
PROPERTIES OF THE PINCHED TENSOR PRODUCT

by

YOUSUF ABDULLAH ALKHEZI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2014



Copyright © by Yousuf Abdullah Alkhezi 2014

All Rights Reserved



Acknowledgements

This thesis could not be done without my thesis advisor, Dr. David Jorgensen; I

would like to thank him for all of his support and guidance over the past several years.

I really appreciate his expertise, time, and all of his support has helped motivate me

to learn and become a better mathematician.

I would also like to thank the Mathematics Department at UT Arlington for

all of the help they have given me. I owe a special thanks to the members of my

committee: Theresa Jorgensen, Minerva Cordero, and Michaela Vancliff. They have

taught me many lessons over the years and have been a source of strength for me

during my time at UT Arlington.

I am also extremely grateful to my family who have supported me. Especially to

my parents, Abdullah Alkhezi and Nourah Alolyan. Also, special thanks to my wife

Munira Almansour for her support and love. Of course to my kids Nourah, Abdullah

and Hamad; I love you all.

November 10, 2014

iii



Abstract

PROPERTIES OF THE PINCHED TENSOR PRODUCT

Yousuf Abdullah Alkhezi, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: David A. Jorgensen

For complexes of modules we study a new construction, called the pinched

tensor product, which was introduced in [1] by Lars Winther Christensen and David

A. Jorgensen to study Tate homology T̂or. We explore properties of the pinched

tensor product and their comparison to properties of the ordinary tensor product.

For example; we show the isomorphisms Σ(C⊗RA) ≅ (ΣC)⊗RA ≅ C⊗R (ΣA) where

A and C are two complexes, no longer holds for the pinched tensor product. Although

if we change isomorphism to quasi-isomorphism the pinched version holds. Plus if

f ∶ C →D and g ∶ A→ B are morphisms of complexes of R-modules with f homotopic

to 0, then f ⊗ g homotopic to 0, and this property is not true for the pinched tensor

product.
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Chapter 1

Introduction

Tensor products of complexes is a classical construction and has been used in

countless applications for many decades. Consequently, their properties are well-

known. We refer to them as the ordinary tensor product of complexes. Lars Chris-

tensen and David Jorgensen introduced in [1] a variant of the ordinary tensor product

of complexes, call the pinched tensor product. They use it to compute Tate homol-

ogy and to show Tate homology is balanced. Also, they show it yields a complete

resolution of the tensor product of two Tate Tor-independent modules. Since it is a

brand new construction, very few properties of the pinched tensor product are known.

Therefore we investigate the properties of the pinched tensor product and compare

them with the analogous properties of the ordinary tensor product.

In Chapter 2 we recall the definition of the ordinary tensor product of modules,

complexes and maps, and give proofs of many properties for the ordinary tensor

products. We also see that the ordinary tensor product is a functor of complexes,

and discuss how it relates to morphisms, shift and homotopy.

In Chapter 3 we give the definition of the pinched tensor product and a precise

description of its basic properties, like commutativity and associativity. Also, we

compare the basic properties of the pinched tensor product with those of the ordinary

tensor product, and conclude which of these properties hold for the pinched tensor

product and which do not.

Chapter 4 is focus on the pinched tensor product and shift. We show that

the isomorphisms Σ(C ⊗R A) ≅ (ΣC) ⊗R A ≅ C ⊗R (ΣA) that hold for the ordinary
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tensor product no longer hold for the pinched tensor product. Although if we change

isomorphism to quasi-isomorphism the statement for the pinched tensor product

holds. In addition, we give some counterexamples for the isomorphisms that no

longer hold for the pinched tensor product.

Finally, Chapter 5 examines two other properties: the pinched homotopy and

the pinched mapping cone. We see that the pinched tensor product is a functor from

the category of complexes, but we cannot extend to it a functor on the homotopy

categories. Also, we give some counterexamples for the relevant properties that no

longer hold for the pinched tensor product. In addition we show that the isomorphism

that implies the mapping cone commutes with tensor product for the ordinary tensor

product no longer holds for the pinched tensor product. However, we show there is a

morphism.
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Chapter 2

Preliminary Concepts

Unless otherwise indicated, we will assume A, B, C and D are complexes of R-

modules, R is an associative ring and M , N are R-modules. We assume M and N are

either left or right R-modules, depending on the context. For example when discussing

M ⊗RN we are assuming M is a right R-module and N is a left R-module. The same

holds for complexes. For example, when discussing C ⊗R D we are assuming C is

a complex of right R-module homomorphisms and D is a complex of left R-module

homomorphisms. We will find most of the definitions and results of this chapter in

[2] and [4].

2.1 Complexes

Definition 2.1.1. A chain complex C of R-modules is a sequence of R-module ho-

momorphisms,

C ∶ ⋯Ð→ Cn+1
∂Cn+1Ð→ Cn

∂CnÐ→ Cn−1Ð→⋯

such that Im∂Cn+1 ⊆ ker∂Cn for all n. Equivalently ∂Cn ∂
C
n+1 = 0, for all n. The maps ∂n

are called the differentials of C.

Definition 2.1.2. Given a complex C of R-modules

C ∶ ⋯Ð→ Cn+1
∂Cn+1Ð→ Cn

∂CnÐ→ Cn−1Ð→⋯

3



We say that it is exact at Cn if Im∂Cn+1 = ker∂Cn . Moreover, we say C is an exact

sequence if Im∂Cn+1 = ker∂Cn for all n.

Definition 2.1.3. A short exact sequence is an exact sequence of the form

0Ð→ Cn+1
∂Cn+1Ð→ Cn

∂CnÐ→ Cn−1Ð→0.

Definition 2.1.4. Let C be a complex. Then the submodule of n-cycles is Zn(C) =

ker∂Cn , and the submodule of n-boundaries is Bn(C) = Im∂Cn+1.

Remark 2.1.5. The condition that Im∂Cn+1 ⊆ ker∂Cn yields for all n,

Bn(C) ⊆ Zn(C).

Definition 2.1.6. The nth homology group of a complex C is

Hn(C) = Zn(C)/Bn(C).

Remark 2.1.7. In Definition 2.1.6 we can conclude that Hn(C) = 0 if and only if C is

exact at Cn.

Remark 2.1.8. It is known that if C and D be complexes. A chain map f ∶ C → D

takes cycles to cycles and boundaries to boundaries.

2.2 Functors

Definition 2.2.1. A category C consists of three ingredients: a class obj(C) of ob-

jects, a set of morphisms Hom(A,B) for every ordered pair (A,B) of objects, and

composition Hom(A,B) ×Hom(B,C) → Hom(A,C) denoted by (f, g) → gf, for ev-
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ery ordered triple A, B, C of objects. These ingredients are subject to the following

axioms:

1. The Hom sets are pairwise disjoint: that is , each f ∈ Hom(A,B) has a unique

domain A and a unique target B;

2. For each object A, there is an identity morphism 1A ∈ Hom(A,A) such that

f1A = f and 1Bf = f for all f ∶ A→ B;

3. Composition is associative: given morphisms A
fÐ→ B

gÐ→ C
hÐ→ D , then h(gf) =

(hg)f.

Definition 2.2.2. If C and D are categories, then a covariant functor F ∶ C → D is a

function such that

1. If A ∈ obj(C) then F (A) ∈ obj(D).

2. If f ∶ A→ A′ in C, then F (f) ∶ F (A)→ F (A′) in D.

3. If A
fÐ→ A′ gÐ→ A′′ in C then F (A) F (f)ÐÐ→ F (A′) F (g)ÐÐ→ F (A′′) in D and F (gf) =

F (g)F (f).

4. F (1A) = 1F (A) for every A ∈ obj(C).

Definition 2.2.3. A contravariant functor F ∶ C → D where C and D are categories,

is a function such that

1. If C ∈ obj(C) then F (C) ∈ obj(D).

2. If f ∶ C → C ′ in C, then F (f) ∶ F (C ′)→ F (C) in D (note the reversal of arrows).

3. If C
fÐ→ C ′ gÐ→ C ′′ in C then F (C ′′) F (g)ÐÐ→ F (C ′) F (f)ÐÐ→ F (C) in D and F (gf) =

F (f)F (g).

4. F (1A) = 1F (A) for every A ∈ obj(C).
5



2.3 Tensor Products

2.3.1 Tensor Products of Modules

Definition 2.3.1. Let R be a ring, let M be a right R-module, let N be a left R-

module, and let G be an additive abelian group. A function f ∶M ×N → G is called

R-biadditive if for all m,m′ ∈M,n,n′ ∈ N, and r ∈ R, we have

f(m +m′, n) = f(m,n) + f(m′, n),

f(m,n + n′) = f(m,n) + f(m,n′),

f(mr,n) = f(m,rn).

Definition 2.3.2. Given a ring R and R−modules M and N , their tensor product is

an abelian group M⊗RN together with an R-biadditive function

τ ∶M ×N →M⊗RN

such that the following universal mapping property holds: for every abelian group

G and every R-biadditive function ϕ ∶ M × N → G, there exists a unique map φ ∶

M⊗RN → G making the following diagram commute.

M ×N τ //

ϕ

��

M⊗RN

φ

yy
Gyy

That is, ϕ = φτ .

Proposition 2.3.3. If R is a ring, and M is a right R-module and N is a left R-

module, then their tensor product exists.

6



Proof: let F be the free abelian group with basis M × N ∶ that is, F is free on all

ordered pairs (m,n), where m ∈ M and n ∈ N . Define S to be the subgroup of F

generated by all elements of the following three types;

(m,n + n′) − (m,n) − (m,n′);

(m +m′, n) − (m,n) − (m′, n);

(mr,n) − (m,rn).

where m ∈M, , n ∈ N and r ∈ R. Define M ⊗R N = F /S, denote the coset (m,n) + S

by m ⊗ n, and define τ ∶M ×N →M ⊗R N by τ((m,n)) = m ⊗ n. It is now obvious

that τ is R-biadditive since

τ(m +m′, n) = (m +m′ ⊗ n)

= (m⊗ n) + (m′ ⊗ n)

= τ(m,n) + τ(m′, n).
Similarly for the other properties. We now need to verify the universal mapping

properties. Let G be an abelian group and ϕ ∶ M × N → G be an R-biadditive

function. Define Ψ ∶ F → G by Ψ((m,n)) = ϕ((m,n)) and extend by linearity. Since

ϕ is R-biadditive we have Ψ(S) = 0, and therefore by the first isomorphism theorem

there exists a well-defined homomorphism φ ∶M⊗RN → G with φ(m⊗n) = ϕ((m,n)).

Also (φτ)((m,n)) = φ((m⊗ n)) = ϕ(m,n), therefore ϕτ = f exists. Finally, suppose

that φ′ ∶ M ⊗R N → G satisfies, φ′τ = ϕ. Then φ((m ⊗ n) = φ(τ(m,n)) = ϕ(m,n) =

φ′(τ(m,n)) = φ′((m⊗ n)), thus φ′ = φ.

Proposition 2.3.4. The tensor product M ⊗R N is unique up to isomorphism.
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Proof: Assume that M ⊗R N and (M ⊗R N)′ are two abelian groups satisfying the

definition of the tensor product. Then we have

M ×N τ1 //

τ2

��

M ⊗R N

ϕ

xx

(M ⊗R N)′xx

And,

M ×N τ2 //

τ1

��

(M ⊗R N)′

ϕ′

xx

M ⊗R Nxx

It is clear that ϕ′ϕ = IdM⊗RN . Similar work shows ϕϕ′ = Id(M⊗RN)′ . Therefore ϕ′ and

ϕ are isomorphisms.

Remark 2.3.5. 1. Since M ⊗R N is generated by the elements of the form m ⊗ n,

every x ∈M ⊗R N has the finite sum form

x =∑
i

mi ⊗ ni.

2. The tensor product of two elements of M and N is bilinear by Definition 2.3.2

which means we have (m+m′)⊗n =m⊗n+m′⊗n, m⊗(n+n′) =m⊗n+m⊗n′

and mr ⊗ n = m ⊗ rn for all m,m′ ∈ M , n,n′ ∈ N and r ∈ R. When R is

commutative, we also have r(m⊗ n) = rm⊗ n =m⊗ rn in M ⊗N

3. From 2, the expression for x ∈ M ⊗R N is not necessarily unique; for example

for all m,m′ ∈M , n,n′ ∈ N and r ∈ R we have,

mr ⊗ n −m⊗ rn = 0,

8



(m +m′)⊗ n −m⊗ n −m′ ⊗ n = 0,

m⊗ (n + n′) −m⊗ n −m⊗ n′ = 0.

The following Propositions are basic facts, using the universal mapping property.

Proposition 2.3.6. Assume R is commutative. For any R-modules M and N there

is an isomorphism M ⊗R N ≅ N ⊗RM.

Proof: The proof is well-known. ( Proposition 2.56 in [2].)

Proposition 2.3.7. Let M be right R-module. Then

M ⊗R R ≅M.

Proof: The proof is well-known. ( Proposition 2.58 in [2].)

2.3.2 Tensor Products of Complexes

Definition 2.3.8. The tensor product C ⊗R D over R of chain complexes C and D

is specified by letting

(C ⊗RD)n =⊕
i∈Z
Ci ⊗RDn−i

The differential is defined by

∂C⊗Dn (c⊗ d) = ∂Ci (c)⊗ d + (−1)ic⊗ ∂Dn−i(d)

for c ∈ Ci and d ∈Dn−i. The sign (−1)i ensures that ∂C⊗Dn ∂C⊗Dn+1 = 0 for all n.

9



Definition 2.3.9. Let C be complex, Then C⩾n is defined by

(C⩾n)i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ci for i ⩾ n

0 for i < n,

and

∂C⩾ni =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂Ci for i > n

0 for i ⩽ n.

Similarly, C⩽n is defined by

(C⩽n)i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ci for i ⩽ n

0 for i > n,

and

∂C⩽ni =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂Ci for i ⩽ n

0 for i > n.

Remark 2.3.10. From Definition 2.3.8, we can see that

(C ⊗RD)n =⊕
i∈Z
Ci ⊗RDn−i

is not finitely generated even if Ci and Dn−i are so for all i (assuming Ci and Dn−i are

nonzero for all i). Here is a picture illustrating the ordinary tensor product, where

each point (i, n− i) in the plane represents the tensor product Cn⊗RDn−i of modules

and each line Y = −X + n represents (C ⊗RD)n.

10



C

D

⋱
⋱
⋱
⋱
⋱
⋱
⋱ ⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱⋱
⋱
⋱
⋱
⋱
⋱
⋱

Figure 2.1: Ordinary Tensor Product

And the differentials can be represented by;

C

D

⋱
⋱
⋱
⋱
⋱
⋱
⋱ ⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱⋱
⋱
⋱
⋱
⋱
⋱
⋱

Figure 2.2: Differential on the Ordinary Tensor Product

Theorem 2.3.11. Let R be a commutative ring and C and D be complexes. Then

C ⊗RD ≅D ⊗R C.
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Proof: The proof is well-known. ( Propostion 2.56 in [2].)

Theorem 2.3.12. Let R and S be rings, and A, B and C be complexes and A a right

R-module, B a RS-bimodule and C a left S-module. Then

(A⊗R B)⊗S C ≅ A⊗R (B ⊗S C).

Proof: The proof is well-known. ( Proposition 2.57 in [2].)

Proposition 2.3.13. Let C be a complex. Then

C ⊗R R ≅ C.

Proof: The proof follows easily from Proposition 2.3.7.

2.3.3 Tensor Products of Maps

Proposition 2.3.14. Let M and N be R-modules, and Let f ∶M →M ′, g ∶ N → N ′

be R-module maps. Then there exists a homomorphism of abelian groups f ⊗ g ∶

M ⊗R N →M ′ ⊗R N ′ defined by (f ⊗ g)(m⊗ n) = f(m)⊗ g(n) for all n ∈ N,m ∈M .

Proof: The function ϕ ∶ M × N → M ′⊗RN ′, given by (m,n) → f(m) ⊗ g(n), is an

R-biadditive function. For example,

ϕ ∶ (mr,n)→ f(mr)⊗ g(n) = f(m)r ⊗ g(n)

and

ϕ ∶ (m,rn)→ f(m)⊗ g(rn) = f(m)⊗ rg(n);

these are equal because of the identity m′r⊗n′ =m′⊗rn′ in M ′⊗RN ′. The biadditive

function ϕ yields a unique homomorphism M⊗RN →M ′⊗RN ′ taking m⊗n→ f(m)⊗
12



g(n).

Corollary 2.3.15. If f ∶ M → M ′ and g ∶ N → N ′ are, respectively, isomorphisms

of right and left R-modules, then f ⊗ g ∶ M⊗RN → M ′⊗RN ′ is an isomorphism of

abelian groups.

Proof: It is easy to see that f ⊗1N is an isomorphism since f is and, similarly, 1M ⊗g

is an isomorphism. Then we have f ⊗ g = (f ⊗ 1N)(1M ⊗ g). Therefore, f ⊗ g is an

isomorphism, being the composite of isomorphisms.

Theorem 2.3.16. Let M be a right R-module, and let

N ′ iÐ→ N
pÐ→ N ′′Ð→0.

be an exact sequence of left R-modules. Then

M⊗RN ′ 1⊗iÐ→ M⊗RN
1⊗pÐ→M⊗RN ′′Ð→0

is an exact sequence of abelian groups.

Proof: We must check three things

1. Im (1⊗ i) ⊆ ker(1⊗ p).

It suffices to prove that the composite is 0. We have (1 ⊗ p)(1 ⊗ i) = 1 ⊗ pi =

1⊗ 0 = 0.

2. ker(1⊗ p) ⊆ Im (1⊗ i).

Let E = Im (1 ⊗ i). By part (i), E ⊆ ker(1 ⊗ p), and so 1 ⊗ p induces a map

p′ ∶ (M ⊗N)/E →M ⊗N ′′ with

p′ ∶m⊗ n +E →m⊗ pn,
13



where m ∈M and n ∈ N . Now if π ∶M ⊗N → (M ⊗N)/E is the natural map,

then p′π = 1⊗ p , for both send m⊗ n→m⊗ pn where n ∈ N and m ∈M.

M ⊗N π //

1⊗P

��

(M⊗RN)/E

p′

xx

M ⊗N ′′xx

Suppose we show that p′ is an isomorphism. Then

ker(1⊗ p) = ker(p′π) = ker(π) = E = Im (1⊗ i), and we are done. To see that p′

is an isomorphism, we construct its inverse M ⊗N ′′ → (M ⊗N)/E as follows.

If n′′ ∈ N ′′, there is n ∈ N with pn = n′′, because p is surjective; let

f ∶ (m,n′′)→m⊗ n.

Now f is well-defined: if pn1 = n′′, then p(n − n1) = 0 and n − n1 ∈ kerp = Im i.

Thus there is n′ ∈ N ′ with in′ = n−n1, and hencem⊗(n−n1) = a⊗in′ ∈ Im (1⊗i) =

E. Clearly, f is R-biadditive, and so the definition of tensor product gives a

homomorphism f ′ ∶M ⊗N ′′ → (M ⊗N)/E with f ′(m⊗n′′) =m⊗n+E, and f ′

is the inverse of P ′.

3. 1⊗ p is surjective.

If ∑mi ⊗ n′′i ∈ M ⊗N ′′, then there exist ni ∈ N with pni = n′′i for all i, for p is

subjective. But 1⊗ p ∶ ∑mi ⊗ ni → ∑mi ⊗ pni = ∑mi ⊗ n′′i .

A similar statement holds for the functor 2⊗RN : if N is a left R-module and M ′ lÐ→

M
pÐ→M ′′Ð→0 is a short exact sequence of right R-modules, then the sequence

M ′⊗RN
i⊗1Ð→ M⊗RN

p⊗1Ð→M ′′⊗RNÐ→0

is exact.
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2.4 Ordinary Tensor Product and Morphisms

Definition 2.4.1. A morphism, or a degree zero chain map, f ∶ C → D between

complexes C and D is a family of R-module homomorphisms fn such that each

square in the diagram

⋯ // Cn+1
∂Cn+1 //

fn+1

��

Cn
∂Cn //

fn

��

Cn−1

fn−1

��

// ⋯

⋯ // Dn+1
∂Dn+1 // Dn

∂Dn // Dn−1 // ⋯

commutes. In other words, for each n we have fn−1∂Cn = ∂Dn fn.

Also, if fn ∶ Cn → Dn is an isomorphism for all n then, C and D are said to be

isomorphic, denoted by ≅.

Example 2.4.2. Suppose M and N are two modules and f ∶M → N is a homomor-

phism. Then the following diagram obviously commutes

⋯ // 0 //

τ

��

M //

f

��

0 //

τ

��

⋯

⋯ // 0 // N // 0 // ⋯
and so is an example of a morphism of complexes.
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Definition 2.4.3. Let C and D be complexes. A degree d chain map f ∶ C → D is

a family of maps fn ∶ Cn →Dn+d such that fn−1∂Cn = (−1)d∂Dn+dfn , which is expressed

by the diagram:

⋯ // Cn+1
∂Cn+1 //

fn+1

��

Cn
∂Cn //

fn

��

Cn−1

fn−1

��

// ⋯

⋯ // Dn+d+1
∂Dn+d+1 // Dn+d

∂Dn+d // Dn+d−1 // ⋯

Proposition 2.4.4. Let f ∶ C → D and g ∶ A → B be morphism of complexes,

then there exists a morphism of complexes f ⊗ g ∶ C ⊗R A → D ⊗R B defined by

(f ⊗ g)n(c⊗ a) = fi(c)⊗ gn−i(a) for c⊗ a ∈ Ci ⊗An−i.

Proof: The goal is to define (f ⊗ g) in each degree and show each square commutes

(C ⊗R A)n
∂C⊗An //

(f⊗g)n

��

(C ⊗R A)n−1

(f⊗g)n−1

��

(D ⊗R B)n
∂D⊗Bn // (D ⊗R B)n−1

Then for all n ∈ Z the diagram will be

⊕i∈ZCn−i ⊗R Ai
∂C⊗An //

(f⊗g)n

��

⊕i∈ZCn−1−i ⊗R Ai

(f⊗g)n−1

��

⊕i∈ZDn−i ⊗R Bi

∂D⊗Bn //⊕i∈ZDn−1−i ⊗R Bi

Let c⊗ a ∈ Cn−i ⊗R Ai then we will have,

(∂C⊗Bn )(f ⊗ g)n(c⊗ a) = (∂C⊗Bn )(fn−i(c)⊗ gi(a))

= ∂Dn−i(fn−i(c))⊗ gi(a) + (−1)n−ifn−i(c)⊗ ∂Bi (gi(a)).
16



And

(f ⊗ g)n−1(∂C⊗An (c⊗ a)) = (f ⊗ g)n−1(∂Cn−i(c)⊗ a + (−1)n−ic⊗ ∂Ai (a))

= fn−i−1(∂Cn−i(c))⊗ gi(a) + (−1)n−ifn−i(c)⊗ gi−1(∂Ai (a)).
Since both f and g are morphisms, we have,

fn−i−1(∂Cn−i(c)) = ∂Dn−i(fn−i(c)), and ∂Bi (gi(a)) = gi−1(∂Ai (a)). Therefore, ∂D⊗Bn (f ⊗ g)n =

(f ⊗ g)n−1∂C⊗An .

Corollary 2.4.5. Let f ∶ C → D be morphism of complexes, then there exist a mor-

phism of complexes (f⊗g) ∶ (C⊗A)→ (D⊗RA) defined by (fi⊗R Id)(c⊗a) = fi(c)⊗a.

Proof: Let g = IdA in the previous Proposition 2.4.4.

Theorem 2.4.6. Let C and D be complexes. Then,

C ⊗R (⊕
i∈I
Di) ≅⊕

i∈I
(C ⊗RDi).

Proof: The proof is well-known.( Theorem 2.65 in [2] .)

Theorem 2.4.7. Let C and D be complexes. Then,

(⊕
i∈I
Ci)⊗RD ≅⊕

i∈I
(Ci ⊗RD).

Proof: The proof is well-known.

2.5 Ordinary Tensor Product and Shift

Definition 2.5.1. Let C be a complex of R-modules. Then the Shift of C, ΣC

is complex of R-modules defined by (ΣC)n = Cn−1, and ∂ΣCn = −σn−2∂Cn−1σ−1n−1 for all

n. Also, the canonical map σ ∶ C → ΣC is obtained by shifting degrees of elements,

17



specifically, if c ∈ C. Then ∣σ(c)∣ = ∣c∣ + 1.

Remark 2.5.2. Let C and D be complexes, then for the ordinary tensor product we

have Σ(C ⊗RD) ≅ (ΣC)⊗RD ≅ C ⊗R (ΣD). Since we know by definition

(Σ(C ⊗RD))
n
= (C ⊗RD)n−1 =⊕i∈ZCn−1−i ⊗RDi,

((ΣC)⊗RD)
n
=⊕i∈Z(ΣC)n−i ⊗RDi =⊕i∈ZCn−1−i ⊗RDi, and

(C ⊗R (ΣD))
n
=⊕i∈ZCn−i⊗R (ΣD)i =⊕i∈ZCn−i⊗RDi−1. Since these are direct sums

over all i ∈ Z, we have Σ(C ⊗RD) ≅ (ΣC)⊗RD ≅ C ⊗R (ΣD).

Corollary 2.5.3. Let f ∶ C → Σd1(D) and g ∶ A → Σd2(B) be morphisms of com-

plexes. Then there exist a morphism of complexes (f⊗g) ∶ (C⊗RA)→ Σd1+d2(D⊗RB).

Proof: By Proposition 2.4.4. We have a morphism (f ⊗ g) ∶ (C ⊗R A) → Σd1(D) ⊗R

Σd2(B). Also, by Remark 2.5.2 there exists an isomorphism ϕ ∶ Σd1(D)⊗R Σd2(B)→

Σd1+d2(D ⊗R B). Therefore (f ⊗ g) ∶ (C ⊗R A)→ Σd1+d2(D ⊗R B).

2.6 Ordinary Tensor Product and Homotopy.

Definition 2.6.1. We say that a chain map f ∶ C →D is null homotopic if there are

maps hn ∶ Cn → Dn+1 such that fn = hn−1∂Cn + ∂Dn+1hn for all n. In this case we write

f ∼ 0

⋯ // Cn+1
∂Cn+1 //

fn+1

��

Cn

hn

}}

∂Cn //

fn

��

Cn−1 //

fn−1

��

hn−1

}}

⋯

⋯ // Dn+1
∂Dn+1 // Dn

∂Dn // Dn−1 // ⋯

18



Theorem 2.6.2. Let f ∶ C → D and g ∶ A → B be morphisms of complexes of R-

modules with f ∼ 0. Then f ⊗ g ∼ 0.

Proof: Consider the diagram

⊕i∈ZCn−i ⊗R Ai
∂C⊗A
n //

fn−i⊗gi

��

h′n

vv

⊕i∈ZCn−i−1 ⊗R Ai

h′n−1
vv

⊕i∈ZDn+1−i ⊗R Bi
∂D⊗B
n //⊕i∈ZDn−i ⊗R Bi

Define h′n = (hn−i ⊗ gi)i∈Z . Choose an element c⊗ a ∈ Cn−i ⊗R Ai . Then,

∂D⊗RB
n+1 (h′n)(c⊗ a) + (h′n−1)∂C⊗RA

n (c⊗ a)

= ∂D⊗RB
n+1 (h′n)i∈Z(c⊗ a) + (h′n−1)i∈Z(∂Cn−i(c)⊗ a + (−1)n−ic⊗ ∂Ai (a))

= ∂D⊗RB
n+1 (hn(c)⊗ gi(a)) + hn−1(∂Cn−i(c))⊗ gi(a) + (−1)n−ihn(c)⊗ gi−1(∂Ai (a))

= (∂Dn−i+1(hn(c))⊗ gi(a) + (−1)n−i+1hn(c)⊗ ∂Bi (gi(a)))

+ hn−1(∂Cn−i(c))⊗ gi(a) + (−1)n−ihn(c)⊗ gi−1(∂Ai (a)) (1)

= ∂Dn−i+1(hn(c))⊗ gi(a) + hn−1(∂Cn−i(c))⊗ gi(a)

= (∂Dn−i+1(hn(c)) + hn−1(∂Cn−i(c)))⊗ gi(a)

= fn−i(c)⊗ gi(a)

= (f ⊗ g)n(c⊗ a).

Where in (1) we use the fact that ∂Bi gi = gi−1∂Ai . Therefore f ⊗ g ∼ 0.

Corollary 2.6.3. Let f ∶ C →D and IdA ∶ A→ A with f ∼ 0, then f ⊗ IdA ∼ 0 .

Proof: Repeat the same work as in Theorem 2.6.2: by replacing g with identity map.
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2.7 Ordinary Tensor Product and Mapping Cones

Definition 2.7.1. Let A, B, C and D be complexes, and let f ∶ C →D and g ∶ A→ B

be chain maps. Then for c⊗a ∈ Ci⊗An−i we have (f⊗g)(c⊗a) = (−1)∣c∣∣g∣fi(c)⊗gn−i(a).

Definition 2.7.2. If f ∶ C →D is a chain map, then its mapping cone, cone (f), is a

complex of R-modules whose term of degree n is cone (f)n = (ΣC)n ⊕Dn and whose

differentials ∂n ∶ cone (f)n → cone (f)n−1 is given by

∂
cone (f)
n =

⎡⎢⎢⎢⎢⎢⎢⎣

∂ΣCn 0

fn−1σ−1n−1 ∂Dn

⎤⎥⎥⎥⎥⎥⎥⎦
.

A straightforward computation shows that ∂
cone (f)
n−1 ∂

cone (f)
n = 0 ∶

∂
cone (f)
n−1 ∂

cone (f)
n =

⎡⎢⎢⎢⎢⎢⎢⎣

∂ΣCn−1 0

fn−2σ−1n−2 ∂Dn−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∂ΣCn 0

fn−1σ−1n−1 ∂Dn

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

∂ΣCn−1∂
ΣC
n 0

fn−2σ−1n−2∂
ΣC
n + ∂Dn−1fn−1σ−1n−1 ∂Dn−1∂

D
n

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

since we know that f is a morphism and ∂ΣCn = −σn−2∂Cn−1σ−1n−1.

Theorem 2.7.3. Let A be an R-complex and f ∶ C →D be a morphism of complexes

of R-modules. Then

A⊗R cone (f) ≅ cone (A⊗R f).

Proof: The proof is well-known.( Proposition 4.1.12 in [4]. )
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Chapter 3

The Pinched Tensor Product and Morphisms

In this chapter we give the definition of the pinched tensor product and a pre-

cise description of its basic properties, like commutativity and associativity. Also,

we compare there basic properties of the pinched tensor product with those of the

ordinary tensor product, and conclude which of these properties hold for the pinched

tensor product and which do not.

3.1 Assumptions and Notation

Definition 3.1.1. (Refrence [1]) Let C andD be complexes. Consider theR-complex

C ⊗1
RD defined by:

(C ⊗1
RD)n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(C
⩾0 ⊗RD⩾0)n for n ⩾ 0

(C⩽−1 ⊗R (ΣD)⩽0)n for n ⩽ −1.

and ∂C⊗
1
RD defined by

∂
C⊗1

RD
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C⩾0⊗RD⩾0
n for n ⩾ 1

∂C0 ⊗R (σ∂D0 ) for n = 0

∂
C⩽−1⊗R(ΣD)⩽0
n for n ⩽ −1

where σ denotes the canonical map D → ΣD. This is a differential on C ⊗1
RD since

(∂C0 ⊗R (σ∂D0 ))∂C⩾0⊗RD⩾0
1 = 0 = ∂C⩽−1⊗R(ΣD)⩽0

−1 (∂C0 ⊗R (σ∂D0 )).
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Remark 3.1.2. From Definition 3.1.1, ∂
C⊗1

RD
n is the differential on C ⊗1

RD. In partic-

ular, we show the previous equations. Let c⊗ d ∈ C1 ⊗RD0. Then

(∂C0 ⊗R (σ∂D0 ))∂C⩾0⊗RD⩾0
1 (c⊗ d) = (∂C0 ⊗R (σ∂D0 ))(∂C⩾0⊗RD⩾0

1 (c⊗ d))

= (∂C0 ⊗R (σ∂D0 ))(∂C⩾01 (c)⊗ (d) + (−1)1(c)⊗ ∂D⩾00 (d))

= (∂C0 ⊗R (σ∂D0 ))(∂C⩾01 (c)⊗ (d) + 0)

= ∂C0 ∂C⩾01 (c)⊗ σ∂D0 (a)

= 0⊗ σ∂D0 (d)

= 0.

Now, if c⊗ d ∈ C0 ⊗RD1. Then

(∂C0 ⊗R (σ∂D0 ))∂C⩾0⊗RD⩾0
1 (c⊗ d) = (∂C0 ⊗R (σ∂D0 ))(∂C⩾0⊗RD⩾0

1 (c⊗ d))

= (∂C0 ⊗R (σ∂D0 ))(∂C⩾00 (c)⊗ (d) + (−1)0(c)⊗ ∂D⩾01 (d))

= (∂C0 ⊗R (σ∂D0 ))(0⊗ (d) + (−1)0(c)⊗ ∂D⩾01 (d))

= (∂C0 ⊗R (σ∂D0 ))((−1)0(c)⊗ ∂D⩾01 (d))

= (∂C0 (c)⊗ (σ∂D0 )∂D⩾01 (d))

= (∂C0 (c)⊗ 0)

= 0.

Similarly, if c⊗ d ∈ C0 ⊗RD0. Then

∂
C⩽−1⊗R(ΣD)⩽0
−1 (∂C0 ⊗R (σ∂D0 ))(c⊗ d) = ∂C⩽−1⊗R(ΣD)⩽0

−1 ((∂C0 ⊗R (σ∂D0 ))(c⊗ d))

= ∂C⩽−1⊗R(ΣD)⩽0
−1 (∂C0 (c)⊗ σ∂D0 (d))

= ∂C⩽−1−1 ∂C0 (c)⊗ σ∂D0 (d) + (−1)1∂C0 (c)⊗ ∂(ΣD)⩽−10 σ∂D0 (d)

= 0⊗ σ∂D0 (d) + (−1)1∂C0 (c)⊗ 0

= 0.
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Remark 3.1.3. From Definition 3.1.1 we can see that

(C ⊗1
RD)n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊕n

i=0Ci ⊗RDn−i for n ⩾ 0

⊕n

i=−1Ci ⊗R (ΣD)n−i for n ⩽ −1

is finitely generated for all n (Provided Ci and Dj are finilety generated for all i, j).

Here is a picture illustrating the pinched tensor product, where each point (i, n − i)

in the plane represents the tensor product Ci ⊗RDn−i of modules and Ci ⊗R (ΣD)n−i

and each line segment Y = −X + n represents (C ⊗1
RD)

n
.

C

D

Figure 3.1: Pinched Tensor Product

And the differentials can be represented by;

23



C

D

Figure 3.2: Differential on the Pinched Tensor Product

3.2 Properties

Definition 3.2.1. Let g ∶ A → B be a morphism of complexes between A and B.

Then (Σg)n = σBn−1gn−1(σAn−1)−1.

An−1
σAn−1 //

gn−1

��

(ΣA)n

(Σg)n

��

Bn−1
σBn−1 // (ΣB)n

Theorem 3.2.2. Let R be a commutative ring and C and D be complexes. Then

C ⊗1
RD ≅D ⊗1

R C.

Proof: By the definition of the pinched tensor product, Remark 2.3.6 and Remark 2.5.2

we have,
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(C ⊗1
RD)≥0 = C≥0 ⊗RD≥0

≅ D≥0 ⊗R C≥0

= (D ⊗1
R C)≥0.

And

(C ⊗1
RD)≤−1 = C≤−1 ⊗R (ΣD)≤0

≅ (ΣD)≤0 ⊗R C≤−1

= Σ(D≤−1)⊗R C≤−1

≅ D≤−1 ⊗R Σ(C≤−1)

≅ D≤−1 ⊗R (ΣC)≤0

≅ (D ⊗1
R C)≤−1.

It remains to show in the case when n = 0 the diagram

(C ⊗1
RD)

0

∂
C⊗1

RD

0 //

τ0

��

(C ⊗1
RD)−1

τ−1

��

(D ⊗1
R C)

0

∂
D⊗1

RC

0 // (D ⊗1
R C)−1

commutes. This diagram is equal to:

C0 ⊗RD0

∂
C⊗1

RD

0 //

τ0

��

C−1 ⊗R (ΣD)0

τ−1

��

D0 ⊗R C0

∂
D⊗1

RC

0 // D−1 ⊗R (ΣC)0

Let c⊗d ∈ C0⊗RD0, τ−1(c⊗d) = (σD−1)−1(d)⊗σC−1(c) and note that ∂
C⊗1

RD

0 = ∂C0 ⊗σD−1∂D0 .

Then we have,
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τ−1(∂C⊗
1
RD

0 (c⊗ d)) = τ−1(∂C0 (c)⊗ σD−1∂D0 (a))

= ((σD−1)−1 ⊗ σC−1)(∂C0 (c)⊗ σD−1∂D0 (d))

= (σD−1)−1σD−1∂D0 (d)⊗ σC−1∂C0 (c).

= ∂D0 (d)⊗ σC−1∂C0 (c).
Moreover,

(∂D⊗
1
RC

0 )(τ0(c⊗ d)) = (∂D⊗
1
RC

0 )(d⊗ c)

= ∂D0 (d)⊗ σC−1∂C0 (c).
Therefore, (C ⊗1

RD) ≅ (D ⊗1
R C).

Theorem 3.2.3. Let R and S be rings, and A, B and C be complexes and A a right

R-module, B a left R-right S-bimodule and C a left S-module. Then

(A⊗&
RB)⊗&

SC ≅ A⊗&
R(B⊗&

SC).

Proof: By the definition of the pinched tensor product and Remark 2.5.2 we have,

((A⊗&
RB)⊗&

SC)
≥0

= (A⊗&
RB)≥0⊗SC≥0

= (A≥0⊗RB≥0)⊗SC≥0

≅ A≥0⊗R(B≥0⊗SC≥0)

= A≥0⊗R(B⊗&
SC)≥0

= (A⊗&
R(B⊗&

SC))
≥0
.

Moreover,
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((A⊗&
RB)⊗&

SC)
≤−1

= (A⊗&
RB)≤−1⊗S(ΣC)≤0

= (A≤−1⊗R(ΣB)≤0)⊗S(ΣC)≤0

≅ A≤−1⊗R((ΣB)≤0⊗S(ΣC)≤0)

= A≤−1⊗R(Σ(B≤−1)⊗S(ΣC)≤0)

≅ A≤−1⊗RΣ(B≤−1⊗S(ΣC)≤0)

= A≤−1⊗RΣ((B⊗&
SC)≤−1)

= A≤−1⊗R(Σ(B⊗&
SC))

≤0

≅ (A⊗&
R(B⊗&

SC))
≤−1
.

Now we need to show in the case when n = 0 the diagram commutes,

((A⊗&
RB)⊗&

SC)
0

∂
(A⊗&B)⊗&C
0 //

τ0

��

((A⊗&
RB)⊗&

SC)
−1

τ−1

��

(A⊗&
R(B⊗&

SC))
0

∂
A⊗&(B⊗&C)
0 // (A⊗&

R(B⊗&
SC))

−1

which is equivalent to

(A⊗&
RB)0⊗SC0

∂
(A⊗&B)⊗&C
0 //

τ0

��

(A⊗&
RB)−1⊗S(ΣC)0

τ−1

��

A0⊗R(B⊗&
SC)0

∂
A⊗&(B⊗&C)
0 // A−1⊗R(Σ(B⊗&

SC))
0

which is also equivalent to

(A0⊗RB0)⊗SC0

∂
(A⊗&B)⊗&C
0ÐÐÐÐÐÐÐÐÐÐ→ ((A−1⊗R(ΣB)0)⊗S(ΣC)0

τ0

×××××Ö

×××××Ö
τ−1

A0⊗R(B0⊗SC0)
∂
A⊗&(B⊗&C)
0ÐÐÐÐÐÐÐÐÐÐ→ A−1⊗R(B−1⊗S(ΣC)0)
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Let (a⊗ b)⊗ c ∈ (A0⊗RB0)⊗SC0 and τ−1((a⊗ b)⊗ c) = a⊗ ((σB−1)−1(b)⊗ (ΣC)0(c)).

Then we have,

τ−1(∂(A⊗
&B)⊗&C

0 ((a⊗ b)⊗ c)) = τ−1((∂A0 (a)⊗ (σB−1∂B0 )(b))⊗ (σC−1∂C0 )(c))

= (A−1 ⊗ (σB−1)−1 ⊗ (ΣC)0)((∂A0 (a)⊗ (σB−1∂B0 )(b))⊗ (σC−1∂C0 )(c))

= ∂A0 (a)⊗ (((σB−1)−1σB−1∂B0 )(b)⊗ (σC−1∂C0 )(c))

= ∂A0 (a)⊗ ((∂B0 )(b)⊗ (σC−1∂C0 )(c)).

Moreover,

∂
A⊗&(B⊗&C)
0 (τ−1((a⊗ b)⊗ c)) = ∂

A⊗&(B⊗&C)
0 (a⊗ (b⊗ c))

= (∂A0 ⊗ (∂B0 ⊗ (σC−1∂C0 ))(a⊗ (b⊗ c))

= ∂A0 (a)⊗ ((∂B0 )(b)⊗ (σC−1∂C0 )(c)).
Therefore, (A⊗&

RB)⊗&
SC ≅ A⊗&

R(B⊗&
SC).

The following Theorem is the pinched analog of Proposition 2.4.4.

Theorem 3.2.4. Let f ∶ C → D and g ∶ A → B be morphisms of complexes. Then

there exists a morphism of complexes f ⊗1
R g ∶ C ⊗1

R A→D ⊗1
R B defined by f≥0⊗ g≥0 ∶

(C ⊗1
R A)≥0 → (D ⊗1

R B)≥0 and f≤−1 ⊗ (Σg)≤0 ∶ (C ⊗1
R A)≤−1 → (D ⊗1

R B)≤−1.

Proof: We only need to show in the case when n = 0 that the following diagram

commutes.

(C ⊗1
R A)

0

∂
C⊗1

RA

0 //

f0⊗g0

��

(C ⊗1
R A)−1

f−1⊗(Σg)0

��

(D ⊗1
R B)

0

∂
D⊗1

RB

0 // (D ⊗1
R B)−1
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which is equal to,

C0 ⊗R A0

∂
C⊗1

RA

0 //

f0⊗g0

��

C−1 ⊗R (ΣA)0

f−1⊗(Σg)0

��

D0 ⊗R B0

∂
D⊗1

RB

0 // D−1 ⊗R (ΣB)0

Let c⊗ a ∈ C0 ⊗R A0 then we will have,

(f−1 ⊗ (Σg)0)(∂C⊗
1
RA

0 (c⊗ a)) = (f−1 ⊗ (Σg)0)(∂C0 (c)⊗ σA−1∂A0 (a))

= (f−1(∂C0 (c))⊗ (Σg)0(σA−1∂A0 (a)).
Moreover,,

(∂D⊗
1
RB

0 )(f0 ⊗ g0)(c⊗ a) = (∂D⊗
1
RB

0 )(f0(c)⊗ g0(a))

= ∂D0 (f0(c))⊗ σB−1∂B0 (g0(a)).
We note that (f−1(∂C0 (c)) = ∂D0 (f0(c)) since f is a chain map, and

(Σg)0(σA−1∂A0 (a)) = σB−1∂B0 (g0(a)) because the following diagram commutes.

A0

∂A0 //

g0

��

A−1
σA−1 //

g−1

��

(ΣA)0

(Σg)0

��

B0

∂B0 // B−1
σB−1 // (ΣB)0

Therefore, (∂D⊗
1
RB

0 )(f0 ⊗ g0) = (f−1 ⊗ (Σg)0)(∂C⊗
1
RA

0 ).

Corollary 3.2.5. Let f ∶ C → D be a morphism of complexes. Then there exist a

morphism of complexes (f ⊗1
R IdA) ∶ (C ⊗1

R A)→ (D ⊗1
R A).

Proof: Use Proposition 3.2.4 by replacing g with the identity map.

29



Definition 3.2.6. Recall that a stalk complex C is one where Cj = 0 for i /= j, for

some i ∈ Z, and Ci /= 0.

Proposition 3.2.7. Let C be a complex and M an R-module, considered as a stalk

complex concentrated in degree i. Then

C ⊗1
RM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C⩾0 ⊗RM for i ⩾ 0

C⩽−1 ⊗R (ΣM) for i ⩽ −1.

Proof: Regarded as a stalk complex, M has the form ⋯ → 0 → 0 → M → 0 → ⋯.

Consider cases i ⩾ 0 and i ⩽ −1.

i ⩾ 0 ∶

In this case we have.

(C ⊗1
RM)⩾0 = C⩾0 ⊗RM⩾0 = C⩾0 ⊗RM.

i ⩽ −1 ∶

In this case we have.

(C ⊗1
RM)⩽−1 = C⩽−1 ⊗R (ΣM)⩽0 = C⩽−1 ⊗R (ΣM).

Therefore,

C ⊗1
RM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C⩾0 ⊗RM for i ⩾ 0

C⩽−1 ⊗R (ΣM) for i ⩽ −1.

30



Corollary 3.2.8. Let C be a complex and M an R-module, considered as a stalk

complex concentrated in degree zero. Then

C ⊗1
RM = C⩾0 ⊗RM.

Proof: The proof follows easily from Proposition 3.2.7.

Theorem 3.2.9. Let C be a complex and A = 0→ R → R → 0 where R sits in degrees

0 and −1 . Then

C ⊗1
R A ≅ C.

Proof: We want to show (C ⊗1
R A)n ≅ C. Consider three cases: n ⩾ 0, n ⩽ −1 and

n = 0.

n ⩾ 0 ∶

(C ⊗1
R A)⩾0 = C⩾0 ⊗R A⩾0 = C⩾0 ⊗R R ≅ C, by Proposition 2.3.13.

n ⩽ −1 ∶

(C ⊗1
R A)⩽−1 = C⩽−1⊗R (ΣA)⩽0 = C⩽−1⊗RA⩽−1 = C⩽−1⊗RR ≅ C, by Proposition 2.3.13.

n = 0 ∶

In this case the diagram is

C0 ⊗R A0
//

≅

��

C−1 ⊗R (ΣA)0

≅

��

C0
// C−1
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Which is equal to

C0 ⊗R R //

≅

��

C−1 ⊗R R

≅

��

C0
// C−1

Therefore, C ⊗1
R A ≅ C.

We also have an analogous statement to Theorem 2.4.6.

Theorem 3.2.10. Let C and Di, i ∈ I be complexes. Then,

C ⊗1
R (⊕

i∈I
Di) ≅⊕

i∈I
(C ⊗1

RDi).

Proof: We only need to show the case when n = 0 the following diagram commutes.

C0 ⊗R (⊕i∈IDi)0
∂
C⊗1

R⊕i∈I Di

0 //

τ0

��

C−1 ⊗R Σ(⊕i∈IDi)0

τ−1

��

⊕i∈I(C0 ⊗R (Di)0)
∂
⊕i∈I(C⊗1

RDi)
0 //⊕i∈I(C−1 ⊗R (ΣDi)0)

Let c ⊗ (di) ∈ C0 ⊗R (⊕i∈ID)0 with τ ∶ c ⊗ (di) → (c ⊗ di) and ∂⊕i∈I Di = (∂Di(di)).

Then we will have,

τ−1(∂C⊗
1
R⊕i∈I Di

0 (c⊗ (di))) = τ−1(∂C0 (c)⊗ σ⊕Di
−1 ∂⊕Di

0 (di))

= τ−1(∂C0 (c)⊗ (σ⊕Di
−1 ∂⊕Di

0 (di)))

= (∂C0 (c)⊗ σDi
−1∂

Di
0 (di)).

Moreover,,

(∂C⊗
1
RD

0 )τ0(c⊗ (di)) = (∂⊕(C⊗
1
RDi)

0 )(c⊗ di)

= (∂C0 (c)⊗ σDi
−1∂

Di
0 (di)).
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Therefore, C ⊗1
R (⊕i∈IDi) ≅⊕i∈I(C ⊗1

RDi).

Theorem 3.2.11. Let Ci, i ∈ I, and D be complexes. Then,

(⊕
i∈I
Ci)⊗1

RD ≅⊕
i∈I

(Ci ⊗1
RD).

Proof: We do similar work as in the proof of Theorem 3.2.10.

The following proposition was originally stated as Proposition 3.2 in [1], without proof

we prove it here.

Proposition 3.2.12. The pinched tensor product defined in Definition 3.1.1 yields a

functor

− ⊗1
R −∶C(R′–R) × C(R–S) Ð→ C(R′–S).

Where C(R′–R) denotes the category of complex of R′R-bimodules , C(R–S) denotes

the category of complex of RS-bimodules and C(R′–S) denotes the category of complex

of R′S-bimodules.

Proof: Let C ∈ C(R′–R) and D ∈ C(R–S) be two complexes, and define F (C,D) =

C ⊗1
RD. We want to show F is a functor.

1. It is clear that F (C) = C ⊗1
RD ∈ C(R′–S).

2. Let f ∶ C → C ′ and g ∶ D → D′ be morphisms. Then F (f, g) = f ⊗1
R g is a

morphism in C(R′–S).(Theorem 3.2.4).

3. Let f ∶ C → C ′, f ′ ∶ C ′ → C ′′, g ∶ D → D′ and g′ ∶ D′ → D′′ be a morphisms.

Then,

F((f ′, g′)(f, g)) = F (f ′f, g′g) = f ′f ⊗1
R g

′g = (f ′ ⊗1
R g

′)(f ⊗1
R g) = F (f ′, g′)F (f, g).

Therefore, F((f ′, g′)(f, g)) = F (f ′, g′)F (f, g).
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4. F (1C ,1D) = (1C ⊗1
R 1D) = 1F (C,D).
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Chapter 4

Pinched Tensor Products and Shift

We focus on the pinched tensor product and shift. We show that the isomor-

phisms Σ(C⊗RA) ≅ (ΣC)⊗RA ≅ C⊗R(ΣA) that hold for the ordinary tensor product

no longer hold for the pinched tensor product. Although if we change isomorphism

to quasi-isomorphism, the statement for the pinched tensor product holds. In addi-

tion, we give some counterexamples for the isomorphisms that no longer hold for the

pinched tensor product.

4.1 Shift and Morphisms

Remark 4.1.1. For the pinched tensor product we have in general

(ΣC ⊗1
RD) /≅ Σ(C ⊗1

RD) /≅ (C ⊗1
R ΣD),

because when n = 0

(ΣC ⊗1
RD)

0
= (ΣC)0 ⊗RD0 = C−1 ⊗RD0,

Σ(C ⊗1
RD)0 = (C ⊗1

RD)−1 = C−1 ⊗R (ΣD)0 = C−1 ⊗RD−1 and

(C ⊗1
R ΣD)

0
= C0 ⊗R (ΣD)0 = C0 ⊗RD−1.

Now if C and D are complexes of free modules, write C−1 = Rn, C0 = Rn′ , D−1 = Rm

and D0 = Rm′

, where m /= m′ = n /= n′. Then we get C−1 ⊗R D0 ≅ Rn ⊗ Rm′ ≅ Rnm′

, C−1 ⊗R D−1 ≅ Rn ⊗ Rm ≅ Rnm and C0 ⊗R D−1 ≅ Rn′ ⊗ Rm ≅ Rn′m. Then it is clear

that C−1 ⊗R D−1 /≅ C−1 ⊗R D0 /≅ C0 ⊗R D−1 since we assume m /= m′ /= n /= n′ since the

rank(C−1 ⊗R D0) /= rank(C−1 ⊗R D−1) /= rank(C0 ⊗R D−1). Therefore, (ΣC ⊗1
RD) /≅

Σ(C ⊗1
RD) /≅ (C ⊗1

R ΣD).
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The following lemma is a simple fact, which we will use in the proof of the main

theorem of this section.

Lemma 4.1.2. Let C and D be two complexes. If there exists a degree −1 anti-

commutative chain map f from C to D, then there exists a morphism g from C to

ΣD.

Proof: It suffices to show that the composition

C
fÐ→D

σÐ→ ΣD

where ∣f ∣ = −1 and ∣σ∣ = 1 is a morphism. We have that

Cn
∂Cn //

fn

��

Cn−1

fn−1

��

Dn−1
∂Dn−1 // Dn−2

anti-commutes for all n. That means fn−1∂Cn = −∂Dn−1fn for all n. We also have that

Dn

∂Dn //

σn

��

Dn−1

σn−1

��

(ΣD)n+1
∂ΣDn+1 // (ΣD)n

anti-commutes for all n. That means σn−1∂Dn = −∂ΣDn+1σn for all n. Then define gn =

σn−1fn for all n
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Cn //

fn

��

Cn−1

fn−1

��

Dn−1 //

σn−1

��

Dn−2

σn−2

��

(ΣD)n // (ΣD)n−1

Then

gn−1∂Cn = (σn−2fn−1)∂Cn
= σn−2(fn−1∂Cn )

= σn−2(−∂Dn−1fn)

= (−σn−2∂Dn−1)fn

= (∂ΣDn σn−1)fn

= ∂ΣDn (σn−1fn)

= ∂ΣDn gn.

Therefore, gn−1∂Cn = ∂ΣDn gn.

Theorem 4.1.3. Let A, B, C and D be complexes, and f ∶ C → D and g ∶ A → B

morphisms. Then there exists a morphism q from (ΣC ⊗1
R A) to Σ(D ⊗1

R B).
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Proof: By Lemma 4.1.2 it suffices to define a degree −1 anti-commutative chain map

τ from ΣC ⊗1
R A to D ⊗1

R B, so that the diagram

(ΣC ⊗1
R A)

n

∂
ΣC⊗1

RA
n //

τn

��

(ΣC ⊗1
R A)

n−1

τn−1

��

(D ⊗1
R B)n−1

∂
D⊗1

RB

n−1 // (D ⊗1
R B)n−2

is anti-commutative for all n ∈ Z. We consider four cases: n = 1, n ⩾ 2 , n = 0 and

n ⩽ −1.

n = 1:

In this case the diagram is

(ΣC)1 ⊗R A0 ⊕ (ΣC)0 ⊗R A1

∂
ΣC⊗1

RA

1ÐÐÐÐÐÐÐÐ→ (ΣC)0 ⊗R A0

τ1

×××××Ö

×××××Ö
τ0

D0 ⊗R B0

∂
D⊗1

RB

0ÐÐÐÐÐÐÐ→ D−1 ⊗R (ΣB)0

Define τ1 to be the matrix [f0(σC0 )−1 ⊗ g0 0] and τ0 = f−1(σC−1)−1 ⊗ (Σg)0σA−1∂A0 .

Choose an element c⊗ a ∈ (ΣC)1 ⊗R A0. Then,

τ0(∂ΣC⊗
1
RA

1 (c⊗ a)) = τ0(∂ΣC1 (c)⊗ a)

= f−1(σC−1)−1(∂ΣC1 (c))⊗ (Σg)0σA−1∂A0 (a)

= f−1(σC−1)−1( − σC−1∂C0 (σC0 )−1(c))⊗ (Σg)0σA−1∂A0 (a)

= −f−1∂C0 (σC0 )−1(c)⊗ (Σg)0σA−1∂A0 (a).
Moreover,

∂
D⊗1

RB

0 (τ1(c⊗ a)) = ∂
D⊗1

RB

0 (f0(σC0 )−1(c)⊗ g(a))

= (∂D0 ⊗ σB−1∂B0 )(f0(σC0 )−1(c)⊗ d(a))

= ∂D0 f0(σC0 )−1(c)⊗ σB−1∂B0 g0(a).
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We note that f−1∂C0 (σC0 )−1(c) = ∂D0 f0(σC0 )−1(c) since f is a chain map, and

(Σg)0σA−1∂A0 (a) = σB−1∂B0 g0(a) because the following diagram commutes.

A0

∂A0 //

g0

��

A−1
σA−1 //

g−1

��

(ΣA)0

(Σg)0

��

B0

∂B0 // B−1
σB−1 // (ΣB)0

Now choose an element c⊗ a ∈ (ΣC)0 ⊗R A1. Then,

τ0(∂ΣC⊗
1
RA

1 (c⊗ a)) = τ0(c⊗ ∂A1 (a))

= f−1(σC−1)−1(c)⊗ (Σg)0σA−1∂A0 ∂A1 (a)

= f−1(σC−1)−1(c)⊗ 0

= 0.

Moreover,

∂
D⊗1

RB

0 (τ1(c⊗ a)) = ∂
D⊗1

RB

0 (0)

= 0.

Therefore, τ0∂
ΣC⊗1

RA

1 = −∂D⊗
1
RB

0 τ1, which is what we wanted to show.

n ⩾ 2:

In this case the diagram is

⊕n
i=0(ΣC)n−i ⊗R Ai

∂
ΣC⊗1

RA
nÐÐÐÐÐ→ ⊕n−1

i=0 (ΣC)n−i ⊗R Ai

τn

×××××Ö

×××××Ö
τn−1

⊕n−1
i=0 Dn−1−i ⊗R Bi

∂
D⊗1

RB

n−1ÐÐÐÐ→ ⊕n−2
i=0 Dn−1−i ⊗R Bi
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Define

τn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn−1(σCn−1)−1 ⊗ g0 0

⋱ ⋮

f0(σC0 )−1 ⊗ gn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for n ⩾ 2 any element c⊗ a ∈ (ΣC)n−i ⊗R Ai for i ⩾ 1. Then,

τn−1(∂ΣC⊗
1
RA

n (c⊗ a)) = τn−1(∂ΣCn−i(c)⊗ a + (−1)n−i(c)⊗ ∂Ai (a))

= fn−i−2(σCn−i−2)−1(∂ΣCn−i(c))⊗ gi(a)

+(−1)n−ifn−i−1(σCn−i−1)−1(c)⊗ gi−1∂Ai (a)

= fn−i−2(σCn−i−2)−1( − σCn−i−2∂Cn−i−1σCn−i−1
−1(c))⊗ gi(a)

+(−1)n−ifn−i−1(σCn−i−1)−1(c)⊗ gi−1∂Ai (a)

= −fn−i−2∂Cn−i−1(σCn−i−1)−1(c)⊗ gi(a)

+(−1)n−ifn−1−i(σCn−i−1)−1(c)⊗ gi−1∂Ai (a).
Moreover,

∂
D⊗1

RB

n−1 (τn(c⊗ a)) = ∂
D⊗1

RB

n−1 (fn−i−1(σCn−i−1)−1(c)⊗ gi(a))

= ∂Dn−i−1fn−i−1(σCn−i−1)−1(c)⊗ gi(a)

+(−1)n−i−1fn−i−1(σCn−i−1)−1(c)⊗ ∂Ai gi(a)
We note that fn−i−2∂Cn−i−1(σCn−i−1)−1(c) = ∂Dn−i−1fn−i−1(σCn−i−1)−1(c) since f is a chain

map. Therefore, τn−1∂
ΣC⊗1

RA
n = −∂D⊗

1
RB

n−1 τn, for c⊗ a ∈ (ΣC)n−i ⊗R Ai for i ⩾ 1.

Now choose an element c⊗ a ∈ (ΣC)0 ⊗R An. Then,

τn−1(∂ΣC⊗
1
RA

n (c⊗ a)) = τn−1(0)

= 0.

Moreover,

∂
D⊗1

RB

n−1 (τn(c⊗ a)) = ∂
D⊗1

RB
n (0)

= 0.

Therefore, τn−1∂
ΣC⊗1

RA
n = −∂D⊗

1
RB

n−1 τn, which is what we wanted to show.
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n = 0:

In this case the digram is

(ΣC)0 ⊗R A0

∂
ΣC⊗1

RA

0ÐÐÐÐÐÐÐÐ→ (ΣC)−1 ⊗R (ΣA)0

τ0

×××××Ö

×××××Ö
τ−1

D−1 ⊗R (ΣB)0
∂
D⊗1

RB

−1ÐÐÐÐÐÐÐ→ D−2 ⊗R (ΣB)0 ⊗D−1 ⊗R (ΣB)−1

Define τ−1 = f−2(σC−2)−1 ⊗ (Σg)0. Choose an element c⊗ a ∈ (ΣC)0 ⊗R A0. Then,

τ−1(∂ΣC⊗
1
RA

0 (c⊗ a)) = τ−1(∂ΣC0 (c)⊗ σA−1∂A0 (a))

= f−2(σC−2)−1∂ΣC0 (c)⊗ (Σg)0σA−1∂A0 (a)

= f−2(σC−2)−1(−σC−2∂C−1(σC−1)−1(c))⊗ (Σg)0σA−1∂A0 (a)

= −f−2∂C−1(σC−1)−1(c)⊗ (Σg)0σA−1∂A0 (a).
Moreover,

∂
D⊗1

RB

−1 (τ0(c⊗ a)) = ∂
D⊗1

RB

−1 (f−1(σC−1)−1(c)⊗ (Σg)0σA−1∂A0 (a))

= ∂D−1f−1(σC−1)−1(c)⊗ (Σg)0σA−1∂A0 (a).
We note that f−2∂C−1(σC−1)−1(c) = ∂D−1f−1(σC−1)−1(c) since f is a chain map. Thus,

τ−1∂
ΣC⊗1

RA

0 = −∂B⊗
1
RD

−1 τ0, which it is anti-commutative.

n ⩽ −1:

In this case the diagram is

⊕−1
i=n(ΣC)i ⊗R (ΣA)n−i

∂
ΣC⊗1

RA
nÐÐÐÐÐÐÐÐ→ ⊕−1

i=n−1(ΣC)i ⊗R (ΣA)n−1−i

τn

×××××Ö

×××××Ö
τn−1

⊕−1
i=n−1Di ⊗R (ΣB)n−1−i

∂
D⊗1

RB

n−1ÐÐÐÐÐÐÐ→ ⊕−1
i=n−2Di ⊗R (ΣB)n−2−i
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Define

τn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn−1(σCn−1)−1 ⊗ (Σg)0

⋱

f−2(σC−2)−1 ⊗ (Σg)n+1

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for n ⩽ −2 and choose an element c⊗ a ∈ (ΣC)i ⊗R (ΣA)n−i for i ⩾ n + 1. Then,

τn−1(∂ΣC⊗
1
RA

n (c⊗ a)) = τn−1(∂ΣCi (c)⊗ a + (−1)ic⊗ ∂An−i(a))

= fi−2(σCi−2)−1∂ΣCi (c)⊗ (Σg)n−i(a)

+(−1)ifi−1(σCi−1)−1(c)⊗ (Σg)n−i−1∂An−i(a)

= fi−2(σCi−2)−1( − σCi−2∂Ci−1(σCi−1)−1)(c)⊗ (Σg)n−i(a)

+(−1)ifi−1(σCi−1)−1(c)⊗ (Σg)n−i−1∂An−i(a)

= −fi−2∂Ci−1(σCi−1)−1(c)⊗ (Σg)n−i(a)

+(−1)ifi−1(σCi−1)−1(c)⊗ (Σg)n−i−1∂An−i(a)

= −(fi−2∂Ci−1(σCi−1)−1(c)⊗ (Σg)n−i(a)

+(−1)i−1fi−1(σCi−1)−1(c)⊗ (Σg)n−i−1∂An−i(a)).
Moreover,

∂
D⊗1

RB

n−1 (τn(c⊗ a)) = ∂
D⊗1

RB

n−1 (fi−1(σCi−1)−1(c)⊗ (Σg)n−i(a))

= ∂Di−1fi−1(σCi−1)−1(c)⊗ (Σg)n−i(a)

+(−1)i−1fi−1(σCi−1)−1(c)⊗ ∂Dn−i(Σg)n−i(a).
We note that fi−2∂Ci−1(σCi−1)−1(c) = ∂Di−1fi−1(σCi−1)−1(c) since f is a chain map. There-

fore, τn−1∂
ΣC⊗1

RA
n = −∂D⊗

1
RB

n−1 τn, which is anti-commutative.

Corollary 4.1.4. Let C and D be complexes. Then there exists a morphism q from

(ΣC ⊗1
RD) to Σ(C ⊗1

RD).

Proof: Let f = IdC and g = IdD in the previous Theorem 4.1.3.
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Remark 4.1.5. In Corollary 4.1.4, as far as we know there is no morphism in the

opposite direction, from (C ⊗1
RD) to (ΣC ⊗1

RD). The problem is that there does

not necessarily exist a map C−1 ⊗R (ΣD)0 → (ΣC)0 ⊗RD0.

Theorem 4.1.6. Let A, B, C and D be complexes, and f ∶ C → D and g ∶ A → B

morphisms. Then there exists a morphism q′ from (C ⊗1
R ΣA) to Σ(D ⊗1

R B).

Proof: By Lemma 4.1.2 it suffices to define a degree −1 anti-commutative chain map

τ from C ⊗1
R ΣA to D ⊗1

R B, that is, the diagram

(C ⊗1
R ΣA)

n

∂
C⊗1

RΣA
nÐÐÐÐÐÐÐÐ→ (C ⊗1

R ΣA)
n−1

τ ′n

×××××Ö

×××××Ö
τ ′n−1

(D ⊗1
R B)n−1

∂
D⊗1

RB

n−1ÐÐÐÐÐÐÐ→ (D ⊗1
R B)n−2

is anti-commutative for all n ∈ Z. We consider four cases: n = 1, n ⩾ 2 , n = 0 and

n ⩽ −1.

n = 1:

In this case the diagram is

C1 ⊗R (ΣA)0 ⊕C0 ⊗R (ΣA)1
∂
C⊗1

RΣA
1ÐÐÐÐÐÐÐÐ→ C0 ⊗R (ΣA)0

τ ′1

×××××Ö

×××××Ö
τ ′0

D0 ⊗R B0

∂
D⊗1

RB

0ÐÐÐÐÐÐÐ→ D−1 ⊗R (ΣB)0

Define τ ′1 = [0 f0 ⊗ g0(σA0 )−1] and τ ′0 = f−1∂C0 ⊗ (Σg)0. Choose an element c ⊗ a ∈

C1 ⊗ (ΣA)0. Then,
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τ ′0(∂
C⊗1

RΣA
1 (c⊗ a)) = τ ′0(∂C1 (c)⊗ a)

= f−1∂C0 (∂C1 (c))⊗ (Σg)0(a)

= 0.

Moreover,

∂
D⊗1

RB

0 (τ ′1(c⊗ a)) = ∂
D⊗1

RB

0 (0)

= 0.

Now choose an element c⊗ a ∈ C0 ⊗R (ΣA)1. Then,

τ ′0(∂
C⊗1

RΣA
1 (c⊗ a)) = τ ′0(c⊗ ∂ΣA1 (a))

= τ ′0(c⊗ (−σA−1∂A0 (σA0 )−1)(a))

= f−1∂C0 (c)⊗ (Σg)0(−σA−1∂A0 (σA0 )−1)(a)

= −f−1∂C0 (c)⊗ (Σg)0(σA−1∂A0 (σA0 )−1)(a).
Moreover,

∂
D⊗1

RB

0 (τ ′1(c⊗ a)) = ∂
D⊗1

RB

0 (f0(c)⊗ g0(σA0 )−1(a))

= ∂D0 f0(c)⊗ σB−1∂B0 g0(σA0 )−1(a).
We note that f−1∂C0 (c) = ∂D0 f0(c) since f is a chain map, and

(Σg)0(σA−1∂A0 (σA0 )−1)(a) = σB−1∂B0 g0(σA0 )−1(a) because the following diagram commutes.

A0

∂A0 //

g0

��

A−1
σA−1 //

g−1

��

(ΣA)0

(Σg)0

��

B0

∂B0 // B−1
σB−1 // (ΣB)0

Therefore, f0∂
C⊗1

RΣA
1 = −∂D⊗

1
RB

0 f1, which is anti-commutative.
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n ⩾ 2:

In this case the diagram is

⊕n
i=0Cn−i ⊗R (ΣA)i

∂
C⊗1

RΣA
nÐÐÐÐÐ→ ⊕n−1

i=0 Cn−1−i ⊗R (ΣA)i

τ ′n

×××××Ö

×××××Ö
τ ′n−1

⊕n−1
i=0 Dn−1−i ⊗R Bi

∂
D⊗1

RB

n−1ÐÐÐÐ→ ⊕n−2
i=0 Dn−2−i ⊗R Bi

Define

τ ′n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (−1)nfn ⊗ g−1(σA−1)−1

⋮ ⋱

0 (−1)0f0 ⊗ gn−1(σAn−1)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for n ⩾ 2 and choose any element c⊗ a ∈ Cn−i ⊗R (ΣA)i for i ⩾ 1. Then,

τ ′n−1((∂
C⊗1

RΣA
n (c⊗ a)) = τ ′n−1(∂Cn−i(c)⊗ a + (−1)n−ic⊗ ∂(ΣA)i (a))

= τ ′n−1(∂Cn−i(c)⊗ a + (−1)n−ic⊗ (−σAi−2∂Ai−1(σAi−1)−1)(a))

= (−1)n−i−1fn−i−1∂Cn−i(c)⊗ gi−1(σAi−1)−1(a)+

(−1)n−i(−1)n−ifn−i(c)⊗ gi−2(σAi−2)−1(−σAi−2∂Ai−1(σAi−1)−1)(a)

= (−1)n−i−1fn−i−1∂Cn−i(c)⊗ gi−1(σAi−1)−1(a)+

−fn−i(c)⊗ gi−2∂Ai−1(σAi−1)−1(a)

= −((−1)n−ifn−i−1∂Cn−i(c)⊗ gi−1(σAi−1)−1(a)+

fn−i(c)⊗ gi−2∂Ai−1(σAi−1)−1(a)).
Moreover,

∂
D⊗1

RB

n−1 (τ ′n(c⊗ a)) = ∂
D⊗1

RB

n−1 ((−1)n−ifn−i(c)⊗ gi−1(σAi−1)−1(a))

= (−1)n−i∂Dn−ifn−i(c)⊗ gi−1(σAi−1)−1(a)

+(−1)n−i(−1)n−ifn−i(c)⊗ ∂Bi (gi−1(σAi−1)−1(a))

= (−1)n−i∂Dn−ifn−i(c)⊗ gi−1(σAi−1)−1(a)

+fn−i(c)⊗ ∂Bi−1(gi−1(σAi−1)−1(a)).
We note that fn−i−1∂Cn−i(c) = ∂Dn−ifn−i(c) since f is a chain map, and
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gi−2∂Ai−1(σAi−1)−1(a) = ∂Bi−1gi−1(σAi−1)−1(a) because the following diagram commutes.

(ΣA)i
(σAi−1)−1 //

(Σg)i

��

Ai−1
∂Ai−1 //

gi−1

��

Ai−2

gi−2

��

(ΣB)i
(σBi−1)−1 // Bi−1

∂Bi−1 // Bi−2

Now choose an element c⊗ a ∈ Cn ⊗R (ΣA)0. Then,

τn−1(∂C⊗
1
RΣA

n (c⊗ a)) = τn−1(∂Cn (c)⊗ a)

= 0.

Moreover,

∂
D⊗1

RB

n−1 (τn(c⊗ a)) = ∂
D⊗1

RB

n−1 (0)

= 0.

Therefore, τn−1∂
C⊗1

RΣA
n = −∂D⊗

1
RB

n−1 fn, which it is anti-commutative.

n = 0:

In this case the digram is

C0 ⊗R (ΣA)0
∂
C⊗1

RΣA
0ÐÐÐÐÐÐÐÐ→ C−1 ⊗R (Σ(ΣA))0

τ ′0

×××××Ö

×××××Ö
τ ′−1

D−1 ⊗R (ΣB)0
∂
D⊗1

RB

−1ÐÐÐÐÐÐÐ→ D−2 ⊗R (ΣB)0 ⊕D−1 ⊗R (ΣB)−1

Define τ ′−1 = f−1 ⊗ (Σg)−1(σΣA
−1 )−1and choose an element c⊗ a ∈ C0 ⊗R (ΣA)0. Then,

τ ′−1(∂
C⊗1

RΣA
0 (c⊗ a)) = τ ′−1(∂C0 (c)⊗ σΣA

−1 ∂
ΣA
0 (a))

= f−1∂C0 (c)⊗ (Σg)−1(σΣA
−1 )−1σΣA

−1 ∂
ΣA
0 (a)

= f−1∂C0 (c)⊗ (Σg)−1∂ΣA0 (a).
Moreover,

46



∂
D⊗1

RB

−1 (τ ′0(c⊗ a)) = ∂
D⊗1

RB

−1 (f−1∂C0 (c)⊗ (Σg)0(a))

= ∂D−1f−1∂
C
0 (c)⊗ (Σg)0(a) + (−1)−1f−1∂C0 (c)⊗ ∂ΣB0 (Σg)0(a)

= ∂C−1∂
D
0 f0(c)⊗ (Σg)0(a) + (−1)−1f−1∂C0 (c)⊗ ∂ΣB0 (Σg)0(a)

= 0⊗ (Σg)0(a) + (−1)−1f−1∂C0 (c)⊗ ∂ΣB0 (Σg)0(a)

= (−1)−1f−1∂C0 (c)⊗ ∂ΣB0 (Σg)0(a).
We note that (Σg)−1∂ΣA0 (a) = ∂ΣB0 (Σg)0(a) since g is a chain map. Therefore,

f−1∂
C⊗1

RΣD
0 = −∂C⊗

1
RD

−1 f0, which it is anti-commutative.

n ⩽ −1:

In this case the diagram is

⊕−1
i=nCi ⊗R (Σ(ΣA))n−i

∂
C⊗1

RΣA
nÐÐÐÐÐ→ ⊕−1

i=n−1Ci ⊗R (Σ(ΣA))n−1−i

τ ′n

×××××Ö

×××××Ö
τ ′n−1

⊕−1
i=n−1Di ⊗R (ΣB)n−1−i

∂
D⊗1

RB

n−1ÐÐÐÐ→ ⊕−1
i=n−2Di ⊗R (ΣB)n−2−i

Define

τ ′n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)nfn ⊗ (Σg)−1(σΣD
−1 )−1

⋱

(−1)−1f−1 ⊗ (Σg)n(σΣD
n )−1

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for n ⩽ −2 and choose any element c⊗ d ∈ Ci ⊗R (Σ(ΣA))
n−i

for i ⩾ n + 1. Then,

τ ′n−1(∂
C⊗1

RΣA
n (c⊗ a)) = τ ′n−1(∂Ci (c)⊗ a + (−1)i(c)⊗ ∂Σ(ΣA)n−i (a))

= τ ′n−1(∂Ci (c)⊗ a + (−1)i(c)⊗ ( − σΣA
n−i−2∂

ΣA
n−i−1(σΣA

n−i−1)−1)(a))

= τ ′n−1(∂Ci (c)⊗ a − (−1)i(c)⊗ (σΣA
n−i−2∂

ΣA
n−i−1(σΣA

n−i−1)−1)(a))

= (−1)i−1fi−1∂Ci (c)⊗ (Σg)n−i−1(σΣA
n−i−1)−1(a)

−((−1)i)2fi(c)⊗ (Σg)n−i−2(σΣA
n−i−2)−1(σΣA

n−i−2∂
ΣA
n−i−1(σΣA

n−i−1)−1)(a)

= (−1)i−1fi−1∂Ci (c)⊗ (Σg)n−i−1(σΣA
n−i−1)−1(a)

−fi(c)⊗ (Σg)n−i−2∂ΣAn−i−1(σΣA
n−i−1)−1(a)

= −((−1)ifi−1∂Ci (c)⊗ (Σg)n−i−1(σΣA
n−i−1)−1(a)

+fi(c)⊗ (Σg)n−i−2∂ΣAn−i−1(σΣA
n−i−1)−1(a)).

Moreover,

∂
D⊗1

RB

n−1 (τ ′n(c⊗ a)) = ∂
D⊗1

RB

n−1 ((−1)ifi(c)⊗ (Σg)n−i−1(σΣA
n−i−1)−1(a))

= (−1)i∂Ci fi(c)⊗ (Σg)n−i−1(σΣA
n−i−1−1)−1(a)+

(−1)i(−1)ifi(c)⊗ ∂ΣBn−i−1(Σg)n−i−1(σΣA
n−i−1)−1(a)

= (−1)i∂Ci fi(c)⊗ (Σg)n−i−1(σΣA
n−i−1−1)−1(a)+

fi(c)⊗ ∂ΣBn−i−1(Σg)n−i−1(σΣA
n−i−1)−1(a).

We note that (Σg)n−i−2∂ΣAn−i−1(σΣA
n−i−1)−1(a) = ∂ΣBn−i−1(Σg)n−i−1(σΣA

n−i−1)−1(a) since g is a

chain map. Therefore, fn−1∂
C⊗1

RΣA
n = −∂D⊗

1
RB

n−1 fn, which is anti-commutative.

Corollary 4.1.7. Let C and D be complexes. Then there exists a morphism q′ from

(C ⊗1
R ΣD) to Σ(C ⊗1

RD).

Proof: Let f = IdC and g = IdD in the previous Proposition 4.1.6.
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Remark 4.1.8. In Corollary 4.1.7 as far as we know there is no morphism in the op-

posite direction, from Σ(C ⊗1
RD) to (C ⊗1

R ΣD). The problem is that there does not

necessarily exist a map C−1 ⊗R (ΣD)0 → C0 ⊗R (ΣD)0.

Remark 4.1.9. Also, as far as we know, there is no morphism going from (ΣC ⊗1
RD)

to (C ⊗1
R ΣD). The problem is that there does not necessarily exist a map (ΣC)0⊗R

D0 → C0 ⊗R (ΣD)0. Similarly, as far as we know, there is no morphism going from

(C ⊗1
R ΣD) to (ΣC ⊗1

RD). The problem is that there does not necessarily exist a

map C0 ⊗R (ΣD)0 → (ΣC)0 ⊗RD0.

Theorem 4.1.10. Let d ≥ 0. If f ∶ C → Σd(D) is a morphism and A is a complex.

Then there exists a morphism from (C ⊗1
R A) → Σd(D ⊗1

R A) which is commutative

when d is even and anti-commutative when d is odd .

Proof: We want to use Lemma 4.1.2 and Corollary 2.5.3 to define a morphism

(C ⊗1
R A)→ Σd(D ⊗1

R A) such that the following diagram commutes

(C ⊗1
R A)

n

∂
C⊗1

RA
n //

τn

��

(C ⊗1
R A)

n−1

τn−1

��

(Σd(D ⊗1
R A))n

∂
Σd(D⊗1

RA)
n // (Σd(D ⊗1

R A))n−1

when d is even and anti-commutes when d is odd for all n ∈ Z. Note that (Σd(D ⊗1
R A))

n
=

(D ⊗1
R A)n−d and we consider three cases: n ≥ d,0 < n < d and n ≤ 0.
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n ≥ d ∶

Suppose n > d. In this case the diagram will be

(C ⊗1
R A)

n

∂
C⊗1

RA
n //

τn

��

(C ⊗1
R A)

n−1

τn−1

��

(D ⊗1
R A)n−d

(−1)d∂D⊗
1
RA

n−d // (D ⊗1
R A)n−1−d

which is equivalent to

⊕n
i=0Cn−i ⊗R Ai

∂
C⊗1

RA
n //

τn

��

⊕n−1
i=0 Cn−1−i ⊗R Ai

τn−1

��

⊕n−d
i=0 Dn−d−i ⊗R Ai

(−1)d∂D⊗
1
RA

n−d //⊕n−d−1
i=0 Dn−d−1−i ⊗R Ai

Define

τn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn ⊗R A0 0 . . . 0

⋱ ⋮ ⋮

fd ⊗R An−d 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose c⊗ a ∈ Cn−i ⊗R Ai. Then, when n − i ≥ d we have

τn−1(∂C⊗
1
RA

n (c⊗ a)) = τn−1(∂Cn−i(c)⊗ a + (−1)n−ic⊗ ∂Ai (a))

= fn−i−1(∂Cn−i(c))⊗ a + (−1)n−ifn−i(c)⊗ ∂Ai (a).
Moreover,

((−1)d∂D⊗
1
RA

n−d )τn(c⊗ a) = ((−1)d∂D⊗
1
RA

n−d )(fn−i(c)⊗ a)

= (−1)d∂D⊗
1
RA

n−d−i (fn−i(c))⊗ a

= (−1)d(∂Dn−d−i(fn−i(c))⊗ a + +(−1)n−ifn−i(c)⊗ ∂Ai (a).
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It is clear that fn−i−1∂Cn−i(c) = ∂Dn−d−ifn−i(c) since the following diagram commutes.

Cn−i
∂Cn−i //

fn−i

��

Cn−i−1

fn−i−1

��

Dn−d−i
∂Dn−d−i // Dn−d−i−1

Therefore, τn−1∂
C⊗1

RA
n = (−1)d∂D⊗

1
RA

n−d τn.

When n − i < d we have

τn−1(∂C⊗
1
RA

n (c⊗ a)) = τn−1(∂Cn−i(c)⊗ a + (−1)n−ic⊗ ∂Ai (a))

= 0.

Moreover,

((−1)d∂D⊗
1
RA

n−d )τn(c⊗ a) = ((−1)d∂D⊗
1
RA

n−d )(0)

= 0.

It is clear that fn−i−1∂Cn−i(c) = ∂Dn−d−ifn−i(c) since the following diagram commutes.

Cn−i
∂Cn−i //

fn−i

��

Cn−i−1

fn−i−1

��

Dn−d−i
∂Dn−d−i // Dn−d−i−1

Therefore, τn−1∂
C⊗1

RA
n = (−1)d∂D⊗

1
RA

n−d τn.

Now suppose n = d. Then

(C ⊗1
R A)

n

∂
C⊗1

RA
n //

τn

��

(C ⊗1
R A)

n−1

τn−1

��

(D ⊗1
R A)0

(−1)d∂D⊗
1
RA

0 // (D ⊗1
R A)−1
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which is equivalent to

⊕n
i=0Cn−i ⊗R Ai

∂
C⊗1

RA
n //

τn

��

⊕n
i=0Cn−1−i ⊗R Ai

τn−1

��

D0 ⊗R A0

(−1)d∂D⊗
1
RA

0 // D−1 ⊗R (ΣA)0
Where

τn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn ⊗R A0

0

⋱

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

τn−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn−1 ⊗R σA−1∂A0
0

⋱

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose c⊗ a ∈ Cd ⊗R A0. Then,

τn−1(∂C⊗
1
RA

n (c⊗ a)) = τn−1(∂Cd (c)⊗ a)

= fd−1(∂Cd (c))⊗ σA−1∂A0 (a).
Moreover,

((−1)d∂D⊗
1
RA

0 )τd(c⊗ a) = ((−1)d∂D⊗
1
RA

0 )(fd(c)⊗ a)

= (−1)d∂D0 (fd(c))⊗ σA−1∂A0 (a).
It is clear that fd−1∂Cd (c) = ∂D0 fd(c) since the following diagram commutes.

Cd
∂Cd //

fd

��

Cd−1

fd−1

��

D0

∂D0 // D−1
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Therefore, τn−1(∂C⊗
1
RA

n ) = ((−1)d∂D⊗
1
RA

n−d )τn.

0 < n < d:

In this case the diagram

⊕n
i=0Cn−i ⊗R Ai

∂
C⊗1

RA
n //

τn

��

⊕n
i=0Cn−1−i ⊗R Ai

τn−1

��

⊕−1
i=n−dDi ⊗R (ΣA)n−d−i

(−1)d∂D⊗
1
RA

n−d //⊕−1
i=n−d−1Di ⊗R (ΣA)n−d−1−i

Define τn = fn−i ⊗ (σAi )−1∂Ai . Choose c⊗ a ∈ Cn−i ⊗R Ai. Then,

τn−1(∂C⊗
1
RA

n (c⊗ a)) = τn−1(∂Cn−i(c)⊗ a)

= fn−i−1(∂Cn−i(c))⊗ σAi−1∂Ai (a).
Moreover,

((−1)d∂D⊗
1
RA

n−d )τn(c⊗ a) = ((−1)d∂D⊗
1
RA

n−d )(fn−i(c)⊗ σAi−1∂Ai (a))

= (−1)d(∂(D⊗
1
RA)

n−d (fn−i(c))⊗ σAi−1 ○ ∂Ai (a).
It is clear that fn−i−1∂Cn−i(c) = ∂Dn−dfn−i(c) since the following diagram commutes

Cn−i
∂Cn−i //

fn−i

��

Cn−i−1

fn−i−1

��

Dn−d
∂Dn−d // Dn−d−1

Therefore, τn−1(∂C⊗
1
RA

n ) = ((−1)d∂D⊗
1
RA

n−d )τn.

n ≤ 0:
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Suppose n = 0.

In this case the diagram will be

C0 ⊗R A0

∂
C⊗1

RA

0 //

τ0

��

C−1 ⊗R (ΣA)0

τ−1

��

⊕−1
i=−dDi ⊗R (ΣA)−d−i

(−1)d∂D⊗
1
RA

−d //⊕−1
i=n−d−1Di ⊗R (ΣA)−d−1−i

Define

τ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 ⊗R σA−1∂A0
⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and,

τ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f−1 ⊗R A

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose c⊗ a ∈ C0 ⊗R A0. Then,

τ−1(∂C⊗
1
RA

0 (c⊗ a)) = τ−1(∂C0 (c)⊗ σA−1∂A0 (a))

= (f−1(∂C0 (c))⊗ σA−1∂A0 (a)).
Moreover,

((−1)d∂D⊗
1
RA

−d )τ0(c⊗ a) = ((−1)d∂D⊗
1
RA

−d )(f0(c)⊗ σA−1∂A0 (a))

= (−1)d(∂D⊗
1
RA

i (f0(c))⊗ σA−1∂A0 (a)

= (−1)d∂D0 f0(c)⊗ σA−1∂A0 (a).
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It is clear that f−1∂C0 (c) = ∂D0 f0(c) since the following diagram commutes

C0

∂C0 //

f0

��

C−1

f−1

��

D0

∂D0 // D−1

Therefore, τ−1(∂C⊗
1
RA

0 ) = ((−1)d∂D⊗
1
RA

−d )τ0.

Suppose n < 0. In this case the diagram will be

⊕−1
i=nCi ⊗R (ΣA)n−i

∂
C⊗1

RΣA
n //

τn

��

C−1 ⊗R (ΣA)0

τn−1

��

⊕−1
i=n−dDi ⊗R (ΣA)−d−i

(−1)d∂D⊗
1
RA

n−d //⊕−1
i=n−d−1Di ⊗R (ΣA)n−d−1−i

Define

τn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn ⊗R A0

⋱

f−1 ⊗R An+1

0 ⋯ 0

⋮ ⋮

0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,

τn−1(∂C⊗
1
RA

n (c⊗ a)) = τn−1(∂Ci (c)⊗ a + (−1)∣i∣c⊗ ∂ΣAn−i(a))

= fn−i(∂Ci (c))⊗ a + (−1)ifi(c)⊗ ∂ΣAn−i(a).
Moreover,

((−1)d∂D⊗
1
RA

n−d )τn(c⊗ a) = ((−1)d∂D⊗
1
RA

n−d )(fi(c)⊗ a)

= ∂Di (fi(c))⊗ a + (−1)ifi(c)⊗ ∂ΣAn−i(a).
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It is clear that fn−1∂Ci (c) = ∂Di fi(c) since the following diagram commutes.

Ci
∂Ci //

fi

��

Ci−1

fi−1

��

Di

∂Di // Di−1

Therefore, τn−1∂
C⊗1

RA
n = (−1)d∂D⊗

1
RA

n−d τn.

Remark 4.1.11. In Theorem 4.1.10 as far as we know there is no map Σd(D ⊗1
R A)→

(C ⊗1
R A).

Remark 4.1.12. In Theorem 4.1.10, as far as we know, if d < 0, then there is no map

(C ⊗1
R A)→ Σd(D ⊗1

R A).

4.2 A Quasi-isomorphism

Definition 4.2.1. A chain map f ∶ C →D is a quasi-isomorphism if all of its induced

maps Hn(f) ∶Hn(C)→Hn(D) are isomorphisms. In this case we write C ≃D.

Theorem 4.2.2. Let C and D be a complexes of free modules. The map on homol-

ogy induced by q from Corollary 4.1.4 is an isomorphism. In other words, q from

Corollary 4.1.4 is a quasiisomorphism.

Proof: Recall that q = σ(C⊗
1
RD)τ. Since σ ∶ C → ΣC induces an isomorphism in

homology for any complex C, it suffices to show that the degree −1 chain map

τ ∶ ΣC ⊗1
RD → C ⊗1

RD induces an isomorphism in homology. We consider five cases:
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n = 0, n = 1, n ⩾ 2, n = −1, and n ⩽ −2. It suffices to show that Hn(τ) is one-to-one

and onto for all n ∈ Z.

n = 0:

In this case the diagram is

(ΣC)1 ⊗RD0 ⊕ (ΣC)0 ⊗RD1

∂
ΣC⊗1

RD
1 //

τ1

��

(ΣC)0 ⊗RD0

∂
ΣC⊗1

RD
0 //

τ0
��

(ΣC)−1 ⊗R (ΣD)0
τ−1

��

C0 ⊗RD0

∂
C⊗1

RD
0 // C−1 ⊗R (ΣD)0

∂
C⊗1

RD
−1 // C−2 ⊗R (ΣD)0 ⊕C−1 ⊗R (ΣD)−1

We first show that H0(τ) is one-to-one. Assume a ∈ ker∂
ΣC⊗1

RD

0 such that τ0(a) ∈

Im∂
C⊗1

RD

0 . Choose z ∈ C0 ⊗RD0 such that ∂
C⊗1

RD

0 (z) = τ0(a).

Then τ1
⎛
⎝
(σC0 ⊗D0)(z),0

⎞
⎠
= z. Consider ∂

ΣC⊗1
RD

1

⎛
⎝
(σC0 ⊗D0)(z),0

⎞
⎠
+ a.

τ0
⎛
⎝
∂
ΣC⊗1

RD

1 ((σC0 ⊗D0)(z),0) + a
⎞
⎠

= (τ0∂ΣC⊗
1
RD

1 )((σC0 ⊗D0)(z),0) + τ0(a)

= −(∂C⊗
1
RD

0 τ1)((σC0 ⊗D0)(z),0) + τ0(a)

= −∂C⊗
1
RD

0 (z) + τ0(a)

= 0.

Therefore,

∂
ΣC⊗1

RD

1 ((σC0 ⊗D0)(z),0) + a ∈ ker(τ0). Since

(ΣC)0 ⊗RD1

(ΣC)0⊗∂D1Ð→ (ΣC)0 ⊗RD0
τ0Ð→ C−1 ⊗R (ΣD)0

is exact, we have ∂
ΣC⊗1

RD

1 (((σC0 )⊗D0)(z),0)) + a ∈ Im ((ΣC)0 ⊗ ∂D1 ).

Write ∂
ΣC⊗1

RD

1 ((σC0 ⊗D0)(z),0)) + a = ((ΣC)0 ⊗ ∂D1 )(b) for some b ∈ (ΣC)0 ⊗R D1.
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However,

∂
ΣC⊗1

RD

1

⎛
⎝
((σC0 ⊗D0)(−z), b)

⎞
⎠
= −∂ΣC⊗

1
RD

1

⎛
⎝
((σC0 ⊗D0)(z),0)

⎞
⎠
+ ∂ΣC⊗

1
RD

1 ((0, b))

= −∂ΣC⊗
1
RD

1

⎛
⎝
((σC0 ⊗D0)(z),0)

⎞
⎠

+ ∂ΣC⊗
1
RD

1

⎛
⎝
((σC0 ⊗D0)(z),0)

⎞
⎠
+ a

= a.

Thus a is a boundary, therefore H0(τ) is one-to-one.

Now we want want to show H0(τ) is onto. Consider a ∈ ker∂
C⊗1

RD

−1 . Write

∂
C⊗1

RD

−1 (a) = (b, z) where b ∈ C−2⊗R(ΣD)0 and z ∈ C−1 ⊗R (ΣD)−1. Therefore, ∂
C⊗1

RD

−1 (a) =

(b, z) = 0, which implies z = 0. Then, z = (C−1 ⊗ ∂ΣD0 )(a) = 0. Since

C−1 ⊗R (ΣD)1
C−1⊗∂ΣD

1Ð→ C−1 ⊗R (ΣD)0
C−1⊗∂ΣD

0Ð→ C−1 ⊗R (ΣD)−1

is exact, we have a ∈ ker(C−1 ⊗ ∂ΣD0 ) = Im (C−1 ⊗ ∂ΣD1 ). Therefore there exists

k ∈ C−1 ⊗ (ΣD)1 such that (C−1 ⊗ ∂ΣD1 )(k) = a. Then τ0((σC−1 ⊗ (σD0 )−1)(k)) = a.

Finally we note that

τ−1∂
ΣC⊗1

RD

0 ((σC−1⊗ (σD0 )−1)(k)) = −∂C⊗
1
RD

−1 τ0(σC−1⊗ (σD0 )−1(k)) = −∂C⊗
1
RD

−1 (a) = 0. Since

τ−1 is one-to-one we have ∂
ΣC⊗1

RD

0 ((σC−1⊗(σD0 )−1)(k)) = 0, therefore ((σC−1)⊗(σD0 )−1)(k)

is a cycle and therefore H0(τ) is onto.
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n = 1:

In this case the diagram is

⊕2
i=0(ΣC)2−i ⊗RDi

∂
ΣC⊗1

RD

2 //

τ2

��

⊕1
i=0(ΣC)1−i ⊗RDi

∂
ΣC⊗1

RD

1 //

τ1

��

(ΣC)0 ⊗RD0

τ0

��

C1 ⊗RD0 ⊕C0 ⊗RD1

∂
C⊗1

RD

1 // C0 ⊗RD0

∂
C⊗1

RD

0 // C−1 ⊗R (ΣD)0

which is anti-commutative by Theorem 4.1.3. We first want to show H1(τ) is

one-to-one. Assume (a, b) ∈ ker∂
ΣC⊗1

RD

1 such that τ1((a, b)) ∈ Im∂
C⊗1

RD

1 . Choose

(c, d) ∈ C1 ⊗RD0 ⊕C0 ⊗RD1 such that ∂
C⊗1

RD

1 ((c, d)) = τ1((a, b)).

Then τ2
⎛
⎝
((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)

⎞
⎠
= (c, d).

Consider ∂
ΣC⊗1

RD

2

⎛
⎝
((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)

⎞
⎠
+ (a, b). Then,

τ1
⎛
⎝
∂
ΣC⊗1

RD

2 (((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)) + (a, b)
⎞
⎠

= (τ1∂ΣC⊗
1
RD

2 )(((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)) + τ1((a, b))

= −(∂C⊗
1
RD

1 τ2)(((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)) + τ1((a, b))

= −∂C⊗
1
RD

1 ((c, d)) + τ1((a, b))

= 0.

Therefore
⎛
⎝
∂
ΣC⊗1

RD

2 (((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0))+(a, b)
⎞
⎠
∈ ker(τ1) = (ΣC)0⊗RD1.

Then we have

∂
ΣC⊗1

RD

2 (((σC1 ⊗ D0)(c), (σC2 ⊗ D1)(d),0)) + (a, b) ∈ ker ( (ΣC)0 ⊗R D1

(ΣC)0⊗∂D1ÐÐÐÐÐ→

(ΣC)0 ⊗RD0)

Thus gives,

∂
ΣC⊗1

RD

2 ((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0)+(a, b) ∈ Im ( (ΣC)0⊗RD2

(ΣC)0⊗R∂
D
2ÐÐÐÐÐÐ→ (ΣC)0⊗
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D1).

Since

(ΣC)0 ⊗RD2

(ΣC)0⊗∂D2ÐÐÐÐÐ→ (ΣC)0 ⊗RD1

(ΣC)0⊗∂D1ÐÐÐÐÐ→ (ΣC)0 ⊗RD0

is exact. Write

∂
ΣC⊗1

RD

2 (((σC1 ⊗ D0)(c), (σC2 ⊗ D1)(d),0)) + (a, b) = ((ΣC)0 ⊗ ∂D2 )(k) for some k ∈

(ΣC)0 ⊗RD2. However,

∂
ΣC⊗1

RD

2 (((σC1 ⊗D0)(−c), (σC2 ⊗D1)(−d), k))

= ∂ΣC⊗
1
RD

2 ((σC1 ⊗D0)(−c), (−d),0)) + ∂ΣC⊗
1
RD

2 ((0,0, k))

= −∂ΣC⊗
1
RD

2 ((σC1 ⊗D0)(c), (d),0))+
⎛
⎝
∂
ΣC⊗1

RD

2 ((σC1 ⊗D0)(c), (σC2 ⊗D1)(d),0))+(a, b)
⎞
⎠

= (a, b).

Thus ∂
ΣC⊗1

RD

2 ((σC1 ⊗D0)(c), (σC2 ⊗D1)(d), k)) = (a, b). Therefore, (a, b) is a bound-

ary. Thus H1(τ) is one-to-one.

Now we want want to show H1(τ) is onto. Consider a ∈ ker∂
C⊗1

RD

0 . Then,

∂
C⊗1

RD

0 (a) = 0 and τ1((σC0 ⊗D0)(a),0) = a. Finally note that

τ0∂
ΣC⊗1

RD

1 ((σC0 ⊗D0)(a),0) = τ0((∂ΣC−1 ⊗D0)((σC0 ⊗D0)(a)))

= ((σC−1)−1 ⊗ σD−1∂D0 )(∂ΣC−1 ⊗D0)((σC0 ⊗D0)(a))

= 0.

Since

(ΣC)0 ⊗RD1

(ΣC)0⊗∂D1ÐÐÐÐÐ→ (ΣC)0 ⊗RD0
τ0Ð→ C−1 ⊗R (ΣD)0

is exact. There exists k ∈ (ΣC)0 ⊗R D1 such that ((ΣC)0 ⊗ ∂D1 )(k) = (∂ΣC−1 ⊗

D0)((σΣC
0 ⊗ D0)(a)). Consider now ((σΣC

0 ⊗ D0)(a), k) ∈ ⊕1
i=0(ΣC)1−i ⊗R Di. We

have τ1((σΣC
0 ⊗D0)(a), k) = a. Finally we note that

τ0∂
ΣC⊗1

RD

1 ((σC0 ⊗ (σD1 )−1)(a), k) = −∂C⊗
1
RD

0 τ1((σC0 ⊗ (σD1 )−1)(a), k)

= −∂C⊗
1
RD

0 (a)

= 0.
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Since τ0 is one-to-one we have ∂
ΣC⊗1

RD

1 ((σC0 ⊗ (σD1 )−1)(a), k) = 0, so

((σC0 ⊗ (σD1 )−1)(a), k) is a cycle. Therefore H1(τ) is onto.

n ⩾ 2 :

We have the diagram, which is anti commutative by Theorem 4.1.3:

⊕n+1
i=0 (ΣC)n+1−i ⊗RDi

∂
ΣC⊗1

RD

n+1 //

τn+1

��

⊕n
i=0(ΣC)n−i ⊗RDi

∂
ΣC⊗1

RD
n //

τn

��

⊕n−1
i=0 (ΣC)n−1−i ⊗RDi

τn−1

��

⊕n
i=0Cn−i ⊗RDi

∂
C⊗1

RD
n //⊕n−1

i=0 Cn−1−i ⊗RDi

∂
C⊗1

RD

n−1 //⊕n−2
i=0 Cn−2−i ⊗RDi

First we want to showHn(τ) is one-to-one. AssumeK = (k1, k2, . . . , kn+1) ∈ ker∂
ΣC⊗1

RD
n

such that τn(K) ∈ Im∂
C⊗1

RD
n . Choose Z = (z0, z1, . . . , zn) ∈ ⊕n

i=0Cn−i ⊗R Di such

that ∂
C⊗1

RD
n (Z) = τn(K). Let Z ′ = (((σCn ) ⊗D0)(z0), ((σCn−1) ⊗D1)(z1), . . . , ((σC0 ) ⊗

Dn)(zn),0). Then τn+1(Z ′) = Z. Consider ∂
ΣC⊗1

RD

n+1 (Z ′) + K ∈ ⊕n
i=0(ΣC)n−i ⊗R Di

Then

τn(∂ΣC⊗
1
RD

n+1 (Z ′) +K) = (τn∂ΣC⊗
1
RD

n+1 )(Z ′) + τn(K)

= −(∂C⊗
1
RD

n τn+1)(Z ′) + τn(K)

= −∂C⊗
1
RD

n (Z) + τn(K)

= 0

Therefore ∂
ΣC⊗1

RD

n+1 (Z ′) +K ∈ ker(τn) = (ΣC)0 ⊗RDn. Since

(ΣC)0 ⊗RDn+1
(ΣC)0⊗∂Dn+1Ð→ (ΣC)0 ⊗RDn

(ΣC)0⊗∂DnÐ→ (ΣC)0 ⊗RDn−1

is exact, we have ∂
ΣC⊗1

RD

n+1 (Z ′) +K ∈ Im ((ΣC)0 ⊗ ∂Dn+1). Write

∂
ΣC⊗1

RD

n+1 (Z ′) +K = ((ΣC)0 ⊗ ∂Dn+1)(b) for some b ∈ (ΣC)0 ⊗RDn+1 and write

Z ′′ = (−(σCn ⊗D0)(z0),−(σCn−1⊗D1)(z1), . . . ,−(σC0 ⊗Dn)(zn), b) = (−z′0,−z′1, . . . ,−z′n, b)

where z′i = σCn−i ⊗Di−1. However,

61



∂
ΣC⊗1

RD

n+1 (Z ′′) = ∂
ΣC⊗1

RD

n+1 ((−z′0,−z′1, . . . ,−z′n,0)) + ∂
ΣC⊗1

RD
n ((0,⋯, b))

= −∂ΣC⊗
1
RD

n+1 ((z′0, z′1, . . . , z′n,0)) + ∂
ΣC⊗1

RD
n ((0,⋯, b))

= −∂ΣC⊗
1
RD

n+1 ((z′0, z′1, . . . , z′n,0)) + (∂ΣC⊗
1
RD

n+1 (Z ′) +K))

= K.

Therefore ∂
ΣC⊗1

RD

n+1 (Z ′′) =K. Thus K is a boundary. Therefore, Hn(τ) is one-to-one.

Now we want want to show Hn(τ) is onto. Let Z = (z0, z1, . . . , zn−1) ∈ ker∂
C⊗1

RD

n−1 .

Consider Y = (z0, z1, . . . , zn−1,0) ∈⊕n+1
i=0 (ΣC)n−i ⊗RDi. we have τn(Y ) = Z. Therefore

τn−1∂
ΣC⊗1

RD
n (Y ) = 0. Since ker τn−1 = (ΣC)0⊗RDn−1, we have ∂

ΣC⊗1
RD

n (Y ) ∈ (ΣC)0⊗R

Dn−1. Now 0 = ∂ΣC⊗
1
RD

n−1 ∂
ΣC⊗1

RD
n (Y ) = ((ΣC)0 ⊗ ∂Dn−1)(∂

ΣC⊗1
RD

n (Y )). Since

(ΣC)0 ⊗RDn

(ΣC)0⊗∂DnÐ→ (ΣC)0 ⊗RDn−1
(ΣC)0⊗∂Dn−1Ð→ (ΣC)0 ⊗RDn−2

is exact and ∂
ΣC⊗1

RD
n (Y ) ∈ ker ((ΣC)0 ⊗ ∂Dn−1) = Im((ΣC)0 ⊗ ∂Dn ). Write ∂

ΣC⊗1
RD

n (Y ) =

((ΣC)0⊗∂Dn )(k) for some k ∈ (ΣC)0⊗RDn. Then Y −(0,0, . . . , k) = (z0, z1, . . . , zn−1,−k)

maps to 0 under ∂
ΣC⊗1

RD
n , and therefore is a cycle, and τn((z1, z2,⋯,−k)) = Z. Thus

Hn(τ) is onto.

n = −1:

We have the diagram,

(ΣC)0 ⊗RD0

∂
ΣC⊗1

RD

0 //

τ0

��

(ΣC)−1 ⊗R (ΣD)0
∂
ΣC⊗1

RD

−1 //

τ−1

��

⊕−1
i=−2(ΣC)i ⊗R (ΣD)−2−i

τ−2

��

C−1 ⊗R (ΣD)0
∂
C⊗1

RD

−1 //⊕−1
i=−2Ci ⊗R (ΣD)−2−i

∂
C⊗1

RD

−2 //⊕−1
i=−3Ci ⊗R (ΣD)−3−i

which is anti-commutative by Theorem 4.1.3. We first want to show that H−1(τ)

is one-to-one. Assume a ∈ ker∂
ΣC⊗1

RD

−1 such that τ−1(a) ∈ Im∂
C⊗1

RD

−1 . Choose c ∈

C−1⊗R (ΣD)0 such that ∂
C⊗1

RD

−1 (c) = τ−1(a). It follows that (C−1⊗R ∂ΣD0 )(c) = 0 since

C−1 ⊗R (ΣD)1
C−1⊗R∂

ΣD
1Ð→ C−1 ⊗R (ΣD)0

C−1⊗∂ΣD
0Ð→ C−1 ⊗ (ΣD)−1
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is exact. Then there exists c ∈ kerC−1 ⊗R ∂ΣD1 = Im (C−1 ⊗R σD−1∂ΣD0 ) = Im (τ0).

Therefore there exists c′ ∈ (ΣC)0⊗RD0 such that τ0(c′) = c. Consider ∂
ΣC⊗1

RD

0 (c′)+a,

then we have,

τ−1(∂ΣC⊗
1
RD

0 (c′) + a) = (τ−1∂ΣC⊗
1
RD

0 )(c′) + τ−1(a)

= −∂C⊗
1
RD

−1 (τ0(c′)) + τ−1(a)

= −∂C⊗
1
RD

−1 (c) + τ−1(a)

= 0.

Thus, ∂
ΣC⊗1

RD

0 (c′) + a ∈ ker(τ−1) = 0.

Therefore, a = ∂
ΣC⊗1

RD

0 (−c′). Thus a ∈ Im∂
ΣC⊗1

RD

0 . Thus D is a boundary, and

therefore H−1(τ) is one-to-one.

Now we want to show that H−1(τ) is onto. let (a, b) ∈ ker∂
C⊗1

RD

−2 . Then,

(C−1 ⊗ ∂ΣD−1 )(b) = 0. Since

C−1 ⊗R (ΣD)0
C−1⊗R∂

ΣD
0Ð→ C−1 ⊗R (ΣD)−1

C−1⊗∂ΣD
−1Ð→ C−1 ⊗ (ΣD)−2

is exact, we have ker(C−1 ⊗ ∂ΣD−1 ) = Im (C−1 ⊗ ∂ΣD0 ). Thus there exists c ∈ C−1 ⊗R

(ΣD)0 such that (C−1 ⊗ ∂ΣD0 )(c) = b. However,

∂
C⊗1

RD

−1 (c) = ((∂C−1 ⊗ (ΣD)0)(c), (C−1 ⊗ ∂ΣD0 )(c))

= ((∂C−1 ⊗ (ΣD)0)(c), b).
Therefore,

[(a, b)] = [(a, b) − (∂C−1 ⊗ ΣD)(c), b)] = [(a − (∂C−1 ⊗ ΣD)(c),0] as cosets modulo the

Im (C−1 ⊗ ∂ΣD0 ). Consider Z = ((σC−2)−1 ⊗R (ΣD))(a − (∂C−1 ⊗R ΣD)(c) ∈ (ΣC)−1 ⊗R

(ΣD)0. We have [τ−1(z)] = [(a, b)], and ∂
ΣC⊗1

RD

−1 (z) = 0 since τ−2∂
ΣC⊗1

RD

−1 (z) = 0 and

τ−2 is one-to-one. Thus z is a cycle and so H−1(τ) is onto.
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n ⩽ −2:

We have the diagram,

⊕−1
i=n+1(ΣC)i ⊗R (ΣD)n+1−i

∂
ΣC⊗1

RD
n+1 //

τn+1

��

⊕−1
i=n(ΣC)i ⊗R (ΣD)n−i

∂
ΣC⊗1

RD
n //

τn

��

⊕−1
i=n−1(ΣC)i ⊗R (ΣD)n−1−i

τn−1

��

⊕−1
i=nCi ⊗R (ΣD)n−i

∂
C⊗1

RD
n // ⊕−1

i=n−1Ci ⊗R (ΣD)n−1−i
∂
C⊗1

RD
n−1 // ⊕−1

i=n−2Ci ⊗R (ΣD)n−2−i

which is anticommutative by Theorem 4.1.3. First we want to show Hn(τ) is one-

to-one. Assume K = (kn, kn+1, . . . , k−1) ∈ ker∂
ΣC⊗1

RD
n such that τn(K) ∈ Im∂

C⊗1
RD

n .

Choose Z = (cn, cn+1, . . . , c−1) ∈ ⊕−1
i=nCi ⊗R (ΣD)n−i such that ∂

C⊗1
RD

n (Z) = τn(K).

Then, (C−1 ⊗ ∂ΣDn−1)(c−1) = 0. Therefore, c−1 ∈ ker(C−1 ⊗ ∂ΣDn−1) = Im (C−1 ⊗ ∂ΣDn ) since

C−1 ⊗R (ΣD)n
C−1⊗∂ΣD

nÐ→ C−1 ⊗R (ΣD)n−1
C−1⊗∂ΣD

n−1Ð→ C−1 ⊗R (ΣD)n−2

is exact. Choose c′ such that (C−1 ⊗ ∂ΣDn )(c′) = c−1. Then ∂
C⊗1

RD
n (Z − ∂ΣC⊗

1
RD

n+1 (c′)) =

∂
C⊗1

RD
n (Z) = τn(K). Therefore we can assume Z = (cn, cn+1, . . . , c−2,0) and choose Z ′ =

(((σCn )−1⊗D0)(c0), ((σCn−1)−1⊗D1)(c1), . . . , ((σC0 )−1⊗Dn−1)(cn−1)) ∈⊕−1
i=n+1(ΣC)i⊗R

(ΣD)n+1−i. Then τn+1(Z ′) = Z. Now consider ∂
ΣC⊗1

RD

n+1 (C ′) + K ∈ ⊕−1
i=n(ΣC)i ⊗R

(ΣD)n−i. Then

τn(∂ΣC⊗
1
RD

n+1 (Z ′) +K) = (τn∂ΣC⊗
1
RD

n+1 )(Z ′) + τn(K)

= −(∂C⊗
1
RD

n τn+1)(Z ′) + τn(K)

= −∂C⊗
1
RD

n (C) + τn(K)

= 0.

Therefore, ∂
ΣC⊗1

RD

n+1 (Z ′) +K ∈ ker(τn) = 0, and so K = ∂ΣC⊗
1
RD

n+1 (−Z ′), which implies

that K ∈ Im∂
(ΣC⊗1

RD)
n+1 . Thus K is a boundary, and so Hn(τ) is one-to-one.

Now want to show Hn(τ) is onto. Let K = (kn−1, kn, . . . , k−1) ∈ ker∂
C⊗1

RD

n−1 . Since

C−1 ⊗R (ΣD)n
C−1⊗∂ΣD

nÐ→ C−1 ⊗R (ΣD)n−1
C−1⊗∂ΣD

n−1Ð→ C−1 ⊗R (ΣD)n−2
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is exact, we have ker(C−1 ⊗ ∂ΣDn−1) = Im (C−1 ⊗ ∂ΣDn ). Thus there exists c ∈ C−1 ⊗R

(ΣD)n such that (C−1 ⊗ ∂ΣDn )(c) = k−1. Define Z = (0, . . . ,0, c) ∈⊕−1
i=nCi⊗R (ΣD)n−i.

Then, K − ∂C⊗
1
RD

n (Z) = (kn−1, . . . , k−2 − (∂C−1 ⊗ (ΣD)n+1)(c),0). Therefore, [K] =

[(kn−1, . . . , k−2 − (∂C−1 ⊗ (ΣD)−1)(c),0)]. Therefore, [K] = [τn(kn−1, . . . , k−2 − (∂Cn+1 ⊗

(ΣD)−1)(c))] and (kn−1, . . . , k−2 − (∂Cn+1 ⊗ (ΣD)−1)(c)) ∈ ker(∂ΣC⊗
1
RD

n ). Therefore,

Hn(τ) is onto.

Theorem 4.2.3. Let C and D be a complexes of free modules. The map on homol-

ogy induced by q′ from Corollary 4.1.7 is an isomorphism. In other words, q′ from

Corollary 4.1.7 is a quasiisomorphism.

Proof: The proof is similar to that of Theorem 4.2.2.
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Chapter 5

Pinched Homotopy and Cones

In this chapter we examine two other properties: the pinched homotopy and

the pinched mapping cone. We see that the pinched tensor product is a functor from

the category of complexes, but we cannot extend to it a functor on the homotopy

categories. Also, we give some counterexamples for the relevant properties that no

longer hold for the pinched tensor product. In addition we show that the isomorphism

that implies the mapping cone commutes with tensor product for the ordinary tensor

product no longer holds for the pinched tensor product. However, we show there is a

morphism.

5.1 Homotopy

Remark 5.1.1. In Theorem 2.6.2 if we replace the ordinary tensor product with the

pinched tensor product, then there is no map going from (C ⊗1
R A)−1 = C−1⊗R(ΣA)0 →

(D ⊗1
R B)0 =D0⊗RB0. That means the pinched tensor product is a functor from the

category of complexes to complexes, but we cannot extend to it a functor on the

homotopy categories, as we can see in the next example.
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Example 5.1.2. Let C and D be complexes and f ∶ C → D a morphisim such that

f ≁ 0. Let A = 0→ R → R → 0 where the degrees of the R′s are 0 and −1, respectively

and g ∶ A→ A the identity map. Then clearly we see that g ∼ 0 from the diagram

0 // R
1 //

1

��

R //

1

��

1

��

0

0 // R
1 // R // 0

Also, by Proposition 3.2.9 we have C ⊗1
R A ≅ C and D ⊗1

R A ≅ D. Then f⊗&g =

f⊗& IdA ∶ C ⊗1
R A→D ⊗1

R A. However, we know

C ⊗1
R A

f⊗& IdA
//

≅

��

D ⊗1
R A

≅

��

C
f

// D

is commutative. Therefore f⊗&g ≁ 0.

However, we do have a positive result involving homotopy.

Theorem 5.1.3. Let f ∶ C → D with f ∼ 0 and σ∂A ∶ An → (ΣA)n be morphisms

of complexes of R-modules . Then f⊗&σ∂A ∶ C ⊗1
R A→D ⊗1

R ΣA satisfies f⊗σ∂An ∼ 0.
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Proof: We consider three cases: n = 0, n ⩾ 1 and n ⩽ −1.

n = 0 ∶

In this case the diagram is

C0 ⊗R A0

∂
C⊗1

RA

0 //

f0⊗σA
−1∂

A
0

��

h′0

ww

C−1 ⊗R (ΣA)0

h′
−1

xx

⊕1
i=0D1−i ⊗R (ΣA)i

∂
D⊗

1
RΣA

1 // D0 ⊗R (ΣA)0

Define h′0 = h0 ⊗ σA−1∂A0 and h′−1 = h−1 ⊗ (ΣA)0. Choose an element c ⊗ a ∈ C0 ⊗R A0.

Then,

∂
D⊗1

RΣA
1 h′0(c⊗ a) + h′−1∂

C⊗1
RA

0 (c⊗ a)

= ∂D⊗
1
RΣA

1 (h0 ⊗ σA−1∂A0 )(c⊗ a) + h′−1(∂C0 ⊗ σA−1∂A0 )(c⊗ a)

= ∂D⊗
1
RΣA

1 (h0(c)⊗ σA−1∂A0 (a)) + h′−1(∂C0 (c)⊗ σA−1∂A0 (a))

= (∂D1 ⊗ (ΣA)0)(h0(c)⊗ σA−1∂A0 (a)) + (h−1 ⊗ (ΣA)0)(∂C0 (c)⊗ σA−1∂A0 (a))

= ∂D1 h0(c)⊗ σA−1∂A0 (a) + h−1∂C0 (c)⊗ σA−1∂A0 (a)

= [∂D1 h0(c)⊗ +h−1∂C0 (c)]⊗ σA−1∂A0 (a)

= f0(c)⊗ σA−1∂A0 (a).

n ⩾ 1 ∶

In this case the diagram is

⊕n
i=0Cn−i ⊗R Ai

∂
C⊗1

RA
n //

fn⊗σA
i−1∂

A
i

��

h′n

yy

⊕n−1
i=0 Cn−i−1 ⊗R Ai

h′n−1

zz

⊕n+1
i=0 Dn+1−i ⊗R (ΣA)i

∂
D⊗

1
RΣA

n+1 //⊕n
i=0Dn−i ⊗R (ΣA)i
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Define

h′n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0

hn ⊗ σA−1∂A0
⋱

h0 ⊗ σAn−1∂An

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

fn ⊗ σAi−1∂Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn ⊗ σA−1∂A0
⋱

f0 ⊗ σAn−1∂An

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose an element c⊗ a ∈ Cn−i ⊗R Ai, Then,

∂
D⊗1

RΣA
n+1 h′n(c⊗ a) + h′n−1∂

C⊗1
RA

n (c⊗ a)

= ∂D⊗
1
RΣA

n+1 (hn ⊗ σAi−1∂Ai )(c⊗ a) + h′n−1(∂Cn ⊗Ai)(c⊗ a)

= ∂D⊗
1
RΣA

n+1 (hn(c)⊗ σAi−1∂Ai (a)) + h′n−1(∂Cn (c)⊗ a)

= (∂Dn+1 ⊗ (ΣA)i)(hn(c)⊗ σAi−1∂Ai (a)) + (hn−1 ⊗ σAi−1∂Ai )(∂Cn (c)⊗ a)

= ∂Dn+1hn(c)⊗ σAi−1∂Ai (a) + hn−1∂Cn (c)⊗ σAi−1∂Ai (a)

= [∂Dn+1hn(c)⊗ +hn−1∂Cn (c)]⊗ σAi−1∂Ai (a)

= fn(c)⊗ σAi−1∂Ai (a).

n ⩽ −1 ∶

In this case the diagram is

⊕−1
i=nCi ⊗R (ΣA)n−i

∂
C⊗1

RΣA
n //

fn⊗σA
n−i−1∂

ΣA
n−i

��

h′n

yy

⊕−1
i=n−1Ci ⊗R (ΣA)n−i−1

h′n−1

yy

⊕−1
i=n+1Dn−i ⊗R (ΣΣA)n−i

∂
D⊗

1
RΣΣA

n+1 //⊕−1
i=nDi ⊗R (ΣΣA)n−i
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Define h′n = hn ⊗ σΣA
n−i−1∂

ΣA
n−i

h′n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

hn ⊗ σΣA
−1 ∂

ΣA
0

⋮ ⋱

0 h0 ⊗ σΣA
n−1∂

ΣA
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

fn ⊗ σAn−i−1∂ΣAn−i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fn ⊗ σA−1∂ΣA0

⋱

f−1 ⊗ σAn ∂ΣAn+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Choose an element c⊗ a ∈ Ci ⊗R (ΣA)n−i, Then,

∂
D⊗1

RΣΣA
n+1 h′n(c⊗ a) + h′n−1∂

C⊗1
RΣA

n (c⊗ a)

= ∂D⊗
1
RΣΣA

n+1 (hn ⊗ σΣA
n−i−1∂

ΣA
n−i)(c⊗ a) + h′n−1(∂Cn ⊗ΣAi)(c⊗ a)

= ∂D⊗
1
RΣΣA

n+1 (hn(c)⊗ σΣA
n−i−1∂

ΣA
n−i(a)) + h′n−1(∂Cn (c)⊗ a)

= (∂Dn+1 ⊗ (ΣΣA)i)(hn(c)⊗ σΣA
n−i−1∂

ΣA
n−i(a)) + (hn−1 ⊗ σΣA

n−i−1∂
ΣA
n−i(a))(∂Cn (c)⊗ a)

= ∂Dn+1hn(c)⊗ σΣA
n−i−1∂

ΣA
n−i(a) + hn−1∂Cn (c)⊗ σΣA

n−i−1∂
ΣA
n−i(a)

= [∂Dn+1hn(c)⊗ +hn−1∂Cn (c)]⊗ σΣA
n−i−1∂

ΣA
n−i(a)

= fn(c)⊗ σΣA
n−i−1∂

ΣA
n−i(a).
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5.2 Mapping Cones

Theorem 5.2.1. Let A be an R-complex and f ∶ C →D be a morphism of complexes

of R-modules . Then there exists a morphism from A ⊗&
R cone(f) to cone(A ⊗&

R g),

where

gn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn for n ⩾ −1

−fn for n < −1.

Proof: We consider three cases: n = 0, n ⩾ 1 and n ⩽ −1.

n = 0 ∶

In this case the diagram is

(A⊗1
R cone (f))

0

∂
A⊗1

Rcone (f)
0 //

µ0

��

(A⊗1
R cone (f))−1

µ−1

��

(cone (A⊗1
R f))0

∂
cone (A⊗1

Rf)
0 // (cone (A⊗1

R f))−1
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Define µ0(a⊗(c, d)) = (σA⊗
1
RC

−1 (∂A0 (a)⊗c), a⊗d) and µ−1(a⊗σcone (f)
−1 (c, d)) = (σA⊗

1
RC

−2 (a⊗

b), a⊗ σD−1(d)). Choose an element (a⊗ (c, d)) ∈ A0 ⊗R ((ΣC)0 ⊕D0). Then,

∂
cone(A⊗1

Rf)
0 µ0(a⊗ (c, d))

= ∂cone(A⊗
1
Rf)

0 ((σA⊗
1
RC

−1 (∂A0 (a)⊗ c), a⊗ d))

= [∂Σ(A⊗
&C)

0 (σA⊗
1
RC

−1 (∂A0 (a)⊗ c)), (A−1 ⊗R (Σf)0)(σA⊗
1
RC

−1 )−1σA⊗
1
RC

−1 (∂A0 (a)⊗ (c))

+ ∂A⊗&D0 (a⊗ d)]

= [ − σA⊗
1
RC

−2 ∂A⊗
&C

−1 (σA⊗
1
RC

−1 )−1(σA⊗
1
RC

−1 (∂A0 (a)⊗ c)), (A−1 ⊗R (Σf)0)(∂A0 (a)⊗ (c))

+ ∂A0 (a)⊗ σD−1∂D0 (d)]

= [ − σA⊗
1
RC

−2 ∂A⊗
&C

−1 (∂A0 (a)⊗ c), (∂A0 (a)⊗R (Σf)0(c))

+ ∂A0 (a)⊗ σD−1∂D0 (d)]

= [ − σA⊗
1
RC

−2 (∂A−1∂A0 (a)⊗ c + (−1)∂A0 (a)⊗ ∂ΣC−1 (c)), (∂A0 (a)⊗R (Σf)0(c))

+ ∂A0 (a)⊗ σD−1∂D0 (d)]

= [σA⊗
1
RC

−2 (∂A0 (a)⊗ ∂ΣC−1 (c)), ∂A0 (a)⊗R (Σf)0(c) + ∂A0 (a)⊗ σD−1∂D0 (d)].

However,

µ−1∂
A⊗1

Rcone(f)
0 (a⊗ (c, d))

= µ−1[∂A0 (a)⊗ ∂Cone(f)0 (c, d)]

= µ−1[∂A0 (a)⊗ (∂ΣC−1 (c), f−1(σC−1)−1(c) + ∂D0 (d))]

= [σA⊗
1
RC

−2 (∂A0 (a)⊗ ∂ΣC−1 (c)), ∂A0 (a)⊗R σD−1(f−1(σC−1)−1(c) + ∂D0 (d))].
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It is clear that (Σf)0(c) = σD−1f−1(σC−1)−1(c), since the following diagram commutes

C−1
f−1

//

σC
−1

��

D−1

σD
−1

��

(ΣC)0
(Σf)0 // (ΣD)−1

Therefore, ∂
cone(A⊗1

Rf)
0 µ0 = µ−1∂A⊗

1
Rcone(f)

0 , which is what we wanted to show.

n ⩾ 1:

In this case the diagram is

(A⊗1
R cone (f))

n

∂
A⊗1

Rcone (f)
n //

µn

��

(A⊗1
R cone (f))

n−1

µn−1

��

(cone (A⊗1
R f))n

∂
cone (A⊗1

Rf)
n // (cone (A⊗1

R f))n−1

Define

µn(a⊗ (c, d)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(σA⊗
1
RC

n−1 (a⊗ σ−1i (c)), a⊗ d) for i ⩾ 0

(0, a⊗ d) for i = 0,

µn(a⊗ (c, d)) = (σA⊗
1
RC

n−1 (a⊗ σ−1i (c)), a⊗ d). We have two subcases i = 0 and i ⩾ 1.

i = 0:

Choose an element (a⊗ (c, d)) ∈ An ⊗R ((ΣC)0 ⊕D0). Then,

∂
cone (A⊗1

Rf)
n µn(a⊗ (c, d))

= ∂cone (A⊗
1
Rf)

n ((a⊗ d))

= [∂A⊗&Dn (a⊗ d)]

= [∂An (a)⊗ d].
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However,

µn−1∂
A⊗1

Rcone (f)
n (a⊗ (c, d))

= µn−1[∂An (a)⊗ (c, d) + (−1)na⊗ ∂cone (f)0 (c, d)]

= µn−1[∂An (a)⊗ (c, d) + (−1)na⊗ 0]

= [∂An (a)⊗ d].

Therefore, ∂
cone(A⊗1

Rf)
n µn = µn−1∂A⊗

1
Rcone (f)

n , which is what we wanted to show.

i ⩾ 1:

Choose an element (a⊗ (c, d)) ∈ An−i ⊗R ((ΣC)i ⊕Di). Then,

∂
cone (A⊗1

Rf)
n µn(a⊗ (c, d))

= ∂cone (A⊗
1
Rf)

n (σA⊗
1
RC

n−1 (a⊗ (σCi )−1(c), a⊗ d)

= [∂Σ(A⊗
&C)

n (σA⊗
1
RC

n−1 (a⊗ (σCi )−1(c))),

(An−i ⊗R fi−1)(σA⊗
1
RC

n−1 )−1σA⊗
1
RC

n−1 (a⊗ (σCi−1)−1(c)) + ∂A⊗
&D

n (a⊗ d)]

= [ − σA⊗
1
RC

n−2 ∂A⊗
&C

n−1 (σA⊗
1
RC

n−1 )−1(σA⊗
1
RC

n−1 (a⊗ (σCi )−1(c)))

, (An−i ⊗R fi−1)(a⊗ (σCi−1)−1(c)) + ∂An−i(a)⊗ d + (−1)n−ia⊗ ∂Di (d)]

= [ − σA⊗
1
RC

n−2 ∂A⊗
&C

n−1 (a⊗ (σCi )−1(c)), (a⊗R fi−1(σCi−1)−1(c))

+ ∂An−i(a)⊗ d + (−1)n−ia⊗ ∂Di (d)]

= [ − σA⊗
1
RC

n−2 (∂An−i(a)⊗ (σCi )−1(c) + (−1)n−ia⊗ ∂Ci−1(σCi−1)−1(c)),

(a⊗R fi−1(σCi−1)−1(c)) + ∂An−i(a)⊗ d + (−1)n−ia⊗ ∂Di (d)].
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However,

µn−1∂
A⊗1

Rcone (f)
n (a⊗ (c, d))

= µn−1[∂An−i(a)⊗ (c, d) + (−1)n−ia⊗ ∂cone (f)i (c, d)]

= µn−1[∂An−i(a)⊗ (c, d) + (−1)n−ia⊗ (∂ΣCi (c), fi−1(σCi−1)−1(c) + ∂Di (d))]

= [ − σA⊗
1
RC

n−2 (∂An−i(a)⊗ (σCi )−1(c) + (−1)n−ia⊗ (σCi−1)−1∂ΣCi (c)), a⊗ fi−1(σCi−1)−1(c)

+ ∂An−i(a)⊗ d + (−1)n−ia⊗ ∂Di (d)].

It is clear that ∂Ci−1(σCi−1)−1(c) = (σCi−2)−1∂ΣCi (c), since the following diagram commutes

Ci−1
∂Ci−1 //

σC
i−1

��

Ci−2

σC
i−2

��

(ΣC)i
∂ΣCi // (ΣC)i−1

Therefore, ∂
cone(A⊗1

Rf)
n µn = µn−1∂A⊗

1
Rcone (f)

n , which is what we wanted to show.

n ⩽ −1:

In this case the diagram is

(A⊗1
R cone (f))

n

∂
A⊗1

Rcone (f)
n //

µn

��

(A⊗1
R cone (f))

n−1

µn−1

��

(cone (A⊗1
R f))n

∂
cone (A⊗1

Rf)
n // (cone (A⊗1

R f))n−1
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Define

µn(a ⊗ σcone (f)
n−i−1 (c, d)) = ((−1)∣a∣σA⊗

1
RC

n−1 (a ⊗ c), a ⊗ σDn−i−1(d)) where a ⊗ σcone (f)
n−i−1 (c, d) ∈

Ai ⊗R (Σcone (f))n−i. with a ∈ Ai, (c, d) ∈ (ΣC)n−i−1 ⊗RDn−i−1.

∂
cone (A⊗1

Rf)
n µn(a⊗ σcone (f)

n−i−1 (c, d))

= ∂cone (A⊗
1
Rf)

n ((−1)∣a∣σA⊗
1
RC

n−1 (a⊗ c), a⊗ σDn−i−1(d))

= [∂Σ(A⊗
&C)

n ((−1)∣a∣σA⊗
1
RC

n−1 (a⊗ c)),

(Ai ⊗R −(Σf)n−i−1)(σA⊗
1
RC

n−1 )−1(−1)∣a∣σA⊗
1
RC

n−1 (a⊗ c) + ∂A⊗&Dn (a⊗ σDn−i−1(d))]

= [ − σA⊗
1
RC

n−2 ∂A⊗
&C

n−1 (σA⊗
1
RC

n−1 )−1((−1)∣a∣σA⊗
1
RC

n−1 (a⊗ c)),

(Ai ⊗R −(Σf)n−i−1)(−1)∣a∣(a⊗ c) + ∂Ai (a)⊗ σDn−i−1(d) + (−1)ia⊗ ∂ΣDn−iσDn−i−1(d)]

= [ − σA⊗
1
RC

n−2 ∂A⊗
&C

n−1 (−1)∣a∣(a⊗ c), (−1)∣a∣a⊗R −(Σf)n−i−1(c)

+ ∂Ai (a)⊗ σDn−i−1(d) + (−1)ia⊗ ∂ΣDn−iσDn−i−1(d)]

= [(−1)∣a∣+1σA⊗
1
RC

n−2 (∂Ai (a)⊗ c + (−1)ia⊗ ∂ΣCn−i−1(c)), (−1)∣a∣a⊗R −(Σf)n−i−1(c)

+ ∂Ai (a)⊗ σDn−i−1(d) + (−1)ia⊗ ∂ΣDn−iσDn−i−1(d)].

However,

µn−1∂
A⊗1

Rcone (f)
n (a⊗ σcone (f)

n−i−1 (c, d))

= µn−1[∂Ai (a)⊗ σ
cone (f)
n−i−1 (c, d) + (−1)ia⊗ ∂Σcone (f)

n−i σ
cone (f)
n−i−1 (c, d)]

= µn−1[∂Ai (a)⊗ σ
cone (f)
n−i−1 (c, d) + (−1)ia⊗ −σcone (f)

n−i−2 ∂
cone (f)
n−i−1 (σcone (f)

n−i−1 )−1σcone (f)
n−i−1 (c, d)]

= µn−1[∂Ai (a)⊗ σ
cone (f)
n−i−1 (c, d) + (−1)ia⊗ −σcone (f)

n−i−2 ∂
cone (f)
n−i−1 (c, d)]

= µn−1[∂Ai (a)⊗ σ
cone (f)
n−i−1 (c, d)

+ (−1)ia⊗ −σcone (f)
n−i−2 (∂ΣCn−i−1(c), fn−i−2σ−1n−i−2(c) + ∂Dn−i−1(d))]

= ((−1)∣a∣−1σA⊗
1
RC

n−2 (∂Ai (a)⊗ c), ∂Ai (a)⊗ σDn−i−1(d))+

((−1)∣a∣σA⊗
1
RC

n−2 ((−1)i+1a⊗ ∂ΣCn−i−1(c)), (−1)ia⊗ −σDn−i−2(fn−i−2σ−1n−i−2(c) + ∂Dn−i−1(d))).
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Therefore, ∂
cone(A⊗1

Rf)
n µn = µn−1∂A⊗

1
Rcone (f)

n , which is what we wanted to show.

Remark 5.2.2. In Theorem 5.2.1 we note that we will not have an isomorphism be-

tween A⊗&
R cone(f) and cone(A⊗&

R f) because (C ⊗1
R cone (f))

n
has one more term

than (cone (A⊗&
R f))n for n > 0 and vice versa for n < 0.

Theorem 5.2.3. Let A be an R-complex and f ∶ C →D be a morphism of complexes

of R-modules . Then there exists a morphism from cone(A ⊗&
R g) to A ⊗&

R cone(f),

where

gn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn for n ⩾ −1

−fn for n < −1.

Proof: The proof is similar to that of Theorem 5.2.1.
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