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ABSTRACT

ORBITAL STABILITY ANALYSIS AND CHAOTIC DYNAMICS OF

EXOPLANETS IN MULTI-STELLAR SYSTEMS

SUMAN SATYAL, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Zdzislaw Musielak

The advancement in detection technology has substantially increased the dis-

covery rate of exoplanets in the last two decades. The confirmation of thousands

of exoplanets orbiting the solar type stars has raised new astrophysical challenges,

including the studies of orbital dynamics and long-term stability of such planets.

Continuous orbital stability of the planet in stellar habitable zone is considered vital

for life to develop. Hence, these studies furthers one self-evident aim of mankind to

find an answer to the century old question: Are we alone?

This dissertation investigates the planetary orbits in single and binary star

systems. Within binaries, a planet could orbit either one or both stars as S-type

or P-type, respectively. I have considered S-type planets in two binaries, γ Cephei

and HD 196885, and compute their orbits by using various numerical techniques

to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS)

function, which measures the orbital perturbation induced by the nearby companion,

is calculated for each system and then its efficacy as a new chaos indicator is tested

against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor
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of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with

an emphasis on the planet’s higher orbital inclination relative to the binary plane. I

have quantitatively mapped out the chaotic and quasi-periodic regions of the system’s

phase space, which indicates a likely regime of the planet’s inclination. In, addition,

the resonant angle is inspected to determine whether alternation between libration

and circulation occurs as a consequence of Kozai oscillations, a probable mechanism

that can drive the planetary orbit to a large inclination.

The studies of planetary system in GJ 832 shows potential of hosting multiple

planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass

test planet(s) are analyzed for periodic-aperiodic orbits. The stability of the system

is defined in terms of its lifetime and maximum eccentricity during the integration

period then a regime is established for the known and injected planet’s orbital pa-

rameters. The de-stabilizing resonances due to the outer planet extend by 1.36 AU

towards the star, nonetheless, existence of two Earth-mass planets seems plausible.

The radial velocity (RV) curves generated for the test planets reveals a weak RV

signal that cannot be measured by currently available instruments.

A theory has been developed by extrapolating the radio emission processes in

the Jupiter-Io system, which could reveal the presence of exomoons around the giant

exoplanets. Based on this theory, maximum distance, radius and masses of exoplanets

and exomoons are calculated that could be detected by the available radio telescopes.

Observation time at the Low Frequency Array (LOFAR) radio telescope has been

proposed to detect exomoon in five different stellar systems. Subjects of my future

studies include analysis of the data from LOFAR, search for the additional transiting

planets in Kepler 47 circumbinary system and observation at the Subaru telescope to

verify the predicted planets in GJ 832 system by the method of direct imaging.
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CHAPTER 1

INTRODUCTION

1.1 Prehistoric Astronomy

The quest of food led the prehistoric humans to wander from mountains to

valleys, valleys to mountains and eventually across the continents. At some point

in time the nomadic lifestyle came to a halt, marking a birth of human civilization.

Human beings no longer lived their lives just to gather food, but to expand their

minds in thoughtful observations of their surrounding. The humans questioned the

very presence of fire, water and life itself; and such zeal did not take long to look up

into the heavens and question the very rise of the Sun, the moon and the stars.

Different civilizations from different continents are found to have some sorts of

history where they have direct involvement in recording the motions of heavenly bod-

ies. Ancient Egyptians built the Great Pyramids in Giza that are Sun-oriented and

directed towards the four points of the compass with astonishing precision. Egyp-

tians made the earliest calendars with 365-days year and 30-days months. Other

contribution to the prehistoric astronomy includes, but not limited to, observation of

planetary motions by the Babylonians, the calendar cycles during Homer and Hesiod

in the Greek and the Roman worlds. Based on lunar observation, the Vedic astron-

omy around the Indian sub-continents devised a fascinating scheme of Naksatras, the

twenty seven stars the moon passes through in one month period.

The first calendar (12 months, 360 days) devised by the ancient Sumerians

was based on the Moon, while the Egyptians based their calendar (12 months, 360

days) on the Sun. But after they noticed that extra days were required in specific

1



2

Figure 1.1. The effect of the Earth’s precession on the Sun-Star-Earth position during
vernal equinox over past 5,000 years. The twenty seven Naksatras are shown in the
ecliptic plane. Image Credit: vedicastronomy.net.

intervals, they simply added 5 feast-days at the end of the year to essentially come

up with an accurate calendar (Aughton 2008). These calendars were adopted by

various civilizations for over 3,000 years and seeded an astronomical culture of record

keeping the tracks of heavenly bodies across the sky. Such knowledge would greatly

assist humans to determine the right time to harvest and cultivate their produce.

1.2 Medieval Planetary Astronomy

Even though the prehistoric humans made a giant leap in the studies and under-

standing of the celestial bodies, it took aeons for them to actually solidify the knowl-

edge regarding positions and motions of Solar system bodies. It was long standing

belief that the Earth was at the center of the Universe, and something they consid-

ered Universe later turned out to be the Milky way galaxy, one among the billions in

the visible Universe. The Geocentric model of the universe came to an end when a

Polish astronomer, Nicolaus Copernicus (1473-1543) came up with the observational
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proof of the heliocentric (the word Helios comes from Greek, meaning Sun) model at

the beginning of the 16th century AD. A revolutionary idea of Copernicus was that

the phenomena of the epicycles could be disregarded if the position of the Sun was

moved to the center, such that all the planets would revolve around a central mass.

Such corrections in the model explained that the four inner planet’s orbital period

would be longer than that of the outer planets, hence, addressed the issue about the

Mars which appeared to change orbital direction. The heliocentric model set a con-

cept that the Earth is one of the planets among many other bodies orbiting around

the Sun. The Copernican principle would greatly impact the future explorations and

observations of the heavenly bodies in and outside our Solar system.

Johannes Kepler (1571 - 1630), a German mathematician and astronomer be-

came a key figure of 17th century who continued the work on Copernican revolution.

Planetary motion around the Sun was debated whether or not it followed the perfect

circular path. Kepler then set up mathematical equations by using the observational

data from a Danish nobleman, Tycho Brahe, who showed that the planets trace out

an elliptical orbits around the Sun. Kepler formulated 3 laws of planetary motion

around a central body which primarily states that, (1) the planets orbit in an ellip-

tical path with the Sun at one of the foci, (2) the line joining a planet and the Sun

sweeps out equal areas in equal intervals of time, and (3) the square of the planet’s

period around the Sun is directly proportional to the cube of its semimajor axis.

While Kepler was analyzing data and formulating the laws of planetary motion,

in Italy, Galileo Galilei (1564 - 1642) developed a telescope that would allowed him

to observe heavenly bodies with far more clarity then human being had ever seen

with the naked eye. Actually, Galileo did not invent the telescope, but he modi-

fied, upgraded and improved its design following the work done by Hans Lippershey,

Zacharias Janseen, and Jacob Metius (King 1955). With his telescope, Galileo demon-
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strated that other planets, such as Jupiter, could host smaller bodies called moons

and brought forth a notion that the Earth’s moon was no different than the Jupiter’s

moon, a common alignment observed in the Solar system. The Galilian moons (Io,

Europa, Ganymede and Callisto) surprised astronomers, common people and some

religious groups as well. The evidence that the Universe is not geocentric, was a bitter

truth which led Galileo into a house arrest, where he died in 1642.

Sir Issac Newton was born in the same year Galileo had died. Newton (1642

- 1727), the British physicist and astronomer, is known for formulating one of the

most insightful theory which explains motion of heavenly bodies. Universal law of

gravitation, one of his most celebrated laws, provided a well defined mathematical

framework to determine motion of planets around the Sun. Later, including the Moon

in the picture, Newton tried to solve the 3-body problem (Sun-Earth-Moon). Apart

from the well known and the well studied Newton’s three laws of motion, Newton’s

great contribution to science includes, but not limited to, classical mechanics, calculus,

spectroscopy and optics.

Mercury, Venus, Mars, Jupiter and Saturn are known since prehistoric era. But

it was not until 16th century that the Jupiter’s moons and the rings of the Saturn were

discovered by Galileo’s state of the art telescope. In 1781 William Herschel discovered

Uranus making it the first planet to be found using a modern tool. By tracking the

perturbed orbit of the Uranus, astronomers mathematically calculated the possible

location of a perturber which later was discovered as a 8th planet in the solar system,

now called Neptune. Johann Galle is credited for the discovery of Neptune in 1846,

at the precise predicted location. Such indirect method of discovering celestial bodies

becomes a popular tradition, which we shall discuss in detail in the upcoming sections.

The discovery of new planets shed light on exploration and understanding our Solar

system in depth using modern astronomical tools and methods. The search still
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Figure 1.2. Astrometry involving the measurements of the positions and velocity of
the stars. Image Credit: Rich Townsend (left), NASA JPL (right).

continues and the orbital path, location and orientation of planets are being known

with very high precision.

1.3 Modern Planetary Science

After the discovery of Neptune, astronomers started to look for planet signatures

outside our Solar system. These extra solar planets are referred to as exoplanets.

The first attempted detection of such exoplanets was made using a technique called

astrometry. Astrometry relies on the fact that a star experiences a force due to an

unseen companion and if the proper motion or the motion projected onto the sky-

plane can be measured accurately, then the existence of the unseen body can be

determined. This technique was also used to detect an unseen secondary stars in

binary star system. Astrometric measurements allow collecting data from distant

stars using a telescope as shown in Fig. 1.2

W.S. Jacob , an astronomer working at Madras Observatory in India made

some observations of the binary star system, 70 Ophiuchi, using the technique of
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astrometry. It was reported that the orbital anomalies seen from the data made it

highly probable that an unseen body may be existed in the system (Jacob 1855).

In the year 1890, J.J. Thomas See from the University of Chicago and the United

States Naval Observatory determined that a planet should exit with a 36-year period

in the 70 Ophiuchi system (See 1896). The astronomical community did not take this

finding of with much interest and as a result the discovery remained unknown. Other

detection techniques did not exist at that time, thus all that remained was a theory

to prove the credibility of those claims.

F.R. Moulton (1912) from the University of Chicago determined that the pro-

posed planet would be unstable with the parameters observed by See, by using the

framwork of the 3-body problem (Sherrill 1999). Although the astrometry technique

was not accepted by the scientific community it was not rejected either. P. van de

Kamp (1969) came up with a claim that there was a planet orbiting Barnard’s star;

however, the lack of any further evidence and proof persisted. Most of the claims

on exoplanets discovery were considered erroneous prior to the contemporary age of

exoplanet detection. Further advancement in science and technology gave rise to new

scientific techniques that were more robust and would produce conclusive results.

Some of them includes radial velocity method, transit method, gravitational lensing

and direct imaging etc.

1.3.1 Radial Velocity Methods

The gravitational force from a star causes the planets to move around it in an

orbit. Similarly, a planet also exerts force on the host star causing it to revolve around

a counter-orbit. The size of the star’s orbit depends on the size of a planet exerting

force onto it’s semimajor axis. For example, Jupiter induces an additional movement

to the Sun with an amplitude of 13 m/s and a period of 12 years. Earth’s affect is
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Figure 1.3. Illustration of radial velocity method used in the detection of exoplanets
or secondary companion.

much smaller (0.1 m/s in 1 year). As viewed from a planet, the radial velocity of a

star periodically changes when the star moves towards and away from the observer.

Such back and forth movement of a star is detectable as a periodic blue shift and

red shift in the star’s spectral lines. In the developmental stage, radial velocity (r-v)

measurements had errors of 1,000 m/s or more. Now these errors have been brought

down to 1 to 10 m/s while carrying r-v measurements of exoplanets residing hundreds

of light years away.

In 1988, a group of Canadian astronomers comprising of B. Campbell, G.

Walker, and S. Yang (CWY88) came with subsequent confirmation of an exoplanet

by using a technique that was never been used before. Using the idea of reflex motion,

CWY88 used the spectral lines of the star, γ Cephei, to determine the radial velocity

of the star and the unseen planet (Campbell et al. 1988). The technique is also called

Doppler method since it relies on the Doppler effect described earlier. The Doppler

method is illustrated in Fig. 1.3.
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Due to the significant errors in the method, astronomers remained skeptical

about the discovery made by CWY88. It would take several years of observations for

the method to have acceptable errors, however, on the other hand, the radio astron-

omy took a giant leap and the first ever known exoplanet was detected around the

milli-second pulsar called PSR1257 + 12 using the Arecibo Radio Telescope (Wol-

szczan & Frail 1992). The regularity of pulses coming from the object provided a way

for measuring the reflex motion of the pulsar due to the gravitational influence of the

unseen planets. As of now, three planets are confirmed to be orbiting the pulsar with

the orbital periods of 25, 67 and 98 days.

The search for an exoplanet orbiting a solar-type star continued with technolog-

ical advances resulting in the multiplied telescope power. On October 6, 1995, Michel

Mayor and Didier Queloz from the University of Geneva became the first astronomers

to detect an exoplanet orbiting the main sequence star, 51 Pegasi (Mayor & Queloz

1995). It was a Jupiter-like planet orbiting the G type star with a minimum mass of

0.47 MJ and a period of ∼4.23 days. Few days later the discovery was independently

confirmed by Geoffrey Marcy and Paul Butler from San Francisco State University.

And with that milestone, the modern planetary astronomy had just begun which

would take a giant leap in the days to come.

Just as our Solar system is home to 8 planets, it was certain that there ought to

be similar multi-planetary systems. The observational confirmation came from Jack

Lissauer when he discovered ν Andromadae A housing 3 planets (Lissauer 1999).

The fourth planet was discovered in 2011 (Curiel et al. 2011). In the next section I

will show how common are the multi-planetary systems in the vicinity of our Solar

system.

Despite its popularity, Doppler method had its own limitations. It would only

provide information related to one degree of freedom only, i.e. the motion towards
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Figure 1.4. Effect of the orbital inclination on the Doppler signature as seen in the
sky-plane. Image credit: UCAR.

and away from the observer. This sets a limit on the planetary mass (Msini) to

its minimum. However, if the planet’s orbital inclination can be obtained from the

planet’s spectral lines, hence its radial-velocity, the actual mass of the planet could

be determined.

1.3.2 Transit Method

When a planet eclipses its host star (transits), the luminosity of the star de-

creases. This decrement was discovered accidentally by David Charbonneau while

analyzing the brightness of star HD 209458 where he detected 1.8% drop. The change

in luminosity is proportional to the size of the planet. For example, a Jupiter sized

planet can potentially reduce the 1% of the light from a star. From the light curves

obtained from the transit, the radius of the planet can be determined. And with the

mass value obtained from the r-v methods, density of the planet is calculated. A light

curve obtained from the transit method is illustrated in Fig. 1.5.
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Figure 1.5. Illustration of the Transit method. Image credit: NASA.

Some limitations of the transit method includes a high occurrence of false posi-

tives due to the transient phenomena such as star spots, stellar variability, background

stars, and foreground dust clouds. Three transits are required to confirm detection

and account for the known sources of false positives. Independent verification using

different method, such as r-v, is highly practiced in order to increase the robustness

of the proposed detected planet. Other limitation is that the planetary transits are

observable only when the orbit is aligned to the star from the astronomer’s vantage

point. For planets with smaller orbits this chance is higher, however for the larger or-

bits the recordable transits decreases significantly and collecting data of such transits

would be painful because of the longer time period.

As of September 2014, more than 1800 exoplanets have been confirmed in single

and multi-planetary systems. The National Aeronautics and Space Administration

(NASA) launched a space telescope called Kepler in 2009 which uses the transit

method to look for planet signatures and it has been the most successful mission to

date. The Spitzer space telescope was at work before Kepler and it worked on the

principles of Doppler method. And with more space based telescopes proposed for
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Figure 1.6. Distribution of planets detected by most of the techniques known to date.
(left) Distribution of planets by year of discovery (right) Distribution of planets by
their mass and orbital period.

the near future to search for transit signatures in thousands of star, these numbers

are expected to grow larger.

The Doppler and Transit methods have been proven the most efficient tech-

nique for detection and characterization of exoplanets. Some other techniques which

are effective but have more technical difficulties include microlensing, pulsar timing,

nulling interferometry, and direct imaging. The observation from ground based tele-

scopes always have a resolution barrier. This barrier is mainly due to turbulence in

the Earth’s atmosphere, also known as seeing. Adaptive optics have been applied to

the data in order to minimize the noise due to the atmosphere. However, the best

resolution measurements are made from the space based observations, thus space

telescopes have higher preference.

The discovery rate of exoplanets using most of the known techniques is illus-

trated in Fig. 1.6.
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Figure 1.7. Distribution of known exoplanets in Binary Star systems.

1.4 Exoplanets in Binary Star Systems

The exoplanet discovered, but not confirmed, by the group CWY88 in 1988

happens to be a part of a binary star system called γ Cephei, which is only 45 light

years away from us. Since then, approximately 79 exoplanets have been confirmed

that are residing in the binary systems. Figure 1.7 illustrates the distribution of

exoplanets in binary star systems as a function of planetary mass and distance from

its host star. These numbers includes observations from the Doppler as well as the

transit method. Prior to observations from the Kepler space telescope, most of the

planets discovered in binary star systems were found to orbit within 5 astronomical

unit (AU) from the host star, and the star separation was anywhere from 20 au

to 6400 au. There were few systems where the stellar separation was less than 25

au (Patience et al. 2002; Eggenberger et al. 2004). Theoretical studies including
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Figure 1.8. Depiction of planetary formation regimes in binary star system for varying
stellar separation. Image credit: NASA.

analytical and numerical calculations showed that the existence of planets within

relatively close binary systems is a possible scenario (Kley et al. 2001; Quintana et al.

2002, and others). Figure 1.8 depicts different planetary formation scenarios for

various cases of binary separation, including the case for circumbinary exoplanets.

Given a possible scenario for a planetary embryo to form, the studies have found that

the terrestrial planet formation in such systems is possible.

Some recent observations have confirmed the existence of circumbinary planets,

such as Kepler-16, Kepler-34, Kepler-35, and Kepler-47 etc (Doyle et al. 2011; Welsh

et al. 2012; Orosz et al. 2012). First three systems contain a Saturnian planet. Kepler-

47 is home to two known planets and two unconfirmed. I will discuss this system later

with more details on its parameters and stability analysis of unconfirmed planets.

The numbers presented in Fig. 1.7 show continuous growth as the Kepler

mission has observed 2,165 more eclipsing binary stars. With growing number of
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planets in binaries, there is more variation and diversity among planets themselves,

especially regarding the orbital elements. The study of such variational effects on

the dynamics of the system is part of the motivation of this dissertation. Stability

of the planet’s orbital configuration as well as chaotic dynamics in presence of stellar

companion will be discussed with great details.

1.5 Numerical Framework

Issac Newton introduced the topic of 3-body problem and he himself made rig-

orous attempts to find an analytical solutions. He tried to complete his theory related

to the gravitation and motion of celestial bodies, but without any success. He was

able to apply his theory to the known planets of the Solar system, but it produced

inconsistent results when applied to the motion of the Moon (Sun-Earth-Moon sys-

tem). He was still in the Abacus era, so searching for numerical solutions was beyond

his scope. Several centuries later the advancement in computing technologies would

allow numerical computations for not only 3-body problem but also for more gen-

eral many-body (n-body) problem. Such n-body calculations using super-computers

have been widely used in the current years to understand the galactic motion of the

stars and has been successfully accomplished to some extent (Barnes & Hut 1986;

Wisdom & Holman 1992; Aarseth 2003). Recently, n-body simulations of Milky Way

and Andromeda have shown that these galaxies are on a collision course and will

meet head-on after approximately 4.5 Gyr. n-body simulation primarily uses the

techniques of symplectic mapping and hierarchical integration.

It may seem that with the rigorousness with which the 2 body problem was

solved, adding one extra body would not change the difficulty of the problem. How-

ever, in the early 19th century King Oscar II established a handsome prize for solving

the n-body problem. It was awarded to an elite mathematician of the era, Henri
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Poincaré, who actually did not solve the problem, and ironically his solutions even

had an error (Diacu 1996). An infinite series solution was determined for the case of

n= 3 by Karl Sundman (1912), but this series solution converges very slowly. As a

result of these analytical shortcomings several approximations were made to simplify

the problem (for details see Musielak and Quarles 2014).

Current era of exoplanet exploration in multiple configurations gives a wide

variety of opportunities to conduct research and understand the dynamics of n-body

systems. For the research on exoplanets presented in this dissertation, the following

criteria have been set.

1. The masses are constant in time with 2 masses (M1,M2) dominating in mag-

nitude over all other masses so that the much smaller masses do not affect the

motion of the dominant masses. All other masses will be denoted in decreasing

order (ie., M3, M4, . . . ).

2. The velocity of all the masses are small enough such that all motions will be

considered non-relativistic.

3. The motion of the 2 largest masses (M1,M2) will be a solution to the 2 body

problem.

4. The motion of the smaller masses may be coplanar or inclined with respect to

the plane of the 2 largest masses (M1,M2).

5. To generalize the problem, the shape of the orbits are considered elliptic in most

of the cases.

The first three assumptions limit the discussion to the restricted n-body prob-

lem. The general n-body problem in 3 dimensions have been studied. The motion

of the 2 main bodies will be considered to be either elliptical or circular as the other

cases (ie., hyperbolic and parabolic) do not produce periodic orbits. The mass regimes

will be classified in terms of a comparable Solar System body such that stars will be
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measured in Solar masses (M�), giant planets will be measured in Jupiter masses

(MJ), and terrestrial planets(moons) will be measured in Earth masses (M⊕). The

distance between two bodies will be measured in astronomical units (AU) most of the

time.

The primary question is what initial conditions in terms various orbital elements

of stars or planets such as mass, semimajor axis (a), eccentricity (e), inclination (i),

argument of periapsis (ω), ascending node (Ω), and mean anomly (M), will produce

stable, periodic orbits for the planet being analyzed. A range of stellar masses,

planetary starting positions, and other elements will be considered to address periodic,

quasi-periodic or chaotic states in a very general manner.

1.6 Thesis Layout

The parameter space to address the n-body problem can be quite large and time

consuming. For our systems of study the n-body problem has been confined to the

cases where n = 3 to n = 6. The first project of this dissertation involves the study of

the elliptic restricted 3-body problem and determining a stability criterion by using

some known chaos techniques as well as some recently developed ones. Also, the new

chaos technique will be tested for its integrity against other well established ones.

Various binary planetary systems will be used as a test subject. The second project

will explore the chaotic dynamics of a planet in a highly inclined orbits. Other sub-

projects will include the detection of exomoons through observation of radio emission

and stability analysis of possible new planets in GJ 832 system. The theory pertaining

to these projects will be derived in detail in Chapter 2. The results of the projects

will be presented and analyzed in Chapters 3,4, 5, and 6. In chapter 7 I will provide

the summary and an outline of future endeavors.



CHAPTER 2

THEORY

A general N-body problem is used to describe motions of celestial bodies, which

gravitationally interact with each other. An attempt to solve this problem first ap-

peared in Newton’s Principia. The simplest case of the problem is when N = 2,

which is also the only case with known analytic solutions (Szebehely 1967; Murray

& Dermott 1999). These two textbooks and a recent review paper by Musielak &

Quarles (2014) will be extensively used to establish definitions, notations and con-

ventions adopted in this dissertation on the circular restricted and elliptic restricted

three-body problem, denoted as CRTBP and ERTBP, respectively. This chapter will

focus on the theoretical aspects of Celestial Dynamics that will include the coordinate

systems, the equations of motion, areas of chaos theory (Lyapunov exponents, Hill

stability criterion, MEGNO maps) and numerical simulations.

2.1 Coordinate Systems

The first step in approaching the N body problem is through a choice of coordi-

nate system. There are only a few choices when it comes to dealing with the orbital

motion. The most common choices are the two types of coordinate systems: barycen-

tric and astrocentric (Jacobi). In the barycentric coordinates, the center of mass

remains fixed and the N bodies are allowed to orbit the center of mass in accordance

with Newton’s law of universal gravitation. Whereas the astrocentric coordinates

allow one to choose the most massive body to remain fixed and motionless at the

origin, hence simplifying the problem by reducing the set up to a N-1 body problem.

17
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The first project in this dissertation, which will be discussed in details in Chap-

ter 3, is based upon the consideration of the barycentric coordinate system. In the

remaining projects, the astrocentric coordinate system is considered. However when

the number of bodies N is greater than 2, there does exist another choice of coordi-

nates. There can be a sidereal (inertial) or synodic (rotating) coordinate systems (see

Figure 2.1. The usage of each of these coordinate systems varies by application and

it will always be stated which of these conventions are being used. Sidereal coordi-

nates and barycentric coordinates are interchangeable in their usage as they equally

describe the same geometry. Synodic coordinates will be used mainly in application

to the circular N body problem where N = 3 and will be denoted with a superscript

* symbol (ie., x∗, y∗, z∗).

Figure 2.1. A general set up for the circular restricted three body problem. (left)
Initial configuration in sidereal coordinates. (right) Initial configuration in synodic
coordinates. All used symbols are described in the main text. Image Credit: Jason
Eberle (2010).



19

2.2 Basic Definitions

Masses of astronomical bodies are denoted by Mi, where the index i describes

the hierarchy of masses with i = 1 being the most massive object. In the description

of the N body problem the total mass of the system is denoted as M where M =

M1 + M2 + . . . + MN . Using this convention, a mass ratio may be defined, and

in this dissertation the mass ratio µ = M2/M , and the complementary mass ratio

α = M1/M . It is assumed that all the masses from M3 to MN will be sufficiently

small so that the following relationship µ + α = 1 is satisfied. It is important to

note that these mass ratios are dimensionless, so that they can be used in equations

together with other normalized physical quantities.

Figure 2.1 illustrates the two possible coordinate systems for the CRTBP. A

barycentric coordinate system is used such that the location of the two most massive

bodies is denoted by R1 and R2 relative to the center of mass (the origin). The

parameter R0 describes location of the smaller mass, M3, relative to the larger mass,

M1. In this setting, the most massive bodies orbit in circles with a speed V1,2 = R1,2ω

where ω, which denotes the mean motion (see below). Normalized units are often

used in orbital mechanics to simplify the notation. The following set of equations

demonstrates how a set of Cartesian coordinates can be normalized relative to the

initial separation distance, D, between the masses and the orbital velocity in the case

of negligible eccentricity. The mean motion is defined as, ω2 = GM
a3

where G and a

denote the constant of universal gravitation and semimajor axis between the largest

masses (M1,M2), respectively, as given by

ξ =
x

D
η =

y

D
ζ =

z

D
,

ξ̇ =
ẋ

Dω
η̇ =

ẏ

Dω
ζ̇ =

ż

Dω
. (2.1)
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The dots in the above expressions represent the derivative with respect to time. Note

also that the additional normalization is required to scale the orbital period, T. In

this dissertation, the two most common choices are used, both involve redefining the

value of the constant of universal gravitation, G. In the first choice G = 4π2 because

this inherently simplifies Newton’s definition of Kepler’s Third Law (ie., T 2 = 4π2

GM
a3),

which also implies that some unit be chosen as well.

The second most intuitive choice is to let M be expressed in terms of M�

and a in astronomical units (AU). The AU is equivalent to the mean distance of

Earth from the Sun, which has a standard value of 1.49597870700 x 1011 m (Luzum

et al. 2011) as defined by the International Astronomical Union (IAU). For simplicity

the time unit will be equal to a Julian Earth year which has a standard value of

365.2422 days. Using the units of AU, M�, and yr we can define G = 4π2 AU3

yr2 M�
.

An alternate definition would be to change the magnitude of G to unity but leave

the units unchanged, however this would change the definition of mass and force

the M� = 4π2 in order for Kepler’s Third Law to remain valid. Specifically, in this

dissertation the first convention will be used.

2.3 Equations of Motion

From Newton’s Laws of motion a general definition of force can be developed.

First, considering the static gravitational problem of N masses, a general expression

can be obtained to describe the force exerted on the ith mass resulting from the

presence of other j masses

Fij = −GMiMj

r3ij
(ri − rj). (2.2)
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Equation 2.2 illustrates that the force due to gravity on the ith would be di-

rected radially inward as denoted by the difference of the vectors (ri,rj) which locate

the masses relative to a point of reference. With modern numerical tools a slightly

different form is required to advance the static definition to a dynamical one. As a

result of Newton’s 2nd Law, the acceleration aij is calculated rather than the force.

A simple transformation can be obtained to define the acceleration as aij = Fij/Mi.

This expression is used most commonly to evaluate the N body problem, however

there exists another formulation for the case where N = 3.

Figure 2.2. Illustrations of gravitational forces between the ith and jth masses.

In the CRTBP, a synodic coordinate system (see Figure 2.1b) can be used to

reduce the problem to the motion of only 1 body. It is important to note that this is

a simplification of the general three body problem as it is possible to rotate coordi-

nates of the system using operations from the SO(3) group (Arfken & Weber 1995).
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Specifically a rotation matrix can be applied with respect to the z-axis. However,

the equations of motion must be defined in the sidereal coordinate system (ξ, η, ζ) in

order to apply the resulting transformation. Using the vector form of Equation 2.2,

the equations of motion of the third mass are

ξ̈ = GM

[
α (ξ1 − ξ)

r31
+
µ (ξ2 − ξ)

r32

]
, (2.3)

η̈ = GM

[
α (η1 − η)

r31
+
µ (η2 − η)

r32

]
, (2.4)

ζ̈ = GM

[
α (ζ1 − ζ)

r31
+
µ (ζ2 − ζ)

r32

]
, (2.5)

where

r21 = (ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2 , (2.6)

r22 = (ξ2 − ξ)2 + (η2 − η)2 + (ζ2 − ζ)2 . (2.7)

The necessary rotation matrix, Rab, is given by

Rab =


cos θ sin θ 0

−sin θ cos θ 0

0 0 1

 . (2.8)

Equation 2.8 gives the general form of the necessary rotation matrix. The

CRTBP requires a specific form which involves making the substitution θ = ω t. This

substitution is not permitted in the ERTBP, because the latter does not permit this

due to Kepler’s 2nd Law of planetary motion that changes ω from a constant into a

time dependent parameter. In the following, it is shown how the equations of motion
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are determined for the CRTBP and then the appropriate modifications are made to

satisfy the ERTBP.

First, the sidereal coordinates (ξ, η, ζ) are rotated using Equation 2.8 with the

aforementioned transformation
ξ∗

η∗

ζ∗

 =


cos ωt sin ωt 0

−sin ωt cos ωt 0

0 0 1



ξ

η

ζ

 (2.9)

If we now differentiate Equation 2.9 twice, we obtain the following accelerations

(ξ̈∗, η̈∗, ζ̈∗) 
ξ̈∗

η̈∗

ζ̈∗

 =


cos ωt sin ωt 0

−sin ωt cos ωt 0

0 0 1



ξ̈ − 2ωη̇ − ω2ξ

η̈ + 2ωξ̇ − ω2η

ζ̈

 (2.10)

Using Equations 2.3, 2.4, and 2.5 substitutions can be made to obtain the

following equations of motion in the synodic coordinate system

ξ̈∗ − 2ωη̇∗ − ω2ξ∗ = −GM
[
α
ξ∗ +GMµ

r31
+ µ

ξ∗ −GMα

r32

]
, (2.11)

η̈∗ − 2ωξ̇∗ − ω2η∗ = −GM
[
α

r31
+
µ

r32

]
η, (2.12)

ξ̈∗ = −GM
[
α

r31
+
µ

r32

]
ζ, (2.13)

where (r1, r2) are redefined as

r21 = (ξ∗ +GMµ)2 + η2∗ + ζ2∗,

r22 = (ξ∗ −GMα)2 + η2∗ + ζ2∗. (2.14)
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It is important to note that as a result of the synodic reference frame the Cori-

oli’s and centrifugal acceleration are introduced into the equations of motion. In

addition, Equations 2.11, 2.12, and 2.13 can be written as the gradient of a psue-

dopotential U :

ξ̈∗ − 2ωη̇∗ =
∂U

∂ξ∗
,

η̈∗ + 2ωξ̇∗ =
∂U

∂η∗
,

ζ̈∗ =
∂U

∂ζ∗
, (2.15)

where U = U (ξ∗, η∗, ζ∗) is given by

U =
ω2

2

(
ξ2∗ + η2∗

)
+GM

(
α

r1
+
µ

r2

)
. (2.16)

The equations of motion in the ERTBP are similar to those of the CRTBP but

there are some important differences between them. First of which is that in the

ERTBP the true anomaly, f , is incorporated into the equations of motion because

Kepler’s 2nd Law forces f to vary with time. This also implies that the synodic

coordinate system cannot be rotated at a constant rate. Thus an additional equation

of motion must be included to determine f at each instant of time. Moreover,the

eccentricity also effects the equations of motion so that the CRTBP psuedopotential

U becomes the ERTBP psuedopotential Ω given by

Ω = (1 + ecosf)−1
[

1

2

(
ξ2∗ + η2∗ − eζ2∗cosf

)
+GM

(
α

r1
+
µ

r2

)
+
µα

2

]
, (2.17)

and

ḟ =
GM

1
2

[a(1− e2)]
3
2

(1 + e cos f)2. (2.18)
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2.4 Orbital Elements

An alternate method of analyzing the problems described above can be found

in celestial dynamics. When a clear hierarchy of mass is considered as in the CRTBP

and ERTBP, it is useful to describe the system in terms of the orbital elements of

each body. The orbital elements are also constants of motion for the appropriate two

body problem. In the three body problem orbital elements are defined relative to a

Jacobi coordinate system with the most massive body is taken to be the reference.

Therefore M2 and M3 would have each a set of orbital elements relative to M1.

For the two body problem the orbital elements are the semimajor axis (a),

inclination (I), eccentricity (e), argument of periapsis (ω), longitude of ascending

node (Ω), and true anomaly (f).

Figure 2.3. Illustration of the orbital elements that exist in a system that is not
coplanar. Image Credit: Wikipedia.
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At any given time the position of the planet is given as (Murray & Dermott

1999) 
X

Y

Z

 = r


cos Ω cos (ω + f)− sin Ω cos i sin (ω + f)

sin Ω cos (ω + f) + cos Ω cos i sin (ω + f)

sin i sin (ω + f)


Then the velocities can be calculated by taking the time derivative of the above

position matrix

Vx = −r(ω̇ + ḟ) [cos Ω sin (ω + f) + sin Ω cos i cos (ω + f)]

+ rΩ̇ [cos Ω cos i sin (ω + f)− sin Ω cos (ω + f)]− ri̇ [sin Ω sin i sin (ω + f)]

+ [cos Ω cos (ω + f)− ṙ sin Ω cos i sin (ω + f)] (2.19)

Vy = −r
[
sin Ω sin (ω + f)ω̇ + ḟ − cos Ω cos (ω + f)Ω̇

]
+ r

[
cos Ω cos i cos (ω + f)ω̇ + ḟ − cos Ω sin i sin (ω + f)i̇− sinω cos i sin (ω + f)ω̇

]
+ ṙ [sin Ω cos (ω + f) + cos Ω cos i sin (ω + f)] (2.20)

Vz = r
[
cos (ω + f) sin i(ω̇ + ḟ) + i̇ cos i sin (ω + f)

]
+ ṙ [sin (ω + f) sin i] (2.21)

Applying the initial conditions

Ω̇ = ω̇ = i̇ = 0 and

ḟ =
na

r
√

1− e2
(1 + e cos f) (2.22)
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Equations (1), (2) and (3) become

Vx =
na√

1− e2
{e sin f [cos Ω cos (ω + f)− sin Ω cos i sin (ω + f)]−

(1 + e cos f) [cos Ω sin (ω + f) + sin Ω cos i cos (ω + f)]}

Vy =
na√

1− e2
{e sin f [sin Ω cos (ω + f) + cos Ω cos i sin (ω + f)] +

(1 + e cos f) [cos Ω cos i cos (ω + f)− sin Ω sin (ω + f)]}

Vz =
na√

1− e2
sin i [cos (ω + f)(1 + e cos f) + sin (ω + f)e sin f ] (2.23)

Figure 2.3 shows the orbital elements that they are non-zero in the case of or-

bits that are not coplanar. The remaining orbital elements exist regardless of the

reference plane. Using Lagrange’s planetary equations, a system can be simulated

with respect to the orbital elements (Murray & Dermott 1999) which is an optional

parameter in integration packages such as Mercury and Swifter. This dissertation

makes use of how the orbital elements can change with time due to the nonlinearity

of the N body problem. As such, the simulations are performed within the previously

defined coordinates systems and appropriate conversions are made to the correspond-

ing orbital elements using the orbital state vectors. More details concerning these

transformations are given in Appendix A.

2.5 Zero Velocity Surface and Functions

The Zero Velocity Surface (ZVS) is used in the CRTBP to define the region of

space where the third mass is allowed to move. For the elliptic case a Zero Velocity

Function (ZVF) is employed that is dependent on the true anomaly, f , of the two

more massive bodies. Both the ZVS and ZVF are determined from the corresponding

Jacobi integral.
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The Jacobi integral in the CRTBP produces the so-called Jacobi constant, CJ .

This comes from multiplying Equation 2.11 by ξ̇∗, Equation 2.12 by η̇∗, Equation 2.13

by ζ̇∗, and summing the results together to get

ξ̇∗ξ̈∗ + η̇∗η̈∗ + ζ̇∗ζ̈∗ =
dU

dt
. (2.24)

Equation 2.24 can thus be integrated to give

ξ̇2∗ + η̇2∗ + ζ̇2∗ = 2U − CJ ,

v2 = 2U − CJ . (2.25)

Therefore, the ZVS can be formally defined as the points for which v = 0 or

2U = CJ . To draw the appropriate contours, the value of CJ is determined from the

initial conditions and then the previous condition is applied. Also the quantity CJ

becomes a constant of motion for the CRTBP. Regions beyond the ZVS or forbidden

regions are not allowed because to enter such regions would imply a purely imaginary

velocity, which obviously corresponds to an unphysical solution.

The generalized ZVF is an extension of the ZVS that incorporates the pa-

rameters for eccentricity and true anomaly. This is determined in a similar manner

but with CJ(f) rather than only a constant CJ . It is easily written by replacing

the psuedopotential U with Ω as given in Equation 2.17 to produce the relation

CJ(f) = 2Ω(ξ∗, η∗, ζ∗, f). Solving analytically the integrals for CJ(f) can be espe-

cially daunting but numerical methods exist and a Hill-stability criterion has been

formulated based on the numerical result (Szenkovits & Makó 2008).
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2.6 Tools from Chaos Theory

Chaos theory has been effectively applied to different astronomical problems,

including some problems of orbital mechanics. Many of these applications have been

explored in the study of asteroids within the Solar System. In this dissertation,

certain techniques that have been developed starting in the 1980s (Benettin et al.

1980; Froeschle 1984; Ferraz-Mello & Dvorak 1987; Dvorak & Karch 1988; Smith &

Szebehely 1993; Murray & Holman 2001, and references therein) will be utilized.

Specifically, the theory for the calculation of Lyapunov exponents will be described

as well as a brief introduction to linear stability theory and perturbation theory.

2.7 Fourier Transform

Some of the basic tools for the analysis in chaos theory comes from advance-

ments made prior to its development. One of those great achievements is called the

Fourier transform (Fourier 1822). This mathematical tool was developed by Jean

Baptiste Fourier to study the time evolution of heat diffusion. However, the use of

this tool has been extended to much broader applications including the analysis of a

time series. The basic definition of the Fourier transform involves a time dependent

function χ(t). This function can exist in another mathematical space called phase

space where the frequency becomes the independent coordinate. The Fourier trans-

form demonstrates mathematically how to obtain the form of the function in both

spaces, position and phase. This relationship is given by

χ(t) =

∫ ∞
−∞

F (f)e2iπftdf, (2.26)

F (f) =

∫ ∞
−∞

χ(t)e−2iπftdt. (2.27)
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The Fourier transform (Equation 2.26) and the inverse Fourier transform (Equa-

tion 2.27) provide an analytic means of performing analysis upon a source function.

As it can take quite a long time to calculate the Fourier transform for a general func-

tion, numerical techniques were introduced. The fast Fourier transform (FFT) was

introduced in the 1960s and the Cooley-Tukey algorithm is one of the most commonly

used (Cooley & Tukey 1965). However, it was later discovered that this algorithm was

merely reinvented and originally determined by Gauss in 1805 (Heideman et al. 1984).

Since numerical techniques evolve over time there is another computational library

which has made the FFT the most optimized into the FFT of the west (FFTW).

FFTW (Frigo & Johnson 1998) has undergone 3 distinct versions to the current ver-

sion FFTW3 (Frigo & Johnson 2005). This dissertation heavily uses this particular

tool and the libraries of FFTW in the software package Matlab R© (MATLAB 2011).

The importance of the use of the FFT is that it can differentiate a periodic

source into three categories: noisy, quasi-periodic, and periodic signals (Tsonis 1992).

A noisy signal is indicated by the lack of a specific frequency that would dominate

over all other frequency in the time series. A periodic signal will show one distinct

frequency that will dominate over all others in an appropriate power spectrum. A

quasi-periodic signal can be characterized as the linear combination of many frequen-

cies which is represented in a power spectrum by many frequencies dominating over

the background (noise). Since the objects in the N body problem experience periodic

influences from their neighbors this tool is appropriate in such research.

2.8 Linear Stability

The N body problem exhibits inherent nonlinear behavior, but whether that

nonlinear behavior will lead to instability is a topic of current research. The most

common first step in trying to determine the stability of a nonlinear system is to
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approximate the system as linear over a sufficiently small time. This section outlines

the basics of linear stability theory to provide the necessary background to discuss

future nonlinear analysis methods.

Linear systems in mathematics are generally studied using a set of coupled first

order differential equations. Let us consider, for example, a set of two linear, first

order homogeneous differential equations:

ẋ1 = a11x1 + a12x2,

ẋ2 = a21x1 + a22x2, (2.28)

where aij represent constants. Equation 2.28 can be rewritten into a matrix

form, ẋ = Ax, where

A =

a11 a12

a12 a22

 x =

x1
x2

 ẋ =

ẋ1
ẋ2

 (2.29)

Considering that the solution to the scalar equation ẋ = ax exists, we should

assume a similar solution as it matches the form of ẋ which is

x(t) = ceλ t, (2.30)

where λ is a scalar and c is a nonzero vector
(
c1
c2

)
. Substituting this solution into

ẋ the result is obtained as Ac = λc with the eigenvector λ. A nontrivial solution is

desired, thus properties of matrices are used from linear algebra including the Identity

matrix I. It is necessary that

Det(A− λ I) = 0. (2.31)



32

Equation 2.31 can be solved using the appropriate coefficients from A and the

eigenvector λ. The solution results in a characteristic equation in terms of λ in the

form

λ2 + λ Trace A+ Det A = 0. (2.32)

The property of Equation 2.32 which is important is that the eigenvalues λ1, λ2

are either both real or complex, which corresponds to the exponential and oscillatory

solutions, respectively. Also we can solve for the eigenvalues using the general solution

to a quadratic equation so that

λ1,2 =
Trace A−

√
(Trace A)2 − 4 Det A

2
(2.33)

Equation 2.33 provides two important properties that are used in this disserta-

tion. It can easily be shown that

λ1λ2 = Det A

λ1 + λ2 = Trace A (2.34)

The result given by Equation 2.34 holds true for a general homogeneous system

of n first order differential equations.

2.9 Nonlinear Stability

When dealing with nonlinear systems, an analytic solution is usually not ob-

tainable. In this case the system is expressed in terms of a set of nonlinear functions
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of the appropriate coordinates. Again we use the form ẋ = Ax, however the elements

of ẋ, A, and x will be considered to be n dimensional such that

A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


(2.35)

Applying Equation 2.31 to Equation 2.35 and assuming x to contain n nonlinear

functions dependent on n coordinates, it can be shown that the matrix A represents

the Jacobian matrix J , ie., A = J . Then Equation 2.35 becomes

A =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


(2.36)

Nonlinear systems are usually categorized as being either conservative or dissi-

pative. This is determined by the Hamiltonian and some properties of the Jacobian.

First, the category can be determined by inspection of the Hamiltonian for time

dependence. Dynamical systems whose Hamiltonian does not vary with time are des-

ignated as being conservative. Otherwise, the system is considered to be dissipative.

The Hamiltonian of the gravitational N body problem is time independent, thus the

results obtained in this dissertation are within the conservative regime of nonlinear

dynamics.

Conservative systems have some useful properties, the most important for this

dissertation is the conservation of volumes in phase space. This is shown by con-
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sidering the N body problem to be like a fluid. Thus using generalized coordinates

(q,p), which represent phase space, the density ρ of the fluid at a time t with the fluid

moving with a velocity v obeys the following continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.37)

In order to solve Equation 2.37, the variable dependence must be determined.

The density has the form ρ = ρ(q, p, t) and the velocity has the form v = v(q, p) such

that the chain rule can be applied

∇ · (ρv) = v(∇ · ρ) + ρ(∇ · v). (2.38)

Recalling that for the conservative systems ∇ · v = 0, the resulting equation

becomes

∇ · (ρv) = v(∇ · ρ). (2.39)

Substituting Equation 2.39 into Equation 2.37 and rewriting in terms of the full

time derivative

dρ

dt
= 0. (2.40)

Since m = ρV , where V denotes volume and m is constant with respect to time,

the result is dV
dt

= 0. This demonstrates that the volume in phase space is conserved,

which indicates that the Trace A = 0. Using a generalization of Equation 2.34, the

resulting eigenvalues can be shown to have the following property

λ1 + λ2 + . . .+ λn = 0. (2.41)
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Figure 2.4. Illustration of the conservation of volumes in the phase space (x,y). The
volumes may be deformed, but they remain the same. Image Credit: Anastasios
Tsonis (1992).

2.10 Lyapunov Exponent

In the analysis of nonlinear phenomena, many different methods exist to gauge

the stability within a nonlinear system. One such method involves the calculation and

interpretation of the Lyapunov exponents (Lyapunov 1907). This dissertation uses

this method to determine the timescale for which a particular system is deterministic

and as a stability criterion. The Lyapunov exponents are a measure of the change

in nearby trajectories differentiated by initial conditions (See Figure 2.5). This de-

scription is analogous to the eigenvalues given in Equation 2.33 and display the same

properties as given in Equation 2.34. The positive Lyapunov exponents measure the

rate of divergence of neighboring orbits, whereas negative exponents measure conver-
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Figure 2.5. Illustration of the variations of nearby trajectories that define the Lya-
punov exponents. Image Credit: Wolf et al. (1985).

gence rates between stable manifolds. For dissipative dynamical systems the sum of

all Lyapunov exponents is less than 0 (e.g., Musielak & Musielak 2009); however, for

Hamiltonian (non-dissipative) systems the sum is equal to 0 (e.g., Hilborn & Sprott

1994). In addition the inverse of the maximum Lyapunov exponent will provide an

estimate of how long a system will remain deterministic or a measure of predictive

time (Musielak & Musielak 2009).

Specific applications of the Lyapunov exponents to the CRTBP have been dis-

cussed by many authors, including Gonczi & Froeschle (1981), Jefferys & Yi (1983),

Lecar et al. (1992), Milani & Nobili (1992), Smith & Szebehely (1993) and Mur-

ray & Holman (2001). In order to use the method of Lyapunov exponents on the

gravitational N body problem, the Jacobian A must be defined for such a system.

Since there exists two possible types of barycentric coordinate systems (sidereal and

synodic), the Jacobian is defined for both and each one is used with the appropriate

coordinate system. In the case of the synodic barycentric system, the third mass has

its own Jacobian, where as the sidereal case each mass has its own Jacobian.
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A dynamical system with n degrees of freedom is represented in 2n phase space;

thus, to fully determine stability of the system all 2n Lyapunov exponents must be

calculated. The previously obtained results for the CRTBP clearly show that the

Lyapunov exponents can be calculated for the case of the CRTBP, for which we

have 2n = 6. This requires a state vector, x, for the system containing 6 elements

(ξ, η, ζ, ξ̇, η̇, ζ̇). It is the convention that positive Lyapunov exponents indicate that

both dissipative (e.g., Hilborn & Sprott 1994) and non-dissipative (e.g., Ozorio de

Almeida 1990) systems are chaotic. In this dissertation, the end value of the maximum

Lyapunov exponent in a time series is used to make distinction between chaotic and

non-chaotic orbits. The synodic Jacobian uses the equations of motion given by

Equation 2.15 with

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂ξ̈∗

∂ξ∗
∂ξ̈∗

∂η∗
∂ξ̈∗

∂ζ∗
0 2 0

∂η̈∗

∂ξ∗
∂η̈∗

∂η∗
∂η̈∗

∂ζ∗
−2 0 0

∂ζ̈∗

∂ξ∗
∂ζ̈∗

∂η∗
∂ζ̈∗

∂ζ∗
0 0 0


. (2.42)
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Using the synodic Jacobian is useful to investigate the CRTBP and ERTBP,

but it cannot be used to investigate a N body problem. Thus the Jacobian in the

sidereal barycentric coordinates can be generalized as

Ai =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂ξ̈i
∂ξi

∂ξ̈i
∂ηi

∂ξ̈i
∂ζi

0 0 0

∂η̈i
∂ξi

∂η̈i
∂ηi

∂η̈i
∂ζi

0 0 0

∂ζ̈i
∂ξi

∂ζ̈i
∂ηi

∂ζ̈i
∂ζi

0 0 0


. (2.43)

The sidereal Jacobian, Ai, carries with it an index to denote the Jacobian for

the ith mass. Also, it is important to note that Equation 2.43 can be represented by

4 matrices with 3 x 3 elements so that the null matrices (top left and bottom right)

can be excluded to reduce the number of calculations. Additionally, Equations 2.3,

2.4, and 2.5 provide the necessary accelerations to evaluate the sidereal Jacobian, Ai.

However, the number of calculations will increase as N increases so that the usage of

Ai can become computationally expensive.

The details of the calculation of the Lyapunov exponents can be found in Ap-

pendix A. The particular algorithm used in the calculations is adapted from an algo-

rithm given by Wolf et al. (1985). This algorithm uses Gram-Schmidt renormalization

which can become computationally expensive. Alternate methods using Lyapunov ex-

ponents as a basis of analysis have been introduced (Froeschle 1984; Laskar et al. 1992;

Lohinger et al. 1993; Lohinger & Froeschle 1993; Froeschlé et al. 1997; Froeschlé &

Lega 2000; Fouchard et al. 2002, and references therein). The most commonly used
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alternative is the fast Lyapunov indicator (FLI) which measures the largest change

in the tangent vector ẋ. The FLI is calculated via the expression

FLI = sup
0<k<T

log ‖ẋk(t)‖ . (2.44)

Usage of the FLI is much less computationally expensive to the calculation of

the Lyapunov exponents via the Wolf method (Wolf et al. 1985) due to the fact that

it involves only evaluations and not the integration of the tangent vector, ẋ. Other

methods include the relative Lyapunov indicator, orthogonal FLI, and the orthogonal

FLI2. This dissertation uses the full Lyapunov exponent spectrum for much of the

analysis as it was developed for the simulation methods by Eberle (2010).

2.11 Perturbation Theory

The evaluation of resonant phenomena often requires analysis considering per-

turbation theory. This section will provide a brief introduction to the theory along

with a description of possible numerical applications. Perturbation theory assumes

that the accelerations of the lesser massive bodies (M2,M3)are dominated by a central

or primary body. This implies that the motions of (M2,M3) result in conic sections

with small deviations due to their mutual gravitational perturbations (Murray &

Dermott 1999). The assumption considers a disturbing function, R, which can be

introduced to account for the interaction terms of the perturbation.
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Figure 2.6. The position vectors ri and rj, of two masses mi and mj with respect
to the central mass mc. The three masses have position vectors R, R

′
, and Rc

with respect to an arbitrary, fixed origin O. This figure was adapted from Murray &
Dermott (1999).

Comparing Figure 2.1a to 2.6, it can easily be shown that the arbitrary, fixed

origin O could be chosen as the barycenter which would make the figures equivalent.

Using this equivalence, the disturbing functions Ri and Rj can be shown to be

Ri = Gmj

(
1

|rj − ri|
− ri · rj

r3j

)
,

and

Rj = Gmi

(
1

|rj − ri|
− ri · rj

r3i

)
. (2.45)

Equation 2.45 clearly shows each disturbing function to be a first order expan-

sion of the corresponding gravitational potential. Thus the standard practice of an
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expansion of |rj − ri| into Legendre polynomials can be performed using the angle ψ

that is made with respect to rj and ri to give

1

|rj − ri|
=

1

rj

∞∑
l=0

(
ri
rj

)l
Pl (cosψ). (2.46)

Equation 2.46 assumes that ri < rj and if this condition were to fail, then the

resulting situation would describe a system where the indices i and j are interchanged.

Following this point it becomes more useful to express the disturbing function in terms

of orbital elements rather than Cartesian coordinates, which gives

Ri = Gmj

∑
S(ai, aj, ei, ej, Ii, Ij) cosϕ. (2.47)

The expression for Rj would have the same form with a change in the respective

indices. Finding the angle ϕ is at the center of the analysis of resonances, so a

procedure to determine this angle is now presented.

The angle ϕ is also called the resonant angle. This is because a relationship

between the mean longitudes (λ), longitudes of pericenter ($), and right ascensions

of the ascending node (Ω) can be made using integers k, l, and m. The resonant

angle is defined as

ϕ = kjλj + kiλi + lj$j + li$i +mjΩj +miΩi (2.48)

where kj + ki + lj + li + mj + mi = 0 due to the azimuthal invariance of the

central mass’ potential.

In practice determining the integers k, l, and m can become difficult using only

analytical means. As a result a number of methods exist for determining k, l, and m

through the determination of orbital resonances. Orbital resonances are defined to
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be rational expressions of the frequencies/periods of the smaller masses, mj and mi.

For example, a 2:1 mean motion resonance (MMR) would describe a case where mi

would orbit mc two times for every orbit of mj around mc and the term mean motion

denotes that the resonance is a simple integer ratio (See Figure ??).

Hadjidemetriou (1993) used the method of averaging as well as the method

of computing periodic orbits numerically. He showed how to utilize these methods

to determine MMRs; furthermore, he discussed the advantages and disadvantages

of each method as well as the effects of their inherent limitations on the attained

results. Another method of finding MMRs is based on the concept of Lyapunov

exponent as introduced by Nesvorný & Morbidelli (1998) with its further development

by Morbidelli & Nesvorny (1999) and Nesvorný et al. (2002).

This dissertation uses a modified version of the method presented by Nesvorný

et al. (2002). This modified method adopts the maximum Lyapunov exponent as an

indicator to provide information about the position of MMRs with respect to distance

from mc. Furthermore, it uses numerical tools such as FFT to determine the orbital

periods of the masses orbiting mc. Once the type of resonance is identified, it can

then be classified as a resonance that leads to periodic, quasi-periodic, or non-periodic

behavior.



CHAPTER 3

APPLICATION OF CHAOS INDICATORS

I now consider two individual planets in two known binary star systems γ Cephei

and HD 196885, and compute their orbits by using various numerical techniques to

assess their chaotic or quasi-periodic nature. The Hill stability (HS) function, which

measures the orbital perturbation of a planet around the primary star due to the

secondary star, is also calculated for each system. The maximum Lyapunov exponent

(MLE) time series are generated to measure the divergence/convergence rate of stable

manifolds, which are used to differentiate between chaotic and non-chaotic orbits.

Then, I calculate the dynamical Mean Exponential Growth factor of Nearby Orbits

(MEGNO) maps by solving the variational equations together with the equations of

motion. These maps allow us to accurately differentiate between stable and unstable

dynamical systems. The results obtained from the analysis of HS, MLE, and MEGNO

maps are analyzed for their dynamical variations and resemblance. The HS test for

the planets shows stability and quasi-periodicity for at least ten million years. The

MLE and the MEGNO maps also indicate the local quasi-periodicity and global

stability in a relatively short integration period. The orbital stability of the systems

is tested using each indicator for various values of planet inclinations (ipl≤25◦) and

binary eccentricities. The reliability of the HS criterion is also discussed based on its

stability results compared with the MLE and MEGNO maps.

43
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3.1 Background

A number of discovered extra solar planets has been growing substantially since

the first planet, 51 Pegasi b, was detected almost two decades ago (Mayor & Queloz

1995). Since then 1822 extra solar planets have been confirmed as of September 22,

20141. Near half of solar type stars (Duquennoy & Mayor 1991; Raghavan et al.

2006) and a third of all stars in the Galaxy (Raghavan et al. 2010) are in a binary

or multi-star system with 40 planets confirmed in such systems (Desidera & Barbieri

2007). The confirmation of the existence of planets in binaries has raised a new

astrophysical challenge which includes the study of long term orbital stability of such

planets. The ultimate destiny of exoplanet research, including observations from the

Kepler mission2, is to detect a planet on a stable orbit within the habitable zone of

the host star (Borucki et al. 1997; Koch et al. 2006; Borucki et al. 2008, 2010). The

degree of stability is largely governed by the planet’s semimajor axis, eccentricity and

orbital inclination. Orbital long-term stability is believed to be a necessary condition

for life to develop. The study of orbital stability furthers one self-evident aim of

mankind which is to find an answer to the century old question, “Are we alone in the

Milky Way Galaxy?”.

By using different stability criteria the question of stability has been addressed

by many others in the past. While studying the Trojan type orbits around Neptune,

Zhou et al. (2009) showed that the inclination of orbits can be as high as 60◦ while

maintaining orbital stability. Several authors (Szebehely 1980; Szebehely & McKenzie

1981; Szenkovits & Makó 2008) calculated orbital stability of planets by using several

techniques that include the integrals of motion, zero velocity surfaces (ZVS), and a Hill

stable region that is mapped by a parameter space of orbital radius and mass ratio,

1www.exoplanet.eu
2www.nasa.gov/mission_pages/kepler/overview/index.html

www.exoplanet.eu
www.nasa.gov/mission_pages/kepler/overview/index.html
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Table 3.1. Orbital parameters of γ Cephei (Neuhauser et. al. 2007)

γ Cephei A B Ab
Mass 1.4 M� 0.362 M� 1.6 MJ

Semimajor Axis (a) 19.02 AU 1.94 AU
Eccentricity (e) 0.4085 0.115
Argument of Periapsis (ωp) 0◦ 180◦ 94◦

µ, for a coplanar CRTBP. Quarles et al. (2011) also used the maximum Lyapunov

exponent (MLE) to determine the orbital stability or instability for the CRTBP case.

The stability limits were defined based on the values of MLE that are dependent

on the mass ratio µ of the binaries and the initial distance ratio ρ0 of the planet.

Other chaos indicator techniques such as Mean Exponential Growth factor of Nearby

Orbits (MEGNO) maps have also been used to study the dynamical stability of

irregular satellites (Hinse et al. 2010) and extrasolar planet dynamics (Goździewski

& Maciejewski 2001; Goździewski et al. 2001). The MEGNO criterion is known to be

efficient in distinguishing between chaotic and quasi-periodic initial conditions within

a dynamical phase space.

Knowing the orbital stability of planets is a crucial step for further studies

of planetary systems. In order to probe a planet for its habitability, there exists a

primary requirement that the system be orbitally stable. In this project, I used three

stability indicators, the HS, MLE, and MEGNO maps, in my study of the orbital

dynamics of planets in the selected stellar binaries. I also compared all the results

from the three different methods in order to determine if the HS can be considered a

reliable, efficient tool in the stability analysis of exoplanets.
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Table 3.2. Orbital parameters of HD 196885, (Chauvin et al. 2007)

HD 196885 A B Ab
Mass 1.33 M� 0.45 M� 2.98 MJ

Semimajor Axis (a) 21 AU 2.6 AU
Eccentricity (e) 0.42 0.48
Argument of Periapsis (ωp) 0◦ 180◦ 93.2◦

3.2 Basic Definitions Equations

For the motion of a planet of mass m1 around a star of mass m2 in an orbital

plane, the initial velocity was calculated using the time derivative of the position

matrix given by Murray & Dermott (1999). While calculating the initial conditions

I used the values of the parameters (a, e, i Ω, ω and f) whenever they have been

observationally determined.

Our particular interest is in the stellar binaries that are less than or equal to

25 AU apart. For the stars with greater than 25 AU separations, the effects of the

secondary star on the planet would not be significant, especially while considering

the intent of our present study.

The list of planets in the binaries and their orbital parameters are given in

Tables 3.1 and 3.2. The initial setup in our simulations is in a barycentric coordinate

system with the appropriate placement of Star B (left) and Star A (right) relative to

the barycentre. The positive x-axis is taken to be the reference. The true anomaly

of both the binary and planet are assumed to be equal to zero.

For two primaries in elliptic orbits moving about their barycentre the dynamical

system of a third smaller mass can be written as the first order differential equations.

The equations of motion are given below (Szebehely 1967; Szenkovits & Makó 2008).

In order to conform to the prescribed notation a simple variable substitution is used
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(ξ, η, ζ, ξ̇, η̇, ζ̇)∗ = (x, y, z, u, v, w)∗, respectively.

x′ = u u′ = 2v +
1

(1 + e cos f)

[
x− α(x+ µ)

r31
− µ(x− 1 + µ)

r32

]
,

y′ = v v′ = −2u+
y

(1 + e cos f)

[
1− α

r31
− µ

r32

]
,

z′ = w w′ = −z +
z

(1 + e cos f)

[
1− α

r31
− µ

r32

]
, (3.1)

where

µ =
m2

(m1 +m2)
,

α = 1− µ,

r21 = (x− µ)2 + y2 + z2,

r22 = (x+ α)2 + y2 + z2. (3.2)

The Jacobi constant (C0) for a initial state (xo, yo, zo, fo) is given by

C0 =
x20 + y20 + 2(1−µ)

r1
+ 2µ

r2

1 + e cos(f0)
− ẋ20 − ẏ20 − ż20 . (3.3)

In Equation 3.1, the variables represent the velocity of a test particle (planet)

in Cartesian coordinates (x, y, z ). The distances r1 and r2 are defined in terms of

mass ratio, normalised coordinates, and the position of the stars within a pulsating-

rotating coordinate system. Although the masses were integrated using a N-Body

representation, I have included the ERTBP equations of motion to illustrate the
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necessary transformations to arrive at the pulsating-rotating coordinate system (see

Szebehely (1967) for full details) used in Sect. 3.6.

The variables in the above equations describe the position of the planet, which

in essence constitutes a test particle, within a synodic coordinate system. Its position

is defined in Cartesian coordinates {x, y, z}. I denote the time derivative or velocity

of a coordinate using the dot notation
{
ẋ = dx

dt

}
. I also represent the set of second

order differential equations, the equations of motion, by a set of first order differential

equations (see Section 2.8). The velocity is defined by the coordinates {u, v, w}

whose time derivatives are the accelerations. By defining the mass ratio and using

normalized coordinates, I can then define the distances {r1, r2} with reference to the

location of the stars in the rotating coordinate system. This particular convention

assumes that GM = 1 such that the above equations can be described in the same

manner as Equations 2.11, 2.12, and 2.13.

I enumerate the co-linear Lagrange points (positions of zero potential) in the

synodic frame by the order of which the ZVC opens. The point between the stars

opens first; therefore, I denote it as L1. The point to the left of the star that does

not host the planet opens second; thus, I denote it L2. The point to the right of the

star hosting the planet opens third and it is denoted L3. The two Trojan Lagrange

points which are of lesser importance to our study are L4 and L5.

3.3 Lyapunov Exponents

For stable planetary orbits, the two nearby trajectories in phase space converge,

and for unstable orbits the trajectories diverge exponentially. The rate of divergence

is measured by using the method of Lyapunov exponents (Lyapunov 1907). Wolf

et al. (1985) developed a numerical method of computing the Lyapunov exponents in

FORTRAN following the earlier works by Benettin et al. (1980).
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Lyapunov exponents are commonly used because they give the measure of an at-

tractor of a dynamical system as it converges or diverges in phase space. The positive

Lyapunov exponents measure the rate of divergence of neighbouring orbits, whereas

negative exponents measure the convergence rates between stable manifolds (Tsonis

1992; Ott 1993). The sum of all Lyapunov exponents is less than zero for dissipative

systems (Musielak & Musielak 2009) and zero for non-dissipative (Hamiltonian) sys-

tems (Hilborn & Sprott 1994). Lyapunov exponents for the circular restricted three

body problems (CRTBP) have been calculated previously (Gonczi & Froeschle 1981;

Murray & Holman 2001) and similar methods have been used in the ERTBP. In this

work, I calculated the Lyapunov exponents for the N-body problem where N = 3.

In order to compute the Lyapunov exponents a dynamical system with n degrees of

freedom is represented in a 2n phase space. Then the state vectors (2n) containing

6 elements are used to calculate the Lyapunov exponents. The details on the cal-

culation of Jacobian J from the equations of motion can be found in Quarles et al.

(2011).

For a Hamiltonian system (see above) to be stable, the sum of all the Lyapunov

exponents should be zero. In order to numerically meet such a criterion, a simulation

of the system would require an impractically long period of time. Within the limits

of simulation, the sum of all six exponents must remain numerically close to zero

(∼ 10−10). I used the largest positive Lyapunov exponent to determine the magnitude

of the chaos while ignoring the lesser positive and the negative exponents as they

do not provide significant additional information about the evolving system. The

positive maximum Lyapunov exponent is known to indicate a chaotic behavior in

both dissipative (Hilborn & Sprott 1994) and non-dissipative (Ozorio de Almeida

1990) systems. Chaos can be proven up to the integration time if a given chaos

indicator has converged to an unstable manifold.
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3.4 Hill Stability

Hill (1878a,b) developed the equations of motion for a particle around the pri-

mary mass in presence of a nearby secondary mass. The purpose of the Hill equations

was to calculate the orbital perturbation of the particle due to the secondary mass.

Later the idea was further developed and used in the study of orbital stability of

planets (Szebehely 1967; Walker & Roy 1981; Marchal & Bozis 1982).

The significant radial gravitational influence of the secondary mass reaches as far

as the Lagrange points, L1 and L2, forming the Hill sphere (Hill 1878a,b). The contour

lines within the sphere are the zero velocity curves. After measuring a particle’s

position and velocity, a constant of motion relation can be implemented (Szebehely

1967; Murray & Dermott 1999) 2U - v2 = CJ , where v is the velocity, U is the

generalized potential, and CJ is the constant of integration called the Jacobi constant.

When the velocity of the particle is zero, 2U = CJ , a contour represents a zero velocity

surface (ZVS) and the motion of a particle within such a surface is considered Hill

stable.

The measure of Hill stability for the ERTBP, S(f), is given by a parameter

dependent potential, Ω(X , f), where f is the true anomaly and Ccr is the value of

the Jacobi constant at the Hill radius or the Lagrange point L1 (Szenkovits & Makó

2008)

Ω(x, y, z, f) =
1

2

[
x2 + y2 − ez2 cos(f)

]
+

1− µ
r21

+
µ

r22

+
1

2
µ(1− µ),

S(f) =
1

Ccr

[
2Ω(X , f)− [1 + e cos(f)] v2

]
− 1. (3.4)
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Using the orbital parameters obtained from the numerical integration, the po-

tential Ω(X , f), is calculated to obtain the Hill stability function S(f). Although the

Hill stability function depends on the true anomaly, it can also be represented as a

time series. I have implemented this representation in our results concerning the Hill

stability function. When the measure of S(f) of a planet is positive then we have

the indication of quasi-periodic orbits and its motion is Hill stable. But when the

measure of S(f) is negative then the planet enters the instability region.

3.5 The MEGNO Chaos Indicator

The MEGNO criterion was first introduced by Cincotta & Simó (1999, 2000)

and Cincotta et al. (2003),who found wide-spread applications in dynamical astron-

omy (Goździewski et al. 2001, 2008; Goździewski & Migaszewski 2009; Hinse et al.

2008, 2010; Frouard et al. 2011; Compère et al. 2012; ?). The MEGNO (usually

denoted as 〈Y 〉) formalism has the following mathematical properties. In general,

MEGNO has the parametrization 〈Y 〉 = α × t + β (see references above). For a

quasi-periodic initial condition, it has α ' 0.0 and β ' 2.0 (or 〈Y 〉 → 2.0) for t→∞

asymptotically. If the orbit is chaotic, then 〈Y 〉 → λt/2 for t → ∞. Here λ is the

maximum Lyapunov exponent (MLE) of the orbit. In practice, when generating the

MEGNO maps, I terminate a given numerical integration of a chaotic orbit when

〈Y 〉 > 12.0. Quasi-periodic orbits have |〈Y 〉 − 2.0| ≤ 0.001.

The MECHANIC3 software (S lonina et al. 2012) is used which is optimized

to N-body code to calculate the orbits of the given masses and the MEGNO maps

on a multi-CPU computing environment. Typically 60 CPUs are allocated for the

calculation of one map considering a typical grid of (500 × 300) initial conditions in

(a, e) space. The numerical integration of the equations of motion and the associated

3http://www.git.astri.umk.pl/projects/mechanic
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variational equations (Mikkola & Innanen 1999) are based on the ODEX integration

software (Hairer et al. 1993) which implements a Gragg-Bulirsch-Stoer algorithm. The

MEGNO indicator is calculated from solving two additional differential equations as

outlined in Goździewski et al. (2001). For reason of completeness I have outline some

details of the MEGNO formalism. Following Cincotta & Simó (2000) MEGNO (Y )

is defined as

Y (t) =
2

t

∫ t

t0

‖ δ̇(s) ‖
‖ δ(s) ‖

s ds, (3.5)

along with its time-averaged mean value

〈Y 〉(t) =
1

t

∫ t

t0

Y (s) ds. (3.6)

The quantity δ is the variational state vector and t is time. The absolute norm of δ

measures the distance between two nearby points in phase space using an Euclidean

metric. The variational vector is found from solving the variational equations of

motion in parallel to the Newtonian equations of motion (Mikkola & Innanen 1999;

Goździewski et al. 2001; Hinse et al. 2010). Equations 3.5 and 3.6 can be rewritten

(Goździewski et al. 2001) as the two first-order differential equations

dx

dt
=

δ̇ · δ
‖ δ ‖2

t and
dw

dt
= 2

x

t
, (3.7)

which are solved in tandem alongside the equations of motion and variational equa-

tions of motion. At the end of each integration step the quantities Y (t) and 〈Y 〉(t) can

be determined from Y (t) = 2x(t)/t and 〈Y 〉(t) = w(t)/t. When generating MEGNO

maps we chose to plot the mean value 〈Y 〉.
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MEGNO and the maximum Lyapunov exponent (MLE) have a close relation as

these two indicators provide the magnitude of the exponential divergence of orbits.

Froeschlé et al. (1997) introduced the fast Lyapunov indicator (FLI), which exhibits

the least dependency on initial conditions. Mestre et al. (2011) showed that MEGNO

and FLI are related to each other. FLI is used to detect weak chaos and is considered

a faster means to determine the same characteristics as MLE. Recently, Maffione et al.

(2011) compared various chaos indicators including FLI and MEGNO. The MEGNO

technique and FLI are considered to be in the same class of chaos detection tools

(Morbidelli 2002), and we have chosen the MEGNO technique to compare against

the Hill stability criterion. More on mathematical properties of MEGNO and its

relationship with the Lyapunov exponents can be found in Hinse et al. (2010).

In this dissertation, each map is generated with 1.5×105 initial conditions, for

a resolution of 300 × 500 in various orbital elements and simulated up to 400 Kyr.

The purple/blue color in the map denotes the quasi periodic region and the yellow is

the region of chaos. The MEGNO quantity 〈Y 〉 is color-coded in the color bar.

3.6 Results and Discussion

3.6.1 Numerical Simulation

To establish the Hill stability (HS) criterion and calculate the maximum Lya-

punov exponents (MLE), I numerically simulated each of the planets in the stellar

binaries using a Yoshida sixth order symplectic and a Gragg-Bulirsch-Stoer integra-

tion scheme (Yoshida 1990; Grazier et al. 1996; Hairer et al. 1993). A step of ε=10−3

years/step was used in each case to have a better measure of the precision of the in-

tegration scheme. The error in energy was calculated at each step, which falls in the

range of 10−14 to 10−10, during the total integration period. Numerical simulations
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Figure 3.1. Variations in the orbital elements (semi-major axis and eccentricity) for
the giant planets in γ Cephei and HD 196885 (ipl = 0.0) simulated for 1× 107 years
(Satyal et al. 2013).

were completed for a million years to calculate the MLE and 10 million years to cal-

culate the HS. MEGNO maps are calculated using 100,000 years per initial condition.

Chaos, quasi-periodicity, or regular motion can be shown up to the integration time;

however, the long term evolution of these systems can only be proven for chaos where

the other types of motion are inferred due to the moderate presence or lack of chaos.

The purpose of simulating for 10 million years was to display the evolution

of eccentricity and semimajor axis without applying any indicator tools to provide a

consistent comparison in order to analyze the orbital behavior and to establish the full

effectiveness of the indicators. The time series plots for the systems, γ Cephei and HD



55

196885, are relatively constant with minor oscillations for 10 million years (Fig. 3.1).

In these cases I found that the eccentricity of the giant planets is oscillating with a

constant amplitude. For example, Figs. 3.1a and 3.1c demonstrate oscillations from 0

to 0.1 and 0.4 to 0.5 in values of eccentricity for γ Cephei and HD 196885, respectively.

The amplitude of the oscillation changed with a different choice of initial conditions.

As a result, specific choices can minimize the oscillation amplitude and can render

the simulation for γ Cephei to be in a closer agreement with previous studies by

Haghighipour (2006). One such initial condition involves the choice of eccentricity.

If e = 0 for the planetary orbit initially, I observed that the amplitude of oscillation

is minimum and consistent with Haghighipour (2006) while the amplitude increases

with larger initial e values.

3.6.2 MLE: Indicator Analysis

The maximum Lyapunov exponent (MLE) time series for the simulated planets

in the stellar binaries are given in Figs. 3.2 and 3.3. The MLE is plotted using a

logarithmic scale along the y-axis and a linear scale along the time-axis. I obtained six

Lyapunov exponents from our simulation among which three are negative and three

are positive. I inspected the first three positive LEs and found the magnitude of the

largest value which is used for our purpose of establishing the stability of a system.

In Figure 3.2, I taken the maximum Lyapunov exponent as the primary indicator of

the orbital stability. For a given initial condition, the MLE must quickly drop below

a cut off value similar to Quarles et al. (2011) and decrease at a constant rate,so I

can determine it as stable or unstable.

The MLE indicates stability for both of the considered systems in the coplanar

case, as expected from the observations. This is demonstrated by the values of the

MLE, which start on the order of 1 and slowly converge down by orders of 10 on a
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logarithmic scale. The MLE for γ Cephei is calculated using three values of initial

binary eccentricity: first at the nominal observational value (Fig. 3.2a), second within

the semi-chaotic region (Fig. 3.2b) and third within a region of chaos (Fig. 3.2c).

The ebin values assumed for the semi-chaotic and chaotic regions were obtained from

MEGNO maps (section 3.6.4). While varying the value of ebin, the orbital inclination

was kept constant at 0◦. For the first case (ebin = 0.4085), Fig. 3.2a shows the MLE

slowly decreasing to -13 in a million years. The MLE also shows a similar trend for

the second case (ebin = 0.6). Hence, considering this decreasing trend and the nature

of Lyapunov exponents (Sect. 2.2), the results reflect the outcome of orbital stability

for the planet for our two choices of ebin. For the third choice of ebin = 0.65, the MLE

time series began displaying instabilities within 2.25× 105 years.

The MLE for γ Cephei Ab (Fig. 3.2d) is also calculated using three additional

values of initial orbital inclination (ipl = 7◦, 15◦, 25◦). While varying the initial

planetary inclination, ebin was set to the nominal value. Irrespective of our considered

initial values in inclination the MLEs of the planet remained unaffected where all cases

demonstrate a decreasing trend to -13 in a million years, reflecting the criterion for

orbital stability.

Similar to the case of γ Cephei, I calculated the MLE for the planet in HD

196885 for three values of binary eccentricity. For the nominal observational value

of ebin (Fig. 3.3a) and ebin chosen to be at the semi-chaotic region (Fig. 3.3b), the

MLEs clearly display stable orbits. But, as the ebin was raised to 0.6 the MLE time

series displayed an orbital instability within 1× 103 years (Fig. 3.3c), as also shown

by the MEGNO result (see Fig. 3.9c).

The MLE time series for HD 196885 Ab, Fig. 3.3 is distinct for all considered

initial values of the planet’s inclination, ipl, and the orbit of the planet exists in a

stable configuration. However, when using our four choices of ipl values, the MLE
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Figure 3.2. Lyapunov exponent time series for the giant planet in γ Cephei with
respect to variations in ebin and ipl. The coplanar cases shown (a),(b) and (c) consid-
ered initial values of ebin = 0.4085, 0.6, and 0.65, respectively. (d) illustrates the time
series with the same ebin as in (a) but with different initial values for ipl = 7◦, 15◦ and
25◦ as indicated by the legend. Note that the time axis of (c) has been truncated to
the point of instability (Satyal et al. 2013).

time series demonstrates that the planetary orbits are more perturbed when they are

positioned at 7◦ and 15◦. The MLE values drop quickly to -7 and levels off indicating

chaotic behavior but does not lead to instability. This may be due to the effects of

a near resonance behavior. However, the stability criterion is not violated, thus this

system could exhibit long term chaotic motions akin to Pluto in the Solar System.

For ipl = 0◦ and 25◦ cases, the MLE values appear to be converging slower up to -10
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Figure 3.3. Lyapunov exponent time series for the giant planet in HD 196885 with
respect to variations in ebin and ipl. The coplanar cases shown (a), (b) and (c)
considered initial values of ebin = 0.42, 0.46, and 0.6, respectively. (d) illustrates the
time series with the same ebin as in (a) but with different initial values for ipl = 7◦, 15◦

and 25◦ as indicated by the legend. Note that the time axis of (c) has been truncated
to illustrate the nature of the instability (Satyal et al. 2013).

for the first few thousand years than the other considered cases and indicate stable

orbits.

3.6.3 Establishing the Hill Stability criterion

The Hill stability time series for the planets in γ Cephei and HD 196885 are

shown in Figs. 3.4-3.7. Starting with the coplanar case and the nominal value of

binary eccentricity, I studied the cases when ipl = 7◦, 15◦ and 25◦. I also calculated
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Figure 3.4. The Hill Stability function for the giant planet in γ Cephei for different
cases of binary eccentricity (for ipl = 0◦) simulated for 1× 107 years (see Figs. 3.2(a),
(b) and (c)). Note that the time axis of (c) has been truncated to illustrate the nature
of the instability (shown by the vertical arrow) and the point of ejection (Satyal et al.
2013).

Figure 3.5. The Hill Stability function for the giant planet in γ Cephei for different
cases of initial planetary inclination (for ebin = 0.4085) simulated for 1 × 107 years
(see LE time series Fig. 3.2(d)) (Satyal et al. 2013).

the HS functions for two other choices of ebin. The choices of our ebin and ipl values

are similar to the ones that I used to calculate the MLE time series and MEGNO

maps for both of the binary systems.

The measure of Hill stability for γ Cephei Ab stays positive for ebin = 0.4085

and ebin = 0.6 throughout the integration period (10 million years) (Figs. 3.4a,b).

The oscillations on average are small and positive, which reflects the condition for

HS criterion established by Szenkovits & Makó (2008). In their calculations, the

Hill stability is positive and constantly increases in time for million years, which is
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consistent with our result. However, the plots are limited to million years in the

calculations of Szenkovits & Makó (2008), and this makes the periodicity for long

term oscillations of the planets to be unclear. For the nominal case, 7 spikes in

the Hill stability are noted, which indicates that the planet shows a quasi-periodic

motion every 1.4 million years. When ebin is increased to 0.6, the period of the HS

function decreases and occurs every 2.5 million years. This periodicity is caused

by the gravitational perturbation on the planet due to the secondary star near the

pericenter of the binary. As the ebin is increased, the effects of secondary star on the

planet is minimized because the time of interaction has been significantly reduced

due to Kepler’s 2nd Law, thus also reducing the period of HS function.

The HS criterion showed that the orbital stability of the planet decreases as

I increase the ebin of γ Cephei. When the ebin was set to 0.65, the planet starts to

display orbital instability at ∼ 2.25× 105 years, a point where the HS function starts

a negative trend in the time series (a cut off point shown by a vertical arrow, see

Fig. 3.4c). The planet was ejected from the system at ∼ 6 × 105 years. The results

supplement our previous instability prediction made from MLE analysis.

I also found that the measure of the Hill stability for γ Cephei Ab is positive

for all of our choices of ipl. However, the periodicity decreases with the increase in ipl

values (Figs. 3.5a, 3.5b, and 3.5c). The increment in orbital inclination of the planet

minimizes the effect due to the secondary star’s close approach to the planet.

Similarly, the Hill stability time series stays positive for the planet in HD 196885

binary system for the cases when ebin is set at 0.42 (observational value) and 0.46

(Figs. 3.6a,b). The planet displays a quasi periodic motion every 1.1 million years

for our first choice of ebin. But I found insignificant change in the periodicity for

the second choice of ebin. The periodicity was not affected because of the minute

difference in ebin, (0.04).
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Figure 3.6. The Hill Stability function for the giant planet in HD 196885 for different
cases of binary eccentricity (for ipl = 0◦) simulated for 1× 107 years (see Figs. 3.2(a),
(b) and (c)). Note that the time axis of (c) has been truncated to illustrate the nature
of the instability and the point of ejection (Satyal et al. 2013).

Figure 3.7. The Hill Stability function for the giant planet in HD 196885 for different
cases of initial planetary inclination (for ebin = 0.42) simulated for 1× 107 years (see
LE times series Fig. 3.3(d)) (Satyal et al. 2013).

When the ebin of HD 196885 was set to 0.6 within the presumed unstable region,

the HS time series demonstrates that the stability was lost within 5× 103 years (Fig.

3.6c). For this system, the ejection of the planet also occurs at ∼ 5 × 103 years of

simulation time. The ejection occurs in such a short period because the HS function

was not efficient enough to predict the instability.

The stability of HD 196885 Ab was not affected by our choice of orbital inclina-

tion. The system demonstrates stable orbits for ipl values as high as 25◦. The HS time

series remains positive reflecting the established stability criterion from Szenkovits &

Makó. Just like the planet in γ Cephei, the period of HS function for HD 196885
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Figure 3.8. MEGNO Maps for the planet in γ Cephei at ipl = 0◦ and various binary
eccentricities simulated for 1×105 years (left: ebin = 0.4085, middle: ebin = 0.2, right:
ebin = 0.6) (Satyal et al. 2013).

Ab decreases with the increase in ipl. It would be interesting to exploit the nature of

HS at higher ipl values when the system hits the kozai resonances, but I limited my

choice of ipl at 25◦ in this dissertation.

3.6.4 Analysis of MEGNO maps

The dynamical maps of MEGNO are generated using a resolution of (500 x

300) producing 150,000 initial conditions in eccentricities and semimajor axes for the

respective planets within the selected binaries. In Figs. 3.8 and 3.9 MEGNO maps

for various binary eccentricities were simulated for 1 × 105 years. The cross hair in

each subplot represents the osculating orbit of planet Ab for the respective binary

(see Tables 3.1 and 3.2). The color bar on top of each map indicates the strength in

the value of MEGNO(< Y >). The blue color denotes regions of quasi-periodicity

and the yellow indicates regions of chaos.

For different eccentricity values of the binary in γ Cephei, Fig. 3.8, the MEGNO

indicator shows a clear distinction between quasi-periodic and chaotic regions. Within

the observational value, ebin ∼ 0.4085 (Fig. 3.8a), the planet’s motions are represented

as stable orbits. When the binary eccentricity, ebin = 0.2 (Fig. 3.8b), is decreased the
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Figure 3.9. MEGNO Maps for the planet in HD 196885 (ipl = 0◦) and various binary
eccentricities simulated for 1× 105 years (left: ebin = 0.42, middle: ebin = 0.2, right:
ebin = 0.6) (Satyal et al. 2013).

cross hair is completely inside the quasi-periodic region, hence increasing the orbital

stability. Conversely, as the eccentricity of the binary orbit is increased, ebin=0.6, the

location of the chaotic mean-motion resonances (yellow spikes at constant semimajor

axis) are shifted to lower semimajor axes of the planet (Fig. 3.8c), hence decreasing

the orbital stability. Studies done by Haghighipour (2006) for ebin = 0.20-0.45 at

interval of 0.05 and ipl = 0◦ also show that the planet in γ Cephei demonstrates

stable orbits.

I also tested the stability of the planet in γ Cephei for the given values of

orbital elements by generating a global map of ebin vs. ipl, where ebin ranges from 0.0

to 1.0 and ipl ranges from 0◦ to 25◦ (Fig. 3.10). The dynamics of the planet was found

unchanged for the ebin as high as 0.6 and any choice of ipl ≤ 25◦. The system seems to

show chaotic behavior at ebin = 0.6 and low ipl values but our earlier investigation (Fig.

3.8c) indicates the cross hair at the semi-chaotic region. I, then investigated a finer

resolution window concerning this region and determined that the initial condition

existed on the border of a chaotic region. Nonetheless, this confirms that for our

choice of orbital inclination of the planet with the binary orbit, the planet is stable

but may display chaos within the long-term (> 10 Myr). Moreover, our results are
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Figure 3.10. MEGNO Maps for the planet in (left) γ Cephei showing variation in
the (ebin,ipl) plane for the nominal (apl,epl) values and (right) HD 196885 showing
variation in the (ebin,ipl) plane for its respective (apl,epl) values simulated for 1× 105

years (Satyal et al. 2013).

consistent with those obtained by Haghighipour (2006), who showed that the stable

configuration of the system for all values of the planet’s orbital inclination is less than

40◦.

Figure 3.9a shows a locally stable region for the planet in HD 196885 system.

The cross hair in the map is located right at the edge of the stable region. A small

change in semimajor axis of the planet can divert the planet towards the chaotic

region loosing global stability. Similarly the location of cross hair indicates that the

quasi-periodicity increases with a decrease in the ebin, Fig. 3.9b, while the system

becomes chaotic with increment in ebin, Fig. 3.9c.

Figure 3.10b, displays the case with the previously observed values of ebin (Fig.

3.9) in a global map of ebin vs. ipl for the given values of orbital parameters of the

system. It is found that the dynamics of HD 196885 Ab is unaffected by the choices

of ebin ≤ 0.46 and ipl ≤ 25◦. Giuppone et al. (2012) showed that the system is mostly

stable when the planetary orbit is nearly coplanar or highly inclined orbits near the

Lidov-Kozai equilibrium point, (ipl = 47◦). I did not test the system for ipl>25◦,
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Figure 3.11. (a) Difference between the osculating longitude of pericentres ($) for
γ Cephei for 5× 104 years. (b), (c), and (d) Evolution of osculating values (e cos$,
e sin$) for different orbital inclinations. (e) Evolution of osculating values (i cos Ω,
i sin Ω) for different orbital inclination (Satyal et al. 2013).

however, our result is consistent to the previous work with respect to MLE and HS

time series of the respective inclination range.

3.6.5 Evolution of Osculating parameters

Considering the orbital parameters of γ Cephei and HD 196885 from the obser-

vations, the evolution of argument of periapsis (ω) and longitude of ascending node

(Ω) are studied. In Figs. 3.11a and 3.12a, I presented the difference between longitude

of periapsis between the planet and the binary (where $ = ω + Ω). The longitude

of periapsis oscillates and is bound within 0◦ to 360◦ which exhibits an apocentric

libration phenomenon (Murray & Dermott 1999).

Plots of the osculating values, e cos$ and e sin$, for the planet’s nominal

choice of parameters indicate no change in the osculating parameters of both systems.
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Figure 3.12. (a) Difference between the osculating longitude of pericenters ($) for
HD 196885 for 5×104 years. (b), (c), and (d) Evolution of osculating values (e cos$,
e sin$) for different orbital inclinations. (e) Evolution of osculating values (i cos Ω,
i sin Ω) for different orbital inclination (Satyal et al. 2013).

When the orbital inclination is increased (up to 25◦), the precession rates are also

noticeably increased (see Figs. 3.11b, c, d and 3.12b, c, d), an effect similar to period-

doubling bifurcation (Ott 1993) leading to chaos. This change is not noticed directly

in LE time series for γ Cephei (Fig. 3.2d) but I do observe variation (different

converging rate) in the LE time series for HD 196885 (Fig. 3.3d) and variation

(decreasing periodicity) in HS time series for both of the systems (Figs. 3.5 and 3.7).

Figures 3.11e and 3.12e display plots of the osculating parameters, i cos Ω and

i sin Ω, for different cases of orbital inclination. For the coplanar case, I would have

a point-circle at the origin and the circle would grow larger for larger values of ipl,

as seen in these diagrams. The osculating parameters with respect to inclination

indicates regular motion in the case of γ Cephei. But in the case of HD 196885

significant variations occur with increases in inclination (Fig. 3.12e).
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3.6.6 Reliability of Hill stability function

Following the work done by Szenkovits & Makó (2008), I used the Hill stability

criterion to study the orbital stability of planets in stellar binaries (γ Cephei and

HD 196885). I also used the previously well known chaos indicators, MLE and the

MEGNO maps to study the same systems. The maximum Lyapunov exponent (Figs.

3.2a and 3.3a) and the cross hair in the quasi periodic region of MEGNO map (Figs.

3.8a and 3.9a) demonstrate a stable configuration for given parameters in each of

the considered systems. The positive value and non-decreasing global trend of Hill

stability time series (Figs. 3.4a and 3.6a) also provides the necessary evidence of

stable system. The HS time series indicates that the systems are quasi-periodic

and the periodicity decreases as the planet’s inclination and binary eccentricity is

increased. Since the calculation for MLE is limited to one million years, I am unable

to notice any periodicity in the time series as seen in the HS time series but it does

also indicate trends toward stability. Similarly, MEGNO maps do not demonstrate

any changes in stability when the respective planet’s inclination increased up to 25◦,

nonetheless, it shows that the planets in both of the system exist within a stable

configuration.

The stability of the planets is tested for highly eccentric binary orbits using MLE

and MEGNO maps (Figs. 3.2c and 3.3c and 3.10). These figures clearly demonstrate

unstable orbits for chosen ebin values. Similar tests done by using HS time series

(Figs. 3.4c and 3.6c) produce similar results regarding stability of the system.

The HS time series supplements two of our results from MLE and MEGNO for

the cases when orbits are periodic and chaotic, thus establishing itself as a reliable

stability criterion. For the planet in γ Cephei (see Figs. 3.2c and 3.4c), the HS

function indicates an instability within the planetary orbit on an equal simulation

timescale compared to MLE (see section 3.6.2). However, it took a slightly longer
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simulation time to predict instability as compared to MLE for the case of HD 196885.

For the system where the planet ejects in relatively short time (∼ 5 × 103 years in

this case) MLE is more efficient to predict regular or chaotic dynamical systems and

the HS function seems to be an inefficient indicator (Figs. 3.3c and 3.6c).

There are limitations to the definition of HS as well. Most notably HS is

defined for S-Type orbits only. Considering this limitation, it may be best suited

in future work to the study of hypothetical or observed moons around gas giants as

observed S-Type planet populations remain modest (Kipping et al. 2012). However,

the populations of multi-planet single star systems are rapidly increasing with the use

of Transit Timing Variations (see Lissauer et al. (2011, 2013) for recent results) and

the HS criterion would provide adequate stability determinations for similar systems.

3.7 Summary

I applied various chaos indicator techniques in order to study the dynamics of S-

type extrasolar planets in the binaries that are less than 25 AU apart. With the time

series obtained from the maximum Lyapunov exponent, the Hill stability function,

and the maps from the MEGNO indicator, I showed that both systems exist within a

stable configuration for given parameters. Using these chaos indicators, I also tested

the orbital stability of the system for various choices of binary eccentricity and planet’s

orbital inclination.

The calculated MLE and HS time series for the planets in both systems for

different values of planet’s orbital inclination, ipl = 0◦, 7◦, 15◦, 25◦, and given ebin

value display the orbital stability of the system. For the given values of orbital

parameters it is found that the planet in γ Cephei/HD 196885 can maintain stability

for ebin as high as 0.6/0.46. Similar studies made by using the global MEGNO maps

of ebin vs. ipl for given orbital parameters concur with our results from MLE and HS
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and demonstrate that the planet in γ Cephei/HD 196885 can maintain stability for

ipl ≤ 25◦ and ebin ≤ 0.6/0.46.

The MEGNO chaos indicator is effective in determining the quasi-periodic re-

gions. The location of eccentricity-semimajor axis cross hairs in the MEGNO maps

for the planets in γ Cephei and HD 196885 systems (Figs. 3.8a and 3.9a) are located

well inside the quasi periodic region (blue) and in the teeth between the chaotic and

quasi periodic regions, respectively. This resembles the global and local stability of

the planets. These planets do not survive if the binary orbits are highly eccentric (see

Figs. 3.10a,b).

The Hill stability time series for a planet is successfully measured using the

numerical integration of orbital parameters and conversion into a potential related

to the elliptic restricted three body problem. The measure of the Hill stability of

the planets in γ Cephei and HD 196885 has shown changes in periodicity with the

variation of ipl and ebin values. These periodicity are believed to have originated due

to the differences in the time of interaction on the planet due to the secondary star

near time of periastron passage for the binary.

A concise study of evolution of osculating parameters shows that they have

insignificant variation in both of the systems for the nominal case. But, as I increase

the ipl values up to 25◦ the osculating values (e cos$ and e sin$) evolve causing

the precession rate in γ Cephei and HD 196885 to increase. In the set of osculating

parameters (i cos Ω and i sin Ω), the inclination varies with a very small amplitude

while the longitude of ascending node rotates in the full range [0◦, 360◦]. In case of

HD 196885 these parameters display significant evolution, which provides possible

evidence towards chaotic behavior in this regime.

Aside from the dynamical analysis of planets in stellar binaries, I am able to

successfully test the reliability of Hill stability against the results obtained from both
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MLE and MEGNO. Direct comparison of stability shows that the Hill stability test

can be set as one of the three stringent criteria in the study of stable/unstable nature

of a planetary orbit. Our results show that the HS indicator is comparable, in the

context of determining the orbital stability, to other well known indicators. Like MLE

and MEGNO, it has consistently predicted the stable/unstable nature of planets in

binaries. Calculations show that the HS function predicts instability of orbits in

comparable time with LE (case of γ Cephei). Also, unlike MEGNO maps, HS time

series cannot produce definite quasi-periodic, chaotic or decreasing stability regions

without considering a map of a larger parameter space.



CHAPTER 4

CHAOTIC DYNAMICS OF THE PLANET IN HD 196885 AB

Depending on the planetary orbit around the host star(s), a planet could orbit

either one or both stars in a binary system as S-type or P-type, respectively. In this

dissertation, I analysed the dynamics of the S-type planetary system in HD 196885 AB

with an emphasis on a planet with a higher orbital inclination relative to the binary

plane. The mean exponential growth factor of nearby orbits (MEGNO) maps are used

as an indicator to determine regions of periodicity and chaos for the various choices of

the planet’s semimajor axis, eccentricity and inclination with respect to the previously

determined observational uncertainties. I have quantitatively mapped out the chaotic

and quasi-periodic regions of the system’s phase space, which indicates a likely regime

of the planet’s inclination. In addition, I inspect the resonant angle to determine

whether alternation between libration and circulation occurs as a consequence of

Kozai oscillations, a probable mechanism that can drive the planetary orbit to a very

large inclination. Also, I demonstrate the possible higher mass limit of the planet

and improve upon the current dynamical model based on our analysis.

4.1 Background

The study of exoplanets has made a significant advance since the first planet

around a solar type star, 51 Pegasi b (Mayor & Queloz 1995) was discovered almost

two decades ago. The number of confirmed exoplanets has already reached 1822 as

of September 22, 20141. New exoplanets are being added almost everyday into the

1www.exoplanet.eu
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database. The ultimate conquest of the contemporary exoplanet research is to find

a planet within its respective habitable zone with a stable planetary orbit and a

terrestrial mean density. Various ground based surveys and space based telescopes,

such as the Kepler2 mission and future missions such as the transiting exoplanet

survey satellite (TESS) (Ricker et al. 2010) and the James Webb3 space telescope

are set for the detection and characterization of exoplanetary systems, which will

deliver a promising future in the search for terrestrial planets that could support life.

Meanwhile, the search for exomoons is also an ongoing process and recent work by

Kipping et al. (2013) has produced a list of candidate hosts of such moons around

transiting exoplanets. ?) recently calculated the minimum required flux from the

exoplanetary radio emissions in order to detect the exomoons using several ground

based radio telescopes. Although an exomoon has yet to be detected, theorists have

already determined relations to constrain an exomoon’s habitability by considering

energy flux (i.e., radiative and tidal) and orbital stability (Heller 2012; Cuntz et al.

2013).

The focus of this chapter, however, is on the study of the dynamics of an

exoplanet whose orbital eccentricity and inclination relative to the binary plane are

significantly higher than the median of those discovered. The orbital stability of

such a system depends on various orbital parameters and the long-term stability is

vital for life to develop under current theories. Thus, understanding the complete

dynamics of a system bears vital requirement. Various numerical tools have been

developed and used in the past to address the orbital configuration leading to the

stability, instability or chaos of planets in a binary system. Quarles et al. (2011) used

the maximum Lyapunov exponent (MLE), originally developed by Lyapunov (1907),

2http://kepler.nasa.gov/
3http://www.jwst.nasa.gov/

http://kepler.nasa.gov/
http://www.jwst.nasa.gov/
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to determine the orbital stability or instability for the CRTBP case. The mean

exponential growth factor of nearby orbits, MEGNO maps (Cincotta & Simó 1999)

have been used to study the dynamical stability of irregular satellites (Hinse et al.

2010), and extrasolar planet dynamics (Goździewski & Maciejewski 2001; Goździewski

et al. 2001). Recently, Satyal et al. (2013) used MLE, MEGNO and the Hill stability

time series methods (Szenkovits & Makó 2008) to study the orbital perturbation of

a planet due to the stellar companion in the binary systems of γ Cephei and HD

196885.

Planets that are formed from a planetary disk are expected to have near cir-

cular orbits due to tidal circularization, yet roughly 19% of known exoplanets with

well-known orbital parameters have an eccentricity greater than 0.44. This estimate,

however, could be biased and may not include the true population. The actual in-

trinsic phenomenon on how such highly eccentric orbits are formed while maintaining

orbital stability is not quite fully understood, however, some theories do exist that

postulate such origins. Kozai (1962) and Lidov (1962) proposed a mechanism, now

referred to as Lidov-Kozai mechanism, to explain the variations of a test particle’s

eccentricity and inclination. This mechanism was first applied to the exoplanets by

Holman et al. (1997) while studying the chaotic variations in the eccentricity of the

planet in 16 Cygni AB. Furthermore, its application to the planets includes the work

done by Innanen et al. (1997), Wu & Murray (2003), Fabrycky & Tremaine (2007),

Wu et al. (2007), Veras & Ford (2010), Correia et al. (2011), Lithwick & Naoz (2011),

Naoz et al. (2011), Katz et al. (2011), Naoz et al. (2012), Naoz et al. (2013a) and

Li et al. (2013). Some other mechanisms have also been proposed, such as planet-

planet scattering to explain such variations (see for example, Rasio & Ford (1996);

Chatterjee et al. (2008); Nagasawa et al. (2008)). In this work, I use the Lidov-Kozai

4www.exoplanet.eu

www.exoplanet.eu
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mechanism to explain such highly eccentric but stable orbits of the S-type planet,

HD 196885 Ab. The planet is part of a binary star system (HD 196885 AB) whose

eccentricity is observationally determined to be 0.48 and the planet’s inclination is

unconstrained which implies a value anywhere between zero and ninety degrees (for

prograde motion) with the binary plane.

The dynamics of the planet in HD 196885 have been studied in the work by

Satyal et al. (2013). In that study, investigations were performed in a restricted

manner where the planet’s inclination, (ipl) ≤ 25◦ with the binary plane, and the

dynamics of the system was not fully explored. In this dissertation, I consider a

full range of prograde orbits in ipl value, from 0◦ to 90◦, and made use of the chaos

indicator, MEGNO, to produce maps which demonstrate regions of periodicity and

chaos for a variety of initial conditions. For similar initial conditions, a dynamical

lifetime map is produced by using the information about the planet’s ejection time

from the system or the collision time with the stellar host. Also, the dynamics of the

system is studied in terms of the planet’s maximum eccentricity. Then, the resonant

angle is analyzed for evidence of a mean motion resonance at the best-fit location of

the planet and for possible alternation between libration and circulation arising due

to chaos induced by the Kozai oscillations.

If a system demonstrates quasi-periodic orbits (as in the case of MEGNO maps)

and/or the planet survives the total simulation time (lifetime map), I consider it a

stable system. If the planet gets ejected from the system or collides with the central

body within the simulation time, it would be an unstable system. For some initial

conditions the planetary orbit displays a chaotic motion, which I shall confirm from

the evaluation of the time evolution of the resonant angle. Even though the motion

is chaotic it does not mean that its unstable and the system can maintain (in some

cases it has maintained) a stable configuration for millions of years.
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Table 4.1. Best-fit orbital parameters of the HD 196885 system as obtained from
(Chauvin et al. 2011). Mass of primary star, mA = 1.33 M�. The planet’s inclination
(ipl) is measured relative to the binary orbit, then for ipl = 0◦, the planetary orbit is
coplanar with the binary orbit.

HD 196885 B Ab
Mass (m) 0.45 M� 2.98 MJ

Semimajor Axis (a) 21 ± 0.86 AU 2.6 ± 0.1 AU
Eccentricity (e) 0.42 ± 0.03 0.48 ± 0.02
Inclination (i) 0◦ [0◦ - 90◦]
Argument of Periapsis (ωp) 241.9◦ ± 3.1 93.2◦ ± 3.0
Ascending node (Ω) 79.8◦ ± 0.1 0.0◦

Mean Anomaly (M) 121◦ ± 45 349.1◦ ± 1.8

4.2 Theory

4.2.1 The Lidov-Kozai Mechanism

Kozai (1962) developed an analytical theory to explain the secular perturba-

tions induced by Jupiter on the asteroids in the Solar System. Similar theory was

developed by Lidov (1962) to study the evolution of orbits of artificial satellites of

planets that are directly influenced by the gravitational perturbations of the Sun. For

this, Kozai considered the perturber’s (Jupiter) orbit to be circular. Thus the aster-

oid’s vertical angular momentum and the secular energy is conserved and the system

is integrable. As a consequence of the conservation of the quantity
√

1− e2pl cos ipl the

time evolution of eccentricity and inclination of the planetary orbit is anti-correlated,

when the eccentricity is small, then the inclination is high and vice versa. For rela-

tive orbital inclinations less than 39.2 degrees the argument of pericentre circulates

between 0◦ and 360◦ and the planet’s orbit is precessing. This property remains true

for other values of initial eccentricity. However, for relative inclinations larger than

39.2 degrees, the planet becomes a Kozai librator (Kozai regime) with it’s argument
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of pericentre locked and exhibiting either librations (oscillations) around 90 or 270

degrees. These libration centers are known to be stable fixed points.

A Kozai librator with an initially circular orbit will undergo a large variation

in eccentricity and inclination within the Kozai cycles. For relative inclinations close

to the critical value of 39.2 degrees, the argument of pericentre exhibits intermittent

behaviour displaying alternations between circulations and librations. In general, the

coupling between eccentricity and inclination provides an effective removal mecha-

nism. For a large initial relative inclination the amplitude of the planet’s eccentricity

variation increases. Following Innanen et al. (1997) the maximum extent in eccen-

tricity for a Kozai cycle can be expressed as,

(emax)pl =

√
1− 5

3
cos2 (io)pl, (4.1)

where (io)pl is the initial relative inclination of the planet. Eventually, for a large

enough eccentricity, the planet is either ejected from the system or collides with the

primary component rendering its orbit to be unstable.

However, the vertical angular momentum and the secular energy are conserved

only when the pertuber’s orbit is circular. When the perturber is eccentric or if

the planet has non-negligible mass, the vertical angular momentum component of

the planet and the perturber is not conserved and the planet shows qualitatively

different behaviour. For such cases, Lithwick & Naoz (2011) and Naoz et al. (2013a)

further developed the Lidov-Kozai mechanism discussed earlier and formulated for the

eccentric perturber, which they have called it the eccentric Kozai mechanism (EKM).

When the perturber has an eccentric orbit the quadrupole-order approximation is

insufficient and requires the octupole-order term as well (Ford et al. 2000). Following

Lithwick & Naoz (2011) and Naoz et al. (2013a), the energy function and the constant
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of motion, F, in quadrupole and octupole term is, F ≡ Fquad + εFoct and the constant

is given by

ε ≡ apl
aper

eper
1− e2per

, (4.2)

where apl and aper are the semimajor axis of a planet and pertuber respectively, and

eper is the pertuber’s eccentricity.

In a binary star system with an S-type planet around the primary star, as in our

case, the secondary star would be a perturber. When eper = 0, ε = 0, thus F reduces

to the case with the quadrupole term only. Further mathematical set up of equations

of motion concerning the quadrupole and octupole order terms can be found in Naoz

et al. (2013a). During their study of the EKM, some of the remarkable results were

obtained including the flipping of the planetary orbit from prograde to retrograde

and its eccentricity reaching to the extreme values (∼ 1). Two main cases have

been discussed regarding the initial conditions in epl and ipl: high eccentricity, low

inclination (HeLi) and low eccentricity, high inclination (LeHi). Primarily, only the

octupole term is in play during HeLi flip (Li et al. 2013) and both terms (quadrupole

and octupole) are in play during LeHi flip (Naoz et al. 2011, 2013a). From Li et al.

(2013), the flip criterion is given as

ε >
8

5

1− e2per
7− eper(4 + 3e2per)cos(ωper + Ωper)

, (4.3)

where ε is the constant parameter (Eq. 4.2), eper, ωper and Ωper are the perturber’s

initial eccentricity, argument of periapsis and ascending node, respectively.
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Figure 4.1. Evolution of the eccentricity and argument of periapsis for various choices
of planet’s orbital inclination with the binary plane, simulated for 1 ×105 years
[(a)Initial ipl = 0◦, (b)Initial ipl = 20◦, (c)Initial ipl = 35◦, (d)Initial ipl = 39.2◦,
(e)Initial ipl = 39.7◦, (f)Initial ipl = 45◦, 60◦, 70◦, 80◦]. The Savitzky-Golay smooth-
ing function with third degree polynomial is used to smooth the high frequency data
as shown in (a),(b) and (c). For the first three choices of ipl values, the ω is circulating
within 0◦ to 360◦. In contrast to the coplanar case, the amplitude of circulation is
varying and is maximum at 90◦ and 270◦ (b and c). When ipl = 39.2◦ (d), the ω shows
circulation in the region of phase space with eccentricity amplitude maximum at 90◦

and 270◦, and for even higher ipl (39.7◦) the phase space divides into two distinct
regions where ω shows circulation and libration around 90◦ and 270◦ (e). This is,
however, an unstable region where the amplitude of eccentricity oscillation reaches
∼1. When ipl is set to 45◦, 60◦, 70◦ and 80◦ (f), the ω librates around 90◦ and the
libration amplitude in eccentricity is found to increase with increasing ipl until the
planet collides with the central body for ipl greater than 80◦ (Satyal et al. 2014b).

4.2.2 Numerical Approach and methods

Now I consider the motion of a planet of mass, mpl around a star of mass,

mA. When calculating the initial conditions in position and velocity, I used the best-

fit orbital elements, semi major axis (a), eccentricity (e), inclination (i), argument

of periapsis (ω), ascending node (Ω) and mean anomaly (M), that are obtained

from the radial velocity measurements (Chauvin et al. 2011). For any unconstrained
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parameters, the values are taken in a range or considered zero. The list of orbital

parameters of the HD 196885 system are given in Table 3.2. The subscripts bin and

pl are used to denote the secondary binary component and the planet, respectively.

The mean longitude (λ) that is used to calculate the resonant angle (Φ) is calculated

from the longitude of the periapsis ($ = Ω + ω) and the orbit’s mean anomaly (M),

which is given as λ = $ + M .

Using the orbital integration package MERCURY (Chambers & Migliorini 1997;

Chambers 1999), the built-in Radau algorithm was used to integrate the orbits of

the system in astrocentric coordinates when investigating the evolution of orbital

elements for a single initial condition and to produce a lifetime map for multiple

initial conditions. MERCURY was effective in monitoring the ejection/collision of a

planet due to close encounter with the secondary star and provided robust results for

the purpose of determining the existence of orbital resonance. A time step of ε = 10−3

year/step was considered to have high precision because the error in change in the

total energy and total angular momentum was calculated at each time step that fell

within the range of 10−16 to 10−13 in both cases during the total integration period of

50 Myr. The data sampling (DSP) was done per year for shorter integration periods

(up to 100 kyr) and per thousand years for longer integration periods. The lifetime

map and the maximum eccentricity map are generated for 12,000 initial conditions

in apl and ipl, and simulated for 50 Myr.

4.3 Results and Discussion

4.3.1 The Phase Space Evolution

To observe the system that is evolving in the phase space, the planet’s eccen-

tricity (e) is plotted versus the argument of periapsis (ω), for various choices of the
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Figure 4.2. Planet’s eccentricity and inclination time series when planet’s initial
orbital inclination with the binary plane is set at 10◦, 30◦ and 39.2◦. In these double-
axis plots, the left y-axis has eccentricity and right y-axis has inclination plotted
versus time along the common x -axis. The orbital integration was carried out for
50 Myr but (a) and (b) are truncated at 2×104 years to clearly demonstrate the
oscillations of both elements (e and i). (c) is plotted up to the instability point
(∼ 4×104 years) after which the planet collided with the central body (Satyal et al.
2014b).

Figure 4.3. Planet’s eccentricity and inclination time series when planet’s initial
orbital inclination with the binary plane is set at 50◦, 60◦ and 83◦. The time series
at (a) and (b) are truncated at 2×104 years and the time series at (c) is plotted up
to the instability point (∼ 1.5×104 years) after which the planet collided with the
central body (Satyal et al. 2014b).

planet’s relative orbital inclination with the binary plane (Fig. 4.1). The Savitzky-

Golay smoothing function is used to filter the data as I am interested in the secular

dynamics of the system and the secular perturbation theory that initiates the Kozai

mechanism in the case of inclined orbits. I find that, below 39◦ and for our choice

of ipl values, the phase space starts to evolve when ω starts to circulate between 0◦
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and 360◦. The eccentricity, however, oscillates with large and increasing amplitude

for increasing ipl (for example 20◦ to 35◦) while compared to the coplanar case (see

Figs. 4.1a,b,c).

When the initial ipl is set at 39.2◦, the ω shows circulation only with eccentricity

amplitude maximum at 90◦ and 270◦ (Fig. 4.1d), but the system becomes orbitally

unstable as the epl reaches its maximum value causing the planet to collide with the

central body within 50 Kyr. Further increment in the ipl value to 39.7◦ makes the

phase space divide into two distinct regions while the ω is found to circulate as well

as librate (Fig. 4.1e). This is also a transition regime of the phase space beyond

which the ω displays libration only. Holman et al. (1997) showed a similar behaviour

in the momemtum variable (1-e2) plotted versus its conjugate angle (ω) for a highly

inclined (ipl = 60◦) planetary orbit.

Furthermore, when the ipl is set in increasing order from 45◦ to 80◦, the ampli-

tudes of the epl oscillations is found to increase as well, and in this inclination regime

the argument of periapsis only shows libration around 90◦ (Fig. 4.1f). The libration

amplitude increases with the increase in the initial ipl values, eventually entering a

regime where the planet can escape from the system or collide with its host star when

ipl reaches a value greater than 82◦ and emax approaches 1.0 (Eq. 4.1).

4.3.2 The Kozai Resonance

The evolution of a planet’s eccentricity and inclination was further explored

for a wide range of ipl values. The conservation of the Kozai integral term (see Sec.

4.3.2) suggests that as the system evolves in time, the decrease/increase in planet’s

eccentricity is compensated by the increase/decrease in its inclination relative to

the binary plane, also shown by Holman et al. (1997) for circular perturber and by

Lithwick & Naoz (2011) for an eccentric perturber. For small initial ipl values (i.e.,
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10◦) I found a constant-amplitude oscillation of epl and ipl at the average values of 0.55

and 12◦, respectively (Fig. 4.2a) for the integration period of 50 Myr. As the initial

value of ipl is increased the amplitude of oscillations of both parameters increase as

well. In Fig. 4.2b I have shown a case for ipl = 30◦. In this double-axis plot, the y-axis

on the left side indicates the time evolution of eccentricity from its best-fit value of

0.48. As the system evolves, the eccentricity varies between 0.25 and 0.55. The y-axis

on right side illustrates the variation in inclination from its initial assigned value of

30◦. The ipl value oscillates between 30◦ and 40◦ and the variation in its amplitude

from the initially assigned value behaves in an anti-correlated fashion to that of epl.

Also, the variation in the epl agrees with the case when the perturber has an eccentric

orbit, the inner orbit’s eccentricity can reach extremely large values (Ford et al. 2000;

Naoz et al. 2013a; Teyssandier et al. 2013). The x-axis in Figs. 4.2a and 4.2b are

truncated at 20 Kyr to clearly demonstrate the oscillations of the two parameters,

(epl and ipl). The amplitude of the oscillations merely changed during its evolution

for given total integration time.

When the initial ipl value is further increased to 39.2◦, the planet follows a

path to instability within 40 kyr through a growing value of eccentricity. It is also

found that there is a small instability window (most of the time the planet collided

with the central body) when ipl is set at ∼(39◦ - 40◦). The time series plot of epl

and ipl (Fig. 4.2c) shows increasing values of the planet’s eccentricity and inclination

until it reaches an extreme value ∼1 and ipl oscillates up to 80◦, hence minimizing

the periastron distance and eventually forcing the planet to collide with its host star.

From a theoretical aspect, it can be inferred that when the relative inclination hits the

critical angle mark (i c = 39.2◦), the long-period oscillations between eccentricity and

inclination ensue. The initial eccentricity becomes insensitive leading to the forced

eccentricity that is the basis for the Kozai resonance. The other factor causing the
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planet to exhibit Kozai cycles is the libration of the argument of periapsis (ω) around

90◦, whose significant evolution is observed in Fig. 4.1 for ipl greater than 39◦. I did

not consider the tidal dissipation within the regimes of close approach which may as

well produce misalignment (Winn et al. 2010). Also, general relativity is not included

in our calculations the precession, which can lead to large eccentricity oscillations

(Naoz et al. 2013b; Antonini & Merritt 2013).

For greater orbital inclination values, such as, when initial ipl is set to 50◦ (or,

60◦) (Fig. 4.3a,b) the amplitudes of eccentricity and inclination oscillations reach as

high as ∼ 0.6 and 53◦ (or, ∼ 0.8 and 64◦), respectively, and the system continues

to maintain the periodic orbits throughout the integration period of 50 Myr. Also,

further increasing the ipl value pushes epl to its extreme limit resulting in the planet-

star collision when the ipl value is increased beyond 82◦. Above the critical value of

the planet’s orbital inclination with the binary plane (ic = 39.2◦), the precession of the

argument of pericentre is replaced by libration around 90◦ as discussed earlier. Satyal

et al. (2013) encountered a similar dynamical behaviour in their study of the planet

in the HD 196885 system for the planet’s orbital inclination less than 25 degrees.

For higher initial ipl, as shown here, the secular perturbation causes the epl and ipl

values to oscillate with higher amplitudes, which can eventually cause instability in

the system due to the collision of the planet with the central body or escape due to

a parabolic or hyperbolic orbit. For example, when the initial ipl = 83◦ and the epl is

forced beyond 1 within a short integration period (15 kyr, Fig. 4.3c).

For specific initial conditions, Lithwick & Naoz (2011) showed that the planetary

orbit can flip when the criterion given in Equation 4.3 is satisfied. But the initial

parameters from our system does not satisfy this criterion despite the presence of the

highly eccentric perturber. For the given initial parameters of HD 196885 AB, ε =

0.063 (ε is a constant term given by Eqn. 4.2) while the value obtained from Eqn.
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4.3 is 0.174. Thus, the planet is not expected to flip its orbit, which is in agreement

with Fig. 4.3c and Fig. 4.4. The planet’s maximum eccentricity reaches the extreme

values, from 0.7 to ∼ 1, (see the maximum eccentricity map, Fig. 4.4) for the orbital

inclination greater than 55◦; nonetheless, the planet survives the total integration

time until the ipl is raised to 82◦ . The emax stays relatively low, between 0.48 and

0.68, for the ipl values less than 55◦ excluding the case when ipl is ∼ 39◦. Before

reaching the flipping point (90◦) the planet gets ejected from the system when ipl ≥

82◦ and the emax reaches close to 1.0 within the integration time. I note that emax

appears to decrease in Fig. 4.4 for very high inclinations (85◦−90◦), but this is due

to the approach to instability occurring faster than our data output frequency.

4.3.3 The MEGNO and the MMR Analysis

I generated the MEGNO maps considering a wide parameter space of the

planet’s initial inclination and semimajor axis, which illustrates variations in the

quasi-periodic and chaotic phase space for varying ipl and apl values (Fig. 4.5). I

found that, for ipl less than 39◦, the best-fit value of apl (the vertical line at 2.6 au)

lies within the chaotic region. However, it’s important to note that a chaotic orbit

does not necessarily imply an unstable one, as it is shown through the orbital inte-

gration of the selected initial conditions. Also, the global lifetime map of ipl vs. apl

(Fig. 4.6) shows which initial conditions are the best suited for the full integration

time. The colour code in the lifetime map is based on the planet’s survival, ejection or

collision time where the lightest colour represents the full survival of the planet. And

the dark coloured vertical bands signifies instability, which means that the planet at

these initial conditions did not survive the total simulation time of 50 Myr.

The mean motion resonance (MMR) associated with the chaotic regions in the

MEGNO maps can be estimated by calculating its position from the perturbation
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Figure 4.4. A maximum eccentricity (emax) map of the planet, HD 196885 Ab, for
varying ipl and apl, simulated for 50 Myr. The colour bar indicates the emax reached
by the planet during the total simulation time, which also includes the cases when
the planet suffers an ejection or collision (especially when epl reaches a value greater
than 0.9). The darker colour represents the best-fit epl parameter (0.48) and the
lightest colour represents the emax value the planet attained for the respective choices
of initial conditions in ipl and apl. The red line at 2.6 au is the best-fit semimajor
axis of the planet. This map compliments the lifetime map (Fig. 4.6) in a way that
the vertical instability bars are located at the same regions where the planet’s emax
exceeds 0.7 (Satyal et al. 2014b).

theory. For the best-fit values of the planet’s and binary semimajor axes, and masses

of the stars, the ratio of the (p+ q)/p commensurability can be calculated as (see

Murray & Dermott (1999)),

p+q

p
=

(
abin
apl

) 3
2
(

mA

mA +mB

) 1
2

, (4.4)
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Figure 4.5. MEGNO maps indicating the quasi-periodic and chaotic regions of the
giant planet in the HD 196885 system for inclination varying from (left) 0◦ to 90◦

and semimajor axis ranging from [2.3-2.9] au, simulated for 2 ×105 years. Vertical
line indicates the location of the best-fit semimajor axis of the planet at apl = 2.6
au. A small area along the vertical line and for lower ipl region is magnified to
clearly differentiate between the quasi-periodic and chaotic regions (right panel) and
simulated for 8 ×105 years. The planet’s near 39:2 MMR is located slightly left of the
planet’s best-fit location. The MMR stops when ipl reaches ∼ 30◦, with a small semi
quasi-periodic region extending from 30◦ to 34◦ which I expect to vanish for longer
simulation time. Yellow region signifies the chaotic orbits within the total simulation
time and dark purple region signifies the periodic orbits. The colour bar indicates the
strength in the value of MEGNO, < y > (Satyal et al. 2014b).

where mA and mB represent masses of the primary and secondary star, respectively;

q is the order of the resonance and p is its degree. To search for chaos associated with

(p+q)/p MMR, I considered the resonant angle (Φ) of the form

Φ = k1λbin + k2λpl + k3$bin + k4$pl + k5Ωbin + k6Ωpl, (4.5)

where the coefficients follow the relations k1 = p+q, k2 = -p, and
∑

i ki = 0. The

mean longitude λ is a function of the mean anomaly, M , and longitude of pericenter,

$. Also, the sum of k5 and k6 is even as required by symmetry in the d’Alembert

rules.

For the planet at 2.6 au from the primary component an interaction with the

mean motion resonance (MMR) is found to be near a 39:2 commensurability with
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the secondary component (some of the angles in Fig. 4.7 show a temporary lock).

The time evolution of the angles $pl − $bin (secular resonance, Fig. 4.7,f) shows

circulation between 0◦ and 360◦ when the ipl is set at lower values (for example 0◦),

which suggests that the observed chaos is caused by the MMR. Secular resonance

at the semi quasi-periodic region (ipl = 35◦) shows circulation as well, but with a

different orientation (Murray & Dermott 1999). Then, the MMR value is used to

search for a librating resonant angle (Eq. 4.5), for k1 = 39 , k2 = -2, and various

other combinations of k3, k4, k5 and k6 due to the influence of secular components.

In our case, the ipl was varied with respect to the binary orbital plane and the orbits

were integrated using astrocentric coordinates, considering the primary at the origin.

Thus, k5 in Equation 4.5 would be zero as Ωbin becomes undefined (ibin = 0◦) and

convention dictates that it be set to zero.

Initial conditions for different ipl values, but along the best-fit semimajor axis

line, were picked where the measure of MEGNO is chaotic (Fig. 4.5, right panel), and

the orbits were integrated for a short period with a high data sampling frequency.

I would expect the resonance angle (Φ) time series to alternate between modes of

circulation and libration for initial conditions taken from the chaotic region and Φ to

circulate only when the initial condition is taken from the quasi-periodic region. At 0◦,

10◦, 31◦ and 35◦, Φ is found to librate and circulate as expected for chaotic behaviour

(Fig. 4.7, a-d). This also confirms the earlier indication of the planet’s interaction

with a near 39:2 MMR with the secondary star. One of the factors inducing chaos in

the region of low inclination orbit is possibly due to this near 39:2 MMR. The MMR

in the case of higher inclination orbit changes its dynamical character which results in

the periodic orbits. The location of the planet (vertical line at 2.6 au) is almost at the

center of the MMR, thus minimizing the amplitude of the libration. The 39:2 MMR

has a minimal effect for ipl greater than 40◦ and the planet enters a quasi-periodic
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Figure 4.6. A global dynamical lifetime map of the planet, HD 196885 Ab, for varying
ipl and apl, simulated for 50 Myr. The colour bar indicates the survival time, where
darker colour represents the instability (ejection or collision) and the lightest colour
represent the stability (survival) up to the integration period. The solid red line at
2.6 au is the best-fit semimajor axis of the planet. Two dotted lines indicate the
observational uncertainty of ±0.1 au (see Table 1). The vertical bars evident in Figs.
4.4 and 4.5 at 2.45, 2.55, 2.65, 2.75 au also appear (Satyal et al. 2014b).

region for ipl up to 55◦, a region where the emax deviates least from its best-fit value.

The resonant angle is found to circulate only in these quasi-periodic regions. As seen

in Fig. 4.7e Φ plotted for the initial conditions at 50◦ shows circulation. This gives a

strong evidence that one of the factors responsible for the chaos below 39◦ is produced

by the near 39:2 MMR interaction. Also, the secular perturbation induced by the

precession of ω and Ω is found to contribute to the observed chaotic dynamics of the

system in the Kozai regime. The libration and circulation of resonant angle seen in

Fig. 4.7 is obtained only when the coefficients of $pl and Ωpl are included in the Φ

term.

A small region of possible quasi-periodicity appears when the initial ipl lies

between 30◦ and 34◦ (Fig. 4.5 right panel). This seems like a periodic region but the
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Figure 4.7. The time evolution of resonant angles (Φ) calculated for different ipl values
(0◦, 10◦, 31◦, 35◦, 50◦, 0◦,35◦) but along the best-fit location of semimajor axis (apl
= 2.6 au). The location for Φ angle test is chosen from MEGNO map (see Fig. 4.5)
where measure of MEGNO (< y >) is quasi-periodic (e) and chaotic (a, b, c and d).
(f) shows the time evolution of the angles ($pl − $bin) for ipl values at 0◦ and 35◦

(Satyal et al. 2014b).

resonance angle test (Fig. 4.7c) shows that the Φ is found to circulate and librate,

which indicates this region as a chaotic zone. The small black and red dots in this

region are indicative that many of these initial conditions have not had enough time
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to reveal their true nature (quasi-periodic or chaotic). What I called before a quasi-

periodic region and expected the circulation of Φ revealed itself as a region of complex

dynamics with many overlapping and interacting resonances.

A strip of unstable chaos is observed when the initial ipl ranges between ∼(39◦ -

40◦) (Fig. 4.5, right panel) and for any choice of apl, from 2.3 au to 2.9 au. The insta-

bility at this region is also confirmed by the lifetime map where the planet is found to

collide with its host star. The MEGNO has been successful in determining the chaotic

region surrounding this instability point. The minimum critical angle (ipl ≥ 39.2◦)

required to initiate the Kozai mechanism lies within this inclination regime. Once

the Kozai resonance phenomenon is triggered, it drives the planet into higher inclina-

tion orbits (hence higher eccentricity) causing the planet to collide with the primary.

However, beyond 40◦ and less than 55◦ the planet maintains quasi-periodic orbits

even though it is subject to the Kozai resonance. The observed horizontal stripe in

the MEGNO map at ipl ∼ 39◦ can be considered as a separatrix line, which separates

the phase space from circulation when ipl < 39.2◦, and libration when ipl ≥ 39.2◦.

The MEGNO maps displayed quasi-periodic orbits along the best-fit apl value

( black line, Fig. 4.5) and for ipl values greater than 40◦ and until it rises as high

as ∼55◦ above the binary plane. Beyond this inclination regime, the maps have

displayed the chaotic orbits. The MEGNO shows an overall effectiveness at indicating

the MMR locations, and the chaotic and periodic regions of the system’s phase space.

In addition, the dynamical maximum eccentricity and lifetime maps addressed the

caveats of chaos seen in the MEGNO maps to discriminate regions that are truly

unstable or merely chaotic within the integration period.

The planet’s interaction near the 39:2 MMR with the secondary is observed

when the mean best-fit value of semimajor axis is 2.6 au. When the planet’s location
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is moved to 2.58 au and 2.68 au (but within the observational uncertainty limit), the

planet is found to exhibit oscillations due to the 20:1 and 19:1 MMRs, respectively.

Figure 4.8. MEGNO maps indicating the periodic and chaotic orbits of the giant
planet in HD 196885 for inclination varying from 0◦ to 90◦, plotted versus the ec-
centricity and simulated for 2 ×105 years. Vertical line indicates the planet’s best-fit
location at epl = 0.48 (Satyal et al. 2014b).

The planet’s orbital motion is also analysed in the varying ipl and epl plane

(Fig. 4.8) to display possible periodic and chaotic regimes. The vertical line at epl =

0.48 indicates the planet’s best-fit location, and, like in the previous case (Fig. 4.5),

the planet clearly lies in chaotic zone for epl > 0.4 and ipl < 30◦. Driven by the Kozai

resonance, a similar chaotic stripe appears at ipl ∼ 40◦. Periodic regions continue

beyond this angle, however some chaotic islands do appear for ipl greater than 55◦.

The discovery of the planet in the HD 196885 system (Chauvin et al. 2011)

using the radial velocity (RV) technique only allowed the determination of the planet’s

minimum mass of 2.98MJ . I performed a test to indicate the periodic and/or chaotic

regions of the system for variations in the planet’s mass (mpl) ranging from 2MJ to
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Figure 4.9. MEGNO maps indicating the periodic and chaotic orbits of the giant
planet in HD 196885 for inclination varying from 0◦ to 90◦, plotted versus the planet’s
mass and simulated for 2 ×105 years. Vertical line indicates the planet’s best-fit
location at mpl = 2.98MJ (Satyal et al. 2014b).

20MJ and ipl varying from 0◦ to 90◦ (Fig. 4.9). The map indicates that quasi-periodic

regions exist for various combination of mpl and ipl. The system displays periodic

orbits for mpl mostly between 3MJ and 6MJ with a small chaotic region around

4.5MJ plus the exclusion of chaotic region at ∼ 40◦. The chaotic region continues

below 30◦ at the best-fit semimajor axis location of the planet. The map indicates

other possible periodic islands for higher mass values of the planet specifically for

ipl between (40◦ - 50◦) and mpl between ∼ (8.5 - 11.5)MJ , (12.5 - 15)MJ and (16 -

19)MJ .

4.4 Summary

Based on the above analysis, the best configuration for the planet to display

quasi-periodic orbits is when the planet’s orbital inclination relative to the binary

plane lies between 41◦ and 55◦. Chauvin et al. (2011) made a similar suggestion re-
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garding the planet’s inclination that a high relative inclination favours for the periodic

orbits. Also, Giuppone et al. (2012) found that the planet has either coplanar orbits

(prograde and retrograde) or highly inclined orbits near the Lido-Kozai equilibrium

points, i - 90◦ = ±47◦. This range of angles gets smaller when the planet’s mass is

increased more than the current value of 2.98MJ . The planet can have an interaction

with the near 39:2 MMR from perturbations of the secondary component of the bi-

nary which appears to be responsible for the chaotic region as seen in the MEGNO

maps below 39◦. The plots of the resonance angle time series for the near 39:2 MMR

clearly demonstrate the circulation and libration of Φ based on the choices of initial

condition. The planet’s orbital configuration below 39◦ is proven chaotic, and hence

lesser possibility for the planet to be in that regime under the current assumptions of

planetary formation.

The best-fit value of the planet’s eccentricity was set at 0.48. Then the system

was evolved for 50Myr and the maximum epl value was calculated in apl vs. ipl

parameter space. The epl is found to deviate least from its best-fit value when ipl is

at ∼35◦ and ∼(40◦-50◦), thus, these regions are expected to demonstrate the most

quasi-periodic regimes for the planet. The high amplitude oscillation in epl below

35◦ mainly arises due to the planet’s secular interactions with the secondary. The

perturbation from the secondary may have forced the planetary embryo or protoplanet

into precession during its early formation stage, eventually driving the planet into high

inclination orbits.

The planets higher mass is possibly constrained between (3 - 6)MJ ; however,

these choices also depend on the choice of planet’s orbital inclination and it is mostly

favorable when mpl is less than 6MJ and ipl less than ∼ 55◦, with some exceptions

of chaotic islands (Fig. 4.9). The planetary mass higher than 9MJ and up to 19MJ

is likely when the planet’s orbital inclination lies in a smaller regime, somewhere
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between 40◦ and 50◦. A possibility of having any other terrestrial planets within

the 2.6 au region around the primary is less likely. The circumprimary disc can be

strongly hostile to planetesimal accretion in this region (Thebault 2011).



CHAPTER 5

EXOMOON DETECTION

In chapter 1, I briefly discussed some of the methods that are currently used to

detect exoplanets, which includes the transit method, radial velocity method, direct

imaging and so on. Here I focus on the detection of exoplanets based on their orbital

stability and other dynamical properties. Also, I present a possible detection of

exomoon through observation of radio emissions based on the paper I co-authored

(Noyola et al. 2013).

5.1 Exomoon Detection: A Theoretical Approach

Jupiter has a huge magnetic field lines connecting its polar regions. One of its

moon, Io, while orbiting around the planet produces currents along the field lines.

These currents then generate and modulate radio emissions along their paths via the

electron-cyclotron maser instability. Analyzing and extrapolating these processes, it is

suggested that such modulation of planetary radio emissions may reveal the presence

of exomoons around the giant planets in exoplanetary systems. As a case study, we

calculated a telescope flux sensitivity for possible moons orbiting Gliese 876 b and

Epsilon Eridani b.

5.2 Background

More than 1822 have been confirmed as of September 22, 20141, yet no ex-

omoons have been found due to the limited observational techniques. Our Solar

1www.exoplanet.eu
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Figure 5.1. Schematic of a plasma torus around an exoplanet, which is created by the
ions injected from an exomoon’s ionosphere into the planet’s magnetosphere. The
ionosphere could be created due to the volcanic activity on the exomoon’s surface,
however, if an exomoon is large enough it can hold its own thick atmosphere, which
then will give rise to an ionosphere. Image Credit: Suman Satyal.

System is home to hundreds of moons, which easily leads us to a belief that there

must be some similar planetary systems hosting exomoons. There has been a con-

tinuous search using various detection techniques and within the data collected from

NASA’s Kepler 2 Space Telescope.

We made a theoretical approach by using Io controlled decametric (Io-DAM)

emissions as a basis to demonstrate how the presence of exomoons around the giant

exoplanets may be revealed by the same modulation mechanism. The required phys-

ical conditions for such interaction are determined and then asses the feasibility of

our model by providing a possible exomoon detectability window.

Io is an intensely volcanic moon orbiting inside Jupiter’s magnetosphere. The

volcanic activity creates a light atmosphere of SO2 around Io, which ionizes to create

2http://Kepler.nasa.gov/Mission/discoveries/candidates/

http://Kepler.nasa.gov/Mission/discoveries/candidates/
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an ionosphere (Lopes & Spencer 2007). This ionosphere then injects ions into Jupiter’s

magnetosphere to create a plasma torus that orbits Jupiter’s magnetic equator at an

angle of 9.6◦ from the rotational equator, and co-rotates with the magnetic field at

a speed of 74 kms−1 (Su 2009). Io orbits Jupiter at a linear speed of 17 kms−1, so

Jupiter’s magnetic field passes Io at a speed of 57 kms−1. The speed difference gives

rise to a unipolar inductor (Grießmeier et al. 2007) that induces a current across Io’s

atmosphere of a few million amps. The current then accelerates the electrons that

produce the characteristic radio emissions (Crary 1997). It must be noted that while

volcanism is essential to the formation of a dense ionosphere around Io, such process

might not be required for larger moons, since moons like Titan are already large

enough to sustain a thick atmosphere, which in turn can give rise to an ionosphere.

Furthermore, the interaction between Io and the plasma torus gives rise to

Alfvén waves (Belcher 1987). The precise mechanism by which Alfvén waves interact

with the torus is complex, and several analytical and numerical models have been

proposed. In these models, Alfvén waves produce electric fields parallel to Jupiter’s

magnetic field lines, which then transport and accelerate electrons towards Jupiter’s

magnetic poles (Su 2009; Crary 1997; Neubauer 1980, and references therein). The

electrons traveling through the field lines create a cyclotron maser which then emits

radio waves whose existence in the Jupiter-Io system has been observationally verified

(Crary 1997; Mauk et al. 2001).

These studies of exoplanet-moon interactions are based on an extrapolation of

both Io’s plasma environment, and Jupiter’s magnetic field to different scenarios that

could potentially be encountered in newly discovered planetary systems. For mathe-

matical details on the calculations of the maximum intensity of the radio emissions,

the magnetic field and plasma properties, and the dependence of the radio emissions

on various parameters, please refer to Noyola et al. (2013).
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5.3 Detectability Window

Figure 5.2. Curves of output flux, S, plotted in the RS − fC plane for several plasma
densities. The radii of detectable exomoons which are 15 light-years away plotted
as a function of the host exoplanet’s cyclotron frequency for several flux sensitivity
values. From left to right, the panels show results for plasma densities of 104, 105, and
106amu/cm3. The shaded area corresponds to the potential detection capabilities of
a fully implemented SKA telescope. 1 Jansky = 10−26 Wm−2Hz (Noyola et al. 2013).

The cyclotron frequency is calculated using fC = eBpole/(2πme), where e is the

electron charge, me is the electron mass, and we use the magnetic field strength at

the poles of the exoplanet, Bpole, because that is where most of the radio emissions

occur. At the poles of the planet, the magnetic field is twice as strong as it is at

the equator. Hence, the strength of the magnetic field at the poles is expressed

as Bpole = 2(rOpt/RP )3BS, where RP is the radius of the exoplanet. Under this

assumption, the cyclotron frequency increases as MK
P , thereby limiting the amount of

exoplanets that a telescope could successfully scan for exomoons. Nonetheless, there

is still a wide range of frequencies within which an exomoon with radius ≤ 1RE could

be detected up to 15 light years away, if the plasma density ρS of the system is at

least 104amu cm−3, and if the telescope’s sensitivity is at least tens of µJy (see Fig.

5.2).
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The proposed SKA telescope, if fully implemented, could even detect Mars-

size moons (∼ 0.532RE)3 in this case, if present. The range of detection of SKA is

shown as the shaded areas shown in Fig. 5.2. Also, it must be noted that in reality

these systems emit over a range of frequencies instead a single one, so the range of

detectable systems is effectively larger than shown here. The calculation of the whole

frequency band will be treated in future studies. Regarding RP , a survey of currently

known gas giants shows great variability in the value of this parameter. Nonetheless,

for large planetary masses RP seems to converge to a value close to Jupiter’s radius,

RJ . Furthermore, many authors (e.g. Zarka et al. (2001)) assume that RP = RJ

unless the exoplanet’s radius is explicitly known. Thus, we also assume RP = RJ to

be the general case.

Applying our results to the exoplanet Epsilon Eridani b (1.55 MJ , 10.5 light

years away), we find that a telescope with a flux sensitivity of S ≤50 µJy around

49 MHz could detect exomoons with radius between 0.24 RE for high ρS(∼ 106amu

cm−3) and 0.73 RE for low ρS(∼ 104amu cm−3). For comparison, the Moon is ∼0.273

RE. For another nearby exoplanet, Gliese 876 b (2.28 MJ , 15.29 light years away),

a telescope with similar sensitivity around 93 MHz could detect an exomoon with

a radius between 0.28 and 0.86RE, depending on ρS. In both cases, a fairly large

minimum radius is required for exomoons to be detectable, unless there is a large

amount of plasma present. In fact, to find an exomoon of radius 2500 km (similar

to Mercury or Titan) orbiting Epsilon Eridani b, we would need a telescope with a

flux sensitivity of 14 µJy if ρS is low. Nevertheless, improvements to radio telescope

technology, and observational techniques could one day make it possible to reach

these sensitivities.

3Assuming 2 pol., 1 hr integration, and 16 MHz bandwidth
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5.4 Summary

The primary goal of this study was to find a set of conditions that would allow

detection of an exomoon through the radio emissions it induces on its host exoplanet,

and to assess whether these conditions are attainable by modern radio telescopes.

An exomoon orbiting Epsilon Eridani b, with radius as low as 0.24 RE, lies in

the detectable range of telescopes with sensitivity S ≤50 µJy. However, detection

of a Titan or Mercury-sized exomoon under low plasma conditions would require a

telescope with flux sensitivity of ∼ 14 µJy or better.

The model presented here still requires several refinements, such as including the

effects of magnetic exomoons, finding better constraints on TP and ρS, and calculating

a complete emission spectrum rather than a single cyclotron frequency. Nonetheless,

it is still our hope that the results presented here will give new insight to the observa-

tional community, and stimulate searches for the modulation of exo-planetary radio

emissions caused by the presence of exomoons.



CHAPTER 6

A THEORETICAL PREDICTION OF NEW EARTH-MASS PLANETS: CASE

STUDY OF GJ 832

6.1 Background

The study of orbital dynamics of planetary system in GJ 832 shows potential of

hosting multiple planets in close orbits. My emphasis is on the phase space analysis

of GJ 832c (inner planet) and the long-term stability of a hypothetical Earth-mass

planet(s) injected in between the inner and outer (GJ 832b) planets. The orbital

parameters of the inner planet are not well constrained for eccentricity, inclination

and ascending node. I aim to minimize the error in the planet’s eccentricity and locate

its inclination regime. The stability of the system is defined in terms of its lifetime

during the orbital integration and global parameter maps, displaying the maximum

eccentricity (emax) attained in the evolution process, are generated to observe the

change in the initial eccentricity. Also, based on the similar methods, stability test is

conducted for two Earth-mass test planets in between the two known planets.

Numerical integration comprising of three to five bodies in an elliptical orbits (or

circular for special cases) are carried out for a large number of initial conditions (IC)

that incorporates the whole phase space of the existing bodies. A global parameter

maps (lifetime and emax) are then generated to overview the phase space evolution

of various orbital elements of inner and middle planets. The long-term evolution

of orbital parameters such as apl and epl for single IC would allow to explore the

amplitude of oscillations, hence predict its future.

101
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The eccentricity of GJ 832c is analyzed in various phase spaces and the relative

inclination of the planet is set to a upper limit of 40◦. This number seems to be

unchanged even when the middle planet was injected into the system. The injected

planets also maintained stable orbital configuration for the relative orbital inclination

as high as 40◦) and apl ranging from 0.2 to 2.2 AU with an exception of few destabilis-

ing resonances between the inner and outer planets. The radial velocity (RV) curves

based on the signature from the Keplerian motion and generated for the Earth-mass

test planets revealed that the RV signal is much weaker to be measured by currently

available instruments.

6.2 Introduction

Recent discoveries of exoplanets have shown that the compact planetary systems

seem more common in the Milky way Galaxy. For example, Kepler 186 (Quintana

et al. 2014) is a five-planet system with the farthest one (Kepler 186f) located at

0.3926 AU and within the habitable zone of the host star. The nearest one (Kepler

186b) is at 0.0378 AU and orbits the star every 3.88 days. Another such planetary

system is Gliese 581 (Mayor et al. 2009), which is known to host three planets along

with two that are not yet confirmed. The three known planets (Gliese 581b,c,e) orbit

the star within 0.02815 AU. Not only Earth-size planets but also the existence of

super-Earths in compact multiple systems are more common (Howard et al. 2012;

Batalha et al. 2013).

GJ 832 planetary system is another potentially multi-planet system that is

currently known to host two planets within 3.6 AU from the M dwarf star. GJ 832c

(inner planet) (Wittenmyer et al. 2014) orbits its star at a distance 0.16 AU away and

is potentially a rocky planet with a mass ≥5.4 M⊕. This planet resides in the inner

boundary of the habitable zone, but its not expected to be habitable mostly due to
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its close proximity to the star and possibility of having dense atmosphere. Orbiting

the same star, a long-period (∼3657 days) giant planet at 3.53 AU and with a mass

of 0.64 MJ , GJ 832b (outer planet) was previously discovered by Bailey et al. (2009).

The planet is well outside the habitable zone. Here, our goal is to explore its effect

on the orbital stability of the inner planet as well as Earth-mass test planets injected

in between the inner and outer planets. Best fit orbital parameters of GJ 832 system

is given in Table 6.1 and for the unknown parameters, they are fixed at zero or at

certain ranges.

Table 6.1. Best-fit orbital parameters of the GJ 832 system obtained from Wittenmyer
et al. (2014). Mass of the star = 0.45 M�

Parameters GJ 832b GJ 832c

Mass (M⊕) 216 [188, 245] 5.4 [4.45, 6.35]
Semi-Major Axis (a) 3.56 AU [3.28, 3.84] 0.163 AU [0.157]

Eccentricity (e) 0.08◦ [0.02, 0.1] 0.18◦ [0.05, 0.31]
Inclination (i) (0-90)◦ 0◦

Longitude of the Ascending Node (Ω) 0◦ 0◦

Argument of the Periapsis (ω) 246◦ [224, 268] 10.0◦ [323, 57]
Mean Anomaly (µ) 307◦ [285, 330] 165◦ [112, 218]

The long term stability and orbital configurations of the inner and test planets

with concentration on the evolution of their eccentricity and inclination is studied in

various phase spaces. The effect from the injection of test planets in the previously

found unstable resonance in the planet’s semi-major axis, eccentricity and inclination

phase spaces is noted as well. This primarily assisted us in knowing the affects of

outer giant planet in the dynamics of inner planets.

GJ 832 is a main sequence dwarf star of a spectral type M1.5V (Jenkins et al.

2006), mass of 0.45 M� (Bonfils et al. 2013), temperature of 3472 K (Casagrande
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et al. 2008), and is at a distance of 16.1 light years. The classical habitable zone for

this star is calculated using the formulae provided by Kopparapu et al. (2013).

6.3 Numerical Simulations

We considered the motion of the planets of mass, mpl around the central star

in elliptic orbits (unless the initial condition (IC) being tested is for the circular

case). To calculate the ICs in position and velocity, we used the best-fit orbital

elements, semi major axis (a), eccentricity (e), inclination (i), argument of periapsis

(ω), ascending node (Ω) and mean anomaly (M), that are obtained from the radial

velocity measurements (Wittenmyer et al. 2014). For any unconstrained parameters,

the values are taken in a range or considered zero. The initial inclination of the inner

planet is taken relative to the orbital plane of star - outer planet system.

Using the orbital integration package MERCURY (Chambers & Migliorini 1997;

Chambers 1999), the built-in Hybrid algorithm was used to integrate the orbits of

the system in astrocentric coordinates. MERCURY was effective in monitoring the

ejection/collision of a planet (either inner or outer) due to close encounter with the

star or the gas giant. A time step of ε = 10−3 year/step was considered to have high

precision. The change in total energy and total angular momentum was calculated at

each time step which fell within the range of 10−16 to 10−13 during the total integration

period of 10 Myr. The data sampling (DSP) was done per year for shorter integration

periods (up to 10000 kyr) and per five hundred years for longer integration periods.

The lifetime map and the maximum eccentricity (emax) map are generated for 16,000

initial conditions in apl, epl and ipl, and simulated for 10 Myr.
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6.4 Results and Discussion

6.4.1 Dynamics of GJ 832c

The orbits of the inner and outer planet integrated with 16,000 ICs provided us

with a global dynamical phase space for chosen orbital elements. Each IC is allowed

to evolve for 10 Myr and close encounters, ejection or collision are allowed during the

integration period. If the integrated orbit survives the total simulation time, then

we consider it to be a stable orbit. In the cases when the integrated bodies eject or

collide during close encounters, hence resulting in the instability, we note the time of

such event and use them to create a global dynamical lifetime map.

Figure 6.1. A global dynamical lifetime map of the planet, GJ 832c, in varying ipl
and apl phase space, simulated for 10 Myr. The colour bar indicates the survival time,
where darker colour represents the instability (ejection or collision) and the lightest
colour represent the stability (survival) up to the integration period. The vertical
dashed lines at 0.16 AU and 3.56 AU represent the best-fit semimajor axis of inner
and outer planets. The vertical instability structure at 2.7 AU is due to the 3:2 orbital
resonance with the outer planet (Satyal et al. 2014a).
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Figure 6.2. (top panel) emax map of the planet, GJ 832c, in ipl and apl phase space,
simulated for 10 Myr. The colour bar indicates the emax reached by the planet
during the total simulation time, which also includes the cases when the planet suffers
an ejection or collision (especially when epl reaches a value greater than 0.7). The
dark blue-green colour represents the best-fit epl parameter (∼0.18) and other colours
represent the evolution of epl to the emax value for the respective choices of initial
conditions in ipl and apl. The vertical dashed lines denote the best-fit semimajor
axis of the planets. (bottom panel) emax map in epl - apl phase space where the red
asterisks denote the best-fit eccentricity value of the planets (Satyal et al. 2014a).

To explore the dynamics of the inner planet, its lifetime map (Fig. 6.1) is

created for multi ICs in ipl and apl phase space. Each colored pixel represents the

evolution of one IC. The light pink color in the map indicates the survival of the
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planet for total simulation time, and the other darker color represents instability. The

vertical lines, labelled as GJ 832c and GJ 832b, represents the best-fit semimajor

axis of the planets. At the best-fit location, GJ 832c displays stability for orbital

inclination as high as 75◦. Beyond this inclination, the planet is ejected from the

system due to the increment in epl values which results in decreased periastron passage

around the star. The vertical structures seen at 2.26 AU and 2.7 AU are the 2:1 and

3:2 resonances due to GJ 832b, respectively.

The emax map (Fig. 6.2, top panel) predicts the long term orbital stability

of GJ 832c. Each ICs is integrated for 10 Myr and the evolution of its epl value is

recorded every 500 years. The color bar in the map represents the maximum orbital

eccentricity experienced by the planet during the total integration period. The epl

evolution is distinct and in increasing order along the vertical dashed line at 0.16

AU. The blue-green region is where the epl stays less than 0.4, beyond which the

emax is higher than 0.4 and it is expected to increase with longer simulation time.

It suggests that the likely ipl value is less than 45◦. We note that the maximum ipl

value observed in the lifetime map is 75◦, however, emax map is more indicative of the

orbital evolution. The vertical structures seen at 1.71 AU, 2.26 AU and 2.7 AU are

the 3:1, 2:1 and 3:2 resonances due to GJ 832b, respectively. The vertical structure

at 1.4 AU could be due to 4:1 resonance with GJ 832b or 2:5 resonance with GJ 832c.

Inner planets orbital evolution in epl and apl phase space (Fig. 6.2, bottom

panel) also reveals similar resonances with the outer planet. The stability of the

planet remains unchanged at the best-fit orbital parameters and epl deviates least as

the planet is moved further out from the star. The upper limit in the uncertainty of

the best-fit epl (0.31) also deviates least during the full integration period. Analysis

of dynamics of the planetary orbit of GJ 832b is excluded because there are no known

bodies outside its orbit that could constraint its orbital parameters.
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6.4.2 Dynamics of hypothetical Earth-mass planets

The known planetary configuration shows a super Earth orbiting at the close

proximity of the host star while a gas giant orbits distantly at 3.56 AU. Existence of

other Earth-mass planets between these planets is a likely scenario. We injected a

fourth body (an Earth-mass test planet) between the two existing planets and studied

the orbital dynamics in the similar parameter space as in Figs. 6.1 and ??. The test

planet’s lifetime map (Fig. 6.3) indicates a wide stability region extending from about

0.2 AU to 2.2 AU. The vertical resonance structures are observed at 1.71 AU, 2.26

AU and 2.7 AU, similar to that seen in Fig. 6.2. As expected, when the planet was

set to evolve with an IC close to its companions, the planets collided to each other,

hence inducing instability in the system. For high enough ipl values (≥ 55◦), it was

ejected from the system.

In Fig. 6.4, stability of the middle planet is analysed in terms of emax map.

The regions where the color map indicates blue-green are expected to remain stable

as it shows the least change in the initial eccentricity value. The region of stability

is similar to that seen in Fig. 6.3, however, the orbital inclination regime could be

safely set at values less than 40◦. Beyond 40◦, the emax evolved to higher than 0.5 and

it is only expected to increase for longer simulation time. The observed resonance at

1.4 AU in Fig. 6.2 disappears with an addition of the middle planet.

Two Earth-mass test planets were injected between the known inner and outer

planets at 0.5 AU and 1.0 AU. The ipl, apl phase-space map for one of the injected

planets at 0.5 AU (while other ones were fixed at their respective distances from the

star) is shown in Fig. 6.4, bottom panel. The instability islands are observed as

expected. The color bar here represents the maximum eccentricity variance of the

whole system to incorporate the deviation in eccentricity of each body in the system.
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Figure 6.3. A global dynamical lifetime map of the middle planet in GJ 832 system,
for varying ipl and apl, simulated for 10 Myr. The colour bar indicates the survival
time, where darker colour represents the instability (ejection or collision) and the
lightest colour represent the stability (survival) up to the integration period. The
vertical dashed lines are the location of the best-fit semimajor axis of the two known
planets (Satyal et al. 2014a).

For GJ 832, in order to get the observational verification of these proposed test

planets, the direct imaging is particularly a better choice over transit or RV methods

because the test planets may be too small to produce RV signatures. We generated

a set of synthetic RV curves based on the RV signature of Keplerian motion (Seager

2011) for GJ 832c and an Earth-mass test planet located at 0.5 AU (Fig. 6.5). The

maximum RV signal for GJ 832c is ∼2.15m/s, similar to the observational value

(Wittenmyer et al. 2014). But the test planet had only 0.19m/s, which is much

smaller than the current high accuracy RV precision of about 0.97m/s of the HARPS

instruments. This RV signal would increase for bigger planets, but the recent RV

observation clearly indicates that GJ 832c is the biggest planet interior to GJ 832b.
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Figure 6.4. Maximum eccentricity (emax) map of the Earth-mass test planet between
inner and outer planets, in the ipl and apl phase space, simulated for 10 Myr (top
panel). The colour bar indicates the emax the planet attains during the total simula-
tion time, which also includes the cases when the planet suffers an ejection or collision
(especially when epl reaches a value greater than 0.5). The dark blue-green colour
represents the best-fit epl parameter (0.18) and other light colour represent the emax
value the planet attained for the respective choices of initial conditions in ipl and apl.
The vertical dashed line are the best-fit semimajor axis of the known two planets.
(bottom panel) emax map for the injected second test planet while the first one is
fixed at 1.0 AU and two known planets at their respective positions. The color bar
indicates the emax variance of the whole system (Satyal et al. 2014a).
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Figure 6.5. Radial velocity signature of Keplerian motion is shown for the inner planet
GJ 832c (red) with the maximum amplitude 2.15m/s and for the test planet at 0.5
AU (black) with the maximum amplitude 0.19m/s. Right bottom panel displays the
details for the first 50 day-orbit (Satyal et al. 2014a).

6.5 Summary

The lifetime maps, emax maps, and the time evolution of the chosen orbital

elements for GJ 832c indicates the stable orbital configuration for its best-fit orbital

solutions. The maximum eccentricity deviation remained within the best bit uncer-

tainty values. Based on the emax phase space maps for ipl, epl and apl, the relative

inclination of the planet could be set to ≤40◦.

The ipl regime seems to be unchanged even when an Earth-mass test planet

was injected into the system. The middle planet also maintained stable orbital con-

figuration for the relative orbital inclination as high as 40◦ and apl ranging from 0.2

to 2.2 AU. The planet displayed few de-stabilising resonances between the inner and

outer planets, however, did not disrupt the dynamics of the system. Also, it is found

that the addition of the second test planet does not change the orbital configuration

of the other planets.
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Our orbital stability analysis clearly indicates the possible existence of Earth-

mass test planets in the system. The calculated RV signal for these planets is too

small to detect. The transit method, provided that the planets are along the line-

of-sight, and the direct imaging are the only viable options to get the observational

verifications.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Understanding the motion of stars and planets have been an ongoing process

since hundreds of years and theories after theories have been developed to explain

and establish natural laws, which govern all known matter. With the exploration

of new galaxies and hundreds of new planetary systems, new opportunities have

surfaced either to test the existing theory or to create a new one. In this dissertation,

I produced some scientific work to elaborate the knowledge we have regarding the

dynamics and stability of exoplanets through the perspective of orbital resonance

and stability.

7.1 Conclusions

To address the issues regarding dynamics of a planet around a star, which is

a primary component of a binary system, I used a stability criterion based on the

Hill stability (HS) function, which is a major focus of my first project presented in

Chapter 3. The stability criteria are for an elliptic orbit, hence it can be applied

to more general systems. The HS function, which measures the orbital perturbation

of a planet due to the secondary companion, is calculated for the two known binary

star systems, γ Cephei and HD 196885 AB, and the obtained results are analyzed

and compared with the results obtained from the application of the previously well

known chaos indicators such as maximum Lyapunov exponents (MLE) and MEGNO

maps.
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The analysis from my HS criteria is in agreement with the results obtained from

the MLE and the MEGNO maps for periodic and chaotic orbits. The time that the

HS criterion took to indicate the chaotic orbits was either equal to that of the MLE

or more, depending on the choice of the system. The limitations on the definition of

the HS was noted as well. The HS function can only be used for the S-type orbits,

thus it may be best suited for studies of hypothetical or observed moons around gas

giants as a number of observed planets in the S-type orbits remain modest.

By applying the chaos indicators, it was determined that the planets in γ Cephei

and HD 196885 AB can maintain stable orbits for their orbital inclination with the

binary plane rising as high as 25◦. The planet in γ Cephei/HD 196885 displays stable

orbits for ebin as high as 0.6/0.46. Similar studies performed by using the global

MEGNO maps of ebin vs. ipl for given orbital parameters agree with the results from

the MLE and HS.

The analysis of orbital dynamics in Chapter 3 was limited to planet’s orbital

inclination less than 25◦. Thus in Chapter 4, I explored dynamics of the S-type

planetary orbit in HD 196885 AB with an emphasis on higher inclination relative

to the binary plane. I used Lidov-Kozai mechanism to explain the observed highly

eccentric orbits of the planet in HD 196885 AB and looked into detail of the same

mechanism that might be responsible for the planet’s possible high inclination. The

actual inclination of the planet is unknown, the main purpose of this project was

to constrain this parameter to closest value possible. For this, I used the MEGNO

maps to demonstrate the existence of regions of periodicity and chaos for varying

orbital elements. Also, for similar initial conditions (IC) a dynamical lifetime map

and planet’s maximum eccentricity maps are produced. To explore the close mean

motion resonance (MMR) at the nominal location, the resonant angle is studied for

various ICs.



115

For specific ICs, the planetary orbit can flip to retrograde orbit; however, the

planet in HD 196885 AB is not found to flip. The maximum inclination that a planet

can rise above the binary plane is found to be ipl = 82◦, based on the apl vs. ipl map.

The emax map of the planet has further helped to constrain the ipl value to a smaller

regime. The planet’s maximum eccentricity reaches the extreme values, from 0.7 to

∼ 1 for the ipl greater than 55◦; nonetheless, the planet survives the total integration

time until the ipl is raised to 82◦. But, the eccentricity is expected to grow higher

for longer simulation time, so the planet may loose its stability for higher ipl values,

where the epl is already found to have reached 0.7 or more. The emax stays relatively

low, between 0.48 and 0.68, for the ipl values less than 55◦, excluding the case when

ipl is ∼ 39◦.

The planet at 2.6 AU is found to have the mean motion resonance (MMR) to

be near a 39:2 commensurability with the secondary component. When the planet’s

location is moved to 2.58 AU and 2.68 AU (but within the observational uncertainty

limit), the planet is found to exhibit oscillations due to the 20:1 and 19:1 MMRs,

respectively. The time evolution of the angles $pl −$bin shows circulation between

0◦ and 360◦ when the ipl is set at lower values suggesting the observed chaos is caused

by the MMR. Secular resonance at the semi quasi-periodic region (ipl = 35◦) shows

circulation as well, but with a different orientation (Murray & Dermott 1999). Then,

the MMR value is used to search for a librating resonant angle (Eq. 4.5), for k1 = 39

, k2 = -2, and various other combinations of k3, k4, k5 and k6 due to the influence of

secular components.

The planets higher mass is possibly constrained between (3 - 6)MJ ; however,

these choices also depend on the choice of planet’s orbital inclination and it is mostly

favorable when mpl is less than 6MJ and ipl less than ∼ 55◦, with some exceptions

of chaotic islands (Fig. 4.9). The planetary mass higher than 9MJ and up to 19MJ
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is likely when the planet’s orbital inclination lies in a smaller regime, somewhere

between 40◦ and 50◦.

7.2 Future Work

Through various numerical techniques, I analyzed the orbital stability and dy-

namics (chaotic and periodic) of planets in single and multi-stellar system. More

general studies and formulation of the critical semimajor axis of a planet in binary

star system was discussed in chapter 6. A fit formula that will be a function of binary

semimajor axis and eccentricity, the stellar mass ratio and planetary eccentricity will

be devised with a better precision in future work.

Long term orbital stability is vital for life to develop in a planet residing in

the habitable zone (based on the fact that Earth was formed 4.5 billion years ago

whilst life started to evolve after a billion year), thus the studies I made and the

tools I developed can be (and will be) further extended in the analysis of planets in

habitable zones (HZ). The planets search mission, such as Kepler, found numerous gas

giants within the HZs of the host stars. Since these giant planets are inhospitable for

life (based on our current definition of habitability), a terrestrial moon orbiting these

planets are very likely to be habitable. Understanding the dynamics of these moons

in presence of other nearby planets would be a justifiable goal for my post-doctoral

research project.

One of the research projects I discussed in this dissertation includes the detec-

tion of exomoon through the modulation of radio emission. This is purely a theoretical

calculation of the flux the exoplanet-exomoon must emit so that its signature can be

detected here on Earth. The continuation of the project would be to use of one of

the suggested radio telescope in order to detect an exomoon in the nearby planetary

system. At the time of this dissertation writing, a proposal is being written in col-
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laboration with Joaquin Noyola and Zdzislaw Musielak, which will be submitted to

the Low Frequency Array (LOFAR) Radio Observatory for the observation time.

Also, I have been externally involved with Eclipsing Binary Kepler Group work-

ing in the detection and characterization of additional planets in the Kepler 47 cir-

cumbinary system. This discovery is expected to appear in the Science at the end of

2014.
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The orbital elements {a, e, i,Ω, ω, f} can be determined for any system relative

to the central body which is the most massive body M1 in the N body problem. Such

elements are found via two different methods such as using Lagrange’s Planetary

equations of motion or through a transformation of the Cartesian state vectors from

conventional integration methods. This appendix will discuss the latter rather than

the former as this is the method that was most useful in determining the orbital

elements for analysis within this dissertation.

A.1 Assumptions

Several assumptions need to be made to make the appropriate transformations

to obtain the orbital elements. The first and foremost assumption is what is necessary

to perform the transformation. The position state vector (R), velocity state vector

(V), and gravitational parameter (GMi) are the required known parameters at a

given time where Mi is the mass of the central body. In terms of the general restricted

three body problem (RTBP) the gravitational parameter is given as GMα where M

represents the total mass and alpha is the larger of the two mass ratios (see Chapter

??). The value for G is chosen to be consistent with the value chosen for performing

the simulations. For this dissertation, I have chosen G = 4π with units of M�, AU ,

and years. The coordinate system relative to the central body will be described by

the Cartesian coordinates {x, y, z, ẋ, ẏ, ż} as shown by Figure A.1 where the orbital

plane, reference plane, and nodal intersection points have also been shown. For the

sake of a more general perspective such as in the RTBP, this particular coordinates

system could be constructed via translation (ie., xi = ξi − ξ1). Another assumption

to be made is that the coordinates have appropriate units before the transformation.

This follows from the assumption that the purpose of transforming state vectors to
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orbital elements is to verify constants of motion in the 2 body problem or investigate

osculating elements for the general N body problem.

Figure A.1. Illustration of the determination of the orbital state vectors R,V relative
to a central body. Image Credit: Wikipedia.

The necessary assumptions are:

1. The only parameters to be known a priori are the orbital state vectors (R,V)

and the appropriate gravitational parameter GMi.

2. A coordinate system can be constructed such that the central body exists at

the origin (ie., xi = ξi − ξ1).
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3. A 2 body problem shall return the constants of motion of the system where a

(N > 2) body problem will return the osculating elements.

A.2 Calculation

The orbital state vectors can be used to define a specific angular momentum

vector h through the use of a cross product to find that h = R×V. Using this newly

defined quantity I can determine directly the inclination of the orbit relative to the

reference plane as

i =
hz
|h|
. (A.1)

Then a normal vector n can be determined through the cross product of the z-

axis and the specific angular momentum to produce n = ẑ×h and scalar n = |n|. The

vector n will be utilized to explore all the possible cases to determine the ascending

node, Ω. Using the normal vector, the following equations explore each different case

as

If n = {0, 0, 0} then Ω = 0, (A.2)

If n > {0, 0, 0} and ny > 0 then Ω = cos−1
(
nx
|n|

)
, (A.3)

If n > {0, 0, 0} and ny < 0 then Ω = 2π − cos−1
(
nx
|n|

)
. (A.4)
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Next the orbital vectors, specific angular momentum, and the gravitational

parameter can be used to determine the eccentricity vector whose magnitude produces

the orbital element eccentricity. This is done by the using the following equations

e =
V× h

GM1

− R

|R|
, (A.5)

e = |e| . (A.6)

Using the determined values for n and e I can introduce cases to determine

the value of the argument of pericenter, ω. The following equations demonstrate the

appropriate cases by

If n = 0 or e = 0 then ω = 0, (A.7)

If n > 0 and ez > 0 then ω =
n · e
|n| |e|

, (A.8)

If n > 0 and ez < 0 then ω = 2π − n · e
|n| |e|

. (A.9)

Using the orbital elements determined thus far the true anomaly f can be deter-

mined through different cases. The following equations demonstrate the appropriate

cases by

If e = 0 and (n×R)z ≥ 0 then f = cos−1
(

n ·R
|n| |R|

)
, (A.10)

If e = 0 and (n×R)z < 0 then f = 2π − cos−1
(

n ·R
|n| |R|

)
, (A.11)

If e > 0 and

(
R ·V
|R|

)
≥ 0 then f = cos−1

(
e ·R
|e| |R|

)
, (A.12)

If e > 0 and

(
R ·V
|R|

)
< 0 then f = 2π − cos−1

(
e ·R
|e| |R|

)
. (A.13)
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Finally the semimajor axis can be determined through the relation

a =
h2

GM1(1− e2)
, (A.14)

where a negative value for semimajor axis would indicate that the orbital type is a

hyperbola.
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B.1 Circular Restricted Three-Body Problem

In the CRTBP I have used a rotating coordinate system which gives rise to

Coriolis and centrifugal forces. The equations of motion of such a system are given

by

ẋ = u u̇ = 2v + x− αx− µ
r31
− µx+ α

r32
,

ẏ = v v̇ = −2u+ y − α y
r31
− µ y

r32
,

ż = w ẇ = −α z
r31
− µ z

r32
, (B.1)

where

µ =
m2

m1 +m2

r21 = (x− µ)2 + y2 + z2,

α = 1− µ r22 = (x+ α)2 + y2 + z2. (B.2)

From these equations of motion I can define a set of 6 dimensional tangent vectors xi

and their derivatives ẋi where i = 1, . . . , 6. This set of vectors are given as

xi = {xi, yi, zi, ui, vi, wi}T ,

ẋi = {ui, vi, wi, u̇i, v̇i, ẇi}T . (B.3)
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Also I can define a Jacobian matrix (see Section 2.9), J, of the following form

J =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂u̇
∂x

∂u̇
∂y

∂u̇
∂z

0 2 0

∂v̇
∂x

∂v̇
∂y

∂v̇
∂z
−2 0 0

∂ẇ
∂x

∂ẇ
∂y

∂ẇ
∂z

0 0 0


. (B.4)

B.2 Wolf method

Wolf et al. (1985) has established a method to determine the Lyapunov spec-

trum and here I will apply this to the CRTBP. The Wolf algorithm consists of three

basic steps. The first step is to initialize a state vector of 6 elements with initial

conditions. Then, the tangent vectors need to be initialized to some value. It has

become convention to have all the tangent vectors to be unit vectors for simplicity.

This means that the elements {x1, y2, z3, u4, v5, w6} = 1 and all other elements will

equal 0.

The next step is to implement a loop in time that will use a standard integrator

(Runge-Kutta, Gragg-Burlish-Stoer, etc.) to determine how the vectors (state &

tangent) will change within a time step. This will continue for a arbitrary number of

steps so that the tangent vectors can orient themselves along the flow. When this has

been accomplished, the final step is to perform the Gram-Schmidt Renormalization

(GSR) to orthogonalize the tangent space (see below). Thereafter, I can take the

logarithm of the length of each tangent vector to obtain the Lyapunov exponents and

continue the loop for the next time interval.
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B.3 GSR & the Lyapunov Exponents

I use the first tangent vector, x1, to define a basis vector for the GSR process.

The first step is to normalize this vector. I will denote vectors with ′ to be the new

orthonormal set of tangent vectors. The transformation to obtain these vectors is

given by the following

x
′

1 =
x1

‖x1‖
,

x
′

2 =
x2 −

〈
x2, x

′
1

〉
x
′
1∥∥x2 −

〈
x2, x

′
1

〉∥∥ ,
...

x
′

6 =
x6 −

〈
x6, x

′
5

〉
x
′
5 − . . .−

〈
x6, x

′
1

〉
x
′
1∥∥x6 −

〈
x6, x

′
5

〉
x
′
5 − . . .−

〈
x6, x

′
1

〉
x
′
1

∥∥ . (B.5)

From the new set of tangent vectors, the Lyapunov exponents can be calculated

directly by using the lengths of each vector using this expression

λi =
1

τ

[
λi−1 + log

∥∥∥∥∥xi −
i∑

j=1

〈
xi, x

′

j−1

〉
x
′

j−1

∥∥∥∥∥
]

(B.6)

where λo = x
′
o = 0.
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