64

1073 -65.85 9.32 -118.68 -124.06 379.96 -80.68
1074 -43.02 173.15 -130.14

1075 -18.48 85.74 -67.25

Table 5-15 Residual values for day 3 stiffness values

. Residuals

Section
1 2 3 4 5 6 7 8 9 10

1066 -05 | 19 | 43 | 120 | -51
1067 | -134 | 184 | -181 | -23.8 | -281| 0.8 |-10.6 | 24.1 | 61.1 | -10.2
1068 | -126 | -6.0 | 186 | 11.0 | -11.0
1069 | -184 | -264 | 503 | 172 | 473 | 275 | 11.0 | 13.1 | -20.0 | -6.9
1070 19.1 | -13.6 | -13.4 | 20.0 1.5 1.4 -5.9 0.7 0.2 | -10.1
1071 | -229| 65 |-109 | 378 |-104 | -229 | 6.5 |-109 | 378 | -104
1072 35 | -122 | 213 | 43 |-16.9
1073 | -574 | 159 | 111 | -44 | 231 | -16.3 | 2.7 52 | 25.8 | 5.7
1074 27.5 3.8 -40 | -83 | -18.9
1075 | -186 | 0.3 28 | 23,5 | -8.1
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Table 5-16 Residual values for day 7 stiffness values

Section Residuals

1 2 3 4 5 6 7 8 9 10
1066 -3.1 | 198 | -59 | -0.3 | -104
1067 6.1 | 318 | 9.7 | -46.7 | -234 | 82 |-85| 1.3 | 587 | -55
1068 53 | -39 | 270 | -114 | 6.3
1069 | -15.9|-29.2 | 539 | 176 | -47.3 | 30.0 | 83 | 16.7 | -27.3 | -7.0
1070 | 22.7 | -19.9 | -8.8 | -41 24 50 |-76| 54 | 140 | -9.2
1071 | -196| 45 | 65 | 313 | -9.7 | -196 | 45 | -6.5 | 313 | -9.7
1072 88 | -122 | 17.7 | -01 | -14.2
1073 | 46.1| 20 | 65 [-228 | 319 | -50 |12 | 175 | 273 | 2.9
1074 | 348 | 58 | -156 | -10.8 | -14.2
1075 | -133| -95 | 92 | 19.0 | -54

Table 5-17 Residual values for day 14 stiffness values
Section Residuals

1 2 3 4 5 6 7 8 9 10
1066 59 -4.5 6.3 -6.1 -1.5
1067 | -155| 128 |-11.8 | 124 | 442 | 9.7 | 228 |-144 | 246 | 3.6
1068 0.1 -5.0 | 10.9 | -245 | 185
1069 | -13.0 | -114 | 179 | -71 | 224 | -3.7 | 147 | 01 | -11.8 | -8.0
1070 25 | 57 | 112 | 91 | 193 |-26.1|-32.0| 194 | -7.2 | -1.9
1071 | -20.8 | -13.4 | 19.8 | 16.6 | 47.8 | -20.8 | -13.4 | -0.2 | -134 | -2.2
1072 |-13.0| 43 | -52 |-10.9 | 247
1073 | -164 | -09 [-275| 143 | 21 | -1.0 | -35 | 146 | -35 | 219
1074 | 11.6 | 151 | -22.0 | -24.6 | 19.9
1075 | 4.7 |-17.2|-19.1 | 128 | 28.2
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Table 5-18 Residual values for day 28 stiffness values

Residuals

Section

1 2 3 4 5 6 7 8 9 10
1066 | -15.0 | 185 | 11.3 | 0.1 | -15.0
1067 | -27.4 | 18.0 | -31.0| 15.0 | -36.5 | 28.6 | 10.8 | -8.3 | 5.6 | 25.0
1068 | 24.2 |-23.7 | 6.0 | -21.1 | 14.6
1069 6.0 |-152| 44 |-187| 39 |-162| 196 | 6.8 | 18.1 | -8.6
1070 |-131| -31 | 46 | -86 |-136| -1.3 | 23.7 | 53 | 123 | -61
1071 -22 |-126| 265 | 141 | -58 | 22 | -126 | -135| 141 | -5.8
1072 | 15.2 | 11.0 | -26.9 | -14.0 | 14.8
1073 | 235 | 43 |-14.0|-129 | -246 | 136 | 159 | -0.3 | 27.7 | 22.4
1074 | -3.7 | 25.0 | -33.0| 149 | -3.3
1075 | 22 | 01 |-162| 118 | 6.5

The residual values provided in the tables above were used to check for the
model adequacy (i.e., e ~) in the ANOVA model. The normal distribution of the residual
values was evaluated using the normality plots, and the variance was evaluated by
plotting the residual values against the fitted values for all the sections. Figures 5-17 to 5-

21 present the model adequacy plots for the residual values presented in the previous

tables.
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From the model adequacy plots, it can be inferred that the residuals in all the
normality plots followed a linear trend. A best fit line was modeled using the linear
regression approach, where the coefficient of determinations (r2) for all the normality plots
were greater than 0.90. Also, from visual inspection of the above plots, it can be inferred
that the dispersion range of residuals in all the sections did not deviate much. Therefore,
the residuals of all the stiffness values were normally and independently distributed, with
no variance trends. This validated the conclusions obtained from the ANOVA test results.
5.5.2 Check for Constant Variance Value

The Bartlett’s test was used to check for constant variance present in the
stiffness values obtained from all the sections. This was performed by developing a
hypothesis, as shown below:

Ho : 021066 = 021067 = 021068 = 021069 = 021070 = 021071 = 021072 = 021073 = 021074 = 021075
H, : At least one variance is different

The above hypothesis was evaluated using the statistic expressed in Equation
3.9. The value obtained from the statistic was compared to the critical value obtained at a
significance value (a) 0.05. The chi-square distribution table was used to determine the
critical value. Tables 5-19 to 5-23 provided the summary of the results obtained from the
Bartlett’s test in evaluation of constant variance for days 1, 3, 7, 14 and 28.

Table 5-19 Summary of Bartlett’s test results for day 1 stiffness values

Parameter Result
Q 5.65
C 1.14
Test Statistic (y2 = 2.3026 g) 11.3
Critical Region 16.9
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Table 5.19 - Continued

)(‘2 (113) < Xz critical (169)

Table 5-20 Summary of Bartlett’s test results for day 3 stiffness values

Parameter Result
Q 7.03
C 1.06
Test Statistic (y2 = 2.3026 g) 15.2
Critical Region 16.9
2 2
X (152) < X critical (169)

Table 5-21 Summary of Bartlett’s test results for day 7 stiffness values

Parameter Result

Q 6.3

o) 1.06

Test Statistic (y2 = 2.3026 g) 13.6

Critical Region 16.9
x> (13.6) < X* citical (16.9)

Table 5-22 Summary of Bartlett’s test results for day 14 stiffness values

Parameter Result
Q 4.1
C 1.06
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Table 5.22- Continued

Test Statistic (y2 = 2.3026 g) 8.91

Critical Region 16.9

)(‘2 (891) < Xz critical (169)

Table 5-23 Summary of Bartlett’s test results for day 28 stiffness values

Parameter Result
Q 4.2
C 1.06
Test Statistic (y2 = 2.3026 %) 9.10
Critical Region 16.9
2 2
X (9-1) <X critical (16-9)

Based on the test results summarized in above Tables 5-19 to 5-23, it can be
inferred that the statistic value ()(g) was smaller than the critical region ()q2 critical) -
Therefore, the null hypothesis was not rejected, concluding that the variances of stiffness
values weree constant in all sections for days 1, 3, 7, 14 and 28. Hence, based on the
ANOVA test and Bartlett’s test, the stiffness values were stationary, having constant

mean and variance.

5.6 Geostatistical Analysis
Geostatistical analysis was performed in this study to predict the stiffness values

of the CLSM at undetermined locations. This analysis included construction of
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experimental variogram values, modelling of spatial variability in stiffness values for all
days, and use kriging to perform predictions based on the spatial variability model.
5.6.1 Experimental Variogram

The stiffness values that were obtained in the 10 sections of the pipeline were
used to construct the experimental variogram. The experimental variograms were
constructed to identify the spatial correlations in the stiffness values in the bedding
material. The grid parameters were selected based on the trial and error procedure until
the maximum number of pairs was greater than or equal to 30.The semi-variogram or
variogram values were calculated using Equation 3-18, which were plotted against the
lag distance. Figures 5-22 to 5-26 present the experimental variogram plots for the
stiffness values obtained on days 1, 3, 7, 14 and 28, respectively. The variogram values
were plotted on the y-axis, and the corresponding lag distance value was plotted on the

X-axis.
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Figure 5-25 Experimental variogram plot for day 14 stiffness values
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Figure 5-26 Experimental variogram plot for day 28 stiffness values




The above experimental variogram plots were used to identify the spatial
correlation in stiffness values after a curing period of 1, 3, 7, 14 and 28 days. The grid
parameters selected in the plots were almost the same, satisfying the number of pairs for
calculating an experimental variogram value. It was assumed that the x-direction in this
study represented the longitudinal distance, i.e., 500 ft., and the y-direction represented
the transverse distance, i.e., 9 ft., which was the diameter of the pipe used at the site.
Since, the measurements obtained through the SASW technique were in longitudinal
distance, the direction of the variograms was selected as 0 degrees. The maximum lag
distance that was used in constructing all the variograms was 150m except for day 1.
This is because the CLSM had not developed uniform stiffness throughout the pipeline,
which was also evident from the standard deviation of 29.2 MPa from the histogram plots.
Hence, to identify a spatial correlation the experimental variogram plots were constructed
for a lag distance of 300m.

5.6.2 Variogram Modeling

In order to capture the spatial variability in stiffness values, the experimental
variograms were modelled using various models, as mentioned in section 3.7.2. From the
experimental variogram plots, it can be observed that the variogram values did not show
any specific trend. This can be attributed to low variability in stiffness values, even with
an increase in the lag distance. However, all the plots reached sill value, which is lower
than the global variance. This behavior was modelled in this study.

Also, at a lag distance of 0 m, the variogram values were not equal to zero, which
resembled a nugget effect model present in the stiffness values. Figures 5-27 to 5-31
present the variogram models that were used to define the spatial variability present in

the stiffness values for days 1, 3, 7, 14 and 28, respectively.
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Theoretical Equation:
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Model Equation :
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Figure 5-27 Variogram model for day 1 stiffness values
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e Model : Nugget Effect + Exponential
e Scale: 350

e Length (A):12

o Nugget (Co) : 250

Theoretical Equation:

Yy (h)=Co+ C[1-exp (-h/a)] forh >0

Model Equation :
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Figure 5-28 Variogram model for day 3 stiffness values
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Theoretical Equation:

Y (h)=Cy+ C[1-exp (-h/a)] forh >0
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Figure 5-29 Variogram model for day 7 stiffness values
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Variogram model for day 14:

e Model : Nugget Effect + Exponential
e Scale: 190

e Length (A):23

o Nugget (Co) : 180

Theoretical Equation:

Yy (h)=Co+ C[1-exp (-h/a)] forh >0

Model Equation :

y (h) = 180 + 190 [ 1- exp (-h/23)] for h > 0

Figure 5-30 Variogram model for day 14 stiffness values
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Figure 5-31 Variogram model for day 28 stiffness values




The spatial variability in the stiffness values for days 1, 3, 7, 14 and 28 were
modeled as shown in figures above. With an increase in lag distance the experimental
variogram increased and approached the sill value. The nugget effect was modelled to
describe the variation of CLSM stiffness at close distances, such as south 1, south 2 and
north 1, north 2.

It was observed that the exponential models with a nugget effect were the best fit
models for describing the spatial variability in stiffness values for all days. The minimum
spatial correlation distance was observed on day 1 with 8m, and the maximum correlation
distance was observed on day 28, with a distance of 24m. Therefore, it can be
generalized that the correlation distance in stiffness values varied from 8-24m in the
CLSM bedding material. However, this might differ from project to project, depending on
the field conditions.

5.6.3 Kriging Analysis

The histogram plots shown earlier depicted significant variations in stiffness
values, with a standard deviation ranging from 18 to 30 MPa. The dispersion in the
stiffness values in the individual sections was high enough that the normal prediction
results would be erratic. In this study, the variability in stiffness values were captured by
modeling the variogram as presented in Section 5.6.2. The spatial variability models
developed for all the days were used to predict the stiffness values at unsampled
locations. The predictions were performed using the geostatistical tool ‘kriging’. The
kriging uses the spatial correlation distance, ranging from 8-25m, obtained from the
spatial variability model.

Using the correlation distance and kriging algorithm, the weights of the

neighboring values were determined. The grid parameters that were used for the kriging
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analysis were provided in Table 5-24, and the spatial variability model parameters were

summarized in Table 5-25.

Table 5-24 Grid parameters selected for kriging analysis

Parameters selected

Days 1 3 7 14 28
Maximum lag distance 300 150 150 150 150
Angular divisions 180 180 180 180 180
Radial divisions 100 100 100 100 100

Table 5-25 Spatial variability model parameters
Parameters selected

Days 1 3 7 14 28

Correlation distance 8 12 14 23 24

Nugget effect 400 250 290 180 200

The above grid and spatial variability parameters were used to predict the

stiffness values for days 1, 3, 7, 14 and 28, respectively. Figures 5-31 to 5-35 present the

stiffness contour maps predicted using kriging analysis.
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Day 1: Kriging analysis

Spatial variability model : y (h) = 400 + 240 [ 1- exp (-h/8)] for h > 0
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Figure 5-32 Kriging analysis map for stiffness (MPa) of CLSM after 1 day curing period
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Day 3: Kriging analysis

Spatial variability model : y (h) =250 + 350 [ 1- exp (-h/12)] for h > 0
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Figure 5-33 Kriging analysis map for stiffness (MPa) of CLSM after 3 days curing period
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Day 7: Kriging analysis

Spatial variability model : y (h) =290 + 180 [ 1- exp (-h/14)] for h >0
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Figure 5-34 Kriging analysis map for stiffness (MPa) of CLSM after 7 days curing period
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Day 14: Kriging analysis

Spatial variability model : y (h) =180 + 190 [ 1- exp (-h/23)] for h > 0
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Figure 5-35 Kriging analysis map for stiffness (MPa) of CLSM after 14 days curing period
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Day 28: Kriging analysis

Spatial variability model : y (h) =200 + 400 [ 1- exp (-h/24)] for h > 0
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Figure 5-36 Kriging analysis map for stiffness (MPa) of CLSM after 28 days curing period



The above kriging maps show the stiffness values of CLSM along the 500 ft.,
pipeline section for days 1, 3, 7, 14 and 28, respectively. The maps provided represent
the top view of the pipeline with a diameter 9 ft., which is in transverse direction and 500
ft. in length, which is in longitudinal direction, a total of 10 sections. All the predictions
were unbiased and obtained by capturing the spatial variability of the stiffness values.

In order to observe increase in stiffness of CLSM, the color scale for the maps
generated for days 1, 3, 7, 14 and 28 was kept the same. For day 1, the contour map
depicts the stiffness values in the range of 200-250 MPa; and for day 3, the CLSM
achieved a stiffness range of 260-280 MPa. For day 7, the stiffness value ranged from
300-320 MPa; for day 14, the stiffness values increased and ranged from 340-400 MPa;
and by day 28, the CLSM achieved a stiffness value of 400-480 MPa. From the above
maps, it can be inferred that there was uniform increase and development of the stiffness
values along the pipeline for all the days.

5.6.4 Cross Validation

The contour maps generated in the earlier sections provided good insight into the
spatial variation of stiffness of CLSM. However, to ensure that the spatial variability
model generated was correct, cross validation was performed. Cross validation refers to
the process of deleting the original values and predicting them again with the spatial
variability model. In this study, a few stiffness values were randomly deleted on each day,
and kriging analysis was the performed again, using the corresponding spatial variability
model. The stiffness of CLSM on new kriging maps at any specific location was
determined using a digitizing tool available on Surfer software. Then, the originally
deleted values were compared with the predicted values on a 45 degree validation

comparison plot. Figures 5-36 to 5-40 represent the new stiffness contour map
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generated. The black rectangular boxes in the maps represent the locations of the

deleted value.
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Day 1: Cross-validation using kriging Analysis

Spatial variability model : y (h) = 400 + 240 [ 1- exp (-h/8)] for h > 0
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Figure 5-37 Cross validation map for stiffness (MPa) of CLSM after 1 day curing period
Using the digitize tool available in the Surfer software, the precise value of the stiffness values were obtained at the deleted

locations. Table 5-26 and Figure 5-38 below provide the comparison of actual and predicted values from the cross-validation map.



Table 5-26 Comparison of actual and predicted Stiffness values

S.no | Actual Values (MPa) | Predicted Values (MPa)
1 262.4 258.4
2 271.3 273.7
3 258.6 248.4
4 281.5 286.6
5 258.5 237.8
6 276.2 269.0
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Figure 5-38 Comparison of actual and predicted stiffness values on day 1
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Day 3: Cross-validation using kriging Analysis

Spatial variability model : y (h) =250 + 350 [ 1- exp (-h/12)] for h >0
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Figure 5-39 Cross validation map for stiffness (MPa) of CLSM after 3 days curing period
The precise value of the stiffness values was obtained using the digitize tool available in the Surfer software at the deleted

locations. Table 5-27 and Figure 5-40 below provide the comparison of actual and predicted values from the cross-validation map.



Table 5-27 Comparison of actual and predicted Stiffness values for day 3

Predicted Stiffness Values (MPa)

S.no | Actual Values (MPa) | Predicted Values (MPa)
1 301.7 302.9
2 288.2 271.7
3 272.4 281.6
4 275.2 285.3
5 272.6 2701
6 272.9 268.8
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Figure 5-40 Comparison of actual and predicted stiffness values on day 3
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Day 7: Cross-validation using kriging Analysis

Spatial variability model : y (h) =290 + 180 [ 1- exp (-h/14)] for h >0
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Figure 5-41 Cross validation map for stiffness (MPa) of CLSM after 7 days curing period
The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the
deleted locations. Table 5-28 and Figure 5-42 below provide the comparison of actual and predicted values from the cross-

validation map.



Table 5-28 Comparison of actual and predicted Stiffness values for day 7

S.no | Actual Values (MPa) | Predicted Values (MPa)
1 339.5 346.2
2 336.1 319.0
3 321.7 331.8
4 319.2 326.6
5 317.4 317.0
6 316.7 319.8
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Figure 5-42 Comparison of actual and predicted stiffness values on day 7
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Day 14: Cross-validation using kriging Analysis

Spatial variability model : y (h) =180 + 190 [ 1- exp (-h/23)] for h >0
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Figure 5-43 Cross validation map for stiffness (MPa) of CLSM after 14 days curing period
The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the
deleted locations. Table 5-29 and Figure 5-44 below provide the comparison of actual values predicted values from the cross-

validation map.



Table 5-29 Comparison of actual and predicted Stiffness values for day 14

S.no | Actual Values (MPa) | Predicted Values (MPa)
1 393.8 405.1
2 402.5 393.9
3 392.9 392.5
4 391.9 383.8
5 395.0 401.7
6 386.0 388.6
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Figure 5-44 Comparison of actual and predicted stiffness values on day 14
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Day 28: Cross-validation using kriging Analysis

Spatial variability model : y (h) =200 + 400 [ 1- exp (-h/24)] for h >0
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Figure 5-45 Cross validation map for stiffness (MPa) of CLSM after 28 days curing period
The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the
deleted locations. Table 5-30 and Figure 5-46 below provide the comparison of actual values predicted values from the cross-

validation map.



Table 5-30 Comparison of actual and predicted Stiffness values for day 28

S.no | Actual Values (MPa) | Predicted Values (MPa)
1 452.2 456.1
2 429.0 422.4
3 442.0 442 .4
4 435.6 429.2
5 436.6 442.5
6 454 .2 451.5
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Figure 5-46 Comparison of actual and predicted stiffness values on day 28
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The above figures present the cross-validation plots and comparison of actual
and predicted values, using a 45 degree line plot. The actual values were plotted on the
x-axis, and the predicted values are represented in the y-axis. If the actual and predicted
values, are the same they should fall on the 45 degree line. It can be inferred from the
plot that all the predicted values obtained through the digitize technique were within 1
standard deviation to the actual deleted values. This affirms that the spatial variability
models developed for individual days were more than sufficient to provide predictions,
and the spatial maps for the stiffness values for 1, 3, 7, 14 and 28 days were appropriate.

5.7 Summary

Controlled Low Strength Material (CLSM) was used as the bedding material in a
water pipeline project to support a large pipeline system. The uniform development of
stiffness of CLSM was of primary concern due to the novel mix design approach followed
while preparing CLSMs, using native clays. The stiffness measurements of CLSM along
the pipeline section were obtained using non-destructive seismic method (SASW). The
statistical analysis was performed to understand the distribution present in the stiffness
measurements. The geostatistical analysis was performed to predict the stiffness of the
CLSM throughout the pipeline section by developing the spatial variability model with the
known values. Below are important findings determined from this study:

e The framework developed in Chapter 3 was validated for performing the

spatial variability analysis of the CLSM data in a pipeline construction project.

e The spatial correlation distance of the stiffness values ranged from 8 to 24 m.

However, after a 28-day curing period, the correlation distance for CLSM
stiffness values could be 24 m. The increase in spatial correlation distance
from day 1 to day 28 signifies the increase in homogeneity in stiffness

values.
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The nugget effect and exponential model best describe the spatial variability

present in the stiffness values for all days.

The spatial variability analysis can be used as a quality assurance tool by
mapping the stiffness values over the entire pipeline.

Through this analysis, the uniform stiffness development of CLSM, or any

material, can be ensured.
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Chapter 6
Spatial Variability Analysis of Sulfate-Rich Natural Soils
6.1 Introduction

Expansive soils containing sulfates which have been chemically stabilized are
known as man-made expansive soils (Puppala et. al., 2012). The calcium-based
stabilizers react with natural sulfates present in the soil, leading to the formation of new
minerals, ettringite and thaumasite. The heaving mechanics that occur due to hydration
of these minerals are referred to as sulfate-induced heave (Sherwood 1962). Several
countries across the globe have reported heaving due to the presence of sulfates in soils
(Hawkins 1987; Little 1989; Wimsatt 1999; Chen et al. 2005; Mingyu 2006; Rollings et al.
2006; Zhiming 2008; Adams 2008; Bagley et al. 2009; Puppala et al. 2010). In the United
States, several pavement failures have been recorded due to sulfate-induced heave
(Perrin, 1992; Dermatas, 1995; Puppala et al., 2006).

The damages induced due to sulfate heave results in millions of dollars spent in
repair costs annually (Hunter, 1988; Petry, 1994; Kota et al. 1996). In the last decade,
extensive importance has been given to the determination of sulfate concentrations in
soils. The modified UTA method is the accurate and rapid test method used to determine
the soluble sulfates present in soils. The detailed procedure and steps involved in the
modified UTA method are presented in Puppala et al. (2002). Several studies have been
conducted to categorize the sulfate concentration levels that cause problems (Petry et al.
1992; Berger et al. 2002). Puppala et al. (2003) provided the level of risk involved in lime
stabilization with an increase of sulfate content in soils. However, the variability of sulfate
concentrations in subsoil profiles provides uncertainty to the level of risk that is
associated with chemical stabilization process. In the research study conducted by

Puppala et al (2013), very high sulfate concentrations of 44,000ppm were recorded in the
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Childress District. Figure 6-1 shows the presence of sulfate soils and Eagleford shale in

Texas, USA.
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Figure 6-1 Geology of Texas with sulfate presence in soils (Harris, 2005)

The varying sulfate contents often lead to ambiguity in interpreting the sulfate
concentration at unsampled locations. This uncertainty leads to the misinterpretation of
the stabilizer dosage content required for chemical stabilization of the entire region. As
sulfates can be present in pockets, which may affect the sulfate contour maps. In this
research study, an attempt was made to predict the sulfate concentration at unsampled
locations and assess how the geostatistical modeling of sulfates could provide

comprehensive knowledge of sulfate contours in the region.
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The high sulfate content present in the Texas soils led to the determination of
sulfate contents in a pipeline project. This is the same pipeline considered in Chapter 5[
however, in Chapter 5, only 500 ft. was considered for spatial variability in stiffness
values. In this analysis, the 150-mile long pipeline was considered for the determination
of sulfate content present in soils.

In another research study conducted by Thomey (2013), the quantification of the
sulfate contents was performed using the modified UTA method, and mapping of sulfate
content was performed using geostatistics. This mapping was performed based on the
assumptions that the data is stationary with constant mean and variance, and spatial
variability models are linear.

In this research study, the sulfate content determined by Thomey (2013) was
used to capture the spatial variability, using the variograms and kriging analysis in
accordance with the framework developed in Chapter 3. The main goal of this analysis
was to explain how this information can benefit the engineering community in extracting
the information from the limited knowledge of soil testing data. This analysis will also
bring out any limitations in the study.

6.2 Data Collection

The pipeline considered for this analysis was placed through six geological
formations in the North Texas region. In order to ascertain the safety of the pipeline
against sulfate issues, the sulfate concentrations at all these formations were determined
at different depths. Figure 6-2 displays the entire layout of the pipeline, highlighting the

six formations.
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Figure 6-2 Pipeline layout through 6 geological formations

(Source: Fugro Consultants Inc.)

Considering the 9 ft. diameter of the pipeline and placement of it below the
ground surface, the soil samples were obtained at depths of 5, 10, 15 and 20 ft. The soils
sampled from these depths were brought to the University of Texas at Arlington
laboratory for determination of the sulfate content in them. The modified UTA method
was used to determine the sulfate contents in the soils. The details of the test procedure
and comprehensive test results were presented in Thomey (2013). In this analysis, the
measured sulfate content results were utilized to perform the spatial variability analysis.

The sulfate concentration levels at depths of 5, 10, 15 and 20 ft. are presented in
Tables 6-1 to 6-4. The number of observations indicates the number of boreholes where
the samples were obtained. The sulfate concentration was represented with units of

“ppm,” which represents parts per million. This unit resembles the measurement of the

198



mass of the sulfate content per unit volume of water. This can be also expressed as
milligrams per liter (mg/L). It should be noted that,
1 parts per million = 1 mg/L

The number of observations in each formation indicates the number of boreholes
drilled to collect the soil samples. It can be observed from the tables that the number of
observations considered is not equal, and this is attributed to the provision of the pipeline
in that particular formation. In total, 301 sulfate measurements were obtained along the
pipeline alignment. The detailed information of the boreholes in each formation, along

with the sulfate concentration levels at 5, 10, 15 and 20 ft., are provided in Appendix C.
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Table 6-1 Sulfate concentration at 5 ft. depth for 6 geological formations

Sulfate Concentration (ppm)
Geological
Formation | 4 2 3 4 5 6 7 8 9 10
Kemp 180 1880 1270 11600 2120 260 115 1065 1400 3215
Neylandville 975 535 90 460
Wolfe 1200 50 310 20 125 670 1065 25 20 65
Eagleford 540 185 130 8080 750 18,450 19,620 15,260 9360 4200
Wills 260 105 55 650 90 45 350 315 750 240
Ozan 1130 16000 280 290 17400 16760 950 115 17110 16700
) Sulfate Concentration (ppm)
Geological
Formation
11 12 13 14 15 16 17 18 19

Kemp

Neylandville

Wolfe 80 390

Eagleford 7000 5530 14,050 75 2200 3340 16,000 1320 1005

Wills 300 280 135 200 415

Ozan 50 1100 570 17,300 1,015
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Table 6-2 Sulfate concentration at 10 ft. depth for 6 geological formations

Sulfate Concentration (ppm)

Geological

Formation 1 2 3 4 5 6 7 8 9 10
Kemp 280 17000 | 255 16100 8420 255 300 690 840 1070
Neylandville 1500 690 135 180

Wolfe 750 785 800 1050 200 100 10600 115 120 45
Eagleford 500 1320 525 185 200 2250 18,300 1620 | 3620 560
Wills 150 55 390 670 325 20 300 380 230 100
Ozan 2820 1055 275 200 1235 | 1435 755 110 2345 15,620
Geological Sulfate Concentration (ppm)

Formation 11 12 13 14 15 16 17 | 18 19 20 21
Kemp

Neylandville

Wolfe 115 310

Eagleford 890 1050 | 15,100 15,200 | 6300 | 370 | 180 | 105 | 11,725 | 280 | 1090
Wills 150 40 200 10 90

Ozan 1270 | 1050 415 1750 25
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Table 6-3 Sulfate concentration at 15 ft. depth for 6 geological formations

Geological Sulfate Concentration (ppm)
Formation 1 2 3 4 5 6 7 8 9 10
Kemp 325 1100 | 215 | 1360 10000 90 220 700 850 970
Neylandville 605 790 110 210
Wolfe 90 700 700 | 1000 480 1255 135 45 85 105
Eagleford 1270 300 140 | 1915 715 1160 16,160 | 640 15,670 3800
Wills 200 30 185 575 365 30 650 220 20 270
Ozan 1500 | 1100 | 275 205 1255 1315 690 100 1510 15,940
Geological Sulfate Concentration (ppm)
Formation 11 12 13 14 15 16 17 18 19
Kemp
Neylandville
Wolfe 470
Eagleford 17,500 1560 530 60 1030 275 17,100 290 1095
Wills 25 60 70 115 70 35
Ozan 1370 975 620 11,310 20




Table 6-4 Sulfate concentration at 20 ft. depth for 6 geological formations

€0¢

Sulfate Concentration
Geologic
Formation 1 2 3 4 5 6 7 8 9 10
Kemp 100 2400 470 | 2430 18080 250 200 620 1170 15120
Neylandville | 710 450 315 840
Wolfe 60 620 625 775 335 1460 330 130 75 350
Eagleford 540 185 130 | 8080 750 18,450 19,620 15,260 9360 4200
Wills 510 20 200 675 510 20 400 350 5 200
Ozan 1130 | 16,000 | 280 290 17,400 16,760 950 115 17,110 16,700
Geological
Formation Sulfate Concentration (ppm)
11 12 13 14 15 16 17 18 19
Kemp
Neylandville
Wolfe 14100
Eagleford 7000 5530 14,050 75 2200 3340 16,000 1320 1005
Wills 15 40 250 230 20
Ozan 50 1100 570 17,300 1,015




6.3 Data Organization
The sulfate content results summarized in the above tables had to be organized
in the Cartersian coordinate system before performing spatial variability analysis. The
northing and easting of the boreholes were used as x and y coordinates. The sulfate
content value at a corresponding depth in a borehole was represented by z coordinate.
Table 6-5 provides the coordinates of Kemp formation at 15 ft. depth.

Table 6-5 Coordinates for Kemp formation at 15 feet depth

z-coordinate
Boring X—coor<?|inate Y-coordinate (Sulfate‘
(Easting) (Northing) Concentration)

B-007 -9641723 3221603 325
B-025 -9634307 3221148 1100
B-068 -9649225 3221794 215
B-069 -9635347 3221152 1360
B-070 -9634595 3221168 10000
B-094 -9641409 3221516 90
B-095 -9640995 3221472 220
B-096 -9639983 3221385 700
B-097 -9636216 3221141 850
B-180 -9639943 3221362 970

Similarly, the coordinates of all the sulfate concentration levels were determined

using the northing and easting of the boreholes data. The complete coordinate details of
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all the boreholes considered in this study at 5, 10, 15 and 20 ft. depths are provided in
Appendix C.
6.4 Statistical Analysis

Statistical analysis was performed on the sulfate concentrations (ppm) obtained
at all depths. This analysis will help in evaluating the basic statistical parameters and
supplement the geostatistical analysis attempted here. In this section, the statistical
analysis, comprised of histograms, evaluated the data for Gaussian distribution, ANOVA
test, Bartlett’s test, and Box-Cox transformations.
6.4.1 Histograms

Histograms were plotted for sulfate concentration observations at depths of 5, 10,
15, and 20 ft., respectively. The number of class intervals and bin size required to
construct a histogram were determined using Equations 3-1 and 3-2. Table 5-7 below
summarizes the number of class intervals and bin sizes determined for constructing
histograms for sulfate observations at these depths.

Table 6-6 Summary of parameters used to construct histograms

Number of
Depth Observations Bin Size
Class Intervals

5 75 7.18 2722
10 77 7.22 2540
15 75 7.18 2431
20 74 7.16 2431
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Histogram plots were constructed using the above parameters. Figures 6-3 to 6-6
provided the histogram plots for the sulfate concentration values determined at various
depths. The sulfate concentration values were plotted on x-axis and y-axis, and these
represented the frequency of the observations. The distribution of sulfate concentration in
all the plots was scattered with a maximum number of observations below 3,000 ppm at
all depths. However, in all plots there was a long tail of sulfate observations, indicating
positive skewness in the data. The standard deviation of sulfate values of various
regions ranged from 4285 to 6369, representing a large variability in the data values. The
high standard deviation values can be attributed to the large sulfate concentration values
obtained at all the depths. From the visual inspection of plots and standard deviation, the
sulfate values obtained at a depth of 15m provided least variability when compared to
sulfate values at depths of 5, 10 and 20 m, respectively. All the histogram plots depict the

exponential distribution of the data.
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Figure 6-3 Histogram plot sulfate concentration values at 5 ft. depth
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Figure 6-4 Histogram plot sulfate concentration values at 10 ft. depth
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Figure 6-6 Histogram plot sulfate concentration values at 20 ft. depth
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6.4.2 Check for Gaussian Distribution

From the earlier histogram plots, it was clear that the data values were not
Gaussian-distributed. In this section the data values are evaluated for Gaussian
distribution, using normal-quantile plots based on the framework discussed in Chapter 3.
As stated in Chapter 5, the Shapiro-Wilk test was not used due to the limited number of
observations for conducting this test.
6.4.2.1 Normal-Quantile plot

Normal-Quantile plots were constructed for the sulfate observations obtained at
all depths, as shown in Figures 6-7 to 6-10. At a particular depth, the theoretical quantiles
were calculated from corresponding sulfate concentration values, using Equation (3-3).
The theoretical quantile values were plotted on the y-axis, while the corresponding sulfate
concentration quantiles were plotted on the x-axis. Using the regression approach
method, a best fit trend line was modelled for the plotted data values. The coefficient of
determination was calculated using Equation 3-4 to measure the good fit of the trend line.
Table 6-7 below summarizes the coefficient of determination values obtained for all the
plots.

Table 6-7 Coefficient of determination for normal-quantile plots

Coefficient of
Depth (feet)
Determination (r*)

5 0.62
10 0.51
15 0.44
20 0.64
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Figure 6-7 Normal-Quantile plot for sulfate concentration values at 5 ft. depth
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Figure 6-8 Normal-Quantile plot for sulfate concentration values at 10 ft. depth
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Figure 6-9 Normal-Quantile plot for sulfate concentration values at 15 ft. depth
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Figure 6-10 Normal-Quantile plot for sulfate concentration values at 20 ft. depth
From all the normal-quantile plots, it is clearly evident that the data points do not
follow the linear trends. Also, the coefficient of determination was very low, signifying that
the data was not Gaussian-distributed. Most of the statistical tests, along with
geostatistics, performs well if the data is Gaussian-distributed. However, it might not
always be practically possible. In such cases, one way to approach it is by expressing the
data in different ways by using transformations, which are described in the following

section.
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6.5 Transformations

Transformation refers to expressing the same data in different terms. The key to
transformations is selecting the right transformation function. Transformations in general
can be used in various situations. However, in this study the transformations were
performed to check the Gaussian distribution in data, using new function and converting
the non-stationary data to stationary. It should be noted that by using the transformed
data, it is not guaranteed that the data will turn into Gaussian; however, if the data comes
close to a Gaussian distribution, it shall be employed.

In this study, the Box-Cox method was used to select the appropriate
transformation function. Using the function, an attempt was made, on all the sulfate
concentration data, to look for nearly-Gaussian behavior trends. The methodology of the
Box-Cox method is presented in Chapter 3. In this section, the results of the Box-Cox
method for the sulfate concentration values at various depths are discussed. For different
values of ‘N’, a new set of data was generated, using Equation 3-14. The error sum of
square values was determined from the corresponding data generated. Tables 6-8 to 6-
11 represent the error sum of squares determined for different values of ‘A’ for sulfate
concentration values at all depths. Corresponding graphs for ‘A’ versus error sum of
squares (SSg,) are presented in Figures 6-11 to 6-14.

From the plots, it is evident that the least error sum of squares for sulfate
concentrations at all depths was observed when A-value was equal to 0. For a A-value of
0, the corresponding transformation function to be applied is the natural logarithm (Ln).
The transformed data using the natural logarithmic (Ln) function at all depths is presented

in the Tables 6-12 to 6-15, which are considered for further analysis.
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Table 6-8 Box-Cox results for sulfate concentration values at 5 ft. depth

A SSe(A)
-1 1.5E+09
-0.75 4 8E+08
-0.5 1.9E+08
-0.25 1.06E+08
0 9.0E+07
0.25 1.3E+08
0.5 2.5E+08
0.75 6.5E+08
1 1.9E+09
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Figure 6-11 Box-Cox plot for selecting the most likelihood A-value at 5 ft. depth
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Table 6-9 Box-Cox results for sulfate concentration values at 10 ft. depth

A SSk(A)
-1 1118431700
075 298495738
-0.5 103531842.1
-0.25 54329432.25
0 47457890.4
0.25 74393532.09
0.5 162172368.3
0.75 443979352.9
1 1405685528
-1.5 -1 -0.5 0 0.5 1 1.5
2E+009 I ' 0 ' I ' | ' | ' | 2E+009
I I I I I [ [ [ [ [ [
= I I I I | | | | | [
I I I I I [ [ [ [ [ [
2E+009 | | | | | | | | | | | 2E+009
I I I I I [ [ [ [ [ [
I I I I I [ [ [ [ 4 [
I I I I I [ [ [ [ | [
- I I I I I [ [ [ [ i [
I I I I [ [ [ [ [ [
g | | { I I i i i i ’i i
Elj I | I I I [ [ [ [ [ [
) 8E+008 — ! | | I | I I I I I I —1 8E+008
» T T R R S R
| Vo [ [ | | | | | |
| A | | | | | | | |
O T T R H S B
4E+008 — | | M\ | | |, | | —14E+008
I I \ I I [ [ [ [ [ [
S I N I [ N [ [ A
I I e |4 [ [ [
0E+000 | ' | ' 7 — * | ‘ | ‘ | 0E+000
1.5 - 0.5 0 0.5 1 1.5
Lambda Value

Figure 6-12 Box-Cox plot for selecting the most likelihood A-value at 10 ft. depth
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Table 6-10 Box-Cox results for sulfate concentration values at 15 ft. depth

A SSE(A)
-1 301771635.9
-0.75 116510143.4
-0.5 53600335.12
-0.25 32336206.18
0 35697453.74
0.25 45410757.3
0.5 107161564.7
0.75 328212310.4
1 1166107458
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Figure 6-13 Box-Cox plot for selecting the most likelihood A-value at 15 ft. depth
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Table 6-11 Box-Cox results for sulfate concentration values at 20 ft. depth

A SSE(A)
-1 15377496368
-0.75 2397855141
-0.5 506858122.2
-0.25 178489623.3
0 127659026.1
0.25 172162368.2
0.5 341375780.8
0.75 839852497.5
1 2360400858
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Figure 6-14 Box-Cox plot for selecting the most likelihood A-value at 20 ft. depth
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Table 6-12 LN-Transformed Sulfate concentration values at 5 ft. depth

Geological Transformed Sulfate Observations
Formation 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 |14 |15 |16 | 17 | 18 | 19
Kemp 5275|7194 |77|56|47]7.0]72]|8.1
Neylandville 6.9 6345|641
Wolfe 711395730 |48|65(7.0[32(3.0|42|44|6.0
Eagleford 6.3/52[(49|90|66[98[99|96|91[83[89|86|96[43|77|81|97|72]6.9
Wills 56 147]140]/65|45|138|59|58/66|55|57[56[49|53|6.0
Ozan 70]97(56|57|98]97|69]47|97(97[39]70/6.3]9.8]6.9
Table 6-13 LN-Transformed Sulfate concentration values at 10 ft. depth
Transformed Sulfate Concentration
Geological
Formation
1 2 3 4 5 6 7 8 9 |10 11 |12 |13 |14 |15 |16 |17 |18 |19 |20 | 21
Kemp 56 (19.7|55]97|90|55|57 65|67 |7
Neylandville | 7.3 | 6.5 ]| 4.9 | 5.2
Wolfe 6616767 |70|53[46|93|47 /48| 4 |47 |57
Eagleford |62 |72|63|52|53|77|98|74|82|6 |68|70/96|96|87|6 |5 |5 |7 ]|6]7
Wills 50/40|/60|65|58[30[57|59|54| 4 |50]37|53[23]4.5
Ozan 79|170|56(53|71]73|66|47|78| 9 ]71]70]60]75]|3.2
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Table 6-14 LN-Transformed Sulfate concentration values at 15 ft. depth

Geological Transformed Sulfate Concentration values

Formation 1 2 3 4 5 6 7 8 9 (10| 11|12 |13 (14 |15 | 16 | 17 | 18 | 19
Kemp 58 |70(54|72|92]45|54|66|6.7]6.9

Neylandville 64|67 47|53

Wolfe 45|66 |66|69(62|71]|49|38|44[47 |62

Eagleford 71157497666 |71]97|65|97(82[98|74|63]41(69|56|97]57]70
Wills 5313452164 |59/34|65|54|30[56[32]41|42 474236
Ozan 73]70(56|53|71]72|65](46|73|97]72]69|64]93]3.0

Table 6-15 LN-Transformed Sulfate concentration values at 20 ft. depth

Geological Transformed Sulfate Concentration Values

Formation 1 2 3 4 5 6 7 8 9 |10 |11 12|13 |14 |15 |16 | 17 | 18 | 19
Kemp 46 |78|62|78]98|55|53[64|71|9.6

Neylandville 6.6 |6.1]58]6.7

Wolfe 4116416467 [58|73|/58[49[43]59/96

Eagleford 6.3152[49]90|66|98[99]96(91/83|89[86[96[43|77|81]97]72]|86.9
Wills 621305365 |62|30|6.0[59[16|53]|27[37]55|54]3.0
Ozan 70|97 5657|9897 |69|47]97|97|39|7.0|6.3]98]|6.9

The above transformed values represent the sulfate concentration values, which are expressed using natural logarithmic
function. Figures 6-15 to 6-18 represent the normal-quantile plots for the transformed data at all depths, comprised of 6 geological

formations.
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From the above plots, it can be observed that there is significant improvement in
the normal-quantile plots with transformed data. All the data points fall close to the
straight line. The coefficient of determination of the plots before and after the
transformation is given in below Table 6-16. From the results, it can be concluded that
the transformed data values depict Gaussian distribution behavior.

Table 6-16 Coefficient of determination for normal-quantile plots before and after

transformation
Before After
Depth (feet) | Transformation- | Transformation-
(') (r’)
5 0.62 0.96
10 0.51 0.97
15 0.44 0.90
20 0.64 0.95

6.6 Check for Stationarity
Stationarity in the data refers to constant mean and variance, with equal joint
probability distribution. In this case, stationarity refers to constant mean and variance in
sulfate concentration values determined at six geological formations, at different depths.
This was evaluated using the ANOVA test, Bartlett’s test, and experimental variogram. In
this section, the stationarity evaluated for the transformed data through ANOVA and

Bartlett’s test is discussed.

223



6.6.1 Check for Constant Mean

The constant mean of the sulfate concentration values obtained at different
depths were evaluated using the ANOVA test. The transformed sulfate concentration
values presented in Tables 6-12 to 6-15 were used for the analysis. In order to check for

constant mean, a hypothesis was constructed for the data, as shown below:

HO : Ukemp,depth = UWiIIs,depth = “neylandville,depth = uozan,depth = Ueagleford,depth = uwolfe,depth

H, : At least one mean is different

The statistic that was used to evaluate the above hypothesis is f;, which is the
ratio of mean square treatment to mean square error. This was compared to the critical
value at a significance level of 0.05. Tables 6-17 to 6-20 below provide the summary of

the ANOVA test results conducted for checking the constant mean in sulfate

concentration values at all depths.

Table 6-17 Summary of ANOVA results for sulfate concentrations at 5 ft. depth

Analysis of Variance
Source of
Variation Sum of Squares | DOF Mean Square fo
Treatment 104.4 5 20.8 8.4
Error 171.7 69 2.5
Total 276.1 74

*DOF = Degrees of freedom

Table 6-18 Summary of ANOVA results for sulfate concentrations at 10 ft. depth

Analysis of Variance
Source of
Variation Sum of Squares | DOF Mean Square fo
Treatment 53.0 5 10.6 4.89
Error 153.6 71 2.16
Total 206.6 76

*DOF = Degrees of freedom
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Table 6-19 Summary of ANOVA results for sulfate concentrations at 15 ft. depth

Analysis of Variance
Source of
Variation Sum of Squares | DOF Mean Square fo
Treatment 64.3 5 12.8 6.33
Error 140.1 69 2.0
Total 204.4 74

*DOF = Degrees of freedom

Table 6-20 Summary of ANOVA results for sulfate concentrations at 20 ft. depth

Analysis of Variance
Source of
Variation Sum of Squares | DOF Mean Square fo
Treatment 106.2 5 21.2 7.1
Error 203.0 68 2.98
Total 309.3 73

*DOF = Degrees of freedom

The statistic f, that was calculated for the sulfate values at various depths was
compared with associated critical values (fciy. The fo value was obtained using the f-
distribution table at a significance level (a) of 0.05 for different degrees of freedom. Due
to the close number of observations, the f;; value for all the cases was about 2.34. From
the results summarized in the above tables, it can be inferred that the transformed sulfate
concentration values obtained at all depths were greater than the critical values (i.e., 8.4
> 2.34; 4.89 > 2.34; 6.33 > 2.34; 7.11 > 2.34), resulting in unequal mean values. This

could be due to the high sulfate concentration values present in the Eagleford geological

formation.
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6.6.1.1 Model Adequacy Check

The above conclusion obtained from ANOVA test results is viable only if the basic
assumptions of the ANOVA model were satisfied. The assumptions were that the error
residuals were normally distributed and structureless. The residuals for the transformed
sulfate concentration values were calculated using the Equation 3.8. The true values in the
equation are the transformed sulfate concentration values, and the fitted values are the
mean values obtained for a particular geological formation at a specific depth. Tables 6-21
to 6-24 present the residual values calculated for all the sulfate concentration values at

different depths.
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Table 6-21 Residual values for sulfate concentration values at 5 ft. depth

Residuals
Geologic Formation
1 3 4 5 6 7 8 9 10
Kemp -1.8 02|24 |07 |-14|-22|00 |03 |11
Neylandville 0.9 -1.4 ] 0.2
Wolfe 22 110,08 |-19|-01 |16 |21 |-17]-19]-07
Eagleford -16|-27(1-30|11|-13| 19|20 |18 |13 | 05
Wills 02 |-07{-13|11|-09|-15] 05| 04 | 1.3 | 0.1
Ozan 05122 ]-19|-18| 23|22 |-06|-28| 22| 22
Geologic Formation Residuals
11 12 13 14 15 16 | 17 18 19
Kemp
Neylandville
Wolfe -05 | 11
Eagleford 10| 07 | 17 | 36 | 02 |02 |18 | -07 | 1.0
Wills 04 | 03 | -04 | -01| 0.7
Ozan -36 | -05 | -12 | 23 | -06
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Table 6-22 Residual values for sulfate concentration at depth 10 ft.

Geological Residuals

Formation 1 2 3 4 5 6 7 8 9 10
Kemp 45 | 26 | 16 | 26 | 19 | 16 | 1.4 | -06 | -04 | -0.1
Neylandville 1.3 0.5 -1.1 -0.8

Wolfe 08 | 08 | 09 | 11 | 05 | 12 | 34 | 11 | 1.0 | 20
Eagleford 08 | 02 | -07 | 18 | 17 | 07 | 28 | 04 | 12 | -07
Wills 02 | 08 | 11 | 17 | 09 | 19 | 09 | 11 | 06 | -02
Ozan 13 | 03 | 10 | 14 | 05 | 06 | 00 | 20 | 11 | 30
Geological Residuals

Formation ™™ > [ 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
Kemp

Neylandville

Wolfe -1.1 -0.1

Eagleford 02| 00 | 26 | 26 | 1.8 | 1.1 | 18 | 23 | 0.0 | -1.4 | 0.0
Wills 0.2 -1.2 0.4 -25 | -04

Ozan 05 | 03 | -06 | 08 | -34
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Table 6-23 Residual values for sulfate concentration at depth 15 ft.

Geological Formation Residuals
1 2 3 4 5 6 7 8 9 10
Kemp 07, 05|-11|,08 |27 |-20|-11] 01|03 | 04
Neylandville 06 | 09 | -1.1 | -04
Wolfe -11,109 |09 | 13|06 |15 |-07]|-18|-12]-1.0
Eagleford 00 |-14)|-22| 04 |-06]|-01]| 26 |-07|25] 11
Wills 071206 |17 |13 |-12| 18 | 08 |-16 ]| 1.0
Ozan 06 | 03 |-11]|-14| 04 | 05 |-02]|-21| 06 | 3.0
Geological Residuals
Formation 11 12 13 14 15 16 17 18 19
Kemp
Neylandville
Wolfe 0.5
Eagleford 26 02 | -09 | -30 | 02| -15 ]| 26 | -1.5 | -0.1
Wills -14 | 05 | -04 | 0.1 -04 | 1.1
Ozan 0.5 02 | -03 | 26 | -3.7
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Table 6-24 Residual values for sulfate concentration at depth 20 ft.

Geological Residuals
Formation 1 2 3 4 5 6 7 8 9 10
Kemp -24 | 08 | -09 | 0.8 28 | 15| 1.7 | -06 | 01 2.6
Neylandville 0.3 -0.2 | -0.5 04
Wolfe 20 | 03 0.3 06 | -03| 12 |-03]| 12| -18] -0.2
Eagleford -16 | 27 | -3.0 | 1.1 -1.3 | 1.9 2.0 1.8 1.3 0.5
Wills 16 | -1.6 | 0.7 1.9 16 | -16 | 14 1.2 | -3.0 | 0.7
Ozan 0522 |19 | 18] 23 22 | -06 | 28 | 2.2 2.2
Geological Residuals
Formation
11 12 13 14 15 16 17 18 19
Kemp
Neylandville
Wolfe 3.5
Eagleford 1.0 0.7 1.7 -3.6 02 | 02 | 18 | -0.7 | 1.0
Wills -1.9 -0.9 0.9 0.8 -1.6
Ozan -3.6 -05 | 1.2 2.3 -0.6

present the model adequacy plots.

The residual values presented above were used to validate the assumptions in the ANOVA model. Figures 6-11 to 6-14
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From the residual normality plots, it's evident that the residual values obtained at
all depths lie on a straight line, signifying that the data was normally distributed. The
coefficient of determination values obtained for all the plots were higher than 0.90,
depicting that the fitted model was appropriate. The residual values were also plotted
with the corresponding fitted/mean values to enable observation of the structure in the
residual values. In all the plots, the residuals most likely had the same variability,
depicting that there were no trends. Therefore, the conclusions obtained were validated,
resulting in unequal mean values in the data.

6.6.2 Check for constant variance

As a part of stationary requirement, the data had to have to equal variance’ In
this study, the transformed sulfate concentration values were used to evaluate for
stationary in the data. Bartlett’'s test was used to check for constant variance present in
the sulfate concentration values at all depths. This was performed by developing the
following hypothesis:

Ho : szemp = 02wi||s = ozneylandville = 02wo|fe = 02ozan = 02eagelford
H, : At least one variance is different

The above hypothesis was evaluated using the statistic expressed in Equation
3.9. The value obtained from the statistic was compared to the critical value obtained at a
significance value (a) 0.05. The chi-square distribution table was used to determine the
critical value. Tables 6-16 to 6-19 provide the summary of the results obtained from the

Bartlett’s test in evaluation of constant variance at all depths.
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Table 6-25 Summary of Bartlett's test results for sulfate values at 5 ft. depth

Parameter Result

q 1.18

c 1.04

Test Statistic (x5 = 2.3026 %) 2.61

Critical Region 9.49
X (2.61) < X critical (9.49)

Table 6-26 Summary of Bartlett’s test results for sulfate values at 10 ft. depth

Parameter Result

q 0.91

c 1.04

Test Statistic (x§ = 2.3026 7) 2.03

Critical Region 9.49
X7 (2.03) < X’ itical (9.49)

Table 6-27 Summary of Bartlett’s test results for sulfate values at 15 ft. depth

Parameter Result

q 2.03

c 1.04

Test Statistic (x5 = 2.3026 %) 4.48

Critical Region 9.49
X7 (4.48) < X qitical (9.49)
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Table 6-28 Summary of Bartlett’s test results for sulfate values at 20 ft. depth

Parameter Result

Q 2.97

C 1.04

Test Statistic (x5 = 2.3026 %) 6.55

Critical Region 9.49
X’ (6.55) < X’ itical (9-49)

From the results summarized in the above tables, it was observed that the test
statistic calculated was less than the critical value obtained at a significance level of 0.05.
This shows that the variances in all the formations at all depths are equal.

The stationarity in the transformed sulfate data was evaluated in this study using
the ANOVA test and Bartlett’s test for constant mean and variance. From the results and
discussions presented in Sections 6.6.1 and 6.6.2, it can be inferred that the sulfate data
didn’t have constant mean, but contained constant variance. This was expected, as the
sulfate concentration values in the Eagleford formation enhanced the mean value at all
the depths. The alternative hypothesis (H4) that was constructed for evaluating the
constant mean indicated that the mean value in the Eagleford formation was clearly
different from the rest of the mean values.

Therefore, from the results of the ANOVA test (Section 6.5.1), it can be
concluded that the data was non-stationary, but the results of the Bartlett’s test (Section
6.5.2) showed that the data was stationary. For further investigation, the stationarity in
the data was also evaluated using the variogram. It is assumed in this study that if at
least one method meets the requirement of stationarity, the spatial variability analysis can

be performed.
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6.7 Geostatistical Analysis

Geostatistical analysis is performed in this study to capture the variability in the
sulfate concentration values. In the earlier case studies, the raw data was used directly in
performing the analysis; however, in this case, the transformed data using natural
logarithm was used to conduct the analysis. Using this analysis, the spatial variability in
the sulfate concentrations at a particular depth in different geological formations was
modeled. The developed models were used for interpretation of sulfate concentration
values at unsampled locations.
6.7.1 Experimental Variograms

Variograms are a plot of variogram values with lag distance. The variogram
values were calculated using Equation 3-18. The variogram values were plotted on the y-
axis, with corresponding lag distance values on the x-axis. In this section, experimental
variograms were constructed using various grid parameters, so that the number of pairs
used in computing a variogram value was not less than 30. As seen in the previous
sections, the stationary conditions were not satisfied by conducting the ANOVA test and
Bartlett's test. The ANOVA test resulted in unequal mean values in the sulfate
concentration values. Therefore, the constructed variograms were not only used to
capture the variability, but also used to check the stationarity of the transformed data.
Figures 6-23 to 6-26 represent the experimental variograms constructed using the
transformed sulfate concentration data. Along with the experimental variogram plots, the
grid parameters used for constructing experimental variograms were also presented in

the figures.
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Figure 6-23 Experimental Variogram plot at 5 ft. depth
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Several trial and error procedures were adopted in the selection of the grid
parameters to construct the variogram plots. Due to the similar scale of variation in all the
sulfate concentration values at all depths, the same grid parameters were reflected in all
the variogram plots. It can be inferred from the plots, that the variogram values at all
depths increased with an increase in the lag distance. There was a sudden drop of
variogram values after lag distance of 15000m. Also, it can be inferred that the variogram
values are varying about the global variance value and there is no indication of trends
present in the data, as the variogram values are reaching to a definite sill with an
increase in lag distance. However, the variogram values in all the plots seemed to vary
within a short lag distance. This can be attributed to the high variability present in the
sulfate concentration values. In order to capture the spatial variability present in the
transformed sulfate concentrations, the semi-variogram value was normalized by the

global variance. This type of variogram is called standardized variogram.

1
2n(h)

SO 2 (x; + h) —z(x)]?

y(h) = (6.1)

SZ

In the standardized variogram, i.e., when the semi-variogram values are
normalized by the lag variance, the influence of the local means can be reduced. The
same result was reflected in the ANOVA test, that, at all the depths, the means were not
constant. However, by normalizing the variogram values, the varying local mean values
of sulfate concentration can be subsided. The standardized variogram plots were
constructed using the same grid parameters. Figures 6-27 to 6-30 present the

standardized variogram plots for the transformed sulfate concentration at all depths.
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Figure 6-28 Standardized variogram plot at 10 ft. depth
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Figure 6-29 Standardized variogram plot at 15 ft. depth
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Figure 6-30 Standardized variogram plot at 20 ft. depth
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The figures above represent the standardized variogram plots, where the
standardized variogram value was represented on the y-axis and the corresponding lag
distance on the x-axis. A significant improvement was observed in the variogram plot
after standardizing the variogram values. At all depths, the standardized variogram value
increased with an increase in the lag distance and reached a sill value. These plots were
used in further analysis for developing the spatial variability model.

6.7.2 Variogram Model

The standardized variogram plots constructed earlier were used to capture the
spatial variability present in the transformed sulfate concentration values. The different
models presented in Section 3.7.2 were used to model the spatial variability. The three
characteristics of a variogram plot (range, sill, and nugget) were modeled in this section.
It was observed that at a lag distance of ‘0,’ the variogram values in all the plots were not
equal to zero, depicting the nugget effect present in the sulfate concentration values.

Several models such as Gaussian, spherical, and exponential were used to
reflect the variability present in the data. Of all the models, the exponential function
depicted the best model that can be ascribed to the data. Figures 6-31 to 6-34 present
the spatial variability models that were developed for sulfate concentration values

obtained at all depths.

246



YAL4
Standardized Variogram

Standardized Variogram model for transformed
sulfate concentration at 5 feet Depth
Direction: 0.0 Tolerance: 90.0

4952

0
0

5000 10000 15000 20000 25000 30000 35000
Lag Distance

Variogram model at 5 feet depth:

e Model : Nugget effect + Exponential
e Nugget (Co) : 0.5

e Scale(C):0.7

e Range/ Length (A) : 8000

Theoretical Equation:

Yy (h)=Cy+ C[1-exp (-h/a)] forh>0

Model Equation :

vy (h) = 0.5+ 0.7 [ 1- exp (-h/8000)] for h > 0

Figure 6-31 Standardized Variogram model at 5 ft. depth




81¢

Standardized Variogram

2.5

Standardized Variogram model for transformed
sulfate concentration at 10 feet Depth

Direction: 0.0 Tolerance: 90.0

Variogram model at 10 feet depth:

e Model : Nugget effect + Exponential
¢ Nugget (Cy) : 0.3

e Scale(C):1.0

e Range/ Length (A) : 8500

Theoretical Equation:

y (h)=Co + C[1-exp (-h/a)] forh >0

Model Equation :

y (h) = 0.3 + 1.0 [ 1- exp (-h/8500)] for h > 0

0
0

5000 10000 15000 20000 25000 30000 35000
Lag Distance

Figure 6-32 Standardized Variogram model at 10 ft. depth
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Figure 6-33 Standardized Variogram model at 15 ft. depth
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Figure 6-34 Standardized Variogram model at 20 ft. depth



The exponential function, along with the nugget effect, was considered In order
to model the spatial variability in sulfate concentrations in different models. The nugget
effect, which is an interception of the variogram curve towards the y-axis, varied from
0.05 to 0.5. The range, i.e., spatial correlation distance obtained through the experimental
variogram plot, varied from 4100-8500. This range value was too high, due to the limited
observations obtained at larger intervals with larger variability. The influence of the
neighboring values around the unsampled location was determined using the exponential
and nugget models.

6.7.3 Kriging Analysis

Kriging analysis was performed to predict the sulfate concentrations at unknown
locations. The spatial variability models developed at different depths in the earlier
section were used along with kriging algorithm. The predictions obtained were produced
in the form of a contour map, as shown in Figures 6-35 to 6-38. The grid parameters that
were used to produce the contour maps for all the depths were kept the same, and these
details are presented in Table 6-29 below.

Table 6-29 Grid parameters selected for kriging analysis

Parameters selected
Depth 5 10 15 20
Maximum lag distance 35000 35000 37000 35000
Angular divisions 180 180 180 180
Radial divisions 100 100 100 100
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The above plots provide the sulfate concentrations at different depths. The color
scale of the contour maps indicates sulfate concentration in parts per million (ppm). The
color scale is kept constant, so that the location of the high sulfate content at any depth
can be easily identified. The x-axis in the contour map indicates Northing and y-axis
indicates Easting. The black rectangular boxes indicate the boreholes conducted along
the new proposed pipeline.

Due to the limited number of observations and correlation distance specified in
the model, the sulfate concentrations, after a certain distance, remain constant. In the
contour map produced at 5 ft. depth, it can be observed that high sulfate concentrations
are present in Eagleford and Wolfe formations, which are highlighted in red rectangular
boxes. In the contour map produced at 10 ft. depth, high sulfate concentrations are
observed at Eagleford and Kemp formations.

At a 15 ft. depth, only a few locations in the Eagleford formation have high sulfate
concentrations. This is in accordance with the results obtained from the histograms,
where the maximum number of observations was well below 3000 ppm of sulfate content.
From the contour map produced at a 20 ft. depth, it can be observed that the high sulfate
concentration is present at Eagleford, Wolfe and Kemp geological formations. In order to
check the appropriateness of the prediction maps produced using the kriging analysis,
and in accordance with variability models, the cross-validation technique was performed.
6.7.4 Cross Validation

In the process of cross validation, the sulfate concentration values at different
locations were deleted and the contour maps were produced, again using the developed
spatial variability model. From the contour maps produced, using the digitization tool
available in the surfer software, the predicted values were determined. The predicted

values were compared with the original values. Thus, the effectiveness of the spatial
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variability model is was validated. Figures 6-39 to 6-42 represent the cross-validation

contour maps.
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Figure 6-39 Cross validation map at 5 ft. depth

The rectangular white boxes represent the locations of the deleted data. Using the digitize tool, the sulfate concentrations
at the deleted locations from the new contour maps were determined and compared to the original data. Table 6-30 and Figure 6-

40 present the results of the sulfate concentration values.



Table 6-30 Comparison of actual and predicted sulfate concentration values

S.no | Actual Values (ppm) | Predicted Values (ppm)
1 315 370
2 280 305
3 1200 998
4 1270 990
5 4200 5100
6 1130 1200
7 975 950
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Figure 6-40 Comparison of actual and predicted sulfate concentrations at 5 ft. depth
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Figure 6-41 Cross validation map at 10 ft. depth

Table 6-31 and Figure 6-42 present the results of the sulfate concentration values at 10 ft. depth for evaluating the

appropriateness of the model developed.



Table 6-31 Comparison of actual and predicted sulfate concentration values

S.no | Actual Values (ppm) | Predicted Values (ppm)
1 380 399
2 200 252
3 750 683
4 255 308
5 1050 974
6 2820 1914
7 1500 997
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Figure 6-42 Comparison of actual and predicted sulfate concentrations at 10ft. depth
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Figure 6-43 Cross validation map at 15 ft. depth

Table 6-32 and Figure 6-44 present the results of the sulfate concentration values at a 15 ft. depth for evaluating the

appropriateness of the model developed.



Table 6-32 Comparison of actual and predicted sulfate concentration values

S.no | Actual Values (ppm) | Predicted Values (ppm)
1 220 280
2 70 130
3 90 177
4 215 277
5 3800 1900
6 1500 1200
7 605 565
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4000 T I T I I 4000
| |— — Standard Deviation , |
- —— 45 Degrees Line s
£
Qo /7
£ 3000 — — 3000
c v
i) 4
q:) /
o 7/
g 7/
& 2000 — , / , — 2000
3 ’ ’
8 7/ 4
S s 4 -
(/2] v e
3 .
[$]
5 1000 — — 1000
o ’
o ’
L 7/ _
Ve
0 1 I Zl I I 0
0 1000 2000 3000 4000

Actual Sulfate Concentration (ppm)

Figure 6-44 Comparison of actual and predicted sulfate concentrations at 15 ft. depth
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Figure 6-45 Cross validation map at 20 ft. depth

Table 6-33 and Figure 6-46 present the results of the sulfate concentration values at 20 ft. depth for evaluating the

appropriateness of the model developed.



Table 6-33 Comparison of actual and predicted sulfate concentration values

S.no | Actual Values (ppm) | Predicted Values (ppm)
1 350 390
2 250 210
3 60 180
4 470 590
5 4200 5800
6 1130 1220
7 710 920
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Figure 6-46 Comparison of actual and predicted sulfate concentrations at 20 ft. depth
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Figures 6-39 to 6-46 presented above represent the cross-validation maps and
comparison of actual and predicted values using a 45 degree line plot. In the 45 degree
line plot, the actual values were plotted on the x-axis and the predicted values on the y-
axis. If the actual and predicted values are the same, they should fall on the 45 degree
line. The comparison plots depict that most of the predicted values are close to the 45
degree line. However, at high sulfate concentrations, the predictions are either close to or
outside the 1-standard deviation line. This is because of the large variability in short
distances in the actual data. However, most of the points fall close to the 45 degree line,
indicating the spatial variability models developed are appropriate.

6.8 Summary

The presence of high sulfates in soils is becoming a huge concern to civil
infrastructure in projects that require ground improvement tasks with calcium-based
stabilizer treatments. Keeping in mind the sulfate heaving mechanism, a comprehensive
laboratory study was conducted to determine sulfates present in the soils at different
depths for a pipeline project. The sulfate concentrations obtained were used to conduct
the spatial variability analysis. The spatial variability models were developed by
constructing standardized variograms. The kriging analysis was performed to determine
the sulfate concentration at unsampled locations. Below are some of the findings of this
study.

o The framework developed in Chapter 3 was validated by predicting the sulfate
concentration at unsampled locations.
o The spatial variability present in the sulfate concentration values was modelled

using the nugget and exponential functions.
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The spatial correlation distance obtained in this study for sulfate concentration
ranged from 4100 to 8500. The high correlation distance was obtained due to
limited bore holes available at large distances.

The natural logarithmic transformation function implemented in this study
successfully transformed the non-Gaussian data to Gaussian.

In order to reduce the effect of the locally varying means, the standardization of

variogram values seems appropriate.
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Chapter 7
Summary, Conclusions and Recommendations
7.1 Summary and Conclusions

The variability present in soil properties is a growing concern to geotechnical
engineers. The variability studies are often confined to textbooks, where limited
information is provided on how to incorporate the variability in analyzing the soil
properties. In this research, an attempt was made to provide a framework for
incorporating the spatial variability present in soil properties into prediction analysis. The
framework developed was validated by analyzing three different soil properties in the
different studies.

In Chapter 4, spatial variability analysis was performed on the natural soils,
where the friction angle parameter of soils was evaluated from the CPTU test data. The
CPTU data was obtained as a part of an exploration program for a national highway
project conducted in China. Data from five CPTU bore holes was considered for the
analysis. The soil classification was performed on the CPTU data, and it was observed
that the subsurface profile was predominantly silty sand soils.

The friction angle parameter of silty sand soils was interpreted and utilized for
evaluating the statistical characteristics and spatial variability analysis. The friction angle
values followed the normal distribution, which was evaluated by employing the Shapiro-
Wilk test and normal-quantile plots. The spatial variability analysis was performed in
accordance with the framework developed in Chapter 3. It was observed that the friction
angle values followed an exponential model with non-linear behavior. With distance, the
exponential model reached an asymptotic value, indicating that the friction angle values

were widely dissimilar at a spatial correlation distance ranging from 2.6 m to 4.3 m. This
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explains the variability of friction angle values in a vertical direction, indicating that the
stratification of the soil layers is necessary after a distance of 4.3 m.

The kriging analysis performed, using the spatial variability models, provided the
unbiased estimates of the friction angle values. The predictions were validated using the
cross-validation technique. It was shown that geostatistics can effectively work with fewer
bore holes, optimizing the project costs. This concludes that the framework developed
was successful in incorporating the spatial variability present in the natural soils in the
prediction analysis.

In Chapter 5, spatial variability analysis was performed on the stiffness
measurements of the pipeline bedding material. The CLSM was used as a bedding
material, which was prepared using a native high plasticity soil. The stiffness
measurements were obtained after a curing period of 1, 3, 7, 14 and 28 days,
respectively, using the SASW non-destructive method. In this study, geostatistics was
used to study the variation of stiffness measurements with time.

The statistical distributions of the stiffness measurements were more likely
normally distributed. The spatial variability analysis conducted in accordance with
Chapter 3 revealed that the spatial correlation distance increased from 8m to 24m, with
an increase in the curing period. The kriging maps produced, using the spatial variability
models, depict the uniform stiffness development on all days. Therefore, it can be
concluded that the CLSM prepared using native high plasticity soil can be effectively
used as bedding material for pipelines.

In Chapter 6, spatial variability analysis was performed on the sulfate
concentrations present in the soils. When sulfates present in the soils react with calcium-
based stabilizers, the soil behaves as an expansive soil, which causes distress to the civil

infrastructure. In this study, sulfates concentrations present in soils, along the pipeline
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alignment, were determined using the modified UTA method. Geostatistics was used in
this study to perform the spatial variability modeling and to provide the distribution of
sulfates at unsampled locations.

The statistical distributions of the sulfate concentrations revealed an exponential
trend present in the values, which explains a large scatter present in the sulfate
concentration values. This created a limitation on using the geostatistical modeling.
However, this problem was approached by transforming the data, using the Box-Cox
transformations method. The spatial variability analysis conducted on the transformed
data reflects the non-linear behavior in the spatial correlation distance, which ranged from
4100 to 8500. The exponential function, along with nugget effect, were used to model the
spatial variability present in the sulfate concentrations. This is because, the exponential
function describes the non-linear behavior, and the nugget effect captures the large
variation in short scale measurements. Through this, the sulfate contour maps were
produced, using kriging analysis in all six geologic formations, which will be helpful in
determining the stabilizer concentrations for ground improvement works.

The above three geostatistical studies presented in Chapters 4, 5 and 6
evaluated the variability present in the in-situ soil properties in field conditions using
geostatistics. Kriging was comprehensively used, along with the variogram models, which
effectively dealt with the properties having low and high variability. The framework
developed successfully incorporated the spatial variability present into the in-situ soil
properties in prediction analysis.

7.2 Limitations of the Framework
The framework developed in Chapter 3 was successful in analyzing the spatial

variability present in soil properties. This can be used with any field in-situ properties to
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model the variability and to perform predictions. However, there are few limitations that
need to be considered before ascertaining the results:

e The assumption of Gaussian distribution is highly inappropriate for performing
geostatistical analysis using the developed framework.

o The Box-Cox transformation cannot be used for transforming both non-gaussian
and non-stationary data.

e The minimum number of pairs needed for computing the variogram value is 30.

e The stationarity of the data should be evaluated before performing the
geostatistical analysis. The non-stationarity in the data could lead to biased
predictions.

e The quality and quantity of the data that is being considered for the analysis is
extremely important. Using the raw field properties is more efficient than using
the data from empirical correlations.

7.3 Recommendations for Future Research

With careful consideration of the limitations mentioned earlier, the framework
developed can be extended to the analysis of different parameters in geotechnical
engineering. The spatial variability models can be developed for different soil properties
for performing prediction analysis. In this study, the predictions were performed based on
spatial distance between the observations. However, this analysis framework can be
extended to performing spatio-temporal analysis, i.e., the models can be developed with
respect to distance and another variable time. The spatio-temporal modeling facilitates
understanding of the behavior of properties with distance and time. Also, comprehensive
reliability and risk assessment studies can be studied, based on the prediction results

obtained from the spatial variability analysis.
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Appendix A
Spatial Variability Analysis of Natural Soil Properties Evaluated from

Cone Penetration Test Data (CPTU)
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Cone Penetration Test Layout and Profiles for all the Bore Holes from China
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CPTU test parameters in bore hole 2:
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CPTU test parameters in bore hole 9:
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CPTU test parameters in bore hole 10:
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CPTU test parameters in bore hole 11:
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CPTU test parameters in bore hole 12:
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CPTU test parameters in bore hole 13:
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CPTU test parameters in bore hole 14:
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CPTU test parameters in bore hole 16:
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CPTU test parameters in bore hole 17:
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Determination of Friction Angle Values for All CPTU Profiles

CPTU 1

CPTU -2

CPTU -13

Layer . Depth (M) | Thickness Friction
Soil (m) Angle (Degrees)
From | To
1 SM- MS 0 2.2 2.2 40.7
2 MS-ML | 2.2 5.2 3 34.4
3 MS-ML | 52 | 8.3 3.1 37.4
4 SP-SM | 8.3 10 1.7 39.1
5 SM-MS | 10 | 11.6 1.6 36.6
6 SM-MS | 11.6 | 14.3 2.7 37.5
7 SP-SM | 14.3 | 16 1.7 38.8
8 SM-MS | 16 19 3 37.3
Depth (m) g
Layer Soil Thickness (m) A IFn%'On
From | To ngle (Degrees
1 SM-MS 0 1 1 36.7
2 Clay 1 14 0.4 34.9
3 SM-MS | 14 | 46 3.2 38.6
4 SP-SM | 46 | 7.6 3 39.5
5 MS-ML | 76 | 9.6 2 35.2
6 SP-SM | 96 | 118 2.2 37.6
7 SP-SM | 11.8 | 13 1.2 39.3
8 SP-SM 13 21 8 37.3
: Depth (m) . Friction
Layer Sall From | To Thickness (m) Angle (Degrees)
1 SM-MS 0 5.3 5.3 38.7
2 SP-SM | 53 | 7.3 2 40.8
3 SM-MS | 73 | 94 21 37.4
4 SM-MS | 94 | 117 23 37.6
5 SM-MS | 11.7 | 15.7 4 35.8
6 SP-SM | 15.7 | 17.8 21 39.3
7 SM-MS | 17.8 | 19.5 1.7 37.6
8 SM-MS | 19.5 | 21 1.5 38.5
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CPTU-11

CPTU -17

Depth (m)
Layer Soil Thickness | Friction Angle
(m) (Degrees)
From | To
1 SM-MS 0 5.2 5.2 39.3
2 SM-MS | 52 |74 2.2 38
3 SP-SM | 74 |92 1.8 39.2
4 Clay 9.2 |97 1.3 291
5 SM-MS | 9.7 | 20 10.3 37.7
Layer Soil Depth (m) | Thickness (m) Anglzr(igciaogr:'ees)
1 SM-MS | From | To 25 41.6
2 ML 25 | 45 2 33.9
3 SM-MS | 45 | 55 37.0
4 Clay 55 | 76 21 27.7
5 SM-MS | 7.6 | 10.5 29 36.7
6 SP-SM | 10.5 | 16.4 5.9 38.2
7 Clay 16.4 | 17.9 1.5 31.
8 SP-SM | 17.9 | 19.2 1.3 38.1
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Assigning the Coordinates to CPTU Layers for Predicting the Friction Angle

Values along the Profile:

CPTU 1 CPTU 2 CPTU 13 CPTU 11 CPTU 17
5 0 39 | 25 0 37 | 55 0 39190 | 0 |39] 100 0 41
5| 22 | 39|25 1 37 | 55| 53 | 39|90 |52 38| 100 | 25 | 41
5|52 |34 |25| 14 |[35|55| 73 |41]90]|74|39|100 | 45 | 34
5183 |37 25| 46 |39 55| 94 | 3790|9229 |100 | 55 | 37
5| 10 |30 | 25| 76 |39 |55 | 117 |37 |90 |97 |37 100 | 7.6 | 28
5/116 |36 | 25| 96 | 35|55 | 15.7 | 35 100 | 10.5 | 37
5143 |37 | 25| 11.8 | 37 | 55 | 17.8 | 39 100 | 16.4 | 38
5| 16 |38 25| 13 |39 |55 | 195 | 37 100 | 17.9 | 31
5] 19 |37 25| 21 |37 |55 21 | 38 100 | 19.2 | 37
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Appendix B

Spatial Variability Analysis of Man-Made Treated Soils
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Coordinates for Spatial Variability Analysis

Day 1 Stiffness Measurements:

Test

Secti

Test

Section . X Y z . X Y z

point on point

A 25 | 20,62 A 260 | 20.62

B 25 | 22.22 | 264.4 B 260 | 22.22 | 301.9
1066 | C 25| 25[2381] | 971 [C 260 | 25 251.8

D 25 | 27.78 | 281.1 D 260 | 27.78 | 274.6

E 25 | 29.38 E 260 | 29.38

A 60 | 20.62 A 290 | 20.62

B 60 | 22.22 | 330.3 B 290 | 22.22 | 265.1
107 [c 60| 25[2544 | 971 [ 290 | 252478

D 60 | 27.78 | 261.0 D 290 | 27.78 | 273.2

E 60 | 29.38 E 290 | 29.38

A 90 | 20.62 A 325 | 20.62

B 90 | 22.22 | 2453 B 325 | 22.02 | 217.7
197 [c 90| 25[3087] | "I c 325 | 252486

D 90 | 27.78 | 270.7 D 325 | 27.78 | 273.4

E 90 | 29.38 E 325 | 29.38

A 125 | 20.62 A 360 | 20.62

B 125 | 22.22 | 250.9 B 360 | 22.02 | 280.2
1908 [c 125 252529 | 9% [C 360 | 25| 254.3

D 125 | 27.78 D 360 | 27.78 | 244.4

E 125 | 29.38 E 360 | 29.38

A 160 | 20.62 A 390 | 20.62

B 160 | 22.22 | 250.9 B 390 | 22.02 | 270.4
190 [c 160 | 252505 | 9% [C 390 | 25 256.0

D 160 | 27.78 | 2975 D 390 | 27.78 | 319.0

E 160 | 29.38 E 390 | 29.38

A 190 | 20.62 A 410 | 20.62

B 190 | 22.22 | 252.8 B 410 | 22.22 | 3652
19 [c 190 | 252566 | 97 [C 410 | 252479

D 190 | 27.78 | 2445 D 410 | 27.78 | 260.1

E 190 | 29.38 E 410 | 29.38

A 210 | 20.62 A 475 | 20.62

B 210 | 22.22 | 2611 B 475 | 22.22 | 312.2
1070 [c 210 25[2589] | 9% [C 475| 252515

D 210 | 27.78 | 294.7 D 475 | 27.78 | 292.7

E 210 | 29.38 E 475 | 29.38

A 225 | 20.62

B 225 | 22.22 | 202.2
1970- I'c 225 25| 251.0

D 225 | 27.78 | 275.4

E 225 | 29.38
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Day 3 Stiffness Measurements

291

Te
Section Te_st Section St.
point poi
X Y z | X | v z
A 25 | 20.62 | 2765 A | 2602062 2438
B 25 (2022 2751 | ... [B | 26020222733
1066 | C 25 252727 1" [C | 260 252558
D 25 | 27.78 | 289.1 D | 260 27.78 | 304.6
E 25 29.38 | 271.9 E | 260 29.38 | 256.3
A 60 | 20.62 | 2714 A | 290 | 2062 | 2438
B 60 | 22.22 | 303.3 B | 290 | 22.22 | 273.3
1‘1%7' C 60| 252668 1%1' C | 200| 25]|2558
D 60 | 27.78 | 261.0 D | 290 | 27.78 | 304.6
E 60 | 29.38 | 256.7 E | 290 | 29.38 | 256.3
A 90 | 20.62 | 2858 A | 3252062 | 275.8
B 90 | 22.22 | 2743 B | 32522222600
1%%7' C 90| 25| 300 1%752' C | 325| 252937
D 90 | 27.78 | 346.0 D | 325]|27.78 | 276.6
E 90 | 29.38 | 274.6 E | 325 29.38 | 2554
A 125 | 20.62 | 251.0 A | 36020622174
B 125 | 22.22 | 257.6 B | 360 | 22.22 | 290.8
1%%8' C 125| 25 282.3 1%3' C | 360| 25] 28509
D 125 | 27.78 | 274.7 D | 360 27.78 | 270.4
E 125 | 29.38 | 252.6 E | 360 | 29.38 | 298.0
A 160 | 20.62 | 261.8 A | 390 | 2062 2585
B 160 | 22.22 | 253.8 B | 390 | 22.22 | 277.5
1‘1%9' C 160 | 25 330.6 1%3' C | 390| 25]2800
D 160 | 27.78 | 297.5 D | 390 | 27.78 | 300.7
E 160 | 29.38 | 232.9 E | 390 | 29.38 | 269.0
A 190 | 20.62 | 307.8 A | 410 | 2062 | 310.9
B 190 | 22.22 | 291.3 B | 410 | 22.22 | 2871
1%%9' C 100 | 252934 1%4' C | 410| 25]2793
D 190 | 27.78 | 260.1 D | 410 | 27.78 | 275.0
E 190 | 29.38 | 273.3 E | 410 29.38 | 264.4
A 210 | 20.62 | 293.9 A | 4752062 | 2585
B 210 | 22.22 | 2611 B | 475 2222 | 277.5
1%0' C 210 | 252612 1%755' C | 475| 25]2800
D 210 | 27.78 | 294.7 D | 475 27.78 | 300.7
E 210 | 29.38 | 276.2 E | 475] 29.38 | 269.0
A 225 | 20.62 | 2761
B 225 | 22.22 | 268.7
1%20‘ C 225 252754
D 225 | 27.78 | 275.0
E 225 | 29.38 | 264.5




Day 7 Stiffness measurements

Section Te_st Section Te_st
point X Y Z point | X Y Z
A 25 | 20.62 | 327.0 A 260 | 20.62 | 294.3
B 25 | 22.22 | 320.3 B 260 | 22.22 | 3185
1066 | C 25| 253242 1%1' C 260 | 25| 307.4
D 25 | 27.78 | 329.8 D 260 | 27.78 | 345.3
E 25 | 29.38 | 319.8 E 260 | 29.38 | 304.2
A 60 | 20.62 | 321.9 A 290 | 20.62 | 294.3
B 60 | 22.22 | 359.8 B 290 | 22.22 | 318.5
1(1%7' C 60| 253183 13701' C | 200| 25|3074
D 60 | 27.78 | 281.2 D 290 | 27.78 | 345.3
E 60 | 29.38 | 304.6 E 290 | 29.38 | 304.2
A 90 | 20.62 | 336.3 A 325 | 20.62 | 326.3
B 90 | 22.22 | 3195 B 325 | 22.22 | 305.2
13%7' C 90 25 | 329.4 1%752' C 325 25 | 335.2
D 90 | 27.78 | 386.7 D 325 | 27.78 | 317.3
E 90 | 29.38 | 322.5 E 325 | 29.38 | 303.2
A 125 | 20.62 | 301.4 A 360 | 20.62 | 267.9
B 125 | 22.22 | 302.8 B 360 | 22.22 | 316.0
12658' C 125 25 | 333.9 1%3' C 360 25 | 307.5
D 125 | 27.78 | 295.4 D 360 | 27.78 | 291.1
E 125 | 29.38 | 300.5 E 360 | 29.38 | 345.9
A 160 | 20.62 | 312.3 A 390 | 20.62 | 309.0
B 160 | 22.22 | 299.0 B 390 | 22.22 | 312.7
1(1%9' C 160 25 | 382.1 1%3' C 390 25 | 331.6
D 160 | 27.78 | 345.8 D 390 | 27.78 | 3414
E 160 | 29.38 | 280.8 E 390 | 29.38 | 316.9
A 190 | 20.62 | 358.2 A 410 | 20.62 | 361.3
B 190 | 22.22 | 336.5 B 410 | 22.22 | 332.3
13%9' C 190 25 | 344.9 1%4' C 410 25 | 310.8
D 190 | 27.78 | 300.8 D 410 | 27.78 | 315.7
E 190 | 29.38 | 321.1 E 410 | 29.38 | 312.2
A 210 | 20.62 | 344.4 A 475 | 20.62 | 309.0
B 210 | 22.22 | 301.6 B 475 | 22.22 | 312.7
1%0' C 210 | 25] 3128 1%5' C  |475| 25|3316
D 210 | 27.78 | 317.5 D 475 | 27.78 | 341.4
E 210 | 29.38 | 324.1 E 475 | 29.38 | 316.9
A 225 | 20.62 | 326.6
B 225 | 22.22 | 313.9
1%750' C 225 25 | 327.0
D 225 | 27.78 | 335.7
E 225 | 29.38 | 312.4
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Day 14 Stiffness Measurements

Section Tgst Section Tgst
point X Y Z point X Y Z
A 25 | 20.62 | 3984 A 260 | 20.62 | 3594
B 25 | 22.22 | 388.0 B 260 | 22.22 | 366.9
1066 | C 25| 253988 |1071-10 | C 260 | 25| 400.0
D 25 | 27.78 | 3865 D 260 | 27.78 | 396.8
E 25 | 29.38 | 3911 E 260 | 29.38 | 428.0
A 60 | 20.62 | 370.0 A 290 | 20.62 | 359.4
(o7, | B 60 | 22.22 | 398.3 B 290 | 22.22 | 366.9
2%‘ C 60| 253737 |1071-40 [ C 290 | 25| 380.0
D 60 | 27.78 | 397.9 D 290 | 27.78 | 366.8
E 60 | 29.38 | 3414 E 290 | 29.38 | 378.0
A 90 | 20.62 | 3953 A 325 | 20.62 | 3775
B 90 | 22.22 | 408.3 B 325 | 22.22 | 394.8
1%%7' C 90| 253714 |1072:25[C 325| 253853
D 90 | 27.78 | 410.1 D 325 | 27.78 | 379.6
E 90 | 29.38 | 389.1 E 325 | 29.38 | 4152
A 125 | 20.62 | 372.1 A 360 | 20.62 | 368.5
B 125 | 22.22 | 3671 B 360 | 22.22 | 383.9
102658' C 125| 253829 | 1073-10 | C 360 | 25 3573
D 125 | 27.78 | 347.5 D 360 | 27.78 | 399.1
E 125 | 29.38 | 390.5 E 360 | 29.38 | 386.9
A 160 | 20.62 | 387.7 A 390 | 20.62 | 383.8
B 160 | 22.22 | 389.3 B 390 | 22.22 | 3814
12%9' C 160 | 25| 418.7 | | 1073-40 | C 390 | 25 3994
D 160 | 27.78 | 393.7 D 390 | 27.78 | 3814
E 160 | 29.38 | 423.1 E 390 | 29.38 | 406.8
A 190 | 20.62 | 397.0 A 410 | 20.62 | 396.2
1 B 190 | 22.22 | 415.5 B 410 | 22.22 | 399.6
3%9' C 100 | 25| 400.8 | | 1074-10 | C 410 | 253625
D 190 | 27.78 | 388.9 D 410 | 27.78 | 360.0
E 190 | 29.38 | 392.8 E 410 | 29.38 | 404.4
A 210 | 20.62 | 3905 A 475 | 20.62 | 3838
070, | B 210 | 22.22 | 393.6 B 475 | 22.22 | 3714
e 210 | 253991 | | 1075-25 [ C 475 | 253694
D 210 | 27.78 | 397 1 D 475 | 27.78 | 4014
E 210 | 29.38 | 407.3 E 475 | 29.38 | 416.8
A 225 | 20.62 | 361.9
B 225 | 22.22 | 356.0
1%20‘ C 225 | 254073
D 225 | 27.78 | 380.7
E 225 | 29.38 | 386.0
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Day 28 Stiffness Measurements

Section Te_st Section Te_st
point | X Y Z point | X Y Z
A 25 2062 | 4323 A | 260 | 20.62 | 4246
B 25 2222 | 4659 jo71. B 260 | 22.22 | 414.2
1066 | C 25| 25| 4587 1" [C 260 25[4532
D 25 27.78 | 4475 D | 260 | 27.78 | 440.8
E 25| 2938 | 4324 E 260 | 29.38 | 420.9
A 60 | 20.62 | 417.7 A | 290 | 20.62 | 424.6
B 60 | 2222 | 463.1 B 200 | 22.22 | 414.2
12%7' C 60| 25| 414.1 1%1' C 200 | 25| 4132
D 60 | 27.78 | 460.1 D | 290 | 27.78 | 440.8
E 60 | 29.38 | 408.6 E 290 | 29.38 | 420.9
A 90 | 20.62 | 473.7 A 325 [ 20.62 | 461.9
B 90 | 2222 | 4559 B 325 | 22.22 | 457.7
13%7‘ C 90 | 25| 436.8 12752' C 325 | 254198
D 90 | 27.78 | 450.7 D 325 | 27.78 | 432.7
E 90 | 29.38 | 470.1 E 325 | 29.38 | 4615
A | 125 2062 | 4555 A 360 | 20.62 | 419.4
B | 125 2222 | 4076 B 360 | 22.22 | 4385
1%658' C  |125| 25| 4373 1%3' C 360 | 25 | 428.8
D | 125]| 27.78 | 4102 D 360 | 27.78 | 429.9
E | 125 2938 | 4450 E 360 | 29.38 | 418.2
A 160 | 2062 | 4422 A 390 | 20.62 | 456.4
B | 160 | 2222 | 421.0 B 390 | 22.22 | 458.7
1(1%9' C 160 25| 4406 1%3' C 390 | 25 4425
D | 160 | 27.78 | 4175 D 390 | 27.78 | 4705
E | 160 | 29.38 | 4401 E 390 | 29.38 | 465.2
A 190 | 20.62 | 420.0 A | 410 | 20.62 | 4495
B | 190 | 2222 | 4550 B 410 | 22.22 | 4782
13%9' C  [190]| 25| 4430 1%4' C (410 254202
D | 190 | 27.78 | 4543 D | 410 | 27.78 | 468.1
E | 190 | 2938 | 4276 E 410 | 29.38 | 449.9
A 210 | 2062 | 4347 A | 4752062 | 4564
B | 210 | 2222 | 4448 B 475 | 22.22 | 458.7
1%0' C 210 25| 4524 1%5' C  |475| 254425
D | 210 27.78 | 4392 D | 475 | 27.78 | 470.5
E | 210 | 2938 | 4342 E 475 | 29.38 | 4652
A 225 2062 | 4465
B | 225] 2222 4715
1%20' C 1225 25| 453.1
D | 225]| 27.78 | 4601
E | 225 2938 | 4417
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Comparision of Stiffness (Gmax) from in situ SASW test and Laboratory Resonant Colum

Test conducted on CLSM:
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Appendix C

Spatial Variability Analysis of Sulfate-Rich Natural Soils
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Coordinates at 5 ft. depth

Easting | Northing | Sulfate Concentration (ppm) | Boring | Formation
-96.4172 | 32.21603 180 B-007
-96.3431 | 32.21148 1880 B-025
-96.4923 | 32.21794 1270 B-068
-96.3535 | 32.21152 11600 B-069
-96.346 | 32.21168 2120 B-070 Kemp
-96.4141 | 32.21516 260 B-094
-96.41 | 32.21472 115 B-095
-96.3998 | 32.21385 1065 B-096
-96.3622 | 32.21141 1400 B-097
-96.3994 | 32.21362 3215 B-180
-96.468 | 32.21516 975 B-026
-96.4392 | 32.2167 535 B-027 Neylandville
-96.4431 | 32.21675 90 B-174
-96.4633 | 32.21772 460 B-194
-96.1994 | 32.1866 260 B-005
-96.2537 | 32.12988 105 B-017
-96.2283 | 32.0901 55 B-018
-96.1895 | 32.19346 650 B-020
-96.1785 | 32.18559 90 B-021
-96.2477 | 32.20023 45 B-037
-96.2385 | 32.19983 350 B-060
-96.2425 | 32.10732 315 B-145 Wills
-96.2469 | 32.11703 750 B-146
-96.2475 | 32.1186 240 B-147
-96.2531 | 32.12788 300 B-148
-96.2586 | 32.13917 280 B-150
-96.2623 | 32.14661 135 B-151
-96.2686 | 32.16087 200 B-152
-96.2726 | 32.1664 415 B-153
-96.5192 | 32.21961 1200 B-008
-96.6332 | 32.23484 50 B-029 Wolfe
-96.6237 | 32.23276 310 B-030
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-96.6404 | 32.23674 20 B-031
-96.645 | 32.23934 125 B-032
-96.5927 | 32.22919 670 B-034
-96.5853 | 32.22828 1065 B-035
-96.5817 | 32.22782 25 B-036
-96.5101 | 32.2186 20 B-065
-96.5052 | 32.21919 65 B-066
-96.5021 | 32.21925 80 B-067
-96.5423 | 32.22429 390 B-089
-96.6781 | 32.25739 1130 B-009
-96.7063 | 32.26723 16,000 B-033
-96.813 | 32.30978 280 B-057
-96.8152 | 32.31101 290 B-082
-96.7678 | 32.29217 17,400 B-118
-96.7334 | 32.27537 16,760 B-120
-96.7258 | 32.2735 950 B-122
-96.844 | 32.33065 115 B-224 Ozan
-96.7729 | 32.29347 17,110 B-116
-96.7338 | 32.27541 16,700 B-119
-96.6996 | 32.26382 50 B-124
-96.7468 | 32.28229 1100 B-227
-96.8077 | 32.30712 570 B-100
-96.7 | 32.26406 17,300 B-123
-96.6912 | 32.25882 1,015 B-126
-97.0791 | 32.50168 540 B-051
-97.0406 | 32.42314 185 B-059
-97.0458 | 32.44405 130 B-061
-97.0488 | 32.44807 8080 B-062
-97.0214 | 32.40384 750 B-063
-97.05 | 32.44884 18,450 B-090
-97.0595 | 32.45993 19,620 B-093 | Eagle Ford
-97.1362 | 32.51262 15,260 B-164
-97.0768 | 32.51596 9360 B-168
-97.1525 | 32.53552 4200 B-84
-97.074 | 32.51824 7000 B-198
-97.0768 | 32.51327 5530 B-201
-97.0768 | 32.50699 14,050 B-202
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-97.0685 | 32.53477 75 B-196
-97.075 | 32.51746 2200 B-199
-97.0754 | 32.51716 3340 B-200
-97.035 | 32.41299 16,000 B-209
-97.1482 | 32.529 1320 B-318
-97.0972 | 32.5055 1005 B-326
Coordinates at 10 ft. depth
Easting | Northing | Sulfate Concentration (ppm) | Boring | Formation
-96.4172 | 32.21603 280 B-007
-96.3431 | 32.21148 17000 B-025
-96.4923 | 32.21794 255 B-068
-96.3535 | 32.21152 16100 B-069
-96.346 | 32.21168 8420 B-070 Kemp
-96.4141 | 32.21516 255 B-094
-96.41 | 32.21472 300 B-095
-96.3998 | 32.21385 690 B-096
-96.3622 | 32.21141 840 B-097
-96.3994 | 32.21362 1070 B-180
-96.468 | 32.21516 1500 B-026
-96.4392 | 32.2167 690 B-027 Neylandville
-96.4431 | 32.21675 135 B-174
-96.4633 | 32.21772 180 B-194
-96.1994 | 32.1866 150 B-005
-96.2537 | 32.12988 55 B-017
-96.2283 | 32.0901 390 B-018
-96.1895 | 32.19346 670 B-020
-96.1785 | 32.18559 325 B-021 Wills
-96.2477 | 32.20023 20 B-037
-96.2385 | 32.19983 300 B-060
-96.2425 | 32.10732 380 B-145
-96.2469 | 32.11703 230 B-146
-96.2475 | 32.1186 100 B-147
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-96.2531 | 32.12788 150 B-148
-96.2586 | 32.13917 40 B-150
-96.2623 | 32.14661 200 B-151
-96.2686 | 32.16087 10 B-152
-96.2726 | 32.1664 90 B-153
-96.5192 | 32.21961 750 B-008
-96.6332 | 32.23484 785 B-029
-96.6237 | 32.23276 800 B-030
-96.6404 | 32.23674 1050 B-031
-96.645 | 32.23934 200 B-032
-96.5927 | 32.22919 100 B-034 Wolfe
-96.5853 | 32.22828 10600 B-035
-96.5817 | 32.22782 115 B-036
-96.5101 | 32.2186 120 B-065
-96.5052 | 32.21919 45 B-066
-96.5021 | 32.21925 115 B-067
-96.5423 | 32.22429 310 B-089
-96.6781 | 32.25739 2820 B-009
-96.7063 | 32.26723 1055 B-033
-96.813 | 32.30978 275 B-057
-96.8152 | 32.31101 200 B-082
-96.7678 | 32.29217 1235 B-118
-96.7334 | 32.27537 1435 B-120
-96.7258 | 32.2735 755 B-122
-96.844 | 32.33065 110 B-224 Ozan
-96.7729 | 32.29347 2345 B-116
-96.7338 | 32.27541 15,620 B-119
-96.6996 | 32.26382 1270 B-124
-96.7468 | 32.28229 1050 B-227
-96.8077 | 32.30712 415 B-100
-96.7 32.26406 1750 B-123
-96.6912 | 32.25882 25 B-126
-97.0795 | 32.50392 500 B-013
-97.1349 | 32.53871 1320 B-015
-97.0791 | 32.50168 525 B-051 | Eagle Ford
-97.0406 | 32.42314 185 B-059
-97.0458 | 32.44405 200 B-061

300




-97.0488 | 32.44807 2250 B-062
-97.0214 | 32.40384 18,300 B-063
-97.05 | 32.44884 1620 B-090
-97.0595 | 32.45993 3620 B-093
-97.1362 | 32.51262 560 B-164
-97.0768 | 32.51596 890 B-168
-97.1525 | 32.53552 1050 B-84
-97.074 | 32.51824 15,100 B-198
-97.0768 | 32.51327 15,200 B-201
-97.0768 | 32.50699 6300 B-202
-97.0685 | 32.53477 370 B-196
-97.075 | 32.51746 180 B-199
-97.0754 | 32.51716 105 B-200
-97.035 | 32.41299 11,725 B-209
-97.1482 | 32.529 280 B-318
-97.0972 | 32.5055 1090 B-326
Coordinates at 15 ft. depth
Easting | Northing | Sulfate Concentration (ppm) | Boring | Formation
-96.4172 | 32.21603 325 B-007
-96.3431 | 32.21148 1100 B-025
-96.4923 | 32.21794 215 B-068
-96.3535 | 32.21152 1360 B-069
-96.346 | 32.21168 10000 B-070
Kemp
-96.4141 | 32.21516 90 B-094
-96.41 | 32.21472 220 B-095
-96.3998 | 32.21385 700 B-096
-96.3622 | 32.21141 850 B-097
-96.3994 | 32.21362 970 B-180
-96.468 | 32.21516 605 B-026
-96.4392 | 32.2167 790 B-027 | Neylandville
-96.4431 | 32.21675 110 B-174
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-06.4633 | 32.21772 210 B-194
2061994 | 32.1866 200 B-005
-96.2537 | 32.12988 30 B-017
-96.2283 | 32.0901 185 B-018
-06.1895 | 32.19346 575 B-020
-96.1785 | 32.18559 365 B-021

106.2477 | 32.20023 30 B-037
-06.2385 | 32.19983 650 B-060
1062425 | 32.10732 220 B-145 ,
106.2469 | 32.11703 20 Baae | VIS
-96.2475 | 32.1186 270 B-147
1062531 | 32.12788 25 B-148
-96.2586 | 32.13917 60 B-150
196.2623 | 32.14661 70 B-151

-96.2686 | 32.16087 115 B-152
106.2726 | 32.1664 70 B-153
-96.1351 | 32.18983 35 P-002
196.5192 | 32.21961 90 B-008
-96.6332 | 32.23484 700 B-029
106.6237 | 32.23276 700 B-030
-06.6404 | 32.23674 1000 B-031

106.5927 | 32.22919 480 B-034
-06.5853 | 32.22828 1255 B-035 |  Wolfe
1065817 | 32.22782 135 B-036

-96.5101 | 32.2186 45 B-065
-96.5052 | 32.21919 85 B-066

1965021 | 32.21925 105 B-067
-06.5423 | 32.22429 470 B-089

206.6781 | 32.25739 1500 B-009
196.7063 | 32.26723 1100 B-033

-96.813 | 32.30978 275 B-057
296.8152 | 32.31101 205 B-082
206.7678 | 32.29217 1255 Bt | 02"
106.7334 | 32.27537 1315 B-120
196.7258 | 32.2735 690 B-122

-06.844 | 32.33065 100 B-224

302




-96.7729 | 32.29347 1510 B-116
-96.7338 | 32.27541 15,940 B-119
-96.6996 | 32.26382 1370 B-124
-96.7468 | 32.28229 975 B-227
-96.8077 | 32.30712 620 B-100
-96.7 32.26406 11,310 B-123
-96.6912 | 32.25882 20 B-126
-97.1349 | 32.53871 1270 B-015
-97.0406 | 32.42314 300 B-059
-97.0458 | 32.44405 140 B-061
-97.0488 | 32.44807 1915 B-062
-97.0214 | 32.40384 715 B-063
-97.05 | 32.44884 1160 B-090
-97.0595 | 32.45993 16,160 B-093
-97.1362 | 32.51262 640 B-164
-97.0768 | 32.51596 15,670 B-168
-97.1525 | 32.53552 3800 B-84 | Eagle Ford
-97.074 | 32.51824 17,500 B-198
-97.0768 | 32.51327 1560 B-201
-97.0768 | 32.50699 530 B-202
-97.0685 | 32.53477 60 B-196
-97.075 | 32.51746 1030 B-199
-97.0754 | 32.51716 275 B-200
-97.035 | 32.41299 17,100 B-209
-97.1482 | 32.529 290 B-318
-97.0972 | 32.5055 1095 B-326
Coordinates at 20 ft. depth
Easting | Northing | Sulfate Concentration (ppm) | Boring | Formation
-96.4172 | 32.21603 100 B-007
-96.3431 | 32.21148 2400 B-025
-96.4923 | 32.21794 470 B-068 Kemp
-96.3535 | 32.21152 2430 B-069
-96.346 | 32.21168 18080 B-070
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-96.4141 | 32.21516 250 B-094
-96.41 | 32.21472 200 B-095
-96.3998 | 32.21385 620 B-096
-96.3622 | 32.21141 1170 B-097
-96.3994 | 32.21362 15120 B-180
-96.468 | 32.21516 710 B-026
-96.4392 | 32.2167 450 B-027 i
Neylandville
-96.4431 | 32.21675 315 B-174
-96.4633 | 32.21772 840 B-194
-96.1994 | 32.1866 510 B-005
-96.2537 | 32.12988 20 B-017
-96.2283 | 32.0901 200 B-018
-96.1895 | 32.19346 675 B-020
-96.1785 | 32.18559 510 B-021
-96.2477 | 32.20023 20 B-037
-96.2385 | 32.19983 400 B-060
-96.2425 | 32.10732 350 B-145 Wills
-96.2469 | 32.11703 5 B-146
-96.2475 | 32.1186 200 B-147
-96.2531 | 32.12788 15 B-148
-96.2586 | 32.13917 40 B-150
-96.2623 | 32.14661 250 B-151
-96.2686 | 32.16087 230 B-152
-96.2726 | 32.1664 20 B-153
-96.5192 | 32.21961 60 B-008
-96.6332 | 32.23484 620 B-029
-96.6237 | 32.23276 625 B-030
-96.6404 | 32.23674 775 B-031
-96.645 | 32.23934 335 B-032
-96.5853 | 32.22828 1460 B-035 Wolfe
-96.5817 | 32.22782 330 B-036
-96.5101 | 32.2186 130 B-065
-96.5052 | 32.21919 75 B-066
-96.5021 | 32.21925 350 B-067
-96.5423 | 32.22429 14100 B-089
-96.6781 | 32.25739 1130 B-009 Ozan
-96.7063 | 32.26723 16,000 B-033
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-96.813 | 32.30978 280 B-057
-96.8152 | 32.31101 290 B-082
-96.7678 | 32.29217 17,400 B-118
-96.7334 | 32.27537 16,760 B-120
-96.7258 | 32.2735 950 B-122

-96.844 | 32.33065 115 B-224
-96.7729 | 32.29347 17,110 B-116
-96.7338 | 32.27541 16,700 B-119
-96.6996 | 32.26382 50 B-124
-96.7468 | 32.28229 1100 B-227
-96.8077 | 32.30712 570 B-100

-96.7 32.26406 17,300 B-123
-96.6912 | 32.25882 1,015 B-126
-97.0791 | 32.50168 540 B-051
-97.0406 | 32.42314 185 B-059
-97.0458 | 32.44405 130 B-061
-97.0488 | 32.44807 8080 B-062
-97.0214 | 32.40384 750 B-063

-97.05 | 32.44884 18,450 B-090
-97.0595 | 32.45993 19,620 B-093
-97.1362 | 32.51262 15,260 B-164
-97.0768 | 32.51596 9360 B-168
-97.1525 | 32.53552 4200 B-84 | Eagle Ford

-97.074 | 32.51824 7000 B-198
-97.0768 | 32.51327 5530 B-201
-97.0768 | 32.50699 14,050 B-202
-97.0685 | 32.53477 75 B-196

-97.075 | 32.51746 2200 B-199
-97.0754 | 32.51716 3340 B-200

-97.035 | 32.41299 16,000 B-209
-97.1482 | 32.529 1320 B-318
-97.0972 | 32.5055 1005 B-326

305




References

Abreu, D. G., Jefferson, |., Braithwaite, P. A., and Chapman, D, N. (2008). “Why is
Ssustainability Important in Geotechnical Engineering?” Proc., Geocongress
2008, ASCE, Reston, VA, 821-828.

Aboufirassi, M., and Marino, M. A. (1983) Kriging of Water levels in the Souss Aquifer
Morocco, Math. Geol., vol.15, 537-551.

Adams, A.G., Dukes, O.M., Cerato, A.B., and Miller, A.G. (2008). “Sulfate Induced
Heave in Oklahoma Soils due to Lime Stabilization.” Geotechnical Special
Publication, n 179, p 444-451, (2008), Proceedings of Sessions of GeoCongress
2008 - GeoCongress 2008: Characterization, Monitoring, and Modeling of
GeoSystems, GSP 179.

Ahmed A. Eldeiry., Luis A. Garcia. (2012). “Evaluating the Performance of Ordinary
Kriging in Mapping Soil Salinity.” Journal of Irrigation and Drainage Engineering.,
Vol. 138, No.12, ISSN 0733-9437/2012/12; pp.1046-1059.

Ahmed, S., and de Marsily, G. (1989) Cokriged Estimates of Transmissivities using
Jointly Water Level Data, In: M. Armstrong (ed.), Geostatistic, Kluwer Academic
Pub., 2: 615-628.

Amundaray, J. I. (1994). Modeling Geotechnical Uncertainty by Bootstrap Resampling.
PhD thesis, Purdue University, West Lafayette, IN.

Ang, A.H-S., and Tang,W .H . (1975): Probability Concepts in Engineering Planning and
Design, Vol. 1: Basic Principles, John Wiley & Sons.

Araghinejad, S., and Burn, D.H. (2005). Probabilistic Forecasting of Hydrological Events

using Geostatistical Analysis. Hydrological Sciences Journal, vol. 50, 837-856.

306



Armstrong, M., 1994. Is Research in Mining Geostats as Dead as a Dodo? In:
Dimitrakopoulos, R. (Ed.)., Geostatistics for The Next Century, Kluwer Academic,
Dordrecht, pp. 303-312.

Baecher, G. B. (1982). Simplified Geotechnical Data Analysis. In Reliability Theory and
its Applications in Structural and Soil Mechanics (ed. P. Thoft-Christensen) 257—
277. Dordrecht: D. Reidal Publishing.

Baecher, G.B. (1985) “Geotechnical Error Analysis” Special Summer Course 1.60s,
Massachusetts Institute of Technology, Cambridge.

Baecher, G. B. & Christian, J. T. (2003). Reliability and Statistics in Geotechnical
Engineering. Chichester: John Wiley & Sons

Bagley, A.D., Cesare, J.A. (2009). “Case History: Sulfate Induced Heave in Lime-Treated
Soils Beneath a Structure in Western Colorado.” ASCE, Proceedings 5th
Congress on Forensic Engineering, pp. 234-243.

Bardossy, A., and Lehmann, W. (1998) Spatial Distribution of Soil Moisture in a Small
Catchment. Part |: Geostatistical Analysis. J. of Hydro., vol. 206, 1-15.

Bedient, P.B., Huber, W.C., 1992. Hydrology and Floodplain Analysis. 2nd ed, Addison-
Wesley, Reading, MA.

Benamghar, A., Gomez-Hernandez, J.Jaiime. (2014) “Factorial Kriging of a Geochemical
Dataset for Heavy-Metal Spatial-Variability Characterization: The Wallonian
Region”. Environmental Earth Sciences, V 71, n 7, pp 3161-3170.

Berger, E., Little, D. N. and Graves, R. (2001). “Technical Memorandum: Guidelines for
Stabilization of Soils Containing Sulfates.” hitp://www.lime.org/publications.html
Accessed September, 2010.

Berndtsson, R., and Chen, H. (1994) Variability of Soil Water Content along a Transect in

a Desert Area. J. of Arid Environ., vol.27,127-139.

307



Bilonick, R. A. (1988) Monthly Hydrogen lon Deposition Maps for the North Eastern US
from July 1982 to Sept. 1984. Atmos. Environ., vol.22,1909-1924.

Bohling, G. (2005) “Data Analysis in Engineering and Natural Science Course.”
people.ku.edu/~gbohling/cpe940/Variograms.pdf

Boschert J., and Butler J.,(2013) “CLSM as a Pipe Bedding: Computing Predicted Load
using the Modified Marston Equation.” ASCE Pipelines 2013, pp. 1202-123.

Box, George E. P.; Cox, D. R. (1964). "An Analysis of Transformations." Journal of the
Royal Statistical Society, Series B 26 (2): 211-252

Burgess, T.M., and Webster, R. (1980) Optimal Interpolation and Isarithmic Mapping of
Soil Properties, I: The Semivariogram and Punctual Kriging. J. of Soil Sci., Vol.
31, 315-331.

Casado, L.S., Rohani, S., Cardelino, C.A., and Ferrier, A.J. (1994) Geostatistical Analysis
and Visualization of Hourly Ozone Data... Atmos. Environ., vol .28, 2105-2118

Challis, R.E., and Kitney, R.I. (1991). “Biomedical Signal Processing(in four parts). Part 1
Time-Domain methods.” Medical & Biological Engineering & Computing, 28, 509-
524.

Chen, D. H., Harris, P., Scullion, T., and Bilyeu, J. (2005). “Forensic Investigation of a
Sulfate-Heaved Project in Texas”. Journal of Performance of Construction
Facilities, ASCE, November 2005, pp. 324-330.

Chittoori, B., Puppala, A. J., Reddy, R., and Marshall, D. (2012). “Sustainable
Reutilization of Excavated Trench Material.” Geocongress 2012, ASCE, Reston,
VA, 4280-4289.

Chittoori, B., Puppala, A. J., Raavi, A., (2014). “Strength and Stiffness Characterization of

Controlled Low-Strength Material Using Native High-Plasticity Clay.” J. Mater.

Civ. Eng., 10.1061/(ASCE)MT.1943-5533.0000965, 04014007, 1-8.

308



Cho, S.E. 2012. Probabilistic Analysis of Seepage that Considers the Spatial Variability of
Permeability for an Embankment on Soil Foundation. Engineering Geology, 133:

30-39. doi:10.1016/j.enggeo.2012.02.013.

Clark, 1., Harper, W.V. (2002). Practical Geostatistics 2000. Ecosse North America Lic,
Columbus, Ohio, USA

Cooley .W. and Tukey J.W. 1965).”An Algorithm for the Machine Calculation of Complex
Fourier Series.” Mathematics of Computation, 19(90), 297-301, 1965.

Corotis, R.B, Azzouz, A.S., and Krizek, R.J. (1975) "Statistical Evaluation of Soil Index
Properties and Constrained Modulus", Proc. of the 2nd. Int. Conf. on
Applications of Statistics and Probability to Soil and Structural Engineering,
Aachen, Germany.

Creutin, J.D., and Obled, C. (1982) Objective Analysis and Mapping Techniques for
Rainfall Fields: An Objective Comparison. Water Resour. Res., vol.18,413-431.

Cuba Miguel A.., Oy Leuangthong., & Julian M.O. (2011), “Detecting and Quantifying
Sources of Non-stationarity via Experimental Semivariogram Modeling.” Stocj
Environ Res Risk Assess (2012) 26:247-260.

David, M. (1977). “Geostatistical Ore Reserve Estimation.” Elsevier Scientific Publishing,
New York, 364 p.

Davidovi¢ . N and Prolovi¢. V (2010). “Modeling of Soil Parameters Spatial Uncertainty by
Geostatistics.” Facta Univ. Ser. Archit. Civil Eng., 8 (2010), pp. 111-118

Davis, J.C. (1986). Geostatistics and Data Analysis in Geology. John Wiley & Sons.

Delaunay, Boris: “Sur la Sphére Vide. A la Mémoire de Georges Voronoi.” Bulletin de
I'Académie des Sciences de I'URSS. Classe des sciences mathématiques et na,

1934, no. 6, 793-800.

309



Delhomme, J.P. (1978) Kriging in the Hydroscience. Adv. in Water Resour., vol.1, 251-
266."

DeGroot, D. J. (1996). “Analyzing Spatial Variability of In Situ Soil Properties.” (invited
paper). Uncertainty in the Geologic Environment, From Theory to Practice,
Proceeding of Uncertainty’96, Geotechnical Special Publication No. 58.

Dermatas, D. (1995). “Eftringite-induced Swelling in Soils: State-of-the-art.” Applied
Mechanics Rev, Vol. 48, pp. 659-673. Douglas C. Montgomery, 2009, Design
and Analysis of Experiment, 7™ edition.

Dirks, K.N., Hay, J.E., Stow, C.D., Harris, D., 1998. High-Resolution Studies of Rainfall
on Norfolk Island Part II: Interpolation of Rainfall Data. J. Hydrol. 208 (3-4), 187—-
193.

Einstein, H.H. and Baecher, G.B. (1982), “Probabilistic and Statistical Methods
Engineering Geology, |. Problem Statement and Introduction to Solution.” Rock
Mechanics and Rock Engineering, Vol. 12, pp. 47-61 of Soil Heterogeneity:
Quantification and Implications on Geotechnical Field Problems. Canadian
Geotechnical Journal, 40(1): 1-15. doi:10.1139/t02-090.

Fenton, G.A., and Griffiths, D.V., Statistics of Block Conductivity through a Simple
Bounded Stochastic Medium, Water Resources Research, 29(6), 1825--1830,
1993.

Fenton, G.A (1994).” Error Evaluation of Three Random Field Generators”, ASCE Journal
of Engineering Mechanics, 120(12), 1994, 2478-2497.

Fenton, G.A., and Vanmarcke, E. H. (1998). “Spatial Variation in Liquefaction Risk.”
Geotechnique, Vol.48, No.6, pp. 819-831.

Fenton G.A (1999a). “Estimation for Stochastic Soil Models.” ASCE Journal of

Geotechnical and Geoenvironmental Engineering, 125(6), 1999a, 470-485.

310



Fenton, G.A.(2002). Risk Assessment and Management, in Lecture Notes, Department
of Engineering Mathematics, Dalhousie University, Canada, 2002.

Filippas, O.B., Kulhawy, F.H., and Grigoriu, M.D. (1988) “Reliability-based Foundation
Design for Transmission Line Structures: Uncertainties in Soil Property
Measurement.”

Folliard, K. J., Trejo, David, Sabol, S. A., and Leshchinsky, D. (2008) “Development of a
Recommended Practice for Use of Controlled Low-Strength Material in Highway
Construction.” NCHRP 597 Report, 5-39.

Goovaerts, P. (2000). “Geostatistical Approaches for Incorporating Elevation into the
Spatial Interpolation of Rainfall.” Journal of Hydrology 228 (2000), 113-129.

Germann, U., and Joss, J. (2001) Variograms of Radar Reflectivity to Describe the
Spatial Continuity of Apline Precipitation. J. of Applied Meteorology, vol.40,1042-
1059.

Gui, S., Zhang, R., Turner, J.P., and Xue, X. 2000. Probabilistic Slope Stability Analysis
with Stochastic Soil Hydraulic Conductivity. Journal of Geotechnical and
Geoenvironmental Engineering, 126(1): 1-9. doi:10.1061/(ASCE)1090-
0241(2000)126:1(1).

Haining, R.P. et al., (2010). “Geography, Spatial Data Analysis and Geostatistics: An
Overview.” Geographical Analysis. Vol. 42, pp.7-31.

Hammah, R.E., and Curran, J.H. (2006). “Geostatistics in Geotechnical Engineering: Fad
or Empowering?” GeoCongress 2006: Geotechnical Engineering in the
Information Technology Age, v 2006, p 102.

Hahn, G.J., and Shapiro, S.S. (1967): Statistical Models in Engineering, John Wiley &
Sons, New York.

Hawkins, A B; Pinches, G M (1987) “Expansion due to Gypsum Growth.” Proceedings

311



6th International Conference on Expansive Soils, New Delhi, 1-4 December 1987
P183- 187.

Harr, M.E. (1977): Mechanics of Particulate Media: A Probabilistic Approach. McGraw-
Hill, New York.

Harris, P., Voldt, J. V., Sebesta, S., and Scullion, T. (2005). “Recommendations for
Stabilization of High-Sulfate Soils in Texas.. Technical Report 0-4240-3, Texas
Transportation Institute.

Hegazy, A.H., Mayne, P.M., and Rouhani, S. (1996). “Geostatistical Assessment of
Spatial Variability in Piezocone Tests.” Uncertainty in the Geologic Environment,
From Theory to Practice, Proceeding of Uncertainty ‘96, Geotechnical Special
Publication No. 58.

Hohn, M.E., “Geostatistics and Petroleum Geology 2" Ed”. Kluwer Academic Norwell,
MA.

Holdaway, K., “Harness Oil and Gas Big Data with Analytics. Optimize Exploration and
Production with Data-Driven Models.” John Wiley & Sons, ISBN:
9781118910955.

Holtz, R.D., and Krizek, R.J. (1972) "Statistical Evaluation of Soil Test Data."
Proceedings of the First International Conference on Applications of Statistics
and Probability to Soil and Structural Engineering, Hong Kong.

Howell, D.C. (2007). Statistical Methods for Psychology, 6" edition

Huang, J.S., Griffiths, D.V., and Fenton, G.A. 2010. System Reliability of Slopes by

RFEM. Soils and Foundations, 50 (3): 343-353. doi:10.3208/sandf.50.343.

Hunter, D. (1989). “The Geochemistry of Lime-Induced Heave in Sulfate-Bearing Clay

Soils.” (Dissertation) University of Nevada, Reno, 1989.

312



Hyunki Kim. (2005). “Spatial Variability in Soils: Stiffness and Strength.” PhD. Thesis,

Isaaks,

Georgia Institute of Technology, 201.
E. H., and Srivastava, R. M. (1989). “ An Introduction to Applied Geostatistics”,

Oxford University Press, New York.

Jianshu, Lv., Liu, Yang., Zhang, Zulu., Dai, Jierui. (2013) “Factorial Kriging and Stepwise

Jones,

Regression Approach to Identify Environmental Factors Influencing Spatial Multi-
Scale Variability of Heavy Metals in Soils.” Journal of Hazardous Materials, V
261, pp 387-397.

A.L., Kramer. S.L. and Arduino, P. (2002), “Estimation of Uncertainty in
Geotechnical Properties for Performance-based Earthquake Engineering,” PEER
report 2002/16. Journel, A. G., and Huijbregts, C. J. (1978). “Mining

Geostatistics,” Academic Press, London, 600 p.

Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, New York.

Kanevski M, Arutyunyan R, Bolshov L, Demyanov V, Maignan M (1996) “Artificial Neural

Networks and Spatial Estimations of Chemobyl Fallout.” Geoinformatics 7(1-2):

5-11.

Kim, J. H. (2011). Improvement of Geotechnical Site Investigations via Statistical

Analyses and Simulation. PhD thesis, Georgia Institute of Technology.

Kitanidhis, Peter (1997). “Introduction to Geostatistics — Applications in Hydrogeology.”

Cambridge University Press, New York, 249 pp., ISBN 0-521-58747-6.

Kota, P. B. V. S., Hazlett, D., and Perrin, L. (1996) “Sulfate-Bearing Soils: Problems with

Calcium-Based Stabilizers.” Transportation Research Record 1546, TRB,

National Research Council, Washington, D.C., 1996, pp. 62-69.

313



Krige, Danie G. (1951). “A Statistical Approach to Some Basic Mine Valuation Problems
on the Witwatersrand”. J. of the Chem., Metal. And Mining Soc. of South Africa
52 (6): 119-139.

Kulhawy, F.H., Birgisson, B., and Grigoriu, M.D. (1992). Reliability-based Foundation
Design for Transmission Line Structures: Transformation Models for In Situ
Tests. Electric Power Research Institute, Palo Alto, Calif., Report EL-5507(4).

Kulhawy, F.H., and Phoon, K. (1996). “Engineering Judgment in the Evolution from
Deterministic to Reliability-based Foundation Design (plenary).” Uncertainty in the
Geologic Environment, From Theory to Practice, Proceeding of Uncertainty ’96,
Geotechnical Special Publication No.58.

Kulhawy, F.H., and Trautmann, C.H. (1996). "Estimation of In Situ Test uncertainty in the
Geologic Environment (GSP 58)”. Edited by C.D. Shackelford, P.P. Nelson, and
M.J.S. Roth. American Society of Civil Engineers, New York, pp. 269—- 286.

Kumar, V. (1996) Space Time Modelling of Ground Water with Assistance of Remote
Sensing, Ph.D., Indian Institute of Technology, New Delhi, India.

Kumar, V. and Remadevi (2006).”Kriging of Groundwater levels- A Case Study.” Journal
of Spatial Hydrology. Vol.6, No.1,81-92.

Kuroda, K., Yamada, M., Kani, S. (1983). “Statistical Decision in Design & Construction of
Geotechnical Structures based on Probabilistic & Fuzzy Soil Information.”
Pitagora Editrice, V 1, p 561-572.

Lacasse, S. and Nadim, F. (1996), “Uncertainties in Characterizing Soil Properties.” in
Uncertainty in the Geologic Environment (GSP 58), edited by Shackelford, C.D.,
Nelson, P.P., and Roth, M.J.S., ASCE, New York, pp. 49-75

Li. K.S., White W. (1987). “Probabilistic Characterization of Soil Profiles.” Res. Report 19,

Canberra: UNSW, ADFA (1987).

314



Little, D.N., Deuel, L. (1989), “Evaluation of Sulfate—Induced Heave at Joe Pool Lake.”
Chemical Lime Company, June.

Lumb, P. 1971. Precision and Accuracy of Soil Tests. In Proceedings of the 1st
International Conference on Applications of Statistics and Probability in Soil and
Structural Engineering, Hong Kong, pp. 329-345.

Magneron, Cedric., Deraisme, Jacques., Jeannee, Nicolas (2009). “Noise Reduction by
M-Factorial Kriging.” IAMG’09- pp 23-28

Matheron G. (1973). “The Intrinsic Random Functions and their Applications.” Adv. In
Appl. Probab., 5, 439-468, 1973.

Matheron G. (1982). “Pour une Analyse Krigeante des Donnees Regionalisees.” Report
N-732, Centre de Geostatistique, ENSMP, Fontainebleau, France.

Mayne, P.W. (2007). “Cone Penetration Testing: A Synthesis of Highway Practice.”
Project 20-5. Transportation Research Board, Washington, D.C. NCHRP
synthesis 368.

Mingyu, H., Fumei, L., Mingshu, T., (2006), “The Thaumasite Form of Sulfate Attack in
Concrete of Yongam Dam.” Cement and Concrete Research, Vol. 36, Iss. 10, pp.
2006-2008.

Miller, J., Franklin, J., and Aspinall, R. (2007). “Incorporating Spatial Dependence in
Predictive Vegetation Models.” Ecol. Model., 202 (3-4), 225-242.

Mignolet M.P. and Spanos P.D. (1992). Simulation of Homogenous Two-Dimensional
Random Fields: Part I- AR and ARMA Models. ASME J. Appl. Mech. 59, S260-
S$269, 1992.

Mitchell J.K., Soga, K (2005). “Fundamentals of Soil Behavior.” 3™ edition, Wiley

Publishers, ISBN: 978-0-47-46302-3.

315



Montgomery., Runger and Hubele (2010)."Engineering Statistics.” 4" edition, SBN-
13:978*0-40-52694-1.

Mothukori. P. R., (2014) “Non-Destructive Sasw Evaluation of Controlled Low Strength
Material as a Pipeline Bedding Material.” M.S. thesis, Univ. of Texas, Arlington,
TX, 110.

Nazarian, S., and Stokoe, K. H., Il (1984). “In Situ Shear Wave Velocities from Spectral
Analysis of Surface Waves.” Proceedings of the 8th World Conference on
Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Vol.
I, 31-38.

Olea, R.A. (2009). “A Practical Primer on Geostatistics.” USGS, Open File Report. 2009-
1103.

Orchant, C.J., Kulhawy, F.H., and Trautmann, C.H. (1988). Reliability-based Foundation
Design for Transmission Line Structures: Critical Evaluation of In Situ Test
Methods. Electric Power Research Institute, Palo Alto, Calif., Report EL-5507(2).

Parsons, R.L., Frost, J.D., 2002. Evaluating Site Investigation Quality using GIS and
Geostatistics. Journal of Geotechnical and Geoenvironmental Engineering 128,
451-461.

Perrin, L. (1992). “Expansion of Lime-Treated Clays Containing Sulfates.” Proceedings of
7th International Conference on Expansive Soils, Vol. 1, ASCE Expansive Soll
Research Council, New York, 1992, pp. 409-414.

Petry, T. M. and Little, D. N., (1992), “Update on Sulfate Induced Heave in Treated Clays:
Problematic Sulfate Levels.” Transportation Research Board, TRR 1362,
Washington, DC.

Phoon, K.K., Kulhawy, F.H. and Grigoriu, M.D. (1995), “Reliability-based Design of

Foundation for Transmission Line Structure,” Report TR-105000, Electric Power

316



Research Institute, Palo Alto.

Phoon, K., and Kulhawy, F.H. (1999). "Characterization of Geotechnical Variability."
Canadian Geotechnical Journal, Vol. 36, pp. 625-639.

Puppala, A, J., and Hanchanloet, S. (1999). “Evaluation of Chemical Treatment Method
(sulphuric acid and lignin mixture) on Strength and Resilient Properties of
Cohesive Soils.” Proc., 78th Transportation Research Board Annual Meeting,
Transportation Research Board, Washington, DC.

Puppala, A. J., Viyanant, C., Kruzic, A. P., and Perrin, L., (2002). Evaluation of a
Modified Soluble Sulfate Determination Method for Fine-Grained Cohesive Soails.
Geotechnical Testing Journal, Volume 25, Issue 1, pp. 85-94.

Puppala, A. J., Wattanasanticharoen, E. and Punthutaecha, K. (2003). “Experimental
Evaluations of Stabilization Methods for Sulphate-rich Expansive Soils.” Ground
Improvement Vol. 7, No. 1, 2003. pp. 25-35.

Puppala, A. J., Kadam, R., Madhyannapu, R., and Hoyos, L. R. (2006). “Small-Strain
Shear Moduli of Chemically Stabilized Sulfate-Bearing Cohesive Soils.” Journal
of Geotechnical and Geoenvironmental Engineering, ASCE, March 2006,
pp.322-336.

Puppala, A.J., et al., (2010) “Forensic Investigations to Evaluate Sulfate—Induced
Heave Attack on a Shotcrete Tunnel Liner.” Journal of Materials in Civil
Engineering, ASCE, Vol 22, pp. 914-922.

Puppala, A.J., Naga S. Talluri., Bhaskar S. Chittoori and Ahmed Gaily. (2012). Lessons
Learned from Sulfate-Induced Heaving Studies in Chemically-Treated Soils.
Proceedings of the International Conference on Ground Improvement and

Ground Control. Research Publishing, Vol. 1, November, 2012, pp.85-98.

317



Puppala, A. J., Saride, S., and Wiliammee, R. (2012a). “Sustainable Reuse of Limestone
Quarry Fines and RAP in Pavement Base/Subbase Layers.” J. Mater. Civ. Eng.,
10.1061/(ASCE)MT.1943-5533.0000404, 418-429.

Puppala, A.J., Naga S. Talluri., Ahmed Gaily, and Bhaskar S. Chittoori. (2013). Heaving
Mechanisms in High Sulfate Soils. Proceedings of the 18th International
Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013.

Queiroz, Joaquim C. B., Sturaro, Jose R., Saraiva, Augusto C. F., Barbosa Landim,
Paulo M. (2008) “Geochemical Characterization of Heavy Metal Contaminated
Area using Multivariate Factorial Kriging”. Environmental Geologu, V 55, n 1, pp
95-105.

Raavi, A. (2012). “Design of Controlled Low Strength Material for Bedding and Backfilling
Using High Plasticity Clay.” M.S. Thesis, Univ. of Texas, Arlington, TX, 118.

Rajani, B., and Tesfamariam S. (2004). Uncoupled Axial, Flexural, and Circumferential
Pipe-Soil Interaction Analyses of Partially Supported Jointed Water Mains.
Canadian Geotechnical Journal, 41, 997-1010.

Rajah S., McCabe M., and Plattsmier J., (2012) “Classification and Specification of
Bedding and Backfill for Buried Pipelines.” ASCE Pipelines 2012: Innovations in
Design, Construction and Maintenance. pp:940-951.

Randal J. Barnes (1991). “The Variogram Sill and the Sample Variance”. Mathematical
Geology, Vol.23, No.4, 673-678.

Rethati, L. (1988): Probabilistic Solutions in Geotechnics, Developments in Geotechnical
Engineering Vol. 46, Elsevier, Budapest.

Rollings, R.S., Rollings, M.P., Poole, Toy., Wong, G.S., and Gutierrez, Gene

(2006).“Investigation of Heaving at Holloman Air Force Base, New Mexico.”

318



Journal of Performance of Constructed Facilities, v 20, n 1, p 54-63, February
2006.

Samui, Pijush., Sitharam, T.G. (2008). “A Comparative Study of Ordinary Kriging and
Support Vector Machine Models for the Spatial Variability of Rock Depth in
Banglore.” Geotechnical Special Publication, n 179, pp934-941.

Seica, M. V. and Packer, J. A. (2001) “Properties and Strength of Aged Cast Iron
Pipes.” Journal of Materials in Civil Engineering, ISSN 0899-1561.

Shapiro, S. S.; Wilk, M. B. (1965). "An Analysis of Variance Test for Normality (complete

samples)." Biometrika 52 (3—4): 591-611.

Sherwood, P. T. (1962). “Effect of Sulfates on Cement and Lime Treated Soils.” Highway
Research Board, Bulletin 353, pp. 98-107.

Soulie, M., Montes, P. and Silvestri, V. (1990), “Modelling of Spatial Variability of Soil
Parameters.” Canadian Geotechnical Journal, Vol. 27, pp. 617-630

Spry, M.J., Kulhawy, F.H., and Grigoriu, M.D. (1988) “Reliability-based Foundation
Design for Transmission Line Structures: Geotechnical Site Characterization
Strategy. Electric Power Research Institute, Palo Alto, Calif., Report EL-5507(1).

Stokoe, K. H. II, Rix, G. J., and Nazarian, S. (1989). “In Situ Seismic Testing with Surface
Waves.” Proceedings of the 12th Int. Conf. on Soil Mechanics and Foundation
Engineering, Rio De Janiero, 331-334.

Storm, B., Jenson, K.H., and Refsgaard, R.C. (1988) Estimation of Catchment Rainfall
Uncertainty and its Influence on Runoff Prediction. Nordic Hydrology, vol.19,79-
88.

Sturges, H. A. (1926). "The Choice of a Class Interval." Journal of the American
Statistical Association: 65—66.

Tabachnick, B.G., & Fidell, L. S. (2007), Using Multivariate Statistics. 5™ edition.

319



Tabios, G.Q., Salas, J.D., 1985. A Comparative Analysis of Techniques for Spatial
Interpolation of Precipitation. Water Resour. Bull. 21 (3), 365-380.

Tang, W.H. 1984. Principles of Probabilistic Characterization of Soil Properties. In
Probabilistic Characterization of Soil Properties: Bridge between Theory and
Practice. Edited by D.S. Bowles and H-Y. Ko. American Society of Civil
Engineers, Atlanta, pp. 74—89.

Thiessen, A.H., 1911. Precipitation Averages for Large Areas. Monthly Weather Rev. 39
(7), 1082-1084.

Thomey, J. (2013) “Quantification and Geostatistical Mapping of Soluble Sulfates in Soils
along a Pipeline Alignment.” M.S. thesis, Univ. of Texas, Arlington, TX, 145.

Vieira, S.R., Carvalho,J.R., Ceddia, B, M., Ganzalez, P. A.( 2010). “Detrending Non-
Stationary Data for Geostatistical Applications.” Bragantia vol.69, 1-9.

Vipulanandan, C., Qiao, W., Hovsepian, H., (2011) “Case Studies on Water Pipeline
Failures in the Active Zone.” Proceedings of Geo-Frontiers 2011 Conference,
n211 GSP, p 2474-2483

VanMarcke. E. H. (1984) Random Fields: Analysis and Synthesis. M.L.T. Press,
Cambridge.

Vanmarcke, E.H. (1977) “Probabilistic Modeling of Soil Profiles.” Journal of the
Geotechnical Engineering Division, ASCE, 103(GT11, pp 1227-1246. Electric
Power Research Institute, Palo Alto, Calif., Report EL-5507(3).

Venkatramaiah.C (2006).”Geotechnical Engineering.” Third Edition, New Age
International Publishers, ISBN :81-224-1793.

Vennapusa, K. R. P., White, D. J., and Morris, M.D. (2010). “Geostatistical Analysis for

Spatially Referenced Roller-integrated Compaction Measurement.” Journal of

320



Geotechnical and Geoenvironmental Engineering, American Society of Civil
Engineers, 136(6): 813-822.

Vieira, S.R., Nielsen, D.R., and Biggar, J.W. (1981) Spatial Variability of Field Measured
Infiltration Rate. Soil Sci. Soc. Am. J., vol.45,1040-1048.

Vipulanandan, C., Qiao, W., Hovsepian, H., (2011) “Case Studies on Water Pipeline
Failures in the Active Zone.” Proceedings of Geo-Frontiers 2011 Conference,
n211 GSP, p 2474-2483.

Virdee, T.S., and Kottegoda, N.T. (1984) A Brief Review of Kriging and its Application to
Optimal Interpolation and Observation Well Selection. Hydro. Sci. J., vol.29,367-
387.

Volpi, G., and Gambolati, G. (1978) On the Use of Main Trend for the Kriging Technique
in Hydrology. Adv. Water Resour., vol.1,345-349.

White, D. J., Thompson, M. J., Vennapusa, P., and Siekmeier, J. (2008). “Implementing
Intelligent Compaction Specification on Minnesota TH-64 Synopsis of
Measurement Values, Data Management, and Geostatistical Analysis.”
Transportation Research Record, Journal of the Transportation Research Board,
2045, 1-9.

White, D. J., Vennapusa, P., and Gieselman, H. (2008b). “Roller-integrated Compaction
Monitoring Technology: Field Evaluation, Spatial Visualization, and
Specifications.” Pro., 12" Intl. Conf. of Intl. Assoc. for Computer Methods and
Advances in Geomechanics (IAC-MAG).

White, D. J., Vennapusa, P., and Gieselman, H. (2011). “Field Assessment and
Specification Review for Roller-integrated Compaction Monitoring Technologies.”

Advances in Civil Engineering, 2011,1-15.

321



Yaglom A.M. (1962). “An Introductory to the Theory of Stationary Random Functions.”
Dove, Mineola, NY 1962.

Zhiming, S. (2008). “Forensic Investigation of Pavement Premature Failure Due to Soil
Sulfate-Induced Heave.” Journal of Geotechnical and Geoenvironmental
Engineering, v134, n 8, p 1201-1204, August 2008.

Zhu, H., Zhang, L.M., Zhang, L.L., and Zhou, C.B. 2013. Two-dimensional Pprobabilistic
Infiltration Analysis with a Spatially Varying Permeability Function. Computers

and Geotechnics, 48: 249-259. doi:10.1016/j.compgeo0.2012.07.010.

322



Biographical Information

Tejo Vikash Bheemasetti was born and brought up in Visakhapatnam which is
located in southern part of India. He completed his Bachelor’s of Technology in Civil
Engineering in the year 2007 from GMR Institute of Technology, which is affliated to
JNTU, Hyderabad. After completing his bachelor’s degree he attended Indian Institute of
Technolgy, Kharagpur to pursue a Master's degree. He received his Master of
Technology in Civil Engineering in May, 2009 with specialization in Geotechnical
Engineering. Upon completion of his Master's degree, Tejo Vikash worked as
geotechnical design engineer for 2 years 7 months in geotechnical engineering firms.

In the Spring of 2012, he was accepted and enrolled into the University of Texas
at Arlington’s graduate program. He worked under the guidance of Dr. Anand J Puppala
and Dr. Xinbao Yu on variability of soil properties in geotechnical studies. He successfully
defended his dissertation in November 2014. During his course of study he submitted

several technical papers and book chapters and co-author for geotechnical conferences.

323



