
 COMPUTER VISION AIDED BRIDGE MONITORING SYSTEM

by

SUSHRUTH MUNE GOWDA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2014

ii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the constant support and

encouragement I received from Dr. Roger Walker. From the first vague proposal of this

topic to later queries on focus and connection, he was always eager to entertain my ideas

and help me however he can. I sincerely thank him for his consistent efforts and true

desire to keep me on track.

I would also like to thank my committee members, Dr. Jonathan Bredow and Dr.

Alan Davis for serving in my defense committee despite their overwhelmingly busy

schedule.

Special thanks to my friends and fellow lab-mates Ashwin Arikere, Vikram Simha

and Sachin Jayaram who helped and encouraged me in every step of the way in my time

at the university.

Finally, I would like to express my deepest gratitude to my family. Their support

and unwavering confidence in my ability helped me achieve my academic dreams.

November 13, 2014

iii

ABSTRACT

COMPUTER VISION AIDED BRIDGE MONITORING SYSTEM

Sushruth Mune Gowda, M.S

The University of Texas at Arlington, 2014

Supervising Professor: Roger Walker

With bridges representing a significant part of the road network in the United

States, continual monitoring and early detection of deterioration in these structures is vital

to prevent expensive repairs or catastrophic failures. Advances in sensing and

information technologies help in monitoring and evaluating the health of a bridge.

Currently, all the bridge monitoring systems are static in nature. With the help of TxDOTs

Pavement Management Information System (PMIS) survey, the proposed mobile Bridge

Monitoring System will periodically monitor these structural changes and help the

maintanance management decision making process. The mobile Bridge Monitoring

System has been the topic of ongoing research at the Transportation Instrumentation

Laboratory for a few years now. The objective of this research is to solve issues related

to the proposed Bridge Monitoring System which are necessary for its implementation.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT ...iii

LIST OF TABLES ... ix

Chapter 1 INTRODUCTION .. 1

Chapter 2 PROJECT OVERVIEW AND COMPONENT DESCRIPTION 4

2.1 Project Overview... 4

2.2 Gimbal .. 6

2.3 Brushless DC Motor and Motor controller .. 7

2.4 Video Recording Unit .. 7

2.5 Processing Unit... 8

2.5.1 General Purpose Processor .. 9

2.5.2 Graphics Processing Unit (GPU) ... 9

2.6 Database and Memory Management ... 10

Chapter 3 BACKGROUND INFORMATION ON THE BRIDGE MONITORING

SYSTEM ... 11

3.1 The Pavement Management Information System .. 11

3.1.1 PMIS Data Elements ... 11

3.1.2 Future of PMIS .. 12

3.2 Computer Vision ... 12

3.2.1 Introduction .. 12

3.2.2 Camera .. 13

3.2.2.1 Pin Hole Camera .. 14

3.2.2.2 Camera Parameters ... 18

3.3 Image Features... 19

v

3.3.1 Image Filtering ... 20

3.3.1.1 Gray Level Transformations (Point transformation) 20

3.3.1.2 Spatial Filtering .. 22

3.3.2 Edges .. 24

3.3.2.1 Sobel Edge Detector .. 24

3.3.2.2 Canny Edge Operator .. 26

3.3.3 Edge Linking .. 27

3.3.4 Corners .. 28

3.3.4.1 Harris Corner Detector ... 28

3.4 Control System ... 32

3.4.1 Introduction .. 32

3.4.2 PID Controller .. 32

3.4.2.1 Proportional Response .. 33

3.4.2.2 Integral Response .. 33

3.4.2.3 Derivative Response .. 34

3.4.3 Gimbal ... 35

3.4.4 Brushless DC Motor (BLDC) ... 36

Chapter 4 IMPLEMENTATION OF THE BRIDGE MONITORING SYSTEM 37

4.1 Camera Stabilization .. 37

4.2 Vehicle Position Tracking ... 39

4.2.1 Hough Line Transform and Line Detection ... 39

4.2.1.1 Finalizing Vehicle Position ... 41

4.2.2 Shortcomings of this method ... 42

4.3 Image Feature Extraction and Matching .. 42

4.3.1 Scale Invariant Feature Transform (SIFT) Algorithm 43

vi

4.3.1.1 Creating Scale Space Images ... 44

4.3.1.2 Laplacian of the Gaussian (LoG) ... 45

4.3.1.3 Difference of the Gaussian (DoG).. 46

4.3.1.4 Scale Space Peak Detection ... 47

4.3.1.5 Keypoint Localization ... 48

4.3.1.6 Orientation Assignment .. 49

4.3.1.7 Creating the Keypoint Descriptors ... 50

4.3.2 Scene Selection from the Video .. 51

4.3.2.1 Brute Force Matcher .. 52

4.3.2.2 FLANN Based Matcher .. 52

Chapter 5 EXPERIMENTS AND RESULTS ... 54

5.1 Testing the Gimbal.. 54

5.2 Testing the Line Detection Application ... 54

5.2.1 Robustness and Accuracy ... 54

5.2.2 Processing Time .. 59

5.3 Testing the Feature Detection and Matching Application 59

5.3.1 Feature Detection .. 59

5.3.2 Feature Matching... 60

Chapter 6 SUMMARY AND FUTURE WORK .. 63

Appendix A BRUSHLESS DC MOTOR BASICS .. 65

Appendix B CODE .. 70

References .. 79

Biographical Information ... 81

vii

LIST OF ILLUSTRATIONS

Figure 1-1: Number of Deficient Bridges per county (Blue: Low, Yellow: High) 1

Figure 2-1: Block Diagram of the Bridge Monitoring System .. 5

Figure 2-2: 2-Axis Gimbal illustration .. 6

Figure 3-1: Photo of a man. Consider the pixels in the blue box. 13

Figure 3-2: Digital images array example. .. 14

Figure 3-3: Camera Obscura .. 15

Figure 3-4: Basic Pinhole Camera .. 15

Figure 3-5: Principles of operation of a pinhole camera. .. 16

Figure 3-6: Arrangement of sensors in the camera. ... 17

Figure 3-7: Image plane .. 17

Figure 3-8: Plot of linear scaling function .. 20

Figure 3-9: Plot of square scaling function.. 21

Figure 3-10: Plot of logarithmic scaling function ... 21

Figure 3-11: Spatial Filtering mask operation ... 22

Figure 3-12: Gaussian response and normalized values ... 23

Figure 3-13: Detecting edges using Sobel operator ... 25

Figure 3-14: First derivative of Gaussian Function ... 27

Figure 3-15: Moving window on a flat region, one edge and a corner 29

Figure 3-16: Gaussian response comparison ... 30

Figure 3-17: Eigenvalue distribution ... 30

Figure 3-18: PID Operation ... 35

Figure 3-19: Gimbal .. 36

Figure 4-1: Connection diagram for 2-Axis Brushless Gimbal Controller 38

Figure 4-2: 2-Axis Gimbal with the recording unit. .. 38

viii

Figure 4-3: Representation of a line .. 39

Figure 4-4: Plot of Hough Transform of a point .. 40

Figure 4-5: Plot of Hough Transform for multiple points ... 41

Figure 4-6: Laplacian operator curve and its responses ... 45

Figure 4-7: Illustration of LoG operation ... 46

Figure 4-8: Creating DoG Scale Space .. 47

Figure 4-9: Illustration of the 26 pixels considered ... 48

Figure 4-10: Computing Orientation of the window .. 50

Figure 4-11: Illustration of a 2x2 Keypoint Descriptor Vector ... 51

Figure 5-1: Image Region of Interest .. 54

Figure 5-2: General case line detection .. 55

Figure 5-3: Illustration of distance calculation ... 56

Figure 5-4: Broken line detection .. 56

Figure 5-5: General case (video 2) ... 57

Figure 5-6: Detects line closest to the center of the image ... 58

Figure 5-7: Line Detection with an obstacle in the way .. 58

Figure 5-8: Keypoints of the reference image. Keypoints with similar scale have the same

color... 60

Figure 5-9: Illustration of matching algorithm. ... 61

ix

LIST OF TABLES

Table 2-1: Camera Specifications ... 8

Table B-1: 8-bit values for Clockwise operation of BLDC with 3 magnets 67

Table B-2: 8-bit values for Counter-Clockwise operation of BLDC with 3 magnets 68

1

Chapter 1

INTRODUCTION

Bridges represent a significant part of the road network in the United States.

Continual monitoring and early detection of deterioration in these structures is vital to

prevent expensive repairs or catastrophic failures. The reason for these deteriorations is

various external factors such as constant movement of cars and truck traffic,

earthquakes, winds and waves. By periodically monitoring these structural changes,

engineers can continually access information for the maintenance of the bridge.

Currently, there are a number of tools and technologies in use to find structural

changes; however, current sensing systems often require lengthy cables, are limited in

coverage, or require manual control. Thus, these systems require much effort and

manpower to test the integrity of the bridge. Deploying men to nearly 607,380 bridges is a

costly affair. According to the American Society of Civil Engineers’ eliminating all bridge

deficiencies in the United States within the next 15 years would require an investment of

over $20.5 billion each year![1] Therefore, the development of efficient monitoring tools to

minimize cost is a high priority.

Figure 1-1: Number of Deficient Bridges per county (Blue: Low, Yellow: High)

2

The Texas Department of Transport (TxDOT) conducts an annual survey called

Pavement Management Information System (PMIS) survey. The purpose of this survey is

to collect and analyze data concerning the health of pavements. With this data the ride

quality, structural adequacy, skid resistance, climate, and traffic data is added to describe

the overall condition of the road network. The PMIS data is used by the decision makers

at TxDOT to estimate overall pavement maintenance, rehabilitation, and reconstruction

needs. The PMIS data can also be used to project future needs and the effects of funding

on pavement condition. Currently, TxDOT has data collection vehicles equipped with

various sensors and instruments that determine the condition of the pavement.

A Bridge Monitoring System using cameras has been a topic of ongoing research

at the Transportation and Instrumentation Laboratory. It is intended to collect visual data

of all the bridges and overpasses in Texas during the PMIS data collection process. The

bridge monitoring system would annually update a database of all these bridges. A

program would then look for changes in bridge structures by analyzing the visual

information in the database. If a significant change is detected by the system, the

decision makers are notified, and more thorough static measurements could be directed

for those bridges.

The proposed method for a Bridge Monitoring System would be incorporated in

the PMIS data collection activities. The major components used are:

1. Control System to stabilize the camera platform.

2. Camera system to capture video footage of the bridge.

3. Video processing module for post processing and measuring changes in the

structure.

4. Bridge Surface Profile Information.

3

The objective of this research project is to solve issues related to the proposed

system. Since the PMIS data collection is conducted annually, from a moving vehicle at

different locations and times, it is prone to unreliability due to vibration, rotation and shift.

This unreliability causes a change in the camera position, which in turn changes features

in the visual data. By solving these problems the project can move to the next stage,

which is, measuring the amount of change.

Several Computer Vision techniques such as lane detection, vehicle tracking

feature detection and feature matching are used to make sure that the data acquisition is

accurate and reliable over time.

Chapter 2 provides an overview of the research project.

Chapter 3 provides background information on all the different components

involved in the project.

Chapter 4 discusses the implementation of the bridge monitoring system.

Chapter 5 contains the results of the experiments and the observations made

during these experiments

Chapter 6 provides the summary of the project and suggestions for future work.

4

Chapter 2

PROJECT OVERVIEW AND COMPONENT DESCRIPTION

This chapter provides a description of the proposed system and system

components.

2.1 Project Overview

This research project contains a thorough investigation on methods to solve

challenges associated with the proposed Bridge Monitoring System. The main problems

that have been identified are:

1. Camera Position/Vehicle Position: Every year the PMIS survey vehicle

travels on the road collecting data. By ensuring that the camera is at

same pose every year the data collection is branded reliable. Thus,

running matching and analysis algorithms on the data does not result in

errors.

2. Camera Jitter: the camera is prone to vibrations and jitter since it is

placed on a moving vehicle. The vibrations are reduced by using

dampers.

3. Rotation and Shift: even though most of this is handled by the control

system there is a need for handling this during post processing to make

the system more robust.

4. Illumination: two pictures taken from the same position, but at different

times may differ due to the varying amount of light. This needs to be

handled during post processing.

5

Figure 2-1: Block Diagram of the Bridge Monitoring System

It is proposed that when TxDOT conducts PMIS survey annually that visual data

in conjunction with the surface-profile of bridges is also collected on these runs. Detection

of structural movement in the bridge structure is done by comparing two images taken at

different times. Error-free data acquisition is possible only after addressing problems like

vibration of vehicle, rotation and shift of vehicle and camera. Because the final image is

chosen from a video, the data must be recorded and must pass through many stages that

check the reliability of the image before measuring the structural parameters. Techniques

such as lane detection and Scale Invariant Feature Transforms (SIFT) are used to make

the video acquisition accurate and reliable over time. Every frame in the video contains

details and keypoints which are extracted by computer vision methods and registered for

further processing.

To present an idea of the process of detecting structural changes, consider the

following scenario. Assume that after carefully handling all the problems the database

contains two different sets of data from year 1 and year 2 for a particular bridge. To

measure the amount of change the system takes the difference between data from year 1

6

and year 2. If the system is going to correctly measure the changes, the input data has to

be precise. Hence, before measuring the changes the system has to make sure it is not

viewing the bridge from another perspective.

2.2 Gimbal

The camera stabilizer platform uses a setup that mimics a gyro-stabilized 2 axis

gimbal by using Brushless Direct Current motors (BLDC) and a Proportional-Integral-

Derivative (PID) controller. Figure 2-2 shows a drawing of the 2 axis gimbal platform. It

has two motors, one for the roll axis and the other one for the pitch axis. It provides

housing for the gimbal controller as well. Since the assembly is mounted over the PMIS

survey vehicle, it is prone to vibrations. The vibrations are significantly reduced by

dampers that are shown in the figure. The motors and Inertial Measurement Unit are

attached to the camera platform. The central part is the Gimbal Controller which is

manufactured by RCTimer[2].

Figure 2-2: 2-Axis Gimbal illustration

7

2.3 Brushless DC Motor and Motor controller

The Brushless DC (BLDC) Motor is an HP2212 brushless gimbal motor made by

RCTimer. Wire windings are 0.015 mm in diameter. It has a three core setup, 70 turns

per core and weighs only 0.1 Kg.

The BLDC motor controller is a RCTimer brushless gimbal controller v1.0

manufactured by RCTimer Inc. It has:

1. An ATMega328P microcontroller

2. Three channels input

3. A UART port for debugging

4. An Onboard logic level converter

5. An Inertial Measurement Unit.

2.4 Video Recording Unit

The video recording unit is a digital camera controlled by a computer program.

This program uses OpenCV libraries to perform computer vision related computations.

Predicated on the distance traveled and location of the vehicle, video is recorded by the

application and stored for post-processing.

The application needs a camera that can be controlled from a third party

application, which is using OpenCV libraries. For this project, a GoPro Hero3 White

edition is chosen because of its superior capabilities and efficiency. The camera outputs

data through a USB port.

8

Table 2-1: Camera Specifications

Video

Resolution
1080p 960p 720p WVGA

FPS 30,25 30,25 60,50,30,25 60,50

Field of View Medium Ultra Wide Ultra Wide Ultra Wide

Screen

Resolution
1920 x 1080 1280 x 960 1280 x 720 848 x 480

Aspect Ratio 16:9 4:3 16:9 16:9

The camera supports H.264 codec and .mp4 file format. The camera has a Spot

meter which is ideal for filming in tough lighting conditions when the camera is pointed

towards a brighter outer setting from indoors. It houses an Ultrasharp 6-element a-

spherical glass lens with a fixed aperture of f/2.8 [3].

2.5 Processing Unit

The embedded processing unit is the most important part of designing any such

system. The key to selecting the processor is its use. There are many processors

available today that perform different functions. For example, if the requirements of a

system are plain signal collection and processing a Digital Signal Processor (DSP) is

suitable. If the system has to perform a variety of tasks, the General Purpose Processor

(GPP) is chosen instead of a DSP because the DSP does only one thing. For the

application of this project, which is to collect video and run various computer vision

algorithms, a general purpose processor or a graphics processing unit is used.

9

2.5.1 General Purpose Processor

General Purpose Processors (GPP) are designed for general purpose computers

such as PCs or workstations. The computation speed of a GPP is the primary concern,

and the cost of the GPP is usually much higher than that of DSPs and microcontrollers.

All techniques that can increase CPU speed have been applied to GPPs. For example,

GPPs often include on-chip cache and on-chip DMAs. Commonly used math operations

are also supported by the on-chip hardware. GPPs are not designed for fast real-time

applications. Scalar structure is typical in GPPs but rarely seen in DSPs and

microcontrollers[4]. A few characteristics of GPPs are

1. Speed is the primary consideration in GPPs

2. Provide circuits for memory management like on-chip DMA, on-chip

cache

3. Provide hardware circuits for commonly used math and logic operations.

4. Provide a balanced instruction set

5. Use pipelining

6. Use scalar operations

7. Use wide data buses

8. Cost is a secondary consideration[4].

2.5.2 Graphics Processing Unit (GPU)

The Graphics Processing Unit (GPU) is a computer chip that performs rapid

mathematical calculations, primarily for the purpose of rendering images. The GPU came

about as a way to offload graphic-intensive tasks from the CPU, freeing up processing

power. Specialized logic chips now allow fast graphic and video implementations.

10

The graphics processing unit can render images more quickly than a CPU

because of its parallel processing architecture, which allows it to perform multiple

calculations at the same time. The resulting performance improvements have made

GPUs popular chips for other resource-intensive tasks unrelated to graphics. Applications

such as computer-aided design (CAD) can process over 200 billion operations per

second and deliver up to 17 million polygons per second. Many scientists and engineers

use GPUs for more in-depth calculated studies utilizing vector and matrix features[5].

2.6 Database and Memory Management

Mixed database management systems (DBMSs) are recommended to support

this application for PMIS. Sybase SQL Server is recommended for enterprise-wide and

workgroup applications. Sybase SQL Anywhere is recommended for PC workstation

applications that have the potential for expansion beyond a single workstation and small

workgroup applications. Microsoft Access is recommended for individual workstation

database applications[6]. Since this project deals with storing videos and working on

post-processing, a large database is required. For local storage, a disk with large

capacity and high read and write speeds will be appropriate for this project. While

selecting the memory for use in this project, the bandwidth and access time are

considered. A large bandwidth and low access time are necessary for the project running

on a GPP or a GPU.

For this project, the processing unit consists of Intel’s Core i7 with 8 cores at

2.67GHz. The system also has a 6GB RAM installed to make the processing even faster

and an NVIDIA GeForce GTX 560 GPU which supports OpenCV to the fullest.

11

Chapter 3

BACKGROUND INFORMATION ON THE BRIDGE MONITORING SYSTEM

3.1 The Pavement Management Information System

The Pavement Management Information System (PMIS) is a system used by

TxDOT for collecting, analyzing, storing and reporting information to help with the

pavement-related decision-making process. It is an analysis tool to aid in pavement

management. It supports a wide range of activities including planning, highway design,

maintenance and rehabilitation, evaluation, research, and even extensive, detailed

reporting of decision makers [7].

3.1.1 PMIS Data Elements

PMIS is a statewide management tool for monitoring and improving Texas

roadways, most of the PMIS data is related to pavement distress conditions for discrete

roadway sections. PMIS also imports and stores large amounts of data collected by other

databases. Data stored on PMIS are collected and assigned to unique roadway sections.

TxDOT defines and identifies the road sections by the roadway designation, beginning,

and ending reference markers and the corresponding displacements from each. These

reference markers and displacement data by TxDOT in the Texas Reference Marker

(TRM) database and are annually imported onto PMIS in order to update the section

information.

PMIS stores the data pertaining to the primary location, visual distress, nonvisual

distress, condition scores, maintenance, climate, traffic, pavement type, and cross-

section of a given roadway section. It includes extensive data elements to describe visual

distress, deflection, skid resistance, rutting and ride quality. Apparently, though, the bulk

of PMIS data are concerned with recording pavement distress types and severity for

12

roadways sections throughout the state. However, PMIS also imports some of the data

elements stored on other databases [7].

3.1.2 Future of PMIS

One interesting aspect of the PMIS is its interaction with other major

pavement/materials databases within TxDOT. By merging many maintenance aspects of

the same organization into one, the cost efficiency increases and output increases. The

consequence of all the aforementioned connections is that PMIS serves as a strong base

to incorporate the Bridge Monitoring System.

3.2 Computer Vision

3.2.1 Introduction

Recall that the Bridge Monitoring System captures and processes visual data. To

process the visual data it has to deal with images that have information about the real

world in the form of a 2D image. Computer Vision is the science and engineering

discipline concerned with making inferences about the real world, given one or more of its

images. Science aspect comes in because there are fundamental principles associated

with the physics of image formation. Engineering aspect comes in because there are

many practical applications to Computer Vision, one of which is the Bridge Monitoring

System[8][9].

Computer Vision is described as the inverse of Computer graphics that deals

with producing an image from information such as scene geometry, reflectance and

lighting. Computer vision must address the inverse problem: given an image/multiple

images, reconstruct the scene geometry, reflectance and illumination. There are three

13

interconnected processes in vision: Recognition of objects and activities, Reorganization

from pixels to objects and Reconstructing 3D structure.

3.2.2 Camera

The camera is the main part of the project since it provides access to the

information needed to detect structural changes in the bridge. A camera takes an image

of the real world. When looking at the image in Figure 3-1, it looks like a man taking a

photograph. To a computer this image is just a bunch of pixels that have some values

associated with each pixel. It is the human brain that perceives values to form a structure

and understand what it is. The goal of computer vision is to give computers the same

capability. In a grand sense, the goal is to go from pixels to perception. So how do

images get stored digitally? The answer lies in understanding how a camera works.

Figure 3-1: Photo of a man. Consider the pixels in the blue box.

14

Figure 3-2: Digital images array example.

3.2.2.1 Pin Hole Camera

Imagine a totally dark room with a tiny hole in one wall. That hole projects an

accurate image of the outside world onto the opposite wall. Without film, a picture cannot

be captured with it. However, the image can be traced with a pen. Aristotle was familiar

with that idea, and medieval writers had a lot to say about it. Our word, camera, comes

from the Latin word for a darkened chamber — a camera obscura[10].

15

Figure 3-3: Camera Obscura

A camera maps a 3D object into a 2D image. In the figure below the point

P(X,Y,Z) in the real world is projected onto the image plane at P’(x, y).

Figure 3-4: Basic Pinhole Camera

The pinhole camera has an optical center C (also known as camera projection

center) and an image plane as shown in Figure 3-4. The distance of the image plane

from C is the focal length, f. The principal axis or optical axis is the perpendicular line

from the camera center to the image plane of the camera. The principal plane or focal

plane is the plane parallel to the plane containing the optical center of the camera. The

central or perspective projection define the relationship between the 3D coordinates of a

scene point and the coordinates of its projection onto the image[12].

16

Figure 3-5: Principles of operation of a pinhole camera.

In Figure 3-5, a 3D point is projected onto the image plane with a line containing

the point and the optical center. Let the center of projection, C be the origin wherein the

z-axis is the principal axis. By similar triangles, it is readily seen that the 3D point (x,y,z)
T

can be represented as (𝑓𝑥 𝑧⁄ , 𝑓𝑦 𝑧⁄)
 T

 on the image plane. Therefore, X and Y are written

as

X = fx/z (3.1)

Y = fy/z (3.2)

The image plane is a 2D array of sensor elements. There are mainly two types of

sensors: CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide on

Silicon). In CCD sensors, charge accumulates during exposure and are transferred out to

shift registers, digitized and read. In CMOS sensors, the conductivity of each photo-

detector is affected by light. Each value is then digitized and read out using a standard

multiplexing scheme. Figure 3-6 shows the arrangement of sensors in the image plane.

17

Figure 3-6: Arrangement of sensors in the camera.

Conversion between the real image and pixel image coordinates: Assume that

the image center is located at the pixel (cx, cy) in pixel image. The spacing of the pixels is

(sx, sy) in some measurement units. Refer to Figure 3-7 for an illustration. Then,

x = (xim-cx)sx; y = (yim-cy)sy (3.3)

xim = (x/sx)+cx; yim = (y/sy)+cy (3.4)

Figure 3-7: Image plane

18

Below is a representation of the camera projection matrix in terms of matrix

multiplication.

(
𝑓𝑥

𝑓𝑦

𝑧

) = [

𝑓 0 0 0
0 𝑓 0 0
0 0 0 0
0 0 1 0

] (

𝑥
𝑦
𝑧
1

) (3.5)

The matrix describing the mapping is called the camera projection matrix P.

Rewriting the above equation,

zm = PM (3.6)

Where, M = (x,y,z,1)
T
 are the homogeneous coordinates of the 3D point and

m=(fx/z,fy/z,1)
T
 are the homogeneous coordinates of the image point. The projection

matrix P in equation 3.6 represents the simplest possible case, since it only contains

information about the focal distance f.

3.2.2.2 Camera Parameters

Intrinsic Parameters:

1. Focal distance f (in mm).

2. Principal point (image center) coordinates cx, cy (in pixel).

3. Width (sx) and height (sy) of the pixel footprint on the camera photo-

sensor (in mm).

4. Angle θ between axes (usually it is).

These parameters are needed to relate an image point to a direction in the

camera frame. Where fx=f/sx and fy=f/sy. Thus, knowledge of the actual values of f and sx,

sy is not required; just the ratios are required. The lens distortion parameters also need to

be considered.

The camera calibration matrix (K) encodes the transformation from image

coordinates to pixel coordinates in the image plane.

19

𝐾 = [
𝑓/𝑠𝑥 𝑓/𝑠𝑥 cot 𝜃 𝑐𝑥

0 𝑓/𝑠𝑦 𝑐𝑦

0 0 1

] (3.7)

Extrinsic Parameters define the position and orientation of the camera in the real

world.R,T are the extrinsic parameters where, T is the position of origin of real world

coordinate system and R is the rotation matrix. There parameters can be used to

associate points in camera’s image space with points in the real world space.

3.3 Image Features

A feature is a piece of information that is relevant for solving a computational task

related to an individual application. Computer vision needs image features such as

points, edges, and contours for solving problems. In general image features consist of

two parts, the keypoint and a descriptor.

The Bridge Monitoring System database has images of thousands of bridges.

These images have features that are unique to them, and the key to detecting structural

changes is to extract these features so they can be compared. A feature does not have to

be something so crucial, it can be something small as a white line on the side of the road,

which helps in tracking the position of the vehicle.

The coming section gives a brief description of a few methods that help in

extracting and describing Keypoints. Points in an image that can be used to find features

in the image are called Keypoints. Each keypoint has a descriptor, which contains

information such as pixel intensity, pixel orientation, brightness, nature and distribution of

light source.

20

3.3.1 Image Filtering

An image taken from a camera always has noise. The amount of noise depends

on the quality of the sensor in the camera. The principal sources of noise in digital

images arise during image acquisition and transmissions. This noise has to be eliminated

as much as possible without altering the image. The next section contains a discussion of

some methods used for noise reduction [13].

3.3.1.1 Gray Level Transformations (Point transformation)

Gray Level Transformation is a point operation where an input pixel value r is

mapped to the output value s.

𝑠 = 𝑓(𝑟) (3.8)

The above function is applied to every pixel in the image independently. Some types of

gray level transformations are

Linear Scaling: The function scales a small input range into a wide output range,

essentially enhancing the contrast of the values in the input range. Values that are lower

than a certain value are mapped to zero and values higher than a particular value are

mapped to the maximum. So there is some loss of information in this range.

Figure 3-8: Plot of linear scaling function

21

Square Scaling: This function tends to enhance input intensities at the high level

to occupy a larger output range at the expense of values at the lower range which occupy

a smaller output range.

Figure 3-9: Plot of square scaling function

Logarithmic scaling: this is the opposite of square scaling. It enhances the lower

values at the expense of higher values.

Figure 3-10: Plot of logarithmic scaling function

22

3.3.1.2 Spatial Filtering

Instead of mapping from one pixel to another pixel, this technique looks at the

neighborhood around the pixel. In Figure 3-11, consider a pixel located at (x, y) and

create a mask of size m × n around it. Then, do a sum of products of mask coefficients

with corresponding pixels under the mask and store this as the output pixel at (x, y).

Repeat this for every pixel by sliding the mask over the image. This process is called

Cross-Correlation. For example, cross-correlating mask window (w) and image (f) to

produce an output (g).

𝑔(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)
𝑛

2

𝑡=−
𝑛

2

𝑚

2

𝑠=−
𝑚

2

= 𝑤(𝑥, 𝑦) ⊗ 𝑓(𝑥, 𝑦) (3.9)

Figure 3-11: Spatial Filtering mask operation

For example, the mask matrix looks like this,

𝑀 =
1

9
[
1 1 1
1 1 1
1 1 1

] 𝑜𝑟

𝑀 =
1

16
[
1 2 1
2 4 2
1 2 1

]

23

M is a box filter or averaging filter. One drawback of averaging filter is that it

intuitively takes out small variations. A nonlinear filter such as a median filter has better

performance as compared to an averaging filter as discussed in Appendix A.

 A Gaussian filter is better than a box filter because it attenuates high frequencies.

The Gaussian filter has the form

ℎ(𝑥, 𝑦) =
1

√2𝜋𝜎2 𝑒−(𝑥2+𝑦2) 2𝜎2⁄ (3.10)

where, σ is the standard deviation and is a measure of spread of the Gaussian curve.

Equation 3.10 is a normalized form such that the sum of all values is 1. The Gaussian

curve is a bell-shaped curve centered at its mean.

Figure 3-12: Gaussian response and normalized values

The 2-D distribution of the Gaussian smoothing filter is used as a point spread

function. In other words, it is symmetrical about the mean value and it has only one

maximum at the mean value. The width function is directly proportional to the standard

deviation, and in effect decides the amount of blurring. As the kernel width is increased,

24

the computational complexity increases. For practical purposes, only three standard

deviations are taken from the mean.

Chapter 4 contains a detailed explanation on how filtering and blurring are used

to make the system more robust.

3.3.2 Edges

An edge is a point in an image where intensities are changing rapidly. It is a set

of connected pixels that form a boundary between two disjoint regions. An edge is an

important feature which can be used to detect objects and scenes. A bridges main

feature is its edges. A lot of information can be deciphered from looking at an edge such

as, length, width and angle[14]. Edge detection is also used tracking vehicle position and

is explained later. Several methods exist today for edge detection and some of them are

discussed in little detail in the coming sections.

3.3.2.1 Sobel Edge Detector

In Figure 3-13, an edge is represented by the dotted line, and the solid line

represents the edge after applying a Gaussian Filter. The first derivative of this curve

generates a peak at the edge crossing, and the curve tends to zero before and after the

edge. When the second derivative is applied the curve rapidly increases to a maximum

and slows down, crosses zero and rapidly decreases to a minimum and increases

towards zero. In this case the edge is present at the point where the curve crosses zero

in the middle.

25

Figure 3-13: Detecting edges using Sobel operator

Going to two-dimensional images, the Sobel operator is used to estimate the

derivative in the x and y directions. A typical Sobel operator would look like Figure 3-14.

The masks also do a bit of averaging before doing the derivative as it is a 3 × 3 matrix

derived from the product of an averaging and a differentiation kernel. Thus, convolving

the mask with underlying pixels of the image, A, produces the gradient with smoothing.

𝐾𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐾𝑦 = [
1 2 1
0 0 0

−1 −2 −1
]

Where 𝐾𝑥and 𝐾𝑦are the mask operators to compute gradient in x-direction and y-direction

respectively. The gradient vector is the vector composed of both the x-gradient and the y-

gradient.

∇𝑓 = [
𝐺𝑥

𝐺𝑦
] (3.11)

26

Where, 𝐺𝑥 = 𝐾𝑥 ∗ 𝐴 and 𝐺𝑦 = 𝐾𝑦 ∗ 𝐴. Compute the gradient at every pixel and then the

magnitude of the gradient. This results in a high magnitude at the x-direction or the y-

direction or both and signals the presence of an edge.

|∇𝑓| = [(𝐺𝑥)2 + (𝐺𝑦)
2

]
1/2

 (3.12)

The angle of the gradient is computed by taking the arctangent of the x and y

derivatives.

𝜃 = tan−1(𝐺𝑥 𝐺𝑦⁄) (3.13)

The advantage of using the Sobel mask for edge detection is that it provides a

smoothing effect along with providing differentiation. It performs well even when the

image is noisy. Since the sum of the coefficient of all these masks is zero, it eliminates all

the low-frequency components of the image, i.e., when these masks operate in the low-

frequency region; the output is close to zero.

3.3.2.2 Canny Edge Operator

Canny Edge Detector is probably the most common and widely used operator for

edge detection. The canny edge detector is used in the bridge monitoring system to get

rid of extra data from the image. Canny derived the optimal edge operator to find step

edges in the presence of white noise, where “optimal” means

1. Sound detection: minimize the probability of detecting false edges and

missing real edges.

2. Good localization: detected edges in the image must be as close as

possible to the real edges.

3. Single response: marks an edge only once and not be affected by noise.

[15]

27

Figure 3-14: First derivative of Gaussian Function

Canny found that a very good approximation to the optimal operator is the first

derivative of a Gaussian, in the direction of the gradient. He then suppresses the non-

maxima along this direction. The algorithm steps are as follows:

1. Since edge detectors are prone to noise, the image is convolved with the

derivative of Gaussian operators (𝜕𝐺/𝜕𝑥, 𝜕𝐺/𝜕𝑦) for smoothing it.

2. Find the gradient magnitude and direction at each pixel; quantize into

one of the four directions (north-south, east-west, northeast-southwest,

and northwest-southeast).

3. If the magnitude of the gradient is larger than the two neighbors in the

same direction, it is a candidate edge point.

3.3.3 Edge Linking

After detecting edge points, linking each point to its neighbor forms continuous

curves or a line. These lines are helpful for object recognition where a long straight line

may correspond to the boundary of an object. One of the problems with edge linking is

that some edge points along the curve may be weak causing the algorithm to miss these

28

points. If the contrast of the object against the background is less in some places than

other places, it will miss these edge points. That results in a broken curve.

The solution for this problem is to use a two-step approach:

1. Using a high threshold ensures that the algorithm captures real edge

points.

2. Given those detected points, link additional edge points into contours

using a lower threshold, which essentially is a hysteresis effect.

The following steps are used to link edges:

1. Find all edge points greater than the high threshold, Thigh

2. From each strong edge point, follow the chains of connected edge points

in both directions perpendicular to the edge.

3. Mark all points lower than the low threshold, Tlow.

3.3.4 Corners

The point in an image where two edges intersect is called a corner. A corner

represents a point that has two dominant and different edge directions in the local

neighborhood of the point. Hence, the gradient of the image along the two edges have a

high variation. This property makes a corner an interest point since it has a well-defined

position and can be robustly detected.

3.3.4.1 Harris Corner Detector

The quality of a corner detector is defined by its ability to detect a corner in many

similar images, under conditions of varying illumination, translation and rotation. A simple

approach to detecting corners in images is using correlation. However, correlation gets

29

computationally expensive. One of the frequently used methods for corner detection is

the Harris Corner Detector because of its simplicity and robustness.

The idea behind the Harris corner detector is to localize the point quickly by

looking through a small window. As shown in Figure 3-16, shifting a small window in any

direction should give a large change in intensity in at least two gradient directions for the

point to be classified as a corner. [16]

Figure 3-15: Moving window on a flat region, one edge and a corner

Figure 3-17 shows three generic cases; an edge in one direction, a flat region

and a corner. Taking the x-derivative of the linear edge produces a strong gradient where

the edge is present. The x-derivative of the flat region has no sharp gradient. The x-

derivative of the corner also produces a sharp gradient along one edge. Now, taking the

y-derivative, linear edge and flat image do not produce a sharp gradient. However, the

corner creates a gradient along an edge.

30

Figure 3-16: Gaussian response comparison

The distribution of Eigenvalues for areas with no edges, one edge and a corner is

shown in Figure 3-18.

Figure 3-17: Eigenvalue distribution

31

The window averaged change of intensity by shifting the image data by [u,v] is

represented as

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦 (3.14)

Where, w(x,y) is a Gaussian function and I is the intensity. Considering small shifts by

Taylor’s expansion,

𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦)[𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝑂(𝑢2𝑣2)]
2

𝑥,𝑦 (3.15)

𝐸(𝑢, 𝑣) = 𝐴𝑢2 + 2𝐶𝑢𝑣 + 𝐵𝑣2

Where,

𝐴 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑥
2(𝑥, 𝑦)

𝑥,𝑦

𝐵 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑦
2(𝑥, 𝑦)

𝑥,𝑦

𝐴 = ∑ 𝑤(𝑥, 𝑦)𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

𝑥,𝑦

A bilinear equation gives the Taylor series approximation,

𝐸(𝑢, 𝑣) ≅ [𝑢, 𝑣] 𝑀 [
𝑢
𝑣

] (3.16)

M is a 2x2 matrix computed from image intensity derivatives,

𝑀 = ∑ 𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2]𝑥,𝑦 (3.17)

The Eigen Values are computed from this matrix by solving for its trace and determinant.

det(𝑀) = 𝜆1𝜆2

trace(𝑀) = 𝜆1−𝜆2

32

To determine the direction of the edges, look at the eigenvectors. They point

along prominent directions that many data points lie on. The corresponding eigenvalue

shows the magnitude of the gradient in that direction.

3.4 Control System

3.4.1 Introduction

Control systems are intimately related to the concept of automation. The two

fundamental types of control systems are feedforward and feedback. The bridge

monitoring system uses a feedback control system to maintain the stability of the camera

platform. The system uses a Proportional-Integral-Derivative (PID) controller to manage

motors that rotate the platform in the roll and pitch axis. The feedback information about

the movement of the platform is provided by an Inertial Measurement Unit (IMU) which

measures orientation and acceleration.

The stabilizer has two fundamental characteristics:

1. The amount of rotation is varied by using the power from a local source

rather than a signal. Thus, the operation of moving the motors does not

load or distort the signals on which the accuracy of control depends on.

2. The rate at which energy is fed to the motor to effect variations in the

angle depends on the present and desired angle.

A control system possessing these fundamental properties is called a closed-

loop control system.

3.4.2 PID Controller

The control system in the bridge monitoring system uses motors to rotate the

platform. To be able to control the motors precisely a Proportional-Integral-Derivative

33

controller (PID controller) is required. A PID controller is a closed loop feedback controller

used in many control system environments. The controller calculates the error value as

the difference between the actual value of the angle and the desired value. The controller

minimizes the error by adjusting the process that changes the variable. [17]

The three values used to minimize error can be interpreted in terms of time as:

Proportional Term (P) depends on the present error, Integral Term (I) depends on the

accumulation of past errors, and Differential Term (D) is a prediction of future errors

based on current rate of change. The sum of these three is used to adjust the process.

The controller output is given by

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡)

𝑡

0
 (3.18)

3.4.2.1 Proportional Response

The proportional component depends only on the difference between the desired

value and the control variable. This difference is referred to as the error term. The

proportional gain (Kp) determines the ratio of the output response to the error signal. In

general, increasing the proportional gain will increase the speed of the control system

response. However, if the proportional gain is too large, the process variable will begin to

oscillate. If Kp increased further, the oscillations would become larger, and the system will

become unstable and may even oscillate out of control.[18] The proportional term is given

by

𝑃𝑜𝑢𝑡 = 𝐾𝑝𝑒(𝑡) (3.19)

3.4.2.2 Integral Response

The integral component sums the error term over time. The result is that even a

small error term will cause the integral component to increase slowly. The integral

response will continually increase over time unless error is zero, so the effect is to drive

34

the Steady-State error to zero. Steady-State error is the final difference between the

process variable current and desired value. A phenomenon called integral windup results

when integral action saturates a controller without the controller driving the error signal

toward zero.[18] The Integral term is given by

𝐼𝑜𝑢𝑡 = 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝜏
𝑡

0 (3.20)

3.4.2.3 Derivative Response

The derivative component causes the output to decrease if the process variable

is increasing rapidly. The derivative response is proportional to the rate of change of the

process variable. Increasing the derivative time (Td) parameter will cause the control

system to react more strongly to changes in the error term and will increase the speed of

the overall control system response. Most practical control systems use tiny derivative

time (Td), because the derivative response is highly sensitive to noise in the process

variable signal. If the sensor feedback signal is noisy or if the control loop rate is too slow,

the derivative response can make the control system unstable.[18] The derivative term is

given by

𝐷𝑜𝑢𝑡 = 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡) (3.21)

35

Figure 3-18: PID Operation

The idea is to use data from an IMU (Inertial Measurement Unit) to control two

brushless DC motors connected to the camera platform. These motors will rotate the

platform in the pitch and roll axis to keep it stable.

3.4.3 Gimbal

A gimbal is a pivoted support that allows the rotation of an object about a single

axis. When three gimbals are fixed orthogonal to each other, the setup can be used to

allow an object mounted on the innermost gimbal to remain independent of its support

rotation. For example, these are used on ships on drink holders to keep the drinks upright

even when the ship is pitching and rolling.

A similar concept is used to stabilize the camera platform using a PID controller

and two motors. This is just set up to stabilize the camera along roll and pitch axes.

36

Figure 3-19: Gimbal

3.4.4 Brushless DC Motor (BLDC)

The BLDC Motor, unlike regular motors, has no brushes. Instead, BLDC motor

has the permanent magnets glued on the rotor. It usually has three magnets around the

perimeter. The stator of the motor comprises of electromagnets, placed in a cross pattern

with 90° angle between each electromagnet. An advantage of a BLDC motor is that it can

be made smaller and lighter than a brush type with the same power output. The

downside is they need electronic management units, like a microcontroller using input

from sensors indicating position of the rotor to control the stator coils. Whereas, the

system can achieve accurate speed and torque control as well as ensure that motors are

running at peak efficiency[19]. For a more detailed explanation of how the BLDC works,

refer to Appendix B.

37

Chapter 4

IMPLEMENTATION OF THE BRIDGE MONITORING SYSTEM

The previous chapters provided insight into a few computer vision fundamentals

and algorithms which are essential for this project. This chapter provides information on

how the components put together form the bridge monitoring system.

The process contains five parts; setting up the control system, tracking vehicle

position, compensating for scale variance, feature extraction and matching, and detecting

structural changes.

4.1 Camera Stabilization

The need for getting the visual data of the bridge structure with minimum jitter

and change is of utmost importance. A control system mounted on the vehicle controls

the movement of the camera platform. The movement of the vehicle is negated by

rotating the camera platform. The control system calculates the direction, amount and

speed of rotation required to negate the shift. In this project, a programmable PID

controller is used to control the motor.

The platform needs to be stabilized in real time so as to collect accurate video

information. A system that can cope with the frame rate of the camera is suitable for this

purpose. Assuming that the camera is running at 30 fps, the platform must become stable

in less than 33.33 milliseconds. There are several controllers in the market that suit the

needs of this project. The RCTimer Brushless-Gimbal (BruGi) V1 board is used in this

project. It has an Future Technology Devices International (FTDI) USB controller chip.

This board requires the FTDI 2.8.24 Windows driver to communicate with the processing

unit running a Windows operating system. It comes completely pre-soldered with all the

pin-outs needed. This system has the capability to react quickly to changes in real time.

38

Figure 4-1 shows the connection diagram for the motors, IMU and the BruGi board.

Figure 4-2 shows the complete setup with the camera in place.

Figure 4-1: Connection diagram for 2-Axis Brushless Gimbal Controller

Figure 4-2: 2-Axis Gimbal with the recording unit.

x

y

IMU

39

4.2 Vehicle Position Tracking

As mentioned in the previous chapters, keeping track of the position of the

vehicle with respect to the road is important because the camera pose depends on the

vehicle position. Hence, maintaining the same vehicle track on every run is crucial. There

are a few ways to determine the vehicles relative position on the road. The simplest and

fastest way is to detect solid white line on the road.

4.2.1 Hough Line Transform and Line Detection

In this project, the Hough line transform is used to detect lines. Before running

the Hough line transform, running an edge detection algorithm such as the Canny Edge

detector is desirable. Canny algorithm finds gradients on the image that has sharp

changes in the pixel intensities. These are likely contours, and the output is just a binary

map that shows the location of contours in the image. In an image, a line can be

expressed in two forms, Cartesian coordinate system (x,y) or Polar coordinate system

(r,θ). [13]

Figure 4-3: Representation of a line

40

In Polar Coordinates, the line is represented as

𝑦 = (−
cos 𝜃

sin 𝜃
) 𝑥 + (

𝑟

sin 𝜃
) (4.1)

Or,

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (4.2)

If at each point (x0,y0), a family of lines that go through that point can be defined

as

𝑟𝜃 = 𝑥0 cos 𝜃 + 𝑦0 sin 𝜃 (4.3)

Here, each pair (rθ,θ) represents a line that passes through (x0,y0). For a given point,

plotting the family of lines that goes through it, produces a sinusoid. Consider only points

such that r>0 and 0<θ<2π.

Figure 4-4: Plot of Hough Transform of a point

Repeating this operation for all the points in an image produces multiple

sinusoids. If the curves of two different points intersect at (r,θ) that means both those

points are on the same line. Thus, lines can be detected by finding the number of

intersections between curves. If more curves intersect at a point in the graph, it indicates

that the line has more points in it. In this algorithm, the threshold is defined as the

41

minimum number of intersections needed to detect a line. If the number of intersections is

above some threshold, then it declares it as a line.

Figure 4-5: Plot of Hough Transform for multiple points

At this point, the algorithm detects many possible lines in the image, out of which

one of them is a solid white line marking the edge of the road. Since, the PMIS survey

vehicle drives on the extreme right lane the solid white line is present only in the bottom

right of the corner. Taking the bottom right as the Region of Interest (ROI) in the image

helps the algorithm shortlist the candidate lines. When driving on the right lane, it appears

that the solid white line is closest to the vehicle on the right-hand side.

4.2.1.1 Finalizing Vehicle Position

The above procedure describes how to detect the solid white line on the road.

Since the camera is mounted exactly in the middle of the car, the vertical center of every

frame captured by the camera should represent the middle of the car. The distance of the

candidate lines from the center of the image (center of the vehicle) can be calculated and

the line closest to the center is chosen. After careful observation, it seems that when

driving on the right lane the solid white line is closest to the vehicle. The white line acts as

a reference marker in every run the vehicle makes.

42

4.2.2 Shortcomings of this method

Even though this algorithm serves the purpose it will run into problems in some

uncertain situations. To state a few:

1. The automobile driver needs to be very precise, which is not possible in

every run and will prove to be a problem. To solve this problem, the

camera platform needs minor adjustments to keep it in the middle. A

small system with a motor and gear system will help make these

adjustments.

2. In case, there is some roadwork on the side of the road and the solid

white line is not visible, then this algorithm fails.

3. If snow covers the line, the algorithm fails. However, according to TxDOT

the data collection happens in the spring season.

4.3 Image Feature Extraction and Matching

At this point, the position of the Vehicle/Camera is assumed to be the same on

every run of the test vehicle. Now the scene frame that matches the reference object

frame is extracted from the video. In the very first run, the TxDOT vehicle collects bridge

data for future reference. These videos contain many frames that are suitable to serve as

a reference. Any of the frames can be manually handpicked and stored as a reference

image. This image is referenced for matching and analysis of changes in the bridge

structure in the future. The data from the second run is analyzed against data from the

first run. The data from the third run is analyzed against data from the second run, and so

on.

43

The best image match is found by matching unique local features in the scene

and object images. The features are identified by using a very strong feature extraction

algorithm called SIFT (Scale Invariant Feature Transform).[20] These features help in

finding the matching scene frame from the video. The procedure consists of three steps:

1. Video synchronization: the recording of the video is synchronized to the

previous reference data with the use of some reference markers or TRM

data.

2. Feature Extraction: local features are extracted from each scene frame.

3. Feature Matching: every frame is checked for similarities with the

reference image and the one with the maximum number of matches is

selected and analyzed.

4.3.1 Scale Invariant Feature Transform (SIFT) Algorithm

The goal of SIFT is to extract distinctive, image scale and rotation invariant

features that can be correctly matched against a large database of features from many

images. It is an algorithm that shows robustness towards affine distortion, change in

viewpoint, addition of noise, and change in illumination. This detection should ideally be

possible when the image shows the object with different transformations, mainly scale

and rotation, or when parts of the object are occluded.

The process consists of three overall steps:

1. Detection: Automatically identify interesting features, interest points. The

detection must be done robustly; i.e., the same feature should always be

detected regardless of viewpoint. Creating scale space and finding local

extrema of the images helps in finding such features. From these

extrema, important keypoints are selected.

44

2. Description: Each interest point should have a unique description that

does not depend on the features scale and rotation. For each key point,

descriptors are calculated by finding histograms of gradient directions

and creating a feature vector out of the histograms.

3. Matching: Given an input image, determine which objects it contains, and

possibly a transformation of the object, based on predetermined interest

points.

The advantages of SIFT are

1. Locality: features are local, meaning they are applicable to a

neighborhood of pixels. This property makes it robust to occlusion and

clutter.

2. Distinctiveness: individual features can be matched to a large database

of objects.

3. Quantity: even small objects sometimes generate many features.

4. Efficiency: the algorithm exhibits close to real-time performance.

4.3.1.1 Creating Scale Space Images

Scale space is used for handling image structures at different scales. The scale-

space of an image is represented as a one-parameter family of smoothed images. The

scale of smoothing depends on one parameter, the size of the smoothing kernel (σ) used

for suppressing fine-scale structures. The primary type of scale space is the Gaussian

scale space. The Gaussian scale-space constitutes the canonical way to generate a

linear scale-space, based on the essential requirement that new structures must not be

created when going from a fine scale to any coarser scale.

45

To create a scale-space, a series of progressively blurred out images are created

from the original image. These blurred images form an Octave. The next step is to resize

the original image to half of the current size and repeat the process to derive another

Octave.

4.3.1.2 Laplacian of the Gaussian (LoG)

The Laplacian of the Gaussian is found for the image by varying the scale size

(σ) values. LoG acts as a blob detector which detects blobs of sizes that are the same as

σ. Due to variation in σ the LoG finds blobs of different sizes. The scale size σ of the LoG

filter determines the scale of the blob. So, this process finds the local maxima and

minima across the scale space and gives a list of (x,y,σ). This list contains the location of

potential keypoints at (x,y) of σ scale.

Figure 4-6: Laplacian operator curve and its responses

46

Figure 4-6 shows the response of a signal when applied with the given Laplacian

function. The given signal has a radius of 8 units. The response curves are shown for

varying σ values. Notice that when the σ value is same as the signal radius the peak is at

a maximum. The response shows the scale at which this feature point can be detected

and the location in the image.

Figure 4-7 shows how these blobs of maxima and minima look in an image. This

example uses a value of σ = 2.

Figure 4-7: Illustration of LoG operation

4.3.1.3 Difference of the Gaussian (DoG)

For real-time applications, the LoG operation is not suitable. However, a close

approximation of the LoG is the DoG. It is obtained by the difference of Gaussian blurring

of an image with two different σ. Take, for example, the following differences (σ-kσ), (σ-

k
2
σ), (σ-k

3
σ), (σ-k

4
σ), (σ-k

5
σ). An illustration of this example is shown in Figure 4-8. The

47

difference of two consecutive blurred images is taken to produce a DoG image. This DoG

image is later scouted for extrema.

Figure 4-8: Creating DoG Scale Space

4.3.1.4 Scale Space Peak Detection

After calculating the DoG of all Octaves, images are scouted for local extrema

over a scale and space. For example refer figure 4-9, compare the pixel marked X with

the current and adjacent scales (green circles). The pixel X is selected if it is the largest

or the smallest out of all the 26 pixels surrounding it. If it is a local extrema, it is a

potential keypoint. It means that keypoint is best represented in that scale.

48

Figure 4-9: Illustration of the 26 pixels considered

4.3.1.5 Keypoint Localization

Once potential keypoint locations are found, calculating the extrema proves to be

computationally expensive because of an excessive number of keypoints produced by

DoG. Hence, the keypoints have to be sampled to detect the most stable subset with a

coarse sampling of scales.

Initial rejection of keypoints is done using a Taylor series expansion of the scale

space to get an accurate location of the extrema. If the intensity at this extrema is less

than a threshold, it is rejected. The Taylor series expansion of the DoG, D for a point x =

(x,y,σ)
T
 is given by

𝐷(𝑥) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑥
 𝑥 +

1

2
𝑥𝑇 𝜕2𝐷

𝜕𝑥2 𝑥 (4.4)

The minima or maxima is located at

�̂� = −
𝜕𝐷−1

𝜕𝑥2

𝜕𝐷

𝜕𝑥
 (4.5)

In this project, the DoG is used instead of the LoG, because edges have higher

response than that that of the LoG. The edges are removed for better results. By using a

concept similar to the Harris corner, detector the edges are removed to reduce the

number of keypoints even further. The Principal Curvature (PC) along the edge is very

49

low, and across the edge is very high. They used a 2x2 Hessian matrix (H) to compute

the PC. The PC is given by the eigenvalues of the gradient at the edge point.

𝐻 = [
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑥𝑦 𝐷𝑦𝑦
] (4.6)

Trace(𝐻) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 = 𝜆1 + 𝜆2

Det(𝐻) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (𝐷𝑥𝑦)
2

= 𝜆1𝜆2

The points are rejected using the ratio,

Trace(𝐻)2

Det(𝐻)
=

(𝑟+1)2

𝑟

𝑟 =
𝜆1

𝜆2
 (4.7)

According to the Harris corner detector, in edges, one eigenvalue is larger than

the other. If the ratio is greater than a threshold, that keypoint is discarded. So it

eliminates any low-contrast keypoints and edge keypoints and what remains is high-

interest points.

4.3.1.6 Orientation Assignment

After selecting the keypoints, an orientation is assigned to it so as to achieve

rotation invariance. Depending on the scale, a neighborhood around the keypoint location

is selected. Central derivatives are computer giving the gradient magnitude (equation 4.8)

and direction of the smooth image (L) (equation 4.9) in the neighborhood of a keypoint

(x,y,σ).

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 (4.8)

𝜃(𝑥, 𝑦) = tan−1 (
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
) (4.9)

50

A histogram is created using the gradient directions of the keypoints. The

orientation of this neighborhood is decided by selecting the direction of the highest peak

in the histogram. Any peak above 80% of the highest is also considered to calculate the

orientation. This orientation assignment contributes to the stability of matching. [20]

Figure 4-10: Computing Orientation of the window

4.3.1.7 Creating the Keypoint Descriptors

Now that the keypoint descriptor is created, a 16x16 neighborhood around the

keypoint is divided into 16 sub-blocks of 4x4 sizes. For each sub-block, an 8-bin

orientation histogram is created. So a total of 128 bin values are available. The 16

histograms are concatenated to the keypoint descriptor vector or feature vector. This

vector contains 128 descriptor values.

2π

51

Figure 4-11: Illustration of a 2x2 Keypoint Descriptor Vector

For example, any gradient in 0-44 degrees is added to the first bin, 45-89

degrees is added to the next bin, and so on. Also, the number of points added depends

on the distance from the keypoint. So, gradients that are farther away from the keypoint

will add smaller values to the histogram. The feature vector is normalized to the unit

vector to make it invariant to illumination (affine changes). For non-linear intensity

transforms the unit vector is bound to a maximum of 0.2 (removing larger gradients), and

renormalize the unit vector.

4.3.2 Scene Selection from the Video

Once the keypoints and descriptor vectors are obtained for each frame, finding

the scene frame that matches the object reference image is the next step. A matching

algorithm is run on each scene frame against the object. Two algorithms commonly used

for feature matching are discussed below.

52

4.3.2.1 Brute Force Matcher

Brute Force Matcher is the simplest matching algorithm. It takes the descriptor of

one feature in the first set and matches with all other features in the second set. There

may be more than one close match at this point. To decide which keypoint is the best

match, Euclidian distance between the two matching points is calculated, and the pair of

points with the least distance is selected as the closest match.

4.3.2.2 FLANN Based Matcher

Fast Library for Approximate Nearest Neighbor (FLANN) contains a collection of

algorithms optimized for fast nearest neighbor search in large datasets and high-

dimensional features. It works faster than Brute Force Matcher for large datasets. [21]

The Algorithms used in FLANN are:

1. K-D Tree: K-D stands for K-Dimension. It is a type of the binary tree for

multi-dimension vectors. The tree is balanced when built by splitting the

nodes at the median values. The dimension that could divide the

samples into half (largest variance) at each level is chosen. The tree is

built with a training set of feature vectors. It is used to find query specific

value or value ranges and nearest neighbors.

2. Randomized K-D Tree: Improve the approximation of nearest neighbors

from the query point by searching simultaneously across a number of

randomized trees. The tree is built from the same set of samples.

3. Hierarchical K-Means Tree: It is a tree in which every inner node is split

in K-ways. K-means clustering is used to classify the data subset at each

node. An L level tree would have approximately K^L leaf nodes.

53

In this project, brute force matching is suitable since the system is not dealing

with a large dataset. Running the matching algorithm, gives an idea about the number of

matches in each frame. The image with the largest number of matches is selected as the

Final Scene Image. This scene image and corresponding feature vector are stored in the

database and forwarded to the next stage of this project; i.e., detecting and measuring

changes in the bridge structure.

54

Chapter 5

EXPERIMENTS AND RESULTS

5.1 Testing the Gimbal

The gimbal with the RCTimer Brushless Gimbal Controller is well known for its

real-time performance. It reacts well to sudden movements of small magnitude. If the

movement is large, the gimbal loses stability and regains it after one or two seconds.

5.2 Testing the Line Detection Application

5.2.1 Robustness and Accuracy

Figure 5-1 shows the region of interest (ROI) in the image. The ROI is the area in

the frame where the application scouts for lines. From observation, it is determined that

the white line appears in this area.

Figure 5-1: Image Region of Interest

55

Figure 5-2 shows the detection of the solid white line on the road under normal

conditions where there is nothing blocking it. Embedded in this figure is the Canny edge

detection output for the ROI. Blue line indicates the detected white line. Red line denotes

the distance.

Figure 5-2: General case line detection

Figure 5-3 shows how the Euclidean distance is calculated. This information can

be used for tracking the vehicle’s relative position on the road on each Pavement

Management Information System (PMIS) survey. Figure 5-4 shows that the algorithm

works even when the solid white line is broken.

56

Figure 5-3: Illustration of distance calculation

Figure 5-4: Broken line detection

57

Figure 5-5 shows an example of line detection in another video captured from the

helmet cam of a cyclist. Throughout the video, the cyclist moves his head randomly. The

algorithm can detect the white line precisely even in this case. The video footage from the

PMIS vehicle is much more stable, and random movement is taken care of by the

Camera Platform Stabilizer.

Figure 5-5: General case (video 2)

Figure 5-6 shows a case where the cyclist turns his head to the left such that the

Solid White line on the other side of the road appears to be closest to the center.

58

Figure 5-6: Detects line closest to the center of the image

Figure 5-7 shows the detection of the white line with an obstacle blocking the

view partially. The algorithm picks up the line even when there is some hindrance.

Figure 5-7: Line Detection with an obstacle in the way

59

5.2.2 Processing Time

The average amount of time taken to capture and store one frame is roughly

0.0333 seconds, which is close to capturing every frame (720x420 pixels) that the

camera passes at 30 frames per second.

The average amount of time taken to capture, detect line and store one frame

(720x480 pixels) is roughly 0.0624 seconds. This causes the program to miss half of the

incoming frames. Currently, the application is not threaded and is running as a serial

program. Real-time performance can be achieved by parallelizing the reading, line

detection and storing tasks.

5.3 Testing the Feature Detection and Matching Application

5.3.1 Feature Detection

The Feature Detector extracts keypoints and computes their descriptors using

the Scaled Invariant Feature Transform Algorithm. For experimental purposes, a frame

was chosen at random from the test video to be the reference image for the Feature

Matching part. Figure 5-8 shows the output of the Feature Detection algorithm when the

input is the reference frame. The center of each circle is a keypoint, the radius of the

circle is the scale of the keypoint, and the direction of the line denoting the radius is the

orientation of that keypoint. For this frame, the algorithm detects 196 unique keypoints

and computes descriptor array of size 128 for each keypoint.

60

Figure 5-8: Keypoints of the reference image. Keypoints with similar scale have the same

color.

5.3.2 Feature Matching

The feature matching algorithm uses a Brute Force Matcher to compare frames

from the incoming video to the above Reference Image. The algorithm detects keypoints

and computes descriptors for each frame and compares it with the descriptors of a

reference image. The similarities between these images are called a matches. If the

current frame has the maximum number of matches, the index of this frame is noted. If

another frame appears to have the maximum number of matches then, its index replaces

the previous match. After going through all the frames the image that had the maximum

number of matches, its keypoints and descriptors are returned.

61

Figure 5-9: Illustration of matching algorithm.

62

Figure 5-9 shows an illustration of the comparison process. As seen, it perfectly

detects the matches between each frame. The matching algorithm finds the frame that

has the most number of similarities to the reference image. This frame is forwarded to the

final process that detects changes in the bridge structure.

63

Chapter 6

SUMMARY AND FUTURE WORK

The proposed method for integrating the bridge monitoring system into the

Pavement Management Information System (PMIS) has few known problems. This

research project covered the complexity involved in detecting the bridge movement using

computer vision. It provides solutions to challenges associated with the bridge monitoring

system. One of the challenges is to reduce camera shift, rotation and vibration. The

rotation and vibration problems are taken care of by the 2-Axis brushless gimbal and

controller. Since the camera shift depends on the vehicle movement, a line detection

algorithm is used to determine the lateral position of the vehicle on the road. By handling

this problem, the system becomes more reliable because it is less prone to collecting

visual data from a wrong viewpoint.

The second challenge is the selection of a video frame that makes the best

match when compared with a reference image. The comparison is done using the Scaled

Invariant Feature Transform (SIFT) algorithm, which is robust to a small shift, rotation and

illumination changes. The algorithm outputs unique features that are compared with a

reference image features to determine if it is a match.

The experimental results show the accuracy, robustness and speed of the overall

process. These results are conclusive enough to state that the bridge monitoring system

can be integrated with the PMIS.

That said, the bridge monitoring system still has room for improvement, and

further work has to be done to complete the entire system.

1. Even though the control system and line detection reduce the amount of

the camera shift, the accuracy depends on the driver of the vehicle. To

64

make this system perfect, another controller can be used to move the

entire 2-Axis gimbal horizontally to compensate for the driver's errors.

2. The PMIS has a pavement profiler that consists of a distance encoder.

The distance information can be used as a reference to start and stop

the video recording.

3. The final stage of the bridge monitoring system is to detect the changes

in the bridge structure. One technique that can be used is the stereo

camera system which is explained in Appendix A. The stereo camera

system provides information about distance in the image that makes it

easier to measure the amount of change in the structure.

65

Appendix A

BRUSHLESS DC MOTOR BASICS

66

A.1 Fundamentals of Brushless DC Motors

The BLDC motor’s electronic commutator sequentially energizes the stator coils

generating a rotating electric field that ‘drags’ the rotor around with it. N electrical

revolutions equates to one mechanical revolution, where N is the number of magnet

pairs. The BLDC motors experience something called asHall Effect. If a current carrying

conductor is kept in a magnetic field, the magnetic field exerts a force on the moving

charge carriers, tending to push them to one side of the conductor, producing a

measurable voltage difference between the two sides of the conductor. This phenomenon

is known as Hall Effect.

Hall sensors are used to detect the position of the rotor. These sensors can

detect the North or South Pole. The hall sensor will transmit this signal to the controller of

the motor. The controller will then switch on or off the appropriate coils in order to provide

torque.

Figure B- 1: BLDC Arrangement

Figure shows a typical arrangement of driving a BLDC motor with Hall Sensors.

Figure shows a typical BLDC system which the three coils of the motor are arranged in a

“Y” formation, an 8 bit microcontroller, an Insulated Gate Bipolar Effect Transistor (IGBT)

Driver, and a three-phase inverter comprising of six IGBTs. The output from the

microcontroller comprises pulse width modulated (PWM) signals that determine the

average voltage and average current to the coils (and hence motor speed and torque).

67

The motor uses three hall sensors to indicate rotor position. The rotor uses two pairs of

magnets to generate magnetic flux.

Figure B- 2: BLDC Control System Arrangement

Table A-1: 8-bit values for Clockwise operation of BLDC with 3 magnets

Sequence

Hall Sensor Input

Active PWMs

Phase Current

A B C A B C

1 0 0 1 PWM1(Q1) PWM4(Q4) DC+ Off DC-

2 0 0 0 PWM1(Q1) PWM2(Q2) DC+ DC- Off

3 1 0 0 PWM5(Q5) PWM2(Q2) Off Dc- DC+

4 1 1 0 PWM5(Q5) PWM0(Q0) DC- Off DC+

5 1 1 1 PWM3(Q3) PWM0(Q0) DC- DC+ Off

6 0 1 1 PWM3(Q3) PWM(Q4) Off DC+ DC-

68

Table A-2: 8-bit values for Counter-Clockwise operation of BLDC with 3 magnets

Sequence

Hall Sensor Input

Active PWMs

Phase Current

A B C A B C

1 0 1 1 PWM5(Q5) PWM2(Q2) Off DC- DC+

2 1 1 1 PWM1(Q1) PWM2(Q2) DC+ DC- Off

3 1 1 0 PWM1(Q1) PWM(Q4) DC+ Off DC-

4 1 0 0 PWM3(Q3) PWM(Q4) Off DC+ DC-

5 0 0 0 PWM3(Q3) PWM0(Q0) DC- DC+ Off

6 0 0 1 PWM5(Q5) PWM0(Q0) DC- Off DC+

Figure shows the current flow in an identical arrangement of coils to the motor in

figure above for each of the six steps, and Figure shows the subsequent Hall Effect

sensor outputs and coil voltages.

Figure A- 3: Current flow in a 3 Motor arrangement

69

Figure B- 4: Hall Sensor Response

A pair of Hall sensors determines when the microcontroller energizes a coil. In

this example, sensors Hall A and Hall B determine theswitching of Coil A. When Hall B

detects a North Pole, coil A is positively energized. When Hall A detects a North Pole,

coil A is switched to open.

70

Appendix B

CODE

71

B.1 Real-Time Video Capture And Line Detection

B.1.1 Capture.cpp

#include "opencv2/opencv.hpp"
#include <ctime>
#include <conio.h>

#define PI 3.1415926

using namespace cv;

void main(){
 int houghVote = 200;
 int saveFlag = 0;
 //VideoCapture cap(0); // open the default camera
 VideoCapture cap("drive.avi"); // open the video
 if(!cap.isOpened()) // check if we succeeded
 {
 getch();
 return;
 }

 char imgFileName[50]="";
 int n = 0;
 double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of
frames of the video
 double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height
of frames of the video

 std::cout << "Frame Size = " << dWidth << "x" << dHeight <<
std::endl;

 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight));
 Size
cannyFrame(static_cast<int>(dWidth/2),static_cast<int>(dHeight/3));

 VideoWriter videoWriter ("LaneDetection.avi",
CV_FOURCC('P','I','M','1'), 30, frameSize, true); //initialize the
VideoWriter object
 VideoWriter newvideo
("canny.avi",CV_FOURCC('P','I','M','1'),30,frameSize,true);

 namedWindow("LINE DETECTION",1);

 while (1)
 {
 double begin = getTickCount();

72

 Mat image;
 Mat gray;
 std::vector<Vec2f> lines;
 cap >> image; // get a new frame from camera

 if (image.empty())
 break;
 if(waitKey(10) >= 0) break;

 n++;

 //videoWriter.write(image);

 cvtColor(image,gray,CV_RGB2GRAY);
 vector<string> codes;

 Rect
roi(image.cols/2,2*image.rows/3,image.cols/2,image.rows/3);// set the ROI
for the image
 Mat imgROI = image(roi);

 // Canny algorithm
 Mat contours,imgBLUR;
 blur(imgROI,imgBLUR,Size(3,3));
 Canny(imgBLUR,contours,70,90,3);
 Mat contoursInv;
 threshold(contours,contoursInv,128,255,THRESH_BINARY_INV);
 imshow("CANNY",contours);
 //newvideo.write(contours);
 /*
 Hough tranform for line detection with feedback
 Increase by 25 for the next frame if we found some lines.
 This is so we don't miss other lines that may crop up in the
next frame
 but at the same time we don't want to start the feed back loop
from scratch.
 */

 if (houghVote < 1 || lines.size() > 2){ // we lost all lines.
reset
 houghVote = 200;
 }
 else{ houghVote += 25;}
 while(lines.size() < 5 && houghVote > 0){
 HoughLines(contours,lines,1,PI/180, houghVote);
 houghVote -= 5;
 }
 std::cout << houghVote << "\n";

73

 Mat result(imgROI.size(),CV_8U,Scalar(255));
 imgROI.copyTo(result);

 Point PT1,PT2,prev_pt2;
 Point center;
 float dist,prev_dist = 0,minDist = 0;
 float x,y;
 center.x = image.cols/2;
 center.y = image.rows;
 // Draw the lines
 std::vector<Vec2f>::const_iterator it= lines.begin();
 Mat hough(imgROI.size(),CV_8U,Scalar(0));
 while (it!=lines.end()) {

 float rho= (*it)[0]; // first element is distance rho
 float theta= (*it)[1]; // second element is angle theta

 if (theta > 0.09 && theta < 1.48 || theta < 3.14 &&
theta > 1.66) { // filter to remove vertical and horizontal lines

 // point of intersection of the line with first
row
 Point pt1(rho/cos(theta),image.rows-
result.rows);
 // point of intersection of the line with last
row
 Point pt2((rho-
result.rows*sin(theta))/cos(theta),image.rows);

 dist = sqrt(pt2.x*pt2.x + pt2.y*pt2.y);
 if(minDist == 0)
 {
 minDist = dist;
 PT1 = pt1;
 PT2 = pt2;
 }
 else if(dist < minDist)
 {
 minDist = dist;
 PT1 = pt1;
 PT2 = pt2;
 }

 }
 ++it;
 }
 // Display the detected line image
 PT1.x = PT1.x+image.cols/2;
 PT2.x = PT2.x+image.cols/2;
 line(image, PT1, PT2, Scalar(255,0,0), 8);
 line(image, center, PT2, Scalar(0,0,255), 8);

74

 if(minDist == 0) minDist = image.cols/2;
 std::stringstream stream;
 stream << "Distance: " << minDist-image.cols/2;

 putText(image, stream.str(), Point(10,image.rows-10), 2, 0.8,
Scalar(0,0,255),0);
 imshow("LINE DETECTION",image);
 //videoWriter.write(image);

 char key = (char) waitKey(10);
 lines.clear();
 double end = getTickCount();
 double elapsed_secs = double(end - begin) /
getTickFrequency();
 printf("%f\n",elapsed_secs);
 lines.~vector();
 codes.~vector();
 }
 cap.release();
 cap.~VideoCapture();
 videoWriter.release();
 videoWriter.~VideoWriter();
}

B.2 Feature Detection and Matching

B.2.1 Match.cpp

#include "Match.h"
#include <iostream>
//#include "LaneDetect.cpp"

using namespace cv;

Mat CombineImagesVertically(Mat img_temp1,Mat img_temp2)
{
 Mat img_temp_combined;
 img_temp_combined.rows = img_temp1.rows + img_temp2.rows;
 img_temp_combined.cols = MAX(img_temp1.cols, img_temp2.cols);
 img_temp_combined =
cvCreateImage(cvSize(img_temp_combined.cols,img_temp_combined.rows),8,3);
 Mat top(img_temp_combined,Rect(0,0,img_temp1.cols,img_temp1.rows));
 Mat
bottom(img_temp_combined,Rect(0,img_temp1.rows,img_temp2.cols,img_temp2.row
s));
 img_temp1.copyTo(top);
 img_temp2.copyTo(bottom);
 return img_temp_combined;
}

75

Mat DrawLine(vector<KeyPoint>keypoints_1,vector<KeyPoint>keypoints_2,int
num_matches,int offset,Mat combined,vector<DMatch>matches)
{
 float slope,rad,deg;
 float dist;
 float x,y;
 Point2f point_old,point_new;
 RNG rng;
 int icolor = (unsigned) rng;
 int n = 0;

 for(int i = 0;i < num_matches; i++)
 {
 point_old = keypoints_1[matches[i].queryIdx].pt;

 point_new = keypoints_2[matches[i].trainIdx].pt;

 point_new.y += offset;

 slope = ((point_old.y-point_new.y)/(point_old.x-point_new.x));

 rad = atan(slope);
 deg = rad * 180 / CV_PI;

 x = point_old.x-point_new.x;
 y = point_old.y-point_new.y;
 dist = sqrt(x*x + y*y);

 if(((abs(deg)<92.1) && (abs(deg)>87.9)))
 {
 line(combined, point_old, point_new, Scalar(
icolor&255, (icolor>>8)&255, (icolor>>16)&255), 1, 1, 0);
 n++;
 }
 }
 printf("%d ",n);
 return combined;
}

int main(int argc, char* argv[])
{
 cv::initModule_nonfree();
 string vidName, imgName;
 if(argc == 3)
 {
 vidName = argv[1];
 imgName = argv[2];
 }
 else
 {

76

 std::cout << "Invalid syntax" << std::endl;
 }

 VideoCapture cap(vidName); // open the default camera
 if(!cap.isOpened()) // check if we succeeded
 return -1;

 cap.set(CV_CAP_PROP_FPS,30);
 double dWidth = cap.get(CV_CAP_PROP_FRAME_WIDTH); //get the width of
frames of the video
 double dHeight = cap.get(CV_CAP_PROP_FRAME_HEIGHT); //get the height
of frames of the video

 Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight));

 Mat img_object, img_scene, img_best_match,combined,output;
 std::vector<KeyPoint> keypoints_scene, keypoints_object,
keypoints_best_match;
 Mat descriptors_object, descriptors_scene, descriptors_best_match;
 img_object = imread(imgName,CV_LOAD_IMAGE_COLOR);
 int minHessian = 1000;
 int matchsize=0, max_matchsize=0;
 int flag = 0;
 SiftFeatureDetector detector(minHessian);
 detector.detect(img_object, keypoints_object);

 SiftDescriptorExtractor extractor;
 extractor.compute(img_object, keypoints_object, descriptors_object
);

 printf("Keypoints: %d, Descriptors:
%d\n",keypoints_object.size(),descriptors_object.size());

 Ptr<DescriptorMatcher> matcher = new BFMatcher(NORM_L2,false);

 std::vector< DMatch > best_match;
 int nCount = 0;

 while(1)
 {
 double begin = getTickCount();
 nCount++;
 cap >> img_scene;
 //cap.read(img_scene);
 if (img_scene.empty())
 break;
 if(waitKey(10) >= 0) break;

 imwrite("video_frame.jpg", img_scene);
 //-- Step 1: Detect the keypoints using SIFT Detector

77

 img_scene = imread("video_frame.jpg",CV_LOAD_IMAGE_COLOR);
 detector.detect(img_scene, keypoints_scene);
 //-- Step 2: Calculate descriptors (feature vectors)

 extractor.compute(img_scene, keypoints_scene,
descriptors_scene);
 //-- Step 3: Matching descriptor vectors using Brute-Force
matcher

 std::vector< DMatch > matches;

 matcher->match(descriptors_object, descriptors_scene, matches
);
 //
 double max_dist = 0; double min_dist = 100;

 //-- Quick calculation of max and min distances between
keypoints
 for(int i = 0; i < matches.size(); i++)
 { double dist = matches[i].distance;
 if(dist < min_dist) min_dist = dist;
 if(dist > max_dist) max_dist = dist;
 }

 //-- Draw only "good" matches (i.e. whose distance is less
than 3*min_dist)
 std::vector< DMatch > good_matches;

 for(int i = 0; i < matches.size(); i++)
 {
 if(matches[i].distance <= 1.82*min_dist)
 {
 good_matches.push_back(matches[i]);
 }
 }
 double end = getTickCount();
 double elapsed_secs = double(end - begin) /
getTickFrequency();
 matchsize = good_matches.size();
 int offset = img_object.rows;
 printf("# of Matches in %d: ",nCount);
 output = CombineImagesVertically(img_object,img_scene);
 output =
DrawLine(keypoints_object,keypoints_scene,matchsize,offset,output,good_matc
hes);
 printf("OF %d\tElapsed Time:%f\t\n",matchsize,elapsed_secs);

 matchsize = 0;
 flag = 1;
 imshow("Matches",output);

78

 waitKey(1);
 matches.~vector();
 }

 waitKey(0);
 return 0;
}

B.2.2 Match.hpp

#include <stdio.h>
#include <iostream>
#include <vector>

#include "opencv2/opencv.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/objdetect/objdetect.hpp"

#define PI 3.1415926

using namespace cv;
/*
Declarations
*/

Mat CombineImagesVertically(Mat,Mat);

Mat DrawLine(vector<KeyPoint>,vector<KeyPoint>,int,int,Mat,vector<DMatch>);

extern void LineDetect(Mat);

extern int InversePerspectiveTransform(Mat);

79

References

[1] American Society of Civil Engineers (2014, October 1). 2013 Report Card for

America’s Infrastructure Findings [Online]. Available:

http://www.infrastructurereportcard.org/a/documents/Bridges.pdf

[2] RCTimer Power Model Co., (2014, July 1). 2-Axis Brushless Gimbal Controller V1.0

Product Details [Online]. Available: http://rctimer.com/product-872.html

[3] GoPro, Inc. (2014, July 1). GoPro Hero-3 White Edition Product Details [Online].

Available: http://shop.gopro.com/cameras/hero3-white/CHDHE-302.html

[4] Koskie, S. (2014, October 10) General Purpose Processors Lecture Notes [Online]

Available:

http://www.engr.iupui.edu/~skoskie/ECE362/lecture_notes/LNC04_html/img19.html

[5] Owens, John D., et al. "GPU computing." Proceedings of the IEEE 96.5 (2008): 879-

899.

[6] Zhang, Z., & Hudson, W. R. (2001). GIS Implementation Plan for the TxDOT PMIS

[Online]. Available: FTP: ftp://ftp.dot.state.tx.us/pub/txdot-info/rti/psr/ File: 1747_s.pdf

[7] Zhang, Z., & Machemehl, R. B. (2004). Pavement-related Databases in TxDOT.

Center for Transportation Research, University of Texas at Austin.

[8] Wikipedia (2014, October 1). Computer Vision [Online]. Available:

http://en.wikipedia.org/wiki/Computer_vision

[9] Forsyth, D. A., & Ponce, J. (2002). Computer vision: a modern approach. Prentice Hall

Professional Technical Reference.

[10] Newhall, B. (1972). The history of photography: from 1839 to the present day.

[11] Wikipedia (2014, October 10). Pinhole Camera [Online]. Available:

http://en.wikipedia.org/wiki/Pinhole_camera

80

[12] Fusiella, A. (2014, October 5). Elements of Geometric Computer Vision [Online].

Available:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html

[13] Jensen, J. R. (1996). Introductory digital image processing: a remote sensing

perspective (No. Ed. 2). Prentice-Hall Inc.. pp: 121-146

[14] L. S. Davis. A Survey of Edge Detection Techniques (1975). Computer and Image

Processing 4(3) pp. 248-270

[15] Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, (6), 679-698.

[16] Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In

Alvey vision conference (Vol. 15, p. 50).

[17] Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control system design (Vol.

240). New Jersey: Prentice Hall.

[18] National Instruments, "PID Theory Explained" (2011)

[19] Digi-Key, Co. (2014, October 15). An Introduction to Brushless DC Motor Control

[Online]. Available: http://www.digikey.com/en/articles/techzone/2013/mar/an-

introduction-to-brushless-dc-motor-control

[20] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2), 91-110.

[21] OpenCV Open Source (2014, October 1). OpenCV 4.3.9 Developers Documentation

[Online]. Available: http://docs.opencv.org/

81

Biographical Information

Sushruth Mune Gowda was born in Bangalore, India in 1988. He received his

Bachelor of Engineering in Telecommunication Engineering from Visvesvaraya

Technological University (VTU) in 2010. While studying at VTU, he completed various

projects in embedded microcontrollers, image processing and digital communication.

After achieving his Bachelors’, he worked as a Systems Engineer at Infosys Ltd., for one

year. He quit his job to teach children mathematics and science at Pankhudi, an NGO in

Bangalore, India that helps educate underprivileged children. In fall 2012, he joined the

University of Texas at Arlington to pursue his Masters’ in Electrical Engineering. While

studying at UTA, he worked as the Graduate Teaching Assistant for CSE 5343 and did

research work in the Transportation Instrumentation Laboratory. His research interests

include embedded microcontrollers, image processing, computer vision and optimization.

