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Abstract

PROPERTIES OF THE PINCHED TENSOR PRODUCT

Yousuf Abdullah Alkhezi, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: David A. Jorgensen

For complexes of modules we study a new construction, called the pinched
tensor product, which was introduced in [1] by Lars Winther Christensen and David
A. Jorgensen to study Tate homology Tor. We explore properties of the pinched
tensor product and their comparison to properties of the ordinary tensor product.
For example; we show the isomorphisms ¥ (C®r A) 2 (XC)®@r A2 C®r (X A) where
A and C are two complexes, no longer holds for the pinched tensor product. Although
if we change isomorphism to quasi-isomorphism the pinched version holds. Plus if
f:C — D and g: A — B are morphisms of complexes of R-modules with f homotopic
to 0, then f ® g homotopic to 0, and this property is not true for the pinched tensor

product.
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Chapter 1
Introduction

Tensor products of complexes is a classical construction and has been used in
countless applications for many decades. Consequently, their properties are well-
known. We refer to them as the ordinary tensor product of complexes. Lars Chris-
tensen and David Jorgensen introduced in [1] a variant of the ordinary tensor product
of complexes, call the pinched tensor product. They use it to compute Tate homol-
ogy and to show Tate homology is balanced. Also, they show it yields a complete
resolution of the tensor product of two Tate Tor-independent modules. Since it is a
brand new construction, very few properties of the pinched tensor product are known.
Therefore we investigate the properties of the pinched tensor product and compare
them with the analogous properties of the ordinary tensor product.

In Chapter 2 we recall the definition of the ordinary tensor product of modules,
complexes and maps, and give proofs of many properties for the ordinary tensor
products. We also see that the ordinary tensor product is a functor of complexes,
and discuss how it relates to morphisms, shift and homotopy.

In Chapter 3 we give the definition of the pinched tensor product and a precise
description of its basic properties, like commutativity and associativity. Also, we
compare the basic properties of the pinched tensor product with those of the ordinary
tensor product, and conclude which of these properties hold for the pinched tensor
product and which do not.

Chapter 4 is focus on the pinched tensor product and shift. We show that
the isomorphisms Y (C' ®r A) = (XC) ®r A2 C ®r (X A) that hold for the ordinary



tensor product no longer hold for the pinched tensor product. Although if we change
isomorphism to quasi-tsomorphism the statement for the pinched tensor product
holds. In addition, we give some counterexamples for the isomorphisms that no
longer hold for the pinched tensor product.

Finally, Chapter 5 examines two other properties: the pinched homotopy and
the pinched mapping cone. We see that the pinched tensor product is a functor from
the category of complexes, but we cannot extend to it a functor on the homotopy
categories. Also, we give some counterexamples for the relevant properties that no
longer hold for the pinched tensor product. In addition we show that the isomorphism
that implies the mapping cone commutes with tensor product for the ordinary tensor
product no longer holds for the pinched tensor product. However, we show there is a

morphism.



Chapter 2
Preliminary Concepts

Unless otherwise indicated, we will assume A, B, C' and D are complexes of R-
modules, R is an associative ring and M, N are R-modules. We assume M and N are
either left or right R-modules, depending on the context. For example when discussing
M®pr N we are assuming M is a right R-module and N is a left R-module. The same
holds for complexes. For example, when discussing C' ® g D we are assuming C' is
a complex of right R-module homomorphisms and D is a complex of left R-module
homomorphisms. We will find most of the definitions and results of this chapter in

[2] and [4].

2.1  Complexes

Definition 2.1.1. A chain complex C of R-modules is a sequence of R-module ho-

momorphisms,

BC+1 ac
n n
Civve s G =3 Cp = Gy

such that Im 9¢,

n+1

are called the differentials of C.

c ker 9¢ for all n. Equivalently 9¢9¢., = 0, for all n. The maps 0,

n “n+l

Definition 2.1.2. Given a complex C of R-modules

¢, ¢
n n
C:ivi—Chy— O, C,_g—>



We say that it is exact at C,, if Im 9

- c '
.1 = ker05. Moreover, we say C is an ezact

sequence if Im 9%, | = ker S for all n.

n+1

Definition 2.1.3. A short exact sequence is an exact sequence of the form

6C+1 a¢
n n
0— CVn+1 - On - CYn—1_>0-

Definition 2.1.4. Let C be a complex. Then the submodule of n-cycles is Z,(C') =

ker ¢, and the submodule of n-boundaries is B, (C) =Imd<,,.

Remark 2.1.5. The condition that Im 0¢

n+1

c ker 9¢ yields for all n,
B,(C) c Z,(O).
Definition 2.1.6. The nth homology group of a complex C' is
H,(C) = Zn(C)[Bn(C).

Remark 2.1.7. In Definition 2.1.6 we can conclude that H,(C) =0 if and only if C' is

exact at C,,.

Remark 2.1.8. It is known that if C and D be complexes. A chain map f:C - D

takes cycles to cycles and boundaries to boundaries.

2.2 Functors
Definition 2.2.1. A category C consists of three ingredients: a class 0bj(C) of ob-
jects, a set of morphisms Hom (A, B) for every ordered pair (A, B) of objects, and

composition Hom (A, B) x Hom(B,C') - Hom (A, C') denoted by (f,g) — gf, for ev-
4



ery ordered triple A, B, C of objects. These ingredients are subject to the following
axioms:
1. The Hom sets are pairwise disjoint: that is , each f € Hom(A, B) has a unique

domain A and a unique target B;

2. For each object A, there is an identity morphism 14 € Hom(A, A) such that
fla=fand 1gf=fforall f: A—> B;

3. Composition is associative: given morphisms A LBL%chp , then h(gf) =

(hg)f.

Definition 2.2.2. If C and D are categories, then a covariant functor F':C - D is a
function such that
1. If A€ obj(C) then F(A) € obj(D).
2. Iff:A—>A’ in C, then F(f): F(A) > F(A’) in D.
3.1 AL A% A7 in € then F(A) 2P peany 29
F(g)F(f).
4. F(14) = 1pa) for every Aeobj(C).

F(A") in D and F(gf) =

Definition 2.2.3. A contravariant functor IF':C - D where C and D are categories,
is a function such that
1. If C e 0bj(C) then F(C') € obj(D).
2. If f:C - C"inC, then F(f): F(C”) - F(C)inD (note the reversal of arrows).
3.1 C L 0% ¢ in C then F(C”) F(C”) F(C) in D and F(gf) =
F(f)F(9)-
4. F(14) = 1pa) for every A eobj(C).



2.3 Tensor Products

2.3.1 Tensor Products of Modules

Definition 2.3.1. Let R be a ring, let M be a right R-module, let N be a left R-
module, and let G be an additive abelian group. A function f: M x N — (G is called

R-biadditive if for all m,m’ e M,n,n’ € N, and r € R, we have
fm+m',n) = f(m,n)+ f(m',n),
f(m,n+n') = f(m,n)+ f(m,n'),
flmr,n) = f(m,rn).

Definition 2.3.2. Given a ring R and R—modules M and N, their tensor product is

an abelian group M®zN together with an R-biadditive function
T:MxN->M®rN

such that the following universal mapping property holds: for every abelian group
G and every R-biadditive function ¢ : M x N — G, there exists a unique map ¢ :

M®grN — G making the following diagram commute.

MXN—T>M®RN

=

Proposition 2.3.3. If R is a ring, and M is a right R-module and N s a left R-

That is, p = ¢7.

module, then their tensor product exists.



Proof: let F' be the free abelian group with basis M x N : that is, F' is free on all
ordered pairs (m,n), where m € M and n € N. Define S to be the subgroup of F’

generated by all elements of the following three types;
(ma n+ n/) - (ma n) - (m7 n,);

(m+m';n)-(m,n)-(m',n);
(mr,n) - (m,rn).

where me M, , ne N and r € R. Define M ®r N = F/S, denote the coset (m,n)+S
by m ® n, and define 7: M x N - M ® N by T((m,n)) =m ®n. It is now obvious

that 7 is R-biadditive since

T(m+m/,n) = (m+m'®n)
= (men)+(m' ®n)

= 7(m,n)+7(m/ n).

Similarly for the other properties. We now need to verify the universal mapping
properties. Let G be an abelian group and ¢ : M x N - G be an R-biadditive
function. Define ¥ : F' — G by \Il((m, n)) = gp((m, n)) and extend by linearity. Since
¢ is R-biadditive we have W(S) =0, and therefore by the first isomorphism theorem
there exists a well-defined homomorphism ¢ : M®p N — G with ¢(men) = ¢((m,n)).
Also (¢7)((m,n)) = ¢((m®n)) = p(m,n), therefore 7 = f exists. Finally, suppose
that ¢/ : M @ N - G satisfies, ¢'7 = ¢. Then gb((m ® n) = ¢(r(m,n)) = p(m,n) =
gb’(T(m,n)) = qb’((m ® n)), thus ¢’ = ¢.

Proposition 2.3.4. The tensor product M ® g N is unique up to isomorphism.



Proof: Assume that M @z N and (M ®z N)' are two abelian groups satisfying the

definition of the tensor product. Then we have

MxN—" 3 M@rN
km/
(M &g N)
And,
MxN—=2—5(M®rN)
M ®&r N

It is clear that ¢'¢ = Idpe,n. Similar work shows ¢’ = Id(are,ny - Therefore ¢ and
© are isomorphisms.

[
Remark 2.3.5. 1. Since M ® N is generated by the elements of the form m ® n,

every x € M @z N has the finite sum form
T = Z m; ®n;.
i

2. The tensor product of two elements of M and N is bilinear by Definition 2.3.2
which means we have (m+m/)®@n=me@n+m'’®n, m®(n+n’) =men+men’
and mren =m®®rn for all mym’ e M , n,n’ € N and r € R. When R is

commutative, we also have r(m®n)=rm®n=me®rnin M @ N

3. From 2, the expression for x € M ® g N is not necessarily unique; for example

for all m,m’ e M , n,n’ € N and r € R we have,

mron-mern=_0,

8



(m+m')en-men-m'®n=0,

me((n+n)-men-men'=0.

The following Propositions are basic facts, using the universal mapping property.
Proposition 2.3.6. Assume R is commutative. For any R-modules M and N there

18 an isomorphism M @z N 2 N @ M.

Proof: The proof is well-known. ( Proposition 2.56 in [2].)

O
Proposition 2.3.7. Let M be right R-module. Then
Mer R~ M.
Proof: The proof is well-known. ( Proposition 2.58 in [2].)
O

2.3.2 Tensor Products of Complexes
Definition 2.3.8. The tensor product C'®r D over R of chain complexes C' and D
is specified by letting

(Cer D), = @Ci ®r Dy
€7

The differential is defined by

99®P(cod) =0 (c)®@d+ (-1)'c®d? (d)

for ce C; and d € D,,_;. The sign (1) ensures that 9¢®29°8P = ( for all n.

n+1



Definition 2.3.9. Let C' be complex, Then C,,, is defined by

C; forizn

(0271)2' =
0 for i < n,
and
C .
Ao 05 fori>n
0 for 7 < n.
Similarly, Cg, is defined by
C; forign
(Cén)z =
0 for 1 > n,
and
oY forig<n
9% =

0 for 7 > n.

Remark 2.3.10. From Definition 2.3.8, we can see that
(C®r D), =P C;®r D,
ieZ
is not finitely generated even if C; and D,,_; are so for all i (assuming C; and D,,_; are
nonzero for all 7). Here is a picture illustrating the ordinary tensor product, where
each point (i,n—1) in the plane represents the tensor product C,, ® g D,,_; of modules

and each line Y = =X + n represents (C ®g D).

10



D

Sl
N \

N \::C

Figure 2.1: Ordinary Tensor Product

And the differentials can be represented by;

D

iy
; ‘- \

NN NN ::C
N

Figure 2.2: Differential on the Ordinary Tensor Product

Theorem 2.3.11. Let R be a commutative ring and C' and D be complexes. Then

CerD=DegrC.

11



Proof: The proof is well-known. ( Propostion 2.56 in [2].)

O
Theorem 2.3.12. Let R and S be rings, and A, B and C' be complexes and A a right
R-module, B a RS-bimodule and C' a left S-module. Then

(A@RB)(X)SCEA@R(B@SC).

Proof: The proof is well-known. ( Proposition 2.57 in [2].)

O
Proposition 2.3.13. Let C' be a complex. Then
CerR=C.
Proof: The proof follows easily from Proposition 2.3.7.
O

2.3.3 Tensor Products of Maps
Proposition 2.3.14. Let M and N be R-modules, and Let f: M - M', g: N - N’

be R-module maps. Then there exists a homomorphism of abelian groups f ® g :

Mer N - M ®r N' defined by (f ® g)(men)=f(m)®g(n) for allne Nyme M.

Proof: The function ¢ : M x N - M'®@gN’, given by (m,n) - f(m) ® g(n), is an

R-biadditive function. For example,

p: (mr,n) > f(mr)®g(n) = f(m)reg(n)
and
p:(m,rn) > f(m)®g(rn) = f(m) ®rg(n);
these are equal because of the identity m’r®@n’ = m’®rn’ in M'®zN'. The biadditive

function ¢ yields a unique homomorphism M@®rN — M'®@g N’ taking m®n — f(m)®
12



g(n).

O
Corollary 2.3.15. If f: M - M’ and g: N — N' are, respectively, isomorphisms
of right and left R-modules, then f® g : M®rN — M'®QrN' is an isomorphism of

abelian groups.

Proof: Tt is easy to see that f® 1y is an isomorphism since f is and, similarly, 1, ® g
is an isomorphism. Then we have f® g = (f ® 1n)(1y ® g). Therefore, f ® ¢ is an

isomorphism, being the composite of isomorphisms.

Theorem 2.3.16. Let M be a right R-module, and let
N’ N2 N"—s0.

be an exact sequence of left R-modules. Then

1®1 1®p

M®RN,—> M@rN — M@RN"—>0

s an exact sequence of abelian groups.

Proof: We must check three things
1. Im(1®1i) cker(l®p).
It suffices to prove that the composite is 0. We have (1@ p)(1®i) = 1Q® pi =
1®0=0.

2. ker(l®p)cIm(l®i).
Let £ =Im(1®i). By part (i), F ¢ ker(1® p), and so 1 ® p induces a map
p:(M®N)/E - Me®N" with

pimen+E—->m®pn,
13



where m e M and ne N. Now if 7: M ® N - (M ® N)/E is the natural map,

then p'mr =1®p , for both send m ® n - m ® pn where n € N and m € M.

Me®N—"-(M®rN)/E

s

M & N"

Suppose we show that p’ is an isomorphism. Then
ker(1® p) = ker(p'm) =ker(7) = E=Im (1 ®1), and we are done. To see that p’
is an isomorphism, we construct its inverse M ® N” - (M ® N)/E as follows.

If n” e N”, there is n € N with pn =n”, because p is surjective; let
f:(m,n") > men.

Now f is well-defined: if pn; = n”, then p(n-ny) =0 and n —n; € kerp = Imi.
Thus there is n' € N’ with in’ = n—ny, and hence m®(n—n;) = a®in’ € Im (1®1) =
E. Clearly, f is R-biadditive, and so the definition of tensor product gives a
homomorphism f': M@ N” - (M ® N)/E with f'(me®n”)=me®n+E, and f’

is the inverse of P’.

3. 1 ®p is surjective.
If ¥m;®n! e M ®N", then there exist n; € N with pn; = n/ for all ¢, for p is

subjective. But 1®p: Yy m; ®n; = Y m; ® pn; = Y, m; ®n!.

O
A similar statement holds for the functor O®zN: if N is a left R-module and M’ LR
M -2 M"—0 is a short exact sequence of right R-modules, then the sequence

1®1

M'@pN 25 MeN 25 M @y N—s0

1s exact.
14



2.4 Ordinary Tensor Product and Morphisms
Definition 2.4.1. A morphism, or a degree zero chain map, f : C - D between
complexes C' and D is a family of R-module homomorphisms f, such that each

square in the diagram

agﬂ ag
o Chi1 Cy Cp1
fn+1 fn fn—l
a??ﬂ 8,?
i Dy D, Dy —— -

commutes. In other words, for each n we have f, 105 = 9P f,..
Also, if f, : C, -» D, is an isomorphism for all n then, C' and D are said to be

1somorphic, denoted by 2.

Example 2.4.2. Suppose M and N are two modules and f: M — N is a homomor-

phism. Then the following diagram obviously commutes

0 M 0
T f T
0 N 0

and so is an example of a morphism of complexes.

15



Definition 2.4.3. Let C' and D be complexes. A degree d chain map f:C — D is
a family of maps f,, : C;, > D4 such that f, 105 = (-1)49P ,f, , which is expressed

by the diagram:

agﬂ 07?
Cn Cn— 1

et G

fn+1 fn fnfl

D D
D 8n+d+1 D 9 +d D
e n+d ntd-1—— 7"

Proposition 2.4.4. Let f : C - D and g : A - B be morphism of complezxes,
then there exists a morphism of compleres f @ g : C ®g A - D Qr B defined by

(fog)(c®a)=fi(c)®gni(a) forcwacC;® A,_;.

Proof: The goal is to define (f ® ¢g) in each degree and show each square commutes

CRA
(CerA), ——— (CorA), ,
(f@g)n (f®g)n71
D®B

(DerB), ——— (D®rB),,
Then for all n € Z the diagram will be
C®A

@icz Crni ®r Ai ———— @iz Crio1-: ®p A;

(f®g)n (f®g9)n-1

D®B
@icz Dn—i ®r Bi———— @iz Dp1-i ®r B;

Let c®aeC,_; ®r A; then we will have,
(07°P)(f @ g),(coa) = (5°P)(fami(c) ® gi(a))

0y (fn-i(c)) @ gi(a) + (=1)"" fui(c) ® 7 (gi(a)).
16



And
(f®9),,(05%4(c®a)) = (f®9), (05 (c)@a+(-1)"ced(a))

Fa-i-1(03(e)) ® gi(a) + (=1)"7 fu-i(c) ® gi-1(07(a))-

Since both f and g are morphisms, we have,
Faeic1(0S,(c)) = 02 (fa-i(c)), and 0P (gi(a)) = gi-1(97*(a)). Therefore, IP2B(f ® g),, =
(f ® g)n—lag(gA'

m
Corollary 2.4.5. Let f: C - D be morphism of complexes, then there exist a mor-
phism of complexes (f®g): (C®A) - (D®grA) defined by (fi®rld)(c®a) = fi(c)®a.

Proof: Let g =1d4 in the previous Proposition 2.4.4.

Theorem 2.4.6. Let C' and D be complexes. Then,

Ceor (B D) 2P(CerD;).

iel iel

Proof: The proof is well-known.( Theorem 2.65 in [2] .)

Theorem 2.4.7. Let C' and D be complexes. Then,

(@Cl) ®r D= @(CZ ®r D)

iel iel

Proof: The proof is well-known.

2.5  Ordinary Tensor Product and Shift
Definition 2.5.1. Let C' be a complex of R-modules. Then the Shift of C, XC
is complex of R-modules defined by (XC), = C,_1, and 9X¢ = -0, 205 |0}, for all

n. Also, the canonical map o : C' - LC' is obtained by shifting degrees of elements,
17



specifically, if ¢ € C. Then |o(c)| = || + 1.

Remark 2.5.2. Let C' and D be complexes, then for the ordinary tensor product we
have L(C®r D) 2 (XC)®r D 2 C ®g (X D). Since we know by definition

(Z(C ®r D))n =(C®r D)n-1=®icz Co-1-i ®r D,

((EC)orD) =@ice(EC)umi ®n Di = Bicz. Cie1-s @1 D, and

(C ®r (ZD))n =@z Cri®r(XD); = By, Cri ®r D;_1. Since these are direct sums
over all 1 € Z, we have L(C ®r D) 2 (XC)or D 2 C ®r (XD).

Corollary 2.5.3. Let f: C - X4 (D) and g : A - L%(B) be morphisms of com-

plexes. Then there exist a morphism of complexes (f®g) : (C®rA) > L4+ (DerB).

Proof: By Proposition 2.4.4. We have a morphism (f ® g) : (C ®r A) - L4 (D) ®r
Y% (B). Also, by Remark 2.5.2 there exists an isomorphism ¢ : X4 (D) ®r L%(B) —»
Ydhtd2(D @p B). Therefore (f®g): (CorA) > Xh*2(D oy B).

2.6  Ordinary Tensor Product and Homotopy.
Definition 2.6.1. We say that a chain map f: C' - D is null homotopic if there are

maps h, : C,, > D, such that f, = h, 105 + 9P  h,, for all n. In this case we write

n+1
f~0
a$+1 67?
o Chi1 Cy Cp
hn hn—l
fn+1 fn fn—l
O oy
i Dy D, Dy ——— -+

18



Theorem 2.6.2. Let f: C - D and g : A - B be morphisms of complexes of R-

modules with f ~0. Then f® g~ 0.

Proof: Consider the diagram

C®A

oy
Bz Cri ®r Ai ——— Bz, Crmic1 ®r A;

h/
= kf n-i®9i ;
hnfl
6D®B

@iz Dpi1-i ®r Bi —— @iz, Dy—i ®r B;

Define h!, = (hp—; ® g;)icz. Choose an element c® a € C,,_; ®g A; . Then,

aPerB (p! Y (c @ a) + (h,_,)0®* (c® a)

= 0P (h))ien(c® a) + (W )ien(0Ci(c) @ a+ (-1)"c @ 9 (a))
= 055 (ha(e) ® gi(a) ) + hn 1 (0Z4(€)) © gi(a) + (=1)""hu(c) ® gi-1(9(a))
= (02 1(hn(©)) @ gi(@) + (~1)"* hy(c) ® D (gi(a)))
+hn1(07,(€)) @ gi(a) + (<1)""h(0) ® gi1 (07 (a) ) (1)
=0 11 (1(©)) ® 9i(a) + -1 (94(0)) ® g:(a)
= (211 (1) + ha (954(0)) ) © 9:(a)
= fai(c) ® gi(a)
=(f®g)(c®a).

Where in (1) we use the fact that 9Pg; = g;.102. Therefore f ® g ~ 0.
Corollary 2.6.3. Let f:C > D andIdy: A— A with f ~0, then f®Idy~0 .

Proof: Repeat the same work as in Theorem 2.6.2: by replacing g with identity map.

[l
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2.7 Ordinary Tensor Product and Mapping Cones
Definition 2.7.1. Let A, B, C'and D be complexes, and let f:C'-> Dandg: A— B

be chain maps. Then for c®a € C;®A,_; we have (f®g)(c®a) = (=1)ll9l f;(c)®g,,_i(a).

Definition 2.7.2. If f: C — D is a chain map, then its mapping cone, cone (f), is a
complex of R-modules whose term of degree n is cone (f), = (XC), ® D,, and whose

differentials 0, : cone (f),, - cone (f),_1 is given by

gEC

peone () _ '
fn—l U;El ar?

A straightforward computation shows that 8;(28” Joeene(h _

>C
Heone (f)azone €)) _ an—l

n—1
-1 D -1 D
fn—ZUn_Q a’rL—l fn—lan—l an

0 o=C¢ 0

§EC oz C 0 00

-1 D -1 D
fn—20n72argc + 8nflfﬂ—lo-nfl anflar? 00

since we know that f is a morphism and 9X¢ = -0, _,9% ,0.1,.

Theorem 2.7.3. Let A be an R-complex and f: C — D be a morphism of complezxes
of R-modules. Then
A®pcone (f) = cone(A®g f).

Proof: The proof is well-known.( Proposition 4.1.12 in [4]. )
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Chapter 3
The Pinched Tensor Product and Morphisms

In this chapter we give the definition of the pinched tensor product and a pre-
cise description of its basic properties, like commutativity and associativity. Also,
we compare there basic properties of the pinched tensor product with those of the
ordinary tensor product, and conclude which of these properties hold for the pinched

tensor product and which do not.

3.1 Assumptions and Notation

Definition 3.1.1. (Refrence [1]) Let C' and D be complexes. Consider the R-complex
C ®"% D defined by:

(Coo®p Deo)n for n >0
(CeRr D), =

(Cc.1®r(XD))n forn<-1.
and 9°®xP defined by

Cs0®pD
Oy 0 8R>0 forn>1

Ce%D
O "R = Of ®p (c0P) forn=0

C<-1®r(XD
gi1er(ED)0 g0 <1

where o denotes the canonical map D — ¥ D. This is a differential on C' ®% D since
(O @ (00F))0 =" = 0= 057 D2 (0 @ (007)).
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C®%D

Remark 3.1.2. From Definition 3.1.1, 0, is the differential on C'®% D. In partic-

ular, we show the previous equations. Let c® d € C; g Dy. Then
(O @r (c0F))o " P (c® d) = (0 @r (c0) ) (9" (c @ d))
= (9 @r (009))(07(c) @ (d) + (-1)"(c) ® 0 (d)
- (ag ®n (aa(?))(afw(c) ® (d) + o)
= 959> (c) ® 005 (a)
=0®cd(d)
=0.
Now, if c® d e Cy ®r D1. Then
(0§ ®r (0OP))0®RP> (c @ d) =

o5 ®n (000)) (05" (c® d) )

)@
05 @r (00)) (957 (c) @ () + (-1)°(c) ® ()
)

o5 ®n (009)) (0@ (d) + (-1)°(c) ® 0 (d))

(
(
(
(95 @r (009))((-1)°(c) ® 3 (d))
(
(4
0.

0 (c) & (00001 (d))

§(c)®0)

Similarly, if ¢® d € Cy ® Do. Then
059 o (00 )(c @ d) = 05 E0((0F @r (00F)) (e ® d))
= 051D (58 (¢) @ 00 (d))
= 95195 () ® 0OP (d) + (~1)'95 () ® P 0P (d)
=0®00P(d)+ (-1)'05(c)®0

=0.
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Remark 3.1.3. From Definition 3.1.1 we can see that

@?:0 Ci®r Dy forn>0

(Ceg D), =

@Z—l Ci®r(XD)y; forn<-1

is finitely generated for all n (Provided C; and D; are finilety generated for all 7, j).
Here is a picture illustrating the pinched tensor product, where each point (i,n - 1)
in the plane represents the tensor product C; ® g D,,_; of modules and C; ®g (X D),,_;

and each line segment Y = -X +n represents (C' ®% D), .

D

DO
\

Figure 3.1: Pinched Tensor Product

And the differentials can be represented by;
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N

Figure 3.2: Differential on the Pinched Tensor Product

3.2 Properties
Definition 3.2.1. Let g : A - B be a morphism of complexes between A and B.
Then (Xg), =02 g,-1(c%-1)7
U;?—1
A, ———— (XA),

In-1 (zg)n

B, —* 5 (EB),

Theorem 3.2.2. Let R be a commutative ring and C' and D be complexes. Then
CeyD=De%C.

Proof: By the definition of the pinched tensor product, Remark 2.3.6 and Remark 2.5.2

we have,
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(Ce% D) = Cs®r Dy

2 Dyy®rCs
And
(O ®E D)s—l = Og_l ®r (ZD)so

IR

(ED)o®r Ccy
= Y(Dq)®rCoyq
¥ De1®rX(Ciy)
¥ De1®r(XC0)«

=z (D&% C)ca.
It remains to show in the case when n =0 the diagram

C®§D
(C®% D), ———— (C&% D),

D&RC
(D&% (), ———— (D&% C)_

commutes. This diagram is equal to:

CR%D
Co®p Dy ———— C_1 ®x (XD),

De%3C
Do®gr COO—)D_l ®Rr (ZC)O

Let c®d € Co®p Dy, 7-1(c®d) = (65)"1(d)®0% (¢) and note that 8OC®D1§D =0Y®@aBop.

Then we have,
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71(07% (cod)) = 71(35(c) ® oB,0P (a))
((eB) 1 ®0%)(85 (c) ® a7 (d))
(08) o507 (d) ® 06,05 (c).

9P (d) ® 0,06 (c).

Moreover,

(%) (ro(c® )

(0% (d & c)

0P (d) ® 035 (c).
Therefore, (C'®% D) = (D &% C).

]
Theorem 3.2.3. Let R and S be rings, and A, B and C be complexes and A a right

R-module, B a left R-right S-bimodule and C' a left S-module. Then
(A®LB)®5C =z AQL(B®SC).

Proof: By the definition of the pinched tensor product and Remark 2.5.2 we have,

((A®;‘§B)<zz>;}0)>0 = (A®%B):0®5Cx0
= (A®rBs0)®sCs
2 A 0®r(Bx®sCs0)
= A,0®r(B&%(C)s0
= (A@E(B@EO))ZO.
Moreover,

26



((A®%B)®§C)<_l = (A8%B)<18s(XC)<0
L (Acr0(EB)<0)@5(E0)c0
s Ac10a((ZB)2®s(XC)a)
= Ac1@p(X(Be1)8s(XC0)x)
= A 1% (Be1@5(XC)x )
- Ayl@RZ((B@gC)S,l)

= Aco5(X(Be30))

<0
~ (A@E(B@;’;C))Gl.
Now we need to show in the case when n =0 the diagram commutes,
(A®*B)®"C
((A@EB)@;’;C)O B ((A@jf%B)@gC)_l
0 T-1
A®™(B®"(C)
(A@%(B@EC’))O - (A<>z>j;2(B<z<>gC))_1
which is equivalent to
(A®*B)®"C
(A®%B)g®5C) ——— (A®%B)_1®5(X (),
T0 T-1
A®"(B®"C)
Ap®p(B*C)g —— A_1®R(Z(B®g()))0
which is also equivalent to
(A®*B)®"C
(Ao®rBo)®sC 0 ((A_1®R()ZB)0)®S(ZC’)0
T0 T-1
A" (B®"(C)
Ao®r(Bo®sC)) ! A—1®R<B—1®S(ZC)O)
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Let (a®b) ® c € (Ag@rBo)@sCo and 71((a®@b) @ c) = a e ((05)(b) ® (C)o(0)).
Then we have,
1 (05" (a0 b) ®0)) = 74 ( (6 (a) @ (e50F) (b)) ® (05.06)(c) )
= (A1 @ (05) 7 & (20))(('(a) @ (o705) (b)) @ (0505 ()
= 0t (a) ® (((e5) "o B0F) (b) ® (0505 () )
= 0t (a) ® ((9F)(8) ® (6505 (<))-
Moreover,
% PO 1((aeb) 8 ) = P ae (boo))
(9 & (9F © (05,06))(a® (b &)

0 (a) @ ((98)(b) ® (6505 (<)).
Therefore, (A®%B)®%C = A®%(B®LC).

The following Theorem is the pinched analog of Proposition 2.4.4.

Theorem 3.2.4. Let f:C - D and g: A - B be morphisms of complexes. Then
there exists a morphism of complezes f ®% g:C &% A — D ®% B defined by fo0® gso :
(C®% A)so > (D &% B)so and fo1 ® (Lg)<o: (C®F A)cry > (D ®F B)<i.

Proof: We only need to show in the case when n = 0 that the following diagram

commutes.

CeRA
(CeRA),————— (Ce%A)

fo®go f-1®(Zg)o
DR B

(D &% B),—————— (D&% B)_|
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which is equal to,

CeRA
C() ®r A() 0—) C4 ®r (ZA)O

fo®go f-1®(Xg)o
D3 B
Dy ®p By————D_, &5 (£B),
Let c®a e Cy®pr Ag then we will have,
(f-1® (£9)0) (05" (c®a)) = (f-1®(£9)0)(06(c) @ 07,87 (a))
(F1(3 () @ (Zg)o(0%5'(a) ).

Moreover,,

(3(?®§B)(fo ® go)(c®a)

(92°F") (fo(c) ® go(a))

B (folc)) ® aB9F(90(a)).
We note that (f,l(ﬁg(c)) =0P(fo(c)) since f is a chain map, and

(X g)o(a‘_“laé“(a)) = 0’_918(?(570(@)) because the following diagram commutes.

aA A
Ao O 4, — 7 (5 A),
90 g-1 (X9)o
aB B
By " B, — %' (vB),

Therefore, (aé)@EB)(fo ® go) = (f_l ® (Zg)o)(a(?@EA).
O
Corollary 3.2.5. Let f : C — D be a morphism of complexes. Then there exist a

morphism of complezes (f ®%1d4): (C®%A) - (D&% A).

Proof: Use Proposition 3.2.4 by replacing g with the identity map.
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Definition 3.2.6. Recall that a stalk complex C is one where C; = 0 for ¢ # j, for

some i € Z, and C; # 0.

Proposition 3.2.7. Let C' be a complex and M an R-module, considered as a stalk

complex concentrated in degree i. Then

Coo®r M fori >0

CeyM=

Og_l ®r (ZM) fori<—1.

Proof: Regarded as a stalk complex, M has the foom -+ - 0 —->0-> M - 0 - -
Consider cases 7 >0 and ¢ < —1.

120:

In this case we have.

(C®% M)z =Cs®r Mo =Cyo®r M.

1<-1:

In this case we have.

(C®r M)c1=Cei ®r (EM) <o = Cco1 ®5 (ZM).
Therefore,

Cso®r M fori20

CeyM=

Cc1®g (M) fori<-1.
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Corollary 3.2.8. Let C be a complexr and M an R-module, considered as a stalk

complex concentrated in degree zero. Then

C®%M=Cs®p M.

Proof: The proof follows easily from Proposition 3.2.7.
O
Theorem 3.2.9. Let C be a complex and A=0—- R - R — 0 where R sits in degrees
0 and -1 . Then
CeyAxC.

Proof: We want to show (C'®’% A), = C. Consider three cases: n > 0, n < -1 and
n = 0.

n>0:

(C'®% A)sg = Cso®p Asp = O ® R = C, by Proposition 2.3.13.

n<-1:

(CeRA)c1=Cci®r(XA)o=Cc1®rAc1 = Cc 1 ® R=C, by Proposition 2.3.13.
n=0:

In this case the diagram is

Co®p Ag————— C_ @ (TA),

I3
13
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Which is equal to

Co®@pr R———C_1®r R

11
1R

Therefore, C @3 A= C.

We also have an analogous statement to Theorem 2.4.6.

Theorem 3.2.10. Let C' and D;, i € I be complexes. Then,
Proof: We only need to show the case when n =0 the following diagram commutes.

CR5®jcr Di
Co®r (Bicr Di)o — C_1 ®r L(®icr Di)o

@ie[(c®[§{Di)
@ier(Co ®r (Dy),) @, (C.1 ®r (ZD;)0)

Let ¢ ® (d;) € Co ®g (Bier D)o with 7: ¢ ® (d;) — (c®d;) and 99 Pi = (9Pi(d;)).

Then we will have,

(0572 P e (4)

m1(05(c)® U@Diagwi(di))
T 1(80(0) ® DiaeaDi(di)))
(96'(c) ® 50y (di)).

Moreover,,

(381@[;[))70(0 ® (dl))

(0RO (c@ dy)

(9 (c) © 070 (d,)).
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Therefore, C ®% (Bicr D;) = @ies(C &% D;).

m
Theorem 3.2.11. Let C;, i€ I, and D be complexes. Then,
(D C)er D=P(Ci e D).
iel iel
Proof: We do similar work as in the proof of Theorem 3.2.10.
O

The following proposition was originally stated as Proposition 3.2 in [1], without proof
we prove it here.
Proposition 3.2.12. The pinched tensor product defined in Definition 3.1.1 yields a

functor

~®%—:C(R"R)x C(R-§) — C(R'-S).

Where C(R'-R) denotes the category of complex of R'R-bimodules , C(R-S) denotes
the category of complex of RS-bimodules and C(R'-S) denotes the category of complex
of R'S-bimodules.

Proof: Let C' e C(R'-R) and D € C(R-S) be two complexes, and define F(C,D) =

C ®§ D. We want to show F'is a functor.

1. It is clear that F(C') = C ®% D e C(R'-S).

2. Let f:C - (" and g : D — D' be morphisms. Then F(f,g) = f®%¢ is a
morphism in C(R'=S).(Theorem 3.2.4).

3. Let f:C->C", f:C"->C" g:D — D"and ¢g’': D' - D" be a morphisms.
Then,
F((f.9)(F.9)) = F(f'f.9'9) = F'f 859 = (F' &% 9')(f ® 9) = F(f',.9)F(f.9).
Therefore, F((f,9)(f,9)) = F(f',9")F(f,9).
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4. F(1l¢,1p) = (e ®% 1p) = Lrcp)-
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Chapter 4
Pinched Tensor Products and Shift

We focus on the pinched tensor product and shift. We show that the isomor-
phisms ¥ (CeorA) 2 (XC)orA 2 Cor(X A) that hold for the ordinary tensor product
no longer hold for the pinched tensor product. Although if we change isomorphism
to quasi-isomorphism, the statement for the pinched tensor product holds. In addi-
tion, we give some counterexamples for the isomorphisms that no longer hold for the

pinched tensor product.

4.1 Shift and Morphisms

Remark 4.1.1. For the pinched tensor product we have in general
(XC e D)L (Cey D) ¢ (CeRrLD),

because when n =0

(XC &% D),=(XC)o®r Dy=C_1 ®r Dy,
Y(C®3¥D)y=(C®5D)1=C18r(XD)y=C1®rD_y and

(CO®RED),=Co®r (XD)o=Co®rD_1.

Now if C and D are complexes of free modules, write C_; = R*, Cy = R , D_; = R™
and Dy = R, where m # m’ = n # n’. Then we get C_; ® Dy & R* @ R™ =~ R
,C1®pr D12 R"®R" = R and Cy®p D1 2 RV ® R™ = R"'™._ Then it is clear
that C_; ®gr D1 £ C_1 ®r Dy % Co ®r D_; since we assume m # m' # n # n’ since the
rank(C_; ® Dy) # rank(C_y ®g D_1) # rank(Cy ®g D_1). Therefore, (XC ®'% D) #
Y(CeRD)¢(CFED).
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The following lemma is a simple fact, which we will use in the proof of the main
theorem of this section.

Lemma 4.1.2. Let C and D be two complexes. If there exists a degree —1 anti-
commutative chain map f from C to D, then there exists a morphism g from C to

> D.

Proof: 1t suffices to show that the composition

clLp2yD

where |f| = -1 and |o| = 1 is a morphism. We have that

aC

Cp——————Chy

f’n fn—l

aD
Dyy ——— D,y

anti-commutes for all n. That means f,,_105 = -0 | f,, for all n. We also have that

Dn = Dn—l

aZD
(¥D)py ———(ED),,

anti-commutes for all n. That means 0,102 = -9*Lo,, for all n. Then define g, =

On-1fn for all n
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Then
gnflarczv

(On-2fn-1)0F
= on2(fn107)
= 0na(=05 1 fn)
= (-00-2071)
= (03Pon-1)fu
= OxP(on-1/n)

= 0XPg,.

Therefore, g, 105 = 0XPg,.

In

On-1

fn—l

On-2

(£D), ———— (£D),s

]

Theorem 4.1.3. Let A, B, C' and D be complezes, and f : C - D and g: A - B

morphisms. Then there exists a morphism q from (XC &% A) to X(D &' B).
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Proof: By Lemma 4.1.2 it suffices to define a degree —1 anti-commutative chain map

7 from XC ®% A to D ®’5 B, so that the diagram

y a§C®§A y
(XC0RA), ——— (XCeRA), |
D%iB

n—1

(D ®D§ B)n—l B — (D ®§ B)n—Z
is anti-commutative for all n € Z. We consider four cases: n =1, n>2 ,n =0 and

n<-1.

n=1:

In this case the diagram is

YCRRA
(ZC)l ®RAO€B(ZC)0 ®RA1 (ZC)O ®RA0
T T0
aD®§§B
Dy®gr By 0—> D_;®p (ZB)O

Define 7; to be the matrix [fo(6§) " ® g0 0] and 75 = f1(0G) ® (Zg)oo, 0.
Choose an element c® a € (£C); ® Ag. Then,
To(é?zC@R (c®a)) = To(alfc(c) ®a)

= fa(e9)(9F()) @ (Zg)oo A, 04 (a)

= f(05) (=090 (0§) 1 (e)) @ (£9)00%, 95 (a)

= —f2105 (0§) " (c) ® (Xg)o0, 05' ().
Moreover,

85®§B(71(c ® a))

0% % (fo(§) () © 9(0))
(0 © 02,08)(fo(o§) () © d(a))

P fo(a§)(c) ® 7B 0B go(a).
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We note that f195 (§)"'(c) = 0P fo(c§)~'(c) since f is a chain map, and

(£9)004,04 (a) = 08,08 go(a) because the following diagram commutes.

AN T (s,
90 9-1 (Z9)o
By i B, i (E£B)o
Now choose an element c® a € (£C)o®p Ay. Then,
70(8120®D§A(c®a)) = 7‘0(6@6{1(&))
= f1(05) 7 (c) ® ()00, 0501 (a)
= fa(e9) () ®0
= 0.
Moreover,
05 (n(cwa)) = 85" (0)
= 0.

TCRRA De'%B L1
Therefore, 700, % =-0, " 7, which is what we wanted to show.

nz2:
In this case the diagram is

aZC®§A
DLy (XC) i ®r A — D (EC)ni ®R A

Tn Tn-1

I
Do, B
n—1

@'y Dy i®r B ——s @ Dy1-i ®r Bi
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Define
fo1(05 )1 @ g0 0
S
fo(e§) P ®gna 0
for n > 2 any element c® a € (£C'),_; ®r A; for i > 1. Then,
T 1(3“‘% (c&a)) = mi(Z9()®a+(-1)"(c) ® 0 (a))
faica(025) (975 (c)) ® gi(a)
+(—1)”‘ifn_i_1(a,? i-1)71(¢) ® 107 (a)
Faci2(08 ) (=05, 508 105, (0) @ gila)
+(=1)" frmica(07521) 71 (€) ® gi-10] (a)
~fa-i207 i1 (07 1) 7 (e) ® gi(a)
+(=1)"" fur-i(o7i21) () ® 9110/ ().

Moreover,
o w5 (1 (c®a))

O (fuia (08 ) (@) @ 9i(0))
= 01 fn-ina(07 )71 (e) @ gi(a)
(1) fania (o7 1) 7 (e) ©01gi(a)
We note that f,-; 209, (6%, ) (c) =02, | fui1(cS, [)7(c) since f is a chain

%A

map. Therefore, 7,,_10, = —85_?3%37”, forceae(XC),; ®r A; for i > 1.

Now choose an element c® a € (XC')o ®g A,. Then,

7 (02 (c@a)) = 7a(0)
= 0.
Moreover,
O (ru(cwa)) = 9% (0)
= 0.
Therefore, 7,,- 1820®RA 85_813%37'”, which is what we wanted to show.
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n =0:

In this case the digram is

TCRRA
(ZC)o®p Ag —s (ZC)_1 ®r (ZA),
7o T
D@ B

D1 ®r(XB)y ————— D.,y®g(EB)y® D8 (EB),

Define 71 = f5(6%)"1 ® (£g)o. Choose an element ¢ ® a € (£C)o ®r Ag. Then,
(8 (ca)) = 71(05C() @ 040 (a))

f-2(0%) 7105 (c) ® (Xg)o0?, 05 (a)

= [-2(05%) 7 (-0505(05) () ® (Z9)00?, 05 (a)
~[20%(0%)1(c) ® (£g)o0 8 (a).

Moreover,
057 (ro(cea)) = 057 (£1(09) 7 (0) ® (Tg)0o 05\ (a))

= 00f1(05) M (c) ® (£g)oo? 05! (a).
We note that f 0% (0%) " (c) = 05 f1(c% ) (c) since f is a chain map. Thus,

8>:C®§A _ _8B®§D

7_10, To, which it is anti-commutative.

n<-1:

In this case the diagram is

8):C@'}%A
@;jn(zc)z ®R (ZA)TL—l - i=n— I(ZO) ®R (ZA)W 1-i
Tn Tn-1
D&% B
D21 D ®r (EB)n-1- n @l 2 Di®r (LB)n o
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Define i
fa1(a§_) 7t @ (Xg)o

f2(0%) @ (Zg)nn
0 0

for n < -2 and choose an clement ¢® a € (XC); ® (EA),; for i > n+1. Then,
(0 (coa)) = ma(0FC()@ax+ (-1)codt (a))

= fi2(0{,)7107 () ® (£9)n-i(a)

+(=1) fic1 (o)1 (€) @ (£9)n-i-10,-(a)
= fi—2(<7§2)_1( - ‘752351(051)_1)(0) ® (Xg)n-i(a)

+(=1)" fis1(0f1) 7€) ® (X9)n-i-10;;(a)
= —fi201 (o) (c) ® (Zg)n-i(a)

+(=1)! fis1(0f 1) 7€) ® (X9)u-i-10;;(a)
= (29,0 ) () @ (Eg)n-i(a)

(1) fia(001) 7 (0) ® (Zg)n-i10,(a))-
Moreover,

8D®§B(Tn(c ® a))

n—1

T (fir (0 ) (0) ® (Zg)ni(0)
0Py 1:-1(071)7(¢) ® (Z9)n-i(a)

+(=1)1f21(09 ) He) ® AL (X g)n-i(a).
We note that f; 20,(c%,) " (c) =P, fi-1(6¢ )7 (¢) since f is a chain map. There-

)

TORNA D% B C . . .
fore, 7,10, " =-0,_," 7,, which is anti-commutative. O

Corollary 4.1.4. Let C and D be complexes. Then there exists a morphism q from
(XC % D) to L(C &% D).

Proof: Let f =1d¢ and g = 1dp in the previous Theorem 4.1.3.

42



Remark 4.1.5. In Corollary 4.1.4, as far as we know there is no morphism in the
opposite direction, from (C'®% D) to (XC &% D). The problem is that there does

not necessarily exist a map C_; ® (XD)o = (XC)o ®r Dy.

Theorem 4.1.6. Let A, B, C' and D be complezes, and f : C - D and g: A - B

morphisms. Then there exists a morphism ¢’ from (C ®'% X A) to X(D &% B).

Proof: By Lemma 4.1.2 it suffices to define a degree —1 anti-commutative chain map

7 from C ®% XA to D ®% B, that is, the diagram

8S®D’§‘ZA
(CeRXA) (CeRXA) |
Tn To1
D3 B
(D&% By ————— (D&}B)ns

is anti-commutative for all n € Z. We consider four cases: n=1,n>2 , n =0 and

n < -1.

n=1:

In this case the diagram is

CORTA
Cior (ZA)g® Co®r (ZA), ! Co®r (ZA),
T 7
3D®§B
Dy ®r By —  » D.,er(EB)

Define 7/ = [0 fo ® go(0§')™'] and 7} = f-105 ® (£g)o. Choose an element ¢ ® a €

C1® (X A)g. Then,
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70(80®R (c®a)) = 7'6(810(6)@)&)
= f105(99(c)) @ (E9)o(a)

= 0.
Moreover,

80D®EB(71’(C ® a))

a5 %+ (0)
= 0.
Now choose an element c® a € Cy ® (X A);. Then,

(07 (coa)) = m(c®dT(a))

(e (-4 08 (0g) ) (@)

f-105(e) ® (£g)o(-04,05'(03) ) (a)
—f-105 () ® (Zg)o(02,05' (03') 1) (a).

Moreover,

8563?3(71’(0 ® a))

3 % (fole) ® g0(7) (@)

9§ fo(c) ® a50F go (')~ (a).
We note that 195 (c) = 0 fo(c) since f is a chain map, and

(29)o(c4,04(ag) 1) (a) = 0B,0B go(0d') "1 (a) because the following diagram commutes.

aA A
Ao O a4, — 7 (5 A),
90 g-1 (X9)o
aB B
By " B, — %' (sB),
peeRTA

Therefore, fy0; = —80D ®rb f1, which is anti-commutative.
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n>2:

In this case the diagram is

80®5§2A
D Cri ®r (XA); ——— @i Coo1-i®r (ZA);
Ty Tho1

D%B
@?:_01 Dy, 1-i®r B; L, @?:_02 D, 5 ;®r B,

Define
0 (-)fr®gi(oh)™
T =

0 (-1)°fo ® guci (0711
for n > 2 and choose any element ¢ ® a € C,,_; ®z (L A); for i > 1. Then,
(0 cwa)) = 7, (00 () ®a+(-)micw ™ (a))
(05 () @ a+ (~1)iee (<00 (o)) (@)
(=) frnia 05 ,(€) @ gima (0t,) M (a)+
(=1 (1) fui(0) © gioa(05) (=002 (04,) ) (a)
= (1) a0 () @ gia (o) N (a)+
~fn-i(c) ® gi202, (o)) (a)
= (1) fui108 1 (0) ® gia (o) (a)+
Faei(€) ® gi-204, (074,) 7 (a) ).

Moreover,
D3 B
Rt (T,’L(C(X)a))

n—1

T ()i fusl©) ® gia (01) ()

(=)0 fui(c) ® gia (o)) (a)
(=) (1) file) @ 0P (gia (o)) (@)

(=)0 fui(c) ® gia (o)) (a)

+ i) © O (gi1(0)) ().
We note that f,_;195 ,(c) =92 . f,_i(c) since f is a chain map, and
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Gi-202 (o)) (a) =0 ,gi-1(02 )" (a) because the following diagram commutes.

o)™ o2
(ZA), ————— A ————— A
(Zg)i gi-1 gi-2
051)_1 851

(ZB)l E— Bz‘—l Bz;g

Now choose an element c® a € C,, ®z (X A)o. Then,
Tn_l(ag®§ZA(c® a)) Tn_1<ag(c) ®a>

= 0.
Moreover,
85_@123(771(0@ a)) = 85_813;3(0)
= 0.
Therefore, Tn_l&? SRTA —85_?323 fn, which it is anti-commutative.
n = 0:
In this case the digram is
CRRTA
Co®r (ZA), 0 C1®r (Z(ZA))
7} T’
D&% B
D_1®r (ZB)O - D_,®p (ZB)()@D_l ®Rr (ZB)_l

Define 7/, = f.1 ® (£g)_1(cX)and choose an element c® a € Cy ®r (X A)o. Then,
(87 (ca)) = 7,(05(c) @ 0T OFA(a))
= fa05(c) ® (Lg)-1(o%) 1o X105 (a)
f205 (¢) ® (£g)105 " (a).

Moreover,
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D%B
o

(R(coa)) = o577 (£.05(c) ® (Zg)o(a))

= 5[40 (c) ® (Xg)o(a) + (=1)7 2105 (c) ® 5P (L g)o(a)
= 9500 fo(c) ® (Zg)o(a) + (=1)7' /105 (c) ® I (L g)o(a)
= 0@ (Xg)o(a) + (-1)7" /2105 (c) ® 05" (Lg)o(a)

= (=1)7'fa05 () ® 5P (Eg)o(a).

We note that (Lg)_10F4(a) = 9XB(Zg)o(a) since g is a chain map. Therefore,

CORED CoRD S . .
fo10, "7 =0, " fo, which it is anti-commutative.

n<-1:

In this case the diagram is

Define

aC@ﬁZA
@2, Ci®r (L(XA))ny — @2 1 Ci®r (Z(XA))n-1
T Tho1
D&% B
{zln_1 D;®r (XB)y-1- L EB;ln_g D; ®r (XB)y-a-

(1) f, & (Zg)1(c5P) !

(D' e (Eg)a(or?) !
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for n < -2 and choose any element ¢ ® d € C; ®R<Z(ZA))nii for i > n + 1. Then,
7 (00 o)) = (000 ®at (-1)(0) T (a)
= (0 @a+ (-1)i(c) ® (- oF4 384 (o4 ) ) (a)
= 74 (09(0) @ a— (-1)i(e) ® (024,054 (674 ) ) () )
= (1) 109 (0) ® (Tg)n-ia (034 1) (a)
(-1 £i(€) ® (Tg)n-i-2(0545) (034,054 1 (034 1)) (a)
= (1) 109 () ® (Tg)n-ia (034 1) (a)
~[i(€) ® (T9)-1-2054 (034 ,) " (a)
= ~((-1)f109(c) @ (Zg)n-i1(0F4 ) (a)
+1(0) & (g)n-i2054 (034 1) (a)).

Moreover,
o (ri(ea)) = T ((-1)i(0) ® (Zg)uima (654,) M (a))
(~1)'0 [:(¢) ® (Zg)neica (074 1 1) (a)+
(“1)/(-1) fi(€) ® % | (Tg)u-i1(034 1) (a)
(~1)'0 1:(¢) ® (Sg)neia (034 4 1) (a)+
f:(€) @ OF (Zg)nir (054 ) (a).

We note that (£g),-;20%4 (X4 ) (a) =08 [(Xg)n-i-1(cX4 )" (a) since g is a

CeRTA

chain map. Therefore, f, 10, —8D®R fn, which is anti-commutative.

m
Corollary 4.1.7. Let C' and D be complexes. Then there exists a morphism q' from
(C®RED) to L(C®% D).

Proof: Let f =1d¢ and g = Idp in the previous Proposition 4.1.6.
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Remark 4.1.8. In Corollary 4.1.7 as far as we know there is no morphism in the op-
posite direction, from ¥ (C' ®"% D) to (C ®%3 X D). The problem is that there does not

necessarily exist a map C_; ® (XD)o = Co ®r (X D).

Remark 4.1.9. Also, as far as we know, there is no morphism going from (XC ®'% D)
to (C' ®% X.D). The problem is that there does not necessarily exist a map (XC'), ®g
Dy - Cy®g (X£D)o. Similarly, as far as we know, there is no morphism going from
(C®RED) to (XC®% D). The problem is that there does not necessarily exist a

map Co®r (ZD)O —> (ZC)O ®r Dy.

Theorem 4.1.10. Let d > 0. If f: C - L4(D) is a morphism and A is a complez.
Then there exists a morphism from (C &% A) —» L%(D &% A) which is commutative

when d is even and anti-commutative when d is odd .

Proof: We want to use Lemma 4.1.2 and Corollary 2.5.3 to define a morphism

(C &% A) » 4D ®"% A) such that the following diagram commutes

CeRA
(C o) —On (CeA),
agd(D®5§A)
(SUD &% A -2 (TUD & A))s

when d is even and anti-commutes when d is odd for all n € Z. Note that (Zd(D % A))

(D ®% A),—q and we consider three cases: n>d,0<n <d and n<0.
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n>d:

Suppose n > d. In this case the diagram will be

ag®§A
(CeRA), —————(CeRA),
( )d D®R

(D ®§ A)n—d%(D ®R A)n 1-d

which is equivalent to

aC@EA
DLy Croi ®r A; = @y Cro1-i ®r A;
(0
D Dyg i ®r A; — -, O Dyg1i ®r A
Define
fn®r Ay 0 ... 0
T =
fd®RAn—d 0 ... 0

Choose c® a € C,,_; ®g A;. Then, when n -7 > d we have

Toe 1( CoRA (c®a)) Toe 1(8 J(o)®a+ (-1)" "c®8A(a))

= fml(@?—i(C)) ®a+(-1)"" fu-i(c) ® 0] (a).

Moreover,
(( 1)d8D®R )Tn(c®a)

(10,5 ) (fus(0) @ a)
(11025 (fami(c)) @ a
= (DY 4 (fai(0)) ®a++(=1)"" fori(c) ® DA (a).
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It is clear that f,-;-105 ;(c) = 9P , . fa-i(c) since the following diagram commutes.

oY,
n—1
Cn—i — On—i—l

Fri frn-ic1

0 .
n—d—1
Dn—d—i — Dn—d—i—l
CRNA dqP®RA
Therefore, 7,10, = (=1)70,_4* T

When n -7 < d we have
Tn_l(aS@’D};A(C ® a))

Tn_l(@?i(c) ®a+(-1)"c® 8?(&))

= 0.
Moreover,

((—l)daf_ib’%A)Tn(c ®a)

((-1)%0%)(0)
0.

It is clear that f,_;-105;(c) =92 , . fa-i(c) since the following diagram commutes.

¢ .
Croi ——————Chin
S fr—i-1

or
Dygi — 5 Dy g
Therefore, Tn,la,f@RA = (—1)d05_®;lRATn.
Now suppose n =d. Then

CRRA
(CeRhA), ———(CeFA),

Loy DA
(DR A)Yy——— (DR A)
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which is equivalent to
CoRA
Bl yCri®p A ———— @ Cri1i ®g A;

DR A
(_1)d80 on

Dy ®r Ag D_1®r (XA)o

Where

fn®r Ay

Tn =

and

fn—l ®R 0-1_41664

Th-1=

Choose c®a € Cy®p Ag. Then,
CeRA

Tu1(0n " (c®a)) = rn_l(édc(c)@a)

Jar (95 () @ 04,95 (a).
Moreover,

((—1)d8[?®§A)Td(c ®a)

((-1)%0, %) (fa(c) ®a)
(~1)909 (fa(c)) @ 04,03 (a).

It is clear that f;-105 () = 9P fa(c) since the following diagram commutes.

0§
Od —_— Cd—l
fa fa-1
a5

Dy ——— D,
92



Therefore, 7, 1( C®R ) (( 1)d8D®R )n

0<n<d:

In this case the diagram

ach)bg',/A
@ Cri®r A z @y Cr1-i®r A;
Tn Tn-1
1 (-1
DiznaDi®r (XA)n-a ien-a-1 Di ®r (ZA)n-a-1-i

Define 7, = f,,—; ® (¢1)"'0A. Choose c® a € C,_; ® A;. Then,
Tua (055 (c® a)) Tnl(ag_i(c) ® a)

= fooi- 1(85Z(C)) ®O’ 8‘4(@)

Moreover,
()05 Y ru(c@a) = ((-1)%005")(fami(0) ® 0,0 (a))
(—1)d(3(D®RA)(fn i(c) @ty 0 07(a).

It is clear that f,_;-10% ,(¢) = P ,f,-i(c) since the following diagram commutes

o
n—i
On—i E— Cn—i—l

frn-i fr-i-1
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Suppose n = 0.
In this case the diagram will be

aO@EA
CO ®r Ao 0 C_l ®r (ZA)U

(_1)daD®'§A

DLy Di ®r (TA)-gi ———2 @7, 4 Di®r (EA) 41

Define
fo®r 0’_413()4
To =
0
and,
f-1i®r A
T_-1 =
0

Choose c®a € Cy ®r Ag. Then,

7'_1(80C®§A(c ®a)) = 7'_1(600(0) ® af‘laoA(a))

_ ( F1(95(c)) ® aﬁé’é(a))-
Moreover,
(1) Ym(e®a)

(-5 (fole) @ 04,05 (a)
= (“D)UIPT (fo(e)) ® o402 (a)
(~=1)295 fo(c) ® 04,9¢'(a).
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It is clear that f_;05 () = OF fo(c) since the following diagram commutes

Therefore, 7_1(8§®§A) = ((—

C
Cy -0 C,4
fo f-1
ay

Dy———D,

1 )d&iﬁ?‘q ) 70-

Suppose n < 0. In this case the diagram will be

®;1,C;®r (ZA),;

D aDi ®r (XA) g

Define

Tp =

Then,

Tne 1( CerA (c®a))

80®532A
= C_1®gr (ZA)O
( )d D®R
a1 Di®r (ZA) a1
fn ®R AO
f-1®r Apia
0 0
0 0

T 1(a () ®a+ (- 1)c®aZ_fg(a))

= fi(0F () @ a+ (-1)'fi(c) ® O3 (a).

Moreover,

(( 1)d6D®R )Tn(c®a)

(00,5 (1) @ a)

95

0P (fie)) @ a+(-1)fi(c) ® 03" (a).



It is clear that f,_10%(c) = 9P f;(c) since the following diagram commutes.

o
Ci— (4
fi fic1

opP

Therefore, a1 OCERA (—1)‘13,?_32147”.
O
Remark 4.1.11. In Theorem 4.1.10 as far as we know there is no map X 4(D ®;‘% A) -

(CeRA).

Remark 4.1.12. In Theorem 4.1.10, as far as we know, if d < 0, then there is no map

(C &% A) > TUD % A).

4.2 A Quasi-isomorphism

Definition 4.2.1. A chain map f: C' - D is a quasi-isomorphism if all of its induced

maps H,(f): H,(C') - H,(D) are isomorphisms. In this case we write C'~ D.

Theorem 4.2.2. Let C' and D be a complexes of free modules. The map on homol-
ogy induced by q from Corollary 4.1.4 is an isomorphism. In other words, q from

Corollary 4.1.4 1s a quasiisomorphism.

Proof: Recall that ¢ = 0(C®zP)r. Since o : C' - L induces an isomorphism in
homology for any complex C, it suffices to show that the degree —1 chain map

7:XC®% D - C®% D induces an isomorphism in homology. We consider five cases:
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n=0,n=1n>2 n=-1, and n <-2. It suffices to show that H,(7) is one-to-one

and onto for all n € Z.

n=0:

In this case the diagram is

TCRED TCRED
(ZC)l ®r Do (ZC)O ®r D1 1—) (ZC)O ®r Do 0—> (ZC)_l ®Rr (ZD)Q
ln aC@ED lm 8C®§'D lﬁl

0

Co®r Dy C_1®p (ZD)();)C_Q ®R (ZD)()GBC_l ®R (ZD)_l

We first show that Hy(7) is one-to-one. Assume a € ker E)OZC%D such that 79(a) €
Im 600®RD. Choose z € Cy ® Dy such that 800®RD(2) =10(a).

Then Tl((ag ® DO)(Z),O) = 2. Consider 8;20@3317((0(? ® D0>(z),0) +a.

| 07 ((0§ ® Do) (2),0) +a (Toaf%?D)((ag ® Dy )(), 0) +70(a)

- =) (o 0 20)(2)0) + e
_ 00 () 4 ()

= 0.
Therefore,

ai:chuigD((UOc ® DO)(Z), 0) +a € ker(7p). Since

(£C)o@dP -
(ZC)O ®r D —0> (ZC)O ®r Dy —O>C,1 ®r (ZD)O

is exact, we have 8?0®§D(((J§) ® Do)(z),())) tae Im((ZC’)O ® 81’3).

Y CeRD

Write 07 7 ( (0§ ® Dp)(2),0)) +a = ((ZC)o ® 0P )(b) for some b e (£C)o @r Di.
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However,

afC@’?D(((ag‘ ® Do)(—z),b)) - —afC@’?D((( o ® Dy)(2), o)) orCeRP ((O,b))

_ _8120®§D(((gg ® DO)(z), O)

. afC@ED((<aOC ® DO)(z), 0)) +a

Thus a is a boundary, therefore Hy(7) is one-to-one.

Now we want want to show Hy(7) is onto. Consider a € ker 6_01®D§D. Write
8_01®D§D(a) = (b,z) wherebe C_o®r(XD)pand z € C_; ® (XD)_;. Therefore, 8?1@?[)(@) =
(b, z) = 0, which implies z = 0. Then, z = (C_; ® 9-P)(a) = 0. Since

C_ ®8 C_ ®8
C_1®p (ZD)l 1—> C_1 ®p (ZD)O 1—> C_1®p (ZD) 1

is exact, we have a € ker(C_; ® 9XP) = Im(C_; ® 9¥"). Therefore there exists
ke C1®(XD); such that (C; ® 9¥P)(k) = a. Then 7'0((0'91 ® (05)‘1)(/{)) =a

Finally we note that

7185 (09 @ (a0) ) (B) ) = =05 (0 @ (o) (K)) = -0+ (a) = 0. Since
7_1 is one-to-one we have 82 ®RD((JCI®(J(?)‘1)(I<:)) = 0, therefore ((09‘1)@(05)-1)(@

is a cycle and therefore Hy(7) is onto.
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n=1:
In this case the diagram is

TCOR%D TCRRD
D2 (XC)o s ®p D; ——— @ (XC)1_; @ D; ——— (XC)o ®r D

T2 T1 70
‘ aC’@ED ‘ 80®D§D k
Cl ®r DO @ C() ®r Dl 1—)00 ®r Do 0—)0_1 ®r (ZD)O
which is anti-commutative by Theorem 4.1.3. We first want to show Hi(7) is

one-to-one. Assume (a,b) € ker@lz(mb’;[) such that 7'1((a,b)) € Im@f@’b’gD. Choose

(¢,d) € Cy ®g Dy @ Cy ®g Dy such that 810®§D((c, d)) = Tl((a, b))

Then 72(((010 @ Do) (c), (05 ® Dl)(d),O)) = (¢,d).

Consider 9= ®7P ((oF @ Do)(e), (o5 ® D1)(d), o)) + (a,b). Then,

n(az?C@?D(( o ® Dy)(c), (05 ® D1)(d),0)) + (a, b))

(185 “**)(((07 ® Do)(e), (05 ® D1)(d),0)) +7((a.b))
(07" )(((07 ® Do) (c). (0§ ® D1)(d),0) ) + 71((a. 1))
-0, (e, d)) +71((a,1))

= 0.

Therefore afcg’?f’(((af@po)(c), (ag®D1)(d),o))+(a,b)) eker(m) = (ZC)o®rD;.
Then we have

5 (((of @ Do)(e), (05 ® D1)(d),0)) + (a,b) € ker( (EC)o @k Dy
(ZC)o ®r Do)

(ZC)o®dP

Thus gives,

9 %5 ((9€ © D0)(e). (05 8 D1)(d).0)+ (a.b) € I ( (EC)o@ Dy 2™, (£ )0
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Dl).

Since

(XC)o®dP (ZC)o®dP

(ZC)(] ®r DQ

(XC)o®r Dy

(ZC)O ®r Do

is exact. Write

a§C®ED(((af ® Do) (c), (05 ® D1)(d),0)) + (a,b) = ((ZC)o & A7) (k) for some k ¢
(XC)o ®r Dy. However,

05" (((oF ® Do) (=¢), (o ® Dy)(-d), k)

= 0y R ((of @ Dy)(~c), (=d),0)) + 85 “*7((0,0,k))

=0, %" ((of ® Do) (c), (d), o>)+(a§(’®“ﬁl’(<af ® Do)(c), (o5 ® D1)(d), 0))+(a, b))
= (a,b).

Thus 0, “**”( (07 ® Do) (c), (0§ ® D1)(d). k)) = (a,b). Therefore, (a,b) is a bound-
ary. Thus H,(7) is one-to-one.

X
Now we want want to show H;(7) is onto. Consider a € ker 800®RD. Then,

300‘8331?(@) =0 and 71((000 ® DO)(a),O) = a. Finally note that

w0y (0§ ® Do)(a),0) = 7((9% ® Do)((0§ @ Dy)(a)))
((05) 1 © eBaP) (9% @ Dy)( (0§ @ Dy)(a))

0.

Since
(ZC)o®dP

(ZC)O ®r D (ZC)O ®r D()i)C,l ®r (ZD)O

is exact. There exists k € (XC)o ®gz D; such that ((ZC)O ® 8{7)(k) = (0% ®
Do) ((05¢ ® Dy)(a)). Consider now ((o3¢ ® Dy)(a), k) € ®po(XC)1-; ®r D;. We
have 71 ((02¢ ® Dy)(a), k) = a. Finally we note that

00, (0§ © (6P)1)(0).K) = =05 n((of @ (oP)1)(a), k)

-0 (a)

= 0.
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Since 7y is one-to-one we have 0, =CeRD ((Jg ® (alD)‘l)(a),k) =0, so

((O'g ® (af))‘l)(a), k;) is a cycle. Therefore Hy(7) is onto.

nz2:
We have the diagram, which is anti commutative by Theorem 4.1.3:

YCeRD azC®3§D
HEC) na1-i O Di —— @7 () poi ® Dy ——— @ (EC) 01— ®r D;

Tn+1 ‘/Tn ‘/Tnl
aC®R aC@ED

an®RD—>® Cnlz®RD—>@ Cn21®RD

First we want to show H,,(7) is one-to-one. Assume K = (ky, ks, ..., k,41) € ker 8ZC®RD

such that 7,(K) € Im&?w’%D. Choose Z = (z0,21,-..,2n) € DIy Chi ®r D; such
that 9 °#”(Z) = 7,(K). Let Z' = (((6§) ® Do)(#0), ((¢5,) ® D1)(21),... ((0§) ®
D) (21),0). Then 7.1(27) = Z. Consider 9"C2%2(2') + K ¢ @o(EC)n_s ®r D

Then

(O 2) v K) = (mOSTONZ) ¢ (KD
= (@ T a)(2) + a(K)
= 0 "E(2) 4 (K)
=0

Therefore 8n+01®RD(Z’) + K e ker(r,) = (XC)o ®r D,,. Since

(ZC)o ®r D (ChePn (2C)o®r Dy (- Qugow (ZC)o®r D
is exact, we have 8nS®RD(Z’) + K eIm ((XC)o® 0P ). Write
fﬁ% (Z")+ K = ((ZC)O ® n+1>(b) for some be (XC)g®g Dpy1 and write
7" = (—(agwo)(zo),—(ag_lwl)(zl), . .,—(JOC®Dn)(zn),b) = (=20, -2, ..., =2b)

where 2] = O’ _,®D;_,. However,

61



8ZC®'>I§D(Z,,) _ GZC@)ED((_Z(,)’_Z{" o 0))+8>:C®§D((O )

n+1 n+l
= O (Gh 200) + LT ((0,.0)
= 0T (o, 00) + (ST (2) + )
= K.
Therefore 0, C®R (Z") =K. Thus K is a boundary. Therefore, H,(7) is one-to-one.
Now we want want to show H,,(7) is onto. Let Z = (2o, z1,...,2n-1) € ker 85?15%[).

Consider Y = (2,21, ..., 2n-1,0) € ® (XC)pi ® D;. we have 7,,(Y) = Z. Therefore
T 18208’3 (Y) =0. Since ker7,,_1 = (£C)o®g D,,_1, we have 8ZC®R (V) e (XCO)o®r
Dy_1. Now 0= 9= FRPgZC®RP vy - (zC)pea 1)(820% (Y)). Since

(zc00®a (ZCUo®8

(XC)o®r D, — " (XC)o®rD — " (ZC)o®r Dy s

is exact and 8ZC®R (Y) e ker ((ZC’)O ® 0 1) =Im ((ZC’)O ® GD) Write 820% (V) =

((ZC’)()@@,{?)(I{:) for somek € (XC)o®rD,,. Then Y -(0,0,...,k) = (20,21, -, 2n-1,—k)

XD

maps to 0 under 8§C®R , and therefore is a cycle, and Tn((zl, 2o, —k;)) = Z. Thus

H, (1) is onto.

n=-1:

We have the diagram,

Y CeRD Y CeRD

(£C)o®p Dy ——— (£C)_1 8 (ED)g ———— @2 ,(XC); ®5 (¥D) o4

k 5C®R ‘ _ aC'ez)bg{D k _

C1®r(XD))—— @1, C;®r (XD) o ——— @715 C; ®r (ED)_5-

which is anti-commutative by Theorem 4.1.3. We first want to show that H_;(7)

C®R

is one-to-one. Assume a € ker@_zlc 2P guch that 74 (a) € Imd_ Choose ¢ €

C_1®r (X D)y such that 8?1®§D(c) =7_1(a). It follows that (C_; ® p 9XP)(c) = 0 since

C_ 1®R(9 71®80

C ®r (ZD)l — (.1 ®p (ZD)O — (1 ® (ZD)_l
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is exact. Then there exists ¢ € kerC_; ®g 0FP = Im (C_; ®g cZ,0FP) = Tm (7).
Therefore there exists ¢’ € (XC)o®g Dy such that 79(c’") = ¢. Consider 8 I><D( ) +a,

then we have,

T_l(a(?C@D’gD(c’) + a)

(7_1820®R )() +711(a)
= —8_CI®R (To(c’)) +7_1(a)

~0%FRP (¢) + 7.4 (a)

= 0.
Thus, 0, ZC@R (') +aeker(r1) =0.

Therefore, a = 8ZC®R (=c’). Thus a € Im 820@3 :

Thus D is a boundary, and
therefore H_;(7) is one-to-one.

Now we want to show that H_;(7) is onto. let (a,b) € ker80®R . Then,
(C_; ® 95P)(b) = 0. Since

19RO P 1®0
Cron (D) 8 ¢ on (D), TN ¢ e (5D)

is exact, we have ker(C_; ® 95”) = Im(C_; ® 9F"). Thus there exists ¢ € C_; ®p
(LD)y such that (C'_1 ® (9021’)(0) = . However,

(0% @ (ZD)o)(e), (C1 ® FP)(¢))

(0% @ (ZD)o)(e),b).

0% (¢)

Therefore,

[(a,0)] = [(a,b) - (95 ® £D)(c),b)] = [(a - (95 ® TD)(c),0] as cosets modulo the
Im (C_; ® OFP). Consider Z = ((0—0_2)—1 ®n (ZD))(a — (0% ®z ED)(c) € (ZC)_1 ®r
(X D). We have [7_1(2)] = [(a,b)], and 3ZC®R (2) = 0 since 7,28%1C®§D(z) =0 and

T_5 is one-to-one. Thus z is a cycle and so H_1(7) is onto.
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n<-2:
We have the diagram,

TCRRD 8ZC@D};D
;L1 (ZC)i @k (ED)ns1i = @74, (£C); ®r (ED) i —— ®7L_1(EC)i @ (ED) 1o

i=n—1

Tn+1 Tn Tn-1
8C®"1§D 80®§D

@1, Ci®r(ED)yi ——— @2, 1 Ci ®r (ED)n-1-; 2l Ll Cieg (XD)n-2-i

i=n—2

which is anticommutative by Theorem 4.1.3. First we want to show H,(7) is one-

to-one. Assume K = (kn,kni1,... k1) € ker 0 “®*” such that T.(K) € Im 9%

Choose Z = (Cn,Cpsts---5C1) € @2 C; ®r (¥D),_; such that &?X)?’D(Z) = 1,(K).
Then, (C_; ® 0X8)(c-1) = 0. Therefore, c¢_; € ker(C_; ® 9Z8) = Im (C_; ® 9ZP) since

C’,1®BT§D C—1®62D

C_l ®r (ZD)n —> C_l ®r (ZD)n_l — C_l ®r (ZD)n_Q

is exact. Choose ¢’ such that (C_; ® 9>P)(¢’) = c_;. Then 8,?®D’§D(Z - 8ZC®D’;D(C’)) =

n+1

6$®D’§D(Z) = 7,(K). Therefore we can assume Z = (¢, Cp41,- - -, C-2,0) and choose Z’ =

(((e9) " ® Do) (ca), (05 ) @ Di)(er), -, ((0§) ' ® Dot )(en1)) € Bt (TC)i @R
(ZD)s1s. Then 7,:1(27) = Z. Now consider 9-C%*2(C) + K e @:L(X0); ®r

n+1
(XD),—;. Then
(O (2 + K) = (ra0hyR0)(20) + 1K)
= (07, )(2) + ()
= 0C%RP(0) 4 1 (K)
= 0.
D(Z’) + K € ker(r,,) =0, and so K = 8ZC®D’;D(—Z’), which implies

TORF
(9 n+1

Therefore, 0,

that K eIm .- ) Thus K is a boundary, and so H,(7) is one-to-one.

n+1

Now want to show H,(7) is onto. Let K = (kn_1,kn,..., k1) € ker 8525%[). Since

C_1®BED C_1®62D

C1®r(XD), — C10r(XD)p1 —  C.1®r(ED)ns
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is exact, we have ker(C_; ® 9X2) = Im (C_; ® 9>P). Thus there exists ¢ € C_; ®
(D), such that (C'_l ® 8,%17)(0) =k_1. Define Z = (0,...,0,¢) e ®;2, C;®r (XD),_;.
Then, K - a,f®'§D(Z) = (k:n_l,...,k:_g - (049 ® (ZD)n+1)(C),0). Therefore, [K] =
[(k?n—1, k(09 ® (ZD)_l)(C),O)]. Therefore, [K] = [Tn(k‘n_l, ko - (08, ®

(ZD)_l)(c))] and (k:n_l, k= (08, @ (ZD)_l)(c)) € ker(&?c®§D). Therefore,

H, (1) is onto.

O
Theorem 4.2.3. Let C' and D be a complexes of free modules. The map on homol-
ogy induced by q' from Corollary 4.1.7 is an isomorphism. In other words, q' from

Corollary 4.1.7 is a quasiisomorphism.

Proof: The proof is similar to that of Theorem 4.2.2.
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Chapter 5
Pinched Homotopy and Cones

In this chapter we examine two other properties: the pinched homotopy and
the pinched mapping cone. We see that the pinched tensor product is a functor from
the category of complexes, but we cannot extend to it a functor on the homotopy
categories. Also, we give some counterexamples for the relevant properties that no
longer hold for the pinched tensor product. In addition we show that the isomorphism
that implies the mapping cone commutes with tensor product for the ordinary tensor
product no longer holds for the pinched tensor product. However, we show there is a

morphism.

5.1  Homotopy

Remark 5.1.1. In Theorem 2.6.2 if we replace the ordinary tensor product with the
pinched tensor product, then there is no map going from (C' ®% A)_1 = C_1®p(XA)y >
(D ®% B)o =Dy ®p By. That means the pinched tensor product is a functor from the
category of complexes to complexes, but we cannot extend to it a functor on the

homotopy categories, as we can see in the next example.
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Example 5.1.2. Let C' and D be complexes and f : C' > D a morphisim such that
f*0.Let A=0— R — R — 0 where the degrees of the R’s are 0 and -1, respectively

and g: A — A the identity map. Then clearly we see that g ~ 0 from the diagram

0 R ! R 0

0 R ! R 0

Also, by Proposition 3.2.9 we have C®3 A = C and D®RJ A = D. Then fo g =

ferldy: C % A— D% A However, we know

f®N Id4

CRA——— D% A
C / D

is commutative. Therefore f®"g + 0.
However, we do have a positive result involving homotopy.

Theorem 5.1.3. Let f: C - D with f ~ 0 and 004 : A, - (X A), be morphisms

of complexes of R-modules . Then f@*c04:C &% A~ D &% LA satisfies f®c04 ~ 0.
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Proof: We consider three cases: n=0,n>1 and n < -1.
n=0:

In this case the diagram is

celRA
Co®n Ag— 2 C L @n (TA)
ho
8D®§2A
@21:0 Dl—i ®r (ZA)Z = DO ®r (ZA)O

Define hf, = hg ® 0,05 and I/ = h_; ® (£A),. Choose an element ¢ ® a € Cy ®p Ao.

Then,
OPEREA R (c® a) + 1,00 (c® a)
= 0P A (hy @ oA 9N (c® a) + B, (96 ® oA 0) (c® a)
= 0777 (ho(c) ® 049 () + B, (6 () ® 0,08 (a))
= (0P ® (£A)0)(ho(c) ® 0405 (a)) + (h1 ® (EA)0) (06 (¢) ® 0,95 (a))
= 81Dh0(c) ® 0141@()4(61) + h_léoo(c) ® af‘la()“(a)
= [Gf)ho(c) ® +h,1800(c)] ® af‘la(‘f‘(a)
= fo(c) ® 64,04\ (a).
n>1:

In this case the diagram is

ceRA

. -1
P yCri®pAi ——— @iy Cis1 ®r A,

fn®0£16;4

aD@ﬁ:A
D) Dype1-i ®r (LA); “—— @} Dy ® (X A);
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Define

A 9A
hn, ® 02,0§

h() ® O'A 3A
and
fn® 0208

A A
Jn®0i2,0; =
fo@O‘A (3‘4

Choose an element c® a € C,,_; ® A;, Then,

OPEREA N (c®a) + b S (c® a)

n+1
= O (e © 0,0 (c® a) + 1y (95 © As) (c® a)
= 905 (ha(c) @ 0,0 (a)) + 1 (95 (c) @ a)

= (071 ® (ZA):) (ha(c) ® 01,0/ (a)) + (hn-1 ® 01,0]) (07 (c) ® a)
= O ha(c) ® 01,07 (a) + 1107 () ® 012,07 (a)
= [071hn(c) ® +hn10; ()] ® 011,07 (a)

n

= fa(c) ® 01,0/ (a).

n<-1:

In this case the diagram is

aC®RZA

EB;:lnC,' Rr (ZA) —)@ ! 1C Rnr (ZA)n i1

z fn®U 82A

n—i-1"n-1

D®R):)ZA

0,
@1 Dni ®r (XX A), i —— @, D; @ (XX A),
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Define b/, = h, ® o=4 | 0F4

0

TAHTA
hy, ® 005

0 ho ® oZA XA
and
fn®copt
fn ® Uﬁ—i—lag—é =
fa®aitors

Choose an element c® a € C; ®p (X A),,_;, Then,

> >
8f+?RZZAh;L(C ®a)+ h;_l&f@RZA(c ®a)

= 00 (hy @ o T OEA) (e @ a) + ),y (9 © TA)(c® a)

n+1

= 9P (1, () ® 0TA 954 (a)) + b, (9 (c) ® a)
= (02, & (ZZA);)(hn(c) ® 04, 054(a)) + (hn-y ® 074,054 (0) ) (S (c) ® a)
= 0P hy(c) ® 04,074 (a) + hy10C () ® 0T 0FA(a)

= [0 hn(c) ® +hy-107 ()] ® 0751071 (a)

= fu(c) ® 07511077 (a).
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5.2 Mapping Cones
Theorem 5.2.1. Let A be an R-complex and f:C — D be a morphism of complexes

of R-modules . Then there exists a morphism from A ®%, cone(f) to cone(A ®% g),

where

fn forn>-1

n

—fn  form<-1.
Proof: We consider three cases: n=0,n>1 and n < -1.
n=0:

In this case the diagram is

A®§cone(f)
(A% cone(f)), —— (A% cone(f)) ,

Ko p-1

cone (A®'5 f)
(cone (A ®% f))g ———— (cone (A®% £)) 1
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Define MO(G‘X’(Q d)) =( ASRC (05! (a)®c), a®d) and fi_ 1(a®0 el (e, d)) ( 4950 e
b),a® b (d)). Choose an element (a ® (c,d)) ¢ Ay & ((ZC)o @ D). Then,

o5 o (a @ (¢, d))
= agonem@?;f)(( 4850 (94(a) ® ¢),a ® d))
= [07 O (TR (05 (a) ). (A @ (£)0) (777)) 10?75 (0 (a) © (o)
+ 0P (a@d))
= [~ o SHAC () (o PR (05 (@) @ ), (A @ (E1)0) (96 (0) ® (o)
+ 0 (a) ® 5 0f ()]
=[- o504 (9 (@) @ ). (95 (@) @ (Zo(c))
+04(a) @ 000 (d) |
=[- 057040 (0) ® e+ (-1)05 (@) ® % (0)), (06 (a) @5 (Z F)o(©))
+0i(a) @ 30 (d) |

= [o55 (0 (a) ® 957 (<) ), 08 () @ (Zf)o(c) + 06 (a) ® 208 (d) .

However,

110,55 D@ (c,d))
= 1[0 (a) @ 07D (e, a)
= [0 (a) & (0% (c), F4(0%) M (e) + 00 (d) )]

:[ ABRC (3A(a)®8zc(c)) 9'(a) ® o ( 1(0§1)71(0)+a€(d))]'
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It is clear that (X f)o(c) = o2 f.1(0% )" (c), since the following diagram commutes

Ja

C,4 D_
®C)— L vpy,

[l >
Therefore, 8§0ne(A®Rf ) o = ,u_lagl ereonelf ), which is what we wanted to show.

n 2 1:

In this case the diagram is

A®"Scone (f)

(A®%cone(f)), ——— (A&Fcone(f)), ,

cone (A®'3 f)
(cone (A®% f))n (’“)n—> (cone (A®% f))n1

Define

(0 (0) - (02 (@@ 0 (c))a@d) fori>0
(0,a®d) for i =0,

,un(a ® (c, d)) = (afﬁb’f‘c(a ®o;1(c)),a® d). We have two subcases i =0 and i > 1.
1=0:
Choose an element (a® (¢,d)) € A, ®r ((XC)o ® Dg). Then,

a;:Lome(A@@f)Mn(a ® (C, d))

_ Zone(m';gf)((a@d))

EASICEYD]
- [0(a) @ .
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However,

. 16A®Rcone(f)(a® (. d))
_ un_l[a,f(a) ® (c,d) + (-1)"a® 9"V, d)]
= in-1] 02 (@) ® (¢,d) + (-1)"a ® 0]
= [af(a) ® d].

cone( A% f) 18A®§cone €
-10n

Therefore, 0, Ly, = fhn, , which is what we wanted to show.

izl
Choose an element (a ® (¢,d)) € Ap_; ®5 ((£C); ® D;). Then,
agone(mgf)un(a & (c,d))
aC‘me(A@Rf)( 4950 (4.8 (6€)1(c), a®d)
= [07 O (0255 (a0 (o) (@)))
(i@ fi1) (0,55 10,5 (a8 (001) () ) + 1" P (a @ )
=[-onsiConere a;i‘:";“ﬁcrl(aif’ﬁc(a ® (af)*l(c)))
(Ani®n fir)(a® (02)7(0)) + 0 i(a) @ d + (-1)"a ® 9P (d)]
=[- 01500 (a0 (07)(0)). (a®n fi1(0C1) 1 (0))
+OL (@)@ d+ (-1)""a® 0P (d)]
= [- 05 (00 (@) @ (0F) (&) + (1) a0, (071) 7 (0) ).

(e0r fia (o) (@) + k(@) @d + (1) a@ 0P (d) |
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However,

Mn_la;;{@@cone (f)(a ® (C, d))
_ Mn_l[ﬁf_i(a) ® (c,d) + (-1)"a® 9™, d)]

= | O (@) @ (¢, d) + (-1)"a @ (9FC(e), fia(0€1) () + 0P ()]

ARRC
:[—g R

(9iLi(@) @ (09) 7 (e) + (~1)"a® (0,) '3 (c) ),a® fir (o)) ()

+04 () ®d+(-1)"a® af(d)].

It is clear that 0%, (¢ ) "1(c) = (¢9,)10F¢(c), since the following diagram commutes

Ci—l -2
Ugl 052
sC

(XC)y ————(XC)i

> X
Therefore, 8ZOH€(A®RJC) b = pm_laf ®pcone (f ), which is what we wanted to show.

n<-1:
In this case the diagram is

A®"Scone (f)
n

(A®%cone(f)) ———— (A% cone(f)), ,

acone (A% S)
(cone (A®% f)) ——— (cone (A ®% [))n-1
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Define

,un(a®acon.e(f)(c, d)) (( 1)l A®R (a®c),a® ol 1(d)) where a®azo_rigf)(c, d) e

n—1—1

Ai ®r (ZCOHG (f))n—z with a € Ai, (C, d) € (Zc)n—i—l ®nr D,_i1.

o (A®§f)/tn(a ® geone(f) (c, d))

aC°“e(A®Rf>(( 1)lde® (4@ c),a® ol 1(d))
= [T (1) o5 (a0 ),
(4 @1 ~(Z)n-in) (@25 ) ()05 (@ ) + 02" P (a @ 0,y (d))]
= [~ oS 0 () (1) (e w o)),
(4 @r~(Zf)nir)(-D)(a®c) + 0 (@) ® 0L,y (d) + (-1)'a @ IR0 (d) ]
=[- o5 01 (-1 a® e), (-1)la @ ~(X famia (€)
+OMa)® ol \(d) + (-1)a® F00L_\(d)]
= [(DF1075 (0 (@) @ 0+ (1) © 971(9). (-)Ma ©n ~(E )i (€)

+OMa)® ol y(d) + (-1)a® IF00L_\(d)].

However,

A®Rcone(f)( cone(f)(c d))

nzl

Mo — 1a
- —8;4((1) ® Jcoge(f)(c’ d) + (_1>ia®8200ne(f) cone(f)( ,d)]

n—i—1 n n i—1

= |0 (a) ® D (e, d) + (-1)'a @ —o3 P D (00 (D) 167 D (e, )|

n—i—1 n12 n—i—1

= [0 (a) @ 0 P (e, d) + (1) a© -a Do D (e, )]

n—i—1 n12 n—i—1

n—i—1

(1) 'a® -0 P (EG1(0), faia0yl () + 02, 1(d))]
= (1)1 (0 @) @ ), 0 (a) ® 02y (d) )+

(-1l (1) a @ IS4 () ), (~1)'a ® 02 5 (fa-i-207t1-0(c) + 021 (d)) )
76

= ftn-1| 02 (a) ® 02 (¢, d)



acone(A@lﬁf) " 18A®§c0ne €
n n-1Un

Therefore, I , which is what we wanted to show.

O
Remark 5.2.2. In Theorem 5.2.1 we note that we will not have an isomorphism be-
tween A ®%, cone(f) and cone(A ®% f) because (C’ ®’s cone (f))n has one more term

than (cone (A% f))n for n > 0 and vice versa for n < 0.

Theorem 5.2.3. Let A be an R-complex and f: C — D be a morphism of complexes
of R-modules . Then there exists a morphism from cone(A ®% g) to A ®%, cone(f),

where

fn forn>-1

In

—fn  fornm<-1.

Proof: The proof is similar to that of Theorem 5.2.1.
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