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Abstract 

SPATIAL VARIABILITY MODELS AND PREDICTION ANALYSIS OF SOIL 

PROPERTIES USING GEOSTATISTICS 

 

Tejo Vikash Bheemasetti, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professors: Anand J. Puppala and Xinbao Yu 

Soils are composed of solid, water and air phases whose characteristics are 

highly variable. The interactions of these phases in the soil matrix can lead to different 

types of topographical formations and characteristics. Due to the uncertainty and 

complex interactions among these phases, studies on soils have always been a 

challenging problem for engineers. These variations and uncertainties make it necessary 

for engineers  to adopt new techniques and methods to analyze soil properties in order to 

determine or interpret their generalized behaviors and patterns. Existing research in 

variability analysis tends to focus on the distribution of the soil properties, reliability-based 

design, and simulation of random fields. Despite an increase in the probabilistic and 

statistical analysis, many challenges remain in incorporating the spatial variability present 

in the soil properties into prediction analysis. In this research study, a framework was 

developed using univariate statistics and randomized random variable theory for 

analyzing the spatially-varied soil properties. The spatial variability present in the soil 

properties was modeled using the geostatistical tool, Variograms. The variability models 

were utilized to interpret the soil properties in three different studies in geotechnical 

engineering, encompassing natural soils, man-made soils, and natural soils rich with 
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chemicals such as sulfates. This research highlights the adaptability of the framework for 

analyzing the soil properties varying from low-to-high variability.  
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Chapter 1  

Introduction 

1.1 General 

Geological formations of the earth’s crust date back to several millions of years. 

The top most layer of the earth’s crust, where vegetation grows, is called soil, which is 

derived from a Latin word called Solum (Venkatramaiah, 2006). The formations of soils 

can be broadly classified into two categories, which are residual soils and transported 

soils. Residual soils are native soils which are derived from the disintegration of rock 

particles. The disintegrated particles, which are transferred from one location to another 

through weathering agencies like air, water, glaciers and other physical events or forces, 

are called transported soils. The various geological processes involved in soil formation, 

such as physical, chemical, and biological weathering and deposition, govern the 

physical and chemical characteristics of the soils, such as the shape of the particle, size 

of the particle, and mineralogical composition of the particle (Hyunki, 2005). These 

physiochemical characteristics govern the engineering properties of soils such as shear 

strength, compressive strength, consolidation, relative density, modulus, and permeability 

(Mitchell and Soga, 2005).  

Soils are inherently heterogeneous in nature. Most of the geotechnical studies 

are based on the limited soil samplings performed in the field. Even though several 

extensive laboratory tests are available to evaluate the properties of soil, all are 

performed on limited soil samples. Therefore, uncertainty is always an issue in the 

geotechnical studies due to inherent spatial variability present in soils. Several statistical 

studies have been conducted to evaluate the uncertainty present in geotechnical studies 

(Spry et al., 1988; Soulie et al, 1990; Phoon et al., 1995). The statistical characteristics of 

a soil property, such as the mean and the variance, cannot be ascertained with precision 
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if the number of tests is circumscribed, nor can the distribution function associated with 

the given data be well established.   

Existing statistical analysis in geotechnical projects makes use of univariate and 

bivariate analyses, which doesn’t account for the spatial variability present in the soil 

properties. In earlier studies conducted by researchers using conventional statistics, the 

measured soil property values on the field were typically described by a normal 

distribution (Kuroda et al., 1983; Hannah et al., 2006; White et al., 2008b). However, this 

distribution only described the sample values measured at particular locations; it did not 

offer any information on which zones were likely to have high values and which zones 

had low values. The lack of incorporating spatial variability of the soil properties into the 

analysis brought inevitable uncertainties to the geotechnical designs (Einstein et al., 

1982; Lacasse et al., 1996).  

In this research study, geostatistics, a stochastic interpretation tool, was used for 

addressing and incorporating spatial variability into the geotechnical analysis. 

Geostatistics is the separate branch of statistics which deals with spatial analysis of the 

data sets.  Spatial analysis or spatial statistics refers to the techniques which allow us to 

understand the data sets with respect to space, such as location of extreme values and 

the overall trend or degree of continuity (Isaaks and Srivastava, 1989). The use of 

geostatistics gained prominence in the 1960’s with the work of French professor Georges 

Matheron on regionalized random variables, which originated from the work of Danie G. 

Krige in the 1950’s (Davidovic et al., 2010).  

The application of geostatistics is used mainly in the mining industry to predict 

the location of ore by describing the probability distribution of the existing ore locations 

(Krige, 1951). Due to its various successful applications, it is now widely adopted in 

various disciplines related to earth sciences, e.g., petroleum geology, hydrogeology, 
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hydrology, geography, soil sciences, forestry, oceanography, meteorology, landscape 

geology, geochemistry, and others (Holdaway, 2014). Its ability to deal with uncertainties 

and variations in material properties attracted geotechnical engineers to adopt this tool 

for better understanding the variability of soil (Hammah and Curran, 2006).  

Numerous attempts were made from the late 1970’s forward to apply 

geostatistics to the field of geotechnical engineering; still, geostatistics is not any part of 

geotechnical design procedures. However, in recent years the use of the geostatistics 

techniques has been emerging strongly and has been proven important, when compared 

with univariate statistics in the field of geotechnical engineering, in areas related to 

intelligent compaction of subgrades over a wider region (White et al., 2008; Vennapusa et 

al., 2010; White et al., 2011).  

1.2 Research Objectives 

The main objective of this research was to evaluate the variability of geotechnical 

properties in field conditions by using geostatistics and by utilizing the available spatial 

information. The geostatistical tool, Kriging,  was used comprehensively, along with 

various variogram models developed to effectively deal with the high variability in 

geotechnical engineering projects.  In order to accomplish this goal, two main objectives 

were formulated. These are: 

1. Develop a framework for spatial variability analysis. 

2. Evaluate and assess the developed framework in various geotechnical problems 

of interest, focusing on characterization of natural and man-made soil properties. 

1.3 Thesis Organization 

This thesis is comprised of seven sections: Introduction (Chapter 1), Literature 

review (Chapter 2), Formulation of framework (Chapter 3), Validation of spatial variability 

analysis framework on natural soils (Chapter 4), Validation of spatial variability analysis 
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framework on man-made materials (Chapter 5), Validation of spatial variability analysis 

framework on natural mineral deposits (Chapter 6) and Summary, conclusions and future 

research recommendations (Chapter 7). 

Chapter 1 provides the introduction to spatial variability in soil properties, 

geostatistics, research scope, and thesis organization.   

Chapter 2 provides a summary of the uncertainties of geotechnical parameters, 

spatial variability in soil properties, a summary of various statistical parameters in 

probability theory that account for the uncertainty, and a summary of various conventional 

estimation methods, followed by  a summary of geostatistical estimation tools. 

Chapter 3 presents the framework developed for incorporating the spatial 

variability in the prediction analysis. The framework was developed so that the 

geostatistical tools, such as variogram and kriging, in combination with univariate 

statistics could potentially be used in estimating the properties with minimum estimation 

error. 

Chapters 4, 5 & 6 present the validation of the formulated framework using three 

geotechnical problems of interest: one that focuses on natural subsoils, another on 

artificially chemically-treated controlled low-strength material (CLSM) made of native 

clayey soil, and another on sulfate-rich natural soils. 

 In Chapter 4, a study using CPTU bore holes data was considered for analyzing 

the spatial variability in the strength parameter of soils for prediction analysis, using the 

formulated framework in Chapter 3.  

In Chapter 5, the formulated framework  was used in evaluating the uniform 

stiffness development in the CLSM material along the pipeline by incorporating the 

spatial variability  into the data.  
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In Chapter 6, the formulated framework was used in evaluating the spatial 

variability of sulfate concentration levels and assessing the sulfate levels at unsampled 

locations. 

Chapter 7 presents the summary of the research, conclusions, and 

recommendations for future research. 
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Chapter 2  

Literature Review 

2.1 Introduction 

Uncertainty and variability in soil properties are two primary concerns that are 

intrinsically present in geotechnical engineering projects. The uncertainty in the soil 

properties remains undetermined due to constrained soil investigation (Amundaray, 

1994). Various researchers in the past have implemented statistics and reliability-based 

methods to incorporate uncertainties of soil properties in geotechnical designs, which 

resulted in increased cost savings (Parsons et al., 2002). These methods enhanced the 

geotechnical design analysis by providing better understanding the acquired soil data 

(Lacasse et al., 1996).  However, the soil properties vary from space to space and time to 

time.   

The soil properties determined through laboratory and field tests represent only a 

sample set of data from which inferences are drawn on the population data or whole 

project area. Therefore, the statistical characterization of the spatial variability is 

extremely important and should be considered in geotechnical practice. In this chapter, a 

detailed literature review on the uncertainties and variabilities associated with soil 

properties, univariate statistics that are used to describe soil properties, spatial variability 

in soil properties, and a comprehensive summary of estimation methods that incorporate 

spatial variability are presented. 

2.2 Uncertainties in Geotechnical Engineering 

Uncertainties are present in every single extend that is associated with 

geotechnical engineering projects. Various past researchers have classified the 

uncertainties in geotechnical properties into three categories (Vanmarcke, 1977; 

Baecher, 1982; Tang, 1984; Baecher et al., 2003; Kulhawy et al., 1992; Phoon et al., 
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Table 2-1 Summary of inherent variability of strength properties (Phoon et al. 1995) 

Property Soil type 
No. of data 

groups 

No. of tests per group Property value Property COV (%)

Range Mean Range Mean Range Mean 

Su (UC) (kN/m2 ) Fine Grained 38 2-538 101 6-412 100 6-56 33 

Su (UU) (kN/m2 ) Clay, silt 13 14-82 33 15-363 276 11-49 22 

Su (CIUC) (kN/m2 ) Clay 10 12-86 47 130-713 405 18-42 32 

∅ഥ	ሺ°ሻ Sand 7 29-136 62 35-41 37.6 5-11 9 

∅ഥ	ሺ°ሻ Clay, silt 12 5-51 16 9-33 15.3 0-50 21 

∅ഥ	ሺ°ሻ Clay, silt 9 - - 17-41 33.0 4-12 9 

tan∅ഥ	ሺܶܥሻ    Clay, silt 4 - - 0.24-0.69 0.50 6-46 20 

tan∅ഥ	ሺܵܦሻ Clay, silt 3 - - - 0.61 6-46 20 

tan∅௕തതതത Sand 13 6-111 45 0.65-0.92 0.74 5-14 9 

* Su, undrained shear strength;  ∅ഥ	, effective stress friction angle; UC, Unconfined compression test; UU, unconsolidated-undrained triaxial 

compression test; CIUC, consolidated isotropic undrained triaxial compression test; DS, direct shear test; TC, triaxial compression test  
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Table 2-2 Summary of Inherent variability of index parameters (Phoon et al. 1995) 

Property Soil type 
No. of data 

groups 

No. of tests per group Property value Property COV (%) 

Range Mean Range Mean Range Mean 

wn (%) Fine Grained 40 17-439 252 13-105 29 7-46 18 

wL (%) Fine Grained 38 15-299 19 27-89 51 7-39 18 

wP (%) Fine Grained 23 32-299 201 14-27 22 6-34 16 

PI (%) Fine Grained 33 15-299 12 1244 25 9-7 29 

LI Clay, Silt 2 32-118 75 - 0.094 60-8 74 

γ (kN/m3) Fine Grained 6 5-3200 54 14-20 17.5 3-20 9 

γd (kN/m3) Fine Grained 8 4-315 12 13-18 15.7 2-13 7 

Dr (%)c Sand 5 - - 30-70 50 11-36 19 

Dr (%)d Sand 5 - - 30-70 50 49-74 61 

*wn, natural water content; wL, Liquid limit; wP, plastic limit; PI, Plasticity Index; LI, Liquidity Index; γ, total unit weight; γd, dry unit weight; Dr, 

relative density; c Total variability for direct method of determination; d Total variability for indirect determination using standard penetration test 

(SPT) values. 
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Table 2-3 Summary of Inherent variability of field measurements (Phoon et al. 1995) 

Test type Property Soil type 
No. of data 

Groups 

No. of tests per group Property value Property COV (%) 

Range Mean Range Mean Range Mean 

CPTU qc (MPa) Sand 57 10-2039 115 0.4-29.2 4.1 10-81 38 

CPTU qc (MPa) Silty Clay 12 30-53 43 0.5-2.1 1.59 5-40 27 

CPTU qt (Mpa) Clay 9 - - 0.4-2.6 1.32 2-17 8 

VST Su(kPa) Clay 31 4-31 16 6-375 105 4-44 24 

SPT N Sand 22 2-300 123 7-74 35 19-62 54 

SPT N Clay, loam 2 2-61 2 7-63 32 37-57 44 

DMT A (ka) Sand to SC 15 12-25 17 64-1335 512 20-53 33 

DMT A(kPa) Clay 13 10-20 17 119-455 358 12-32 20 

DMT B (kPa) Sand to SC 15 12-25 17 346-2435 1337 13-59 37 

DMT B (kPa) Clay 13 10-20 17 502-876 690 12-38 20 
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   Table 2.3 - Continued 

Test type Property Soil type 
No. of data 

Groups 

No. of tests per group Property value Property COV (%) 

Range  Mean Range  Mean Range Mean 

DMT ED(MPa) Sand to SC 15 10-25 15 9.4-46.1 25.4 9-92 50 

DMT ED(MPa) Sand, silt 16 - - 10.4-53.4 21.6 7-67 36 

DMT ID Sand to SC 15 10-25 15 0.8-84 2.85 16-130 53 

DMT ID Sand, silt 16 - - 2.1-5.4 3.89 8-48 30 

DMT KD Sand to SC 15 10-25 15 0.8-8.4 2.85 16-130 53 

DMT KD Sand, silt 16 - - 1.3-9.3 41 17-67 38 

PMT PL (kPa) Sand 4 - 17 1617-3566 228 23-50 40 

PMT PL (kPa) Cohesive 5 10-25 - 428-2779 104 10-32 15 

PMT EPMT (MPa) Sand 4 - - 5.2-15.6 8.97 28-68 42 

 

*CPTU, cone penetration test; VST, vane shear test; SPT, standard penetration test; DMT, dilatometer test; PMT, pressure meter test; qc, CPTU 

tip resistance; q, corrected tip resistance; Su, undrained shear strength; N, SPT blow count number; ED, DMT modulus; ID, DMT material index; 

KD, DMT horizontal stress index; PMT limit stress; EPMT, PMT modulus 
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2.2.2 In-Situ Measurement Error 

The in-situ error is mainly caused during the soil testing operations. As shown in 

Figure 2-1, this variability is associated with data scatter, statistical uncertainty, 

measurement error, and inherent variability. Lumb (1971) and Orchant et al. (1988) 

quantified the variability in measured soil property into a summation of in situ property 

and measurement error. The measurement error could arise mainly because of two 

reasons: equipment error and procedural-operator error. Equipment error is caused by 

improper calibration of the equipment or damage in the testing tools, and the operator 

error is related to the skills of the operator. In the studies conducted by Phoon and 

Kulhawy (1999), it was observed that the variability due to measurement error for 

undrained shear strength ranges from 5 to 15%. Unlike the inherent variability, this error 

can be controlled by using extensive field measurement tools and skilled operators. In the 

studies conducted by Kulhway  et al. (1992), the inherent soil variability and 

measurement error can be collectively summed up as a data scatter. 

2.2.3 Transformation Uncertainty 

Transformation uncertainty is associated with the transformation of field or 

laboratory measurements into soil properties by using various theoretical and empirical 

equations. The empirical correlations are usually developed based on testing of limited 

soils at a particular location. These soils are already accompanied with the measurement 

error variability and inherent variability. So, when the field or laboratory measurements 

are evaluated using these empirical equations, the uncertainty rises to a new level.   

2.3 Univariate Statistics in Geotechnical Engineering  

In order to apply the concepts of statistics to model the uncertainty and variability 

in soil properties, a basic  understanding of  the fundamental aspects of probability and 

statistics is required. In this section, a brief overview of the basic concepts is presented; 
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more detailed descriptions of these topics can be found in any introductory textbook on 

probability and statistics. 

2.3.1 Random Variable 

A random variable is a variable that can take any value in the data set.  It is 

usually expressed as a real function, Z(x), where xi denotes a real number. The real 

number, xi, will correspond to every outcome of an experiment; the function {Z(x) ≤ xi} is 

an event for any real number xi. The probability of an event to occur is described by P {Z 

(x) ≤ xi}, where the outcome takes a value between 0 and 1. A probability of 1 indicates a 

100 % chance of that particular event occurring, and 0 refers to 0% chance of the event 

occurring.  

 Two types of random variables, discrete and continuous, exist in probability 

theory. The discrete random variable is one which takes on only a countable number of 

distinct values. In geotechnical engineering, the standard penetration test values (N-

values) usually represent a discrete random variable. However, the continuous random 

variable takes on values from the continuous probability space. Friction angle and 

undrained shear strength of a soil layer usually represent a continuous random variable.  

2.3.2 Probability Distributions 

Probability distributions usually represent the probabilities of all the possible 

events that a random variable can take. Two types of the probability functions are 

generally utilized to describe the probability distribution; they are probability distribution 

function and cumulative distribution function.  

2.3.2.1 Probability distribution function 

The probability density function (pdf) is used for describing the probabilities 

associated with an event for a continuous random variable. The probability mass function 

(pmf) is used for describing the probability distribution of a discrete random variable 
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(Montgomery et al, 2010). The pmf and pdf are denoted as P(x) and f(x), respectively, 

where ‘X’ is the random variable itself and ‘x’ is the value that the random variable can 

take on. The probability density function f(x) of a continuous random variable is used to 

determine probability of areas as follows: 

ܲ	ሺܽ	 ൏ ܺ	 ൏ ܾሻ ൌ ׬ ݂ሺݔሻ	݀ݔ௕
௔         (2.1) 

The properties of probability density function are 

(1) ݂ሺݔሻ ൒ 0 

׬ (2) ݂ሺݔሻஶ
ିஶ ൌ 1 

2.3.2.1 Cumulative distribution function 

The cumulative distribution function (cdf) is another way of describing the 

probabilities associated with an event to occur. It is used to describe the probability 

distribution of a random variable that provides the probability that X is less than or equal 

to x.   

ሻݔሺܨ ൌ ܲሺܺ	 ൑ ሻݔ ൌ ׬	 ݂ሺݔሻ݀ݔ௫
ିஶ        (2.2) 

	ݎ݋݂ െ ∞	 ൏ 	ݔ ൏ 	∞ 

Since, the probabilities associated with it are cumulative, the probability of an event 

increases with an increase in the value of x, and finally, as x tends to  ∞, ܨሺݔሻ ൌ

ܲሺܺ	 ൑  .ሻ tends to 1ݔ

2.3.3 Elementary Statistical Parameters 

The probability distribution function provides the description of probabilities 

associated with  the random variables for different events to occur. In order to summarize 

the distribution of a random variable, three important statistical parameters, i.e., mean, 

variance and standard deviation, are necessary. 
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2.3.3.1 Mean  

The mean or expected value of a random variable X is denoted by µ or E(x). It  is 

the simplest description of a sample of data {x1, x2, x3, x4……….. xn}, where mean ሺ തܺሻ is 

given as 

തܺ ൌ 	 ଵ
௡
∑ ௜ܺ
௡
௜ୀଵ                               (2.3) 

Where, n is the number of observations in a sample data set 

             Xi is the ith observation in a sample data set 

From the above expression, it can be understood that the mean തܺ provides equal 

weight factors to all the values. Similarly, the mean is also used to summarize a 

probability distribution function where µ or E(x) is given by 

ߤ ൌ ሺܺሻܧ ൌ ׬	 ሻஶݔሺ݂ݔ
ିஶ  (2.3a)    ݔ݀	

Where, x is a random variable 

    f(x) is the distribution function of the random variable 

 2.3.3.2 Variance 

Variance is another important parameter used to summarize the data or the 

distribution function. It is mainly used to describe the scatter of the data (Montgomery, 

2010). The sample variance of a data set can be estimated by the expression, 

ሺܺሻ	݁ܿ݊ܽ݅ݎܸܽ                 ൌ 	 ଵ
௡ିଵ

	∑ ሺ ௜ܺ െ 	 തܺሻଶ௡
௜ୀଵ    (2.4) 

Where, ܺ is the random variable 

  തܺ is the sample mean 

 ௜ܺ is the ith observation of the random variable 

 n is the number of observations 

The variance of a random variable X is a measure of dispersion or scatter, which is 

denoted as σ2 or V(X).  
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ଶߪ ൌ ܸሺܺሻ ൌ ׬	 ሺݔ െ ஶݔሻ݀ݔሻଶ݂ሺߤ	
ିஶ                    (2.4a) 

Where, ߤ is the mean of the random variable 

 ݂ሺݔሻ is the probability density distribution function of the random variable 

 is the random variable ݔ 

The standard deviation of a random variable X is denoted by σ. The standard deviation is 

a measure of the deviation of the random variable from the mean or expected value. The 

standard deviation is obtained by taking the square root of the variance value.  

2.3.4 Typical Probability Distributions 

Most of the conventional statistical tests were developed based upon the normal 

distribution having a mean µ and variance σ2. However, to model the distribution of 

geotechnical properties, the normal distribution may not be appropriate in all the cases. In  

studies conducted by Amundaray (1987), Harr (1987), Ang and Tang (1975), Hahn and 

Shapiro (1967) various distributions that can be used for modelling different geotechnical 

properties were presented.  In this section, various probability distribution functions will 

be briefly discussed, along with the estimates of mean and variance. These estimates will 

provide the values that should be incorporated into geotechnical analysis. 

2.3.4.1 Uniform Distribution  

Uniform distribution refers to the probability distributions, where the probability of 

any event at a certain interval is most likely same. The uniform distribution function is 

expressed using the equation below 

݂ሺܺሻ ൌ 	 ଵ
௕ି௔

	; 						ܽ ൑ ܺ	 ൑ ܾ                 (2.5) 

Where, a and b are real constants with a < b, and f (x) is equal to zero for X < a 

and X > b. 
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researcher to learn the probability of any value by transforming the variable to a standard 

normal variable using the equation below, 

ݖ        ൌ	 
ሺ௑	ି	ఓሻ

ఙ
                                  (2.6a) 

Where, z is a standard normal variable 

 is the mean of the random variable ߤ 

 is the standard deviation of the random variable ߪ 

The standard normal variable has the properties mean, µ = 0 and variance, σ2 = 1. The 

probabilities associated with the standard normal variable are given in Figures 2-4. 
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realistic estimates and conclusions can be drawn. In this section, different approaches to 

characterizing the spatial variability present in the soil properties are presented. 

2.4.1 Trend or Drift  

Trend or drift refers to constant variation of the soil property along the subsurface 

profile. Computationally, the trend present in the random variable can be calculated as 

the weighted average of all the points within the neighborhood around the point (Davis, 

1986). In the research study conducted by Cuba et al (2011), the expression for semi-

variogram (tool in geostatistics for modeling spatial variability) had three components: (1) 

mean trend, (2) variance trend and (3) the stationary component. The mean and variance 

trend represents locally varying mean and variance values. The mean trend is obtained 

by calculating the expected value of the random variable in the original scale. Kanevski et 

al. (1996) utilized neural networks to obtain the mean trend present in the random 

variable. According to the studies conducted by Phoon et al. (1999), the soil property 

 ,at any depth (z) can be modeled as the summation of deterministic trend function (ሻݖሺߦ)

deviation from trend, and measurement error, as shown in Figure 2-8.  

ሻݖሺߦ	                  ൌ ሻݖሺݐ ൅ ሻݖሺݓ ൅ ݁ሺݖሻ                                                       (2.10) 

Where,  z is the depth along the subsurface; 

 ;ሻ is the in-situ soil propertyݖሺߦ 

 ;ሻ is deterministic trend functionݖሺݐ 

 ;ሻ is the deviation from trendݖሺݓ 

 ݁ሺݖሻ is the measurement error.  
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From the Figure 2-9 (b), it can be understood that for a window length of 1 meter, 

the scale of fluctuation reaches a peak value of 0.26m. So, at any distance greater than 

0.26m, the tip resistance is not correlated. The detailed steps for calculation of the scale 

of fluctuation were explained in the technical report of Jones et al (2002). Various 

approaches, such as regression technique, spectral analysis, moment estimation and 

maximum likelihood estimation have been suggested by past researchers to discover the 

scale of fluctuation. DeGroot (1996) conducted and summarized extensive studies to 

obtain a scale of fluctuation for various in-situ tests, as shown in Table 2-4. 

Table 2-4 Scale of fluctuation of soil properties in various in situ tests (Degroot, 1996) 

Soil 
Property 

Soil Direction 
Scale of 

Fluctuation (m) 
Reference 

SPT N 
Value 

Dune 
Sand  

Horizontal 40.00 
Hilldale-Cunningham 

(1971) 
Alluvial 
Sand 

Horizontal 33.40 DeGroot (1996) 

DMT P0 
Varved 

Clay 
Vertical 2.28 DeGroot (1996) 

CPTU 
Cone 

Resistance 

Sea Clay Horizontal 60.00 
Hoeg and Tang (1976); 

Tang (1979) 

Silty Clay Horizontal 10.00 ~ 24.00 
Lacasse and de 

Lamballerie (1995) 
Copper 
Tailings 

Vertical 1.00 Baecher (1987) 

Sensitive 
Clay 

Vertical 
4.00 for qc, fs, 

and u2 
Chiasson et al. (1995) 

Silty Clay Vertical 2.00 
Lacasse and de 

Lamballerie (1995) 

Clay Vertical 2.00 Vanmarcke (1977) 
Mexico 

Clay 
Vertical 2.00 

Alonzo and Krizek 
(1975) 

Clean 
Sand 

Vertical 6.00 
Alonzo and Krizek 

(1975) 
Clean 
Sand 

Vertical 3.20 
Kulatilake and Ghosh 

(1988) 
North Sea 

Sand 
Horizontal 28.00 ~ 76.00 Keaveny et al. (1989) 
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Table 2.4 - Continued 

Vane Shear 
Test 

Undrained 
Shear 

Strength 

Clay Vertical 2.00 ~ 6.00 
Asaoka and A-Grivas 

(1982) 
Sensitive 

Clay 
Vertical 2.00 Baecher (1987) 

Sensitive 
Clay 

Horizontal 46.00 
DeGroot and Baecher 

(1993) 

Laboratory 
Undrained 

Shear 
Strength 

Chicago 
Clay 

Vertical 

1.00            
(Unconfined 
Compression 

Test) 

Wu 91974) 

offshore 
Sites 

Vertical 
0.60 ~ 7.20       
(Triaxial and 

DSS) 
Keaveny et al. (1989) 

Hydraulic 
Conductivity 

Compacted 
Clay 

Horizontal 1.00 ~ 4.00 Benson (1991) 

 

2.4.3 Coefficient of Variation 

The standard deviation gives an absolute measure of the dispersion in the data; 

whereas, the coefficient of variation is a relative measure of the spread or variability in 

the data. The coefficient of variation is calculated by expressing the standard deviation as 

a percentage of the mean. 

ܸܱܥ ൌ	 
ௌ௧௔௡ௗ௔௥ௗ	ௗ௘௩௜௧௔௜௢௡	ሺఙሻ

ெ௘௔௡	ሺఓሻ
       (2.12) 

Where, ܵ݀ݎܽ݀݊ܽݐ	݊݋݅ݐܽ݅ݒ݁݀	ሺߪሻ ൌ 	ට ଵ
௡ିଵ

	∑ ሺ ௜ܺ െ 	 തܺሻଶ௡
௜ୀଵ  

ሻߤሺ	݊ܽ݁ܯ             ൌ 	 ଵ
௡
∑ ௜ܺ
௡
௜ୀଵ  

Where, ܺ is the random variable; തܺ is the sample mean;  ܺ ௜ is the ith observation of the 

random variable, and n is the number of observations 

Due to its simplicity, coefficient of variation is the most widely used statistical tool 

for characterizing the variability in civil engineering projects. The American Institute of 
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Concrete (1965) has suggested the coefficient of variation as a descriptive tool to 

categorize the degree of variability present in concrete material. 

Coefficient of Variation < 10% - Excellent 

10% < Coefficient of Variation < 15% - Good 

15% < Coefficient of Variation < 20% - Satisfactory 

Coefficient of Variation > 20% - Poor 

The different stages of soil formation inherently produce high variability when 

compared to the brittle materials such as concrete. Therefore, in geotechnical 

engineering, if the coefficient of variation is less than 20%, the data can be regarded as 

low degree of variability. Rethati (1988) studied the effects of a number of samples on the 

coefficient of the variation of unconfined compressive strength.  Figure 2-10 presents the 

results of this study, where UCS strength and coefficient of variation values were plotted 

against the number of samples. It can be clearly observed that there is a decrease in the 

unconfined compressive strength value, along with coefficient of variation until the 

number of samples is 30. The variation after 30 samples becomes more stable, following 

a constant trend. Amundaray (1994) recommended that at least 30 samples should be 

tested to obtain a realistic coefficient of variation of soil properties.  
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Table 2.5 - Continued 

DMT A Reading 
Clay Vertical

10.00 ~ 
35.00 

Phoon and 
Kulhawy (1996) 

Sand Vertical
20.00 ~ 
50.00 

Phoon and 
Kulhawy (1996) 

DMT B Reading 
Clay Vertical

10.00 ~ 
35.00 

Phoon and 
Kulhawy (1996) 

Sand Vertical
20.00 ~ 
50.00 

Phoon and 
Kulhawy (1996) 

DMT Dilatometer 
Modulus 

Sand Vertical
20.00 ~ 
60.00 

Phoon and 
Kulhawy (1996) 

River 
Sand 

Vertical
20.00 ~ 
60.00 

Reyna and 
Chameau (1991) 

DMT Material Index 
Sand Vertical

20.00 ~ 
60.00 

Phoon and 
Kulhawy (1996) 

River 
Sand 

Vertical
20.00 ~ 
60.00 

Reyna and 
Chameau (1991) 

DMT Horizontal Stress 
Index 

Sand Vertical
20.00 ~ 
60.00 

Phoon and 
Kulhawy (1996) 

River 
Sand 

Vertical
20.00 ~ 
60.00 

Reyna and 
Chameau (1991) 

PMT Limit Pressure 
Clay Vertical

10.00 ~ 
35.00 

Phoon and 
Kulhawy (1996) 

Sand Vertical
20.00 ~ 
50.00 

Phoon and 
Kulhawy (1996) 

PMT Young's Modulus Sand Vertical
15.00 ~ 
65.00 

Phoon and 
Kulhawy (1996) 

Vane Test Undrained 
Shear Test 

Clay Vertical
18.00 ~ 
30.00 

Asaoka and A-
Gricas (1982) 

Clay Vertical
10.00 ~ 
40.00 

Phoon and 
Kulhawy (1996) 

Laboratory Relative 
Density 

Sand - 
11.00 ~ 
36.00 

Haldar and Tang 
(1979) 

Laboratory Natural Water 
Content 

All Soil 
Types 

- 
9.00 ~ 
32.00 

Kulhawy et al. 
(1991) 

Laboratory Liquid Limit 
All Soil 
Types 

- 
3.00 ~ 
19.00 

Kulhawy et al. 
(1991) 

Laboratory Plastic Limit 
All Soil 
Types 

- 
7.00 ~ 
17.00 

Kulhawy et al. 
(1991) 

Laboratory Void Ratio 
All Soil 
Types 

- 
13.00 ~ 
26.00 

Kulhawy et al. 
(1991) 

Laboratory Total Unit 
Weight 

All Soil 
Types 

- 
2.00 ~ 
12.00 

Kulhawy et al. 
(1991) 

Laboratory Effective 
Friction Angle 

All Soil 
Types 

- 
6.00 ~ 
21.00 

Kulhawy et al. 
(1991) 

Laboratory Compression 
Index 

All Soil 
Types 

- 
26.00 ~ 
48.00 

Kulhawy et al. 
(1991) 
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2.4.4 h-scatter plots 

Spatial continuity is a geostatistical tool through which the variation between two 

random variables can be discovered. If two data points are proximate to each other, they 

are more likely to have homogeneous values than two data that are far apart. H-scatter 

plots are used to describe the relationship between the value of one variable and the 

value of the same variable at nearby locations, which are separated by a distance ‘h’ 

(Isaaks and Srivastava, 1989). To illustrate further, consider a sample data set with 25 

observations distributed in a grid area. 

X1  X6  X11  X16  X21 

X2  X7  X12  X17  X22 

X3  X8  X13  X18  X23 

X4  X9  X14  X19  X24 

X5  X10  X15  X20  X25 

 

Figure 2-12 Sample data set in a grid area 

In order to draw the h-scatter plot for the above case, label  x-axis as X(i) and y-axis as 

X(i+h). If both the values that are separated by the distance ‘h’ are identical, they fall on 

the 45 degree straight line.  Figure 2-12 represents an h-scatter plot for h (0, 0), where 

every individual is paired with the same value, thus falling on the straight line. Similarly, a 

separation distance of 2m gives a plot for h (0,2), where every individual is paired with 

other data value which is 2m apart. As the separation distance increases, the values 

become less similar, where the data points move away from the 45 degree straight line, 

as shown in Figure 2-13. The fatter the cloud of the h-scatter plot, the more dissimilarity 
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exists in the data values. Thus, h-scatter plot provides the spatial variation present in the 

random values. In order to quantify the spatial variability in the h-scatter plots, three 

important functions are used.  

 

Figure 2-13 h-scatter plot for a separation distance of 0m 
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                 Figure 2-14 h-scatter plot for a separation distance of 2m 

2.4.4.1 Covariance function 

Covariance, in statistics, is used to find the similarity between two random 

variables. The absolute value of the covariance increases with the correlation between 

two variables. If the random variables are positively correlated, the covariance between 

them will be positive. On the contrary, if the covariance is negative, the random variables 

are negatively correlated.  

,ሺܺ	݁ܿ݊ܽ݅ݎܽݒ݋ܥ ܻሻ ൌ 	 ଵ
௡
∑ ሺݔ௜ െ	݉௫ሻ൫ݕ௜ െ	݉௬൯௡
௜ୀଵ            (2.13) 

Where, n is total number of observations 

 ௜  is ith observations of a random variables x and yݕ , ௜ݔ 

 ݉௫, ݉௬ is the mean of random variables x and y 

The relationship between covariance of an h-scatter plot and h is called the 

covariance function (Isaaks and Srivastava, 1989). In geostatistics, the covariance 
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function is used to estimate the maximum lag distance that represents the spatial 

correlation in the data. The covariance is expressed as follows, 

ሺݒ݋ܥ ௜ܺ, ௜ܺା௛ሻ ൌ	 
ሾ∑௑೔௑೔శ೓ሿି

భ
೙ష೓∑௑೔

భ
೙௑೔శ೓

௡ି௛ିଵ
               (2.13a) 

Where, h is the lag distance 

 ௜ܺ is the ith observation 

 ௜ܺା௛ is the observation separated at a distance ‘h’ from ௜ܺ 

 n is the total number of observations 

From the covariance function, it is evident that when the lag distance (h) is zero, 

the covariance function results in the variance of the random variable. As the lag distance 

increases, the covariance of the random variable decreases and reaches a constant 

value, depicting that the random variables are not correlated after that lag distance.  

2.4.4.2 Correlation function 

The relationship between the correlation coefficient of an h-scatter plot and 

separation distance (h) is called the correlation function or correlogram (Isaaks and 

Srivastava, 1989). The plot of correlogram provides the correlation between the two data 

values that are separated at a particular distance.  

ሻߩሺ	ݐ݂݂݊݁݅ܿ݅݁݋ܿ	݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ    ൌ		 
భ
೙∑ ሺ௫೔ି	௠ೣሻ൫௬೔ି	௠೤൯೙

೔సభ

ఙೣఙ೤
		~	 ஼ሺ௛ሻ

ఙష೓.ఙశ೓
          (2.14) 

Where, n is total number of observations 

 ௜  is ith observations of a random variables x and yݕ , ௜ݔ 

 ݉௫, ݉௬ is the mean of random variables x and y 

,	௫ߪ   ௬ is the standard deviation of the random variables x & yߪ
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Autocorrelation function is the relationship between the autocorrelation coefficient 

of a h-scatter plot and separation distance (h). It is obtained by normalizing the auto 

covariance with the variance of the random variable itself. 

௛ݎ                 ൌ	 
௖௢௩ሺ௑೔,௑೔శ೓ሻ

௏ሺ௫ሻ
              (2.15) 

Where, ݎ௛ is the autocorrelation function 

ሺݒ݋ܿ ௜ܺ, ௜ܺା௛ሻ is the covariance  between random variable separated at h           

units apart 

ܸሺݔሻ is the variance of the random variable itself. 

The autocorrelation function is used to find the scale of fluctuation of soil properties 

between two points. VanMarcke (1984) and Li et al. (1987) provided various 

autocorrelation function models between the scale of fluctuation (θ) and lag distance. 

VanMarcke (1984) and Li et al. (1987) provided various auto-correlation functions for 

measuring scale of fluctuation, as summarized in Table 2-6. 

Table 2-6 Autocorrelation functions for measuring scale of fluctuation  

Model No. Autocorrelation Function 

1 
௧ߩ ൌ 1 െ

|߬|
ߠ
ݎ݋݂ |߬| ൏  ;ߠ

௧ߩ ൌ 0 ݎ݋݂ |߬| ൐  ߠ

௧ߩ 2 ൌ ݁ିଶ|ఛ| ఏ⁄  

௧ߩ 3 ൌ ݁ିగሺ|ఛ| ఏ⁄ ሻమ 

௧ߩ 4 ൌ ݁ିସ|ఛ| ఏ⁄ ቆ1 ൅
4|߬|
ߠ
ቇ 
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The variability present in the soil properties, using lag distance and scale of 

fluctuation, can be characterized using the above models for autocorrelation,   

2.4.4.3 Variogram 

Variogram is another plausible index for characterizing the spatial variability 

present in the random variables (Amundaray, 1994) . The variogram or semi-variogram γ 

(h) is a traditional analysis tool used to describe the spatial continuity of the data in earth 

science application. It is defined as one-half of the average squared differences between 

the x and y coordinates of each pair of points in the h-scatter plot (Isaaks and Srivastava, 

1989). The mathematical expression for calculating a variogram value is given as below:  

ሺ݄ሻߛ                                          ൌ 	 ଵ
ଶ௡ሺ௛ሻ

	∑ ሾݖሺݔ௜	 ൅ 	݄ሻ 	െ ௜ሻሿଶݔሺݖ
௡ሺ௛ሻ
௜ୀଵ            (2.16)                                   

Where, ݖሺݔ௜ሻ = measurement taken at a location ݔ௜ 

	௜ݔሺݖ             ൅ 	݄ሻ = measurement taken at a location h distance away 

            n(h) = number of data pairs h units apart in the direction of the vector  

            h = lag distance 

 ሺ݄ሻ = variogram valueߛ            

Using the above expression, an experimental variogram value can be obtained 

for each h-scatterplot, and a series of such values for different h-scatter plots gives rise to 

the variogram plot. Figure 2-14 shows a typical variogram, where each circle is 

represented by an experimental variogram value for an individual h-scatter plot.  
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Nugget effect (C0): Though the value of the semvariogram at h=0 is strictly zero, 

several factors, such as sampling error and very short scale variability, may cause 

sample values separated by extremely short distances to be quite dissimilar. This causes 

a discontinuity at the origin of the semivariogram and is called the nugget effect. 

2.5 Simulations of Spatial Variability 

In earlier sections, different statistical approaches to characterizing the 

uncertainty and spatial variability were discussed. Incorporating these statistical 

parameters into geotechnical analysis is often considered quite complex. Therefore, 

geotechnical engineers are sometimes required to perform  conservative designs, which 

results in a significant increase in project cost. One alternative to this problem is to 

simulate the actual field conditions and study its behavior under different circumstances.   

In geotechnical engineering, simulations are performed to replicate the actual 

field conditions. Simulations are not new in the field of geotechnical engineering; most of 

the slope stability analyses are performed by modeling the soil conditions in different 

layers. However, the layer properties are a result of the average mean value or the 

minimum value of the property of interest. Vanmarcke (1977) attempted to replicate 

actual field conditions by implementing the random field theory. In this section, various 

simulation techniques employed to represent the actual field conditions will be briefly 

discussed.  

2.5.1 Random Field 

Random field by name represents a field, where all the realizations z(x) are 

obtained from a random function Z(X). The random field theory is used in geotechnical 

engineering to simulate the field conditions by incorporating the spatial variability. Various 

statistical tools such as correlation distance, scale of fluctuation, and coefficient of 

variation were used to simulate a random field (Vanmarcke 1977; Fenton 1999a; Gui et 
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al. 2000; Elkateb et al.2003; Huang et al. 2010; Cho 2012; Zhu and Zhang 2012). The 

inferences obtained from the random field are used to solve the deterministic problems of 

interest. Fenton (1993) suggested that based on the first order moments, the random 

fields can be classified as Gaussian field and non-Gaussian field. The Non-Gaussian 

random fields can be created by using the nonlinear transformation of the data. Provided 

below are brief descriptions of various random field generators, where only the first two 

moments of the random fields, mean and covariance, are constant.  

2.5.1.1 Moving average (MA) method 

Moving average is the simplest method to generate a random field. The moving 

average technique constructs the random field Z(x) as a weighted average of a white 

noise process (Fenton, 1993) 

	ܼሺݔሻ ൌ ׬	 ݂ሺߦ െ ሻஶߦሻܹ݀ሺݔ
ିஶ          (2.17) 

Where, ܹ݀ሺߦሻ is a zero mean incremental white-noise process with variance ݀ߦ 

 ݂ is a weighting function 

In the studies conducted by Mignolet and Spanos (1992), it was mentioned that 

the accuracy of the MA method depends upon the pace of the program. The moving 

average technique is very time consuming because of the level of difficulty in finding the 

weighting function ݂.  

2.5.1.2 Fourier transform method 

The Fourier transform method is used to generate continuous random fields. This 

is performed based on the spectral representation of the mean square data for 

homogeneous random fields. Yaglom (1962) expressed continuous distribution function 

for generation of random field. 

ܼሺݔሻ ൌ ׬	 ݁௜௫.ఠ	ܹሺ݀߱ሻஶ
ିஶ 	        (2.18) 
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Where, ܹሺ݀߱ሻ is an interval white-noise process with mean zero and variance 

ܵሺ߱ሻ݀߱ 

 ܵሺ߱ሻ is the spectral density function 

The discrete Fourier transform is most generally used as the summation at a particular 

point, where in the actual Fourier transform method, the n-dimensional integration 

becomes n-dimensional sum (Gordon, 1993). 

2.5.1.3 Fast Fourier transform method 

The fast Fourier transform method is much more advanced and efficient than the 

actual Fourier transform method. Cooley and Tukey (1965) suggested this method as an 

alternative to the discrete Fourier transform method, where N2 operations can be reduced 

to N (log2N). A random field ܼሺݔሻcan be  expressed as (Gordon, 1993): 

ܼ൫ݔ௝൯ ൌ 	 lim௞	→ஶ ∑ ௝߱௞൯ݔ൫ݏ݋ሺ∆߱௞ሻܿܣൣ ൅ ௝߱௞൯൧௞ݔ൫݊݅ݏሺ∆߱௞ሻܤ
௞ୀି௞    (2.19) 

Where, ߱௞ ൌ ߨ݇	 ⁄ܭ  

 ∆߱௞is an interval of length ߨ ⁄ܭ  centered at ߱௞ 

௞ܣ ൌ 	
1
෍	ܭ ௝ܼ cos ߨ2

݆݇
ܭ ൌ ௞ୀ௞ܣ

௞ୀଵ

௝ୀ଴

 

௞ܤ ൌ 	
1
෍	ܭ ௝ܼ sin ߨ2

݆݇
ܭ ൌ െܤ௞ୀ௞

௞ୀଵ

௝ୀ଴

 

The detailed procedure and mathematical formulation of the above equation are 

detailed in the studies conducted by Gordon (Gordon, 1993). 

2.5.1.4 Decomposition matrix method  

Decomposition matrix is another often-used technique for generating 

homogeneous random fields. In this technique, the covariant matrix is decomposed into a 

lower triangular matrix and an upper triangular matrix. The decomposition matrix is 

expressed as: 
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௠ܭ ൌ	ܮ௠. ܷ௠        (2.20) 

Where, ܭ௠is a covariance matrix 

 ௠is a lower triangular matrixܮ 

 ܷ௠is a upper triangular matrix 

If ܭ௠, the covariant matrix is positive definite, then the mean zero-discrete 

process Zi = Z(xi) can be produced by: 

ܼ ൌ	ܮ௠ܸ 

Where, ܮ௠is a lower triangular matrix and V is the unit vector 

The decomposition matrix is only used for small fields, as the round-off error and 

time for programming increase with an increase in matrix size (Fenton, 1993).  

2.5.1.5 Turning band method (TBM) 

Matheron (1973) developed the turning band method for generation of random 

field in two or more dimensional spaces by using the existing one-dimensional 

techniques, such as fast Fourier transformation and decomposition matrix. The turning 

band method generates more efficient and fast random fields in multi-dimensional 

processes compared to the decomposition matrix and fast Fourier transform method 

(Fenton, 1994). Gordon (1993) compared the process time for generating the random 

field using three methods, as summarized in the table below.  

Table 2-7 Comparison of processing time for generating random fields (Gordon, 1993) 

Dimension 
Fast Fourier 

Transform 

Local Average 

Subdivision 

Turning Band 

Method 

16 lines 64 lines 

1 Dimension 1.0 0.70 - - 

2 Dimension 1.0 0.55 0.64 2.6 
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misleading estimate. By applying geostatistics to the above study, the variability in the 

values is obtained by constructing and modelling a variogram. The weights of 

neighboring values are determined through the variogram model and the kriging 

algorithm. 

Kumar et al (2006) summarized various applications of  kriging in different fields, 

such as in the field of soil sciences (Burgess and Webster, 1980; Vieria et al., 1981; 

Berndtsson and Chen, 1994; Bardossy and Lehmann, 1998); hydrology (Goovaerts 2000; 

Creutin and Obled, 1982; Storm et al., 1988; Ahmed and de Marsily, 1989; Germann and 

Joss, 2001; Araghinejad and Burn, 2005); in depicting ground water levels (Delhomme, 

1978; Volpi and Gambolati, 1978; Aboufirassi and Marino, 1983; Virdee and Kottegoda, 

1984; Kumar, 1996); and in atmospheric science (Bilonick, 1988; Casado et al., 1994). 

In this research study, Kriging, a best-linear, unbiased estimator (BLUE) in the 

geostatistics field was used for prediction analysis. Kriging is best because of its ability to 

reduce the error variance; linear because of the weighted linear combinations of data; 

unbiased as the data is considered stationary (Isaaks and Srivastava, 1989). In this 

section, the predictions based on geostatistical theory are discussed, with kriging used as 

the estimation tool. Various types of kriging methods and their applications are discussed 

in this section.  

2.7.1 Simple Kriging 

The kriging method is used to estimate the value of the unsampled locations by 

incorporating the spatial variability into the random variable (Miller et al. 2007). The 

spatial variability is obtained from the variogram model, where the maximum correlation 

distance between the random variable is obtained. Simple kriging is the simplest form of 

all kriging methods. This is mainly used in the mining industry, where the mean of the 

mining panels is a known value (Armstrong 1994). The main underlying assumption in 



 

52 

simple kriging is that the trend component is constant and the mean (m) is known, and 

the sample data set is expressed as a realization of random function (Thomey, 2013). 

Simple kriging is considered the least accurate of the various kriging methods, as it only 

assumes the first order moments constant (Olea 2009).  

The estimate of simple kriging is expressed using the expression: 

∗ሾܼ௦௞ܧ    	ሺݑሻሿ ൌ ݉ ൌ  ሻሿ    (2.26)ݑሾܼሺܧ

Where, estimation error ܼ௦௞∗ ሺݑሻ െ ܼሺݑሻ is a linear combination of random 

variables. 

2.7.2 Ordinary Kriging 

Ordinary kriging is a type of kriging which is most widely when the first and 

second order moments are constant values, satisfying the second order stationarity 

(Haining et al. 2010; Olea 2009). In a research study conducted by Ahmed et al. (2012), 

the ordinary kriging was evaluated for mapping the salinity present in soils. The ordinary 

kriging was used to evaluate the depth of rock bed by incorporating the spatial variability 

present in the data values (Pijush, 2008). Using ordinary kriging, the estimate at any 

location is obtained by using the following equations: 

መܼ௑ ൌ 	∑ ௜௡ݔ௜ݓ
௜ୀଵ 	      (2.27) 

Where, ݔ௜ is the neighboring value around the unsampled location  

  ௜ are the weights of the corresponding neighbor valuesݓ 

															 መܼ௑ is the estimate of the random variable 

Since, kriging is a linear unbiased estimator the sum of all the weights 

corresponding to their neighboring locations is equal to 1.  

∑ ௜ݓ ൌ 1.0௡
௜ୀଵ       (2.27a) 
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Using the above estimation procedure will minimize the expected squared error 

between the true and predicted values. The expression below shows the expected 

squared error, e as: 

,ݎ݋ݎݎ݁	݀݁ݎܽݑݍݏ	݀݁ݐܿ݁݌ݔܧ ݁ ൌ ܧ ቄൣܼ௫ െ	 መܼ௫௜൧
ଶቅ     (2.27b) 

However, ܧ൫ መܼ௫௜൯ ൌ ∑ ௜ሻሿ௡ݔሾܼሺܧ௜ݓ
௜ିଵ . 

For an unbiased estimator, the estimated value should be equal to the true value. 

൫ܧ መܼ௫௜൯ ൌ  ௜ሻሿ     (2.27c)ݔሾܼሺܧ	

Therefore, resulting sum of weights for the neighboring values equal to 	

෍ݓ௜ ൌ 1.0
௡

௜ୀଵ

 

The above can be accomplished by finding a set of values for which the 

differential equation for error with respect to each weight is 0. 

డ௘
డ௪೔

 ൌ 0       (2.27d) 

The solution to the above partial differential equation is obtained by applying the 

Lagrangian multipliers to the following set of simultaneous equations: 

∑ ௝ܽܥ௜௝ ൅ ߣ	 ൌ ௫௜௡ܥ	
௝ୀଵ , and     (2.27e) 

෍ݓ௜ ൌ 1.0
௡

௜ୀଵ

 

Where, ܥ௜௝ ൌ  ሺ݄ሻ is the spatial correlation obtained from the variogram modelܥ

 λ is a Lagrangian multiplier 

௫௜ܥ															 ൌ  all the data values and corresponding weights	ሺ݄ሻܥ

In matrix form, the equations are: 
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൥
ଵଵܥ ଵଶܥ … 1		ଵ௡ܥ
௡ଵܥ ௡ଶܥ … 1	௡௡ܥ
1 1 1					0

൩ ቈ
ଵݓ
௡ݓ
ߣ
቉ ൌ 	 ൥

௫ଵܥ
௫௡ܥ
1
൩      (2.27f) 

                         C                         λ            Cxi 

Therefore, the solution which yields the weighing factors, wi, is given by: 

෡ܹ ൌ  ௫௜                    (2.27g)ܥଵିܥ	

The weights of the neighboring values obtained using the above equation will be used for 

the estimation procedure.  

2.7.3 Universal Kriging 

Ordinary kriging, as discussed in the earlier section, is based on the condition 

where the mean is constant in the spatial process (∑ ௝ܽܥ௜௝ ൅ ߣ	 ൌ ௫௜௡ܥ	
௝ୀଵ ሻ. However, in 

some cases, the mean is not constant and is associated with the coordinates x and Y in 

various forms such as linear, quadratic or higher order trends (Isaaks and Srivastava, 

1989). The below expressions are examples of linear and quadratic form. 

ܼሺ ௜ܵሻ ൌ ଴ߚ	 ൅	ߚଵ ௜ܺ ൅ ଶߚ	 ௜ܻ ൅  ௜ሻ, linear        (2.28)ݏሺߜ	

ܼሺ ௜ܵሻ ൌ ଴ߚ	 ൅	ߚଵ ௜ܺ ൅ ଶߚ	 ௜ܻ ൅ ଷߚ	 ௜ܺ
ଶ ൅ ସߚ ௜ܺ ௜ܻ ൅ ହߚ ௜ܻ

ଶ ൅  ௜ሻ, quadratic  (2.29)ݏሺߜ

These trends in the data values effect the simple kriging estimations. Therefore, 

a new approach was developed, called universal kriging, where the weights of the 

neighboring values are estimated by accounting locally varying mean values. In universal 

kriging, unlike the simple or ordinary kriging, the intrinsic stationary condition has to be 

satisfied, accounting for trend in the mean as a deterministic component (Hohn, 1999; 

Olea, 2009). In case of the above deterministic trends, the predicted value at a location 

will again be expressed as a linear combination of the observed ܼሺ ௜ܵሻ, where i = 1,….,n 

values 

መܼሺܵ଴ሻ ൌ 	߱ଵܼሺݏଵሻ ൅ ߱ଶܼሺݏଶሻ ൅ ⋯ .൅߱௡ܼሺݏ௡ሻ ൌ 	∑ ߱௜ܼ௜௡
௜ୀଵ         (2.29) 
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Where, ∑ ߱௜ ൌ 1.0௡
௜ୀଵ  

In case of linear trend present in the data, the value  መܼሺܵ଴ሻ can be expressed as 

መܼሺݏ଴ሻ ൌ ଴ߚ	 ൅	ߚଵ ∑ ߱௜
௡
௜ୀଵ ௜ܺ ൅ ଶߚ	 ∑ ߱௜

௡
௜ୀଵ ௜ܻ ൅ ∑ ߱௜

௡
௜ୀଵ  ௜ሻ    (2.29a)ݏሺߜ	

Comparing the above equation with the linear trend, the following conditions have to be 

satisfied. 

෍߱௜

௡

௜ୀଵ
௜ܺ ൌ 	ܺ଴ 

                                                     ∑ ߱௜
௡
௜ୀଵ ௜ܻ ൌ 	 ଴ܻ and 

෍ݓ௜ ൌ 1.0
௡

௜ୀଵ

 

2.7.4 Factorial Kriging 

Factorial kriging was developed by Georges Matheron, based on a variogram 

filtering technique (Matheron, 1982). It is a multivariate geostatistical technique that is 

extensively used in the petroleum engineering field to reduce the noise present in the 

data (Magneron et al. 2009). Due to its ability to categorize the spatial components 

separately, it is also used to identify various metals present in soils (Queiroz et al., 2008; 

Jianshu et al., 2013; Benamghar et al., 2014)The main underlying assumption for 

factorial kriging is that the random function z(x) is modeled using two independent 

factors: 

ܼሺݔሻ ൌ 	ܼଵሺݔሻ ൅	ܼଶሺݔሻ        (2.30) 

Where, ܼሺݔሻ is the random function 

                         ܼଵሺݔሻ is the component of random variable due to noise 

                         ܼଶሺݔሻ is the component of random variable due to signal 



 

56 

This technique is efficient in reducing the global noise; however, the limitation of this 

model is its inability to reduce the noise if the data is non-stationary.  

2.8 Summary of Past Research Works 

Variability in the soil properties is always a concern for geotechnical engineers. 

With high variability in soil properties, the complexity in choosing the appropriate design 

parameters escalates. Numerous studies were conducted to understand different types of 

variability associated with the soil properties. Univariate statistics were successfully 

utilized to analyze the distribution of the soil properties. However, spatial variability is one 

aspect which was not ascertained using univariate statistics. Different techniques such as 

random fields, Monte Carlo simulations, and turning band methods were used to simulate 

the real field conditions and describe the spatial variability present in the soil properties. 

However, the predictions made based on the random field theory had some limitations 

and resulted in error between true values and estimated values. 

In this research study, geostatistics, developed from regionalized random 

variable theory, was implemented in various problems of interest. The spatial variability in 

the real field conditions was simulated by constructing a variogram, and an unbiased 

estimator kriging was applied for estimations.  
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Chapter 3  

Formulation of Framework for Spatial Variability Analysis in 

 Geotechnical Engineering 

3.1 Introduction 

Predictions in geotechnical engineering at unsampled locations are often based 

on univariate statistics, such as finding the expected value of all the observations and 

evaluating the distribution of its properties. The predictions obtained from the univariate 

statistics are highly sensitive due to its inability to capture the spatial variability that is 

distributed over the entire area. In this research study, geostatistics was used to 

incorporate the spatial variability present into the soil properties for prediction analysis.  

In order for the predictions to be unbiased, with minimum error, certain steps had 

to be taken to ensure accurate simulation of the real field conditions. Any deviations or 

violations of the assumptions of the test procedures would lead to unrealistic results. In 

the current study, a framework was developed, using both the univariate statistics and 

geostatistics, so that the spatial variability present in the soil properties was incorporated 

into the prediction analysis. This chapter provides a detailed discussion of every step that 

is required to incorporate spatial variability into prediction analysis. 

3.2 Data Acquisition 

Data acquisition is the primary step in any engineering analysis. The type of data, 

quality of data, and quantity of the data play an important role in prediction analysis. In 

geotechnical engineering, type of data refers to the raw data obtained from the field, such 

as shear strength interpretations from field vane shear test or the data obtained from the 

laboratory studies. The geostatistical modeling, when conducted using field data, would 

give more accurate results when compared to the data obtained using empirical 

correlations. This could be due to the uncertainties involved with the model, in situ 
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measurement error, or calibration error. With the amount of uncertainty, the quality of 

data gets affected, resulting in misleading predictions. Another important parameter that 

affects the predictions is the quantity of data. A huge amount of data is usually more 

desirable, as it allows more accurate simulation of the real field conditions. With a 

minimum number of observations, the risk associated with the predictions usually 

increases.  

3.2.1 Data Organization 

Once the data is collected from the field or developed using empirical correlation, 

the next important step is to organize the data. In order to perform geostatistical 

modelling, the data should be organized in the Cartesian coordinate system. The x, y of 

the Cartesian system represents the spatial location of a particular data point in space; 

whereas, z represents the value of the variable of interest. Since geostatistics depend on 

the separation distance of the data points rather than location, the position of the data 

point can be given to our own individual coordinate system rather than depending on 

east, west, north or south or latitude and longitude. With the defined coordinates of the 

data points, the data is further used for univariate statistics and geostatistical modelling, 

as explained in the later sections. 

3.3 Statistical Analysis  

The statistical analysis of the data gives a fair understanding of the distribution of 

the data, which governs the type of statistical tests to be adopted. Even though the 

univariate statistics can’t incorporate the spatial variability present into the soil properties, 

it helps in conducting several checks, such as constant mean value, constant variance, 

and Gaussian distribution of the data. 
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the predictions analysis performed using geostatistics. The ideal condition, for the most 

accurate predictions with minimum error, results when the skewness is equal to zero. The 

number of class interval (CI) for plotting the histogram is found using Sturges (1926) 

Equation 3.1. 

.݋ܰ ݏ݈ܽݒݎ݁ݐ݊ܫ	ݏݏ݈ܽܥ	݂݋ ൌ 	1 ൅ 3.3 logଵ଴ ܰ        (3.1) 

Where, N is the total number of observations in the data set 

Once the class interval (CI) is determined, the bin size is found by using Equation 3.2. 

The bin size obtained can be rounded off to the nearest decimal point while plotting the 

histogram. 

݁ݖ݅ܵ	݊݅ܤ                               ൌ 	ெ௔௫௜௠௨௠	௏௔௟௨௘ିெ௜௡௜௠௨௠	௏௔௟௨௘
ே௨௠௕௘௥	௢௙	஼௟௔௦௦	ூ௡௧௘௥௩௔௟௦

               (3.2) 

3.3.2 Check for Normal Distribution of Data 

Soils are formed due to natural geological processes; consequently, the 

distribution of the soil properties can vary from location to location. As most of the 

statistical tests are based on normal distribution, the soil properties, should be checked 

for having normal distribution of the data. 

Statistical models are composed of a systematic component such as trend 

(deterministic or structural) and a random component (error) to capture the natural 

variation (Montgomery, 2010). Based on the central limit theorem, the random error 

component is normally distributed with mean value, µ and a standard deviation, σ. The 

data is said to be normally distributed if the probability of any random variable falls in real 

limits under the proper bell-shaped curve, with either of its ends approaching zero. The 

most desirable condition for conventional statistical analysis of a random variable is the 

when the data is normally distributed. Clark and Harper (2002), in their research study,  
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stated that the violation of normality affects the spatial correlation of the random variable 

and further impacts the final outcome of the predictions.  

In this research study, the soil property under study was checked for the 

normality assumption. Histogram plots are the simplest way to check for normal 

distribution of the data; however, because of their sensitivity to the number of class 

intervals and bin size, they were not employed. Normal-Quantile plot (n-q plot) and 

Shapiro-Wilk test are two strong tests, among many, that were used in this study to check 

the normality of the data.  

3.3.2.1 Normal – Quantile plot (n-q plot) 

Normal-Quantile (n-q) plot is the most commonly-used graphical tool to assess 

how well the data fits the normal distribution. In an n-q plot, quantile values of a 

theoretical distribution are plotted against the normal values from the data set, as shown 

in Figure 3.2. Initially, the normal values for which the test was being performed were 

arranged in the ascending order. The ranks for all the values were assigned in the 

increasing order starting with 1. The rank proportion or theoretical quantile value was 

calculated for each value using below Equation 3.3.  

௜ି଴.ହ	 ~	ݍ
ே

         (3.3) 

Where, i is the rank of the observation  

           N is the total number of observations 

The z-values or z-scores for all the theoretical quantile values were obtained using the 

normality tables. The obtained z-values, which are theoretical quantile values, were 

plotted against the normal values. Thereafter, the aim was to make a judgment as to 

whether the actual values were normally distributed. If this was the case, then the plotted 

points would create a straight diagonal line. Any systematic deviations from a straight 
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line, other than natural random fluctuations, suggest that the data cannot be considered 

to be normally distributed. Since, it is not always practically possible to obtain a straight 

line, the best fit line linear straight line is drawn for the plotted data. The coefficient of 

determination (R2), which determines how well the data fits a statistical model, was 

determined using the equation below.  

ܴଶ ൌ 	ௌௌೝ೐ೞ
ௌௌ೟೚೟

          (3.4) 

Where, SSres is called residual sum of squares  

 SStotal is called total sum of squares 

An assumption was made in this research, that if the R2 value was greater than 80%, the 

data was assumed to be in good fit with the normal distribution. 

 
Figure 3-2 Normal-Quantile plot (n-q) 
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3.3.2.2 Shapiro-Wilk Test 

The Shapiro-Wilk test is the most appropriate statistical test for evaluating the 

normal distribution of the data. It was developed by Samuel Sanford Shapiro and Martin 

Wilk in the year 1965. The test is based on the hypothesis testing that the sample data is 

normally distributed. The detailed statistical procedure involved in developing the test is 

given in the paper by Shapiro and Wilk (1965). The test statistic developed for verifying 

the null hypothesis, i.e., whether data is normally distributed, is given below.  

                                          ܹ ൌ 	௕
మ

ௌௌ
         (3.5) 

Where, b = ∑ ܽ௜ሺݔ௡ାଵି௜ െ	ݔ௜ሻ
௡/ଶ
௜ୀଵ         (3.5a) 

          ܵܵ ൌ 	∑ ሺݔ௜ െ	 ሻଶ௡ݔ̅
௜ୀଵ          (3.5b) 

  ௜ is the ith order statisticݔ          

 is the sample mean of the data ݔ̅

n is the number of observations 

 ai is the weight for individual observation   

In this research study, the Shapiro-Wilk test, along with normal quantile plots, was used 

for evaluating the normality of the geotechnical data of interest. Once the test statistic 

was calculated, the corresponding P-value was obtained, which is the probability that the 

sample average will take on a value that is at least as extreme as the observed value 

when the null hypothesis H0 is true. If the p-value calculated for the above statistic is less 

than the significance level (α-level), then the null hypothesis is rejected, concluding that 

the data is normally distributed. If the p-value obtained is greater than the test statistics, it 

is concluded that there is not enough evidence to assess the distribution of the data. In 

this study, the significance level chosen for this statistical test is 0.05.  
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3.4 Stationarity in Data 

Stationarity in geotechnical engineering is referred to as statistical homogeneity 

in soil parameters (Baecher and Christian, 2003). In an economic time series, stationarity 

is defined as the quality of a process in which the statistical parameters, such as mean 

and variance, do not change with the time (Challis and Kitney, 1991). In geostatistics, the 

stationarity refers to the data having same joint probability distribution over the space with 

constant mean and variance values. All pairs of random variables that are separated by a 

distance h depend upon the lag distance, but not on their location (Isaaks and Srivastava, 

1989).  

The stationarity is divided into two categories :strongly stationary process and 

intrinsic stationary process. The strongly stationary process, or truly stationary process, is 

called when all the higher-order moments are constant, including the variance and mean. 

In general terms, strongly stationary data can be described as data sets that have same 

constant mean, constant variance, and equal probability distribution. The intrinsic 

stationary process, or weak stationary process, refers to the data having a constant mean 

and variance throughout the space.  

The geostatistical methods are optimal when the data is normally distributed and 

stationary (mean, variance, and joint probability distribution) do not vary significantly in 

space. The truly stationary processes are mainly theoretical and are discussed only for 

their mathematical properties, which are difficult to apply to practical problems. However, 

the intrinsic stationary has to be satisfied in order to conduct geostatistical analysis. Cuba 

et al (2011) discussed the various scenarios of the data with constant and varying 

statistical parameters. 
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not have a constant mean. However, as discussed in earlier sections, the histogram plot 

changes with the change in bin size and number of class intervals. Another standard 

procedure is to detect the stationarity through the experimental variogram. If the 

experimental variogram values continue to increase beyond the priori variance of the 

sample data set without reaching a sill, the data can be concluded as non-stationary. In 

this section, the intrinsic stationary process, i.e., constant mean and variance was 

checked using univariate statistics. In order to supplement this check, the stationary was 

also verified in the later sections by using experimental variogram.  

 3.4.1 Check for Stationarity in Data Using Univariate Statistics 

In order to perform geostatistical analysis, the preliminary step is to check 

whether the data is stationarity or non-stationary. In this study, two statistical approaches, 

analysis of variance (ANOVA) and Bartlett’s test, were employed to check for stationarity 

(constant mean and constant variance) in the data. 

3.4.1.1 Check for Constant Mean using ANOVA 

Analysis of variance (ANOVA) is a statistical test procedure developed by R.A. 

Fisher to analyze the difference in group means. In this research study, this test was 

used to evaluate the stationarity present in the data by testing whether the mean was 

constant in all the treatments/sections under consideration. This was accomplished by 

developing a statistical hypothesis, as shown below.  

Null hypothesis: H0 : µ1 = µ2 = µ3 = µ4 - - - - - - - µn 

Alternative hypothesis: H1: At least one mean is different 

The difference in the mean values, or the variability present in the data values, was 

attributed to different sources of variations, such as variability within the treatments or 

variability between the treatments (Montgomery et al. 2010). The variability between the 

treatments is obtained through treatment sum of squares (SSTreatment), and variability 
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within the treatments is obtained by the error sum of squares (SSerror). Therefore the total 

variability i.e., total sum of squares (SSTotal) will be equal to the treatment sum of squares 

and error sum of squares.  

                                        ்ܵܵ௢௧௔௟ ൌ 	 ்ܵܵ௥௘௔௧௠௘௡௧ ൅	ܵܵா௥௥௢௥                      (3.6) 

         Where, ்ܵܵ௢௧௔௟ ൌ 	∑ ∑ ൫ݕ௜௝ െ	ݕ..ഥ൯
ଶ ൌ ௡ݏ݁ݎܽݑݍݏ	݂݋	݉ݑݏ	݈ܽݐ݋ݐ

௝ୀଵ
௔
௜ୀଵ             (3.6a) 

                     ்ܵܵ௥௘௔௧௠௘௡௧ ൌ 	݊	 ∑ ሺݕప.ഥ െ		ݕ..ഥ ሻଶ ൌ ௔ݏ݁ݎܽݑݍݏ	݂݋	݉ݑݏ	ݐ݊݁݉ݐܽ݁ݎݐ
௜ୀଵ  (3.6b)             

                    ܵܵ௘௥௥௢௥ ൌ 	∑ ∑ ൫ݕ௜௝ െ	ݕప.ഥ ൯
ଶ ൌ ௡ݏ݁ݎܽݑݍݏ	݂݋	݉ݑݏ	ݎ݋ݎݎ݁

௝ୀଵ
௔
௜ୀଵ             (3.6c) 

Once the variability in the groups and between the groups is assessed the 

hypothesis is tested using the statistics below. The detailed procedure of developing the 

test statistic (F0) is discussed in design and analysis of experiments text books.  

଴ܨ ൌ	 
ெௌ೅ೝ೐ೌ೟೘೐೙೟ೞ

ெௌಶೝೝ೚ೝ
                                                                 (3.7) 

 Where, ܵܯ௧௥௘௔௧௠௘௡௧௦ ൌ 	
ௌௌ೅ೝ೐ೌ೟೘೐೙೟

௔ିଵ
ൌ  (3.7a)                       ݁ݎܽݑݍܵ	݊ܽ݁ܯ	ݐ݊݁݉ݐܽ݁ݎܶ

ா௥௥௢௥ܵܯ              ൌ 	
ௌௌಶೝೝ೚ೝ
௔ሺ௡ିଵሻ

	ൌ 	Error	Mean	square                                            (3.7b)  

The test statistic (F0) is compared to the critical value obtained from a f-

distribution table with (a -1) and (N – a) degrees of freedom. We reject the null hypothesis 

(H0) that if the test statistic (F0) is greater than Fα, a-1, N-a, the means are not equal in at 

least one section. Tables 3-1 and 3-2 show the typical data arrangement for a single 

factor ANOVA experiment and a summary of ANOVA test results.  
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Table 3-1 Typical data for single-factor ANOVA experiment 

Treatment Observations Totals Averages

1 Y11 Y12 … Y1n Y1. Ӯ1. 

2 Y21 Y22 … Y2n Y2. Ӯ2. 

… … … … … … … 

A Ya1 Ya2 … Yan Yn. Ӯa. 

     Y.. Ӯ.. 

 

Table 3-2 ANOVA for a single factor experiment, random effects model 

Source of 

Variation 

Sum of 

Squares (SS) 

Degrees of 

Freedom )DF) 

Mean Square 

(MS) 

F0 

Treatments SSTreatmentes a-1 MSTreatments MSTreatments/MSE 

Error SSE a(n-1) MSE  

Total SST an-1   

 

Where a = number of different levels of a single factor 

           n = number of observations in respective treatment 

           N = Total number of observations 

3.4.1.1.1 Model Adequacy check 

The main underlying assumption in the ANOVA method is that the residual errors (eij) are 

normally and independently distributed, and variance in all residual is structureless; that 

is, it should contain no obvious pattern.   

 ݁௜௝ ൌ ௜௝ݕ	 െ	ݕపఫෞ        (3.8) 

Where, eij is the residual error 
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             yij is the observation in the ith treatment and jth row 

ŷ ij is an estimate of the corresponding observation yij 

3.4.1.2 Check for Constant Variance using Bartlett’s test 

Bartlett’s test is a statistical test procedure named after Maurice Stevenson 

Bartlett to analyze ‘k’ samples from a population having equal variances or not.  As a part 

of the stationary requirement, in this research study, this test was used to evaluate the 

constant variance present in the data in all the treatments/sections under consideration. 

This was accomplished by developing a statistical hypothesis, as shown below.  

Null hypothesis: H0: σ1
2 = σ2

2 = σ3
2 = σ4

2
 - - - - - - - σn

2 

Alternative hypothesis: H1: At least one variance is different 

The basic procedure involved in Bartlett’s test is computing a test statistic whose sample 

distribution can be approximated using a chi - square distribution with a-1 degrees of 

freedom. The test statistic is  

߯଴ଶ ൌ 2.3026	 ௤
௖
          (3.9) 

                 Where,  ݍ ൌ 	 ሺܰ െ ܽሻ	logଵ଴ ܵ௣ଶ െ	∑ ሺ݊௜ െ 1ሻ logଵ଴ ௜ܵ
ଶ	௔

௜ୀଵ      (3.9a) 

    ܿ ൌ 1 ൅	 ଵ
ଷሺ௔ିଵሻ

	ሺ∑ ሺ݊௜ െ 1ሻିଵ െ	ሺܰ െ ܽሻିଵ௔
௜ୀଵ ሻ               (3.9b) 

   ܵ௣ଶ ൌ 	
∑ ሺ௡೔ିଵሻ	ௌ೔

మೌ
೔సభ

ேି௔
         (3.9c) 

	 ௜ܵ
ଶ is the sample variance of the ith population 

From the above statistic, it can be observed that the quantity q is large when the sample 

variances have high variability, and q is zero if the sample variances are equal. 

Therefore, the null hypothesis (H0) shall be rejected when Χ2
0 > Χ2

α, a-1, concluding that 

the variances are not equal. 
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3.5.1 Random Walk  

Random walk refers to the arbitrary variation in the data when compared to  the 

mean or previous value. The random walk can be sub-divided into two categories: pure 

random walk and random walk with a drift. Below are the two equations for random walk 

that explain the value at any location, with and without drift.  

Pure Random Walk : ௧ܻ ൌ 	 ௧ܻିଵ ൅	ߝ௧         (3.10) 

Random Walk with drift : ௧ܻ ൌ ߙ	 ൅	 ௧ܻିଵ ൅	ߝ௧        (3.11) 

Where,  εt is the stochastic component 

             α is the drift    

             Yt is the value at time t 

             Yt-1 is the value at time t-1  

In pure random walk, the value at any location (Yt)  is equal to the previous value (Yt-1)  

plus a stochastic (non-systematic) component (εt). Whereas, if the random walk is 

associated with the drift, the value at any location is governed by a constant or drift value 

(α), along with previous value and stochastic component. 

3.5.2 Trend 

The trend can be defined as low-frequency, large-scale variations (Olea, 1991; 

Cuba et al. 2011). In geostatistics, the trend refers to variation in the local mean and local 

variance.  In the time series, the trend is given by the following equations: 

Deterministic Trend : ௧ܻ ൌ ߙ	 ൅ ݐߚ	 ൅	ߝ௧          (3.12) 

Random Walk with Drift and Deterministic Trend: ௧ܻ ൌ ߙ	 ൅	 ௧ܻିଵ ൅ ݐߚ	 ൅	ߝ௧  (3.13) 

Where, βt is deterministic trend 

In the deterministic trend, the value at any location is influenced by the stochastic 

component (local variation), drift, and the trend pattern of the data. In geostatistics, the 

trend present in the data develops a bad correlation between the variable values when 
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separated by large-lag distances. The trends present in the data can be identified by 

plotting the semi-variogram. If the empirical semi-variogram values continue to increase 

beyond the priori variance or global variance without reaching a sill, this often indicates 

that the spatial trend is present in the data.  

Cuba et al (2011) presented the experimental semi-variogram plots, through 

which various trends that could present in the spatial data can be identified. Figure 3-5 

shows the different conditions for the trends in the data by Cuba et al (2011). Figure 3-

5(a) displays a condition where the semi-variogram values are below the priori variance, 

or global variance, reflecting no trend present in the data. In Figure 3-5(b), the semi-

variogram values follow a linear trend from the origin and continue to increase linearly 

beyond the priori variance value. This linear increase, beyond the priori variance, reflects 

the linear trend present in the spatial data. Similarly, Figures 3-5 (c) and (d) reflect the 

parabolic and variance trend, where the semi-variogram values increase beyond the 

priori variance, reflecting the parabolic and variance trend present in the spatial data. 
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scale instead of using a normal scale. Even though it is expressed in logarithmic function, 

the inherent meaning does not change, i.e., void ratio is dependent on the vertical stress.  

Transformations play a vital role in mathematical and statistical analysis. As the 

name suggests, transformations are merely the expressions of the data in different forms. 

By transforming the data, many underlying assumptions of the statistical tests can be 

satisfied. The key for transformations is to use the right function. For example, by using 

the square root function, the upper bound of the data can be reduced more than the 

lower-bound data.  

Howell (2007), in his study, suggested that the transformed data and the 

untransformed data should not differ in their basic assumptions about the data. 

Tabachick and Fidell (2007) provided the guidelines for selection of appropriate 

transformation methods based on the skewness present in the data. 

Table 3-3 Transformation Method Guidelines by Tabachick and Fidell 

Skewness in data Transformation method 

Moderately positive skewness 
Square- Root 

ӯ = SQRT (Y) 

Substantially positive skewness 
Logarithmic 

ӯ = Log 10 (Y) 

Substantially positive skewness (with zero 

values) 

Logarithmic 

ӯ = Log 10 (Y + C) 

Moderately negative skewness 
Square-Root 

ӯ = SQRT (K-Y) 

Substantially negative skewness 
Logarithmic (Log 10) 

ӯ = Log10(K-Y) 

   *Where C and K are constants, ӯ is the transformed value 
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In this research study, transformations were performed to stabilize the variance 

in the ANOVA test and to convert the non-stationary data to stationary. Instead of using 

the empirical methods to select the appropriate transformation, a more formal statistical 

approach was employed. 

3.6.1.1 Box- Cox Transformation 

Douglas (2009) stated that the power family of transformations (i.e., y* = yλ) are 

extremely useful in stabilizing the variance, making the distribution normal and improving 

the fit of the model. Box-Cox (1964) is a statistical test procedure used in selecting the 

parameter ‘λ’ along with other model parameters, such as overall mean and treatment 

effects. The maximum likelihood estimate of λ is the value at which the error sum of 

squares is minimum. This is usually found by plotting a graph for the error sum of 

squares for different values of λ. In order to plot that graph, the data has to be 

transformed for different values of λ, using the equations below. Each value of λ 

produces a different set of data for which the error sum of squares is obtained.  

ሺఒሻݕ ൌ 	 ൝
௬ഊିଵ
ఒ௬ሶ ഊషభ

	ߣ							 ് 0
ሶ	ݕ		 ln ߣ														ݕ ൌ 0										

      (3.14) 

         Where, ݕሶ ൌ 	 ݈݊ିଵ	ሾሺ1 ݊⁄ ሻ	∑ ln  ሿ is the geometric mean of the observationsݕ

In this research study, the Box-Cox procedure was utilized to select the appropriate 

transformation. The selected transformation was adopted for stabilizing the variance 

present in the data and to convert the non-stationary data into stationary. 

3.6.2 Detrending 

Detrending refers to a mathematical technique for removing a trend present in 

the data. The geotechnical models are often described as function of linear or non-linear 

trends, such as exponential power. These trends provide biased predictions, which affect 

the predictions at unsampled locations. The trends in the geotechnical data can be 
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identified by constructing an experimental variogram plot, as shown in Figure 3-5. Once 

the trend in the spatial data is determined, a trend surface is fitted using the least squares 

method. The trend surface values are subtracted from the original data, resulting in the 

residual values. These residual values are the detrended data that is used for 

geostatistical analysis. Kitanidis (1994) presented the equations that are used for 

detrending the data. 

Linear Detrending: ܼ௡௘௪ ൌ ܼ െ ሾܺܣ ൅ ܻܤ ൅  ሿ        (3.15)ܥ

Quadratic Detrending: ܼ௡௘௪ ൌ ܼ െ	ሾܺܣଶ ൅ ଶܻܤ ൅ ܻܺܥ ൅ ܺܦ ൅ ܻܧ ൅  ሿ     (3.16)ܨ

Where A, B, C, D, E, F are the constants and X, Y are spatial coordinates of the Z-value 

Parabolic Detrending: ܼ௡௘௪ ൌ ܼ െ	ሾܣ଴ ൅	ܣଵܺ ൅	ܣଶܻ ൅	ܣଷܺଶ ൅	ܣସܻܺ ൅	ܣହܻଶ	ሿ by Vieira 

(2010)               (3.17) 

Where A0, A0, A0, A0, A0 are constants and X, Y are spatial coordinates of the Z-value 

3.7 Spatial Variability Analysis 

The variability present in the geotechnical data with spatial distance  is referred 

to as spatial variability. Spatial continuity is an important characteristic of geostatistics, 

through which the spatial variability in the data is captured. The three functions that are 

used to describe the spatial variability are covariance function, correlation function, or 

correlogram and semi-variance function or variogram.  

In the time series or temporal analysis, the correlogram and covariance functions 

are often used. In geostatistics, semivariogram is the most commonly used tool to 

describe the spatial variability present in the variable of interest. The primary reason for 

using the variogram is because of its ability to filter the influence of spatially varying 

mean. Also, the second-order stationarity shall be satisfied when using the covariance 

function or correlation function, which is sometimes highly impractical to satisfy. Where 
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else, the variogram works well with the data that satisfies the basic intrinsic stationarity 

(constant mean, variance, joint probability distribution).  

In this research study, variogram, a geostatistics tool is used to find the spatial 

variability of the soil properties. The captured spatial variability was incorporated into the 

prediction analysis through a stochastic interpretation tool called Kriging. Once the 

collected data was checked for Gaussian distribution, stationarity, and any trend in the 

data, it could be further used for spatial variability analysis. In this study, Surfer, a 

commercially available software was utilized for spatial variability modelling and 

prediction analysis. 

3.7.1 Experimental Variogram 

Variogram is defined as the average of the squared difference of the random 

variable for different lag distances. The mathematical definition of the variogram or 

semivariogram is 

ሺ݄ሻߛ                       ൌ 	 ଵ
ଶ௡ሺ௛ሻ

	∑ ሾݖሺݔ௜	 ൅ 	݄ሻ 	െ ௜ሻሿଶݔሺݖ
௡ሺ௛ሻ
௜ୀଵ     (3.18) 

Where, ݖሺݔ௜ሻ = measurement taken at a location ݔ௜ ; 

	௜ݔሺݖ               ൅ 	݄ሻ = measurement taken at a location h distance away; 

              n(h) = number of data pairs h units apart in the direction of the vector  

              h = lag distance 

 ሺ݄ሻ = variogram valueߛ             

From the above equation, it can be clearly understood that the variogram value 

depends on the separation distance/lag distance (h) and on the number of data pairs. 

However, the number of pairs and separation distance are interrelated, which influences 

the variogram value. With the given number of observations, the number of pairs can be 
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important factors that heavily influence the variogram plot are lag distance, lag direction, 

and lag tolerance.  

3.7.1.1 Lag distance (h) 

Lag distance, or separation distance, refers to the distance between the two pairs 

of random variables. The mathematical equation for a variogram clearly indicates that as 

the lag distance increases, the corresponding number of pairs can increase or decrease 

and significantly influence variogram value. However, there are no standard procedures 

or rules employed for selecting the lag distance. In this research study, a trial and error 

procedure was adopted for selecting the lag distance. The lag distance that produced a 

minimum number of 30 pairs was selected as the desirable lag distance for the 

construction of a variogram. As an initial estimate, the minimum distance between two 

bore holes, or the distance between two test locations, can be given as the lag distance. 

3.7.1.2 Lag Direction 

Lag direction is another important factor that influences the variogram value and 

variogram plot. Lag direction signifies the direction in which the variogram should be 

constructed. For example, the direction of zero degrees (0º) indicates the pairs that are 

separated in x-direction, and direction of ninety degrees (90º) indicates the pairs that are 

separated in y-direction. In geotechnical engineering, the lag direction plays an important 

role. Through the lag direction, the horizontal and vertical variability in the soil properties 

can be modelled. In this research study, the variograms were constructed for different 

directions to capture the spatial variability in all the directions, as shown in Figure 3-7.  
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variogram will reach the sill value after certain lag distance. The global variance of the 

observations in a sample is an estimate of the sill value (David, 1977; Journel and 

Huijbregts, 1978).  The distance at which the variogram value reaches sill value is called 

range, which indicates the spatial correlation of the random variables until that distance. 

Below are some standard models that are used to model a variogram with a sill.  

3.7.2.1 Nugget Model 

Nugget model, or nugget effect, is used to model the discontinuity at the origin. 

Strictly, the variogram value should be equal to zero when the lag distance is zero; 

however, due to small-scale variations and measurement variability, there will be specific 

variogram value at h = 0.  

ሺ݄ሻߛ ൌ  ଴ , when h = 0            (3.20)ܥ݊

Where, ߛሺ݄ሻ is the variogram value 

h is the lag distance 

C0 is the Nugget 

3.7.2.2 Linear Model 

A simple linear model is the basic model to depict the spatial variability. In the 

linear variogram model, the variogram value increases linearly from the origin and 

reaches a constant value at the sill. Its variogram function is given by: 

ሺ݄ሻߛ ൌ 0, when h = 0      (3.21) 

ሺ݄ሻߛ                                         ൌ ଴ܥ݊ ൅  when h > 0                      (3.21a) ,݄݌

Where, ߛሺ݄ሻ is the variogram value 

h is the lag distance 

C0 is the Nugget 

P is the slope of the line 
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3.7.2.3 Spherical Model 

Spherical model is another standard model used to capture the spatial variability 

present in the variable of interest. The spherical model increases linearly from origin and 

reaches the sill value with the normal transition. The spherical variogram function is given 

by: 

ሺ݄ሻߛ    ൌ 0, when h = 0      (3.22) 

ሺ݄ሻߛ     ൌ ଴ܥ	 ൅ ܥ ቂଷ௛
ଶ௔
െ ௛య

ଶ௔య
ቃ, when 0 < h < a                (3.22a) 

Where, ߛሺ݄ሻ is the variogram value; h is the lag distance; C0 is the Nugget; C is the scale 

of the variogram; a is the range of the variogram  

3.7.2.4 Exponential Model 

Exponential model is modelled using a specific function where the model reaches 

the sill asymptotically. Theoretically, the exponential model never reaches the sill value. 

However, the range using exponential model is defined as the lag at which the 

exponential variogram function reaches 95% of the sill value. The exponential function is 

given by: 

ሺ݄ሻߛ ൌ 0, when h = 0    (3.23) 

ሺ݄ሻߛ ൌ ଴ܥ	 ൅ ܥ ቂ1 െ ݌ݔ݁ ቀെ ௛
௔
ቁቃ ݄	݄݊݁ݓ	 ൐ 0            (3.23a) 

Where, ߛሺ݄ሻ is the variogram value; h is the lag distance; C0 is the Nugget; C is the scale 

of the variogram; 

a is the range of the variogram  

3.7.2.5 Gaussian  Model 

Gaussian Model is similar to the exponential model, where the model reaches 

the sill asymptotically. The Gaussian model represents smoothly varying properties at the 

origin, with parabolic behavior at the origin. However, when the Gaussian model is used 
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assumed the same spatial correlation structure. However, in practice, the properties can 

show the different spatial structure in different directions. One way to model anisotropy is 

to use geometric anisotropy, where the variogram value reaches the same sill in all 

directions. The most common approach to modelling geometric anisotropy is by finding 

the ranges (ax, ay, az) in three principal orthogonal directions and calculating the isotropic 

lag distance using the equation below (Bohling, 2005):  

݄ ൌ 	ටሺ݄௫ ܽ௫⁄ ሻଶ ൅	൫݄௬ ܽ௬⁄ ൯ଶ ൅ ሺ݄௭ ܽ௭⁄ ሻଶ       (3.25) 

 Where, hx is the lag distance in x- direction 

hy is the lag distance in y- direction 

hz is the lag distance in z- direction 

ax, ay, az are the ranges in three principal directions  

In this research study, the Surfer software was used to construct an experimental 

variogram and model the spatial variability. The geometric isotropy is a built-in option in 

the software, and was used to incorporate the anisotropy while modelling the variogram.  

3.7.3 Kriging Analysis 

This research study is aimed at incorporating the spatial variability present in the 

soil properties for prediction analysis. Surfer, commercially available software, was 

utilized for performing the prediction analysis, using kriging. Kriging is an estimation 

method that gives the best unbiased linear estimates to predict the values at unsampled 

locations (Armstrong, 1994). This is because of its ability to reduce the error variance of 

the predicted values.  

Once the spatial variability is modelled using the accessible variogram models, 

kriging analysis is then performed utilizing the surfer program. The output of the kriging 

analysis is presented in the form of a contour map, where the estimates at unsampled 
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error between the estimated and true value. Through this method, we can also judge 

whether the kriging method overestimates or underestimates the data.  

 

 
 

Figure 3-11 Cross Validation plot 

3.7.9 Formulated guideline for Spatial Variability Analysis 

The formulated guideline for conducting spatial variability analysis on soil 

properties is given below: 
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mixture. However, when the man-made materials are subjected to field conditions, it is 

difficult to assess the properties with time. Through the developed framework analysis, 

the spatial variability of in-situ properties can be modeled and the predictions can be 

performed at untested locations. The framework developed can serve in this case as a 

quality assurance and quality control tool. 

The other application of this analysis is performed on the deposition of natural 

mineral pockets. The natural deposition of the minerals is governed by several factors 

such as subsurface conditions, ground water flow, and climatic conditions. With high 

scale variability in proximate areas, engineers often face challenges. Through this 

framework, the spatial variability in the mineral depositions can be captured, and the 

spatial variability models will be utilized to evaluate the distribution of high density zones. 

3.9 Summary 

The incorporation of spatial variability in the prediction analysis is often 

challenging in geotechnical engineering. In this chapter, a framework was developed to 

incorporate the spatial variability of soil properties into prediction analysis. The framework 

was developed by utilizing the concepts from univariate statistics and randomized 

random variable theory. The framework was broadly divided into three steps: 

geotechnical data collection, statistical analysis, and geostatistical analysis. The 

geotechnical data was comprised of in-situ soil properties for three different types of 

materials, as shown in Figure 3-13. The geostatistical analysis was performed using 

commercially available Surfer software. Figure 3-12 represents the flowchart of the 

analysis that was used in this study for developing spatial variability models and 

performing prediction analysis using geostatistics. The developed framework is evaluated 

and assessed in different geotechnical problems of interest in the following chapters.  
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Chapter 4  

Spatial Variability Analysis of Natural Soil Properties Evaluated from 

 Cone Penetration Test Data (Cptu)  

4.1 Introduction 

Cone penetration testing is the most extensively used test in geotechnical 

engineering for evaluating the subsurface profile. From the day of its invention in the 

1930’s to date, several types of cone penetrometers have been introduced (Mayne, 

2007). Studies were conducted in developing correlations with the CPTU test 

parameters: tip resistance, shaft resistance, and pore water pressure. In the recent 

decade, researchers have focused on evaluating the variability of soil parameters 

obtained from the CPTU test due to its continuous profiling.  

Kulhawy and Trautmann (1996) signified the sources of variability in CPTU test 

results where the type of cone (MCPTU or ECPTU) affects the test results significantly. 

Orchant et al. (1988) and Kulhawy et al. (1996 provided the summary of inherent 

measurement errors, with the CPTU test ranging from 5-25 (%) based upon the type of 

CPTU test. Phoon et al. (1995) described the variability of CPTU test parameters using 

coefficient of variation, where the tip resistance of a sandy soil varies from 10- 81 

percent, silty clay layer from 5-40 percent and clayey soil from 2-17 percent.  

Studies were conducted to address the variability in CPTU test parameters using 

the scale of fluctuation. Hegazy et al. (1996) provided the spatial correlation in the CPTU 

parameters using the auto-covariance distance (r0) for different types of soils, where the 

maximum spatial correlation of tip resistance and sleeve friction is observed in the clayey 

soils ranging from 3.05 to 4.57 m and minimum correlation distance in mixed soils 

ranging from 0.34 to0.37m. So, the soil properties evaluated from the CPTU test results 

are inconclusive due to the variability.  
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Table 4.1 - Continued 

Hole 11 K7+730 19.00 

Hole 12 K7+695 21.00 

Hole 13 K7+695 21.25 
Hole 14 K7+645 20.00 

Hole 16 K7+740 20.00 

Hole 17 K7+740 20.75 

 

In total, the CPTU test was conducted at 10 different locations in an area of 3100 

square feet. Basic soil classification was performed on all the CPTU test data, using the 

Robertson et al. (1986) chart. The subsurface profile was predominantly composed of 

silty sand layers with clay lenses. The idealized soil profiles for all the CPTU test data is 

presented in Tables 4-2 to 4-12. The detailed CPTU profiles are provided in Appendix A. 

In order to conduct spatial variability analysis, the friction angle parameter was selected 

due to the dominance of silty sand layers throughout the subsurface profile. 

Table 4-2 Idealized soil profile for CPTU data at bore hole-1 

Cone Penetration Test at Hole 1 : k7+645 

Layer Soil From To 
Thickness 

(m) 

Tip 
Resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM- MS 0 2.2 2.2 3 1.5 
2 MS-ML 2.2 5.2 3 1.9 0.9 
3 MS-ML 5.2 8.3 3.1 4.4 1.2 
4 SP-SM 8.3 10 1.7 7.8 1.4 
5 SM- MS 10 11.6 1.6 5.3 1.4 
6 SM- MS 11.6 14.3 2.7 6.2 1.4 
7 SP-SM 14.3 16 1.7 9.2 1.6 
8 SM- MS 16 19 3 7.8 1.8 
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Table 4-3 Idealized soil profile for CPTU data at bore hole-2 

Cone Penetration Test at Hole 2 : k7+665 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM-MS 0 1 1 1 1.8 
2 Clay 1 1.4 0.4 1.1 4 
3 SM-MS 1.4 4.6 3.2 4 1.1 
4 SP-SM 4.6 7.6 3 7 1.1 
5 MS-ML 7.6 9.6 2 3.5 2.8 
6 SP-SM 9.6 11.8 2.2 6.5 1.2 
7 SP-SM 11.8 21 9.2 9 1.3 

 
 

Table 4-4 Idealized soil profile for CPTU data at bore hole-9 

Cone Penetration Test at Hole 9 : k7+665 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 ML 0 1.3 1.3 2.2 2.8 

2 Clay/Org 1.3 1.6 0.3 0.3 13.5 

3 ML 1.6 3 1.4 2.4 1.8 

4 1 3 5 2 0.6 1.1 

5 SM-MS 5 7.3 2.3 4.6 1.2 

6 ML 7.3 11.6 4.3 2 1 

7 SM-MS 11.6 21 9.4 3.8 1 
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Table 4-5 Idealized soil profile for CPTU data at bore hole-10 

Cone Penetration Test at Hole 10 : k7+730 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM-MS 0 1 1 3.5 1.6 

2 SM-MS 1 2.5 1.5 6 1.2 

3 SM-MS 2.5 4.1 1.6 3.6 1 

4 ML 4.1 6.6 2.5 2 0.76 

5 SM-MS 6.6 12.5 5.9 3.3 0.9 

6 SM-MS 12.5 21 8.5 5.5 1.4 
 

 

Table 4-6 Idealized soil profile for CPTU data at bore hole-11 

Cone Penetration Test at Hole 11 : k7+730 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPA) 

Friction 
Ratio 

1 SM-MS 0 5.2 5.2 4.5 1.3 

2 SM-MS 5.2 7.4 2.2 5.4 1 

3 SP-SM 7.4 9.2 1.8 8 1.1 

4 Clay 9.2 9.7 1.3 1.2 2 

5 SM-MS 9.7 20 10.3 8.5 1.5 
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Table 4-7 Idealized soil profile for CPTU data at bore hole-12 

Cone Penetration Test at Hole 12 : k7+695 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 

1 SM-MS 0 0.5 0.5 6.4 1.6 

2 ML 0.5 3.4 2.9 2.8 1.5 

3 ML 3.4 6.5 3.1 1.9 0.7 

4 SM-MS 6.5 10 3.5 4.6 1 

5 SM-MS 10 12.2 2.2 2.6 0.9 

6 SM-MS 12.2 21 8.8 5 1.2 
 
 
 

Table 4-8 Idealized soil profile for CPTU data at bore hole-13 

Cone Penetration Test at Hole 13 : k7+695 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM-MS 0 5.3 5.3 4 1.2 

2 SP-SM 5.3 7.3 2 9.5 1 

3 SM-MS 7.3 9.4 2.1 5.5 1.5 

4 SM-MS 9.4 11.7 2.3 6.5 1.4 

5 SM-MS 11.7 15.7 4 5.3 1.4 

6 SP-SM 15.7 17.8 2.1 12 1.3 

7 SM-MS 17.8 19.5 3.2 9 1.8 

8 SM-MS 19.5 21 1.5 7.8 1.8 
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Table 4-9 Idealized soil profile for CPTU data at bore hole-14 

Cone Penetration Test at Hole 14 : k7+645 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 ML 0 2 2 2.8 1.9 

2 Clay 2 5.1 3.1 1.4 13 

3 ML 5.1 8.2 3.1 3 1.7 

4 SM-MS 8.2 9.6 1.4 5.4 1.3 

5 SM-MS 9.6 11.5 1.9 5 1.5 
 

Table 4-10 Idealized soil profile for CPTU data at bore hole-16 

Cone Penetration Test at Hole 16 : k7+740 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM-MS 0 1.9 1.9 4.9 1.2 

2 SM-MS 1.9 3.5 1.6 5.2 1 

3 Clay 3.5 6.1 2.6 3.3 2.8 

4 Clay 6.1 8.2 2.1 0.4 2.6 

5 SM-MS 8.2 10.8 2.6 5.8 1.1 

6 SP-SM 10.8 21 10.2 6 0.9 
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Table 4-11 Idealized soil profile for CPTU data at bore hole-17 

Cone Penetration Test at Hole 17 : k7+740 

Layer Soil From To 
Thickness 

(m) 

Tip 
resistance 

(MPa) 

Friction 
Ratio 
(%) 

1 SM-MS 0 2.5 2.5 5 1 
2 ML 2.5 4.5 2 1.7 1.8 
3 SM-MS 4.5 5.5 1 3.8 0.9 
4 Clay 5.5 7.6 2.1 0.7 2.2 
5 SM-MS 7.6 10.5 2.9 4.7 1.2 
6 SP-SM 10.5 16.4 5.9 8 1 
7 Clau 16.4 17.9 1.5 2.5 2.8 
8 SP-SM 17.9 19.2 1.3 9.5 1.1 

 
 

In order to perform spatial variability analysis of strength property, the friction 

angle values were determined, using the expression proposed by Kulhawy and Mayne 

(1990). 

߶ᇱ ൌ 	17.6° ൅ 11.0°ܺ	 logሺݍ௧ଵሻ              (4.1) 

Where, ݍ௧ଵ	݅ݏ	݀݁ݖ݈݅ܽ݉ݎ݋݊	݌݅ݐ	݁ܿ݊ܽݐݏ݅ݏ݁ݎ	݊݁ݒ݅݃	ݕܾ 

௧ଵݍ ൌ ሺݍ௧ ௩଴ᇱߪ௔௧௠ሻ/ሺሺߪ ⁄௔௧௠ߪ ሻ଴.ହሻ⁄         (4.2) 

Where, ߪ௔௧௠ = 1 atm = 1 bar = 100 kPa ~ 1 tsf ~ 14.7 psi 

௩଴ᇱߪ  = effective vertical overburden stress at corresponding depth 

Thus, the friction angle values for all the available test data were calculated using the 

above expressions.  

4.3 Data Organization 

Due to the limitations involved in performing 3-dimensional variograms, only 5 of 

10 bore holes were selected to analyze the spatial variability. The CPTU test data 

obtained from bore holes 1, 2, 11, 13 and 17 were used. As mentioned in Chapter 3, the 

data had to be organized in Cartesian coordinate system in order to perform spatial 
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variability analysis. In order to assign coordinates to the data, certain assumptions were 

made regarding the location of the bore holes. Bore hole 1 was assumed to be located at 

the (5,0) in (x,y) coordinate, where 5 represents 5 meters in horizontal direction, and 0 

represents depth of the subsurface in vertical direction. Corresponding coordinates for 

bore hole 1 were obtained for rest of the bore holes. Figure 4-2 provides the schematic 

representation and coordinates of the bore holes considered for analysis. 

 

 

 
 

 
 
 
 
 

 

 

 

 

 

 

 

The friction angle values were calculated and represented in z-direction. For 

example, a set of coordinates (5, 15, 35) represents a friction angle of 35 degrees at a 

location 5 feet in horizontal direction and 10 feet in vertical direction. All the friction angle 

values with their corresponding coordinates in the Cartesian system are provided in 

Appendix A.  

(100,19.2) (90,20) (55,21) (25,21) 
(5,19) 

BH 17 BH 11 BH 2 BH 1 BH 13 

(100,0) (90,0) (55,0) (25,0) (5,0) 

Figure 4-2 Bore hole layout with coordinates in Cartesian system 
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4.4 Statistical Analysis 

Statistical analysis involves evaluating the distribution of friction angle values and 

checks, analyzing spatial variability in the data. The friction angle values were calculated 

using Equation 4-1 for all the tip resistance values. However, it is cumbersome to involve 

all the values to perform statistical tests; therefore, the random number generator tool 

was utilized in this research to randomly select the values of the friction angle in all the 

CPTU tests.  The minimum and maximum values in a respective bore hole were given as 

lower and upper bound to generate random numbers. The table below provides the 

friction angle values generated using a random number generator that is used in 

statistical analysis.  

Table 4-12 Friction angle values generated using a random number generator 

Bore  
Hole 

Friction Angle (Degrees) 

CPTU 1 38 38 43 38 35 41 38 33 35 39 

CPTU 2 29 41 42 38 34 33 41 44 42 44 

CPTU 11 37 33 44 40 42 33 36 38 42 43 

CPTU 13 29 42 33 39 34 39 43 31 41 36 

CPTU 17 46 30 43 31 36 46 33 38 36 39 
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be evaluated using Gaussian or normal distribution. The coefficient of skewness of the 

friction angle values resulted in negative value, indicating that the data are skewed to one 

side. 

4.4.2 Check for Gaussian distribution 

The earlier histogram plot provides a visual overview of the distribution of the 

friction angle data. As most of the statistical tests rely on the normal distribution of the 

data, in this section two different approaches were used to find the distribution of the 

friction angle values.  

4.4.2.1 Normal – Quantile plot 

Normal-Quantile plots are the simplest way to evaluate how well the data fits a 

Gaussian distribution. The normality values of all the friction angle values were calculated 

using the expression stated in Chapter 3 and plotted against the corresponding friction 

angle values. Figure 4-4 presents the normal-quantile plot for the friction angle values, 

where the sample quantiles are plotted on the y-axis and theoretical quantile values are 

plotted on x-axis. From the figure, it can be inferred that the values fall follows a straight 

trend line. Using the regression approach, a best fit straight line was plotted for the data. 

The coefficient of determination (r2), which determines the fit of a straight line to the data, 

was observed at 0.85. The r2 value obtained and the data points close to the straight line 

depict that the values were normally distributed.  
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Figure 4-4 Normal-Quantile for Friction Angle values 

4.4.2.2 Shapiro-Wilk test 

Shapiro-Wilk test is a more formal approach used to check for the Gaussian 

distribution of the data. This test was conducted with a significance level alpha = 0.05. In 

order to conduct this test a hypothesis was developed as shown below: 

H0 : Sample data obtained from normally distributed population 

H1 : Sample data not from a normally distributed population 

The above hypothesis was tested using the statistic; W = b2/ SS. 
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Below table summarizes the Shapiro-Wilk test results: 

Table 4-13 Summary of Shapiro-Wilk test 

Parameter Result 

b2 950.48 

Sum of Squares (SS) 1002.72 

Test Statistic (W = b2/SS) 0.947 

P-value 0.08 

Critical Region  α = 0.05 

P- value from statistic > significance level 

 

From the above test results, it is observed that the probability value of the data 

was greater than the critical region. Hence, the null hypothesis could not be rejected, 

concluding that the sample data was derived from normally distribution.  

4.5 Check for Stationarity in the data 

The stationarity is the data is evaluated by conducting two tests: one for checking 

constant mean and another for checking constant variance in the data. As stated in 

Chapter 3, these are evaluated using ANOVA method and Bartlett’s test.  

4.5.1 Check for constant mean  

The ANOVA test was used to check for constant mean in all the CPTU tests 

conducted in bore holes 1, 2, 11, 13 and 17. This was evaluated by constructing a 

hypothesis, as shown below: 

H0 : μ1 = μ2 = μ11 = μ13 = μ17  

H1 : At least one mean is different 
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The statistic that was used to evaluate the above hypothesis was F0, which is the 

ratio of mean square treatment to mean square error. This was compared with the value 

at a significance level of 0.05. Table 4-14 below provides the summary of the ANOVA 

test conducted for checking the constant mean in friction angle in all the bore holes. 

Table 4-14 Summary of ANOVA results for checking constant mean 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square F0 

Treatment 30.2 4 7.55 0.35 

Error  971.8 45 21.60   

Total 1002 49     

 

From the above results, it can be inferred that the statistic was smaller than the 

critical region. i.e., f0  (0.35) < fcritical (2.57). Therefore, we did not reject the null hypothesis 

developed, concluding that the means of friction angle was constant in all the data. 

However to validate the conclusion, the assumptions of the model used to develop the 

ANOVA test had to be satisfied.  

4.5.1.1 Model Adequacy check 

The ANOVA test was developed based on the assumption that the error residual 

values were normally distributed and the residual variances in all the bore holes were 

constant. The residuals were calculated using Equation 3.8. The fitted value in Equation 

3.8 was obtained by determining the mean of the friction angle values in the individual 

bore hole. Table 4.15 provides the residual values which were used for testing the model 

adequacy of the ANOVA model. Figures 4.5 and 4.6 depict the plots for checking the 

normality in the residual values and variance distribution.  
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Table 4-15 Residual values for the friction angle values 

Bore 
hole 

Residuals 

1 2 3 4 5 6 7 8 9 10 

CPTU 1 0.10 1.10 5.10 0.10 -2.90 3.10 0.10 -4.90 -2.90 1.10 

CPTU 2 -9.80 2.20 3.20 -0.80 -4.80 -5.80 2.20 5.20 3.20 5.20 

CPTU11 -1.80 -5.80 5.20 1.20 3.20 -5.80 -2.80 -0.80 3.20 4.20 

CPTU 13 -7.70 5.30 -3.70 2.30 -2.70 2.30 6.30 -5.70 4.30 -0.70

CPTU 17 8.20 -7.80 5.20 -6.80 -1.80 8.20 -4.80 0.20 -1.80 1.20 

 

 
 

Figure 4-5 Residual normality plot for model adequacy check 
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From the above plot, it can be inferred that the residuals follow a straight line 

trend, where the coefficient of determination of the best fit line is observed to be 0.97. 

This depicts that the residual values are normally distributed.  

 
Figure 4-6 Model Adequacy check for constant variance in residual values 

From the visual inspection of the above plot, it can be inferred that the residual variance 

in the friction angle values was constant. Thus, from the figures 4.5 and 4.6, the residual 

values satisfies the model adequacy check, validating the conclusion obtained from the 

ANOVA test. 
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4.5.2 Check for Constant Variance 

Bartlett’s test was used in evaluating the variation present in residual variance of 

the friction angle values obtained from all the bore holes. This was performed by 

developing a hypothesis, as shown below: 

H0 : σ
2
1 = σ2

2 = σ2
11 = σ

2
13 = σ2

17  

                  H1 : At least one variance is different 

The hypothesis was evaluated using the statistic expressed in Equation 3.9. The 

value obtained from the statistic was compared to a significance value 0.05. The 

table below provides the summary of the results obtained from the Bartlett’s test. 

Table 4-16 Summary of Bartlett’s test results 

Parameter Result 

Q 1.87 

C 1.04 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 0.947 

߯଴ଶ = value 4.12 

Critical Region 9.49 

ҳ2 (4.12) < ҳ2 critical (9.49) 

 

Based on the test results, it can be inferred that the statistic value was smaller 

than the critical region, i.e., ҳ2 (4.12) < ҳ2 critical (9.49). Therefore, we do not reject the null 

hypothesis developed, concluding the variances of friction angle were constant in all the 

data.  
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Therefore, based on the ANOVA test and Bartlett’s test, it was concluded that the friction 

angle data was stationary, having constant mean and variance. 

4.6 Geostatistical Analysis 

After the statistical analysis and stationarity checks, spatial variability analysis 

was performed on the friction angle data, as shown in the guideline presented in Chapter 

3. In order to perform the spatial variability analysis, the Cartesian coordinate system was 

given to all the friction angle values, as discussed in Section 4.3. The same coordinate 

system was followed throughout the geostatistical variability analysis. 

4.6.1 Experimental Variogram 

Variograms or semi-variograms were used for capturing the spatial variability 

present in the friction angle data. Figure 4-6 provides the experimental variogram plot for 

the friction angle data, where lag distance values were plotted on x-axis and variogram 

values were plotted on the y-axis. The variograms were calculated for different lag 

distances and different lag widths. The maximum lag distance of 7m, with a lag width of 

0.28m provided promising results. An effort was also made to capture the spatial 

variability of the friction angle data, both horizontally and vertically. However, due to 

constraints in the CPTU data, only the variability in the vertical direction was captured. 

The variogram values for all the lag distances were calculated using Equation 

3.8. The direction of 90 degrees in the experimental variogram plot in Figure 4-6 indicates 

the variability captured in a vertical direction. A tolerance angle of 45 degrees was 

provided for calculating the variogram values. The number beside every experimental 

value indicates the number of pairs that was used to calculate the variogram value. The 

dashed line in the plot indicates the global variance of the friction angle values. From the 

plot it is evident, that the variogram values were around the global variance line, 

indicating that the data was stationary and there were no trends present in the data. 
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Figure 4-7 Experimental Variogram plot of friction angle data 

 

 Estimator type : Variogram 

 Maximum lag distance : 7 

 Number of lags : 25 

 Lag Width : 0.28 

 Direction of Variogram : 90 degrees 

(y-direction) 

 Tolerance : 45 degrees 

Direction: 90.0   Tolerance: 45.0
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4.6.2 Variogram Modelling of Friction Angle Data 

From the experimental variogram plot in Figure 4-6, it can be observed that a 

certain spatial correlation existed between the friction angle values. This spatial 

correlation was depicted by modeling the characteristics of the variogram: range, sill, and 

nugget. The variogram values appear to have a zero intercept, indicating there wasn’t 

any nugget effect. From Figure 4-6, it is observed that the experimental variogram value 

increased with an increase in lag distance. 

 The scale (C) or range (a) was used to model the spatial correlation distance, 

where the variogram value increased linearly with an increase in lag value to a distance 

of 0.86m. The effect of the range was observed from a distance of 2.58m (3a) to 4.3m 

(5a). That means that no spatial correlation existed after the lag distance of 4.3m. The sill 

indicates the vertical scale on the variogram plot, where the variogram value reached a 

constant value. In this case, the sill of the variogram plot was observed to be 8.14. By 

using these characteristics, the experimental variogram was modeled using an 

exponential model. 

 Figure 4-7 presents the variogram model for the experimental variogram in 

Figure 4-6. The blue line indicates the exponential model used to fit the experimental 

variogram values obtained for a maximum lag distance of 7m. Since the subsurface 

profile was mainly composed of silty sand layers, through this research, the spatial 

correlation distance for a silty sand soils in vertical direction can be defined as 2.58m to 

4.3m, using the range value.  
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Figure 4-8 Variogram Modeling of friction angle data

 Model : Exponential 

         Nugget (C0) : 0 

  Scale (C0 +C) : 8.14 

      Length (A) : 0.86 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 8.14 [ 1- exp (-h/0.86)] for h > 0 
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4.6.3 Kriging Analysis 

Prediction of soil properties at unsampled locations is often challenging. In this 

study, predictions of the friction angle values at unsampled locations were performed 

using kriging analysis. The kriging analysis incorporates the spatial variability in the 

available data, using the variogram model performed in the previous section. This model 

was used to calculate the weights of the known values around the unknown values. The 

output of the kriging analysis is provided in the form of contour maps, where all the 

friction angle values over the entire area 10m X 95m are mapped. In order to perform 

kriging analysis, the following grid was selected for plotting the contour map. 

Table 4-17 Grid selected for Kriging analysis 

Parameters selected 

Maximum lag distance 7 

Angular divisions 180 

Radial divisions 100 

 

Figure 4-8 provides the contour map of the friction angle values that were 

obtained by performing kriging analysis.  The x-axis on the contour map shows the 

horizontal distance of the layout, and the y-axis depicts the depth of the subsurface 

profile. It can be observed that the friction angle varies from 27 degrees to 48 degrees. 

The top 0.5 to 1 meter of subsurface constitutes a friction angle value of 43 to 48 

degrees, below which there existed a layer of 7 to 9.5 meters thick silty sand layer with a 

friction angle of 6 to 39 degrees. This layer was followed by a thin clayey silt to silty sand 
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layer for a thickness of 0.5 to 1 meter with a friction angle of 33 to 36 degrees, which is 

underlain by a thick silty sand layer with a fiction angle value ranging from 35 to 37 

degrees.   
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Figure 4-9 Contour Map of Friction angle values obtained through kriging analysis 
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4.6.4 Cross Validation 

A technique called cross validation was performed to validate the spatial 

variability model. This technique involves the deletion of the actual values and performing 

the kriging analysis to generate a new map over the entire area. The grid parameters 

presented in Table 4-17 and the exponential variability model were used for performing 

the kriging analysis. 

 In this study, 24 actual values chosen randomly were deleted from the original 

data set. The new set of data was used to generate the contour map of friction angle 

values, using the exponential model. Figure 4-9 represents the contour map of friction 

angle generated by a new set of data. From the figure, it is evident that the new map and 

original map depict almost the same range of friction angles over the depth of the 

subsurface profile. The black rectangular boxes in Figure 4-9 represent the locations 

where the actual values were deleted.  
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Figure 4-10 Cross- Validation map generated using a new set of data 
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Using the digitize tool available in the Surfer software, the precise value of the 

friction angle was obtained at the deleted locations. Table 4-18 below provides the actual 

values and predicted values from the cross-validation map.  

Table 4-18 Comparison of friction angle values 

S.no 
Actual 

Values 

Predicted 

Values 
S.no 

Actual 

Values 

Predicted 

Values 

1 42.5 41.8 13 37.1 37.3 

2 35.2 32.7 14 37.9 38.4 

3 37.8 37.2 15 41.9 42.2 

4 37.5 37.1 16 37.8 40.4 

5 38.2 38.3 17 38.8 37.6 

6 40.0 40.5 18 38.5 38.1 

7 37.1 36.9 19 38.6 38.4 

8 37.7 38.0 20 37.1 35.0 

9 36.9 37.2 21 44.3 43.3 

10 41.9 42.2 22 28.6 26.7 

11 37.9 40.9 23 37.0 39.0 

12 38.0 37.0 24 37.7 38.9 

 

  From the above table, it is evident that the predicted values were close to the 

actual values. Figure 4-10 presents the validation plot for the friction angle values, where 

actual values were plotted on x-axis and predicted values were plotted on y-axis. If both 

the predicted and actual values are same, the point exactly falls on the 45 degree line. In 

this case, all the 24 points were close to the 45 degree line and within 1 standard 
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deviation. This concludes that the spatial variability model chosen was apt for this study, 

and the spatial map generated using kriging analysis in Figure 4-8 was appropriate. 

 
Figure 4-11 Cross- Validation plot for actual and predicted friction angle values 

In view of the results above, the spatial variability of the friction angle was further 

used to optimize the number of bore holes. Considering the bore hole layout presented in 

Figure 4-1, it can be observed that the CPTU test conducted in bore holes 11 and 17 

were close to each other. Therefore, the kriging analysis was performed by deleting the 

data obtained from CPTU test conducted in bore hole 11. Figure 4-11 presents a new 

contour map generated by using the spatial variability model developed for silty sand 

soils and the grid parameters that were presented in Table 4-17. 
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Figure 4-12 Contour Map of friction angle values without CPTU 11 data 
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The friction angle values at the bore hole 11 location were obtained from the 

above map, using the digitize tool available in the Surfer software. The validation plots in 

Figures 4-12 compare the predicted values to the original values. It was observed that 

the predicted values were close to the 45 degree line, and most of the values were within 

1 standard deviation. Also, it can be observed that the predicted values were a little lower 

than the actual values, which is on the conservative side. 

 
Figure 4-13 Comparison of predicted and actual values of bore hole location 11 

4.7 Applications of the spatial variability model 

In this section, a hypothetical example is provided where the spatial variability 

analysis is conducted for the selection of friction angle value. Consider a footing with a 

width of 10 meters, where the influence of the stress from the footing is distributed to a 

depth of 20 meters. Since the soil is silty sand, the friction angle value governs the 
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bearing capacity of the subsurface soil. Through the kriging analysis, the variation of 

friction angle values to a depth of 20 meters is evaluated for both 2:1 stress distribution 

and for an isobar of 0.1q.     
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Figure 4-14 Friction Angle (Degrees) variation for 2:1 stress distribution 

From the above chart, it can be observed that friction angle value varies from the 35.2 degrees to 42.6 degrees with a 

standard deviation value of 0.9.  
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Figure 4-15 Friction Angle (Degrees) variation for stress distribution using 0.1*q Isobar 

 

From the above chart, it can be observed that friction angle value varies from the 35.2 degrees to 42.6 degrees, with a 

standard deviation value of 1.2.  
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4.8 Summary 

In this study, an attempt was made to capture the spatial variability of field soil 

properties. Cone penetration tests were conducted in China as a part of a highway 

project. The basic soil classification was performed, and idealized subsurface profiles 

were provided for all the CPTU tests. Friction angle values of the soil were determined 

using the CPTU test parameters. Statistical analysis and geostatistical analysis were 

conducted according to the framework developed in the Chapter 3.  Below are the 

important findings and conclusions from this study: 

 The spatial correlation distance for a silty sand layer was found to be 0.86m, with an 

effective range from 2.58m to 4.3m. 

 The spatial variability present in the silty sand layer is well explained with the 

exponential model. 

 The maximum lag distance was found to be approximately one-third the total 

distance (i.e., 7m of maximum lag distance if the depth of bore hole is 21m). 

 The friction angle design parameter evaluated from 2:1 stress distribution and 

pressure bulb was 38 degrees, with a standard deviation of 0.9 to 1.2; whereas, in 

the general case, it is found to be 37 degrees, with a standard deviation of 2.8. 

 Mostly importantly, the framework developed in Chapter 3 was validated by using the 

CPTU data. So, this framework can be used to perform spatial variability analysis 

with any in-situ field data, provided the data is not less than 30 observations. 
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Chapter 5  

Spatial Variability Analysis of Man-Made Treated Soils  

5.1 Introduction 

The stiffness of the soil in field conditions largely depends on the stress state of 

the soil, environmental changes, and internal and external conditions of the soil. Phoon 

and Kulhawy (1999) demonstrated that the stiffness of soils in field conditions varies from 

15 - 65 percent in sandy soils, 9 - 92 percent in sand-to-clayey sand soils, and 7- 67 

percent in silty soils. The influence of field conditions becomes extremely critical, 

especially in the case of buried pipelines. It is noted that external soil conditions are the 

primary cause of water pipeline breaks (Vipulanandan et. al., 2011). The most commonly 

occurring failure in pipelines is because of the circumferential stress developed due to the 

swelling or settlement of the bedding material (Seica et al. 2001; Rajani et al. 2004). 

The difficulties involved in compacting the bedding material around the pipeline 

led to the use of controlled low strength material (CLSM) in the 1960’s. CLSM is a self-

compacted, cementitious material, used primarily as a backfill in lieu of compacted 

backfill and has become a popular material for projects such as void fill, foundation 

support, bridge approaches, and conduit bedding (Folliard et al., 2008). CLSM, with 

cement and fly ash additives, has been demonstrated, by many researchers, to be an 

effective bedding material for pipelines due to the material’s self-compacting behavior 

and strength performance (Rajah et al., 2012; Boschert J. and Butler J., 2013).  

A local water district has recently considered CLSMs as bedding material in the 

process of constructing a 150-mile water pipeline. This pipeline is intended to collect 

water from different lakes and bring additional water supplies to the Dallas/Fort Worth 

Metroplex. Figure 5-1 provides the layout area of the project, with existing TRWD 
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were presented in the study conducted by Raavi (2012). The effective utilization of native 

high plasticity soil reduces the project costs and minimizes the negative impacts on the 

environment (Puppala and Hanchanloet, 1999; Abreu et al. 2008; Chittoori et al. 2012; 

Puppala et al. 2012a). The stiffness of the CLSM material in field conditions, at any 

particular stretch, depends upon the volume of CLSM occupied, which in turn depends on 

the soil conditions. One of the primary concerns relating to the CLSM is the development 

of uniform stiffness within the required time frame. 

 In this research study, a focus on geostatistics is used as a quality control tool to 

study the variations in CLSM stiffness properties with time. Stiffness measurements of 

the CLSM bedding material were determined using a non-destructive method in a 500ft. 

Prove-out test section. However, the stiffness measurements performed at certain 

intervals made it hard to predict the stiffness values throughout the pipeline or at untested 

locations. The framework developed in Chapter 3 was used in this study to obtain the 

stiffness values throughout the pipeline. The predictions were performed by incorporating 

the spatial variability present into the field stiffness measurements determined after a 

curing period of 1, 3, 7, 14 and 28 days. The spatial variability models developed, along 

with kriging algorithms, were used to predict the stiffness of the bedding material 

throughout the pipeline after 1, 3, 7, 14 and 28 days. 

5.2 Data Acquisition 

In this project, stiffness of the CLSM bedding material was determined using the 

spectral analysis of surface saves (SASW) technique. SASW is a seismic non-destructive 

method used to determine the small strain shear modulus of the materials. The detailed 

steps of performing the stiffness measurements for this project are presented in Mothkuri 

(2014).  
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An overview of the method  is discussed in this section. The SASW technique 

was originally proposed and developed in the early 1980’s, (Nazarian and Stokoe 1984; 

Stokoe et al. 1989). This method uses the dispersive characteristics of surface waves to 

determine the variation of the surface wave velocity of layered systems with depth. Figure 

5-3 presents the tools that were used in this project to obtain stiffness measurements. 

The surface waves were generated using various types of hammers, depending upon the 

spacing between the two receivers. When an impact was created on the surface, several 

surface waves were generated with a wide spectrum of frequencies. At a known 

frequency, the phase difference recorded between the two receivers was used to 

calculate the travel time between two signals detected by the receivers, using Equation 

5.1. With the known distance between the receivers and the travel time, the surface wave 

velocity at a given frequency was calculated using Equation 5.2. The shear wave velocity, 

which is correlated to surface wave velocity as shown in Equation 5.3, was used to 

determine the shear modulus of the material using equation 5.4 

ሺ݂ሻݐ ൌ 	∅ሺ݂ሻ ሺ360	 ൈ ݂ሻ⁄           (5.1) 

 f = frequency, Hz	,݁ݎ݄ܹ݁

 ,ሺ݂ሻ = travel time for a given frequencyݐ 

∅ሺ݂ሻ = phase difference in degrees for a given frequency 

ோܸሺ݂ሻ ൌ ܦ	 ⁄ሺ݂ሻݐ           (5.2) 

,݁ݎ݄ܹ݁ ோܸሺ݂ሻ = surface wave velocity at a given frequency 

D = distance between two receivers 

௦ܸሺ݂ሻ ൌ 	0.95 ∗ 	 ோܸሺ݂ሻ          (5.3) 

,݁ݎ݄ܹ݁ ௦ܸሺ݂ሻ = shear wave velocity at a given frequency 

ܩ				 ൌ 	ߩ	 ௦ܸଶ           (5.4) 

,݁ݎ݄ܹ݁ ܩ ൌ	shear modulus  
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The bedding material, CLSM, was allowed to cure for a period of 28 days to 

reach its maximum strength. The stiffness measurements were taken continuously for the 

first 14 days, and then on day 28, readings were taken again to monitor the stiffness 

development of CLSM in field conditions. In this study, spatial variability analysis was 

conducted to predict the stiffness at unsampled locations and to evaluate the uniform 

stiffness development throughout the pipeline. Tables 5-1 to 5-5 provide the stiffness 

measurements for days 1, 3, 7, 14 and 28. Based on the laboratory tests on strength of 

CLSM, it was expected to achieve its maximum strength after 28 days of curing (Raavi, 

2012).  

Table 5-1 Stiffness measurements for Day  

Section 

Stiffness Observations in MPa 

1 2 3 4 5 6 

1066 264.4 238.1 281.1       

1067 330.3 254.4 261.0 245.3 308.7 270.7 

1068 250.9 252.9         

1069 250.9 259.5 297.5 252.8 256.6 244.5 

1070 261.1 258.9 294.7 202.2 251.0 275.4 

1071 301.9 251.8 274.6 265.1 247.8 273.2 

1072 217.7 248.6 273.4       

1073 280.2 254.3 244.4 270.4 255.0 319.0 

1074 365.2 247.9 260.1       

1075 312.2 251.5 292.7       
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Table 5-2 Stiffness Measurements Day 3 

Section 

Stiffness Observations in MPa 

1 2 3 4 5 6 7 8 9 10 

1066 276.5 275.1 272.7 289 271.9 

1067 271.4 303.3 266.8 261 256.7 285.8 274.3 309.0 346.0 274.6 

1068 251.0 257.6 282.3 275 252.6 

1069 261.8 253.8 330.6 298 232.9 307.8 291.3 293.4 260.1 273.3 

1070 293.9 261.1 261.2 295 276.2 276.1 268.7 275.4 275.0 264.5 

1071 243.8 273.3 255.8 305 256.3 243.8 273.3 255.8 304.6 256.3 

1072 275.8 260.0 293.7 277 255.4 

1073 217.4 290.8 285.9 270 298.0 258.5 277.5 280.0 300.7 269.0 

1074 310.9 287.1 279.3 275 264.4 

1075 258.5 277.5 280.0 301 269.0 

 

Table 5-3 Stiffness Measurements of Day 7 

Section 

Stiffness Observations in MPa 

1 2 3 4 5 6 7 8 9 10 

1066 327.0 350.0 324.2 329.8 320           

1067 321.9 359.8 318.3 281.2 305 336.3 319.5 329.4 386.7 322.5

1068 301.4 302.8 333.9 295.4 300           

1069 312.3 299.0 382.1 345.8 281 358.2 336.5 344.9 300.8 321.1

1070 344.4 301.6 312.8 317.5 324 326.6 313.9 327.0 335.7 312.4

1071 294.3 318.5 307.4 345.3 304 294.3 318.5 307.4 345.3 304.2

1072 326.3 305.2 335.2 317.3 303           

1073 267.9 316.0 307.5 291.1 346 309.0 312.7 331.6 341.4 316.9

1074 361.3 332.3 310.8 315.7 312           

1075 309.0 312.7 331.6 341.4 317           
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Table 5-4 Stiffness Measurements of Day 14 

Section 

Stiffness Observations in MPa 

1 2 3 4 5 6 7 8 9 10 

1066 398.4 388.0 398.8 386.5 391           

1067 370.0 398.3 373.7 397.9 341 395.3 408.3 371.1 410.1 389.1

1068 372.1 367.1 382.9 347.5 390           

1069 387.7 389.3 418.7 393.7 423 397.0 415.5 400.8 388.9 392.8

1070 390.5 393.6 399.1 397.1 407 361.9 356.0 407.3 380.7 386.0

1071 359.4 366.9 400.0 396.8 428 359.4 366.9 380.0 366.8 378.0

1072 377.5 394.8 385.3 379.6 415           

1073 368.5 383.9 357.3 399.1 387 383.8 381.4 399.4 381.4 406.8

1074 396.2 399.6 362.5 360.0 404           

1075 383.8 371.4 369.4 401.4 417           
 

Table 5-5 Stiffness Measurements of Day 28 

Section 

Stiffness Observations in MPa 

1 2 3 4 5 6 7 8 9 10 

1066 432.3 465.9 458.7 447.5 432           

1067 417.7 463.1 414.1 460.1 409 473.7 455.9 436.8 450.7 470.1

1068 455.5 407.6 437.3 410.2 446           

1069 442.2 421.0 440.6 417.5 440 420.0 455.9 443.0 454.3 427.6

1070 434.7 444.8 452.4 439.2 434 446.5 471.5 453.1 440.8 441.7

1071 424.6 414.2 453.2 440.8 421 424.6 414.2 413.2 440.8 420.9

1072 461.9 457.7 419.8 432.7 461           

1073 419.4 438.5 428.8 429.9 418 456.4 458.7 442.5 470.5 465.2

1074 449.5 478.2 420.2 468.1 450           

1075 456.4 458.7 442.5 470.5 465           
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5.3 Data Organization 

The 500 ft. pipeline is composed of ten sections, starting from 1066 to 1075. In 

order to conduct the spatial variability analysis of the stiffness measurements determined 

in 10 sections, the data had to be organized in the Cartesian coordinate system. Certain 

assumptions were made regarding the location of the test points. The test point at the 

center ‘c’, as shown in Figure 5-6 of section 1066-25, is assumed to be located at (25, 

25) in (x, y) coordinate system. This point was taken as the reference point, and 

coordinates of the remaining test points were determined. Table 5-6 presents the total 

sections and distances of the test points with previous points. 

Table 5-6 Coordinates of the test points 

Section Station No. 
Distance from 

previous station 

Coordinates in (x,y) system 

for center points 

1066 25’ 0 feet -Reference point (25,25)-Reference point 

1067 
10’ 35 feet (60,25) 

40’ 30 feet (90, 25) 

1068 25’ 35 feet (125. 25) 

1069 
10’ 35 feet (160, 25) 

40’ 30 feet (190, 25) 

1070 
10’ 20 feet (210, 25) 

25’ 15 feet (225, 25) 

1071 
10’ 35 feet (260, 25) 

40’ 30 feet (290, 25) 

1072 25’ 35 feet (325, 25) 
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Table 5.6 - Continued 

1073 
10’ 35 feet (360, 25) 

40’ 30 feet (390, 25) 

1074 10’ 20 feet (410, 25) 

1075 25’ 65 feet (475, 25) 

 

Similarly, the coordinates of the test points at locations on either side of the 

center were calculated. The horizontal distance from center to south 1 was 2.78 ft. and to 

south 2 was 4.38 ft.; similarly, from center to north 1 was 2.78 ft. and to north 2 was 4.38 

ft. To determine the spatial variability, the ‘z’ coordinate was given as the stiffness value. 

For example, 25, 25, 238.1 shows that the stiffness of CLSM at section 1066-25 was 

238.1 MPa. The coordinates for all the stiffness measurements utilized for the analysis 

are presented in Appendix B. 

5.4 Statistical Analysis 

In this section, the statistical analysis for the stiffness values obtained on days 1, 

3, 7, 14 and 28 was performed. The elementary statistical parameters such as mean, 

variance, and standard deviation were evaluated to supplement the spatial variability 

analysis.  

5.4.1 Histograms 

Histogram, in this analysis, was used to identify the distribution associated with 

the stiffness values. It provided the visual aid for the distribution of the stiffness values, 

along with the summary of elementary statistical parameters. The number of class 

intervals that were required to construct a histogram plot were determined using Equation 

3-1. The class intervals obtained were used in Equation 3-2 to determine the bin size.  
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The table below summarizes the number of class intervals and bin sizes obtained for 

stiffness values on days 1, 3, 7, 14 and 28.  

Table 5-7 Summary of parameters used to construct histograms 

Day Observations
Number of 

Class Intervals
Bin Size

1 44 6.4 25 

3 75 7.2 18 

7 75 7.2 17 

14 75 7.2 12.5 

28 75 7.2 9.5 

 

The above parameters were used to construct the histograms. Figures 5-7 to 5-

11 provided the histogram plot for the stiffness values determined on days 1, 3, 7, 14 and 

28. The stiffness of CLSM values were plotted on x-axis and y-axis, representing 

frequency of the observations. From the plots, it can be inferred that the distribution of 

stiffness on 1, 3, 7 and 14 days were more closely related to Gaussian distribution, with a 

little skewness on either side. However, the histogram plot for day 28 is more uniformly 

distributed. This can be because of reaching the maximum strength in almost all the test 

points. The maximum frequency on all the plots depicts the stiffness reached in most of 

the test point locations. On day 1, the maximum test points reached a stiffness value 

ranging from 250 – 275 MPa; on day 3, the maximum test points reached stiffness value 

of 270 – 280 MPa; on day 7, the maximum test points had a stiffness value of 300 – 320 

MPa; on day 14, the stiffness of the maximum test points was 380 – 400 MPa; and on 

day 28, the maximum test points reached a stiffness value of 410- 480 MPa. The 
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corresponding stiffness values were calculated using Equation 3-3.  The theoretical 

quantile values were plotted on the y-axis against the corresponding stiffness quantile 

values on the x-axis. It can be inferred from the plots that the data values followed a 

linear trend. Using the regression approach method, a best fit trend line was modelled for 

the plotted data values. The coefficient of determination was calculated using Equation 

(3-4) to measure the fit of the trend line. Table 5-8 below summarizes the coefficient of 

determination values obtained for all the plots.  

Table 5-8 Coefficient of determination for normal-quantile plots 

Day 
Coefficient of 

determination (r2) 

1 0.92 

3 0.96 

7 0.97 

14 0.99 

28 0.97 

 

The coefficient of determination values were more than 0.9 in all the plots, 

demonstrating that the linear trend provided the best fit for the available data points. This 

leads to the conclusion that the stiffness of all the data points were distributed normally or 

had a Gaussian distribution. 
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 Figure 5-12 Normal- Quantile plot for stiffness values of day 1 
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Figure 5-13 Normal- Quantile plot for stiffness values of day 3 
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Figure 5-14 Normal- Quantile plot for stiffness values of day 7 
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Figure 5-15 Normal- Quantile plot for stiffness values of day 14 
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Figure 5-16 Normal- Quantile plot for stiffness values of day 28 
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5.5 Check for Stationarity 

As mentioned in  Chapter 3, in order to perform geostatistical analysis, the data 

has to be stationary. The stationarity in the data was evaluated by conducting two tests: 

one for checking constant mean value and another for checking constant variance. The 

ANOVA test method was used to determine the constant mean in the stiffness values, 

and Bartlett’s test was used to evaluate the constant variance in stiffness values for days 

1, 3, 7, 14 and 28. In order to perform ANOVA and Bartlett test, the stiffness values 

obtained from 10 sections were analyzed and compared.  

5.5.1 Check for Constant Mean Value 

The ANOVA test was used to check for constant mean values in all the stiffness 

measurements obtained in the 10 sections. This was performed by comparing mean 

stiffness values in each section. Below is the hypothesis constructed for evaluating 

constant mean in the data: 

H0 : μ1066 = μ1067 = μ1068 = μ1069 = μ1070 = μ1071 = μ1072 = μ1073 = μ1074 = μ1075 

H1 : At least one mean is different 

The statistic that was used to evaluate the above hypothesis is F0, which is the 

ratio of mean square treatment to mean square error. This was compared to the critical 

value at a significance level of 0.05. Tables 5-9 to 5-13 below provide the summary of the 

ANOVA test results conducted for checking the constant mean in stiffness values in all 

sections after 1, 3, 7, 14 and 28 days of curing. 
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Table 5-9 Summary of ANOVA results for day 1 stiffness values 

Analysis of Variance 

Source of  
Variation 

Sum of  
Squares 

DOF Mean Square F0 

Treatment 6295.5 9 699.5 0.77 

Error  30504.5 34 897.1   

Total 36800.1 43     

*DOF = Degrees of freedom 

 

Table 5-10 Summary of ANOVA results for day 3 stiffness values 

Analysis of Variance 

Source of 
Variation 

Sum of  
Squares 

DOF Mean Square F0 

Treatment 2958.2 9 328.6 0.72 

Error  29454.4 65 453.1   

Total 32412.6 74     

*DOF = Degrees of freedom 

 

Table 5-11 Summary of ANOVA results for day 7 stiffness values 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square F0 

Treatment 3650.1 9 405.5 0.87 

Error  30208.5 65 464.7   

Total 33858.6 74     

*DOF = Degrees of freedom 
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Table 5-12 Summary of ANOVA results for day 14 stiffness values 

Analysis of Variance 

Source of 
Variation 

Sum of  
Squares 

DOF Mean Square F0 

Treatment 3804.5 9 422.7 1.34 

Error  20403.9 65 313.9   

Total 24208.5 74     

*DOF = Degrees of freedom 

 

Table 5-13 Summary of ANOVA results for day 28 stiffness values 

Analysis of Variance 

Source of 
Variation 

Sum of  
Squares 

DOF Mean Square F0 

Treatment 5758.3 9 639.8 2.11 

Error  19679.0 65 302.7   

Total 25437.3 74     

*DOF = Degrees of freedom 

The statistic F0, that was calculated for the stiffness values, were compared with 

critical value (fcrit). The fcrit value was obtained by using the f-distribution table at a 

significance level (α) of 0.05. The fcrit for day 1 was 2.57 and for rest of the days was 

2.16, as the number of observations for days 3, 7, 14 and 28 are equal. From the above 

ANOVA test results for all days, it can be inferred that the statistic (F0) was smaller than 

the critical region. Therefore, we do not reject the null hypothesis developed, concluding 

the means of the stiffness values were constant in all the sections for all days. 

5.5.1.1 Model Adequacy check 

In order to validate the conclusions obtained from the ANOVA tests, the basic 

assumptions of the ANOVA model have to be met. The assumptions are: the residual 

error values are normally distributed and the residual variances are structureless. The 
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residuals of the stiffness values were calculated using Equation 3.8. The fitted value in 

Equation 3.8 was obtained by determining the mean of the stiffness value in each 

section. Tables 5-14 to 5-19 provide the residual values calculated for the stiffness values 

of all days that were used for testing the model adequacy of the ANOVA model.  

Table 5-14 Residual values for the day 1 stiffness values 

Section 
Residuals 

1 2 3 4 5 6 

1066 -0.69 7.83 -7.14 

1067 -0.48 45.38 -5.20 -48.26 10.96 -2.39 

1068 -11.33 37.67 -26.33 

1069 27.25 -24.75 -15.64 -9.36 -74.75 97.25 

1070 249.67 -42.33 -47.33 -70.33 -13.69 -75.97 

1071 7.72 -60.28 -78.28 -46.28 123.86 53.24 

1072 140.20 -48.56 -91.64 

1073 -65.85 9.32 -118.68 -124.06 379.96 -80.68 

1074 -43.02 173.15 -130.14 

1075 -18.48 85.74 -67.25 
 

Table 5-15 Residual values for day 3 stiffness values 

Section 
Residuals 

1 2 3 4 5 6 7 8 9 10 

1066 -0.5 -1.9 -4.3 12.0 -5.1           

1067 -13.4 18.4 -18.1 -23.8 -28.1 0.8 -10.6 24.1 61.1 -10.2 

1068 -12.6 -6.0 18.6 11.0 -11.0           

1069 -18.4 -26.4 50.3 17.2 -47.3 27.5 11.0 13.1 -20.0 -6.9 

1070 19.1 -13.6 -13.4 20.0 1.5 1.4 -5.9 0.7 0.2 -10.1 

1071 -22.9 6.5 -10.9 37.8 -10.4 -22.9 6.5 -10.9 37.8 -10.4 

1072 3.5 -12.2 21.3 4.3 -16.9           

1073 -57.4 15.9 11.1 -4.4 23.1 -16.3 2.7 5.2 25.8 -5.7 

1074 27.5 3.8 -4.0 -8.3 -18.9           

1075 -18.6 0.3 2.8 23.5 -8.1           
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Table 5-16 Residual values for day 7 stiffness values 

Section 
Residuals 

1 2 3 4 5 6 7 8 9 10 

1066 -3.1 19.8 -5.9 -0.3 -10.4           

1067 -6.1 31.8 -9.7 -46.7 -23.4 8.2 -8.5 1.3 58.7 -5.5 

1068 -5.3 -3.9 27.0 -11.4 -6.3           

1069 -15.9 -29.2 53.9 17.6 -47.3 30.0 8.3 16.7 -27.3 -7.0 

1070 22.7 -19.9 -8.8 -4.1 2.4 5.0 -7.6 5.4 14.0 -9.2 

1071 -19.6 4.5 -6.5 31.3 -9.7 -19.6 4.5 -6.5 31.3 -9.7 

1072 8.8 -12.2 17.7 -0.1 -14.2           

1073 -46.1 2.0 -6.5 -22.8 31.9 -5.0 -1.2 17.5 27.3 2.9 

1074 34.8 5.8 -15.6 -10.8 -14.2           

1075 -13.3 -9.5 9.2 19.0 -5.4           

 

 

Table 5-17 Residual values for day 14 stiffness values 

Section 
Residuals 

1 2 3 4 5 6 7 8 9 10 

1066 5.9 -4.5 6.3 -6.1 -1.5           

1067 -15.5 12.8 -11.8 12.4 -44.2 9.7 22.8 -14.4 24.6 3.6 

1068 0.1 -5.0 10.9 -24.5 18.5           

1069 -13.0 -11.4 17.9 -7.1 22.4 -3.7 14.7 0.1 -11.8 -8.0 

1070 2.5 5.7 11.2 9.1 19.3 -26.1 -32.0 19.4 -7.2 -1.9 

1071 -20.8 -13.4 19.8 16.6 47.8 -20.8 -13.4 -0.2 -13.4 -2.2 

1072 -13.0 4.3 -5.2 -10.9 24.7           

1073 -16.4 -0.9 -27.5 14.3 2.1 -1.0 -3.5 14.6 -3.5 21.9 

1074 11.6 15.1 -22.0 -24.6 19.9           

1075 -4.7 -17.2 -19.1 12.8 28.2           
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Table 5-18 Residual values for day 28 stiffness values 

Section 
Residuals 

1 2 3 4 5 6 7 8 9 10 

1066 -15.0 18.5 11.3 0.1 -15.0           

1067 -27.4 18.0 -31.0 15.0 -36.5 28.6 10.8 -8.3 5.6 25.0 

1068 24.2 -23.7 6.0 -21.1 14.6           

1069 6.0 -15.2 4.4 -18.7 3.9 -16.2 19.6 6.8 18.1 -8.6 

1070 -13.1 -3.1 4.6 -8.6 -13.6 -1.3 23.7 5.3 12.3 -6.1 

1071 -2.2 -12.6 26.5 14.1 -5.8 -2.2 -12.6 -13.5 14.1 -5.8 

1072 15.2 11.0 -26.9 -14.0 14.8           

1073 -23.5 -4.3 -14.0 -12.9 -24.6 13.6 15.9 -0.3 27.7 22.4 

1074 -3.7 25.0 -33.0 14.9 -3.3           

1075 -2.2 0.1 -16.2 11.8 6.5           

 

The residual values provided in the tables above were used to check for the 

model adequacy (i.e., eij ~) in the ANOVA model. The normal distribution of the residual 

values was evaluated using the normality plots, and the variance was evaluated by 

plotting the residual values against the fitted values for all the sections. Figures 5-17 to 5-

21 present the model adequacy plots for the residual values presented in the previous 

tables.  
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Figure 5-17 Model Adequacy plots for day 1 residual values 
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Figure 5-18 Model Adequacy plots for day 3 residual values 
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Figure 5-19 Model Adequacy plots for day 7 residual values 
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Figure 5-20 Model Adequacy plots for day 14 residual values 
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Figure 5-21 Model Adequacy plots for day 28 residual values 
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From the model adequacy plots, it can be inferred that the residuals in all the 

normality plots followed a linear trend. A best fit line was modeled using the linear 

regression approach, where the coefficient of determinations (r2) for all the normality plots 

were greater than 0.90. Also, from visual inspection of the above plots, it can be inferred 

that the dispersion range of residuals in all the sections did not deviate much. Therefore, 

the residuals of all the stiffness values were normally and independently distributed, with 

no variance trends. This validated the conclusions obtained from the ANOVA test results. 

5.5.2 Check for Constant Variance Value 

The Bartlett’s test was used to check for constant variance present in the 

stiffness values obtained from all the sections. This was performed by developing a 

hypothesis, as shown below: 

      H0 : σ
2

1066 = σ2
1067 = σ2

1068 = σ
2
1069 = σ2

1070 = σ2
1071 =  σ

2
1072 = σ2

1073 = σ2
1074 = σ

2
1075 

      H1 : At least one variance is different 

The above hypothesis was evaluated using the statistic expressed in Equation 

3.9. The value obtained from the statistic was compared to the critical value obtained at a 

significance value (α) 0.05. The chi-square distribution table was used to determine the 

critical value. Tables 5-19 to 5-23  provided the summary of the results obtained from the 

Bartlett’s test in evaluation of constant variance for days 1, 3, 7, 14 and 28.  

Table 5-19 Summary of Bartlett’s test results for day 1 stiffness values 

Parameter Result 

Q 5.65 

C 1.14 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 11.3 

Critical Region 16.9 
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Table 5.19 - Continued 

ҳ2 (11.3) < ҳ2 critical (16.9) 

 
Table 5-20 Summary of Bartlett’s test results for day 3 stiffness values 

Parameter Result 

Q 7.03 

C 1.06 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 15.2 

Critical Region 16.9 

ҳ2 (15.2) < ҳ2 critical (16.9) 

 

Table 5-21 Summary of Bartlett’s test results for day 7 stiffness values 

Parameter Result 

Q 6.3 

C 1.06 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 13.6 

Critical Region 16.9 

ҳ2 (13.6) < ҳ2 critical (16.9) 

 

Table 5-22 Summary of Bartlett’s test results for day 14 stiffness values 

Parameter Result 

Q 4.1 

C 1.06 
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Table 5.22- Continued 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 8.91 

Critical Region 16.9 

ҳ2 (8.91) < ҳ2 critical (16.9) 

 

Table 5-23 Summary of Bartlett’s test results for day 28 stiffness values 

Parameter Result 

Q 4.2 

C 1.06 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 9.10 

Critical Region 16.9 

ҳ2 (9.1) < ҳ2 critical (16.9) 

 

Based on the test results summarized in above Tables 5-19 to 5-23, it can be 

inferred that the statistic value (߯଴ଶ)  was smaller than the critical region (ҳ2  critical). 

Therefore, the null hypothesis was not rejected, concluding that the  variances of stiffness 

values weree constant in all sections for days 1, 3, 7, 14 and 28. Hence, based on the 

ANOVA test and Bartlett’s test, the stiffness values were stationary, having constant 

mean and variance. 

 
5.6 Geostatistical Analysis 

Geostatistical analysis was performed in this study to predict the stiffness values 

of the CLSM at undetermined locations. This analysis included construction of 
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experimental variogram values, modelling of spatial variability in stiffness values for all 

days, and use kriging to perform predictions based on the spatial variability model.  

5.6.1 Experimental Variogram 

The stiffness values that were obtained in the 10 sections of the pipeline were 

used to construct the experimental variogram. The experimental variograms were 

constructed to identify the spatial correlations in the stiffness values in the bedding 

material. The grid parameters were selected based on the trial and error procedure until 

the maximum number of pairs was greater than or equal to 30.The semi-variogram or 

variogram values were calculated using Equation 3-18, which were plotted against the 

lag distance. Figures 5-22 to 5-26 present the experimental variogram plots for the 

stiffness values obtained on days 1, 3, 7, 14 and 28, respectively. The variogram values 

were plotted on the y-axis, and the corresponding lag distance value was plotted on the 

x-axis.  
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Figure 5-22 Experimental variogram value for day 1 stiffness values 

Grid Parameters for day 1 

 Estimator type : Variogram 

 Maximum lag distance : 300 

 Number of lags : 25 

 Lag Width :20 

 Direction of Variogram :0    degrees  

(x-direction) 

 Tolerance : 90 degrees 
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Figure 5-23 Experimental variogram plot for day 3 stiffness values 

Grid Parameters for day 3 : 

 Estimator type : Variogram 

 Maximum lag distance : 150 

 Number of lags : 25 

 Lag Width :20 

 Direction of Variogram : 0 degrees 

 (x-direction) 

 Tolerance : 90 degrees 

Direction: 0.0   Tolerance: 90.0
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Figure 5-24 Experimental variogram plot for day 7 stiffness values 

Grid Parameters for day 7: 

 Estimator type : Variogram 

 Maximum lag distance : 150 

 Number of lags : 25 

 Lag Width :20 

 Direction of Variogram : 0 degrees 

(x-direction) 

 Tolerance : 90 degrees 

Direction: 0.0   Tolerance: 90.0
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Figure 5-25 Experimental variogram plot for day 14 stiffness values 

Grid Parameters for day 14: 

 Estimator type : Variogram 

 Maximum lag distance : 150 

 Number of lags : 25 

 Lag Width :15 

 Direction of Variogram : 0 degrees  

(x-direction) 

 Tolerance : 90 degrees 
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Figure 5-26 Experimental variogram plot for day 28 stiffness values

Grid parameters for day 28: 

 Estimator type : Variogram 

 Maximum lag distance : 150 

 Number of lags : 25 

 Lag Width :30 

 Direction of Variogram : 0 degrees 

(x-direction) 

 Tolerance : 90 degrees 
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The above experimental variogram plots were used to identify the spatial 

correlation in stiffness values after a curing period of 1, 3, 7, 14 and 28 days. The  grid 

parameters selected in the plots were almost the same, satisfying the number of pairs for 

calculating  an experimental variogram value. It was assumed that the x-direction in this 

study represented the longitudinal distance, i.e., 500 ft., and the y-direction represented 

the  transverse distance, i.e., 9 ft., which was the diameter  of the pipe used at the site. 

Since, the measurements obtained through the SASW technique were in longitudinal 

distance, the direction of the variograms was selected as 0 degrees. The maximum lag 

distance that was used in constructing all the variograms was 150m except for day 1. 

This is because the CLSM had not developed uniform stiffness throughout the pipeline, 

which was also evident from the standard deviation of 29.2 MPa from the histogram plots. 

Hence, to identify a spatial correlation the experimental variogram plots were constructed 

for a lag distance of 300m.  

5.6.2 Variogram Modeling 

In order to capture the spatial variability in stiffness values, the experimental 

variograms were modelled using various models, as mentioned in section 3.7.2. From the 

experimental variogram plots, it can be observed that the variogram values did not show 

any specific trend. This can be attributed to low variability in stiffness values, even with 

an increase in the lag distance. However, all the plots reached sill value, which is lower 

than the global variance. This behavior was modelled in this study.  

Also, at a lag distance of 0 m, the variogram values were not equal to zero, which 

resembled a nugget effect model present in the stiffness values. Figures 5-27 to 5-31 

present the variogram models that were used to define the spatial variability present in 

the stiffness values for days 1, 3, 7, 14 and 28, respectively.  
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Figure 5-27 Variogram model for day 1 stiffness values 

                            

Variogram model for day 1: 

 Model : Nugget Effect +  Exponential 

 Scale : 240 

 Length (A) : 8 

 Nugget (C0) : 400 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 400 + 240 [ 1- exp (-h/8)] for h > 0 
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Variogram  model for day 3: 

 Model : Nugget Effect +  Exponential 

 Scale : 350 

 Length (A) : 12 

 Nugget (C0) : 250 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 250 + 350 [ 1- exp (-h/12)] for h > 0 

    Figure 5-28 Variogram model for day 3 stiffness values 
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Figure 5-29 Variogram model for day 7 stiffness values 

 

Variogram model for day 7: 

 Model : Nugget Effect +  Exponential 

 Scale : 180 

 Length (A) : 14 

 Nugget (C0) : 290 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 290 + 180 [ 1- exp (-h/14)] for h > 0 
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Figure 5-30 Variogram model for day 14 stiffness values 

 

Variogram model for day 14: 

 Model : Nugget Effect +  Exponential 

 Scale : 190 

 Length (A) : 23 

 Nugget (C0) : 180 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 180 + 190 [ 1- exp (-h/23)] for h > 0 
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Figure 5-31 Variogram model for day 28 stiffness values 

Variogram model for day 28: 

 Model : Nugget Effect +  Exponential 

 Scale : 400 

 Length (A) : 24 

 Nugget (C0) : 200 

Theoretical Equation: 

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 200 + 400 [ 1- exp (-h/24)] for h > 0 
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The spatial variability in the stiffness values for days 1, 3, 7, 14 and 28 were 

modeled as shown in figures above. With an increase in lag distance the experimental 

variogram increased and approached the sill value. The nugget effect was modelled to 

describe the variation of CLSM stiffness at close distances, such as south 1, south 2 and 

north 1, north 2.  

It was observed that the exponential models with a nugget effect were the best fit 

models for describing the spatial variability in stiffness values for all days. The minimum 

spatial correlation distance was observed on day 1 with 8m, and the maximum correlation 

distance was observed on day 28, with a distance of 24m. Therefore, it can be 

generalized that the correlation distance in stiffness values varied from 8-24m in the 

CLSM bedding material. However, this might differ from project to project, depending on 

the field conditions.  

5.6.3 Kriging Analysis 

The histogram plots shown earlier depicted significant variations in stiffness 

values, with a standard deviation ranging from 18 to 30 MPa. The dispersion in the 

stiffness values in the individual sections was high enough that the normal prediction 

results would be erratic. In this study, the variability in stiffness values were captured by 

modeling the variogram as presented in Section 5.6.2. The spatial variability models 

developed for all the days were used to predict the stiffness values at unsampled 

locations. The predictions were performed using the geostatistical tool ‘kriging’. The 

kriging uses the spatial correlation distance, ranging from 8-25m, obtained from the 

spatial variability model. 

Using the correlation distance and kriging algorithm, the weights of the 

neighboring values were determined. The grid parameters that were used for the kriging 
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analysis were provided in Table 5-24, and the spatial variability model parameters were 

summarized in Table 5-25.  

Table 5-24 Grid parameters selected for kriging analysis 

Parameters selected 

Days 1 3 7 14 28 

Maximum lag distance 300 150 150 150 150 

Angular divisions 180 180 180 180 180 

Radial divisions 100 100 100 100 100 

  

Table 5-25 Spatial variability model parameters 

Parameters selected 

Days 1 3 7 14 28 

Correlation distance 8 12 14 23 24 

Nugget effect 400 250 290 180 200 

 

The above grid and spatial variability parameters were used to predict the 

stiffness values for days 1, 3, 7, 14 and 28, respectively. Figures 5-31 to 5-35 present the 

stiffness contour maps predicted using kriging analysis.  



 

 

176

Day 1: Kriging analysis 

Spatial variability model :  γ (h) = 400 + 240 [ 1- exp (-h/8)] for h > 0 

 

 
 

Figure 5-32 Kriging analysis map for stiffness (MPa) of CLSM after 1 day curing period 
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Day 3: Kriging analysis 

Spatial variability model :  γ (h) = 250 + 350 [ 1- exp (-h/12)] for h > 0 

 

Figure 5-33 Kriging analysis map for stiffness (MPa) of CLSM after 3 days curing period 
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Day 7: Kriging analysis 

Spatial variability model :  γ (h) = 290 + 180 [ 1- exp (-h/14)] for h > 0 

 

 

Figure 5-34 Kriging analysis map for stiffness (MPa) of CLSM after 7 days curing period 
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Day 14: Kriging analysis 

Spatial variability model :  γ (h) = 180 + 190 [ 1- exp (-h/23)] for h > 0 

 

 

Figure 5-35 Kriging analysis map for stiffness (MPa) of CLSM after 14 days curing period 
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Day 28: Kriging analysis 

Spatial variability model :  γ (h) = 200 + 400 [ 1- exp (-h/24)] for h > 0 

 

 

Figure 5-36 Kriging analysis map for stiffness (MPa) of CLSM after 28 days curing period 
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The above kriging maps show the stiffness values of CLSM along the 500 ft., 

pipeline section for days 1, 3, 7, 14 and 28, respectively. The maps provided represent 

the top view of the pipeline with a diameter 9 ft., which is in transverse direction and 500 

ft. in length, which is in longitudinal direction, a total of 10 sections.  All the predictions 

were unbiased and obtained by capturing the spatial variability of the stiffness values. 

In order to observe increase in stiffness of CLSM, the color scale for the maps 

generated for days 1, 3, 7, 14 and 28 was kept the same. For day 1, the contour map 

depicts the stiffness values in the range of 200-250 MPa; and for day 3, the CLSM 

achieved a stiffness range of 260–280 MPa. For day 7, the stiffness value ranged from 

300-320 MPa; for day 14, the stiffness values increased and  ranged from 340-400 MPa; 

and by day 28, the CLSM achieved a stiffness value of 400-480 MPa. From the above 

maps, it can be inferred that there was uniform increase and development of the stiffness 

values along the pipeline for all the days.  

5.6.4 Cross Validation 

The contour maps generated in the earlier sections provided good insight into the 

spatial variation of stiffness of CLSM. However, to ensure that the spatial variability 

model generated was correct, cross validation was performed. Cross validation refers to 

the process of deleting the original values and predicting them again with the spatial 

variability model. In this study, a few stiffness values were randomly deleted on each day, 

and kriging analysis was the performed again, using the corresponding spatial variability 

model. The stiffness of CLSM on new kriging maps at any specific location was 

determined using a digitizing tool available on Surfer software. Then, the originally 

deleted values were compared with the predicted values on a 45 degree validation 

comparison plot. Figures 5-36 to 5-40 represent the new stiffness contour map 
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generated. The black rectangular boxes in the maps represent the locations of the 

deleted value.  
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Day 1: Cross-validation using kriging Analysis  

Spatial variability model :  γ (h) = 400 + 240 [ 1- exp (-h/8)] for h > 0 

 

 
 

Figure 5-37 Cross validation map for stiffness (MPa) of CLSM after 1 day curing period 

Using the digitize tool available in the Surfer software, the precise value of the stiffness values were obtained at the deleted 

locations. Table 5-26 and Figure 5-38 below provide the comparison of actual and predicted values from the cross-validation map.  
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Table 5-26 Comparison of actual and predicted Stiffness values 

S.no Actual Values (MPa) Predicted Values (MPa)

1 262.4 258.4 

2 271.3 273.7 

3 258.6 248.4 

4 281.5 286.6 

5 258.5 237.8 

6 276.2 269.0 

 

 
 

Figure 5-38 Comparison of actual and predicted stiffness values on day 1 
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Day 3: Cross-validation using kriging Analysis  

Spatial variability model :  γ (h) = 250 + 350 [ 1- exp (-h/12)] for h > 0 

 

 
 

Figure 5-39 Cross validation map for stiffness (MPa) of CLSM after 3 days curing period 

The precise value of the stiffness values was obtained using the digitize tool available in the Surfer software at the deleted 

locations. Table 5-27 and Figure 5-40 below provide the comparison of actual and predicted values from the cross-validation map. 
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 Table 5-27 Comparison of actual and predicted Stiffness values for day 3 

S.no Actual Values (MPa) Predicted Values (MPa)

1 301.7 302.9 

2 288.2 271.7 

3 272.4 281.6 

4 275.2 285.3 

5 272.6 270.1 

6 272.9 268.8 

 

 
 

Figure 5-40 Comparison of actual and predicted stiffness values on day 3 
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Day 7: Cross-validation using kriging Analysis  

Spatial variability model :  γ (h) = 290 + 180 [ 1- exp (-h/14)] for h > 0 

 

 
 

Figure 5-41 Cross validation map for stiffness (MPa) of CLSM after 7 days curing period 

The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the 

deleted locations. Table 5-28 and Figure 5-42 below provide the comparison of actual and predicted values from the cross-

validation map.  
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 Table 5-28 Comparison of actual and predicted Stiffness values for day 7 

S.no Actual Values (MPa) Predicted Values (MPa)

1 339.5 346.2 

2 336.1 319.0 

3 321.7 331.8 

4 319.2 326.6 

5 317.4 317.0 

6 316.7 319.8 

 

 
 

Figure 5-42 Comparison of actual and predicted stiffness values on day 7 
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Day 14: Cross-validation using kriging Analysis  

Spatial variability model :  γ (h) = 180 + 190 [ 1- exp (-h/23)] for h > 0 

 

 

 
 

Figure 5-43 Cross validation map for stiffness (MPa) of CLSM after 14 days curing period 

The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the 

deleted locations. Table 5-29 and Figure 5-44 below provide the comparison of actual values predicted values from the cross-

validation map. 
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 Table 5-29 Comparison of actual and predicted Stiffness values for day 14 

S.no Actual Values (MPa) Predicted Values  (MPa)

1 393.8 405.1 

2 402.5 393.9 

3 392.9 392.5 

4 391.9 383.8 

5 395.0 401.7 

6 386.0 388.6 

 

 
 

Figure 5-44 Comparison of actual and predicted stiffness values on day 14 
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Day 28: Cross-validation using kriging Analysis  

Spatial variability model :  γ (h) = 200 + 400 [ 1- exp (-h/24)] for h > 0 

 

 
 

Figure 5-45 Cross validation map for stiffness (MPa) of CLSM after 28 days curing period 

The precise value of the stiffness values were obtained using the digitize tool available in the Surfer software at the 

deleted locations. Table 5-30 and Figure 5-46 below provide the comparison of actual values predicted values from the cross-

validation map. 
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 Table 5-30 Comparison of actual and predicted Stiffness values for day 28 

S.no Actual Values (MPa) Predicted Values (MPa)

1 452.2 456.1 

2 429.0 422.4 

3 442.0 442.4 

4 435.6 429.2 

5 436.6 442.5 

6 454.2 451.5 

 

 
Figure 5-46 Comparison of actual and predicted stiffness values on day 28 
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The above figures present the cross-validation plots and comparison of actual 

and predicted values, using a 45 degree line plot. The actual values were plotted on the 

x-axis, and the predicted values are represented in the y-axis. If the actual and predicted 

values, are the same they should fall on the 45 degree line. It can be inferred from the 

plot that all the predicted values obtained through the digitize technique were within 1 

standard deviation to the actual deleted values. This affirms that the spatial variability 

models developed for individual days were more than sufficient to provide predictions, 

and the spatial maps for the stiffness values for 1, 3, 7, 14 and 28 days were appropriate.  

5.7 Summary 

Controlled Low Strength Material (CLSM) was used as the bedding material in a 

water pipeline project to support a large pipeline system. The uniform development of 

stiffness of CLSM was of primary concern due to the novel mix design approach followed 

while preparing CLSMs, using native clays. The stiffness measurements of CLSM along 

the pipeline section were obtained using non-destructive seismic method (SASW). The 

statistical analysis was performed to understand the distribution present in the stiffness 

measurements. The geostatistical analysis was performed to predict the stiffness of the 

CLSM throughout the pipeline section by developing the spatial variability model with the 

known values. Below are important findings determined from this study: 

 The framework developed in Chapter 3 was validated for performing the 

spatial variability analysis of the CLSM data in a pipeline construction project.  

 The spatial correlation distance of the stiffness values ranged from 8 to 24 m. 

However, after a 28-day curing period, the correlation distance for CLSM 

stiffness values could be 24 m. The increase in spatial correlation distance 

from day 1 to day 28 signifies the increase in homogeneity in stiffness 

values.  
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 The nugget effect and exponential model best describe the spatial variability 

present in the stiffness values for all days. 

 The spatial variability analysis can be used as a quality assurance tool by 

mapping the stiffness values over the entire pipeline.  

 Through this analysis, the uniform stiffness development of CLSM, or any 

material, can be ensured. 
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Chapter 6  

Spatial Variability Analysis of Sulfate-Rich Natural Soils  

6.1 Introduction 

Expansive soils containing sulfates which have been chemically stabilized are 

known as man-made expansive soils (Puppala et. al., 2012). The calcium-based 

stabilizers react with natural sulfates present in the soil, leading to the formation of new 

minerals, ettringite and thaumasite. The heaving mechanics that occur due to hydration 

of these minerals are referred to as sulfate-induced heave (Sherwood 1962). Several 

countries across the globe have reported heaving due to the presence of sulfates in soils 

(Hawkins 1987; Little 1989; Wimsatt 1999; Chen et al. 2005; Mingyu 2006; Rollings et al. 

2006; Zhiming 2008; Adams 2008; Bagley et al. 2009; Puppala et al. 2010). In the United 

States, several pavement failures have been recorded due to sulfate-induced heave 

(Perrin, 1992; Dermatas, 1995; Puppala et al., 2006).   

The damages induced due to sulfate heave results in millions of dollars spent in 

repair costs annually (Hunter, 1988; Petry, 1994; Kota et al. 1996).  In the last decade, 

extensive importance has been given to the determination of sulfate concentrations in 

soils.  The modified UTA method is the accurate and rapid test method used to determine 

the soluble sulfates present in soils. The detailed procedure and steps involved in the 

modified UTA method are presented in Puppala et al. (2002). Several studies have been 

conducted to categorize the sulfate concentration levels that cause problems (Petry et al. 

1992; Berger et al. 2002). Puppala et al. (2003) provided the level of risk involved in lime 

stabilization with an increase of sulfate content in soils. However, the variability of sulfate 

concentrations in subsoil profiles provides uncertainty to the level of risk that is 

associated with chemical stabilization process. In the research study conducted by 

Puppala et al (2013), very high sulfate concentrations of 44,000ppm were recorded in the 
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The high sulfate content present in the Texas soils led to the determination of 

sulfate contents in a pipeline project. This is the same pipeline considered in Chapter 5[ 

however, in Chapter 5, only 500 ft. was considered for spatial variability in stiffness 

values. In this analysis, the 150-mile long pipeline was considered for the determination 

of sulfate content present in soils.  

In another research study conducted by Thomey (2013), the quantification of the 

sulfate contents was performed using the modified UTA method, and mapping of sulfate 

content was performed using geostatistics. This mapping was performed based on the 

assumptions that the data is stationary with constant mean and variance, and spatial 

variability models are linear.  

In this research study, the sulfate content determined by Thomey (2013) was 

used to capture the spatial variability, using the variograms and kriging analysis in 

accordance with the framework developed in Chapter 3. The main goal of this analysis 

was to explain how this information can benefit the engineering community in extracting 

the information from the limited knowledge of soil testing data. This analysis will also 

bring out any limitations in the study. 

6.2 Data Collection 

The pipeline considered for this analysis was placed through six geological 

formations in the North Texas region. In order to ascertain the safety of the pipeline 

against sulfate issues, the sulfate concentrations at all these formations were determined 

at different depths. Figure 6-2 displays the entire layout of the pipeline, highlighting the 

six formations.  
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mass of the sulfate content per unit volume of water. This can be also expressed as 

milligrams per liter (mg/L). It should be noted that,  

1 parts per million = 1 mg/L 

The number of observations in each formation indicates the number of boreholes 

drilled to collect the soil samples. It can be observed from the tables that the number of 

observations considered is not equal, and this is attributed to the provision of the pipeline 

in that particular formation. In total, 301 sulfate measurements were obtained along the 

pipeline alignment. The detailed information of the boreholes in each formation, along 

with the sulfate concentration levels at 5, 10, 15 and 20 ft., are provided in Appendix C. 
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Table 6-1 Sulfate concentration at 5 ft. depth for 6 geological formations 

Geological  
 Formation 

Sulfate Concentration (ppm) 

1 2 3 4 5 6 7 8 9 10 

Kemp 180 1880 1270 11600 2120 260 115 1065 1400 3215 

Neylandville 975 535 90 460 
 

Wolfe 1200 50 310 20 125 670 1065 25 20 65 

Eagleford 540 185 130 8080 750 18,450 19,620 15,260 9360 4200 

Wills 260 105 55 650 90 45 350 315 750 240 

Ozan 1130 16000 280 290 17400 16760 950 115 17110 16700 

 

Geological  
Formation 

Sulfate Concentration (ppm) 

11 12 13 14 15 16 17 18 19 

Kemp 

Neylandville 

Wolfe 80 390 

Eagleford 7000 5530 14,050 75 2200 3340 16,000 1320 1005 

Wills 300 280 135 200 415 

Ozan 50 1100 570 17,300 1,015 
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Table 6-2 Sulfate concentration at 10 ft. depth for 6 geological formations 

Geological  
Formation 

Sulfate Concentration (ppm) 

1 2 3 4 5 6 7 8 9 10 

Kemp 280 17000 255 16100 8420 255 300 690 840 1070 

Neylandville 1500 690 135 180             

Wolfe 750 785 800 1050 200 100 10600 115 120 45 

Eagleford 500 1320 525 185 200 2250 18,300 1620 3620 560 

Wills 150 55 390 670 325 20 300 380 230 100 

Ozan 2820 1055 275 200 1235 1435 755 110 2345 15,620 

 

Geological 
Formation 

Sulfate Concentration (ppm) 

11 12 13 14 15 16 17 18 19 20 21 

Kemp 
Neylandville 

Wolfe 115 310 
Eagleford 890 1050 15,100 15,200 6300 370 180 105 11,725 280 1090 

Wills 150 40 200 10 90 
Ozan 1270 1050 415 1750 25 
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Table 6-3 Sulfate concentration at 15 ft. depth for 6 geological formations 

Geological  
Formation 

Sulfate Concentration (ppm) 

1  2  3  4  5  6  7  8  9  10 

Kemp  325 1100 215 1360 10000 90 220 700 850 970 

Neylandville  605 790 110 210                

Wolfe  90 700 700 1000 480 1255 135 45 85 105 

Eagleford  1270 300 140 1915 715 1160 16,160 640 15,670 3800 

Wills  200 30 185 575 365 30 650 220 20 270 

Ozan  1500 1100 275 205 1255 1315 690 100 1510 15,940 

 

Geological  
Formation 

Sulfate Concentration (ppm) 

11  12  13  14  15  16  17  18  19 

Kemp                

Neylandville                     

Wolfe  470                       

Eagleford  17,500 1560 530 60 1030 275 17,100 290 1095 

Wills  25 60 70 115 70 35         

Ozan  1370 975 620 11,310 20          
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Table 6-4 Sulfate concentration at 20 ft. depth for 6 geological formations 

Geologic  
Formation 

Sulfate Concentration  

1  2  3  4  5  6  7  8  9  10 

Kemp  100 2400 470 2430 18080 250 200 620 1170 15120 

Neylandville  710 450 315 840                

Wolfe  60 620 625 775 335 1460 330 130 75 350 

Eagleford  540 185 130 8080 750 18,450 19,620 15,260 9360 4200 

Wills  510 20 200 675 510 20 400 350 5 200 

Ozan  1130 16,000 280 290 17,400 16,760 950 115 17,110 16,700 

 

 Geological  
Formation  Sulfate Concentration (ppm) 

11  12  13  14  15  16  17  18  19 

Kemp                

Neylandville                     

Wolfe  14100                    

Eagleford  7000 5530 14,050 75 2200 3340 16,000 1320 1005 

Wills  15 40 250 230 20           

Ozan  50 1100 570 17,300 1,015          
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  6.3 Data Organization 

The sulfate content results summarized in the above tables had to be organized 

in the Cartersian coordinate system before performing spatial variability analysis. The 

northing and easting of the boreholes were used as x and y coordinates. The sulfate 

content value at a corresponding depth in a borehole was represented by z coordinate. 

Table 6-5 provides the coordinates of Kemp formation at 15 ft. depth.  

Table 6-5 Coordinates for Kemp formation at 15 feet depth  

Boring 
X‐coordinate 
(Easting) 

Y‐coordinate 
(Northing) 

z‐coordinate 
(Sulfate  

Concentration) 
  

B-007 ‐9641723  3221603  325 

B-025 ‐9634307  3221148  1100 

B-068 ‐9649225  3221794  215 

B-069 ‐9635347  3221152  1360 

B-070 ‐9634595  3221168  10000 

B-094 ‐9641409  3221516  90 

B-095 ‐9640995  3221472  220 

B-096 ‐9639983  3221385  700 

B-097 ‐9636216  3221141  850 

B-180 ‐9639943  3221362  970 

 

Similarly, the coordinates of all the sulfate concentration levels were determined 

using the northing and easting of the boreholes data. The complete coordinate details of 
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all the boreholes considered in this study at 5, 10, 15 and 20 ft. depths are provided in 

Appendix C. 

6.4 Statistical Analysis 

Statistical analysis was performed on the sulfate concentrations (ppm) obtained 

at all depths. This analysis will help in evaluating the basic statistical parameters and 

supplement the geostatistical analysis attempted here. In this section, the statistical 

analysis, comprised of histograms, evaluated the data for Gaussian distribution, ANOVA 

test, Bartlett’s test, and Box-Cox transformations.  

6.4.1 Histograms 

Histograms were plotted for sulfate concentration observations at depths of 5, 10, 

15, and 20 ft., respectively. The number of class intervals and bin size required to 

construct a histogram were determined using Equations 3-1 and 3-2. Table 5-7 below 

summarizes the number of class intervals and bin sizes determined for constructing 

histograms for sulfate observations at these depths.  

Table 6-6 Summary of parameters used to construct histograms 

Depth Observations 
Number of 

Class Intervals 
Bin Size 

5 75 7.18 2722 

10 77 7.22 2540 

15 75 7.18 2431 

20 74 7.16 2431 

 



 

206 

Histogram plots were constructed using the above parameters. Figures 6-3 to 6-6 

provided the histogram plots for the sulfate concentration values determined at various 

depths. The sulfate concentration values were plotted on x-axis and y-axis, and these 

represented the frequency of the observations. The distribution of sulfate concentration in 

all the plots was scattered with a maximum number of observations below 3,000 ppm at 

all depths. However, in all plots there was a long tail of sulfate observations, indicating 

positive skewness in the data.  The standard deviation of sulfate values of various 

regions ranged from 4285 to 6369, representing a large variability in the data values. The 

high standard deviation values can be attributed to the large sulfate concentration values 

obtained at all the depths. From the visual inspection of plots and standard deviation, the 

sulfate values obtained at a depth of 15m provided least variability when compared to 

sulfate values at depths of 5, 10 and 20 m, respectively. All the histogram plots depict the 

exponential distribution of the data.   
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6.4.2 Check for Gaussian Distribution  

From the earlier histogram plots, it was clear that the data values were not 

Gaussian-distributed. In this section the data values are evaluated for Gaussian 

distribution, using normal-quantile plots based on the framework discussed in Chapter 3. 

As stated in Chapter 5, the Shapiro-Wilk test was not used due to the limited number of 

observations for conducting this test.  

6.4.2.1 Normal-Quantile plot 

Normal-Quantile plots were constructed for the sulfate observations obtained at 

all depths, as shown in Figures 6-7 to 6-10. At a particular depth, the theoretical quantiles 

were calculated from corresponding sulfate concentration values, using Equation (3-3). 

The theoretical quantile values were plotted on the y-axis, while the corresponding sulfate 

concentration quantiles were plotted on the x-axis. Using the regression approach 

method, a best fit trend line was modelled for the plotted data values. The coefficient of 

determination was calculated using Equation 3-4 to measure the good fit of the trend line. 

Table 6-7 below summarizes the coefficient of determination values obtained for all the 

plots.  

Table 6-7 Coefficient of determination for normal-quantile plots 

Depth (feet) 
Coefficient of 

Determination (r2) 

5 0.62 

10 0.51 

15 0.44 

20 0.64 
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Figure 6-7 Normal-Quantile plot for sulfate concentration values at 5 ft. depth 
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Figure 6-8 Normal-Quantile plot for sulfate concentration values at 10 ft. depth 
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      Figure 6-9 Normal-Quantile plot for sulfate concentration values at 15 ft. depth 
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             Figure 6-10 Normal-Quantile plot for sulfate concentration values at 20 ft. depth 

From all the normal-quantile plots, it is clearly evident that the data points do not 

follow the linear trends. Also, the coefficient of determination was very low, signifying that 

the data was not Gaussian-distributed. Most of the statistical tests, along with 

geostatistics, performs well if the data is Gaussian-distributed. However, it might not 

always be practically possible. In such cases, one way to approach it is by expressing the 

data in different ways by using transformations, which are described in the following 

section. 



 

214 

6.5 Transformations  

Transformation refers to expressing the same data in different terms. The key to 

transformations is selecting the right transformation function. Transformations in general 

can be used in various situations. However, in this study the transformations were 

performed to check the Gaussian distribution in data, using new function and converting 

the non-stationary data to stationary. It should be noted that by using the transformed 

data, it is not guaranteed that the data will turn into Gaussian; however, if the data comes 

close to a Gaussian distribution, it shall be employed.  

In this study, the Box-Cox method was used to select the appropriate 

transformation function. Using the function, an attempt was made, on all the sulfate 

concentration data, to look for nearly-Gaussian behavior trends. The methodology of the 

Box-Cox method is presented in Chapter 3. In this section, the results of the Box-Cox 

method for the sulfate concentration values at various depths are discussed. For different 

values of ‘λ’, a new set of data was generated, using Equation 3-14. The error sum of 

square values was determined from the corresponding data generated. Tables 6-8 to 6-

11 represent the error sum of squares determined for different values of ‘λ’ for sulfate 

concentration values at all depths. Corresponding graphs for ‘λ’ versus error sum of 

squares (SSError) are presented in Figures 6-11 to 6-14.  

From the plots, it is evident that the least error sum of squares for sulfate 

concentrations at all depths was observed when λ-value was equal to 0. For a λ-value of 

0, the corresponding transformation function to be applied is the natural logarithm (Ln). 

The transformed data using the natural logarithmic (Ln) function at all depths is presented 

in the Tables 6-12 to 6-15, which are considered for further analysis. 
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Table 6-8 Box-Cox results for sulfate concentration values at 5 ft. depth 

Λ SSE(λ) 

-1 1.5E+09 

-0.75 4.8E+08 

-0.5 1.9E+08 

-0.25 1.06E+08 

0 9.0E+07 

0.25 1.3E+08 

0.5 2.5E+08 

0.75 6.5E+08 

1 1.9E+09 

 

 
 

Figure 6-11 Box-Cox plot for selecting the most likelihood λ-value at 5 ft. depth 
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Table 6-9 Box-Cox results for sulfate concentration values at 10 ft. depth 

Λ SSE(λ) 

-1 1118431700

-0.75 298495738

-0.5 103531842.1

-0.25 54329432.25

0 47457890.4

0.25 74393532.09

0.5 162172368.3

0.75 443979352.9

1 1405685528
 

 

Figure 6-12 Box-Cox plot for selecting the most likelihood λ-value at 10 ft. depth 
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Table 6-10 Box-Cox results for sulfate concentration values at 15 ft. depth 

Λ SSE(λ) 

-1 301771635.9

-0.75 116510143.4

-0.5 53600335.12

-0.25 32336206.18

0 35697453.74

0.25 45410757.3

0.5 107161564.7

0.75 328212310.4

1 1166107458
 

 
Figure 6-13 Box-Cox plot for selecting the most likelihood λ-value at 15 ft. depth 
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Table 6-11 Box-Cox results for sulfate concentration values at 20 ft. depth 

Λ SSE(λ) 

-1 15377496368

-0.75 2397855141

-0.5 506858122.2

-0.25 178489623.3

0 127659026.1

0.25 172162368.2

0.5 341375780.8

0.75 839852497.5

1 2360400858
 

 
 

Figure 6-14 Box-Cox plot for selecting the most likelihood λ-value at 20 ft. depth
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Table 6-12 LN-Transformed Sulfate concentration values at 5 ft. depth  

Geological 
Formation 

Transformed Sulfate Observations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Kemp 5.2 7.5 7.1 9.4 7.7 5.6 4.7 7.0 7.2 8.1                   

Neylandville 6.9 6.3 4.5 6.1                               

Wolfe 7.1 3.9 5.7 3.0 4.8 6.5 7.0 3.2 3.0 4.2 4.4 6.0               

Eagleford 6.3 5.2 4.9 9.0 6.6 9.8 9.9 9.6 9.1 8.3 8.9 8.6 9.6 4.3 7.7 8.1 9.7 7.2 6.9

Wills 5.6 4.7 4.0 6.5 4.5 3.8 5.9 5.8 6.6 5.5 5.7 5.6 4.9 5.3 6.0         

Ozan 7.0 9.7 5.6 5.7 9.8 9.7 6.9 4.7 9.7 9.7 3.9 7.0 6.3 9.8 6.9         
  

Table 6-13 LN-Transformed Sulfate concentration values at 10 ft. depth  

Geological 
Formation 

Transformed Sulfate Concentration  
  
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Kemp 5.6 9.7 5.5 9.7 9.0 5.5 5.7 6.5 6.7 7                       

Neylandville 7.3 6.5 4.9 5.2                                   

Wolfe 6.6 6.7 6.7 7.0 5.3 4.6 9.3 4.7 4.8 4 4.7 5.7                   

Eagleford 6.2 7.2 6.3 5.2 5.3 7.7 9.8 7.4 8.2 6 6.8 7.0 9.6 9.6 8.7 6 5 5 7 6 7 

Wills 5.0 4.0 6.0 6.5 5.8 3.0 5.7 5.9 5.4 4 5.0 3.7 5.3 2.3 4.5             

Ozan 7.9 7.0 5.6 5.3 7.1 7.3 6.6 4.7 7.8 9 7.1 7.0 6.0 7.5 3.2             
 

 



 

 

220

Table 6-14 LN-Transformed Sulfate concentration values at 15 ft. depth 

Geological 
Formation 

Transformed Sulfate Concentration values 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Kemp 5.8 7.0 5.4 7.2 9.2 4.5 5.4 6.6 6.7 6.9                   

Neylandville 6.4 6.7 4.7 5.3                               

Wolfe 4.5 6.6 6.6 6.9 6.2 7.1 4.9 3.8 4.4 4.7 6.2                 

Eagleford 7.1 5.7 4.9 7.6 6.6 7.1 9.7 6.5 9.7 8.2 9.8 7.4 6.3 4.1 6.9 5.6 9.7 5.7 7.0

Wills 5.3 3.4 5.2 6.4 5.9 3.4 6.5 5.4 3.0 5.6 3.2 4.1 4.2 4.7 4.2 3.6       

Ozan 7.3 7.0 5.6 5.3 7.1 7.2 6.5 4.6 7.3 9.7 7.2 6.9 6.4 9.3 3.0         
 

Table 6-15 LN-Transformed Sulfate concentration values at 20 ft. depth 

Geological 
Formation 

Transformed Sulfate Concentration Values 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Kemp 4.6 7.8 6.2 7.8 9.8 5.5 5.3 6.4 7.1 9.6                   

Neylandville 6.6 6.1 5.8 6.7                               

Wolfe 4.1 6.4 6.4 6.7 5.8 7.3 5.8 4.9 4.3 5.9 9.6                 

Eagleford 6.3 5.2 4.9 9.0 6.6 9.8 9.9 9.6 9.1 8.3 8.9 8.6 9.6 4.3 7.7 8.1 9.7 7.2 6.9

Wills 6.2 3.0 5.3 6.5 6.2 3.0 6.0 5.9 1.6 5.3 2.7 3.7 5.5 5.4 3.0         

Ozan 7.0 9.7 5.6 5.7 9.8 9.7 6.9 4.7 9.7 9.7 3.9 7.0 6.3 9.8 6.9         
The above transformed values represent the sulfate concentration values, which are expressed using natural logarithmic 

function. Figures 6-15 to 6-18 represent the normal-quantile plots for the transformed data at all depths, comprised of 6 geological 

formations. 
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Figure 6-15 Normal-Quantile plot for transformed data at 5 ft. depth 

 
Figure 6-16 Normal-Quantile plot for transformed data at 10 ft. depth 
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Figure 6-17 Normal-Quantile plot for transformed data at 15 ft. depth 

 
Figure 6-18 Normal-Quantile plot for transformed data at 20 ft. depth 
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From the above plots, it can be observed that there is significant improvement in 

the normal-quantile plots with transformed data. All the data points fall close to the 

straight line. The coefficient of determination of the plots before and after the 

transformation is given in below Table 6-16. From the results, it can be concluded that 

the transformed data values depict Gaussian distribution behavior. 

Table 6-16 Coefficient of determination for normal-quantile plots before and after 

transformation 

Depth (feet)

Before  

Transformation-

(r2) 

After  

Transformation-

(r2) 

5 0.62 0.96 

10 0.51 0.97 

15 0.44 0.90 

20 0.64 0.95 

 

6.6 Check for Stationarity 

Stationarity in the data refers to constant mean and variance, with equal joint 

probability distribution. In this case, stationarity refers to constant mean and variance in 

sulfate concentration values determined at six geological formations, at different depths. 

This was evaluated using the ANOVA test, Bartlett’s test, and experimental variogram. In 

this section, the stationarity evaluated for the transformed data through ANOVA and 

Bartlett’s test is discussed.  
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6.6.1 Check for Constant Mean  

The constant mean of the sulfate concentration values obtained at different 

depths were evaluated using the ANOVA test. The transformed sulfate concentration 

values presented in Tables 6-12 to 6-15 were used for the analysis. In order to check for 

constant mean, a hypothesis was constructed for the data, as shown below: 

H0 : μkemp,depth = μwills,depth = μneylandville,depth = μozan,depth = μeagleford,depth = μwolfe,depth 

H1 : At least one mean is different 

The statistic that was used to evaluate the above hypothesis is f0, which is the 

ratio of mean square treatment to mean square error. This was compared to the critical 

value at a significance level of 0.05. Tables 6-17 to 6-20 below provide the summary of 

the ANOVA test results conducted for checking the constant mean in sulfate 

concentration values at all depths. 

Table 6-17 Summary of ANOVA results for sulfate concentrations at 5 ft. depth 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square f0 

Treatment 104.4 5 20.8 8.4 

Error 171.7 69 2.5 

Total 276.1 74 

*DOF = Degrees of freedom 

Table 6-18 Summary of ANOVA results for sulfate concentrations at 10 ft. depth 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square f0 

Treatment 53.0 5 10.6 4.89 

Error 153.6 71 2.16 

Total 206.6 76 

*DOF = Degrees of freedom 
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Table 6-19 Summary of ANOVA results for sulfate concentrations at 15 ft. depth 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square f0 

Treatment 64.3 5 12.8 6.33 

Error  140.1 69 2.0   

Total 204.4 74     

*DOF = Degrees of freedom 

 

Table 6-20 Summary of ANOVA results for sulfate concentrations at 20 ft. depth 

Analysis of Variance 

Source of 
Variation 

Sum of Squares DOF Mean Square f0 

Treatment 106.2  5 21.2  7.11 

Error 203.0  68 2.98 

Total 309.3  73 

*DOF = Degrees of freedom 

The statistic f0 that was calculated for the sulfate values at various depths was 

compared with associated critical values (fcrit). The fcrit value was obtained using the f-

distribution table at a significance level (α) of 0.05 for different degrees of freedom. Due 

to the close number of observations, the fcrit value for all the cases was about 2.34. From 

the results summarized in the above tables, it can be inferred that the transformed sulfate 

concentration values obtained at all depths were greater than the critical values (i.e., 8.4 

> 2.34; 4.89 > 2.34; 6.33 > 2.34; 7.11 > 2.34), resulting in unequal mean values. This 

could be due to the high sulfate concentration values present in the Eagleford geological 

formation.  
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6.6.1.1 Model Adequacy Check 

The above conclusion obtained from ANOVA test results is viable only if the basic 

assumptions of the ANOVA model were satisfied. The assumptions were that the error 

residuals were normally distributed and structureless. The residuals for the transformed 

sulfate concentration values were calculated using the Equation 3.8. The true values in the 

equation are the transformed sulfate concentration values, and the fitted values are the 

mean values obtained for a particular geological formation at a specific depth. Tables 6-21 

to 6-24 present the residual values calculated for all the sulfate concentration values at 

different depths.  
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Table 6-21 Residual values for sulfate concentration values at 5 ft. depth 

Geologic Formation 
Residuals 

1 2 3 4 5 6 7 8 9 10 

Kemp -1.8 0.6 0.2 2.4 0.7 -1.4 -2.2 0.0 0.3 1.1 

Neylandville 0.9 0.3 -1.4 0.2             

Wolfe 2.2 -1.0 0.8 -1.9 -0.1 1.6 2.1 -1.7 -1.9 -0.7 

Eagleford -1.6 -2.7 -3.0 1.1 -1.3 1.9 2.0 1.8 1.3 0.5 

Wills 0.2 -0.7 -1.3 1.1 -0.9 -1.5 0.5 0.4 1.3 0.1 

Ozan -0.5 2.2 -1.9 -1.8 2.3 2.2 -0.6 -2.8 2.2 2.2 

 
                             

Geologic Formation Residuals 

11 12 13 14 15 16 17 18 19 

Kemp                   

Neylandville                   

Wolfe -0.5 1.1               

Eagleford 1.0 0.7 1.7 -3.6 -0.2 0.2 1.8 -0.7 -1.0 

Wills 0.4 0.3 -0.4 -0.1 0.7         

Ozan -3.6 -0.5 -1.2 2.3 -0.6         
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Table 6-22 Residual values for sulfate concentration at depth 10 ft. 

Geological  
Formation 

Residuals 

1 2 3 4 5 6 7 8 9 10 

Kemp -1.5 2.6 -1.6 2.6 1.9 -1.6 -1.4 -0.6 -0.4 -0.1 

Neylandville 1.3 0.5 -1.1 -0.8             

Wolfe 0.8 0.8 0.9 1.1 -0.5 -1.2 3.4 -1.1 -1.0 -2.0 

Eagleford -0.8 0.2 -0.7 -1.8 -1.7 0.7 2.8 0.4 1.2 -0.7 

Wills 0.2 -0.8 1.1 1.7 0.9 -1.9 0.9 1.1 0.6 -0.2 

Ozan 1.3 0.3 -1.0 -1.4 0.5 0.6 0.0 -2.0 1.1 3.0 

 

            

Geological  
Formation 

Residuals 

11 12 13 14 15 16 17 18 19 20 21 

Kemp                       

Neylandville                       

Wolfe -1.1 -0.1                   

Eagleford -0.2 0.0 2.6 2.6 1.8 -1.1 -1.8 -2.3 0.0 -1.4 0.0 

Wills 0.2 -1.2 0.4 -2.5 -0.4             

Ozan 0.5 0.3 -0.6 0.8 -3.4             
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Table 6-23 Residual values for sulfate concentration at depth 15 ft. 

Geological Formation 
Residuals 

1 2 3 4 5 6 7 8 9 10 

Kemp -0.7 0.5 -1.1 0.8 2.7 -2.0 -1.1 0.1 0.3 0.4 

Neylandville 0.6 0.9 -1.1 -0.4             

Wolfe -1.1 0.9 0.9 1.3 0.6 1.5 -0.7 -1.8 -1.2 -1.0 

Eagleford 0.0 -1.4 -2.2 0.4 -0.6 -0.1 2.6 -0.7 2.5 1.1 

Wills 0.7 -1.2 0.6 1.7 1.3 -1.2 1.8 0.8 -1.6 1.0 

Ozan 0.6 0.3 -1.1 -1.4 0.4 0.5 -0.2 -2.1 0.6 3.0 

 

             

Geological 
 Formation 

Residuals 

11 12 13 14 15 16 17 18 19 

Kemp                   

Neylandville                   

Wolfe 0.5                 

Eagleford 2.6 0.2 -0.9 -3.0 -0.2 -1.5 2.6 -1.5 -0.1 

Wills -1.4 -0.5 -0.4 0.1 -0.4 -1.1       

Ozan 0.5 0.2 -0.3 2.6 -3.7         
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Table 6-24 Residual values for sulfate concentration at depth 20 ft. 

Geological 
 Formation 

Residuals 

1 2 3 4 5 6 7 8 9 10 

Kemp -2.4 0.8 -0.9 0.8 2.8 -1.5 -1.7 -0.6 0.1 2.6 

Neylandville 0.3 -0.2 -0.5 0.4             

Wolfe -2.0 0.3 0.3 0.6 -0.3 1.2 -0.3 -1.2 -1.8 -0.2 

Eagleford -1.6 -2.7 -3.0 1.1 -1.3 1.9 2.0 1.8 1.3 0.5 

Wills 1.6 -1.6 0.7 1.9 1.6 -1.6 1.4 1.2 -3.0 0.7 

Ozan -0.5 2.2 -1.9 -1.8 2.3 2.2 -0.6 -2.8 2.2 2.2 

         

Geological  
Formation 

Residuals 

11 12 13 14 15 16 17 18 19 

Kemp                   

Neylandville                   

Wolfe 3.5                 

Eagleford 1.0 0.7 1.7 -3.6 -0.2 0.2 1.8 -0.7 -1.0 

Wills -1.9 -0.9 0.9 0.8 -1.6         

Ozan -3.6 -0.5 -1.2 2.3 -0.6         

 

The residual values presented above were used to validate the assumptions in the ANOVA model. Figures 6-11 to 6-14 

present the model adequacy plots.  
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            Figure 6-19 Model Adequacy plot for residual values at 5 ft. depth 
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          Figure 6-20 Model Adequacy plots for residual values at 10 ft. depth 
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Figure 6-21 Model Adequacy plots for residual values at 15 ft. depth  
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Figure 6-22 Model Adequacy plots for residual values at 20 ft. depth 
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From the residual normality plots, it’s evident that the residual values obtained at 

all depths lie on a straight line, signifying that the data was normally distributed. The 

coefficient of determination values obtained for all the plots were higher than 0.90, 

depicting that the fitted model was appropriate.  The residual values were also plotted 

with the corresponding fitted/mean values to enable observation of the structure in the 

residual values. In all the plots, the residuals most likely had the same variability, 

depicting that there were no trends. Therefore, the conclusions obtained were validated, 

resulting in unequal mean values in the data.  

6.6.2 Check for constant variance 

As a part of stationary requirement, the data had to have to equal variance` In 

this study, the transformed sulfate concentration values were used to evaluate for 

stationary in the data. Bartlett’s test was used to check for constant variance present in 

the sulfate concentration values at all depths. This was performed by developing the 

following hypothesis: 

H0 : σ
2
kemp = σ2

wills = σ2
neylandville = σ

2
wolfe = σ2

ozan = σ2
eagelford 

                          H1 : At least one variance is different 

The above hypothesis was evaluated using the statistic expressed in Equation 

3.9. The value obtained from the statistic was compared to the critical value obtained at a 

significance value (α) 0.05. The chi-square distribution table was used to determine the 

critical value. Tables 6-16 to 6-19  provide the summary of the results obtained from the 

Bartlett’s test in evaluation of constant variance at all depths.  

 

 

 

 



 

236 

Table 6-25 Summary of Bartlett’s test results for sulfate values at 5 ft. depth 

Parameter Result 

q 1.18 

c 1.04 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 2.61 

Critical Region 9.49 

ҳ2 (2.61) < ҳ2 critical (9.49) 

 

Table 6-26 Summary of Bartlett’s test results for sulfate values at 10 ft. depth 

Parameter Result 

q 0.91 

c 1.04 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 2.03 

Critical Region 9.49 

ҳ2 (2.03) < ҳ2 critical (9.49) 

 

Table 6-27 Summary of Bartlett’s test results for sulfate values at 15 ft. depth 

Parameter Result 

q 2.03 

c 1.04 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 4.48 

Critical Region 9.49 

ҳ2 (4.48) < ҳ2 critical (9.49) 
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Table 6-28 Summary of Bartlett’s test results for sulfate values at 20 ft. depth 

Parameter Result 

Q 2.97 

C 1.04 

Test Statistic (߯଴ଶ ൌ 2.3026 ௤
௖
) 6.55 

Critical Region 9.49 

ҳ2 (6.55) < ҳ2 critical (9.49) 

 

From the results summarized in the above tables, it was observed that the test 

statistic calculated was less than the critical value obtained at a significance level of 0.05. 

This shows that the variances in all the formations at all depths are equal.  

The stationarity in the transformed sulfate data was evaluated in this study using 

the ANOVA test and Bartlett’s test for constant mean and variance. From the results and 

discussions presented in  Sections 6.6.1 and 6.6.2, it can be inferred that the sulfate data 

didn’t have constant mean, but contained constant variance. This was expected, as the 

sulfate concentration values in the Eagleford formation enhanced the mean value at all 

the depths. The alternative hypothesis (H1) that was constructed for evaluating the 

constant mean indicated that the mean value in the Eagleford formation was clearly 

different from the rest of the mean values.  

Therefore, from the results of the ANOVA test (Section 6.5.1), it can be 

concluded that the data was non-stationary, but the results of the Bartlett’s test (Section 

6.5.2) showed that the data was stationary. For further investigation, the stationarity in 

the data was also evaluated using the variogram. It is assumed in this study that if at 

least one method meets the requirement of stationarity, the spatial variability analysis can 

be performed.  
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6.7 Geostatistical Analysis 

Geostatistical analysis is performed in this study to capture the variability in the 

sulfate concentration values. In the earlier case studies, the raw data was used directly in 

performing the analysis; however, in this case, the transformed data using natural 

logarithm was used to conduct the analysis. Using this analysis, the spatial variability in 

the sulfate concentrations at a particular depth in different geological formations was 

modeled. The developed models were used for interpretation of sulfate concentration 

values at unsampled locations.  

6.7.1 Experimental Variograms 

Variograms are a plot of variogram values with lag distance. The variogram 

values were calculated using Equation 3-18. The variogram values were plotted on the y-

axis, with corresponding lag distance values on the x-axis. In this section, experimental 

variograms were constructed using various grid parameters, so that the number of pairs 

used in computing a variogram value was not less than 30. As seen in the previous 

sections, the stationary conditions were not satisfied by conducting the ANOVA test and 

Bartlett’s test. The ANOVA test resulted in unequal mean values in the sulfate 

concentration values. Therefore, the constructed variograms were not only used to 

capture the variability, but also used to check the stationarity of the transformed data. 

Figures 6-23 to 6-26 represent the experimental variograms constructed using the 

transformed sulfate concentration data. Along with the experimental variogram plots, the 

grid parameters used for constructing experimental variograms were also presented in 

the figures.  
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Figure 6-23 Experimental Variogram plot at 5 ft. depth 

 Estimator type : Variogram 

 Maximum lag distance : 35000 

 Number of lags : 25 

 Lag Width : 1400 

 Direction of Variogram : 0 degrees 

(x-direction) 

 Tolerance : 90 degrees 
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Figure 6-24 Experimental Variogram plot at 10 ft. depth 

 Estimator type : Variogram 

 Maximum lag distance : 35000 

 Number of lags : 25 

 Lag Width : 1400 

 Direction of Variogram : 0 degrees 

(x-direction) 

 Tolerance : 90 degrees 
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Figure 6-25 Experimental Variogram plot at 15 ft. depth 

 Estimator type : Variogram 

 Maximum lag distance : 35000 

 Number of lags : 25 

 Lag Width : 1400 

 Direction of Variogram : 0 degrees 

(x-direction) 

 Tolerance : 90 degrees 

Direction: 0.0   Tolerance: 90.0
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Figure 6-26 Experimental Variogram plot at 20 ft. depth

 Estimator type : Variogram 

 Maximum lag distance : 35000 

 Number of lags : 25 

 Lag Width : 1400 

 Direction of Variogram : 0 degrees  

(x-direction)  

 Tolerance : 90 degrees 

V
ar

io
g

ra
m
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Several trial and error procedures were adopted in the selection of the grid 

parameters to construct the variogram plots. Due to the similar scale of variation in all the 

sulfate concentration values at all depths, the same grid parameters were reflected in all 

the variogram plots. It can be inferred from the plots, that the variogram values at all 

depths increased with an increase in the lag distance. There was a sudden drop of 

variogram values after lag distance of 15000m. Also, it can be inferred that the variogram 

values are varying about the global variance value and there is no indication of trends 

present in the data, as the variogram values are reaching to a definite sill with an 

increase in lag distance. However, the variogram values in all the plots seemed to vary 

within a short lag distance. This can be attributed to the high variability present in the 

sulfate concentration values. In order to capture the spatial variability present in the 

transformed sulfate concentrations, the semi-variogram value was normalized by the 

global variance. This type of variogram is called standardized variogram.  

ሺ݄ሻߛ ൌ  
	 భ
మ೙ሺ೓ሻ	∑ ሾ௭ሺ௫೔	ା	௛ሻ	ି௭ሺ௫೔ሻሿమ

೙ሺ೓ሻ
೔సభ

ܵ2
       (6.1) 

In the standardized variogram, i.e., when the semi-variogram values are 

normalized by the lag variance, the influence of the local means can be reduced. The 

same result was reflected in the ANOVA test, that, at all the depths, the means were not 

constant. However, by normalizing the variogram values, the varying local mean values 

of sulfate concentration can be subsided. The standardized variogram plots were 

constructed using the same grid parameters. Figures 6-27 to 6-30 present the 

standardized variogram plots for the transformed sulfate concentration at all depths.  
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            Figure 6-27 Standardized variogram plot at 5ft depth 

                
                    Figure 6-28 Standardized variogram plot at 10 ft. depth 
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           Figure 6-29 Standardized variogram plot at 15 ft. depth 

              
   Figure 6-30 Standardized variogram plot at 20 ft. depth 
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The figures above represent the standardized variogram plots, where the 

standardized variogram value was represented on the y-axis and the corresponding lag 

distance on the x-axis. A significant improvement was observed in the variogram plot 

after standardizing the variogram values. At all depths, the standardized variogram value 

increased with an increase in the lag distance and reached a sill value. These plots were 

used in further analysis for developing the spatial variability model. 

6.7.2 Variogram Model  

The standardized variogram plots constructed earlier were used to capture the 

spatial variability present in the transformed sulfate concentration values. The different 

models presented in Section 3.7.2 were used to model the spatial variability. The three 

characteristics of a variogram plot (range, sill, and nugget) were modeled in this section. 

It was observed that at a lag distance of ‘0,’ the variogram values in all the plots were not 

equal to zero, depicting the nugget effect present in the sulfate concentration values.  

Several models such as Gaussian, spherical, and exponential were used to 

reflect the variability present in the data. Of all the models, the exponential function 

depicted the best model that can be ascribed to the data. Figures 6-31 to 6-34 present 

the spatial variability models that were developed for sulfate concentration values 

obtained at all depths.  
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Figure 6-31 Standardized Variogram model at 5 ft. depth 

 

Variogram model at 5 feet depth: 

 Model : Nugget effect + Exponential 

 Nugget (C0) : 0.5 

 Scale (C) : 0.7 

 Range/ Length (A) : 8000 

Theoretical Equation:  

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 0.5 + 0.7 [ 1- exp (-h/8000)] for h > 0 
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Figure 6-32 Standardized Variogram model at 10 ft. depth 

 

  

Variogram model at 10 feet depth: 

 Model : Nugget effect + Exponential 

 Nugget (C0) : 0.3 

 Scale (C) : 1.0 

 Range/ Length (A) : 8500 

Theoretical Equation:  

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 0.3 + 1.0 [ 1- exp (-h/8500)] for h > 0 
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Figure 6-33 Standardized Variogram model at 15 ft. depth 

 Variogram model at 15 feet depth: 

 Model : Nugget effect + Exponential 

 Nugget (C0) : 0.05 

 Scale (C) : 1.12 

 Range/ Length (A) : 5200 

Theoretical Equation:  

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 0.05 + 1.12 [ 1- exp (-h/5200)] for h > 0 
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Figure 6-34 Standardized Variogram model at 20 ft. depth

 Variogram model at 20 feet depth: 

 Model : Nugget effect + Exponential 

 Nugget (C0) : 0.09 

 Scale (C) : 1.12 

 Range/ Length (A) : 4100 

Theoretical Equation:  

γ (h) = C0 + C [ 1- exp (-h/a)] for h > 0 

Model Equation : 

γ (h) = 0.09 + 1.12 [ 1- exp (-h/4100)] for h > 0 

 



 

251 

The exponential function, along with the nugget effect, was considered In order 

to model the spatial variability in sulfate concentrations in different models. The nugget 

effect, which is an interception of the variogram curve towards the y-axis, varied from 

0.05 to 0.5. The range, i.e., spatial correlation distance obtained through the experimental 

variogram plot,  varied from 4100-8500. This range value was too high, due to the limited 

observations obtained at larger intervals with larger variability. The influence of the 

neighboring values around the unsampled location was determined using the exponential 

and nugget models. 

6.7.3 Kriging Analysis 

Kriging analysis was performed to predict the sulfate concentrations at unknown 

locations. The spatial variability models developed at different depths in the earlier 

section were used along with kriging algorithm. The predictions obtained were produced 

in the form of a contour map, as shown in Figures 6-35 to 6-38. The grid parameters that 

were used to produce the contour maps for all the depths were kept the same, and these 

details are presented in Table 6-29 below. 

Table 6-29 Grid parameters selected for kriging analysis 

Parameters selected 

Depth 5 10 15 20 

Maximum lag distance 35000 35000 37000 35000 

Angular divisions 180 180 180 180 

Radial divisions 100 100 100 100 
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Figure 6-35 Contour map for sulfate concentration (ppm) at 5 ft. depth 
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Figure 6-36 Contour map for sulfate concentration (ppm) at 10 ft. depth 
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Figure 6-37 Contour map for sulfate concentration (ppm) at 15 ft. depth 
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Figure 6-38 Contour map for sulfate concentration (ppm) at 20 ft. depth 
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The above plots provide the sulfate concentrations at different depths. The color 

scale of the contour maps indicates sulfate concentration in parts per million (ppm). The 

color scale is kept constant, so that the location of the high sulfate content at any depth 

can be easily identified. The x-axis in the contour map indicates Northing and y-axis 

indicates Easting. The black rectangular boxes indicate the boreholes conducted along 

the new proposed pipeline.  

Due to the limited number of observations and correlation distance specified in 

the model, the sulfate concentrations, after a certain distance, remain constant. In the 

contour map produced at 5 ft. depth, it can be observed that high sulfate concentrations 

are present in Eagleford and Wolfe formations, which are highlighted in red rectangular 

boxes. In the contour map produced at 10 ft. depth, high sulfate concentrations are 

observed at Eagleford and Kemp formations.  

At a 15 ft. depth, only a few locations in the Eagleford formation have high sulfate 

concentrations. This is in accordance with the results obtained from the histograms, 

where the maximum number of observations was well below 3000 ppm of sulfate content. 

From the contour map produced at a 20 ft. depth, it can be observed that the high sulfate 

concentration is present at Eagleford, Wolfe and Kemp geological formations. In order to 

check the appropriateness of the prediction maps produced using the kriging analysis, 

and in accordance with variability models, the cross-validation technique was performed.  

6.7.4 Cross Validation 

In the process of cross validation, the sulfate concentration values at different 

locations were deleted and the contour maps were produced, again using the developed 

spatial variability model. From the contour maps produced, using the digitization tool 

available in the surfer software, the predicted values were determined. The predicted 

values were compared with the original values. Thus, the effectiveness of the spatial 
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variability model is was validated. Figures 6-39 to 6-42 represent the cross-validation 

contour maps. 
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Figure 6-39 Cross validation map at 5 ft. depth 

 
The rectangular white boxes represent the locations of the deleted data. Using the digitize tool, the sulfate concentrations 

at the deleted locations from the new contour maps were determined and compared to the original data. Table 6-30 and Figure 6-

40 present the results of the sulfate concentration values. 
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Table 6-30 Comparison of actual and predicted sulfate concentration values 

S.no Actual Values (ppm) Predicted Values (ppm)

1 315 370 

2 280 305 

3 1200 998 

4 1270 990 

5 4200 5100 

6 1130 1200 

7 975 950 

 
 

 
  

Figure 6-40 Comparison of actual and predicted sulfate concentrations at 5 ft. depth
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Figure 6-41 Cross validation map at 10 ft. depth 

 
Table 6-31 and Figure 6-42 present the results of the sulfate concentration values at 10 ft. depth for evaluating the 

appropriateness of the model developed.  
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Table 6-31 Comparison of actual and predicted sulfate concentration values 

S.no Actual Values (ppm) Predicted Values (ppm)

1 380 399 

2 200 252 

3 750 683 

4 255 308 

5 1050 974 

6 2820 1914 

7 1500 997 

 

 
 

Figure 6-42 Comparison of actual and predicted sulfate concentrations at 10ft. depth
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Figure 6-43 Cross validation map at 15 ft. depth 

 
Table 6-32 and Figure 6-44 present the results of the sulfate concentration values at a 15 ft. depth for evaluating the 

appropriateness of the model developed.  
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Table 6-32 Comparison of actual and predicted sulfate concentration values 

S.no Actual Values (ppm) Predicted Values (ppm)

1 220 280 

2 70 130 

3 90 177 

4 215 277 

5 3800 1900 

6 1500 1200 

7 605 565 

 

 
 

Figure 6-44 Comparison of actual and predicted sulfate concentrations at 15 ft. depth
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Figure 6-45 Cross validation map at 20 ft. depth 

 
Table 6-33 and Figure 6-46 present the results of the sulfate concentration values at 20 ft. depth for evaluating the 

appropriateness of the model developed.  
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Table 6-33 Comparison of actual and predicted sulfate concentration values 

S.no Actual Values (ppm) Predicted Values (ppm)

1 350 390 

2 250 210 

3 60 180 

4 470 590 

5 4200 5800 

6 1130 1220 

7 710 920 

 

 
 

Figure 6-46 Comparison of actual and predicted sulfate concentrations at 20 ft. depth 
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Figures 6-39 to 6-46 presented above represent the cross-validation maps and 

comparison of actual and predicted values using a 45 degree line plot. In the 45 degree 

line plot, the actual values were plotted on the x-axis and the predicted values on the y-

axis. If the actual and predicted values are the same, they should fall on the 45 degree 

line. The comparison plots depict that most of the predicted values are close to the 45 

degree line. However, at high sulfate concentrations, the predictions are either close to or 

outside the 1-standard deviation line. This is because of the large variability in short 

distances in the actual data. However, most of the points fall close to the 45 degree line, 

indicating the spatial variability models developed are appropriate.  

6.8 Summary 

The presence of high sulfates in soils is becoming a huge concern to civil 

infrastructure in projects that require ground improvement tasks with calcium-based 

stabilizer treatments. Keeping in mind the sulfate heaving mechanism, a comprehensive 

laboratory study was conducted to determine sulfates present in the soils at different 

depths for a pipeline project. The sulfate concentrations obtained were used to conduct 

the spatial variability analysis. The spatial variability models were developed by 

constructing standardized variograms. The kriging analysis was performed to determine 

the sulfate concentration at unsampled locations. Below are some of the findings of this 

study. 

 The framework developed in Chapter 3 was validated by predicting the sulfate 

concentration at unsampled locations.  

 The spatial variability present in the sulfate concentration values was modelled 

using the nugget and exponential functions.  
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 The spatial correlation distance obtained in this study for sulfate concentration 

ranged from 4100 to 8500. The high correlation distance was obtained due to 

limited bore holes available at large distances.  

 The natural logarithmic transformation function implemented in this study 

successfully transformed the non-Gaussian data to Gaussian.  

 In order to reduce the effect of the locally varying means, the standardization of 

variogram values seems appropriate.  
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Chapter 7  

Summary, Conclusions and Recommendations 

7.1 Summary and Conclusions 

The variability present in soil properties is a growing concern to geotechnical 

engineers. The variability studies are often confined to textbooks, where limited 

information is provided on how to incorporate the variability in analyzing the soil 

properties. In this research, an attempt was made to provide a framework for 

incorporating the spatial variability present in soil properties into prediction analysis. The 

framework developed was validated by analyzing three different soil properties in the 

different studies.  

In Chapter 4, spatial variability analysis was performed on the natural soils, 

where the friction angle parameter of soils was evaluated from the CPTU test data. The 

CPTU data was obtained as a part of an exploration program for a national highway 

project conducted in China. Data from five CPTU bore holes was considered for the 

analysis. The soil classification was performed on the CPTU data, and it was observed 

that the subsurface profile was predominantly silty sand soils.     

The friction angle parameter of silty sand soils was interpreted and utilized for 

evaluating the statistical characteristics and spatial variability analysis. The friction angle 

values followed the normal distribution, which was evaluated by employing the Shapiro-

Wilk test and normal-quantile plots. The spatial variability analysis was performed in 

accordance with the framework developed in Chapter 3. It was observed that the friction 

angle values followed an exponential model with non-linear behavior. With distance, the 

exponential model reached an asymptotic value, indicating that the friction angle values 

were widely dissimilar at a spatial correlation distance ranging from 2.6 m to 4.3 m. This 
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explains the variability of friction angle values in a vertical direction, indicating that the 

stratification of the soil layers is necessary after a distance of 4.3 m.  

The kriging analysis performed, using the spatial variability models, provided the 

unbiased estimates of the friction angle values. The predictions were validated using the 

cross-validation technique. It was shown that geostatistics can effectively work with fewer 

bore holes, optimizing the project costs. This concludes that the framework developed 

was successful in incorporating the spatial variability present in the natural soils in the 

prediction analysis.  

In Chapter 5, spatial variability analysis was performed on the stiffness 

measurements of the pipeline bedding material. The CLSM was used as a bedding 

material, which was prepared using a native high plasticity soil. The stiffness 

measurements were obtained after a curing period of 1, 3, 7, 14 and 28 days, 

respectively, using the SASW non-destructive method. In this study, geostatistics was 

used to study the variation of stiffness measurements with time.  

The statistical distributions of the stiffness measurements were more likely 

normally distributed. The spatial variability analysis conducted in accordance with 

Chapter 3 revealed that the spatial correlation distance increased from 8m to 24m, with 

an increase in the curing period. The kriging maps produced, using the spatial variability 

models, depict the uniform stiffness development on all days. Therefore, it can be 

concluded that the CLSM prepared using native high plasticity soil can be effectively 

used as bedding material for pipelines. 

In Chapter 6, spatial variability analysis was performed on the sulfate 

concentrations present in the soils. When sulfates present in the soils react with calcium-

based stabilizers, the soil behaves as an expansive soil, which causes distress to the civil 

infrastructure. In this study, sulfates concentrations present in soils, along the pipeline 
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alignment, were determined using the modified UTA method. Geostatistics was used in 

this study to perform the spatial variability modeling and to provide the distribution of 

sulfates at unsampled locations.  

The statistical distributions of the sulfate concentrations revealed an exponential 

trend present in the values, which explains a large scatter present in the sulfate 

concentration values. This created a limitation on using the geostatistical modeling. 

However, this problem was approached by transforming the data, using the Box-Cox 

transformations method. The spatial variability analysis conducted on the transformed 

data reflects the non-linear behavior in the spatial correlation distance, which ranged from 

4100 to 8500. The exponential function, along with nugget effect, were used to model the 

spatial variability present in the sulfate concentrations. This is because, the exponential 

function describes the non-linear behavior, and the nugget effect captures the large 

variation in short scale measurements. Through this, the sulfate contour maps were 

produced, using kriging analysis in all six geologic formations, which will be helpful in 

determining the stabilizer concentrations for ground improvement works. 

The above three geostatistical studies presented in Chapters 4, 5 and 6 

evaluated the variability present in the in-situ soil properties in field conditions using 

geostatistics. Kriging was comprehensively used, along with the variogram models, which 

effectively dealt with the properties having low and high variability. The framework 

developed successfully incorporated the spatial variability present into the in-situ soil 

properties in prediction analysis.  

7.2 Limitations of the Framework 

The framework developed in Chapter 3 was successful in analyzing the spatial 

variability present in soil properties. This can be used with any field in-situ properties to 
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model the variability and to perform predictions. However, there are few limitations that 

need to be considered before ascertaining the results: 

 The assumption of Gaussian distribution is highly inappropriate for performing 

geostatistical analysis using the developed framework.  

 The Box-Cox transformation cannot be used for transforming both non-gaussian 

and non-stationary data. 

 The minimum number of pairs needed for computing the variogram value is 30.  

 The stationarity of the data should be evaluated before performing the 

geostatistical analysis. The non-stationarity in the data could lead to biased 

predictions. 

 The quality and quantity of the data that is being considered for the analysis is 

extremely important. Using the raw field properties is more efficient than using 

the data from empirical correlations. 

7.3 Recommendations for Future Research 

With careful consideration of the limitations mentioned earlier, the framework 

developed can be extended to the analysis of different parameters in geotechnical 

engineering. The spatial variability models can be developed for different soil properties 

for performing prediction analysis. In this study, the predictions were performed based on 

spatial distance between the observations. However, this analysis framework can be 

extended to performing spatio-temporal analysis, i.e., the models can be developed with 

respect to distance and another variable time. The spatio-temporal modeling facilitates 

understanding of the behavior of properties with distance and time. Also, comprehensive 

reliability and risk assessment studies can be studied, based on the prediction results 

obtained from the spatial variability analysis. 
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Appendix A 

Spatial Variability Analysis of Natural Soil Properties Evaluated from                          

Cone Penetration Test Data (CPTU)
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CPTU test parameters in bore hole 1 
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CPTU test parameters in bore hole 2: 
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CPTU test parameters in bore hole 9: 
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CPTU test parameters in bore hole 10: 
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CPTU test parameters in bore hole 11: 
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CPTU test parameters in bore hole 12: 
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CPTU test parameters in bore hole 13: 
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CPTU test parameters in bore hole 14: 
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CPTU test parameters in bore hole 16: 
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CPTU test parameters in bore hole 17: 
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Determination of Friction Angle Values for All CPTU Profiles 

CPTU -1 

Layer 
 

Soil 
Depth (m) Thickness

(m) 
Friction  

Angle (Degrees) 
From To 

1 SM- MS 0 2.2 2.2 40.7 
2 MS-ML 2.2 5.2 3 34.4 
3 MS-ML 5.2 8.3 3.1 37.4 
4 SP-SM 8.3 10 1.7 39.1 
5 SM- MS 10 11.6 1.6 36.6 
6 SM- MS 11.6 14.3 2.7 37.5 
7 SP-SM 14.3 16 1.7 38.8 
8 SM- MS 16 19 3 37.3 

 
CPTU -2  

Layer Soil 
Depth (m) 

Thickness (m)
Friction  

Angle (Degrees From To 

1 SM-MS 0 1 1 36.7 
2 Clay 1 1.4 0.4 34.9 
3 SM-MS 1.4 4.6 3.2 38.6 
4 SP-SM 4.6 7.6 3 39.5 
5 MS-ML 7.6 9.6 2 35.2 
6 SP-SM 9.6 11.8 2.2 37.6 
7 SP-SM 11.8 13 1.2 39.3 
8 SP-SM 13 21 8 37.3 

 
 
CPTU -13 

Layer Soil 
Depth (m) 

Thickness (m)
Friction  

Angle (Degrees) From To 

1 SM-MS 0 5.3 5.3 38.7 

2 SP-SM 5.3 7.3 2 40.8 

3 SM-MS 7.3 9.4 2.1 37.4 

4 SM-MS 9.4 11.7 2.3 37.6 

5 SM-MS 11.7 15.7 4 35.8 

6 SP-SM 15.7 17.8 2.1 39.3 

7 SM-MS 17.8 19.5 1.7 37.6 

8 SM-MS 19.5 21 1.5 38.5 
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CPTU – 11 

Layer Soil 

Depth (m) 
Thickness 

(m) 
Friction Angle  

(Degrees) 
From To 

1 SM-MS 0 5.2 5.2 39.3 

2 SM-MS 5.2 7.4 2.2 38 

3 SP-SM 7.4 9.2 1.8 39.2 

4 Clay 9.2 9.7 1.3 29.1 

5 SM-MS 9.7 20 10.3 37.7 

 
 
 
CPTU – 17 

Layer Soil Depth (m) Thickness (m)
Friction  

Angle (Degrees) 

1 SM-MS From To 2.5 41.6 

2 ML 2.5 4.5 2 33.9 

3 SM-MS 4.5 5.5 1 37.0 

4 Clay 5.5 7.6 2.1 27.7 

5 SM-MS 7.6 10.5 2.9 36.7 

6 SP-SM 10.5 16.4 5.9 38.2 

7 Clay 16.4 17.9 1.5 31. 

8 SP-SM 17.9 19.2 1.3 38.1 
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Assigning the Coordinates to CPTU Layers for Predicting the Friction Angle 

Values along the Profile: 

 

CPTU 1 CPTU 2 CPTU 13 CPTU 11 CPTU 17 

5 0 39 25 0 37 55 0 39 90 0 39 100 0 41 

5 2.2 39 25 1 37 55 5.3 39 90 5.2 38 100 2.5 41 

5 5.2 34 25 1.4 35 55 7.3 41 90 7.4 39 100 4.5 34 

5 8.3 37 25 4.6 39 55 9.4 37 90 9.2 29 100 5.5 37 

5 10 30 25 7.6 39 55 11.7 37 90 9.7 37 100 7.6 28 

5 11.6 36 25 9.6 35 55 15.7 35    100 10.5 37 

5 14.3 37 25 11.8 37 55 17.8 39    100 16.4 38 

5 16 38 25 13 39 55 19.5 37    100 17.9 31 

5 19 37 25 21 37 55 21 38    100 19.2 37 
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Appendix B 

Spatial Variability Analysis of Man-Made Treated Soils 
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Coordinates for Spatial Variability Analysis 

Day 1 Stiffness Measurements: 

Section 
Test 
point 

X Y Z 
Secti

on 
Test 
point 

X Y Z 

1066 

A 25 20.62   

1071
-10 

A 260 20.62   
B 25 22.22 264.4 B 260 22.22 301.9 
C 25 25 238.1 C 260 25 251.8 
D 25 27.78 281.1 D 260 27.78 274.6 
E 25 29.38   E 260 29.38   

1067-
10 

A 60 20.62   

1071
-40 

A 290 20.62   
B 60 22.22 330.3 B 290 22.22 265.1 
C 60 25 254.4 C 290 25 247.8 
D 60 27.78 261.0 D 290 27.78 273.2 
E 60 29.38   E 290 29.38   

1067-
40 

A 90 20.62   

1072
-25 

A 325 20.62   
B 90 22.22 245.3 B 325 22.22 217.7 
C 90 25 308.7 C 325 25 248.6 
D 90 27.78 270.7 D 325 27.78 273.4 
E 90 29.38   E 325 29.38   

1068-
25 

A 125 20.62    

1073
-10 

A 360 20.62   
B 125 22.22 250.9 B 360 22.22 280.2 
C 125 25 252.9 C 360 25 254.3 
D 125 27.78   D 360 27.78 244.4 
E 125 29.38   E 360 29.38   

1069-
10 

A 160 20.62   

1073
-40 

A 390 20.62   
B 160 22.22 250.9 B 390 22.22 270.4 
C 160 25 259.5 C 390 25 255.0 
D 160 27.78 297.5 D 390 27.78 319.0 
E 160 29.38   E 390 29.38   

1069-
40 

A 190 20.62   

1074
-10 

A 410 20.62   
B 190 22.22 252.8 B 410 22.22 365.2 
C 190 25 256.6 C 410 25 247.9 
D 190 27.78 244.5 D 410 27.78 260.1 
E 190 29.38   E 410 29.38   

1070-
10 

A 210 20.62   

1075
-25 

A 475 20.62   
B 210 22.22 261.1 B 475 22.22 312.2 
C 210 25 258.9 C 475 25 251.5 
D 210 27.78 294.7 D 475 27.78 292.7 
E 210 29.38   E 475 29.38   

1070-
25 

A 225 20.62   
B 225 22.22 202.2
C 225 25 251.0
D 225 27.78 275.4
E 225 29.38   
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Day 3 Stiffness Measurements 

Section 
Test 
point 

X Y Z 

Section

Te
st 
poi
nt X Y Z 

1066 

A 25 20.62 276.5

1071-
10 

A 260 20.62 243.8 
B 25 22.22 275.1 B 260 22.22 273.3 
C 25 25 272.7 C 260 25 255.8 
D 25 27.78 289.1 D 260 27.78 304.6 
E 25 29.38 271.9 E 260 29.38 256.3 

1067-
10 

A 60 20.62 271.4

1071-
40 

A 290 20.62 243.8 
B 60 22.22 303.3 B 290 22.22 273.3 
C 60 25 266.8 C 290 25 255.8 
D 60 27.78 261.0 D 290 27.78 304.6 
E 60 29.38 256.7 E 290 29.38 256.3 

1067-
40 

A 90 20.62 285.8

1072-
25 

A 325 20.62 275.8 
B 90 22.22 274.3 B 325 22.22 260.0 
C 90 25 309 C 325 25 293.7 
D 90 27.78 346.0 D 325 27.78 276.6 
E 90 29.38 274.6 E 325 29.38 255.4 

1068-
25 

A 125 20.62 251.0

1073-
10 

A 360 20.62 217.4 
B 125 22.22 257.6 B 360 22.22 290.8 
C 125 25 282.3 C 360 25 285.9 
D 125 27.78 274.7 D 360 27.78 270.4 
E 125 29.38 252.6 E 360 29.38 298.0 

1069-
10 

A 160 20.62 261.8

1073-
40 

A 390 20.62 258.5 
B 160 22.22 253.8 B 390 22.22 277.5 
C 160 25 330.6 C 390 25 280.0 
D 160 27.78 297.5 D 390 27.78 300.7 
E 160 29.38 232.9 E 390 29.38 269.0 

1069-
40 

A 190 20.62 307.8

1074-
10 

A 410 20.62 310.9 
B 190 22.22 291.3 B 410 22.22 287.1 
C 190 25 293.4 C 410 25 279.3 
D 190 27.78 260.1 D 410 27.78 275.0 
E 190 29.38 273.3 E 410 29.38 264.4 

1070-
10 

A 210 20.62 293.9

1075-
25 

A 475 20.62 258.5 
B 210 22.22 261.1 B 475 22.22 277.5 
C 210 25 261.2 C 475 25 280.0 
D 210 27.78 294.7 D 475 27.78 300.7 
E 210 29.38 276.2 E 475 29.38 269.0 

1070-
25 

A 225 20.62 276.1
B 225 22.22 268.7
C 225 25 275.4
D 225 27.78 275.0
E 225 29.38 264.5
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Day 7 Stiffness measurements 

Section 
Test 
point X Y Z 

Section 
Test 
point X Y Z 

1066 

A 25 20.62 327.0

1071-
10 

A 260 20.62 294.3
B 25 22.22 320.3 B 260 22.22 318.5
C 25 25 324.2 C 260 25 307.4
D 25 27.78 329.8 D 260 27.78 345.3
E 25 29.38 319.8 E 260 29.38 304.2

1067-
10 

A 60 20.62 321.9

1071-
40 

A 290 20.62 294.3
B 60 22.22 359.8 B 290 22.22 318.5
C 60 25 318.3 C 290 25 307.4
D 60 27.78 281.2 D 290 27.78 345.3
E 60 29.38 304.6 E 290 29.38 304.2

1067-
40 

A 90 20.62 336.3

1072-
25 

A 325 20.62 326.3
B 90 22.22 319.5 B 325 22.22 305.2
C 90 25 329.4 C 325 25 335.2
D 90 27.78 386.7 D 325 27.78 317.3
E 90 29.38 322.5 E 325 29.38 303.2

1068-
25 

A 125 20.62 301.4

1073-
10 

A 360 20.62 267.9
B 125 22.22 302.8 B 360 22.22 316.0
C 125 25 333.9 C 360 25 307.5
D 125 27.78 295.4 D 360 27.78 291.1
E 125 29.38 300.5 E 360 29.38 345.9

1069-
10 

A 160 20.62 312.3

1073-
40 

A 390 20.62 309.0
B 160 22.22 299.0 B 390 22.22 312.7
C 160 25 382.1 C 390 25 331.6
D 160 27.78 345.8 D 390 27.78 341.4
E 160 29.38 280.8 E 390 29.38 316.9

1069-
40 

A 190 20.62 358.2

1074-
10 

A 410 20.62 361.3
B 190 22.22 336.5 B 410 22.22 332.3
C 190 25 344.9 C 410 25 310.8
D 190 27.78 300.8 D 410 27.78 315.7
E 190 29.38 321.1 E 410 29.38 312.2

1070-
10 

A 210 20.62 344.4

1075-
25 

A 475 20.62 309.0
B 210 22.22 301.6 B 475 22.22 312.7
C 210 25 312.8 C 475 25 331.6
D 210 27.78 317.5 D 475 27.78 341.4
E 210 29.38 324.1 E 475 29.38 316.9

1070-
25 

A 225 20.62 326.6
B 225 22.22 313.9
C 225 25 327.0
D 225 27.78 335.7
E 225 29.38 312.4
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Day 14 Stiffness Measurements 

Section 
Test 
point X Y Z 

Section 
Test 
point X Y Z 

1066 

A 25 20.62 398.4

1071-10

A 260 20.62 359.4 
B 25 22.22 388.0 B 260 22.22 366.9 
C 25 25 398.8 C 260 25 400.0 
D 25 27.78 386.5 D 260 27.78 396.8 
E 25 29.38 391.1 E 260 29.38 428.0 

1067-
10 

A 60 20.62 370.0

1071-40

A 290 20.62 359.4 
B 60 22.22 398.3 B 290 22.22 366.9 
C 60 25 373.7 C 290 25 380.0 
D 60 27.78 397.9 D 290 27.78 366.8 
E 60 29.38 341.4 E 290 29.38 378.0 

1067-
40 

A 90 20.62 395.3

1072-25

A 325 20.62 377.5 
B 90 22.22 408.3 B 325 22.22 394.8 
C 90 25 371.1 C 325 25 385.3 
D 90 27.78 410.1 D 325 27.78 379.6 
E 90 29.38 389.1 E 325 29.38 415.2 

1068-
25 

A 125 20.62 372.1

1073-10

A 360 20.62 368.5 
B 125 22.22 367.1 B 360 22.22 383.9 
C 125 25 382.9 C 360 25 357.3 
D 125 27.78 347.5 D 360 27.78 399.1 
E 125 29.38 390.5 E 360 29.38 386.9 

1069-
10 

A 160 20.62 387.7

1073-40

A 390 20.62 383.8 
B 160 22.22 389.3 B 390 22.22 381.4 
C 160 25 418.7 C 390 25 399.4 
D 160 27.78 393.7 D 390 27.78 381.4 
E 160 29.38 423.1 E 390 29.38 406.8 

1069-
40 

A 190 20.62 397.0

1074-10

A 410 20.62 396.2 
B 190 22.22 415.5 B 410 22.22 399.6 
C 190 25 400.8 C 410 25 362.5 
D 190 27.78 388.9 D 410 27.78 360.0 
E 190 29.38 392.8 E 410 29.38 404.4 

1070-
10 

A 210 20.62 390.5

1075-25

A 475 20.62 383.8 
B 210 22.22 393.6 B 475 22.22 371.4 
C 210 25 399.1 C 475 25 369.4 
D 210 27.78 397.1 D 475 27.78 401.4 
E 210 29.38 407.3 E 475 29.38 416.8 

1070-
25 

A 225 20.62 361.9
B 225 22.22 356.0
C 225 25 407.3
D 225 27.78 380.7
E 225 29.38 386.0
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Day 28 Stiffness Measurements 

Section 
Test 
point X Y Z 

Section 
Test 
point X Y Z 

1066 

A 25 20.62 432.3 

1071-
10 

A 260 20.62 424.6
B 25 22.22 465.9 B 260 22.22 414.2
C 25 25 458.7 C 260 25 453.2
D 25 27.78 447.5 D 260 27.78 440.8
E 25 29.38 432.4 E 260 29.38 420.9

1067-
10 

A 60 20.62 417.7 

1071-
40 

A 290 20.62 424.6
B 60 22.22 463.1 B 290 22.22 414.2
C 60 25 414.1 C 290 25 413.2
D 60 27.78 460.1 D 290 27.78 440.8
E 60 29.38 408.6 E 290 29.38 420.9

1067-
40 

A 90 20.62 473.7 

1072-
25 

A 325 20.62 461.9
B 90 22.22 455.9 B 325 22.22 457.7
C 90 25 436.8 C 325 25 419.8
D 90 27.78 450.7 D 325 27.78 432.7
E 90 29.38 470.1 E 325 29.38 461.5

1068-
25 

A 125 20.62 455.5 

1073-
10 

A 360 20.62 419.4
B 125 22.22 407.6 B 360 22.22 438.5
C 125 25 437.3 C 360 25 428.8
D 125 27.78 410.2 D 360 27.78 429.9
E 125 29.38 445.9 E 360 29.38 418.2

1069-
10 

A 160 20.62 442.2 

1073-
40 

A 390 20.62 456.4
B 160 22.22 421.0 B 390 22.22 458.7
C 160 25 440.6 C 390 25 442.5
D 160 27.78 417.5 D 390 27.78 470.5
E 160 29.38 440.1 E 390 29.38 465.2

1069-
40 

A 190 20.62 420.0 

1074-
10 

A 410 20.62 449.5
B 190 22.22 455.9 B 410 22.22 478.2
C 190 25 443.0 C 410 25 420.2
D 190 27.78 454.3 D 410 27.78 468.1
E 190 29.38 427.6 E 410 29.38 449.9

1070-
10 

A 210 20.62 434.7 

1075-
25 

A 475 20.62 456.4
B 210 22.22 444.8 B 475 22.22 458.7
C 210 25 452.4 C 475 25 442.5
D 210 27.78 439.2 D 475 27.78 470.5
E 210 29.38 434.2 E 475 29.38 465.2

1070-
25 

A 225 20.62 446.5 
B 225 22.22 471.5 
C 225 25 453.1 
D 225 27.78 460.1 
E 225 29.38 441.7 
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Appendix C 

Spatial Variability Analysis of Sulfate-Rich Natural Soils 
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Coordinates at 5 ft. depth 

Easting Northing Sulfate Concentration (ppm) Boring Formation 

-96.4172 32.21603 180 B-007 

Kemp 

-96.3431 32.21148 1880 B-025 

-96.4923 32.21794 1270 B-068 

-96.3535 32.21152 11600 B-069 

-96.346 32.21168 2120 B-070 

-96.4141 32.21516 260 B-094 

-96.41 32.21472 115 B-095 

-96.3998 32.21385 1065 B-096 

-96.3622 32.21141 1400 B-097 

-96.3994 32.21362 3215 B-180 

-96.468 32.21516 975 B-026 

Neylandville 
-96.4392 32.2167 535 B-027 

-96.4431 32.21675 90 B-174 

-96.4633 32.21772 460 B-194 

-96.1994 32.1866 260 B-005 

Wills 

-96.2537 32.12988 105 B-017 

-96.2283 32.0901 55 B-018 

-96.1895 32.19346 650 B-020 

-96.1785 32.18559 90 B-021 

-96.2477 32.20023 45 B-037 

-96.2385 32.19983 350 B-060 

-96.2425 32.10732 315 B-145 

-96.2469 32.11703 750 B-146 

-96.2475 32.1186 240 B-147 

-96.2531 32.12788 300 B-148 

-96.2586 32.13917 280 B-150 

-96.2623 32.14661 135 B-151 

-96.2686 32.16087 200 B-152 

-96.2726 32.1664 415 B-153 

-96.5192 32.21961 1200 B-008 
Wolfe -96.6332 32.23484 50 B-029 

-96.6237 32.23276 310 B-030 
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-96.6404 32.23674 20 B-031 

-96.645 32.23934 125 B-032 

-96.5927 32.22919 670 B-034 

-96.5853 32.22828 1065 B-035 

-96.5817 32.22782 25 B-036 

-96.5101 32.2186 20 B-065 

-96.5052 32.21919 65 B-066 

-96.5021 32.21925 80 B-067 

-96.5423 32.22429 390 B-089 
-96.6781 32.25739 1130 B-009 

Ozan 

-96.7063 32.26723 16,000 B-033 

-96.813 32.30978 280 B-057 

-96.8152 32.31101 290 B-082 

-96.7678 32.29217 17,400 B-118 

-96.7334 32.27537 16,760 B-120 

-96.7258 32.2735 950 B-122 

-96.844 32.33065 115 B-224 

-96.7729 32.29347 17,110 B-116 

-96.7338 32.27541 16,700 B-119 

-96.6996 32.26382 50 B-124 

-96.7468 32.28229 1100 B-227 

-96.8077 32.30712 570 B-100 

-96.7 32.26406 17,300 B-123 

-96.6912 32.25882 1,015 B-126 

-97.0791 32.50168 540 B-051 

Eagle Ford 

-97.0406 32.42314 185 B-059 

-97.0458 32.44405 130 B-061 

-97.0488 32.44807 8080 B-062 

-97.0214 32.40384 750 B-063 

-97.05 32.44884 18,450 B-090 

-97.0595 32.45993 19,620 B-093 

-97.1362 32.51262 15,260 B-164 

-97.0768 32.51596 9360 B-168 

-97.1525 32.53552 4200 B-84 

-97.074 32.51824 7000 B-198 

-97.0768 32.51327 5530 B-201 

-97.0768 32.50699 14,050 B-202 
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-97.0685 32.53477 75 B-196 

-97.075 32.51746 2200 B-199 

-97.0754 32.51716 3340 B-200 

-97.035 32.41299 16,000 B-209 

-97.1482 32.529 1320 B-318 

-97.0972 32.5055 1005 B-326 

 
 

Coordinates at 10 ft. depth 

Easting Northing Sulfate Concentration (ppm) Boring Formation 

-96.4172 32.21603 280 B-007 

Kemp 

-96.3431 32.21148 17000 B-025 

-96.4923 32.21794 255 B-068 

-96.3535 32.21152 16100 B-069 

-96.346 32.21168 8420 B-070 

-96.4141 32.21516 255 B-094 

-96.41 32.21472 300 B-095 

-96.3998 32.21385 690 B-096 

-96.3622 32.21141 840 B-097 

-96.3994 32.21362 1070 B-180 

-96.468 32.21516 1500 B-026 

Neylandville 
-96.4392 32.2167 690 B-027 

-96.4431 32.21675 135 B-174 

-96.4633 32.21772 180 B-194 

-96.1994 32.1866 150 B-005 

Wills 

-96.2537 32.12988 55 B-017 

-96.2283 32.0901 390 B-018 

-96.1895 32.19346 670 B-020 

-96.1785 32.18559 325 B-021 

-96.2477 32.20023 20 B-037 

-96.2385 32.19983 300 B-060 

-96.2425 32.10732 380 B-145 

-96.2469 32.11703 230 B-146 

-96.2475 32.1186 100 B-147 
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-96.2531 32.12788 150 B-148 

-96.2586 32.13917 40 B-150 

-96.2623 32.14661 200 B-151 

-96.2686 32.16087 10 B-152 

-96.2726 32.1664 90 B-153 

-96.5192 32.21961 750 B-008 

Wolfe 

-96.6332 32.23484 785 B-029 

-96.6237 32.23276 800 B-030 

-96.6404 32.23674 1050 B-031 

-96.645 32.23934 200 B-032 

-96.5927 32.22919 100 B-034 

-96.5853 32.22828 10600 B-035 

-96.5817 32.22782 115 B-036 

-96.5101 32.2186 120 B-065 

-96.5052 32.21919 45 B-066 

-96.5021 32.21925 115 B-067 

-96.5423 32.22429 310 B-089 
-96.6781 32.25739 2820 B-009 

Ozan 

-96.7063 32.26723 1055 B-033 

-96.813 32.30978 275 B-057 

-96.8152 32.31101 200 B-082 

-96.7678 32.29217 1235 B-118 

-96.7334 32.27537 1435 B-120 

-96.7258 32.2735 755 B-122 

-96.844 32.33065 110 B-224 

-96.7729 32.29347 2345 B-116 

-96.7338 32.27541 15,620 B-119 

-96.6996 32.26382 1270 B-124 

-96.7468 32.28229 1050 B-227 

-96.8077 32.30712 415 B-100 

-96.7 32.26406 1750 B-123 

-96.6912 32.25882 25 B-126 

-97.0795 32.50392 500 B-013 

Eagle Ford 

-97.1349 32.53871 1320 B-015 

-97.0791 32.50168 525 B-051 

-97.0406 32.42314 185 B-059 

-97.0458 32.44405 200 B-061 
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-97.0488 32.44807 2250 B-062 

-97.0214 32.40384 18,300 B-063 

-97.05 32.44884 1620 B-090 

-97.0595 32.45993 3620 B-093 

-97.1362 32.51262 560 B-164 

-97.0768 32.51596 890 B-168 

-97.1525 32.53552 1050 B-84 

-97.074 32.51824 15,100 B-198 

-97.0768 32.51327 15,200 B-201 

-97.0768 32.50699 6300 B-202 

-97.0685 32.53477 370 B-196 

-97.075 32.51746 180 B-199 

-97.0754 32.51716 105 B-200 

-97.035 32.41299 11,725 B-209 

-97.1482 32.529 280 B-318 

-97.0972 32.5055 1090 B-326 

 
 

Coordinates at 15 ft. depth 

Easting Northing Sulfate Concentration (ppm) Boring Formation 

-96.4172 32.21603 325 B-007 

Kemp 

-96.3431 32.21148 1100 B-025 

-96.4923 32.21794 215 B-068 

-96.3535 32.21152 1360 B-069 

-96.346 32.21168 10000 B-070 

-96.4141 32.21516 90 B-094 

-96.41 32.21472 220 B-095 

-96.3998 32.21385 700 B-096 

-96.3622 32.21141 850 B-097 

-96.3994 32.21362 970 B-180 

-96.468 32.21516 605 B-026 

Neylandville -96.4392 32.2167 790 B-027 

-96.4431 32.21675 110 B-174 
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-96.4633 32.21772 210 B-194 

-96.1994 32.1866 200 B-005 

Wills 

-96.2537 32.12988 30 B-017 

-96.2283 32.0901 185 B-018 

-96.1895 32.19346 575 B-020 

-96.1785 32.18559 365 B-021 

-96.2477 32.20023 30 B-037 

-96.2385 32.19983 650 B-060 

-96.2425 32.10732 220 B-145 

-96.2469 32.11703 20 B-146 

-96.2475 32.1186 270 B-147 

-96.2531 32.12788 25 B-148 

-96.2586 32.13917 60 B-150 

-96.2623 32.14661 70 B-151 

-96.2686 32.16087 115 B-152 

-96.2726 32.1664 70 B-153 

-96.1351 32.18983 35 P-002 

-96.5192 32.21961 90 B-008 

Wolfe 

-96.6332 32.23484 700 B-029 

-96.6237 32.23276 700 B-030 

-96.6404 32.23674 1000 B-031 

-96.5927 32.22919 480 B-034 

-96.5853 32.22828 1255 B-035 

-96.5817 32.22782 135 B-036 

-96.5101 32.2186 45 B-065 

-96.5052 32.21919 85 B-066 

-96.5021 32.21925 105 B-067 

-96.5423 32.22429 470 B-089 

-96.6781 32.25739 1500 B-009 

Ozan 

-96.7063 32.26723 1100 B-033 

-96.813 32.30978 275 B-057 

-96.8152 32.31101 205 B-082 

-96.7678 32.29217 1255 B-118 

-96.7334 32.27537 1315 B-120 

-96.7258 32.2735 690 B-122 

-96.844 32.33065 100 B-224 
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-96.7729 32.29347 1510 B-116 

-96.7338 32.27541 15,940 B-119 

-96.6996 32.26382 1370 B-124 

-96.7468 32.28229 975 B-227 

-96.8077 32.30712 620 B-100 

-96.7 32.26406 11,310 B-123 

-96.6912 32.25882 20 B-126 

-97.1349 32.53871 1270 B-015 

Eagle Ford 

-97.0406 32.42314 300 B-059 

-97.0458 32.44405 140 B-061 

-97.0488 32.44807 1915 B-062 

-97.0214 32.40384 715 B-063 

-97.05 32.44884 1160 B-090 

-97.0595 32.45993 16,160 B-093 

-97.1362 32.51262 640 B-164 

-97.0768 32.51596 15,670 B-168 

-97.1525 32.53552 3800 B-84 

-97.074 32.51824 17,500 B-198 

-97.0768 32.51327 1560 B-201 

-97.0768 32.50699 530 B-202 

-97.0685 32.53477 60 B-196 

-97.075 32.51746 1030 B-199 

-97.0754 32.51716 275 B-200 

-97.035 32.41299 17,100 B-209 

-97.1482 32.529 290 B-318 

-97.0972 32.5055 1095 B-326 
 

Coordinates at 20 ft. depth 

Easting Northing Sulfate Concentration (ppm) Boring Formation 

-96.4172 32.21603 100 B-007 

Kemp 

-96.3431 32.21148 2400 B-025 

-96.4923 32.21794 470 B-068 

-96.3535 32.21152 2430 B-069 

-96.346 32.21168 18080 B-070 
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-96.4141 32.21516 250 B-094 

-96.41 32.21472 200 B-095 

-96.3998 32.21385 620 B-096 

-96.3622 32.21141 1170 B-097 

-96.3994 32.21362 15120 B-180 

-96.468 32.21516 710 B-026 

Neylandville 
-96.4392 32.2167 450 B-027 

-96.4431 32.21675 315 B-174 

-96.4633 32.21772 840 B-194 

-96.1994 32.1866 510 B-005 

Wills 

-96.2537 32.12988 20 B-017 

-96.2283 32.0901 200 B-018 

-96.1895 32.19346 675 B-020 

-96.1785 32.18559 510 B-021 

-96.2477 32.20023 20 B-037 

-96.2385 32.19983 400 B-060 

-96.2425 32.10732 350 B-145 

-96.2469 32.11703 5 B-146 

-96.2475 32.1186 200 B-147 

-96.2531 32.12788 15 B-148 

-96.2586 32.13917 40 B-150 

-96.2623 32.14661 250 B-151 

-96.2686 32.16087 230 B-152 

-96.2726 32.1664 20 B-153 

-96.5192 32.21961 60 B-008 

Wolfe 

-96.6332 32.23484 620 B-029 

-96.6237 32.23276 625 B-030 

-96.6404 32.23674 775 B-031 

-96.645 32.23934 335 B-032 

-96.5853 32.22828 1460 B-035 

-96.5817 32.22782 330 B-036 

-96.5101 32.2186 130 B-065 

-96.5052 32.21919 75 B-066 

-96.5021 32.21925 350 B-067 

-96.5423 32.22429 14100 B-089 

-96.6781 32.25739 1130 B-009 
Ozan 

-96.7063 32.26723 16,000 B-033 
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-96.813 32.30978 280 B-057 

-96.8152 32.31101 290 B-082 

-96.7678 32.29217 17,400 B-118 

-96.7334 32.27537 16,760 B-120 

-96.7258 32.2735 950 B-122 

-96.844 32.33065 115 B-224 

-96.7729 32.29347 17,110 B-116 

-96.7338 32.27541 16,700 B-119 

-96.6996 32.26382 50 B-124 

-96.7468 32.28229 1100 B-227 

-96.8077 32.30712 570 B-100 

-96.7 32.26406 17,300 B-123 

-96.6912 32.25882 1,015 B-126 

-97.0791 32.50168 540 B-051 

Eagle Ford 

-97.0406 32.42314 185 B-059 

-97.0458 32.44405 130 B-061 

-97.0488 32.44807 8080 B-062 

-97.0214 32.40384 750 B-063 

-97.05 32.44884 18,450 B-090 

-97.0595 32.45993 19,620 B-093 

-97.1362 32.51262 15,260 B-164 

-97.0768 32.51596 9360 B-168 

-97.1525 32.53552 4200 B-84 

-97.074 32.51824 7000 B-198 

-97.0768 32.51327 5530 B-201 

-97.0768 32.50699 14,050 B-202 

-97.0685 32.53477 75 B-196 

-97.075 32.51746 2200 B-199 

-97.0754 32.51716 3340 B-200 

-97.035 32.41299 16,000 B-209 

-97.1482 32.529 1320 B-318 

-97.0972 32.5055 1005 B-326 
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