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ABSTRACT 

COMPUTER VISION AIDED BRIDGE MONITORING SYSTEM 

 

Sushruth Mune Gowda, M.S 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Roger Walker  

With bridges representing a significant part of the road network in the United 

States, continual monitoring and early detection of deterioration in these structures is vital 

to prevent expensive repairs or catastrophic failures. Advances in sensing and 

information technologies help in monitoring and evaluating the health of a bridge. 

Currently, all the bridge monitoring systems are static in nature. With the help of TxDOTs 

Pavement Management Information System (PMIS) survey, the proposed mobile Bridge 

Monitoring System will periodically monitor these structural changes and help the 

maintanance management decision making process. The mobile Bridge Monitoring 

System has been the topic of ongoing research at the Transportation Instrumentation 

Laboratory for a few years now. The objective of this research is to solve issues related 

to the proposed Bridge Monitoring System which are necessary for its implementation.  
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Chapter 1  

INTRODUCTION 

Bridges represent a significant part of the road network in the United States. 

Continual monitoring and early detection of deterioration in these structures is vital to 

prevent expensive repairs or catastrophic failures. The reason for these deteriorations is 

various external factors such as constant movement of cars and truck traffic, 

earthquakes, winds and waves. By periodically monitoring these structural changes, 

engineers can continually access information for the maintenance of the bridge.   

Currently, there are a number of tools and technologies in use to find structural 

changes; however, current sensing systems often require lengthy cables, are limited in 

coverage, or require manual control. Thus, these systems require much effort and 

manpower to test the integrity of the bridge. Deploying men to nearly 607,380 bridges is a 

costly affair. According to the American Society of Civil Engineers’ eliminating all bridge 

deficiencies in the United States within the next 15 years would require an investment of 

over $20.5 billion each year![1] Therefore, the development of efficient monitoring tools to 

minimize cost is a high priority.  

 

Figure 1-1: Number of Deficient Bridges per county (Blue: Low, Yellow: High) 
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The Texas Department of Transport (TxDOT) conducts an annual survey called 

Pavement Management Information System (PMIS) survey. The purpose of this survey is 

to collect and analyze data concerning the health of pavements. With this data the ride 

quality, structural adequacy, skid resistance, climate, and traffic data is added to describe 

the overall condition of the road network. The PMIS data is used by the decision makers 

at TxDOT to estimate overall pavement maintenance, rehabilitation, and reconstruction 

needs. The PMIS data can also be used to project future needs and the effects of funding 

on pavement condition. Currently, TxDOT has data collection vehicles equipped with 

various sensors and instruments that determine the condition of the pavement.   

A Bridge Monitoring System using cameras has been a topic of ongoing research 

at the Transportation and Instrumentation Laboratory. It is intended to collect visual data 

of all the bridges and overpasses in Texas during the PMIS data collection process. The 

bridge monitoring system would annually update a database of all these bridges. A 

program would then look for changes in bridge structures by analyzing the visual 

information in the database. If a significant change is detected by the system, the 

decision makers are notified, and more thorough static measurements could be directed 

for those bridges.  

The proposed method for a Bridge Monitoring System would be incorporated in 

the PMIS data collection activities. The major components used are: 

1. Control System to stabilize the camera platform. 

2. Camera system to capture video footage of the bridge. 

3. Video processing module for post processing and measuring changes in the 

structure. 

4. Bridge Surface Profile Information. 
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The objective of this research project is to solve issues related to the proposed 

system. Since the PMIS data collection is conducted annually, from a moving vehicle at 

different locations and times, it is prone to unreliability due to vibration, rotation and shift. 

This unreliability causes a change in the camera position, which in turn changes features 

in the visual data. By solving these problems the project can move to the next stage, 

which is, measuring the amount of change.  

Several Computer Vision techniques such as lane detection, vehicle tracking 

feature detection and feature matching are used to make sure that the data acquisition is 

accurate and reliable over time.  

Chapter 2 provides an overview of the research project. 

Chapter 3 provides background information on all the different components 

involved in the project.  

Chapter 4 discusses the implementation of the bridge monitoring system. 

Chapter 5 contains the results of the experiments and the observations made 

during these experiments 

Chapter 6 provides the summary of the project and suggestions for future work.  
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Chapter 2  

PROJECT OVERVIEW AND COMPONENT DESCRIPTION 

This chapter provides a description of the proposed system and system 

components. 

 

2.1 Project Overview 

This research project contains a thorough investigation on methods to solve 

challenges associated with the proposed Bridge Monitoring System. The main problems 

that have been identified are: 

1. Camera Position/Vehicle Position: Every year the PMIS survey vehicle 

travels on the road collecting data. By ensuring that the camera is at 

same pose every year the data collection is branded reliable. Thus, 

running matching and analysis algorithms on the data does not result in 

errors.  

2. Camera Jitter: the camera is prone to vibrations and jitter since it is 

placed on a moving vehicle. The vibrations are reduced by using 

dampers.  

3. Rotation and Shift: even though most of this is handled by the control 

system there is a need for handling this during post processing to make 

the system more robust. 

4. Illumination: two pictures taken from the same position, but at different 

times may differ due to the varying amount of light. This needs to be 

handled during post processing. 
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Figure 2-1: Block Diagram of the Bridge Monitoring System 

 

It is proposed that when TxDOT conducts PMIS survey annually that visual data 

in conjunction with the surface-profile of bridges is also collected on these runs. Detection 

of structural movement in the bridge structure is done by comparing two images taken at 

different times. Error-free data acquisition is possible only after addressing problems like 

vibration of vehicle, rotation and shift of vehicle and camera. Because the final image is 

chosen from a video, the data must be recorded and must pass through many stages that 

check the reliability of the image before measuring the structural parameters. Techniques 

such as lane detection and Scale Invariant Feature Transforms (SIFT) are used to make 

the video acquisition accurate and reliable over time. Every frame in the video contains 

details and keypoints which are extracted by computer vision methods and registered for 

further processing. 

To present an idea of the process of detecting structural changes, consider the 

following scenario. Assume that after carefully handling all the problems the database 

contains two different sets of data from year 1 and year 2 for a particular bridge. To 

measure the amount of change the system takes the difference between data from year 1 
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and year 2. If the system is going to correctly measure the changes, the input data has to 

be precise. Hence, before measuring the changes the system has to make sure it is not 

viewing the bridge from another perspective. 

 

2.2 Gimbal 

The camera stabilizer platform uses a setup that mimics a gyro-stabilized 2 axis 

gimbal by using Brushless Direct Current motors (BLDC) and a Proportional-Integral-

Derivative (PID) controller. Figure 2-2 shows a drawing of the 2 axis gimbal platform. It 

has two motors, one for the roll axis and the other one for the pitch axis. It provides 

housing for the gimbal controller as well. Since the assembly is mounted over the PMIS 

survey vehicle, it is prone to vibrations. The vibrations are significantly reduced by 

dampers that are shown in the figure. The motors and Inertial Measurement Unit are 

attached to the camera platform. The central part is the Gimbal Controller which is 

manufactured by RCTimer[2].  

 

Figure 2-2: 2-Axis Gimbal illustration 
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2.3 Brushless DC Motor and Motor controller 

The Brushless DC (BLDC) Motor is an HP2212 brushless gimbal motor made by 

RCTimer. Wire windings are 0.015 mm in diameter. It has a three core setup, 70 turns 

per core and weighs only 0.1 Kg. 

The BLDC motor controller is a RCTimer brushless gimbal controller v1.0 

manufactured by RCTimer Inc. It has: 

1. An ATMega328P microcontroller 

2. Three channels input  

3. A UART port for debugging 

4. An Onboard logic level converter 

5. An Inertial Measurement Unit. 

 

2.4 Video Recording Unit 

The video recording unit is a digital camera controlled by a computer program. 

This program uses OpenCV libraries to perform computer vision related computations. 

Predicated on the distance traveled and location of the vehicle, video is recorded by the 

application and stored for post-processing.  

The application needs a camera that can be controlled from a third party 

application, which is using OpenCV libraries. For this project, a GoPro Hero3 White 

edition is chosen because of its superior capabilities and efficiency. The camera outputs 

data through a USB port.  
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Table 2-1: Camera Specifications 

Video 

Resolution 
1080p 960p 720p WVGA 

FPS 30,25 30,25 60,50,30,25 60,50 

Field of View Medium Ultra Wide Ultra Wide Ultra Wide 

Screen 

Resolution 
1920 x 1080 1280 x 960 1280 x 720 848 x 480 

Aspect Ratio 16:9 4:3 16:9 16:9 

 

The camera supports H.264 codec and .mp4 file format. The camera has a Spot 

meter which is ideal for filming in tough lighting conditions when the camera is pointed 

towards a brighter outer setting from indoors. It houses an Ultrasharp 6-element a-

spherical glass lens with a fixed aperture of f/2.8 [3].  

 

2.5 Processing Unit 

The embedded processing unit is the most important part of designing any such 

system. The key to selecting the processor is its use. There are many processors 

available today that perform different functions. For example, if the requirements of a 

system are plain signal collection and processing a Digital Signal Processor (DSP) is 

suitable. If the system has to perform a variety of tasks, the General Purpose Processor 

(GPP) is chosen instead of a DSP because the DSP does only one thing. For the 

application of this project, which is to collect video and run various computer vision 

algorithms, a general purpose processor or a graphics processing unit is used.  
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2.5.1 General Purpose Processor 

General Purpose Processors (GPP) are designed for general purpose computers 

such as PCs or workstations. The computation speed of a GPP is the primary concern, 

and the cost of the GPP is usually much higher than that of DSPs and microcontrollers. 

All techniques that can increase CPU speed have been applied to GPPs. For example, 

GPPs often include on-chip cache and on-chip DMAs. Commonly used math operations 

are also supported by the on-chip hardware. GPPs are not designed for fast real-time 

applications. Scalar structure is typical in GPPs but rarely seen in DSPs and 

microcontrollers[4]. A few characteristics of GPPs are 

1. Speed is the primary consideration in GPPs 

2. Provide circuits for memory management like on-chip DMA, on-chip 

cache 

3. Provide hardware circuits for commonly used math and logic operations. 

4. Provide a balanced instruction set 

5. Use pipelining 

6. Use scalar operations 

7. Use wide data buses 

8. Cost is a secondary consideration[4]. 

 

2.5.2 Graphics Processing Unit (GPU) 

The Graphics Processing Unit (GPU) is a computer chip that performs rapid 

mathematical calculations, primarily for the purpose of rendering images. The GPU came 

about as a way to offload graphic-intensive tasks from the CPU, freeing up processing 

power. Specialized logic chips now allow fast graphic and video implementations.  
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The graphics processing unit can render images more quickly than a CPU 

because of its parallel processing architecture, which allows it to perform multiple 

calculations at the same time. The resulting performance improvements have made 

GPUs popular chips for other resource-intensive tasks unrelated to graphics. Applications 

such as computer-aided design (CAD) can process over 200 billion operations per 

second and deliver up to 17 million polygons per second. Many scientists and engineers 

use GPUs for more in-depth calculated studies utilizing vector and matrix features[5].  

 

2.6 Database and Memory Management 

Mixed database management systems (DBMSs) are recommended to support 

this application for PMIS. Sybase SQL Server is recommended for enterprise-wide and  

workgroup applications. Sybase SQL Anywhere is recommended for PC workstation  

applications that have the potential for expansion beyond a single workstation and small 

workgroup applications. Microsoft Access is recommended for individual workstation 

database applications[6]. Since this project deals with storing videos and working on 

post-processing, a large database is required. For local storage, a disk with large 

capacity and high read and write speeds will be appropriate for this project. While 

selecting the memory for use in this project, the bandwidth and access time are 

considered. A large bandwidth and low access time are necessary for the project running 

on a GPP or a GPU.  

For this project, the processing unit consists of Intel’s Core i7 with 8 cores at 

2.67GHz. The system also has a 6GB RAM installed to make the processing even faster 

and an NVIDIA GeForce GTX 560 GPU which supports OpenCV to the fullest. 
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Chapter 3  

BACKGROUND INFORMATION ON THE BRIDGE MONITORING SYSTEM  

3.1 The Pavement Management Information System 

The Pavement Management Information System (PMIS) is a system used by 

TxDOT for collecting, analyzing, storing and reporting information to help with the 

pavement-related decision-making process. It is an analysis tool to aid in pavement 

management. It supports a wide range of activities including planning, highway design, 

maintenance and rehabilitation, evaluation, research, and even extensive, detailed 

reporting of decision makers [7].  

 

3.1.1 PMIS Data Elements 

PMIS is a statewide management tool for monitoring and improving Texas 

roadways, most of the PMIS data is related to pavement distress conditions for discrete 

roadway sections. PMIS also imports and stores large amounts of data collected by other 

databases. Data stored on PMIS are collected and assigned to unique roadway sections. 

TxDOT defines and identifies the road sections by the roadway designation, beginning, 

and ending reference markers and the corresponding displacements from each. These 

reference markers and displacement data by TxDOT in the Texas Reference Marker 

(TRM) database and are annually imported onto PMIS in order to update the section 

information. 

PMIS stores the data pertaining to the primary location, visual distress, nonvisual 

distress, condition scores, maintenance, climate, traffic, pavement type, and cross-

section of a given roadway section. It includes extensive data elements to describe visual 

distress, deflection, skid resistance, rutting and ride quality. Apparently, though, the bulk 

of PMIS data are concerned with recording pavement distress types and severity for 
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roadways sections throughout the state. However, PMIS also imports some of the data 

elements stored on other databases [7]. 

  

3.1.2 Future of PMIS 

One interesting aspect of the PMIS is its interaction with other major 

pavement/materials databases within TxDOT. By merging many maintenance aspects of 

the same organization into one, the cost efficiency increases and output increases. The 

consequence of all the aforementioned connections is that PMIS serves as a strong base 

to incorporate the Bridge Monitoring System.  

 

3.2 Computer Vision 

3.2.1 Introduction 

Recall that the Bridge Monitoring System captures and processes visual data. To 

process the visual data it has to deal with images that have information about the real 

world in the form of a 2D image. Computer Vision is the science and engineering 

discipline concerned with making inferences about the real world, given one or more of its 

images. Science aspect comes in because there are fundamental principles associated 

with the physics of image formation. Engineering aspect comes in because there are 

many practical applications to Computer Vision, one of which is the Bridge Monitoring 

System[8][9].  

Computer Vision is described as the inverse of Computer graphics that deals 

with producing an image from information such as scene geometry, reflectance and 

lighting. Computer vision must address the inverse problem: given an image/multiple 

images, reconstruct the scene geometry, reflectance and illumination. There are three 
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interconnected processes in vision: Recognition of objects and activities, Reorganization 

from pixels to objects and Reconstructing 3D structure.  

 

3.2.2 Camera 

The camera is the main part of the project since it provides access to the 

information needed to detect structural changes in the bridge.  A camera takes an image 

of the real world. When looking at the image in Figure 3-1, it looks like a man taking a 

photograph. To a computer this image is just a bunch of pixels that have some values 

associated with each pixel. It is the human brain that perceives values to form a structure 

and understand what it is. The goal of computer vision is to give computers the same 

capability. In a grand sense, the goal is to go from pixels to perception. So how do 

images get stored digitally? The answer lies in understanding how a camera works. 

 

Figure 3-1: Photo of a man. Consider the pixels in the blue box. 
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Figure 3-2: Digital images array example. 

  

3.2.2.1 Pin Hole Camera 

Imagine a totally dark room with a tiny hole in one wall. That hole projects an 

accurate image of the outside world onto the opposite wall. Without film, a picture cannot 

be captured with it. However, the image can be traced with a pen. Aristotle was familiar 

with that idea, and medieval writers had a lot to say about it. Our word, camera, comes 

from the Latin word for a darkened chamber — a camera obscura[10].  
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Figure 3-3: Camera Obscura  

A camera maps a 3D object into a 2D image. In the figure below the point 

P(X,Y,Z) in the real world is projected onto the image plane at P’(x, y).  

 

Figure 3-4: Basic Pinhole Camera  

The pinhole camera has an optical center C (also known as camera projection 

center) and an image plane as shown in Figure 3-4. The distance of the image plane 

from C is the focal length, f. The principal axis or optical axis is the perpendicular line 

from the camera center to the image plane of the camera. The principal plane or focal 

plane is the plane parallel to the plane containing the optical center of the camera. The 

central or perspective projection define the relationship between the 3D coordinates of a 

scene point and the coordinates of its projection onto the image[12]. 
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Figure 3-5: Principles of operation of a pinhole camera.  

In Figure 3-5, a 3D point is projected onto the image plane with a line containing 

the point and the optical center. Let the center of projection, C be the origin wherein the 

z-axis is the principal axis. By similar triangles, it is readily seen that the 3D point (x,y,z)
T
 

can be represented as (𝑓𝑥 𝑧⁄ , 𝑓𝑦 𝑧⁄ )
 T

 on the image plane. Therefore, X and Y are written 

as  

X = fx/z  (3.1) 

Y = fy/z  (3.2) 

The image plane is a 2D array of sensor elements. There are mainly two types of 

sensors: CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide on 

Silicon). In CCD sensors, charge accumulates during exposure and are transferred out to 

shift registers, digitized and read. In CMOS sensors, the conductivity of each photo-

detector is affected by light. Each value is then digitized and read out using a standard 

multiplexing scheme. Figure 3-6 shows the arrangement of sensors in the image plane.  
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Figure 3-6: Arrangement of sensors in the camera.  

Conversion between the real image and pixel image coordinates: Assume that 

the image center is located at the pixel (cx, cy) in pixel image. The spacing of the pixels is 

(sx, sy) in some measurement units. Refer to Figure 3-7 for an illustration. Then, 

x = (xim-cx)sx; y = (yim-cy)sy (3.3) 

xim = (x/sx)+cx; yim = (y/sy)+cy (3.4) 

 

Figure 3-7: Image plane  
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Below is a representation of the camera projection matrix in terms of matrix 

multiplication.  

(
𝑓𝑥

𝑓𝑦

𝑧

) = [

𝑓 0 0 0
0 𝑓 0 0
0 0 0 0
0 0 1 0

] (

𝑥
𝑦
𝑧
1

) (3.5) 

The matrix describing the mapping is called the camera projection matrix P. 

Rewriting the above equation, 

zm = PM   (3.6) 

Where, M = (x,y,z,1)
T
 are the homogeneous coordinates of the 3D point and 

m=(fx/z,fy/z,1)
T
 are the homogeneous coordinates of the image point. The projection 

matrix P in equation 3.6 represents the simplest possible case, since it only contains 

information about the focal distance f. 

 

3.2.2.2 Camera Parameters  

Intrinsic Parameters:  

1. Focal distance f (in mm). 

2. Principal point (image center) coordinates cx, cy (in pixel). 

3. Width (sx) and height (sy) of the pixel footprint on the camera photo-

sensor (in mm). 

4. Angle θ between axes (usually it is ). 

These parameters are needed to relate an image point to a direction in the 

camera frame. Where fx=f/sx and fy=f/sy. Thus, knowledge of the actual values of f and sx, 

sy is not required; just the ratios are required. The lens distortion parameters also need to 

be considered. 

The camera calibration matrix (K) encodes the transformation from image 

coordinates to pixel coordinates in the image plane. 
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𝐾 = [
𝑓/𝑠𝑥 𝑓/𝑠𝑥 cot 𝜃 𝑐𝑥

0 𝑓/𝑠𝑦 𝑐𝑦

0 0 1

]   (3.7) 

Extrinsic Parameters define the position and orientation of the camera in the real 

world.R,T are the extrinsic parameters where, T is the position of origin of real world 

coordinate system and R is the rotation matrix. There parameters can be used to 

associate points in camera’s image space with points in the real world space. 

 

3.3 Image Features 

A feature is a piece of information that is relevant for solving a computational task 

related to an individual application. Computer vision needs image features such as 

points, edges, and contours for solving problems. In general image features consist of 

two parts, the keypoint and a descriptor.  

The Bridge Monitoring System database has images of thousands of bridges. 

These images have features that are unique to them, and the key to detecting structural 

changes is to extract these features so they can be compared. A feature does not have to 

be something so crucial, it can be something small as a white line on the side of the road, 

which helps in tracking the position of the vehicle.  

The coming section gives a brief description of a few methods that help in 

extracting and describing Keypoints. Points in an image that can be used to find features 

in the image are called Keypoints. Each keypoint has a descriptor, which contains 

information such as pixel intensity, pixel orientation, brightness, nature and distribution of 

light source.  
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3.3.1 Image Filtering  

An image taken from a camera always has noise. The amount of noise depends 

on the quality of the sensor in the camera. The principal sources of noise in digital 

images arise during image acquisition and transmissions. This noise has to be eliminated 

as much as possible without altering the image. The next section contains a discussion of 

some methods used for noise reduction [13].  

 

3.3.1.1 Gray Level Transformations (Point transformation) 

Gray Level Transformation is a point operation where an input pixel value r is 

mapped to the output value s. 

𝑠 = 𝑓(𝑟)  (3.8) 

The above function is applied to every pixel in the image independently. Some types of 

gray level transformations are 

Linear Scaling: The function scales a small input range into a wide output range, 

essentially enhancing the contrast of the values in the input range. Values that are lower 

than a certain value are mapped to zero and values higher than a particular value are 

mapped to the maximum. So there is some loss of information in this range. 

 

Figure 3-8: Plot of linear scaling function  
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Square Scaling: This function tends to enhance input intensities at the high level 

to occupy a larger output range at the expense of values at the lower range which occupy 

a smaller output range.  

 

Figure 3-9: Plot of square scaling function  

 

Logarithmic scaling: this is the opposite of square scaling. It enhances the lower 

values at the expense of higher values.  

 

Figure 3-10: Plot of logarithmic scaling function  
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3.3.1.2 Spatial Filtering 

Instead of mapping from one pixel to another pixel, this technique looks at the 

neighborhood around the pixel. In Figure 3-11, consider a pixel located at (x, y) and 

create a mask of size m × n around it. Then, do a sum of products of mask coefficients 

with corresponding pixels under the mask and store this as the output pixel at (x, y). 

Repeat this for every pixel by sliding the mask over the image. This process is called 

Cross-Correlation. For example, cross-correlating mask window (w) and image (f) to 

produce an output (g).  

𝑔(𝑥, 𝑦) =  ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)
𝑛

2

𝑡=−
𝑛

2

𝑚

2

𝑠=−
𝑚

2

= 𝑤(𝑥, 𝑦) ⊗ 𝑓(𝑥, 𝑦)  (3.9) 

 

Figure 3-11: Spatial Filtering mask operation  

 
For example, the mask matrix looks like this, 

𝑀 =  
1

9
[
1 1 1
1 1 1
1 1 1

]  𝑜𝑟 

𝑀 =  
1

16
[
1 2 1
2 4 2
1 2 1

] 
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M is a box filter or averaging filter. One drawback of averaging filter is that it 

intuitively takes out small variations. A nonlinear filter such as a median filter has better 

performance as compared to an averaging filter as discussed in Appendix A. 

  A Gaussian filter is better than a box filter because it attenuates high frequencies. 

The Gaussian filter has the form  

ℎ(𝑥, 𝑦) =  
1

√2𝜋𝜎2 𝑒−(𝑥2+𝑦2) 2𝜎2⁄    (3.10) 

where, σ is the standard deviation and is a measure of spread of the Gaussian curve. 

Equation 3.10 is a normalized form such that the sum of all values is 1. The Gaussian 

curve is a bell-shaped curve centered at its mean.  

 

Figure 3-12: Gaussian response and normalized values  

 

The 2-D distribution of the Gaussian smoothing filter is used as a point spread 

function. In other words, it is symmetrical about the mean value and it has only one 

maximum at the mean value. The width function is directly proportional to the standard 

deviation, and in effect decides the amount of blurring. As the kernel width is increased, 
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the computational complexity increases. For practical purposes, only three standard 

deviations are taken from the mean. 

Chapter 4 contains a detailed explanation on how filtering and blurring are used 

to make the system more robust. 

 

3.3.2 Edges  

An edge is a point in an image where intensities are changing rapidly. It is a set 

of connected pixels that form a boundary between two disjoint regions. An edge is an 

important feature which can be used to detect objects and scenes. A bridges main 

feature is its edges. A lot of information can be deciphered from looking at an edge such 

as, length, width and angle[14]. Edge detection is also used tracking vehicle position and 

is explained later. Several methods exist today for edge detection and some of them are 

discussed in little detail in the coming sections. 

  

3.3.2.1 Sobel Edge Detector  

In Figure 3-13, an edge is represented by the dotted line, and the solid line 

represents the edge after applying a Gaussian Filter. The first derivative of this curve 

generates a peak at the edge crossing, and the curve tends to zero before and after the 

edge. When the second derivative is applied the curve rapidly increases to a maximum 

and slows down, crosses zero and rapidly decreases to a minimum and increases 

towards zero. In this case the edge is present at the point where the curve crosses zero 

in the middle. 
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Figure 3-13: Detecting edges using Sobel operator  

Going to two-dimensional images, the Sobel operator is used to estimate the 

derivative in the x and y directions. A typical Sobel operator would look like Figure 3-14. 

The masks also do a bit of averaging before doing the derivative as it is a 3 × 3 matrix 

derived from the product of an averaging and a differentiation kernel. Thus, convolving 

the mask with underlying pixels of the image, A, produces the gradient with smoothing. 

𝐾𝑥 =  [
−1 0 1
−2 0 2
−1 0 1

] , 𝐾𝑦 =  [
1 2 1
0 0 0

−1 −2 −1
] 

Where 𝐾𝑥and 𝐾𝑦are the mask operators to compute gradient in x-direction and y-direction 

respectively. The gradient vector is the vector composed of both the x-gradient and the y-

gradient.  

∇𝑓 =  [
𝐺𝑥

𝐺𝑦
]   (3.11) 
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Where, 𝐺𝑥 = 𝐾𝑥 ∗ 𝐴 and 𝐺𝑦 = 𝐾𝑦 ∗ 𝐴. Compute the gradient at every pixel and then the 

magnitude of the gradient. This results in a high magnitude at the x-direction or the y-

direction or both and signals the presence of an edge.  

|∇𝑓| =  [(𝐺𝑥)2 + (𝐺𝑦)
2

]
1/2

 (3.12) 

The angle of the gradient is computed by taking the arctangent of the x and y 

derivatives. 

𝜃 =  tan−1(𝐺𝑥 𝐺𝑦⁄ )  (3.13) 

The advantage of using the Sobel mask for edge detection is that it provides a 

smoothing effect along with providing differentiation. It performs well even when the 

image is noisy. Since the sum of the coefficient of all these masks is zero, it eliminates all 

the low-frequency components of the image, i.e., when these masks operate in the low-

frequency region; the output is close to zero.  

 

3.3.2.2 Canny Edge Operator 

Canny Edge Detector is probably the most common and widely used operator for 

edge detection. The canny edge detector is used in the bridge monitoring system to get 

rid of extra data from the image. Canny derived the optimal edge operator to find step 

edges in the presence of white noise, where “optimal” means  

1. Sound detection: minimize the probability of detecting false edges and 

missing real edges. 

2. Good localization: detected edges in the image must be as close as 

possible to the real edges. 

3. Single response: marks an edge only once and not be affected by noise. 

[15] 
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Figure 3-14: First derivative of Gaussian Function  

Canny found that a very good approximation to the optimal operator is the first 

derivative of a Gaussian, in the direction of the gradient. He then suppresses the non-

maxima along this direction. The algorithm steps are as follows:  

1. Since edge detectors are prone to noise, the image is convolved with the 

derivative of Gaussian operators (𝜕𝐺/𝜕𝑥, 𝜕𝐺/𝜕𝑦) for smoothing it. 

2. Find the gradient magnitude and direction at each pixel; quantize into 

one of the four directions (north-south, east-west, northeast-southwest, 

and northwest-southeast).  

3. If the magnitude of the gradient is larger than the two neighbors in the 

same direction, it is a candidate edge point. 

 

3.3.3 Edge Linking  

After detecting edge points, linking each point to its neighbor forms continuous 

curves or a line. These lines are helpful for object recognition where a long straight line 

may correspond to the boundary of an object. One of the problems with edge linking is 

that some edge points along the curve may be weak causing the algorithm to miss these 
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points. If the contrast of the object against the background is less in some places than 

other places, it will miss these edge points. That results in a broken curve.  

The solution for this problem is to use a two-step approach:  

1. Using a high threshold ensures that the algorithm captures real edge 

points. 

2. Given those detected points, link additional edge points into contours 

using a lower threshold, which essentially is a hysteresis effect. 

The following steps are used to link edges:  

1. Find all edge points greater than the high threshold, Thigh 

2. From each strong edge point, follow the chains of connected edge points 

in both directions perpendicular to the edge. 

3. Mark all points lower than the low threshold, Tlow.  

 

3.3.4 Corners 

The point in an image where two edges intersect is called a corner. A corner 

represents a point that has two dominant and different edge directions in the local 

neighborhood of the point. Hence, the gradient of the image along the two edges have a 

high variation. This property makes a corner an interest point since it has a well-defined 

position and can be robustly detected. 

 

3.3.4.1 Harris Corner Detector 

The quality of a corner detector is defined by its ability to detect a corner in many 

similar images, under conditions of varying illumination, translation and rotation. A simple 

approach to detecting corners in images is using correlation. However, correlation gets 
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computationally expensive. One of the frequently used methods for corner detection is 

the Harris Corner Detector because of its simplicity and robustness.  

The idea behind the Harris corner detector is to localize the point quickly by 

looking through a small window. As shown in Figure 3-16, shifting a small window in any 

direction should give a large change in intensity in at least two gradient directions for the 

point to be classified as a corner. [16]  

 

Figure 3-15: Moving window on a flat region, one edge and a corner  

Figure 3-17 shows three generic cases; an edge in one direction, a flat region 

and a corner. Taking the x-derivative of the linear edge produces a strong gradient where 

the edge is present. The x-derivative of the flat region has no sharp gradient. The x-

derivative of the corner also produces a sharp gradient along one edge. Now, taking the 

y-derivative, linear edge and flat image do not produce a sharp gradient. However, the 

corner creates a gradient along an edge.  
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Figure 3-16: Gaussian response comparison  

 

The distribution of Eigenvalues for areas with no edges, one edge and a corner is 

shown in Figure 3-18. 

 

Figure 3-17: Eigenvalue distribution  
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The window averaged change of intensity by shifting the image data by [u,v] is 

represented as 

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦   (3.14) 

Where, w(x,y) is a Gaussian function and I is the intensity. Considering small shifts by 

Taylor’s expansion, 

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)[𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝑂(𝑢2𝑣2)]
2

𝑥,𝑦   (3.15) 

𝐸(𝑢, 𝑣) = 𝐴𝑢2 + 2𝐶𝑢𝑣 + 𝐵𝑣2 

Where, 

𝐴 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑥
2(𝑥, 𝑦)

𝑥,𝑦

 

𝐵 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑦
2(𝑥, 𝑦)

𝑥,𝑦

 

𝐴 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

𝑥,𝑦

 

A bilinear equation gives the Taylor series approximation, 

𝐸(𝑢, 𝑣) ≅ [𝑢, 𝑣] 𝑀 [
𝑢
𝑣

]     (3.16) 

M is a 2x2 matrix computed from image intensity derivatives, 

𝑀 = ∑ 𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]𝑥,𝑦     (3.17) 

The Eigen Values are computed from this matrix by solving for its trace and determinant. 

det(𝑀) =  𝜆1𝜆2 

trace(𝑀) =  𝜆1−𝜆2 



 

32 

To determine the direction of the edges, look at the eigenvectors. They point 

along prominent directions that many data points lie on. The corresponding eigenvalue 

shows the magnitude of the gradient in that direction. 

 

3.4 Control System 

3.4.1 Introduction 

Control systems are intimately related to the concept of automation. The two 

fundamental types of control systems are feedforward and feedback. The bridge 

monitoring system uses a feedback control system to maintain the stability of the camera 

platform. The system uses a Proportional-Integral-Derivative (PID) controller to manage 

motors that rotate the platform in the roll and pitch axis. The feedback information about 

the movement of the platform is provided by an Inertial Measurement Unit (IMU) which 

measures orientation and acceleration.  

The stabilizer has two fundamental characteristics:  

1. The amount of rotation is varied by using the power from a local source 

rather than a signal. Thus, the operation of moving the motors does not 

load or distort the signals on which the accuracy of control depends on.  

2. The rate at which energy is fed to the motor to effect variations in the 

angle depends on the present and desired angle.  

A control system possessing these fundamental properties is called a closed-

loop control system.  

 

3.4.2 PID Controller 

The control system in the bridge monitoring system uses motors to rotate the 

platform. To be able to control the motors precisely a Proportional-Integral-Derivative 
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controller (PID controller) is required. A PID controller is a closed loop feedback controller 

used in many control system environments. The controller calculates the error value as 

the difference between the actual value of the angle and the desired value. The controller 

minimizes the error by adjusting the process that changes the variable. [17]  

The three values used to minimize error can be interpreted in terms of time as: 

Proportional Term (P) depends on the present error, Integral Term (I) depends on the 

accumulation of past errors, and Differential Term (D) is a prediction of future errors 

based on current rate of change. The sum of these three is used to adjust the process. 

The controller output is given by 

𝑢(𝑡) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡)

𝑡

0
   (3.18) 

3.4.2.1 Proportional Response  

The proportional component depends only on the difference between the desired 

value and the control variable. This difference is referred to as the error term. The 

proportional gain (Kp) determines the ratio of the output response to the error signal. In 

general, increasing the proportional gain will increase the speed of the control system 

response. However, if the proportional gain is too large, the process variable will begin to 

oscillate. If Kp increased further, the oscillations would become larger, and the system will 

become unstable and may even oscillate out of control.[18] The proportional term is given 

by  

𝑃𝑜𝑢𝑡 =  𝐾𝑝𝑒(𝑡)  (3.19) 

 

3.4.2.2 Integral Response  

The integral component sums the error term over time. The result is that even a 

small error term will cause the integral component to increase slowly. The integral 

response will continually increase over time unless error is zero, so the effect is to drive 
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the Steady-State error to zero. Steady-State error is the final difference between the 

process variable current and desired value. A phenomenon called integral windup results 

when integral action saturates a controller without the controller driving the error signal 

toward zero.[18] The Integral term is given by  

𝐼𝑜𝑢𝑡 =  𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝜏
𝑡

0   (3.20) 

3.4.2.3 Derivative Response  

The derivative component causes the output to decrease if the process variable 

is increasing rapidly. The derivative response is proportional to the rate of change of the 

process variable. Increasing the derivative time (Td) parameter will cause the control 

system to react more strongly to changes in the error term and will increase the speed of 

the overall control system response. Most practical control systems use tiny derivative 

time (Td), because the derivative response is highly sensitive to noise in the process 

variable signal. If the sensor feedback signal is noisy or if the control loop rate is too slow, 

the derivative response can make the control system unstable.[18] The derivative term is 

given by 

𝐷𝑜𝑢𝑡 = 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡)  (3.21) 
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Figure 3-18: PID Operation 

 

The idea is to use data from an IMU (Inertial Measurement Unit) to control two 

brushless DC motors connected to the camera platform. These motors will rotate the 

platform in the pitch and roll axis to keep it stable. 

 

3.4.3 Gimbal 

A gimbal is a pivoted support that allows the rotation of an object about a single 

axis. When three gimbals are fixed orthogonal to each other, the setup can be used to 

allow an object mounted on the innermost gimbal to remain independent of its support 

rotation. For example, these are used on ships on drink holders to keep the drinks upright 

even when the ship is pitching and rolling.  

A similar concept is used to stabilize the camera platform using a PID controller 

and two motors. This is just set up to stabilize the camera along roll and pitch axes.  
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Figure 3-19: Gimbal 

 

3.4.4 Brushless DC Motor (BLDC) 

The BLDC Motor, unlike regular motors, has no brushes. Instead, BLDC motor 

has the permanent magnets glued on the rotor. It usually has three magnets around the 

perimeter. The stator of the motor comprises of electromagnets, placed in a cross pattern 

with 90° angle between each electromagnet. An advantage of a BLDC motor is that it can 

be made smaller and lighter than a brush type with the same power output. The 

downside is they need electronic management units, like a microcontroller using input 

from sensors indicating position of the rotor to control the stator coils. Whereas, the 

system can achieve accurate speed and torque control as well as ensure that motors are 

running at peak efficiency[19]. For a more detailed explanation of how the BLDC works, 

refer to Appendix B. 
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Chapter 4  

IMPLEMENTATION OF THE BRIDGE MONITORING SYSTEM 

The previous chapters provided insight into a few computer vision fundamentals 

and algorithms which are essential for this project. This chapter provides information on 

how the components put together form the bridge monitoring system.  

The process contains five parts; setting up the control system, tracking vehicle 

position, compensating for scale variance, feature extraction and matching, and detecting 

structural changes. 

 

4.1 Camera Stabilization 

The need for getting the visual data of the bridge structure with minimum jitter 

and change is of utmost importance. A control system mounted on the vehicle controls 

the movement of the camera platform. The movement of the vehicle is negated by 

rotating the camera platform. The control system calculates the direction, amount and 

speed of rotation required to negate the shift. In this project, a programmable PID 

controller is used to control the motor.  

The platform needs to be stabilized in real time so as to collect accurate video 

information. A system that can cope with the frame rate of the camera is suitable for this 

purpose. Assuming that the camera is running at 30 fps, the platform must become stable 

in less than 33.33 milliseconds. There are several controllers in the market that suit the 

needs of this project. The RCTimer Brushless-Gimbal (BruGi) V1 board is used in this 

project. It has an Future Technology Devices International (FTDI) USB controller chip. 

This board requires the FTDI 2.8.24 Windows driver to communicate with the processing 

unit running a Windows operating system. It comes completely pre-soldered with all the 

pin-outs needed. This system has the capability to react quickly to changes in real time. 
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Figure 4-1 shows the connection diagram for the motors, IMU and the BruGi board. 

Figure 4-2 shows the complete setup with the camera in place. 

 

Figure 4-1: Connection diagram for 2-Axis Brushless Gimbal Controller 

 
Figure 4-2: 2-Axis Gimbal with the recording unit. 

 

x 

y 

IMU 
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4.2 Vehicle Position Tracking  

As mentioned in the previous chapters, keeping track of the position of the 

vehicle with respect to the road is important because the camera pose depends on the 

vehicle position. Hence, maintaining the same vehicle track on every run is crucial. There 

are a few ways to determine the vehicles relative position on the road.  The simplest and 

fastest way is to detect solid white line on the road. 

 

4.2.1 Hough Line Transform and Line Detection 

In this project, the Hough line transform is used to detect lines. Before running 

the Hough line transform, running an edge detection algorithm such as the Canny Edge 

detector is desirable. Canny algorithm finds gradients on the image that has sharp 

changes in the pixel intensities. These are likely contours, and the output is just a binary 

map that shows the location of contours in the image. In an image, a line can be 

expressed in two forms, Cartesian coordinate system (x,y) or Polar coordinate system 

(r,θ). [13] 

 

Figure 4-3: Representation of a line  
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In Polar Coordinates, the line is represented as 

𝑦 =  (−
cos 𝜃

sin 𝜃
) 𝑥 + (

𝑟

sin 𝜃
)   (4.1) 

Or, 

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃   (4.2) 

If at each point (x0,y0), a family of lines that go through that point can be defined 

as  

𝑟𝜃 = 𝑥0 cos 𝜃 + 𝑦0 sin 𝜃   (4.3) 

Here, each pair (rθ,θ) represents a line that passes through (x0,y0). For a given point, 

plotting the family of lines that goes through it, produces a sinusoid. Consider only points 

such that r>0 and 0<θ<2π.  

 

Figure 4-4: Plot of Hough Transform of a point  

Repeating this operation for all the points in an image produces multiple 

sinusoids. If the curves of two different points intersect at (r,θ) that means both those 

points are on the same line. Thus, lines can be detected by finding the number of 

intersections between curves. If more curves intersect at a point in the graph, it indicates 

that the line has more points in it. In this algorithm, the threshold is defined as the 



 

41 

minimum number of intersections needed to detect a line. If the number of intersections is 

above some threshold, then it declares it as a line.  

 

Figure 4-5: Plot of Hough Transform for multiple points  

At this point, the algorithm detects many possible lines in the image, out of which 

one of them is a solid white line marking the edge of the road. Since, the PMIS survey 

vehicle drives on the extreme right lane the solid white line is present only in the bottom 

right of the corner. Taking the bottom right as the Region of Interest (ROI) in the image 

helps the algorithm shortlist the candidate lines. When driving on the right lane, it appears 

that the solid white line is closest to the vehicle on the right-hand side. 

 

4.2.1.1 Finalizing Vehicle Position 

The above procedure describes how to detect the solid white line on the road. 

Since the camera is mounted exactly in the middle of the car, the vertical center of every 

frame captured by the camera should represent the middle of the car. The distance of the 

candidate lines from the center of the image (center of the vehicle) can be calculated and 

the line closest to the center is chosen. After careful observation, it seems  that when 

driving on the right lane the solid white line is closest to the vehicle. The white line acts as 

a reference marker in every run the vehicle makes.  
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4.2.2 Shortcomings of this method  

Even though this algorithm serves the purpose it will run into problems in some 

uncertain situations. To state a few:  

1. The automobile driver needs to be very precise, which is not possible in 

every run and will prove to be a problem. To solve this problem, the 

camera platform needs minor adjustments to keep it in the middle. A 

small system with a motor and gear system will help make these 

adjustments. 

2. In case, there is some roadwork on the side of the road and the solid 

white line is not visible, then this algorithm fails. 

3. If snow covers the line, the algorithm fails. However, according to TxDOT 

the data collection happens in the spring season. 

 

4.3 Image Feature Extraction and Matching 

At this point, the position of the Vehicle/Camera is assumed to be the same on 

every run of the test vehicle. Now the scene frame that matches the reference object 

frame is extracted from the video. In the very first run, the TxDOT vehicle collects bridge 

data for future reference. These videos contain many frames that are suitable to serve as 

a reference. Any of the frames can be manually handpicked and stored as a reference 

image. This image is referenced for matching and analysis of changes in the bridge 

structure in the future. The data from the second run is analyzed against data from the 

first run. The data from the third run is analyzed against data from the second run, and so 

on.  
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The best image match is found by matching unique local features in the scene 

and object images. The features are identified by using a very strong feature extraction 

algorithm called SIFT (Scale Invariant Feature Transform).[20] These features help in 

finding the matching scene frame from the video. The procedure consists of three steps: 

1. Video synchronization: the recording of the video is synchronized to the 

previous reference data with the use of some reference markers or TRM 

data. 

2. Feature Extraction: local features are extracted from each scene frame.  

3. Feature Matching: every frame is checked for similarities with the 

reference image and the one with the maximum number of matches is 

selected and analyzed. 

 

4.3.1 Scale Invariant Feature Transform (SIFT) Algorithm 

The goal of SIFT is to extract distinctive, image scale and rotation invariant 

features that can be correctly matched against a large database of features from many 

images. It is an algorithm that shows robustness towards affine distortion, change in 

viewpoint, addition of noise, and change in illumination. This detection should ideally be 

possible when the image shows the object with different transformations, mainly scale 

and rotation, or when parts of the object are occluded.  

The process consists of three overall steps:  

1. Detection: Automatically identify interesting features, interest points. The 

detection must be done robustly; i.e., the same feature should always be 

detected regardless of viewpoint. Creating scale space and finding local 

extrema of the images helps in finding such features. From these 

extrema, important keypoints are selected.  
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2. Description: Each interest point should have a unique description that 

does not depend on the features scale and rotation. For each key point, 

descriptors are calculated by finding histograms of gradient directions 

and creating a feature vector out of the histograms. 

3. Matching: Given an input image, determine which objects it contains, and 

possibly a transformation of the object, based on predetermined interest 

points.  

The advantages of SIFT are 

1. Locality: features are local, meaning they are applicable to a 

neighborhood of pixels. This property makes it robust to occlusion and 

clutter. 

2. Distinctiveness: individual features can be matched to a large database 

of objects. 

3. Quantity: even small objects sometimes generate many features. 

4. Efficiency: the algorithm exhibits close to real-time performance. 

 

4.3.1.1 Creating Scale Space Images 

Scale space is used for handling image structures at different scales. The scale-

space of an image is represented as a one-parameter family of smoothed images. The 

scale of smoothing depends on one parameter, the size of the smoothing kernel (σ) used 

for suppressing fine-scale structures. The primary type of scale space is the Gaussian 

scale space. The Gaussian scale-space constitutes the canonical way to generate a 

linear scale-space, based on the essential requirement that new structures must not be 

created when going from a fine scale to any coarser scale.  
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To create a scale-space, a series of progressively blurred out images are created 

from the original image. These blurred images form an Octave. The next step is to resize 

the original image to half of the current size and repeat the process to derive another 

Octave. 

 

4.3.1.2 Laplacian of the Gaussian (LoG) 

The Laplacian of the Gaussian is found for the image by varying the scale size 

(σ) values. LoG acts as a blob detector which detects blobs of sizes that are the same as 

σ. Due to variation in σ the LoG finds blobs of different sizes. The scale size σ of the LoG 

filter determines the scale of the blob. So, this process finds  the local maxima and 

minima across the scale space and gives a list of (x,y,σ). This list contains the location of 

potential keypoints at (x,y) of σ scale. 

 

Figure 4-6: Laplacian operator curve and its responses  
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Figure 4-6 shows the response of a signal when applied with the given Laplacian 

function. The given signal has a radius of 8 units. The response curves are shown for 

varying σ values. Notice that when the σ value is same as the signal radius the peak is at 

a maximum. The response shows the scale at which this feature point can be detected 

and the location in the image. 

 

Figure 4-7 shows how these blobs of maxima and minima look in an image. This 

example uses a value of σ = 2. 

 

Figure 4-7: Illustration of LoG operation  

 

4.3.1.3 Difference of the Gaussian (DoG) 

For real-time applications, the LoG operation is not suitable. However, a close 

approximation of the LoG is the DoG. It is obtained by the difference of Gaussian blurring 

of an image with two different σ. Take, for example, the following differences (σ-kσ), (σ-

k
2
σ), (σ-k

3
σ), (σ-k

4
σ), (σ-k

5
σ). An illustration of this example is shown in Figure 4-8. The 
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difference of two consecutive blurred images is taken to produce a DoG image. This DoG 

image is later scouted for extrema. 

 

Figure 4-8: Creating DoG Scale Space  

4.3.1.4 Scale Space Peak Detection 

After calculating the DoG of all Octaves, images are scouted for local extrema 

over a scale and space. For example refer figure 4-9, compare the pixel marked X with 

the current and adjacent scales (green circles). The pixel X is selected if it is the largest 

or the smallest out of all the 26 pixels surrounding it. If it is a local extrema, it is a 

potential keypoint. It means that keypoint is best represented in that scale.  
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Figure 4-9: Illustration of the 26 pixels considered  

4.3.1.5 Keypoint Localization 

Once potential keypoint locations are found, calculating the extrema proves to be 

computationally expensive because of an excessive number of keypoints produced by 

DoG. Hence, the keypoints have to be sampled to detect the most stable subset with a 

coarse sampling of scales.  

Initial rejection of keypoints is done using a Taylor series expansion of the scale 

space to get an accurate location of the extrema. If the intensity at this extrema is less 

than a threshold, it is rejected. The Taylor series expansion of the DoG, D for a point x = 

(x,y,σ)
T
 is given by 

𝐷(𝑥) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑥
 𝑥 +

1

2
𝑥𝑇 𝜕2𝐷

𝜕𝑥2 𝑥   (4.4) 

The minima or maxima is located at 

�̂� =  −
𝜕𝐷−1

𝜕𝑥2

𝜕𝐷

𝜕𝑥
     (4.5) 

In this project, the DoG is used instead of the LoG, because edges have higher 

response than that that of the LoG. The edges are removed for better results. By using a 

concept similar to the Harris corner, detector the edges are removed to reduce the 

number of keypoints even further. The Principal Curvature (PC) along the edge is very 
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low, and across the edge is very high. They used a 2x2 Hessian matrix (H) to compute 

the PC. The PC is given by the eigenvalues of the gradient at the edge point. 

𝐻 =  [
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑥𝑦 𝐷𝑦𝑦
]        (4.6) 

Trace(𝐻) =  𝐷𝑥𝑥 +  𝐷𝑦𝑦 = 𝜆1 + 𝜆2   

Det(𝐻) =  𝐷𝑥𝑥𝐷𝑦𝑦 − (𝐷𝑥𝑦)
2

= 𝜆1𝜆2  

The points are rejected using the ratio, 

Trace(𝐻)2

Det(𝐻)
=

(𝑟+1)2

𝑟
         

𝑟 =
𝜆1

𝜆2
         (4.7) 

According to the Harris corner detector, in edges, one eigenvalue is larger than 

the other. If the ratio is greater than a threshold, that keypoint is discarded. So it 

eliminates any low-contrast keypoints and edge keypoints and what remains is high-

interest points. 

 

4.3.1.6 Orientation Assignment 

After selecting the keypoints, an orientation is assigned to it so as to achieve 

rotation invariance. Depending on the scale, a neighborhood around the keypoint location 

is selected. Central derivatives are computer giving the gradient magnitude (equation 4.8) 

and direction of the smooth image (L) (equation 4.9) in the neighborhood of a keypoint 

(x,y,σ).  

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 (4.8) 

𝜃(𝑥, 𝑦) = tan−1 (
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
)     (4.9) 
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A histogram is created using the gradient directions of the keypoints. The 

orientation of this neighborhood is decided by selecting the direction of the highest peak 

in the histogram. Any peak above 80% of the highest is also considered to calculate the 

orientation. This orientation assignment contributes to the stability of matching. [20] 

 

Figure 4-10: Computing Orientation of the window 

4.3.1.7 Creating the Keypoint Descriptors 

Now that the keypoint descriptor is created, a 16x16 neighborhood around the 

keypoint is divided into 16 sub-blocks of 4x4 sizes. For each sub-block, an 8-bin 

orientation histogram is created. So a total of 128 bin values are available. The 16 

histograms are concatenated to the keypoint descriptor vector or feature vector. This 

vector contains 128 descriptor values.   

2π 
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Figure 4-11: Illustration of a 2x2 Keypoint Descriptor Vector  

 
For example, any gradient in 0-44 degrees is added to the first bin, 45-89 

degrees is added to the next bin, and so on. Also, the number of points added depends 

on the distance from the keypoint. So, gradients that are farther away from the keypoint 

will add smaller values to the histogram.  The feature vector is normalized to the unit 

vector to make it invariant to illumination (affine changes). For non-linear intensity 

transforms the unit vector is bound to a maximum of 0.2 (removing larger gradients), and 

renormalize the unit vector.  

 

4.3.2 Scene Selection from the Video 

Once the keypoints and descriptor vectors are obtained for each frame, finding 

the scene frame that matches the object reference image is the next step. A matching 

algorithm is run on each scene frame against the object. Two algorithms commonly used 

for feature matching are discussed below. 
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4.3.2.1 Brute Force Matcher 

Brute Force Matcher is the simplest matching algorithm. It takes the descriptor of 

one feature in the first set and matches with all other features in the second set. There 

may be more than one close match at this point. To decide which keypoint is the best 

match, Euclidian distance between the two matching points is calculated, and the pair of 

points with the least distance is selected as the closest match. 

  

4.3.2.2 FLANN Based Matcher 

Fast Library for Approximate Nearest Neighbor (FLANN) contains a collection of 

algorithms optimized for fast nearest neighbor search in large datasets and high-

dimensional features. It works faster than Brute Force Matcher for large datasets. [21] 

The Algorithms used in FLANN are:  

1. K-D Tree: K-D stands for K-Dimension. It is a type of the binary tree for 

multi-dimension vectors. The tree is balanced when built by splitting the 

nodes at the median values. The dimension that could divide the 

samples into half (largest variance) at each level is chosen. The tree is 

built with a training set of feature vectors. It is used to find query specific 

value or value ranges and nearest neighbors. 

2. Randomized K-D Tree: Improve the approximation of nearest neighbors 

from the query point by searching simultaneously across a number of 

randomized trees. The tree is built from the same set of samples. 

3. Hierarchical K-Means Tree: It is a tree in which every inner node is split 

in K-ways. K-means clustering is used to classify the data subset at each 

node. An L level tree would have approximately K^L leaf nodes.  
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In this project, brute force matching is suitable since the system is not dealing 

with a large dataset. Running the matching algorithm, gives an idea about the number of 

matches in each frame. The image with the largest number of matches is selected as the 

Final Scene Image. This scene image and corresponding feature vector are stored in the 

database and forwarded to the next stage of this project; i.e., detecting and measuring 

changes in the bridge structure.  
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Chapter 5  

EXPERIMENTS AND RESULTS 

5.1 Testing the Gimbal 

The gimbal with the RCTimer Brushless Gimbal Controller is well known for its 

real-time performance. It reacts well to sudden movements of small magnitude. If the 

movement is large, the gimbal loses stability and regains it after one or two seconds. 

 

5.2 Testing the Line Detection Application 

5.2.1 Robustness and Accuracy 

Figure 5-1 shows the region of interest (ROI) in the image. The ROI is the area in 

the frame where the application scouts for lines. From observation, it is determined that 

the white line appears in this area.  

 

Figure 5-1: Image Region of Interest 
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Figure 5-2 shows the detection of the solid white line on the road under normal 

conditions where there is nothing blocking it. Embedded in this figure is the Canny edge 

detection output for the ROI. Blue line indicates the detected white line. Red line denotes 

the distance.  

 

Figure 5-2: General case line detection 

Figure 5-3 shows how the Euclidean distance is calculated. This information can 

be used for tracking the vehicle’s relative position on the road on each Pavement 

Management Information System (PMIS) survey. Figure 5-4 shows that the algorithm 

works even when the solid white line is broken.  
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Figure 5-3: Illustration of distance calculation 

 

 

Figure 5-4: Broken line detection 
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Figure 5-5 shows an example of line detection in another video captured from the 

helmet cam of a cyclist. Throughout the video, the cyclist moves his head randomly. The 

algorithm can detect the white line precisely even in this case. The video footage from the 

PMIS vehicle is much more stable, and random movement is taken care of by the 

Camera Platform Stabilizer.  

 

Figure 5-5: General case (video 2) 

Figure 5-6 shows a case where the cyclist turns his head to the left such that the 

Solid White line on the other side of the road appears to be closest to the center.  
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Figure 5-6: Detects line closest to the center of the image 

Figure 5-7 shows the detection of the white line with an obstacle blocking the 

view partially. The algorithm picks up the line even when there is some hindrance.  

 

Figure 5-7: Line Detection with an obstacle in the way 
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5.2.2 Processing Time 

The average amount of time taken to capture and store one frame is roughly 

0.0333 seconds, which is close to capturing every frame (720x420 pixels) that the 

camera passes at 30 frames per second.  

The average amount of time taken to capture, detect line and store one frame 

(720x480 pixels) is roughly 0.0624 seconds. This causes the program to miss half of the 

incoming frames. Currently, the application is not threaded and is running as a serial 

program. Real-time performance can be achieved by parallelizing the reading, line 

detection and storing tasks. 

 

5.3 Testing the Feature Detection and Matching Application 

5.3.1 Feature Detection 

The Feature Detector extracts keypoints and computes their descriptors using 

the Scaled Invariant Feature Transform Algorithm. For experimental purposes, a frame 

was chosen at random from the test video to be the reference image for the Feature 

Matching part. Figure 5-8 shows the output of the Feature Detection algorithm when the 

input is the reference frame. The center of each circle is a keypoint, the radius of the 

circle is the scale of the keypoint, and the direction of the line denoting the radius is the 

orientation of that keypoint. For this frame, the algorithm detects 196 unique keypoints 

and computes descriptor array of size 128 for each keypoint. 
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Figure 5-8: Keypoints of the reference image. Keypoints with similar scale have the same 

color. 

 
5.3.2 Feature Matching 

The feature matching algorithm uses a Brute Force Matcher to compare frames 

from the incoming video to the above Reference Image. The algorithm detects keypoints 

and computes descriptors for each frame and compares it with the descriptors of a 

reference image. The similarities between these images are called a matches. If the 

current frame has the maximum number of matches, the index of this frame is noted. If 

another frame appears to have the maximum number of matches then, its index replaces 

the previous match. After going through all the frames the image that had the maximum 

number of matches, its keypoints and descriptors are returned.  
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Figure 5-9: Illustration of matching algorithm. 
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Figure 5-9 shows an illustration of the comparison process. As seen, it perfectly 

detects the matches between each frame. The matching algorithm finds the frame that 

has the most number of similarities to the reference image. This frame is forwarded to the 

final process that detects changes in the bridge structure.  
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Chapter 6  

SUMMARY AND FUTURE WORK 

The proposed method for integrating the bridge monitoring system into the 

Pavement Management Information System (PMIS) has few known problems. This 

research project covered the complexity involved in detecting the bridge movement using 

computer vision. It provides solutions to challenges associated with the bridge monitoring 

system.  One of the challenges is to reduce camera shift, rotation and vibration. The 

rotation and vibration problems are taken care of by the 2-Axis brushless gimbal and 

controller. Since the camera shift depends on the vehicle movement, a line detection 

algorithm is used to determine the lateral position of the vehicle on the road. By handling 

this problem, the system becomes more reliable because it is less prone to collecting 

visual data from a wrong viewpoint.  

The second challenge is the selection of a video frame that makes the best 

match when compared with a reference image. The comparison is done using the Scaled 

Invariant Feature Transform (SIFT) algorithm, which is robust to a small shift, rotation and 

illumination changes. The algorithm outputs unique features that are compared with a 

reference image features to determine if it is a match.  

The experimental results show the accuracy, robustness and speed of the overall 

process. These results are conclusive enough to state that the bridge monitoring system 

can be integrated with the PMIS.  

That said, the bridge monitoring system still has room for improvement, and 

further work has to be done to complete the entire system.  

1. Even though the control system and line detection reduce the amount of 

the camera shift, the accuracy depends on the driver of the vehicle. To 
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make this system perfect, another controller can be used to move the 

entire 2-Axis gimbal horizontally to compensate for the driver's errors. 

2. The PMIS has a pavement profiler that consists of a distance encoder. 

The distance information can be used as a reference to start and stop 

the video recording.  

3. The final stage of the bridge monitoring system is to detect the changes 

in the bridge structure. One technique that can be used is the stereo 

camera system which is explained in Appendix A. The stereo camera 

system provides information about distance in the image that makes it 

easier to measure the amount of change in the structure.
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Appendix A 

BRUSHLESS DC MOTOR BASICS
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A.1 Fundamentals of Brushless DC Motors 

The BLDC motor’s electronic commutator sequentially energizes the stator coils 

generating a rotating electric field that ‘drags’ the rotor around with it. N electrical 

revolutions equates to one mechanical revolution, where N is the number of magnet 

pairs. The BLDC motors experience something called asHall Effect.  If a current carrying 

conductor is kept in a magnetic field, the magnetic field exerts a force on the moving 

charge carriers, tending to push them to one side of the conductor, producing a 

measurable voltage difference between the two sides of the conductor. This phenomenon 

is known as Hall Effect. 

Hall sensors are used to detect the position of the rotor. These sensors can 

detect the North or South Pole. The hall sensor will transmit this signal to the controller of 

the motor. The controller will then switch on or off the appropriate coils in order to provide 

torque.  

 

Figure B- 1: BLDC Arrangement 

Figure shows a typical arrangement of driving a BLDC motor with Hall Sensors. 

Figure shows a typical BLDC system which the three coils of the motor are arranged in a 

“Y” formation, an 8 bit microcontroller, an Insulated Gate Bipolar Effect Transistor (IGBT) 

Driver, and a three-phase inverter comprising of six IGBTs. The output from the 

microcontroller comprises pulse width modulated (PWM) signals that determine the 

average voltage and average current to the coils (and hence motor speed and torque). 
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The motor uses three hall sensors to indicate rotor position. The rotor uses two pairs of 

magnets to generate magnetic flux. 

 

Figure B- 2: BLDC Control System Arrangement 

 
Table A-1: 8-bit values for Clockwise operation of BLDC with 3 magnets 

Sequence 

# 

Hall Sensor Input 

Active PWMs 

Phase Current 

A B C A B C 

1 0 0 1 PWM1(Q1) PWM4(Q4) DC+ Off DC- 

2 0 0 0 PWM1(Q1) PWM2(Q2) DC+  DC- Off 

3 1 0 0 PWM5(Q5) PWM2(Q2) Off Dc- DC+ 

4 1 1 0 PWM5(Q5) PWM0(Q0) DC- Off DC+ 

5 1 1 1 PWM3(Q3) PWM0(Q0) DC- DC+ Off 

6 0 1 1 PWM3(Q3) PWM(Q4) Off DC+ DC- 
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Table A-2: 8-bit values for Counter-Clockwise operation of BLDC with 3 magnets 

Sequence 

# 

Hall Sensor Input 

Active PWMs 

Phase Current 

A B C A B C 

1 0 1 1 PWM5(Q5) PWM2(Q2) Off DC- DC+ 

2 1 1 1 PWM1(Q1) PWM2(Q2) DC+ DC- Off 

3 1 1 0 PWM1(Q1) PWM(Q4) DC+ Off DC- 

4 1 0 0 PWM3(Q3) PWM(Q4) Off DC+ DC- 

5 0 0 0 PWM3(Q3) PWM0(Q0) DC- DC+ Off 

6 0 0 1 PWM5(Q5) PWM0(Q0) DC- Off DC+ 

 

Figure shows the current flow in an identical arrangement of coils to the motor in 

figure above for each of the six steps, and Figure shows the subsequent Hall Effect 

sensor outputs and coil voltages. 

 

Figure A- 3: Current flow in a 3 Motor arrangement 
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Figure B- 4: Hall Sensor Response 

A pair of Hall sensors determines when the microcontroller energizes a coil. In 

this example, sensors Hall A and Hall B determine theswitching of Coil A. When Hall B 

detects a North Pole, coil A is positively energized. When Hall A detects a North Pole, 

coil A is switched to open.  

  



 

70 

 

Appendix B 

CODE
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B.1 Real-Time Video Capture And Line Detection 

B.1.1 Capture.cpp 

#include "opencv2/opencv.hpp" 
#include <ctime> 
#include <conio.h> 
 
#define PI 3.1415926 
 
using namespace cv; 
 
void main(){ 
 int houghVote = 200; 
 int saveFlag = 0; 
 //VideoCapture cap(0); // open the default camera 
 VideoCapture cap("drive.avi"); // open the video 
 if(!cap.isOpened())  // check if we succeeded 
 { 
  getch(); 
  return; 
 } 
 
 char imgFileName[50]=""; 
 int n = 0; 
 double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of 
frames of the video 
 double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height 
of frames of the video 
 
 std::cout << "Frame Size = " << dWidth << "x" << dHeight << 
std::endl; 
 
 
 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight)); 
 Size 
cannyFrame(static_cast<int>(dWidth/2),static_cast<int>(dHeight/3)); 
 
 VideoWriter videoWriter ("LaneDetection.avi", 
CV_FOURCC('P','I','M','1'), 30, frameSize, true); //initialize the 
VideoWriter object  
 VideoWriter newvideo 
("canny.avi",CV_FOURCC('P','I','M','1'),30,frameSize,true); 
 
 namedWindow("LINE DETECTION",1); 
 
 while (1) 
 { 
  double begin = getTickCount(); 
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  Mat image; 
  Mat gray; 
  std::vector<Vec2f> lines; 
  cap >> image; // get a new frame from camera 
 
 
  if (image.empty()) 
   break; 
  if(waitKey(10) >= 0) break; 
 
  n++; 
 
 
  //videoWriter.write(image); 
 
 
  cvtColor(image,gray,CV_RGB2GRAY); 
  vector<string> codes; 
 
  Rect 
roi(image.cols/2,2*image.rows/3,image.cols/2,image.rows/3);// set the ROI 
for the image 
  Mat imgROI = image(roi); 
 
  // Canny algorithm 
  Mat contours,imgBLUR; 
  blur(imgROI,imgBLUR,Size(3,3)); 
  Canny(imgBLUR,contours,70,90,3); 
  Mat contoursInv; 
  threshold(contours,contoursInv,128,255,THRESH_BINARY_INV); 
  imshow("CANNY",contours); 
  //newvideo.write(contours); 
  /*  
  Hough tranform for line detection with feedback 
  Increase by 25 for the next frame if we found some lines.   
  This is so we don't miss other lines that may crop up in the 
next frame 
  but at the same time we don't want to start the feed back loop 
from scratch.  
  */ 
 
  if (houghVote < 1 || lines.size() > 2){ // we lost all lines. 
reset  
   houghVote = 200;  
  } 
  else{ houghVote += 25;}  
  while(lines.size() < 5 && houghVote > 0){ 
   HoughLines(contours,lines,1,PI/180, houghVote); 
   houghVote -= 5; 
  } 
  std::cout << houghVote << "\n"; 
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  Mat result(imgROI.size(),CV_8U,Scalar(255)); 
  imgROI.copyTo(result); 
 
  Point PT1,PT2,prev_pt2; 
  Point center; 
  float dist,prev_dist = 0,minDist = 0; 
  float x,y; 
  center.x = image.cols/2; 
  center.y = image.rows; 
  // Draw the lines 
  std::vector<Vec2f>::const_iterator it= lines.begin(); 
  Mat hough(imgROI.size(),CV_8U,Scalar(0)); 
  while (it!=lines.end()) { 
 
   float rho= (*it)[0];   // first element is distance rho 
   float theta= (*it)[1]; // second element is angle theta 
 
   if ( theta > 0.09 && theta < 1.48 || theta < 3.14 && 
theta > 1.66 ) { // filter to remove vertical and horizontal lines 
 
    // point of intersection of the line with first 
row 
    Point pt1(rho/cos(theta),image.rows-
result.rows); 
    // point of intersection of the line with last 
row 
    Point pt2((rho-
result.rows*sin(theta))/cos(theta),image.rows); 
 
    dist = sqrt(pt2.x*pt2.x + pt2.y*pt2.y); 
    if(minDist == 0) 
    { 
     minDist = dist; 
     PT1 = pt1; 
     PT2 = pt2; 
    } 
    else if(dist < minDist) 
    { 
     minDist = dist; 
     PT1 = pt1; 
     PT2 = pt2; 
    } 
 
   } 
   ++it; 
  } 
  // Display the detected line image 
  PT1.x = PT1.x+image.cols/2; 
  PT2.x = PT2.x+image.cols/2; 
  line( image, PT1, PT2, Scalar(255,0,0), 8); 
  line( image, center, PT2, Scalar(0,0,255), 8); 
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  if(minDist == 0) minDist = image.cols/2; 
  std::stringstream stream; 
  stream << "Distance: " << minDist-image.cols/2; 
 
  putText(image, stream.str(), Point(10,image.rows-10), 2, 0.8, 
Scalar(0,0,255),0); 
  imshow("LINE DETECTION",image); 
  //videoWriter.write(image); 
 
  char key = (char) waitKey(10); 
  lines.clear(); 
  double end = getTickCount(); 
  double elapsed_secs = double(end - begin) / 
getTickFrequency(); 
  printf("%f\n",elapsed_secs); 
  lines.~vector(); 
  codes.~vector();    
 } 
 cap.release(); 
 cap.~VideoCapture(); 
 videoWriter.release(); 
 videoWriter.~VideoWriter(); 
} 
 

B.2 Feature Detection and Matching 

B.2.1 Match.cpp 

#include "Match.h" 
#include <iostream> 
//#include "LaneDetect.cpp" 
 
using namespace cv; 
 
 
 
Mat CombineImagesVertically(Mat img_temp1,Mat img_temp2) 
{ 
 Mat img_temp_combined; 
 img_temp_combined.rows = img_temp1.rows + img_temp2.rows; 
 img_temp_combined.cols = MAX(img_temp1.cols, img_temp2.cols); 
 img_temp_combined = 
cvCreateImage(cvSize(img_temp_combined.cols,img_temp_combined.rows),8,3); 
 Mat top(img_temp_combined,Rect(0,0,img_temp1.cols,img_temp1.rows)); 
 Mat 
bottom(img_temp_combined,Rect(0,img_temp1.rows,img_temp2.cols,img_temp2.row
s)); 
 img_temp1.copyTo(top); 
 img_temp2.copyTo(bottom); 
 return img_temp_combined; 
} 
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Mat DrawLine(vector<KeyPoint>keypoints_1,vector<KeyPoint>keypoints_2,int 
num_matches,int offset,Mat combined,vector<DMatch>matches) 
{ 
 float slope,rad,deg; 
 float dist; 
 float x,y; 
 Point2f point_old,point_new; 
 RNG rng; 
 int icolor = (unsigned) rng; 
 int n = 0; 
 
 for(int i = 0;i < num_matches; i++) 
 { 
  point_old = keypoints_1[matches[i].queryIdx].pt; 
 
  point_new = keypoints_2[matches[i].trainIdx].pt; 
 
  point_new.y += offset; 
 
  slope = ((point_old.y-point_new.y)/(point_old.x-point_new.x)); 
 
  rad = atan(slope); 
  deg = rad * 180 / CV_PI; 
 
  x = point_old.x-point_new.x; 
  y = point_old.y-point_new.y; 
  dist = sqrt(x*x + y*y); 
 
  if(((abs(deg)<92.1) && (abs(deg)>87.9))) 
  { 
   line(combined, point_old, point_new, Scalar( 
icolor&255, (icolor>>8)&255, (icolor>>16)&255 ), 1, 1, 0); 
   n++; 
  } 
 } 
 printf("%d ",n); 
 return combined; 
} 
 
int main(int argc, char* argv[]) 
{ 
 cv::initModule_nonfree(); 
 string vidName, imgName; 
 if(argc ==  3) 
 { 
  vidName = argv[1]; 
  imgName = argv[2]; 
 } 
 else  
 { 
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  std::cout << "Invalid syntax" << std::endl; 
 } 
 
 
 VideoCapture cap(vidName); // open the default camera 
 if(!cap.isOpened())  // check if we succeeded 
  return -1;  
 
 cap.set(CV_CAP_PROP_FPS,30); 
 double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of 
frames of the video 
 double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height 
of frames of the video 
 
 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight)); 
 
 Mat img_object, img_scene, img_best_match,combined,output; 
 std::vector<KeyPoint> keypoints_scene, keypoints_object, 
keypoints_best_match; 
 Mat descriptors_object, descriptors_scene, descriptors_best_match; 
 img_object = imread(imgName,CV_LOAD_IMAGE_COLOR); 
 int minHessian = 1000; 
 int matchsize=0, max_matchsize=0; 
 int flag = 0; 
 SiftFeatureDetector detector( minHessian ); 
 detector.detect( img_object, keypoints_object ); 
 
 SiftDescriptorExtractor extractor; 
 extractor.compute( img_object, keypoints_object, descriptors_object 
); 
 
 printf("Keypoints: %d, Descriptors: 
%d\n",keypoints_object.size(),descriptors_object.size()); 
 
 Ptr<DescriptorMatcher> matcher = new BFMatcher(NORM_L2,false); 
 
 std::vector< DMatch > best_match; 
 int nCount = 0; 
 
 while(1) 
 { 
  double begin = getTickCount(); 
  nCount++; 
  cap >> img_scene; 
  //cap.read(img_scene); 
  if (img_scene.empty()) 
   break; 
  if(waitKey(10) >= 0) break; 
 
  imwrite("video_frame.jpg", img_scene); 
  //-- Step 1: Detect the keypoints using SIFT Detector 
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  img_scene = imread("video_frame.jpg",CV_LOAD_IMAGE_COLOR); 
  detector.detect( img_scene, keypoints_scene ); 
  //-- Step 2: Calculate descriptors (feature vectors) 
 
  extractor.compute( img_scene, keypoints_scene, 
descriptors_scene ); 
  //-- Step 3: Matching descriptor vectors using Brute-Force 
matcher 
 
  std::vector< DMatch > matches; 
 
  matcher->match( descriptors_object, descriptors_scene, matches 
); 
  // 
  double max_dist = 0; double min_dist = 100; 
 
  //-- Quick calculation of max and min distances between 
keypoints 
  for( int i = 0; i < matches.size(); i++ ) 
  { double dist = matches[i].distance; 
  if( dist < min_dist ) min_dist = dist; 
  if( dist > max_dist ) max_dist = dist; 
  } 
 
  //-- Draw only "good" matches (i.e. whose distance is less 
than 3*min_dist ) 
  std::vector< DMatch > good_matches; 
 
  for( int i = 0; i < matches.size(); i++ ) 
  {  
   if( matches[i].distance <= 1.82*min_dist ) 
   {  
    good_matches.push_back( matches[i]); 
   } 
  } 
  double end = getTickCount(); 
  double elapsed_secs = double(end - begin) / 
getTickFrequency(); 
  matchsize = good_matches.size(); 
  int offset = img_object.rows; 
  printf("# of Matches in %d: ",nCount); 
  output = CombineImagesVertically(img_object,img_scene); 
  output = 
DrawLine(keypoints_object,keypoints_scene,matchsize,offset,output,good_matc
hes); 
  printf("OF %d\tElapsed Time:%f\t\n",matchsize,elapsed_secs ); 
 
  matchsize = 0; 
  flag = 1; 
  imshow("Matches",output); 
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  waitKey(1); 
  matches.~vector(); 
 } 
 
 
 
 waitKey(0); 
 return 0; 
} 
 
B.2.2 Match.hpp 

#include <stdio.h> 
#include <iostream> 
#include <vector> 
 
#include "opencv2/opencv.hpp" 
#include "opencv2/core/core.hpp" 
#include "opencv2/features2d/features2d.hpp" 
#include "opencv2/nonfree/features2d.hpp" 
#include "opencv2/highgui/highgui.hpp" 
#include "opencv2/imgproc/imgproc.hpp" 
#include "opencv2/nonfree/nonfree.hpp" 
#include "opencv2/objdetect/objdetect.hpp" 
 
 
#define PI 3.1415926 
 
using namespace cv; 
/* 
Declarations 
*/ 
 
Mat CombineImagesVertically(Mat,Mat); 
 
Mat DrawLine(vector<KeyPoint>,vector<KeyPoint>,int,int,Mat,vector<DMatch>); 
 
extern void LineDetect(Mat); 
 
extern int InversePerspectiveTransform( Mat ); 
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