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Abstract 

NUMERICAL LES FOR MVG CONTROLLED SUPERSONIC RAMP FLOW   

 

Xiao Wang, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor:  Chaoqun Liu 

 An implicitly implemented large eddy simulation by using the fifth order 

bandwidth-optimized WENO scheme is applied to make comprehensive studies on ramp 

flows with micro-ramp vortex generators (MVG) at Mach 2.5 and Re=5760. Detailed 

mechanism and topology of flow structure after MVG was studied to make better 

understanding.  

A series of new findings are obtained about the MVG-ramp flow including the 

three-dimensional vortex structure generated by MVG. The mechanism about the 

formation of vortex ring structure and momentum deficit after MVG is deeply studied. 

Small scale vortical structures in the rear separation and wake near the trailing edge of 

MVG was also analyzed. New conceptual model of the flow topology was suggested.  

The two dimensional stability analysis on compressible flat plate with zero attack 

angle was carried out to set up for further stability analysis. Results from compressible 

blasius solution was analyzed for stability using global method with second order finite-

difference discretization.   
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Chapter 1  

INTRODUCTION 

Micro vortex generators (VG) are a kind of low-profile passive control device designed 

for the boundary layer control. In contrast to the conventional VG (widely used in aviation 

applications and with height (h) of the order of the boundary-layer (δ)), micro VG has a height 

approximately 20-40%  of the boundary layer[1-3]. As we know, in the supersonic ramp flows, 

shock boundary layer interaction (SBLI) can significantly reduce the quality of the flow field by 

triggering large-scale separation, causing total pressure loss, and making the flow unsteady and 

distorting. The consequences of the interaction often degrade the performance of the engine 

and even make an engine unable to start. Micro VG is a new device which is designed to 

alleviate or overcome such difficulties and, therefore, to improve the “health” of the boundary 

layer. There are more than one kind of micro VG, like the micro vane and micro ramp VG 

(MVG). Because MVG has a more robust structure, it becomes more attractive to the inlet 

designer. Intensive computational and experimental studies have been made on it recently. 

A series of experimental and computational investigations have been carried out. The 

most prominent experimental studies reported are those by Babinsky[4-7]. He made a series of 

experiments on different kinds of micro VGs and investigated their control effects in detail. The 

mechanism of MVG flow control from his work concludes that a pair of counter-rotating primary 

streamwise vortices is generated by MVG, which are mainly located within the boundary layer 

and travel downstream for a considerable distance. Secondary vortices are located underneath 

the primary ones and even more streamwise vortices could be generated under suitable 

conditions. Streamwise vortices inside the boundary later bring low momentum fluid up from the 

bottom and high momentum fluid down to the boundary layer. A striking cylindrical momentum 

deficit region is observed in the wake behind the MVG. The vortices keep lifting up slowly, which 

is thought to be the consequence of the upwash effect of the vortices. 
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As we know, the purpose of the MVG is to control the shock induced separation and to 

improve the quality of the boundary layer velocity profile after the SBLI. Numerical simulations 

have been made on MVG for comparative study and further design purposes. Ghosh, Choi and 

Edwards [8] made detailed computations under the experimental conditions given by Babinsky. 

These numerical studies include RANS computations and hybrid RANS/LES computations 

using immersed boundary (IB) techniques. The fundamental structures, like the streamwise 

vortices and momentum deficit, were reproduced by the computation. Lee et al [9] also made 

computations on the micro VGs problems by using Monotone Integrated Large Eddy 

Simulations (MILES). In their computation, the MVG is placed in a domain with the configuration 

following the real wind tunnel. The fundamental wave system of the MVG were reproduced in 

the computation, which consists of the main shock, expansion waves and re-compression shock 

like that reported by Babinsky [6]. They [10] further tested several variations of the standard 

MVG and micro vane to enhance the control effect. Also some well recognized study on the 

characteristics of MVG can be found from the work by Dolling [11-13], Settles [14], Dussauge 

[15], Andreopoulos [16], Loginov [17] and their collaborators. For numerical simulations, there 

are three basic categories, i.e., the RANS, LES and DNS. It is well-known that RANS models do 

not perform well for SWTBLI (Wilcox [18], 1993). According to Zheltovodov’s opinion [19], the 

existing RANS models cannot solve the strong SBLI problem accurately, including the 

supersonic ramp flow. About the numerical works of LES, Rizzetta and Visbal [20] made 

simulations on a compression corner by implicit LES using a high-order method; Kaenal, 

Kleiser, Adams, and Loginov et al conducted LES [21] on ramp flow using an approximate de-

convolution model developed by Stolz. The comparisons were made and some agreement was 

obtained between the computational and the available experimental results. The first DNS on 

supersonic ramp flow was made by Adams for a 10 compression ramp at Mach 3 and 

Re=1685. In the work done by Adams [22] and his colleagues, the 5
th
 order hybrid compact-

ENO scheme was applied.  Later Martin and the collaborators made a series of remarkable 
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investigations by using DNS [23-28]. Comparisons were made between the computation and 

the experiments from the low Reynolds number wind tunnel at Princeton University [29]. They 

used the fifth order bandwidth-optimized WENO scheme which is the same scheme that the 

current work uses. The effect of low Reynolds number on the separation was studied. More 

work on MVG and other flow control tools have been done recently [30-35]
. 
According to the 

experimental and numerical research, some flow mechanisms are recognized as: a) the 

amplification of the turbulence after the SBLI is thought to be caused by the nonlinear 

interaction between the shock wave and the coupling of turbulence, vorticity and entropy waves 

[36]; b) the unsteady motion of the shock is considered to be generated by the very long low-

momentum coherent structures in logarithmic layer and such structures might be formed by the 

hairpin vortex packet. 

In order to carry out flow control more effectively using MVG, the mechanism of the flow 

should be carefully studied first. There are at least three problems which should be clarified: a) 

what is the three-dimensional structures of the wave system caused by MVG. b) what is the 

relation between the momentum deficit and the flow structure and where does the low speed 

fluid come from? c) Is there any new mechanism besides the pronounced momentum 

transportation and mixing by streamwise vortices? 

In this study, we investigate the control effect of MVG on the supersonic ramp flow with 

a fully developed turbulent inflow by numerical simulations, and further explore the mechanisms 

related to those questions mentioned above. Numerical simulations are made on supersonic 

ramp flow with MVG at Mach 2.5 and Re=5760. The trailing edge declining angle of the MVG is 

70 in computation. A large eddy simulation method is used by solving the unfiltered form of the 

Navier-Stokes equations (NSEs) with the 5
th
 order bandwidth-optimized WENO scheme, which 

is generally referred to as implicitly implemented LES(ILES) [37,38]. Without explicitly using the 

subgrid scale (SGS) model as the explicit LES, the implicitly implemented LES uses the intrinsic 

dissipation of the numerical method to dissipate the turbulent energy accumulated at the 
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unresolved scales with high wave numbers. There are two main subfields about this category, 

i.e., the MILES [39,40] by Boris, Fureby and Grinstein, et al, and the implicit LES [41, 42] by 

Visbal, Rizzetta and Gaitonde, et al. The first subfield is based on modified equation analysis, 

and typically uses the high order monotone scheme like flux-corrected transport (FCT) scheme 

or piecewise parabolic method (PPM). The ENO algorithm was also reported being used as the 

limiter in Ref. [41]. This kind of method can be used to solve the supersonic problems with 

shock waves, but the order of the scheme should not be competitive to the modern high order 

schemes like the compact schemes or WENO schemes with 5
th
 order of accuracy or higher. 

The second one [42] specifically uses the high order compact scheme by Lele and the high 

order Pade-type low-pass spatial filter. However, the published applications of the method are 

only for the low speed flow. When the same numerical algorithms were used on supersonic 

problems [43-44], the Smagorinsky dynamic SGS model was incorporated in the simulation, 

which implies the existence of issues related to the numerical stability. A series of shock-

capturing schemes were also tried for large eddy simulation [45-46], including the WENO 

scheme. As mentioned in Ref.[46], at low Mach number the investigated compact differencing 

and filter scheme formulation may give better results but as the Mach number increases the 

relative suitability of the ENO method increases. However, the ENO scheme still produces 

numerical turbulence thus stabilizing filters is needed, while the WENO scheme does not need 

filtering. Recently, an evaluating computation was reported on circular cylinder flow using 

implicitly implemented LES by the 5
th
 WENO scheme [47]. Comparisons were made between 

the computation and the experiment. The results show that the numerical algorithm is feasible 

and efficient. For the studied supersonic MVG controlled ramp flow problem, there are complex 

shock wave system, strong shock-vortex interaction and small scale structures. Considering the 

above status of implicitly implemented LES, the method by solving the NSEs with the 5
th
 order 

bandwidth-optimized WENO scheme is used in the paper and considered as certain implicitly 

implemented LES[48-51]. 
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Since the main formation of momentum deficit and vortical structures is the shear layer 

instability[57-58], it is necessary to study the wake instability of MVG. Global method and 

second order finite difference meshing[59-61] was used to the analysis of the stability of 

compressible viscous flow over a flat plate. The result could lead to further spatial stability 

analysis of  nonlinear three dimensional compressible flow behind MVG. 

The structure of the dissertation is as follows. In Chapter 2, the Navier-Stokes 

equations are introduced. In Chapter 3, the numerical scheme, the grid information and the 

boundary conditions are discussed.  In Chapter 4, the study of ring vortex structures after MVG 

are presented; In Chapter 5, the mechanism of momentum deficit is analyzed in detail. In 

Chapter 6, small length scale structures around trailing edge of MVG is studied. Finally, in 

Chapter 7, two dimensional stability of compressible flow over a flat plate was studied. 
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Chapter 2   

NAVIER-STOKES EQUATIONS 

2.1 Conservation Laws and the Equations 

The motion of a fluid can be described by the conservation of mass, momentum, and of 

energy for an arbitrary small control volume. 

Consider a closed surface S whose position is fixed with relation to the coordinate axes 

and encloses a volume V completely filled with fluid. Given the density of the fluid , the 

momentum   , the total energy E at a position x and at time t, the Navier-Stokes equations can 

be derived as follows from the conservation laws of mass, momentum and energy: 

  0



u



t  
                                                                                                           (2.1) 

 
   







uu

u

t
                                                                                       (2.2) 

 
      0 




uu 


TkE

t

E
                                                               (2.3) 

With  

2

uu 
 eE                                                                                                                (2.4) 

and 

    T
p uuIu 








 

3

2
                                                                          (2.5) 

Here, is the internal shear stress, e is the internal energy per unit mass of the fluid, p 

denotes the pressure, T represents the temperature, k is the thermal conductivity and  is the 

dynamic viscosity. Stokes(1845) assumption (linear relation between the stress and the rate of 

strain of the fluid ) is used in obtaining the equation (2.5).  

In three dimensions, the system above contains five equations (the conservation of 

momentum equation becomes three separate equations). Two extra equations are needed to 
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solve the system for the unknown variables             .  These equations are the equation of 

state, for a thermally perfect gas,  

RTp                                                                                                                        (2.6) 

where R is a gas constant, and the equation for internal energy equation, 

Tce v                                                                                                                        
 (2.7) 

2.2 Non-Dimensional Form 

Equations (2.1)-(2.6) can be reduced to a non-dimensional form. This can be achieved 

by dividing each variable by an appropriate dimensional reference parameter. Those reference 

parameters are defined as follows, where ∞ indicates incoming or free stream values: 

L is the characteristic length; 

V∞ is the speed; 

∞ is the density; 

p∞ is the pressure; 

T∞ is the temperature; 

∞ is the dynamic viscosity; 

k∞ is the thermal conductivity. 

With these reference parameters, the non-dimensional variables are given by 




VL

t
t

*
, 

L

*x
x  , 




V

*u
u , 

2

*




V

p
p


,

2

*




V

σ
σ          (2.8) 

where * represents the dimensional variables. 

 We can rewrite the equations of section 2.1 in non-dimensional form, obtaining: 

 
  0




u



t                                                                                                             
 (2.9) 

 
    







uu

u

t
                                                                                    (2.10) 

 
       2 1 0

E
E T M

t RePr

 
   


        


u u

                              

 (2.11) 
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       T
TTp uuIu 








 

ReRe

11

3

2
                                                          (2.12) 

T
M

p 
 2

1



                                                                                                            (2.13) 

The Reynolds number is defined as 






 LV
Re

                                                                                                             

 (2.14) 

while the Prandtl number evaluated at the reference conditions is given by 

0.72
pc

k





 Pr                                                                                                        (2.15) 

and the Mach number is defined as  




 

RT

V
M


                                                                            (2.16) 

The dynamic viscosities coefficient is given by Sutherland’s equation:  

CT

C
T






1
2

3

 , 




T

C
4.110                                                                                          (2.17) 

2.3 Expansion in Curvilinear Coordinates 

In vector form, we may rewrite the equations as  

z

G

y

F

x

E

z

G

y

F

x

E

t

Q vvv


































                                                     (2.18) 

where 

u

Q v

w

e









 
 
 
 
 
 
  

 

2

( )

u

u p

E uv

uw

e p u









 
 

 
 
 
 
  

 2

( )

v

vu

F v p

vw

e p v









 
 
 
  
 
 
  

 

2

( )

w

wu

G wv

w p

e p w









 
 
 
 
 

 
                                                  

 (2.19) 
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0

1

Re

xx

xyv

xz

xx xy xz x
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Let us assume that the position frame of reference is fixed in time, that is, the 

generalized coordinates do not change with time. Then, we can define the curvilinear 

coordinates in relation to the Cartesian coordinates as 
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The Navier-Stokes equations can be transformed into generalized coordinates system: 
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                                                                  (2.27) 

where QJQ 1ˆ   and 

1ˆ ( )x y zE J E F G                              (2.28) 

)(ˆ 1 GFEJF zyx   
                                            (2.29) 

)(ˆ 1 GFEJG zyx   
                                                                                       

(2.30) 

)(ˆ 1

vzvyvxv GFEJE   
                                                                                    (2.31) 
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vzvyvxv GFEJF   
                                                                                 (2.32) 
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Chapter 3  

NUMERICAL METHODS FOR SUPERSONIC RAMP FLOW 

3.1 Numerical Scheme 

3.1.1. The 5th Order Bandwidth-optimized WENO Scheme for the Convective Terms 

The fifth-order WENO scheme was chosen to discrete the convective terms. For clarity, 

its implementation is explained with the one-dimensional hyperbolic equation, 

( )
0

u f u

t x

 

 
                                                                                           (3.1) 

The semi-discretized equation by the conservative scheme can be written as, 

x

hh

t

u jj

j






2

1
2

1

)(



                                                                                     (3.2) 

where 







2

1
2

1 jj
fhh  and for second order scheme, 

2
1

2
1 


jj
fh . 

The basic ideas of the weighted schemes like WENO are as follows, 

Apply basic grid stencils and difference schemes on them; Combine these schemes on 

different stencils and get linear weights to obtain higher order; Obtain nonlinear weights to make 

the scheme adaptive to discontinuity like shock waves. Fig. 3.1 shows the basic grid stencils for 

standard 5
th
 order WENO scheme [48] 

 

Figure 3.1 Grid Stencils for 5
th
 Order WENO 

Considering the positive flux, the three upwind-biased schemes on three candidates 

can be given as, 

j j+1j-1j-2j-3 j+2

S0

S1

S2
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The mark ‘+’ refers to the positive flux after flux splitting. 3
rd

 order is obtained for each 

individual scheme. Schemes on basic stencils are symmetric to the one with respect to xj+1/2. 

Weighting and the linear weights to obtain higher order: 

3322112
1,








 


 hhhh jLinear         (3.4) 

The optimal order for the weighted scheme is    , where   is the number of the stencil. The 

order of the scheme is 5
th
 order. When the optimal order is realized, the i  must be determined 

as: 

),,( 321  =(0.1,0.6,0.3)       (3.5) 

The nonlinear weighted schemes can be expressed as: 

3322112
1








 


 hwhwhwh j       (3.6) 

where iw   is changing from place to place, and  

)( 321 bbbbw ii          (3.7) 

2)( iii ISb           (3.8) 

and   is a small quantity to prevent the denominator from being zero, which should be small 

enough in supersonic problems with shocks (10
-6

~10
-10

).      is the smoothness measurement. 

In order to make the nolinear scheme still pertain the same optimal order, i.e., 5
th
 order, 

     should have the property: 

))(1( 2hOCISk                                                                                                  (3.9) 

where C is the same number for three      . 

      for 5
th
 order WENO scheme has the following form: 
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The scheme for 


2

1j
h  has a symmetric form of 


2

1j
h  to the point xj+1/2 

Comparing to the standard 5
th
 order WENO scheme discussed above, the 5

th
 order 

Bandwidth-optimized WENO scheme uses one more point on the right, thus it has one more 

grid stencil [24], 

 

Figure 3.2 Grid Stencils for 5
th
 Order Bandwidth-optimized WENO 

Considering the positive flux, the four upwind-biased schemes on three candidates can 

be given as: 
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In the same way, we have, 

332211002
1,











 


 hhhhh jLinear                                                       (3.12) 

when the optimal order is realized, the i  must be determined as: 

S0

S1

S2

S3
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),,,( 3210  = (0.05, 0.45, 0.45, 0.01)                                                                              (3.13) 

The final nonlinear weighted schemes can be expressed as: 

332211002
1











 


 hhhhh j                                                                    (3.14) 

where  

)( 3210 bbbbbii 
                                                                                    (3.15) 

2)( iii ISb  
                                                                              (3.16) 
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In order to make the scheme stable, further modification is made as: k
k

ISIS
30

3 max


 . 

Further improvement for k   by Martin et al is: 

max( ) / min( ) 5 max( ) 0.2k k k k

i

i

if TV TV and TV

otherwise






 
 


    (3.18) 

where     stands for the total variation on each candidate stencil. 

A large eddy simulation (LES) method is used by solving the unfiltered form of the 

Navier-Stokes equations with the 5th order bandwidth-optimized WENO scheme, which is 

generally referred to as implicitly implemented LES (ILES). Without explicitly using the subgrid 

scale (SGS) model as the explicit LES, the implicitly implemented LES uses the intrinsic 

dissipation of the numerical method to dissipate the turbulent energy accumulated at the 

unresolved scales with high wave numbers. 



15 

3.1.2 The Difference Scheme for the Viscous Terms 

Considering the conservative form of the governing equations, a standard 4
th

 order 

central difference scheme (Equation (3.19)) is used to discrete the 2
nd

 order viscous. 

x

uuuu

x

u iiii

i 














 

12

88 2112
                                                               (3.19) 

3.1.3 The Temporal Scheme 

The explicit third-order TVD-type Runge-Kutta [49] scheme was applied for temporal 

discretization. The scheme was implemented using eq.(3.20) 

   
      

    

1

2 1 1

2 21

3 1 1

4 4 4

1 2 2

3 3 3

n n

n

n n

u u tL u

u u u tL u

u u u tL u

  

   

   

                                               (3.20) 

3.2 Grid Generation 

In order to preserve the accuracy of the geometry to reduce numerical errors as much 

as possible while using 5
th
 order bandwidth-optimized WENO scheme, the strategy of body-

fitted grids is adopted. Results in later parts of the paper testify that such grid frame is very 

helpful to obtain the high resolution of the flow structure. 

In this study, flows around MVGs are studied with back edge declining angle 70
o
. The 

geometry of MVG is shown in Fig. (3.3). The other geometric parameters in the figure are the 

same as those given by Babinsky
6
, i.e., c=7.2h, =24 and s=7.5h, where h is the height of 

MVG and s is the distance between the center lines of two adjacent MVGs. So the distance 

from the center line to the spanwsie boundary of the computation domain is 3.75h. 

According to experiments by Babinsky [7], the ratio h/0 of the models has the range 

from 0.3~1. The appropriate distance from the trailing-edge to the control area is around 

19~56h or 8~190. In this study, the height of MVG h is assumed to be 0/2 and the horizontal 

distance from the apex of MVG to the ramp corner is set to be 19.5h or 9.750. The distance 
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from the end of the ramp to the apex is 32.2896h. The distance from the starting point of the 

domain to the apex of MVG is 17.7775h. The height of the domain is from 10h to 15h while the 

width of the half domain is 3.75h. The geometric relation of the half of the domain can be seen 

in Fig. 3.4, where the symmetrical plane is the centre plane. 

 

 

Figure 3.3 The Geometry of MVG 

 

 

 

Figure 3.4 The Schematic of the Half Grid System  

Because the singularity of the geometry, it is difficult to use one technique to generate 

the whole grid system. A general grid partition technique is used in this grid generation. As 

shown in Fig. 3.4, three regions are divided as: the ramp region, MVG region and fore-region. 

Between each two regions, there is a grid transition buffer. Because of the symmetry of the grid 

h
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
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distribution, only half of the grids need to be generated. The grid number for the whole system 

is: nspanwisennormal nstreamwise=1281921600. 

The grid generation includes two steps: first using analytical methods [22, 23]
 
to 

generate the algebraic grids; next using elliptic grid generation equation to improve the 

orthogonal and smooth property of the grid. 

The schematic figure can be shown in Fig. 3.5. The procedures for grid generation are: 

first generating the boundary grids of the lower and upper boundaries; next generating the inner 

grids by interpolation. Figure 3.6 shows the generated mesh with a grid interval of 8 in 

streamwise and of 6 in normal directions. 

 

Figure 3.5 The Geometry Sketch of the Ramp 

 

 

Figure 3.6 The Grid System of Case 1 

Because of the specification of the boundary conditions on the body surface, an 

orthogonal grid is very important to ensure the high accuracy of the computation. This is 

particularly important to the case with complex geometry, where the zero normal gradient 
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condition is usually realized by using the derivative along the normal grid line. To make grids 

orthogonal and smooth, a grid solver was developed by the group of the second author based 

on Laplace equations and algebraic transformations (see Ref. 50).   

 

Figure 3.7 The Local View of Grids around the Trailing-edge 

 

Figure 3.8 The Surface Grids of MVG  

In order to generate the complete grids of MVG, it is essential to generate the surface 

grids. According to our experience, the quality of the surface grids will directly influence the 

quality of the 3-D volume grids, and the accurate description of the geometry by the surface 

grids can enhance the accuracy of the computation. Because the surface of MVG is of high 

singularity, it failed to use the automatic grid generation technique like projection by some 

commercial software. In this study, some manual work had to be done by the following steps: 

first a modification is made by smoothing the trailing-edge using a very small arc (Fig. 3.7); next 

the surface is divided into many small patches so that the singularity of the shape is reduced in 

each patch; thirdly, the skeleton grid lines are constructed manually in the patch using some 
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grid generation software in an interactive manner. Afterwards the lines are discretized into grid 

points. Careful adjustments are made to make the distribution of grids as smooth as possible; 

Finally, optimizations are made to let grid lines transit fluently between patches. The final 

surface grids can be seen in Fig. 3.8. 

The detailed final grids can be seen in Fig. 3.9-3.11. Also given is the geometric 

parameters in Table 3.1. More details can also be found in Ref. [51]. 

 

Figure 3.9 The Grids in Certain Cross-section 

 

 

Figure 3.10 The Grids at the Foot of the Trailing-edge 
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Figure 3.11 The Grids at the Ramp Corner 

Table 3.1 The Geometric Parameters for the Computation 

Lx Ly Lz x
+
 y

+
 z

+
 

3.750 5-7.50 25.030 26.22 1.36-38.38 12.79 

 

3.3 Boundary Conditions 

The adiabatic, zero-gradient of pressure and non-slipping conditions are used for the 

wall as: 

0 nT , 0 np , 0U                      (3.21) 

The non-reflecting boundary conditions are applied for far field and periodic boundary 

conditions are adopted in the spanwise direction. No visible artificial reflections are observed by 

the shock waves. 

 It is a challenging topic about how to get fully developed turbulent inflow comparable to 

the experimental conditions. There is a large body of published work on generating turbulent 

inflow boundary condition for simulation of complex spatially developing external flows; the most 

representative paper is perhaps that of Lund, Wu & Squires (1998). Lund et al [52]. (1998) 

developed a simplified version of the Spalart method by invoking only the transformation on 

independent variables at two streamwise stations without altering the Navier-Stokes equations. 

This method and its subsequent variations have been shown to yield reasonable inflow 

conditions for complex, spatially developed flows because quite often the downstream pressure 
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gradients and geometrical variations mask any major defects of the inflow. However, because of 

their semi-empirical nature, even with DNS resolution, it would be quite challenging for these 

methods to generate results that can be considered as experimental data quality for the 

turbulent boundary layer. Therefore, in present work, the turbulent mean profile and velocity 

fluctuations have been obtained from a separate DNS computation of compressible turbulent 

boundary layer. 

In order to guarantee a fully developed turbulent flow, the inflow condition were treated 

with two parts, the mean component and the fluctuation component. The averaged boundary 

layer profile from the DNS result[62] was implemented into current grid system through third-

order spline interpolation. The transplant was carried out by assuming the non-dimensional 

velocity   /u U
 scales with */y  .   

The temperature profile at inlet was determined by eq.(3.22), 

2

2( 1)
2

wTT r u
Ma

T T U
 

  

 
    

         (3.22) 

where r is the recovery factor with value r=0.9 and the adiabatic wall temperature was 

determined by eq.(3.23), 

   21 1
2

wT r
Ma

T
 



                          (3.24) 

Pressure p was set uniform at inlet and density ρ was calculated by eq.(3.24) 

 
p

RT
                       (3.25) 

Fluctuation components of velocity were also acquired from DNS[62] and form an input 

dataset of 20,000 fluctuation profiles. They were later added into the averaged profile according 

to different time steps. By performing derivative to eq.(3.22), the temperature fluctuation can be 

approximated through eq.(3.26) 

2( 1)
T u

r Ma u
T U




 


                                                                    (3.26) 
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The density fluctuation was then calculated by eq.(3.27) 

T

T



 

 
                                                                                  (3.27) 

The mean data and the fluctuation data were finally summed up and implemented as 

the inlet boundary condition. 

3.4 Code Validation 

Because the 5
th
 order bandwidth-optimized WENO scheme is a quite mature method 

and the problem studied in this paper contains shock waves, a supersonic inviscid flow around 

the half cylinder at      was selected as the validating test. The test can demonstrate the 

scheme’s ability for shock capturing and confirm the correctness of the code system. Fig. 3.12 

shows the isobar contour in the middle section in the spanwise direction, which indicates that 

the scheme can capture shock waves with essentially free of oscillations. 

 

Figure 3.12 The Contour of the Pressure 

 

Figure 3.13 The Comparison of  the Pressure 
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Figure 3.14 The Comparison of the Shock Location with that of Rusunov 

Fig. 3.13 and 3.14 show the comparison between the numerical results and the 

asymptotic solution from Rusunov, which is usually considered as the “theoretical” solution of 

that problem. A good agreement is obtained between the two results. The convergence rate in 

Fig. 3.15 shows a reduction of about 6 orders of the residual was obtained. 

Additional computations were made by rotating the curvilinear coordinates system 

alternatively to make the problem three-dimensional. The results prove the correctness of the 

current codes. 

 

Figure 3.15 The Converging History of the 5th WENO Scheme 
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Figure 3.16 The Pressure Contour at the Central Plane and Body Surface 

 

 

Figure 3.17 The Spatial Streamlines 

Another small case is set up for computation on a MVG controlling laminar ramp flow 

with     and        , where a very coarse grid number was selected as 

nstreamwisennormalnspanwise=42012164. The purpose of that test is to check if the computation 

can qualitatively capture the main flow structures of the problem. It can be found in Fig.  3.16 

that the main shock and expansion waves are captured by the simulation; the reflecting shock 

wave generated by ramp is clearly distinguished as well.  There is a hint about the possible re-

compression shock wave. The pair of primary counter-rotating streamwise vortices is visualized 

by streamlines in Fig. 3.17. The preliminary results show that the main flow structures 

qualitatively agree with the results by Babinsky
 
[7]. So this means the primary structures are 

captured and correctly described by the computation qualitatively, although there are few small 

scaled structures lost due to the reason that the grids are too coarse. The code system can be 
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used for the subsequent LES with much more grids. The validation made here is just for 

evidence that out LES code and scheme are correct for the Euler solver. The further validation 

for SBLI is made for a compression corner by comparing our LES results and experimental 

results [7,17] (see Figures 3.18 and Figures 3.19). We believe it is better to compare our LES 

results with experiment for the validation purpose. 

 

(a)                                                             (b) 

 (a) The Instantaneous Digital Schlieren at Central Plane (ramp angle is 24 degree) and  

(b) The Schlieren Pictures from the Experiment (ramp angle is 25 degree) 

 Figure 3.18  Comparison of Flow Structures at Ramp 

 

 (a) The Schlieren Picture from Babinsky   (b) Numerical Schlieren Picture at Central Plane  

Figure 3.19 Comparison of Flow Structures after MVG 
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Chapter 4  

NUMERICAL LES AND ANALYSIS OF VORTEX STRUCTURE BEHIND SUPERSONIC MVG 

4.1 Inflow Boundary Layer Profiles 

The inflow profiles are checked ahead of the MVG after long periods of computation. In 

order to define a reference coordinate system in this and following sections, the apex of the 

MVG is selected as the original point. The section for checking is located at 11.97h from the 

inlet in the streamwise direction. At this section, the Pitot pressure recovery coefficient and 

incompressible shape factor Hi are calculated and averaged in the spanwise direction. The Pitot 

pressure recovery coefficient used in this work is defined as: 

    

H

Ptot dyppHC
rc

0

001                                                                                  (4.1) 

where H can be a value approximately as the height of the domain. The definitions of 

displacement thickness (*) and momentum thickness () are given as
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                                                                        (4.2) 

Here, the averaged 
rcPtotC  is 0.9912, and the averaged 

* / =1.35iH   . As well 

known, the Hi for the laminar flow is around 2.6 and for the standard turbulent flow is about 

1.2~1.4. So, the results indicate that the methods described in Chapter 3 produce a fully 

developed turbulent inflow.  

Fig. 4.1 shows the inflow boundary layer velocity profile in log - coordinates. There is a 

well-defined log region and the agreement with the analytical profile is well throughout. These 

results are typical for a naturally grown turbulent boundary layer in equilibrium (see Guarini [54] 

et al).  
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(a)                                                                      (b) 

 (a) Inflow Velocity Profile by Our Computation 

(b) Inflow Velocity Profile by Guarini [54] ( ** 2.5log 4.7U y  ) 

Figure 4.1 Inflow Boundary-layer Profile Comparison with GUARINI et al’s 

4.2 Results of the MVG Controlled Ramp Flow - Vortex Rings 

4.2.1 Velocity Profile Behind MVG 

Fig. 4.2 gives a qualitative comparison with experiment (Babinsky et al [7], 2009) in the 

time and spanwise averaged velocity profile behind MVG. In this study, numerical simulations 

are made with M=2.5 and Re=5760, but the experiment of Babinsky has a much larger Re, 

i.e., about 28800. So the comparison between the computation and experiment in this paper 

should mainly be qualitative and agreement is achieved. 
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(a) Averaged Velocity Profile behind MVG  (b) Averaged Velocity Profile by Babinsky et al 

Figure 4.2 Qualitative Comparison of Averaged Velocity Profile behind MVG  

4.2.2 The New Dynamic Vortex Model 

According to results of the present investigation, a dynamic vortex model can be given 

in Fig.4.3 (half domain). The dominant vortex near the MVG is the primary vortex; underneath 

there are two first secondary counter-rotating vortices, which later leave the body surface and 

become fully 3D separations by the way of spiral points in body surface. These vortices will 

merge into the primary vortex propagating downstream, while new secondary vortices will be 

generated under the primary vortex. This dynamic vortex model is confirmed recently by Mohd 

R. Saad et al[63]  in their experiment work (Figure 4.4) and work of UT Arlington in the 

experiment at the same Mach number [56,68] (Figure 4.5). The spiral points are also confirmed 

by both experiments. 
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Figure 4.3 The dynamic vortex model (Li and Liu[37]) 

 

Figure 4.4 Surface flow visualization image and the vortex model given by  

Mohd R. Saad et al [63]
 

 

Figure 4.5 The Comparison between Computation and the Experiment of Lu[56] 
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4.2.3. Vortex Rings - A New Mechanism in MVG-ramp Flow Control 

According to the up-to-date knowledge from the experiment and computation, a pair of 

primary counter-rotating streamwise vortices and the underneath attached secondary ones are 

considered to be the mechanism of the flow control. The primary vortices will bring about high 

speed momentum entrainment to the location near to the floor [64], which is favorable to 

resistance of the adverse gradient of the pressure. According to our computation and the results 

from other authors [8], the rotation of the streamwise vortices becomes weak quickly (see Fig. 

4.6) and streamlines oscillate in the space due to the shear layer instability around the 

momentum deficit circle. It suggests that there might be some other mechanism in the MVG 

controlled flow, besides the only pair of streamwise vortex tubes to cause the momentum 

exchange. 

Because the vortex axis is usually the location with the minimum pressure, the iso-

surface of pressure is an easy tool to visualize the vortex tube. In Fig. 4.7, we draw the iso-

surface of pressure using the same instantaneous data as that of Fig. 4.6. Besides the 

expansion wave and the surface wrapping the tube near the trailing-edge, the ring-like 

structures are found in the subsequent downstream region. Such rings appear initially not far 

away from the trailing-edge, and become larger and irregular when moving downstream; in the 

meanwhile the streamwise vortex tubes become weaker and less observable at certain 

locations. 

 

Figure 4.6 The Instantaneous Spatial Streamlines 
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Figure 4.7 The Iso-surface of the Instantaneous Pressure 

4.2.4 Analysis of The Structure of Vortex Rings 

To reveal the coherent structure of the flow, the iso-surface of 2 scalar field [55]  is 

used (figure 4.8). A small negative value is selected for visualization. It is very clear that there is 

a chain of vortex rings, starting from behind of the trailing-edge of MVG. The rings are 

generated almost erectly (normal to the wall) at first and then they are continuously distorted 

and enlarged while propagating downstream. These rings could be a dominant factor of the 

mechanisms of MVG in control of shock boundary layer interaction. 

The well-shaped rings are approximately perpendicular to the flat plate, and then begin 

to deform while propagating downstream. The lower part of the ring first hits the shock and the 

speed decelerates. Then the upper part of the ring hits the shock. So the vortex rings on the 

ramp appear in an oblique posture. The rings maintain their existence until flowing out of the 

domain. 
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(a)  Global View 

 

(b) Close-up view behind the MVG 

Figure 4.8 Vortex rings shown by iso-surface of 2 

Fig. 4.9 demonstrates the instantaneous numerical schlieren at the central plane. We 

can see many vortex rings appear in circular shapes. Informed with the prediction of vortex 

rings, the experimentalists in UT Arlington used some technology to validate the discovery. 

They used the particle image velocimetry (PIV) and the acetone vapor screen visualization to 

track the movement of the flow. More specifically, the flash of a laser sheet is used to provide 

the light exposure at a time interval of micro seconds. Fig. 4.10 presents a typical image at the 

center plane using PIV and the acetone vapor technology(Lu et al [47]). It is clearly 

demonstrated that a chain of vortex rings exists in the flow field after the MVG, same as shown 

in LES results (see Fig. 4.9).  
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Figure 4.9 The Numerical Shilieren at the Center Plane[51] 

 

(a) Using PIV 

 

(b) Using the Acetone Vapor 

Figure 4.10 The Laser-sheet Flash Image at the Center Plane (Lu et al 2010) 

Our numerical discoveries of the vortex ring structures are also confirmed by 3-D PIV 

experiment (Fig. 4.11) conducted by Sun et al at Delft University [33,69]. Compared the two 

results, we can find the similar distribution of streamwise ( z ) and spanwise vorticity ( x ) 

components, which also proves the existence of ring structures. The Kevin-Helmholtz vortices 

part in Fig. 4.12 corresponds with the ring head in Fig. 4.8. The underneath part which is 

illustrated as streamwise vortices are two counter rotating primary vortices which are 

considered to be the main source of the ring structure as explained later .  
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Figure 4.11 K-H rings behind MVG by (Sun et al 2011) 

 

Figure 4.12 Distribution of K-H Vortices and Streamwise Vortices from LES[58] 

The vorticity component which revolves towards the vertical direction ( y  in our case) 

is not shown in Fig. 4.11 and 4.12. If this missing part was provided, we can see the vortex ring 

structure clearly by the combination of all the components of vorticity as shown in Fig. 4.13 

which is in accordance with the structure in Fig. 4.8. 
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(a) Global view   

 

(b)  Close-up View 

Figure 4.13 Vortex Rings shown by the Components of Vorticity[58]  

According to further analysis, we find that the ring structure is mainly composed by x  

and y  while the streamwise vorticity component z  is absolutely the major source of two 

counter-rotating primary vortex inside the ring structure. x  constitutes the head and part of the 

bottom of the rings and y  forms the two sides. Also, the ring structure is not the perfect one 

since it is not closed on the bottom, instead, the two feet of each ring penetrate inside and 

connect with the inner primary vortices, as shown inside the circles in Fig. 4.13. In Fig. 4.14, the 

ring structure is clearly illustrated by both the total vorticity magnitude and each vorticity 

components. Actually, the vortex tube of each ring changes its direction and  is connected to the 

two streamwise primary vorteics inside at the foot part which is clearlly shown in Fig. 15. Once 

the ring is generated, it will never break up into pieces or seperated parts and disconnect from 

the main vortex structure.  

 
  

1 

3 
2 
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Figure 4.14 Part of the Ring Structure shown by Total Vorticity Magnitude (left) and each 

Components (right)[58] 

To further support the conclusion that the ring structure never breaks up and each ring 

has the feet connected inside, a close-up bottom view of vortex structure illustrated by 2 is 

given in Fig. 4.15 by another transient data set at different time and different location. Here, only 

half of the spanwise domain is used to  make the vortex structure more clear. The iso-surface of 

2 can show the vortex tubes accurately and it captures two adjacent vortex rings in Fig. 4.15, 

and it apparently visualized the vortex tubes connect to the ring feet inside the vortex structure. 

 

Figure 4.15 Part of the Ring Structure shown by 2(from the bottom view)[58] 
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From the analysis of the magnitude of each vorticity component, x  and z  play the 

leading role during the process of propagating downstream. x  mainly origins from the 

shredding of the upstream MVG boundary layer, however, the other two components which 

forms the ring structure are separated from the viscous sub-layer underneath after about 1.1h 

away from the trailing edge of the MVG downstream. They are very likely following the vorticity 

conversion of the streamwise part. During the propagating, x is reduced gradually and the 

rings are extended. In the end of the evolution, the momentum deficit (caused by streamwise 

vortex) disappears and the ring structure is totally distorted.  

Fig. 4.16 shows the velocity field on a cross section in which it is found that the low 

speed flow from the viscous sub-layer is inhaled into the momentum deficit area continuously as 

a result of two counter rotating streamwise vortices inside the rings. This may explain why the 

momentum deficit area can survive such a long way and determines the development of the 

ring structure. Fig. 4.17 is the flow field close to the foot and the head of a vortex ring which 

shows the vortex ring is extended outside by the velocity field around it, and that velocity field 

also helps the conversion between the components of vorticity. 

 

Figure 4.16 The Velocity Field on the Cross Section[58] 



38 

 

Figure 4.17 The Velocity Field close to the Foot (left) and the Head (right) of a Vortex Ring[58] 

4.2.5 Conservation of Vorticity 

Because the original streamwise vortices and new generated vortex rings are both 

located away from viscous sub-layer for some distance, new vorticity in K-H vortex rings can 

only be transported to from the primary streamwise vortices if the distance is not far away from 

the MVG. The conservation of vorticity should make the vortices closely related to each other. 

The vorticity of the shear layer which results in the generation of the vortex rings should be 

transported from the original streamwise vortices. In order to investigate the relationship among 

the vortices, we measured the distribution of the maximum value of both streamwise and 

spanwise vorticity in a specific region (as seen in Fig. 4.18) to avoid the possible affection from 

the viscous sub-layer. 
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Figure 4.18 The Scope for Vorticity Magnitude Check 

 

Figure 4.19 The Instantaneous Vorticity Distribution(Y Yan et al) 

Considering the pair of streamwise vortices are counter-rotating and vortex rings 

intersect the center plane in two locations, we only took the right half part and used positive 

values in Fig. 4.19. Since the grids are not uniform, it is more convenient to use streamwise grid 

position to mark the positions which range from about 1.0h to 9.5h after the trailing edge of 

MVG.  Fig. 4.19 gives the instantaneous distribution of the two quantities along streamwise 

position of grids.  

max,

max,

x

z




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From the figure and analysis of the flow field, the following results can be obtained: 

1. The locations of the peaks of x,max represent the upper intersection of the K-H vortex 

rings and the center plane. The positions of those peaks are nearly the same as the locations of 

the upper cores of new generated K-H vortex ring tubes which means the maximun value of 

spanwise vorticity happens on the ring head and at the central spanwise plane. 

2. The quantities of x,max and z,max both substantially oscillate along the streamwise 

direction. The change of z,max is relatively greater,  while the quantity of the spanwise vorticity 

between the vortex rings appears relatively smaller. This is normal since the two counter 

rotating streamwise vortices are the main structure and almost only the streamwise vorticity is 

generated by MVG at very beginning. 

3. There are two stages of the evolution of the vorticity, which reflect the interaction or 

coupling between the streamwise vorticity and vortex rings: 

The first stage is the coupling stage from the beginning to about 700 (z5h after the 

trailing edge of MVG). In this stage, not only the falling down of x,max corresponds to the peaks 

of z,max, they also oscillate in the opposite directions. This is reasonable because in this period, 

the vortex rings, which are just generated, must obtain the vorticity from the primary streamwise 

vortex due to the vorticity conservation law. 

The second stage, the post-coupling stage, starts from 700 to the end of box. In this 

stage, the momentum deficit area begins to disappear but the two curves still oscillate 

asynchronously. The interaction between streamwise and spanwise vorticity of course still 

exists, the quantity of the x,max is reduced and the frequency of the oscillation is also increased. 

However, they are not directly against each other. This is because each new generated K-H 

vortex ring is stretching and developing individually. They are no longer aligned with the root on 

the vortex ring bottom. 

The variation of the quantity of streamwise and spanwise vorticity confirms that vorticity 

of the rings comes from the streamwise votex structure inside the momentum deficit. Without 
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enough complement of vorticity from the subviscous layer underneath, new generated spanwise 

vorticity can only be transported from the primary streamwise vorticity. Also, at the very 

beginning part of the first stage, when the vortex structure is not seperated from the subviscous 

layer absolutely, the variation of the two vorticity components keeps the same rule. This 

declares that the conservation of vorticity plays the leading law during the whole process of the 

ring structure generation. 

4.3 Stability Analysis to the Velocity Profile 

 In order to explore the mechanism of the vortex ring generation, the distributions of 

time and spanwise averaged streamwise-velocity are given in Fig. 4.20 along the normal grid 

lines at the central plane. The streamwise positions of the lines are Lfrom apex/h 3.3, 6.7, 10 and 

11, where Lfrom apex is the streamwise distance measured from the apex of MVG. The dip of the 

lines corresponds to the momentum deficit. From the results, it can be seen clearly that there 

are at least two high shear layers in the central plane, one is located at the upper edge of the 

dip and the other is located at the lower edge. Within the shear layer, there is at least one 

inflection point. In order to demonstrate the existence of the inflection points, the second order 

derivative 
2
w/y

2
 (w is the streamwise velocity and y is the normal direction) is calculated along 

the lines, and the result of the line at Lfrom apex/h  3.3 is plotted in Fig. 4.21 as an example. The 

existence and correspondence of the inflection points at the upper and lower shear layers is 

clearly illustrated as follow.  
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Figure 4.20 Averaged Streamwise Velocity at Different Sections 

 

 

(a) Averaged Streamwise Velocity at Lfrom apex/h 3.3  (b) 
2
w/y

2
 at Lfrom apex/h 3.3 

Figure 4.21 Inflection Points (surface for 3-D) 

 It is obvious that the existence of the inflection point in shear layer will cause the flow 

losing the stability and generate vortex rollers by the Kelvin-Helmholtz instability (K-H) theory. 

So the mechanism for the vortex ring generation is a result caused by the K-H type instability, 

and the lost of the stability of the shear layer results in the roll-up of the vortex rings. In order to 

explore the mechanism of the vortex ring generation with viscous fluid, it is necessary to make 

analysis about stability upon the velocity profile. 
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4.3.1 Derivation of Linear Stability Equation 

As discussed below, a linear stability analysis based on incompressible but viscous flow 

is conducted as following. First, the velocity profile of the upper boundary of the momentum 

deficit area (circled in Fig. 4.21a) is taken to study since the intensity of the upper shear layer 

appears to be stronger than that of the lower shear layer (Fig. 4.21a). If we can prove that, even 

for this temporal and spanwise averaged velocity profile, the flow is instable, and then the 

instantaneous velocity distribution should be unconditional instable.  
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Equation (4.3) denotes the incompressible and non-dimensional Navier-Stokes 

equation in which, ( , , )V u v w  is the velocity vector. Considering that  

),,(')(),,( 0 tyxqyqtyxq                                                                                     (4.4) 

where q can be specified as ( , , , )u v w p , 0 0 0 0 0( , , , )q u v w P  which indicates the value 

of mean flow, and 'q denotes the corresponding linear perturbation. By eliminating the second 

order perturbation terms, the governing equation for small perturbations can be written as, 
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 As a first step, a localized 2-D incompressible temporal stability for shear layer is 

conducted. Actually, it relates to the distance among two neighboring vortices in the central 

streamwise plane. Assume the normal mode is 
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where the parameter  is given, which is real and set to be 0.5 according to the 

averaged distance between the new generated rings, and c should be a complex number. By 

plugging in Equation (4.6), Equation (4.4) can be rewritten as,  
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where )}Re()({ 0

222 b  uiDL , and 
dr

d
D   

Considering in 2D case (without w), and by eliminating ˆ ˆ,u p  , we can obtain the 

standard O-S equation on v̂ , 

2 2 2 2 2 2
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ˆ ˆ( ) Re[( )( ) ] 0D v i U c D D U v                                                   (4.8) 

 Equation (4.8) is about v̂ , but we need to get the value of c. The value of c determines 

the property of stability of the equation. Let r ic c ic  , if 0ic  , then the disturbance will 

continuously grow and the flow would be instable. Otherwise, the flow would be stable. 

4.3.2 Stability Analysis to the Averaged Velocity Profile 

If there is no disturbance at the boundary and it will be free stream outside the domain 

(a, b), then we have the corresponding boundary condition for function v̂  as ˆ ˆ( ) ( ) 0v a v b  and

ˆ ˆ( ) ( ) 0Dv a Dv b  . The second order central difference scheme (Equation (4.9)) is used to 

derive the finite different equation from Equation (4.7),  
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Apply (4.9) to Equation (4.8) we can get the generalized eigenvalue problem:  

0  BcA
                                                                                                        (4.10) 
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Where A (symmetric pentadiagonal matrix) and B (symmetric tridiagonal matrix) are the 

coefficients’ matrix and the vector   denotes the values of v̂  at different position. c becomes 

the generalized eigenvalue of Equation (4.10). 
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In the m
th
 line of matrix A and B,  
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By solving the general eigenvalue problem (4.10), we can get the physical solution of 

the frequency c, whose imaginary part ic  is about 0.068 for our case. The positive value 

means this kind of flow is unstable. Fig. 4.22 shows the corresponding shape of the eigenvector 

function, v̂ . 

 

Figure 4.22 Eigenvector Function of v̂  

  In Fig. 4.23, the 3D distribution of three components of vorticity is given right 

after the MVG. It shows that spanwise vorticity is first generated at the top of momentum deficit 

area where clusters the streamwise vortices. After that, the ring sides for the first ring are also 

generated on the boundary of momentum deficit. This confirms our assumption above. The top 

boundary of the momentum deficit has the most instable shear layer, so the spanwise vorticity is 

first generated while the corresponding vortex directly connect to the streamwise vortex inside 

at first. Then the rings show up soon due to the evolution of the instable shear layer.  Also we 

can find that the whole ring is generated on the boundary of the momentum deficit, neither from 
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inside nor outside region. So, the shear layer instability is the main mechanism of the ring 

generation. 

 

Figure 4.23 The Instantaneous Vorticity Distribution[57] 

The mechanism of the ring generation is a real 3D process. Study in non-linear, 3D and 

compressible stability analysis is needed to reveal the full mechanism of the shear layer 

instability behind MVG. The current study only involves temporal, linear, and incompressible 

stability analysis which can be considered as a first step to study the wake instability of MVG. 

The interaction between the streamwise vortices and vortex rings shown by vorticity is a 

new interesting phenomenon. The interaction and vorticity conservation of the primary 

streamwise vortex and new generated K-H vortex ring needs validation by experiment and the 

mechanism is still under investigation. 
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Chapter 5  

INVESTIGATION OF MOMENTUM DEFICIT 

The momentum deficit and primary vortices were considered two major features of 

supersonic flow control with MVG. Benefited from the high order scheme which is able to 

resolve detailed turbulent structures, the LES study of Li et al.[57] summarized several other 

flow features, such the ring vortex generated by the Kelvin-Helmholtz (K-H) instability at the 

circular shear layer. Since these two features are especially significant in the wake of the micro-

ramp, a question would be raised regarding the connection between them: Is the momentum 

deficit a result of the primary vortices, or where is the origin of the low momentum fluid in the 

deficit region? 

In order to consolidate the observation of Li et al.[57], the flow around the micro-ramp 

was simulated by means of LES with high order high resolution difference scheme in the 

present study. In the exploration of the deficit origin, streamline tracing at several heights in the 

incoming boundary layer was performed.  

5.1 The Momentum Deficit 

5.1.1 The deficit in the mean flow 

As an entry to the understanding of the momentum deficit generation, the mean and 

instantaneous flow properties of the supersonic wake that contains the momentum deficit are 

first introduced. An overall view of the averaged wake is plotted in figure 10, where three 

different streamwise slices of u and v contours are included, so that the streamwise 

development can be visualized. It should be mentioned that the color bar for u is chosen from 

0.4U∞ to 1.0U∞, instead of starting from 0, for better visualization of the decayed flow pattern 

further downstream. A region with significant low u is produced immediately after the micro-

ramp. Elevation in position and recovery in magnitude are experienced when traveling 

downstream. Correspondingly, the v forms a focused central upwash and two symmetric 

downwash events at both sides, which coalesce to notify the counter rotating vortex pair. The 
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decay of v–event also happens throughout the development. A sharp reader would notice the 

wavy contour lines close to the flow floor in figure 5.1 (a). This is the residual large structure 

embedded in the turbulent boundary layer from the DNS result, as limited ensemble size 

(N=300) is used for averaging the flow. 

 

(a) Contours of averaged u; 

 

(b) Contours of averaged v; 

Figure 5.1 An overview of the streamwise development of the micro-ramp wake, cross-sections 

are at x/h=1, 9 and 17 respectively. 

In order to investigate the wake in detail, the three cross-sections in figure 10 are 

further enlarged in figure 5.2. The color bars are kept consistent with those in figure 10. The 

intended momentum deficit can be easily detected through the region containing weak u. A 

triangular shape is displayed at x/h=1 as it is the initial stage of the deficit. Upon leaving the 
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wall, a circular shape as shown in figure 5.2(b) is obtained. Throughout the development of the 

wake, the minimum u decreases from 0.5U∞ at x/h=1 to 0.8U∞ at x/h=17. Due to the velocity 

difference between the free stream and the deficit, a shear layer is formed wrapping the deficit. 

As the presence of the symmetric slant edges of the micro-ramp, a pair of opposing 

vortices is produced in streamwise direction. These two vortices can be observed through the 

overlaid vectors and they are located inside the deficit region. The vortices also decay, as 

strong swirling vectors are visualized at x/h=1 while they are barely visible at x/h=17.  

The focused central upward region of v is generated as a joint result of upwash vectors. 

Meanwhile, two symmetric downwash events are produced, obtaining approximately half the 

strength of the upwash in measure of v magnitude. Following the decay of vorticity strength, the 

maximum upward v of 0.5U∞ at x/h=1 reduces to approximately 0.1U∞ at x/h=17, indicating a 

weak imprint of upwash in the downstream position. 

A side observation of the vectors in figure 5.2(a) and 5.2(d) features the secondary 

vortex pair shedded from the root portion of the sharp trailing edge. This pair of secondary 

vortices also obtain counter rotations and are produced in a smaller scale than the primary pair. 

Since it is not very influential to the present topic of the large scale momentum deficit, this 

secondary pair is not going to be elaborated in detail. 
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            (a) u at x/h=1                      (b) u at x/h=9                        (c) u at x/h=17 

 

           (d) v at x/h=1                      (e) v at x/h=9                        (f) v at x/h=17 

Figure 5.2 Cross-sections of mean u and v contours at three streamwise positions with two-

dimensional vectors overlaid. 

5.1.2 The deficit in the instantaneous flow 

Instead of visualizing the smoothed flow patterns through averaged flow field, the 

instantaneous realizations on the other hand offer to exhibit the instantaneous variations. Cross-

sections at x/h=1, 9 and 17 are again extracted from one flow field snapshot and plotted in 

figure 5.3.  

All the revealed structures, such as the u-deficit, the upwash and downwash, and the 

primary vortex pair, can also be observed in the instantaneous velocity contours. At the 

immediate downstream of the trailing edge, i.e. x/h=1.0, the contours of both u and v resemble 

the averaged pattern with only a slight curvature of the contour lines, indicating greater flow 
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instability. Further downstream, considerable variations are presented. For the current 

instantaneous representation at x/h=9, the mushroom-shaped u-deficit has sever curved edges 

and it further inclined towards the left side at x/h=17. The upward region of v at x/h=9 obtains a 

central peak magnitude of approximately 0.3U∞, however a stronger downwash with v=-0.2U∞ at 

the right side is generated, suggesting the asymmetric vortex strength. Although a peak of 

upward v still persists at x/h=17, it only survives in a really small region with v=0.25U∞ and 

deviates from the central location.  

 

         (a) v at x/h=1                       (b) v at x/h=9                       (c) v at x/h=17 

 

           (d) v at x/h=1                     (e) v at x/h=9                         (f) v at x/h=17 

Figure 5.3 Cross-sections of instantaneous u and v contours at three streamwise positions with 

two-dimensional vectors overlaid. 
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5.1.3 The mean and instantaneous streamwise vortical structure  

Although the streamwise vortices can be observed and qualitively studied from the 

overlaid vectors in the contour plots, a dedicated representation and quantitative investigation 

can be achieved through the distribution of streamwise vorticity component as plotted in Fig. 

5.4. It should be mentioned that the instantaneous vorticity in the right column is calculated from 

the same snapshot, and different color bars are used for the purpose of visualizing the reduced 

magnitude of downstream vorticity. Decent symmetry of the vortex pair is presented through the 

mean representation, although curved edges can be observed due to limited statistical 

ensemble size. Instead of using upward and downward v as an indication of vortical activity, a 

straightforward evaluation of the vorticity development can be achieved. The vortical strength at 

x/h=17 reduces to approximately one tenth of that at x/h=1.  

Variation from the mean vortical pattern is exhibit by the instantaneous representations 

in the right column of figure 5.4. The primary vortex pair is produced on either side of the center 

plane, resembling the mean flow. Affected by fluctuation and flow instability, namely the Kelvin-

Helmholtz instability (see Sun et al.[33]), the focused mean vorticity pattern is distributed into 

several irregular spatial pockets following the variation of the u-deficit. 

The momtmtum deficit can so far be understood as a region containing reduced 

magnitude of u with a central upwash and side downwashes. On the other hand, a pair of 

primary opposing vortices is generated and obtains a similar decay process as the velocity 

patterns. 
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     (a)  x/h=1                                           (b) x/h=1 

 

     (c)  x/h=9                                              (d) x/h=9 

 

 (e) x/h=17                                                    (f) x/h=17  

Figure 5.4  Cross-sectional contours of streamwise component of vorticity ωx. 
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5.2. The Origin of Momentum Deficit 

In order to reveal the source of momentum deficit, streamline tracing at different wall-

normal positions are carried out and six of them are plotted in figure 5.5. This analysis is based 

on the mean flow field. Figure 5.5(a) shows the streamlines that stem from y0/h=0.0092. They 

mainly form the leading edge separation due to their low momentum. However, the streamlines 

close to the edges of the micro-ramp are capable of passing downstream and then contracted 

towards the center along the slant edges and are further lifted upward through the spiral motion. 

The flow outside the width of the micro-ramp is barely affected by the micro-ramp although 

slight curvature of the streamlines can be observed there. In figure 5.5(b), the streamlines 

originate from y0/h =0.0412. The leading edge separation is reduced because of higher 

momentum the fluid obtains. More streamlines are entrained downstream by vortical motion and 

contribute into the u-deficit. As the tracing position is elevated, as shown in figure 5.5(c) and 

5.5(d), no separation remains. The flow there along the whole span moves forward and 

concentrate into two parallel neighboring vortices through the spiral activity once the micro-ramp 

is past. However, less spiral motion is behaved by the flow originates from even higher wall-

normal positions (as shown in figure 5.5(e) and 5.5(f)). The major portion of the flow along the 

micro-ramp span is directed downward and enters into the flow below the momentum-deficit, 

although a few streamlines close to the center are diverted outward forming the streamlines that 

wrap the deficit region and resultantly contribute to the circular shear layer.  
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 (a) y0/h=0.0092                        (b) y0/h =0.0412                       (c) y0/h =0.1360 

 

 (d) y0/h =0.3287                    (e) y0/h =0.6674                       (f) y0/h =1.2267 

Figure 5.5 Streamlines with origins at different wall-normal positions upstream of the microramp. 

The streamline rake originating from a fixed spanwise position at z/h=1.1 is further 

plotted in figure 5.6 to consolidate the above observations in figure 5.5. Apart from the 

confirmation of deficit origin from the lower portion of the boundary layer, the position alternation 

is better revealed: the lower level flow in the incoming boundary layer is lifted upward through 

the vortical activity forming the momentum deficit, while the upper level flow with higher 

momentum is, on the contrary, directed into a lower position past the micro-ramp, resulting in a 

fuller boundary layer close to the floor. 

As the position alternation happens along the whole span of the micro-ramp, in order to 

entrain larger amount high momentum fluid of the incoming boundary layer into the near wall 

region, a wider micro-ramp should be considered. Recall the result of Lee and Loth[65], the half 
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width micro-ramp produces worse downstream boundary layer than the regular type in measure 

of shape factor. 

 

      

           (a) Mean streamlines                            (b) Instantaneous streamlines 

Figure 5.6 Streamlines with origins at a fixed spanwise position z/h=1.1. 

5.3 The Position Alternation – A Revised Mechanism 

As revealed by section 5.2, the process of position alternation is going to be explored in 

detail. The seven mean streamlines in figure 5.6(a) are extracted and projected into the x-y 

plane as shown in figure 5.7. It should be mentioned that the axis ratio is exaggerated to help 

observation. It should also be noted that no line map is listed in figure 5.7 as they can be 

identified from the position of origination. Solid lines are used to feature the lower level 

streamlines which are lifted, while dashed lines for the higher level flow entrained downward. 

The same line system is applied to figure 5.8. A clear bifurcation of the streamlines right after 

the micro-ramp is better visualized, indicating the position alternation. The winding of the solid 

curves represents the swirling motion. The lowest level fluid, namely the red curve, endures 

strong spiral activity, while less for the higher ones, namely the solid blue and black curves. 

However no spiral motion can be observed for the dashed streamlines. And once they are 

entrained into the near wall region, their positions remain. 
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Figure 5.7. The projected streamline in the x-y plane, the streamlines are those in figure 5.6(a). 

Streamwise and wall-normal velocity components along the streamlines in figure 5.7 

are further plotted in figure 5.8. Upon leaving the micro-ramp, a sudden drop of u is endured by 

the lower level flow due to the flow separation. Fluctuations are further experienced through the 

swirling in the deficit region and eventually recover to a higher magnitude, which is consistent 

with the recovery of momentum deficit. 

A rapid increase of v can be observed close to the trailing edge, and a maximum is later 

reached. This is a common event for the fluid along these streamtraces and explains the 

focused upwash behind the micro-ramp. Similar to the behavior of u, fluctuating v is also 

exhibited. At far downstream, wall-normal velocity for all the streamlines approaches zero. The 

downward entrained flow with higher momentum, represented by the dashed curves, exhibits 

less fluctuation for both u and v, as no large scale vortical effects are present there. 

At this point, the current observation does not give support to the prescribed knowledge 

of the working principle which considers the higher momentum in the downstream flow is 

entrained from the surrounding free stream. Because the foregoing illustrations find that the 

desired high momentum in the near wall region is achieved through the position alternation 

triggered by the micro-ramp instead of the dowanstream trailing votex filaments. 
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    (a) streamwise component                          (b) wall-normal component 

Figure 5.8 The streamwise and wall-normal velocity components along the extracted 

streamlines(Sun et al.).  
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Chapter 6  

VORTICAL STRUCTURES IN THE REAR SEPARATION AND WAKE AFTER MVG 

Larger scale structures like vortex rings or the interaction mechanism between the ring 

vortex and shock wave, take place in the wake region, which is relatively downstream of the 

micro-ramp. However, less focus has been placed on the smaller scale structures in the flow 

close to the micro-ramp. A few forgoing studies have investigated the flow that takes place 

around the micro-ramp[66,67]. Among those explorations, a common observation is the flow 

separation at the junction between the micro-ramp trailing edge and the flow floor. Shown in 

figure 6.1 and 6.2 are some experimental and numerical results of rear separation. These 

visualization work shows the flow structures like spiral points and vortex filaments close to the 

trailing edge of MVG. To better understand the mechanism of flow pass MVG, velocity 

distribution and vortex line method, has been used to the analysis of flow structures near trailing 

edge.  

 

(a) Trailing edge separations in the oil flow visualization by Babinsky et al.[7]. 

 

(b) Trailing edge separation in the surface flow visualization by Lu et al.[56] 
 
 

Figure 6.1 Experimental visualization of the rear separation. 
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(a)                    (b)          (c) 

 (a) The spiral points close to the trailing edge (reproduction according to Li[66]). 

(b) The spiral points in the experiment of Lu et al.[56] 

(c) The vortex filaments from the experiment of Lu et al.[56] 

Figure 6.2. The spiral point at the rear 

6.1. Two-Dimensional Representation of the Rear Separation 

According to the previous studies, the separation region is recognized as a common 

phenomenon. By plotting the instantaneous snapshots of u-contours close to the micro-ramp at 

different heights, the flow organization is evident.  

Figure 6.3(a) is the instantaneous contour of u at y/h=0.018 after the flow is "stable". 

Two regions with reverse u are clearly observed and their positions are similar to the 

observations in oil flow visualization (see Fig. 6.1(a)). The reverse flow obtains a maximum 

magnitude of approximately 0.2U∞ at this height and has a streamwise extension of about 2.0h. 

Thus a shear is formed at the border of the reverse region and surrounding downstream moving 

fluid. According to the overlaid projected streamlines, three vortices (labeled as V1, V2 and V3 

in Fig. 6.3 (a)) are produced at the edge of the reverse regions, among which V2 and V3 appear 

in pair and have counter rotation, while V1 stays at the outer edge. Note that the slices in Fig. 

6.3 are extracted from the same snapshot as that in Fig. 6.2(a), the revealed vortices can then 

be taken as the cross-sections of the vortex filament. The contour in Fig. 6.3(b) is at y/h=0.036. 

The reverse regions at this height contract in area and become slimmer. V2 and V3 are still 

visualized at the edge, and both of them shifted slightly in position, which can be compared in 

table II. Figure 6.3(c) and (d) represent the contour at y/h=0.047 and 0.100, respectively, where 
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the reverse flow is weaker and shrinks. V2 exists at the outer edge of the reverse region, and 

two additional vortices, namely V5 and V6, are produced at the downstream edges of the 

reverse region. The detailed spatial coordinates of the revealed vortices are summarized in 

table II. 

 

(a) y/h=0.018                                   (b) y/h=0.036 

 

(c) y/h=0.047                                    (d) y/h=0.100 

Figure 6.3. Contour of u at four heights with projected streamlines. 

We used the position of V2 and V1 in table II and drew vortex lines from the core of 

vortices(see Fig. 6.4). The vortex lines clear revealed that V2 and V1 are actually one 

connected vortex tube and Fig. 6.3 is the cross-section of this Ω shaped vortex at different 

heights. 
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Table 6.1 The coordinates of the revealed vortices in Fig. 6.3. 

 y/h=0.018 y/h=0.036 y/h=0.047 y/h=0.100 

V1 (x/h,z/h) (0.192,0.514) (0.154,0.489) - - 

V2 (x/h,z/h) (0.085,-0.600) (0.057,-0.600) (0.036,-0.529) (0.075,-0.438) 

V3 (x/h,z/h) -0.197,-0.473 (-0.191,-0.471) - - 

V4 (x/h,z/h) - (0.351,0.318) - - 

V5 (x/h,z/h) - - (1.033,0.349) (0.864,-0.401) 

V6 (x/h,z/h) - - - - 

 

 

Figure 6.4. Vortex lines passing vortex cores of V2 and V1. 

6.2. Three-Dimensional Representation of the Rear Separation. 

By examining the evolution of the reverse flow along the wall-normal direction, it obtains 

a larger base portion and a thinner body at higher elevation. A mountain-shaped reverse flow 

region can thus be imagined. The three-dimensional representation of the separation region is 

illustrated in Fig. 6.5 through isosurface of u with a value of -0.01U∞. All the stronger reverse 

flow is inside the current isosurface. It should be noted that a third reverse flow region is present 

along the trailing edge. 

flow 

direction 
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Till this point, questions can be raised regarding the revealed vortices in the Fig. 6.3: 

what is their three-dimensional organization? Are they related in space? These questions can 

be answered by analyzing the vortex line. In Fig. 6.6 five vortex lines are plotted in the vicinity of 

reverse region 1. Note that the second vortex line from left in Fig. 7(a) passes through V2 in Fig. 

6.3(a). All the vortex lines originate from the wall surface where significant vorticity magnitude is 

present. Once lifted away from the wall, they follow the inclined surface of the separation region, 

after passing the summit, it drops in height, but, however, still follow the iso-surface slope. The 

appearance of the vortex line forms an Ω-like shape. Similar analysis has been carried out on 

the vortex lines around reverse region 2 and Ω-like vortex lines are also resulted. The vortices 

as visualized in Fig. 6.6 can hence be concluded as imprints of the omega-shaped filaments 

and they are produced due to the strong shear between the core reverse flow and the 

surrounding fast-moving flow. 

 

Figure 6.5. The three-dimensional representation of the rear separation regions using 

isosurface of u=-0.01U∞. 
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(a)                                        (b) 

Figure 6.6 The Ω-shaped vortex lines around reverse region 1. 

6.3. Similar Vortical Structure in the Micro-Ramp Wake 

Recalling the flow organization in the wake of the micro-ramp, a momentum deficit is at 

the center and a curved shear layer is then formed between the deficit region and free stream. 

Due to the instability of the shear layer, arch-shaped Kelvin-Helmholtz vortices are generated. 

This turbulent activity that happens in the wake has been substantially discussed by Sun et al
8
. 

Comparing the two flow structures at the rear separation and the wake region, they are 

conceived to be similar, as both obtain low speed flow in the center and higher speed in the 

outer flow and a shear layer in between are plotted. Q-criterion is chosen to feature the 

isosurface in Fig. 6.7 (a) and (b), so that the arch-shaped K-H vortices together with the 

streamwise vortices can be visualized simultaneously. If we draw vortex lines from the position 

of vorticity core, the vortex lines follow the shape of the Q-isosurface, especially the round head 

portion.  

In Fig. 6.7 (c) and (d), a streamwise velocity component of u=0.5U∞ is chosen to 

represent the momentum deficit in the wake, all the vortex lines curve at the top to wrap the 

deficit region. These two observations, especially the later one, are rather similar as that in Fig. 

6.6 in which the vortex lines also wrap the reverse regions.  
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By removing the isosurface, the three vortex lines are solely depicted in Fig. 6.8 with 

different colors. The most upstream vortex line (red) exhibits a strict Ω shape, suggesting this 

larger scale vortex receives withdraws vorticity from the near wall region. The next two 

downstream vortex lines (black and green) obtain a round head, however they both have 

stretched legs extending upstream, which means streamwise vortices contribute to these two 

vortices. The transformed Ω-shaped vortex line (black and green) resembles the similar vortex 

line that takes place in the turbulent boundary layer which shows up as the hairpin vortex. Due 

to the similarity, studying the micro-ramp flow can also shed some light into the understanding 

of wall bounded turbulence. Because of its larger scale, it provides a relatively easier entry 

level. 

  

(a) isosurface of Q-criterion         (b) isosurface of Q-criterion (from side) 

  

(c) isosurface of u=0.5U∞.                        (d) isosurface of u=0.5U∞.(from side) 

Figure 6.7. The three-dimensional representation of the micro-ramp wake with vortex lines. 
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Figure 6.8 The three vortex lines after removing the isosurface in Fig. 6.7. 

6.4 Conclusions and new conceptual topology model 

Summarizing the above discussion on the vortical structures in the rear separation and 

wake region, several conclusions can be drawn: 

1. The flow separation has been clearly revealed and the current numerical result 

agrees with the experimental observation through the velocity contours.  

2. The spiral points at the rear of the micro-ramp can now be understood as the cross-

sections of the small scale vortices. Through the vortex line method, these vortices take the 

form of Ω-like shape and wrap the recirculation region. 

3. The micro-ramp wake obtains similar flow structure as the rear separation where high 

speed flow wrapping the low speed with shear layer in between. Similar Ω-shaped vortex lines 

have been a proof. However the vortex lines in the wake region may exhibit extended leg 

portions corresponding to the streamwise vortices. A conceptual model for the common vortical 

structure for both the rear separation and the wake region is sketched in Fig. 6.9. 

4. Similarity between the current vortical structure and that in the wall bounded 

turbulence can be proposed. As the flow structure has larger scale, further effort to the micro-

ramp flow is desired to be mirrored into the smaller scale wall turbulence. 
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Figure 6.9. The conceptual model of the flow topology. 
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Chapter 7  

STABILTIY ANALYSIS OF COMPRESSIBLE FLOW PASSING A FLAT PLATE 

7.1 The derivation of linear stability equations 

Reorder Navier-Stokes equations governing the flow of a viscous compressible ideal 

gas as momentum, continuity and energy equation. Combined with status equation, the system 

could be written as: 
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where    is the velocity vector,   the density,   the pressure,   the temperature,   the 

gas constant, e /e e eR u l  the Reynolds number,   the ratio of specific heats, Pr the Prandtl 

number, M∞ the Mach number of inflow, k the thermal conductivity, cp the specific heat at 

constant pressure.    the first coefficient of viscosity,   the second coefficient of viscosity,   ̿is 

the surface pressure tensor. The viscous dissipation   is given as: 
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The governing equations for the steady, basic flow may be derived by invoking the 

boundary layer assumption. The stability equations are then derived by assuming small 

disturbances superposed on the basic flow and substituting in the above Navier-Stokes 

equations. Though real gas effects become important at hypersonic speeds in atmosphere 

flight, we consider ideal gas flow since the numerical methods developed here would be 

applicable to the real gas conditions. 
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7.1.1. Basic Flow 

We consider boundary-layer flow past two-dimensional or axisymmetric bodies. The 

governing equations for the basic state whose stability is the subject of this paper can be 

derived using the Mangler-Levy-Lees transformation[61] 
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  ( )
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          (7.6) 

   [     (  )   ](    )
 (    )        (7.7) 

where    is the edge density,    the edge viscosity,    the streamwise edge velocity, 

   the body radius,    a reference length, x the distance along the body, and y normal to it. The 

exponent j   for a two-dimensional body and j   for an axisymmetric body. In     

coordinates, the governing equations for the boundary layer flow may be written as: 
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)  and   is the transverse curvature parameter, ̅ the pressure 

gradient parameter,   the enthalpy,   the ratio of specific heats, and   the edge Mach number 

defined as 
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The Prandtl number Pr is defined as 
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Where    is the specific heat at constant pressure and is assumed to be constant. The 

viscosity   is assumed to be given by the Sutherland formula,  
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The thermal conductivity   may also be prescribed by a similar formula. For the results 

presented in this paper, however, we computer it by assuming       . 

For a flat plate with no pressure gradient, the above equations reduce to   

(   )                (7.12) 

(   
        )              (7.13) 

Note that this is a system of ordinary differential equations which have been solved by a 

fourth-order accurate compact difference scheme and nonlinear shooting method. Non-slip 

boundary conditions were used for either an insulated wall or for a specified wall temperature. 

 

Figure 7.1. Velocity profile in a compressible laminar boundary-layer over our flat plate 

(adabatic wall) 

7.1.2 Compressible Linear Stability Equations 

We use Cartesian coordinates x, y, z, where x is the streamwise direction, z is the 

spanwise direction and y is normal to the solid boundary. All the lengths are assumed scaled by 

a reference length l, velocities by ue, density by  , pressure by    
 , time by l/ue, and other 

variables by corresponding boundary layer edge values. The instantaneous values of velocities, 

u, v, w, pressure p, temperature T, density  , may be repressed as the sum of a mean and a 

fluctuation quantity, i.e.,  
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Substituting these into the nondimensional form of the governing equations yields the 

linearized perturbation equations (after dropping "bars" from the mean quantities) 
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Where             is the Reynolds number,            is the Prandtl number,   is 

the ratio of the specific heats. The mean equation of state can be written as: 

                (7.18) 

We consider the stability of locally parallel compressible boundary layer flow. The 

“locally parallel flow” assumption is the same as used in the application of the Orr-Sommerfeld 

equation to the incompressible boundary layer flow. Under this assumption, 

 ̅   ( )  ̅     ̅   ( )  ̅   ( )  ̅   ( )    (7.19) 

Due to the boundary layer assumption, p is constant across the layer and is equal 

to    ⁄ . In that case     ⁄  and Eq.( 7.17) simplifies to  
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 ̅          (7.20) 

Equation can be used to eliminate density  ̅ from Eq. (7.14)-(7.17). Furthermore, we 

can write 
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Plug equation (7.19) and (7.20) into equations (7.14) - (7.17) and simplify, we get 
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We may now assume that the velocity, pressure, and temperature fluctuations maybe 

represented by a harmonic wave of the form 

( ̃  ̃  ̃)    ̂( )  ̂( )  ̂( )   (        )      (7.25) 

 ̃   ̂( )   (        )        (7.26) 

 ̃   ̂( )  (        )        (7.27) 

Where     are the wave numbers and   is the frequency which, in general, are all 

complex. In temporal stability theory,     are assumed to be real and   is complex while the 

converse is true in the spatial stability theory. 
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Substituting equations (7.25)-(7.27) into (7.22)-(7.24), it can be shown that the linear 

disturbances satisfy the following system of ordinary differential equations 

(        )           (7.28) 

Where   is a five-element vector defined by 

{ ̂  ̂   ̂  ̂  ̂}
  

  

Here      ⁄   while A is given as  

  

[
 
 
 
 
   

 
 

 
 

 

   ]
 
 
 
 

 

and B and C are 5    matrices whose nonzero elements are given in Appendix A. 

Since we are interested in two-dimensional basic flow, the velocity component W(y) may be set 

to zero and  ̂ momentum equation may be dropped, thus the order of the system is reduced. 

The boundary conditions for equation (7.28) are: 

                            (7.29) 

                           (7.30) 

Here temperature perturbation are assumed to vanish at the solid boundary whereas 

the mean flow may be treated with an insulated wall.  

Equations (7.28) - (7.30) constitute an eigenvalue problem described by the complex 

dispersion relation 

   (   )         (7.31) 

and the determination of this relation is essentially the subject.  

7.2 Second Order Finite-Difference (2FD) Method 

 There are two classes of numerical methods that can be used for computing the 

eigenvalues: global and local methods. For global method a generalized eigenvalue problem 

can be set up and the eigenvalues are obtained by standard algorithm like LR or QR or QZ. 

These algorithm yield all the eigenvalues of discretized system and a guess for the eigenvalues 
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is not needed. The local method requires an initial guess. Only the eigenvalue that happens to 

lie in the neighborhood of the guess is computed using iterative techniques such as Newton's 

method. Global methods are computationally much more expensive than local methods but if 

there are no guess of the eigenvalues, it would be useful.  

The methods we described below is for temporal stability where wave number α, β are 

known and the desired eigenvalue is the complex frequency ω.  

The governing system of equations (7.28) is represented using a second-order accurate 

finite-difference formula on a staggered mesh. First the boundary layer coordinate y, 0   

      is mapped onto the computational domain 0     by the algebraic mapping 

  
  

   
          (7.32) 

where          ⁄    Here       is the location where free-stream boundary 

conditions are satisfied and   is a scaling parameter chosen to optimize the accuracy of the 

calculations. Here we use       which will make the meshing grids thicker in the boundary 

layer  

The computational domain   is divided into equal intervals and the second-order 

equations are represented as 
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where     is the value of   at     ⁄  and has components    (       )  Also, 

         , except           for the  ̂ component of    and 

   
(   ) 
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The first-order continuity equation is represented as 

       ⁄
       

  
      ⁄      ⁄         (         )    (7.34) 

Equations 7.33-7.34 along with boundary conditions (7.29)-(7.30) represent 5N+4 

equations for 5N+4 unkonwns. Since the velocity and temperature disturbances are assumed to 

be identically zero at the solid boundary the system reduces to 5N equations for 5N unkonwns. 

This is a block-tridiagonal system of equations with 5 x 5 blocks. Note that no artificial pressure 

boundary conditions are needed since we use staggered mesh.  

The problem should be converted to an eigenvalue problem: 

 ̅     ̅          (7.35) 

where   is the eigenvalue and   is the discrete representation of the eigenfunction. The 

eigenvalue is determined by the determinate condition 

      ̅    ̅           (7.36) 

which is the standard matrix eigenvalue problem, solvable by LR or QR methods[14] if 

 ̅ is invertible or QZ method if not.  

7.3 Numerical Results 

We chose the velocity profile from Rex=187,000 as the input section of temporal case 

(Fig. 7.2). Flow parameters are described in table 7.1. Mach number M, Reynolds number Re, 

velocity profile position xin, inflow temperature T∞, wall temperature Tw and nondimensional 

displacement thickness δ* (scaled with length scale   √
   

  
⁄ , where    is the kinematic 

viscosity at free stream temperature) are presented.   

 



78 

Table 7.1 Flow Parameters 

M∞ Re xin δ* Tw T∞ 

0.5 1000 187 1.8236 273.15 273.15 

 

Figure 7.2. Velocity profile near boundary layer used in numerical analysis  

Figure7.3 shows the solution of eigenvalue problem in equation (7.35) using our code. 

We can also get the corresponding physical solution ω, whose imaginary part ωi is 0.0593 for 

this case. The positive value of imaginary part means flow at this position is unstable.  

 

(a) value of  | ̂|     (b) value of | ̂| 

Figure 7.3 Eigenvector Function at             
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For reference, eigenfunctions of Malik et. al. [61] and Lu [60] were listed for qualitative 

comparison. Since different cases are different in Mach number and Reynolds number, 

quantitative  comparison is not available. 

       

(a) Eigenfunction from Malik[59]  (b) Eigenfunction of TS wave by A. Babucke  

 

(c) Numerical and LST profiles of TS wave from P. Lu et al [60] 

Figure 7.4 Eigenfunction of compressible stability equations for comparison 

The mechanism of the ring generation is a real 3D process. Study in non-linear, 3D and 

compressible stability analysis is needed to reveal the full mechanism of the shear layer 

instability behind MVG. The current study only involves temporal, linear, and compressible 

stability analysis which can be considered as a first step to study the wake instability of MVG. 
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Chapter 8  

CONCLUDING REMARKS 

In this work, by using the implicitly implemented large eddy simulation method with fifth 

order bandwidth-optimized WENO scheme, studies are made on the MVG controlled ramp flow 

at M=2.5 and Re=5760. A body-fitted grid scheme is adopted to make the computational 

accuracy as high as possible. 

Through the computation on the MVG-ramp flow, the same basic wave system is 

obtained as that given by Babinsky. Reasonable agreement in the shape of shocks between the 

computation and experiment is obtained. The implicitly implemented LES has been 

demonstrated to be capable of resolving the detailed structures in the supersonic micro-ramp 

flow, such as the primary vortex pair and the momentum deficit. A number of new findings and 

new mechanisms are obtained through the LES simulation because of the high order accuracy 

and high resolution of the computation, which include: 

i). The complete separation topology is obtained, a representative pair of spiral points 

are found on the plate beside the end of MVG, which implies a new five-pair-vortex model 

around the MVG, and the model is different from the one reported by previous literatures. 

ii). The mechanism of the formation of the momentum deficit is investigated. The 

momentum deficit originates from the fluid in the lower portion of the incoming boundary layer 

along the whole span of the micro-ramp, while the high momentum fluid in the near wall region 

behind the micro-ramp is from the higher portion of the upstream boundary.  

iii). A new phenomenon and its mechanism are discovered in MVG-ramp flow control, 

i.e., the vortex rings generated by the high shear layer. Vortex rings are generated and strongly 

interact with the separation zone and the separation shock, and play an important role in the 

reduction of the size of the separation zone. Base on numerical results, the vortex ring structure 

is studied in detail. The inflection points inside the momentum deficit area are found. The 

mechanism for the vortex rings was analyzed and found that, the existence of the high shear 
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layer and inflection surface generated by the momentum deficit will cause the corresponding 

Kelvin-Helmholtz instability, which develops into a series of vortex rings. The experiment work 

demonstrated that a chain of vortex rings exist in the flow field after the MVG, and these 

structures qualitatively resemble the vortex structure found by the numerical simulation. The 

relation between spanwise and streamwise vorticities are investigated and the vorticity 

conservation control the process of the vortex development. 

iv). The flow separation has been clearly revealed and the current numerical result 

agrees with the experimental observation through the velocity contours. The spiral points at the 

rear of the micro-ramp can now be understood as the cross-sections of the small scale vortices. 

Through the vortex line method, these vortices take the form of Ω-like shape and wrap the 

recirculation region. The micro-ramp wake obtains similar flow structure as the rear separation 

where high speed flow wrapping the low speed with shear layer in between. Similar Ω-shaped 

vortex lines have been a proof. However the vortex lines in the wake region may exhibit 

extended leg portions corresponding to the streamwise vortices. A conceptual model for the 

common vortical structure for both the rear separation and the wake region is brought about for 

better understanding. 

Stability analysis on compressible flow over a flat plate was studied. Global method with 

second order finite-difference method on staggered grids are used to solve the eigenvalue 

problem. The temporal stability analysis was able to reveal the whole spectrum and is the first 

step to reveal the full mechanism of the 3D shear layer instability behind MVG. 
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Appendix A 

The non-zero elements of the coefficient matrix B, C in Eq. (7.28) 
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