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Abstract 

GRAPH EMBEDDING DISCRIMINATIVE UNSUPERVISED  

DIMENSIONALITY REDUCTION 

 

 

Yun Liu, MS 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Heng Huang 

In this thesis, a novel graph embedding unsupervised dimensionality reduction 

method was proposed. Simultaneously, we assigned the adaptive and optimal neighbors 

on the basis of the projected local distances, thus we developed the dimensionality 

reduction along with the graph construction. The clustering results could be directly 

exhibited from the learnt graph which has the explicit block diagonal structure. 

 The analysis of experimental result on different databases also determines that 

the proposed dimensionality reduction method is superior to other related dimensionality 

reduction methods, like PCA and LPP. In this study, we use synthetic data and real-world 

benchmark data sets. Also experimental results from the clustering experiments revealed 

the proposed dimensionality reduction method outperformed other clustering methods, 

such as K-means, Ratio Cut, Normalized Cut and NMF. 
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Chapter 1  

Introduction 

Dimensionality reduction explores methods that efficiently reduce high dimensionality 

data to low dimensionality data for data processing goals such as pattern recognition, 

information retrieval, machine learning, microarray data analysis, and data mining. Also, feature 

dimensionality reduction is an active research topic because of its importance and usefulness 

[1, 2, 3, 4, 5]. We assessed the area of dimensionality reduction by two important methods: 

feature extraction and feature selection. Feature extraction creates new features resulting from 

the functions of the original features; and feature selection chooses a subset of the original 

features. Data processing tasks will become efficient after applying the methods since feature 

extraction and feature selection both try to reduce the dataset dimensionality. We will review the 

main concepts of feature extraction and feature selection in this chapter, and we will introduce 

some basic applications.  

Intensive research in dimensionality reduction area is being paid attention in the past 

decades. Still nowadays its necessitated demand is further increasing and there has been a 

notable shift in this area since important high-dimensional applications such as gene expression 

data, text categorization, and document indexing become widely used. 

Dimension reduction plays an increasingly important role in the field of machine 

learning: 

 Feature reduction involves removing features that provide non-significant 

information, thus the process of feature reduction can avoid the redundant 

information in gene expression data to confuse the analysis. 

 Feature reduction makes the classification algorithms to reduce the 

computational burden and run much faster. 

 Feature reduction can help the results of analysis easier and simple to 

understand. 
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 It is important to emphasize that feature reduction makes the classification 

algorithm to concentrate on the most correlated and useful features, thus boost 

the classification accuracy. 

 Feature reduction helps to save the cost of data acquisition. 

 
1.1 Objectives 

           Dimension reduction has been widely used in machine learning field. Typically, 

dimension reduction methods includes supervised dimension reduction method and 

unsupervised dimension reduction method. In the unsupervised dimension reduction 

method, the graph embedding method is more popular and reliable due to the using of data 

graph and manifold information. 

           However, most of the currently available dimensionality reduction methods require 

an affinity graph constructed beforehand. This affinity graph makes the projection process 

based on the input of the graph to a large extent. In this study, we proposed a novel graph 

embedding method for unsupervised dimension reduction. In this method, it is independent 

on the input of the graph. 

 

1.2 Major contribution of the thesis 

          The major contributions of the thesis are highlighted in the following: 

 A novel graph embedding method for unsupervised dimensionality reduction is 

proposed and analysis. Simultaneously, we conduct the graph construction in our 

model with dimensionality reduction. The adaptive and optimal neighbor on the 

basis of projected local distance is assigned.  

 We compare our proposed method with other dimensionality reduction method, 

such as PCA and LPP. The algorithm is implemented in Matlab and tested on 

Synthetic data and real benchmark datasets. The experimental results show that 
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our proposed method is superior to other methods. This proves that our proposed 

method is very convenient to be applied in the dimensionality reduction. 

 

1.3 Organization of the thesis 

         To give a distinct view about the thesis report, the chapters are arranged as below: 

         In Chapter 2, we review the background of pattern recognition system. In pattern 

recognition system, we introduced the four processes: pre-processing, feature extraction, 

classification and post-processing. 

         In Chapter 3, we review the linear feature extraction methods in high-dimensional 

spaces. Well-known methods used in pattern recognition are reviewed in great details, such 

as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). 

         In Chapter 4, we introduced the clustering technique review. Since the goal of 

clustering is to identify the intrinsic group within the unlabeled data, we classify the 

clustering methods into four categories: partitioning methods, hierarchical methods, density-

based methods and grid-based methods. 

         In Chapter 5, based on the classical unsupervised feature extraction algorithm, we 

proposed a new novel graph embedding method for unsupervised dimensionality reduction. 

We try to find an optimization method to solve it.  The detail algorithm is explained and 

summarized. 

         In Chapter 6, the experimental results are implemented on both synthetic and 

benchmark data sets. Also, the results are compared with several other state-of-the-art 

feature extraction algorithms, such as PCA and LPP. Moreover, we evaluate the clustering 

ability of proposed method on 15 benchmark datasets. It shows that our proposed method 

superior than other methods, such as K-means, Ratio Cut, Normalized Cut and NMF 

methods. 
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Chapter 2  

Pattern Recognition System 

         There are two components in conventional pattern recognition systems: one is feature 

analysis and another one is pattern classification. Parameter extraction and feature extraction 

are two steps to achieve feature analysis. We can extract the information relevant from the input 

data in terms of parameter vector to do pattern classification. This process is called parameter 

extraction; On the other hand, the parameter vector is projected to a feature vector, this process 

is called feature extraction. We can apply separately or combinative with parameter extraction 

even with classification to do feature extraction. Two classical independent feature extraction 

algorithms are used in dimensional reduction. One is Linear Discriminant Analysis (LDA) and 

another one is Principal Component Analysis (PCA) [6, 7, 8]. The main principal of PCA and 

LDA is that we transform the parameter vectors into a feature subspace to extract features. To 

complete this process we use a linear transformation matrix. However, they have different goals 

to optimize the transformation matrix. PCA try to get the largest variations for the original feature 

vector to optimize the transformation matrix. LDA aims the largest ratio of between-class 

variation and within-class variation when transforming the original feature space to a new 

feature space. 

 

2.1 Introduction of pattern recognition system 

         Categorizing of input data into a number of categories or identifiable classes from a 

background of irrelevant detail by the means of extracting of the significant features is called 

pattern recognition.  The above Figure 2-1 showed the four stages about a typical pattern 

recognition system [9]. 
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Figure 2-1 A typical pattern recognition system. 

 
          At the input of this pattern recognition system, a set of features is presented by an 

unknown pattern sample. On the other hand, at the output of this pattern recognition system, it 

is a set of predefined classes. The task of the system is to assign the unknown pattern sample 

to one of the classes. We will introduce and describe each stage of the pattern recognition 

system in the following sections. Some basic concepts of pattern recognition also are explained. 

 

2.1.1 Pre-processing 

         The operations included in this stage improve the representation of the patterns. It may 

include data registration, noise removal, segmentation, and data normalization, depending on 

the nature of pattern recognition task. In face recognition system, the face images are 

registered so as to make sure that the eyes appear in the same coordinates of the images. 

Some noise which from pattern samples should be reduced in order to increase the correctness 

of the classification. In pattern recognition systems, the pattern which contained noise may 

hinder the task of the system, also it may result to the wrong underlying model. For example, 

filters are usually used to remove noise and enhance higher frequencies in speech recognition 

problems. Individual patterns should be segment in some recognition tasks. For example, the 

segmentation faces in an image to create meaningful patterns may require for the feature 

extraction process. 

 

2.1.2 Feature Extraction 

         One of the most important issues of pattern recognition is how to selection of the best set 

of features for dimension reduction. The main goal of feature extraction is to keep as much as 
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possible of their discriminatory information and reduce the number of features of dataset. 

Therefore, the aim of a feature extractor with good performance is chooses features which are 

similar for data in the same class and at the same time, differentiate data in different classes.  

 

2.1.3 Classification 

         The main goal of the classification is to classify the feature vector provided by the feature 

extractor to a class. The output of the classifier is typically a discrete selection of one of the 

predefined classes. All the principal components of a pattern recognition system are applied 

and used for improving the performance of the classifier. The degree of difficulty of the 

classification depends on the similarity relations between the patterns of different classes. 

Therefore, its success is significantly affected by the feature extraction stage. 

 

2.1.4 Post-processing 

         Based on the classification outputs, we can lower the classification error rate. In order to 

reduce the classification error rate, this process applies previous information about the problem 

to achieve the goals. Therefore, the post-processing stage can increase the overall 

classification accuracy. 

 

2.2 Some Concepts of Pattern Recognition 

         In the following section, we will introduce two important concepts. One is learning, and 

another one is generalization. 

 

2.2.1 Learning Types 

         Many mathematical models have been applied to pattern recognition system. Typically, 

the mathematical model projects or classifies the patterns to the corresponding classes. Data 

samples are used to determine a reliable mapping. It is important part for the mapping system. 
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Learning or training is the procedure of getting the model, and within this procedure, sample 

patterns be used, which is defined as training set samples. There are three basic types of 

learning methods depending upon the nature of the pattern recognition task. 

 Supervised Learning: For supervised learning, the training stage begins with the given 

class labels. Based on the given class labels information, the training stage can reduce 

the total cost for the training set patterns.  

 Unsupervised Learning: For unsupervised learning, the training stage begins without 

the class label information. The main task is to find the similarities of groups which 

potentially have great probability belonging to same class. For supervised learning, it 

requires human labor for labeling, however, for unsupervised learning, it is not required 

human labor for labeling work. Moreover, it is widely used in many applications. 

 Reinforcement Learning: For reinforcement learning, when computing the model that 

maps the patterns to the classes, a feedback is provided by reinforcement learning. 

This learning mode, the class label information is not required and instead of it, it has 

feedback information. The feedback information provides the fact that the tentative 

class is right or wrong. 

 

2.2.2 Generalization 

         Training set samples is applied to learn the pattern recognition system in order to find the 

model that projects the pattern samples to their corresponding classifiers.  

         However, although the pattern recognition system is trained to maximize the performance 

by using the recognizing training set samples. It still may not recognize the new test samples. 

This is called generalization. Thus, it is easily to figure it out that generalization ability of a 

system is related to its performance of recognizing new samples, but not used in the learning 

stage. Basically, there have two reasons to cause the poor generalization ability. Firstly, pattern 

recognition system is intensively over-trained on the training set. Typically, we called it is an 
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over fitting problem. Secondly, the number of feature is really large. However, the number of 

training samples is small. This is also called the curse of dimensionality. 
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Chapter 3  

Linear feature extraction methods in high-dimensional spaces  

         In Chapter 2, we introduced the pattern recognition system. In this chapter, we will explain 

the characteristic properties of high-dimensional spaces. It motivates the use of feature 

extraction techniques in pattern recognition tasks with high-dimensional sample spaces. Also, 

we will review the concept of linear feature extraction methods in detail.  

 

3.1 Characteristic Properties of High-Dimensional Data Spaces 

         In many real-world applications in pattern recognition, information retrieval, the data which 

contained labeled information are not sufficient. And it is really heavy human labor to label a 

huge number of data points, also it is time-consuming work. It is really hard to get enough label 

information. However, this motivates a hot research direction of dimensional reduction. It is 

sensible to expect the data sample which contains more information in order to improve the 

accuracy of detecting the classes. As we discussed above, the number of feature is really large 

and the number of training samples is small. This concept is known as the curse of 

dimensionality. And a penalty in classification accuracy happened as the number of features 

increases beyond some point. 

         Experimental results have explained that high-dimensional sample spaces are usually 

empty because data typically focus on a certain subset of the sample space but not from the 

origin as the dimensional feature increases [10]. This explained that the data samples are 

mostly in a lower dimensionality. Thus, high-dimensional dataset can be extracted to a lower 

dimensionality subspace without losing important detail by separating among the classes by 

means of employing the knowledge of feature extraction. It has been also proved that as the 

dimensionality of the sample space become or close to infinity, lower-dimensional linear 

projections archive a normality model that explained a normality distribution with a probability 

approaching one. It shows that the normally distributed high-dimensional data focus on the tails 
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and uniformly distributed high-dimensional data pay more attention on the corners. So, density 

estimation work for high-dimensional sample is really a difficult work. And local neighborhoods 

become empty. This result the detailed density estimation is lost. 

          To summarize, the dimensionality of the dataset space is necessary to be reduced before 

applying the classifier to data samples in sample spaces which is high dimensionality data. 

However, an efficient dimension reduction algorithm should be explored to keep the significant 

information of the high-dimensional datasets. In this thesis, the dimension reduction techniques 

for high-dimensional sample spaces are proposed. 

 
3.2 Introduction of Dimensionality reduction 

        Dimensionality reduction is the study of methods for reducing high-dimensional data to 

lower dimensional data. Generally, the main aim is to remove the irrelevant and redundant data 

to lower the cost of computation. Also it aims to avoid data over-fitting problem [11]. It can keep 

the data which contains important information, thus, it improve the correctness of tasks such as 

machine learning, pattern recognition. To solve the problem of “curse of dimensionality”, 

dimensionality reduction is a productive solution. The number of examples for machine learning 

increases exponentially as the dimension increases linearly [12]. An example of the curse of 

dimensionality is shown in Figure 3-1. 

        Consider an application in which a system dataset for processing by the term of a 

collection of variables. In this situation, the number of features is large and they are irrelevant. 

There are some factors which will cause irrelevant problem. Firstly, many dimensions will be 

irrelevant if the noise is larger than the variation which dimensions contained. Secondly,  

some dimensions will be correlated with each other, this will cause that it will be redundant. 

Thus, it is necessary to remove the redundant dimensions and irrelevant to reduce the 

nonsense part. In this way, it will become more economic. 
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Figure 3-1 Example of curse of dimensionality 

        From the Figure 3-1, we know MSE is the mean squared error of an 1-nearest neighbor 

rule [13, 14]. Each dimension is generated uniformly from -1 to 1. From the Figure 3-1, we can 

get that the dimensionality increasing will lead the MSE increasing sharply. 

        Dimensionality reduction is a hot research topic at many areas, such as pattern 

recognition, artificial intelligence, statistics, databases, data mining, text mining, machine 

learning, visualization and optimization. Dimensionality reduction takes different effect on 

different areas. For example, dimensionality reduction method applied to extract a small set of 

features that contained most of the variability of the data in pattern recognition. However, the 

process of dimensionality reduction is considered as selecting a small subset of features in text 

mining area. Also, different dimensional reduction methods are applied in different field.  

        Dimensionality reduction has been a hot and popular research topic currently and there is 

a lot of work that has been published since decades [15, 16, 17, 18]. 

        Based on the different ways, we can classify dimensionality reduction method in the 

following: (1) feature selection or feature extraction, (2) linear or nonlinear, (3) supervised or 

unsupervised, and (4) local or global. Typically, dimensionality reduction methods are often 

classified into feature selection and feature extraction. In feature selection, a subset of original 

features is selected to process. However, in feature extraction, it is extracted new features from 

the original set of features by mapping or projection. 
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         Principal Components Analysis (PCA) is a linear algorithm.  The new features are 

extracted from original features [19] by using a linear projecting. Likewise, nonlinear methods 

such as Sammon’s mapping [20], locally linear embedding [21], and ISOMAP [22] apply a non-

linear mapping method to extract new features from originally set of features. Moreover, 

supervised method use the class label information of the data. For unsupervised methods do 

the process with data which doesn’t contain any label information. 

          Usually, it is useful to divided supervised dimensionality reduction algorithms into local 

supervised dimensionality reduction algorithms and global supervised dimensionality reduction 

algorithms. Features are selected for each category of the class feature in a local method 

whereas features are chosen for all categories in a global method. We will review the basic 

concepts and key techniques of feature extraction and feature selection, respectively.  

 

3.2.1 Feature Selection 

In feature selection, we can describe the process in the following:  

Given a set of features   {          }, the goal of feature selection is to find a subset 

   of S with |  |    such that            for all    , | |    where J is the evaluation 

function. Here d is usually illustrated by the user. 

A feature selection algorithm requires the following ingredients: a generation strategy 

or search strategy, an evaluation function, a validation method [23, 24, 25, 26]. See Figure 3-2 

show the feature selection process. This process explains the relationships between these 

components.  
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Figure 3-2 Feature selection process 

       The search strategy tries to find the way to select the set of features for keeping the 

important information. Typically, exhaustive search is prohibitive, so it is necessary to apply 

other strategies. The evaluation function assesses a set of features and calculates a ranking 

possibility for the feature selection process. The stopping criterion has less importance. 

Typically a certain number of features is selected to choose the stopping criterion for search 

procedures. Validation is for checking the validity of the selected features.  

 

3.2.2 Feature Extraction 

         Feature extraction is a special form of dimensional reduction. It is very different from 

feature selection. Now we define the feature extraction in the following: 

Given a set of feature   {          }, find a new set of feature    which originally from a 

linear or non-linear mapping of  . Here, |  |    and            for all derived set of feature   

with | |   , where   is the evaluation function. 

         Feature extraction is applied while the current feature has to yield new features. We can 

explore feature extraction by transforming any original D dimensional feature vector to a new D 

dimensional feature vector through mapping method. Here we can use linear mapping method 

or nonlinear mapping method. Generally speaking, mapping process can maintain the important 

information whereas reducing the feature dimensionality vector. 
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Figure 3-3 Feature Extraction Process 

         Figure 3-3 explains the feature extraction process. We will describe two methods to 

explain the difference between the feature extraction and feature selection. 

 

3.3 Linear Feature Extraction Methods 

         Feature extraction has been one of the most significant and popular topic of pattern 

recognition, especially in machine learning area. Most of the feature extraction methods pay 

attention on getting the linear transformations. Based on the linear transformations, 

dimensionality reduction maps the original high-dimensional space into a lower-dimensional 

space which keeps most significant information. As mentioned above, the main goal of 

dimensionality reduction by feature extraction is that it may reduce the negative impact of the 

curse of dimensionality [27]. Also linear feature extractions methods are often used to process 

data before classification. This process can be considered as pre-processors.  In the following 

sections we introduce these linear methods. There has some classic method such as Principal 

Component Analysis, Linear Discriminant Analysis and Locality Preserving Projections. 

 

3.4 Principal Component Analysis for Feature Extraction 

          In this section, we will introduce a classic method for feature extraction. 

 

3.4.1 Definition and Derivation of PCA 

          The main aim of PCA is to reduce the high-dimensionality data set which contains plenty 

of interrelated variables, at the same time, maintaining the important variation contained in the 

data set. In other words, the goal of PCA is to find a subspace whose basis vectors correspond 
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to the max-variance directions in the original space and the global scatter is maximized after the 

projection of datasets. The mean square of the Euclidean distance between any pair of the 

projected dataset characterized the global scatter.  Here, let            denotes a set of 

training dataset which are    dimensions. The original dataset projected training samples into 

subspace which is denoted by           . 

 

Figure 3-4 Procedures for PCA 

The object function of PCA is defined by the below equation, 

         
 

 

 

 

 

 
∑∑         

 

   

 

   

              

Where                . After deduction, the above equation can be rewritten as  

                               

Here, we define    as below: 

   
 

 

 

 

 

 
∑∑(     )(     )

 
 

   

 

   

               

         The above equation explains that    is intrinsically the covariance matrix of dataset. The 

Lagrange multiplier is applied to      . We can easily get the optimized solution              . 

Therefore, the projection matrix w which maximizing       can be choosed as the eigenvectors 

of the largest eigenvalues of   . At the same time, we can choose a set of axes of PCA by using 

the d eigenvectors of    corresponding to the d largest eigenvalues. 
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3.5 Linear Discriminant Analysis for Feature Extraction 

         Unlike PCA, the main aim of Linear Discriminant Analysis(LDA) is to find the optimal 

subspace that can maximize between class scatter and minimize the within class scatter 

simultaneously.  The fisher criterion is defined as follows: 

         
|     |

|     |
                

Where    is the within-class scatter matrices and    is the between-class scatter matrices. 

Here          and both are semi-positive definite matrix. The optimized solution of       

are the generalized eigenvectors            of          corresponding to the d largest 

eigenvalues.  

 

3.5.1 Linear Discriminant Analysis Review 

        Denote                   be d-dimensional data and    {       } be associated 

class labels, where   is the number of data and   is the number of classes. Let    be the 

number of data in the class  . LDA is to learn a linear transformation        , and   

    . After the linear transformation, the original high-dimensional data   is transformed into a 

low-dimensional vector: 

                              

In the following, we define two scatter matrix, the within-class scatter matrix is   : 

   ∑ ∑ (     )(     )
 

      

 

   

                  

And the between-class scatter matrix    is defined as: 

   ∑               
 

   

                 

Where                is the mean of the samples in class   and   is the mean of all the 

samples: 
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∑   
      

               

  
 

 
∑  

 

   

                 

The LDA is to maximize the between-class scatter and minimizing the within-class scatter. We 

get the projection matrix    in LDA through solving the following optimization problem: 

         
      

                                    

Where       denotes the trace operator.  The solution of the optimization problem is the   

largest eigenvectors of   
    , and the optimal value is ∑   

 
   , where                are the 

first   largest eigenvalues of   
    , and   is the projection dimensionality. Figure 3-5 shows 

the procedures for LDA. 

 

 Figure 3-5 Procedures for LDA 

          From the above, we can notice that the two drawback in LDA. The first one is that it 

cannot be solved numerically when    is singular. The second one is the optimal value 

monotonously increase according to the increasing of the projection dimensionality. Hence, the 

optimal dimensionality for discriminant analysis cannot be determined in LDA. Another limitation 

of LDA is that the projection directions in LDA are smaller than the number of class, which is not 

sufficient for complicate problem. 

 

3.6 Locality Preserving Projections Review 

        In this section, we will review the classic method, Locality Preserving Projections (LPP), 

which is used for feature analysis on many applications. Typically, LPP would get good 
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performance when apply on the data which is embedded in a nonlinear manifold space. Since 

LPP is considered as a method that is good at recognize lower dimensional spaces that 

maintain local relationships on data vectors in the transformed space. 

 

3.6.1 Locality Preserving Projections 

        LPP extend the local mutual relationships between the input data vectors to the vectors of 

the projected subspace. This is the optimality criterion of LPP. The following equation will define 

as: 

      ∑  ⃗   ⃗  
   ⃗   ⃗      

   

                

In Equation 3.11, we define the similarity matrix,  {    }    , which denote the local 

relationships of the input data vectors as follows: 

     {
   ( 

  ⃗   ⃗   

 
)   ( ⃗   ⃗ )   

   ( ⃗   ⃗ )    

                    

In Equation        ,  ( ⃗   ⃗ ) is the indicator function, where  ⃗  and  ⃗  are neighbors and   is 

the heat kernel factor. Here   ⃗  is the neighborhood of a given input vector. It can be considered 

as the K-nearest vectors to  ⃗ . Furthermore, it also can considered as the set of vectors that fall 

within a maximum distance defined by threshold   from  ⃗ . 

        Here     ⃗⃗⃗  ⃗  is one-dimensional representation of original feature  ⃗ , and we use    to 

substitute  ⃗ . So the optimization criterion in Equation 3.11 can be rewritten as follow: 
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                        ⃗⃗⃗      ⃗⃗⃗                      

Where       is the Laplacian matrix. The matrix   is a diagonal matrix whose entries are 

the column sums of  ,      ∑      . Here we apply a constraint on the magnitude of the 

transformed vectors to achieve an unique solution. 

 ⃗⃗⃗      ⃗⃗⃗                    

In order to minimize the objective function given in        , a constraint is imposed as follows: 

     ⃗⃗⃗        ⃗⃗⃗               

From        , we can get the linear project matrix   from the eigenvectors associate with    

smallest non-zero eigenvalues. 
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Chapter 4  

Clustering Technique Review 

         Clustering is one of the important topics in machine learning and data mining. The main 

goal of clustering is to get the similar patterns into the same cluster and reveal the significant 

and meaningful structure of the data [28]. 

         Clustering is one of the most significant unsupervised learning problems in machine 

learning area. It aims to find a structure in a set of unlabeled data. Clustering can be considered 

as the process of organizing objects into similar group or class. Thus, a cluster is a collection of 

objects which contain similar information with each other. That is to say, the goal of clustering is 

to identify the intrinsic group within the unlabeled data.  

 

4.1 Major clustering methods 

        Generally speaking, we classify the major clustering methods into four categories. There 

are partitioning methods, hierarchical methods, density-based methods, and grid-based 

methods. We will introduce these methods in the following sections. 

 

4.1.1 Partitioning methods 

        Given a set of n objects, a partitioning method divides the data into k groups. Typically, 

each group must belong to exactly one group or class. This idea called exclusive cluster 

separation. Generally speaking, the basic criterion of a good partitioning is that the objects in 

the same cluster are related between each other. Oppositely, objects in different clusters are far 

away. In order to achieve global optimality in partitioning-based clustering, it computes 

prohibitively and requires an exhaustive of all the possible partitions. Thus, it is much better to 

use popular heuristic methods, such as greedy methods like k-means and the k-medoids 

method. In this way, it improves the clustering quality and reaches a local optimum.  
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4.1.2 Hierarchical methods 

          A hierarchical method creates a hierarchical decomposition of the given set of data 

objects. Based on the way how hierarchical decomposition formed, it can be classified into 

agglomerative or divisive. The former method, also called bottom-up method, starts with each 

object forming a separate group. It merge two group into one group based on the close groups. 

The divisive approach, also called the top-down approach, starts with all the objects which is in 

the same cluster. Then the cluster is separated into smaller ones in iteration until a termination 

condition reached.  

           However, hierarchical clustering methods has limited that it cannot be undone once 

merging or splitting is done. This limited fact is helpful since it save computation costs and there 

is no combinatorial number of different choices problem. 

 

4.1.3 Density-based methods 

          Typically, the basic idea of partitioning methods is to cluster data point based on the 

distance between data point. It has good performance on getting spherical-shaped clusters, and 

this will suffer difficulty in searching clusters of arbitrary shapes. There has other clustering 

methods which is based on the notion of density in the nearby objects exceeds some threshold.  

However, density-based methods usually divide a set of objects into multiple exclusive clusters. 

Generally, density-based methods concentrate exclusive clusters only and fuzzy cluster cannot 

be considered. 

 

4.1.4 Grid-based methods 

         Grid-based methods split the object space from a grid structure into a finite small cell. All 

the clustering operations are performed on the grid structure. The processing time is fast based 

on grid-based method since it is independent on the number of data objects whereas it only 

depends on the number of cells in each dimension in the quantized space. It is an efficient 
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method for many spatial machines learning problem, especially on clustering. Therefore, grid-

based methods can be combined with other clustering methods. 
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Chapter 5  

Discriminative Unsupervised Dimensionality Reduction 

In this section, we propose a new novel graph embedding method for unsupervised 

dimensionality reduction. Typically, there has a lot of work for combination of dimensionality 

reduction and classification. In our study, we explored dimensionality reduction with clustering. 

In the previous chapter, we already review the background of dimensional reduction on 

different area. Such as data mining, statistic, image processing, pattern recognition, etc. In this 

chapter, we focus on explain dimensional reduction applied on machine learning. 

 

5.1 Introduction of dimensional reduction on machine learning 

       With the rapid growth of sciences recently, high-dimensional data becomes crowed 

everywhere and common nowadays. Moreover, these data are literally characterized by an 

underlying low-dimensional space mostly. This interesting phenomenon draws high attention to 

the dimensionality reduction technique which become really hot and popular research topic 

recently. In this situation, high dimensional data needs dimensional reduction techniques to 

discover important information and knowledge from it by removing the useless feature whereas 

maintain the significant feature which contain more information.  

         Dimensionality reduction is a popular technique to discover the intrinsic manifold structure 

from the high dimensional data. As we mentioned above, dimensionality reduction is one of the 

most popular topics in machine learning and is utilized in numerous areas. Moreover, it 

contributes to some specific area, such as computer vision, biology and geosciences. In 

computer vision, it projects the images from high dimensionality space to low dimensional space, 

which is considered as a basic pre-processing. It can be applied to image recognition [29, 30], 

image segmentation [31] and image compression [32]. In biological researches, dimensionality 

reduction is typically adopted to study high dimensional gene data, such as gene classification 
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[33] and disease causing genes interaction analysis [34]. Moreover, dimensionality reduction 

methods can be employed in geosciences so as to deal with the global climate data [35].  

        We already introduced the supervised dimensionality reduction methods and unsupervised 

dimensionality reduction methods in the above chapter. We explained some classic method like 

PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). We can figure it 

out that the unsupervised dimensionality reduction methods are more favorable for some data. 

Moreover, the graph embedding method is emphasis on in many unsupervised dimensionality 

reduction methods. 

         In this paragraph, we will introduce graph embedding method. We all know that the most 

of state-of-the-art graph embedding dimensionality reduction methods use an affinity graph 

constructed. This process makes the projecting process based on the input of the graph to a 

large extent. 

         In our study, we explore a new unsupervised dimensionality reduction method of a novel 

graph embedding. In this method, it is not required of input of the graph. Moreover, the graph 

construction in our model is constructed with the dimensionality reduction at the same time. The 

adaptive and optimal neighbors are assigned to improve the method based on the projected 

local distances. In this method, we assume that a larger probability to be connected happens on 

the data with lower distance apart. Moreover, the learnt graph to an ideal structure is 

constrained that the graph is block diagonal with the number f connected components to be 

identity with the number of clusters in the data. 

       In the following section, we will explain the proposed method and implement it. Also, we do 

some analysis and conclusion. 

 

5.2 Introduction of Proposed Method 

       In this section, we will introduce our proposed algorithm. 
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5.2.1 The Algorithm 

        First of all, here we summarize the notations used in the following section. Matrices are all 

written as uppercase letters whereas vectors are written as bold lower case letters. We define a 

matrix  ,        , this matrix is  -th row,  -th column and   -th element are denoted by   ,    

and     respectively. The trace of   is denoted by      . The Frobenius norm of  is defined 

as      √∑ ∑    
  

   
 
    √∑      

  
    . For an vector     , when    ,   -norm     is 

defined as       ∑ |  |
  

    
 

 . 

 

5.2.2 Graph Embedding Discriminative Unsupervised Dimension Reduction 

         In this section, we will explain our proposed method. In this method, we apply graph 

construction embedded in the unsupervised dimensionality reduction.  Given data set       , 

suppose that we are trying to learn the projection matrix       . Usually, here an orthogonal 

constraint should be applied on  , it is      . Based on the distance formula, we can get 

the distance between the  -th and  -th data points would be             
  and we summary 

all the distance between all pairs of data points. It would be  

∑∑             
 

 

 

 

 

                   

Notice that here is H, H is the centering matrix, we define H as follow:  

             

Traditional dimensionality reduction methods usually solve the problem that requires a graph 

constructed before hand: 

   
     

∑             
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We can see from the above formula, these algorithm separate the dimensionality reduction and 

graph construction, therefore, it dependent on the input of the graph. In this thesis, we develop 

a novel graph embedding dimensionality reduction method. Now we describe this process using 

two steps. 

          Now we consider an affinity matrix S to denote the probability of each data point in X to 

connect with its neighbors. We define      . Typically, we assign a pair which has smaller 

distance with a larger probability. Therefore, we can solve the following problem to construct the 

graph. 

   
   

∑             
    

 
     

           
           

         
                    

           However, Problem (1) has a trivial solution that only the nearest data point is assigned to 

a probability whereas all others are assigned 0. In this problem, they don’t have any neighbors 

for data point x. In this case, we apply some constraints on the graph in order to make the graph 

structure more clearly. Suppose that the number of clusters is k, and the graph S has n data 

points. Our main aim is that the block diagonal has exactly k connected components. That is to 

say, it is ideal if the probability within cluster should be nonzero whereas the probability between 

clusters should be zero. Also, for the probability within a same cluster, it should be equally 

distributed. However, it is really difficult to achieve it ideally. In this chapter, we develop a novel 

and simple method to achieve this challenge. 

        We assign a function value         to each node  , then we can know,        , so, we 

can get the following formula: 

∑         
                       

   

 

Where       
    

 
 is the Laplacian matrix in graph theory. Here we define a diagonal matrix 

as the degree matrix     
   . For the diagonal matrix, the  -th diagonal element is ∑       
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      . The Laplacian matrix has an important property when the probability matrix S is 

nonnegative. The property is described as follows [36, 37]. 

Theorem 1 The multiplicity k of the eigenvalue 0 of the Laplacian matrix    is equal to the 

number of connected components in the graph associated with  . 

        This theorem indicates that the graph possesses an ideal structure if          . This 

ideal structure that we described above could exactly partition the data points into   clusters 

since this is a block diagonal structure. Therefore, this problem becomes: 

   
   

∑             
    

 
     

           
     

                   

         
                                

From problem (6) we can see that it is hard to solve it if there is a strict constraint on the rank. 

Based on this problem, we develop a novel algorithm to solve it. 

 

5.2.3 Optimization Algorithm for Problem (6) 

        For the above problem,        is the  -th smallest eigenvalue of   . We can figure it out that 

         since    is positive semi-definite. Thus, the above problem would be equivalent to 

the following problem if the   is large enough. 

   
     

∑             
    

 
     

           
     

    ∑      

 

   

        

         
                              

In order to make sure that the   smallest eigenvalues of    are zero and the rank of    is    . 

According to the Ky Fan’s Theorem [38], we have 

∑          
            

         

 

   

            

From Problem (8), we can easily get the following equation: 

   
     

∑             
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The Problem (9) can be optimization method to solve. 

The first step: fix    , try to solve  . Then Problem (9) becomes: 

   
            

                       

The optimal solution of   in above Problem can be solved by the   eigenvectors corresponding 

to the   smallest eigenvalues of   . 

          Instead of fixing    , the second step is to fix     and try to solve  . Then Problem (9) is 

written in the following form: 

   
     

∑             
    

 
     

           
             

Then, we rewrite as follow: 

   
     

        
   

           
             

We can solve   by a iterative re-weighted method. Then, the Lagrangian function becomes: 

       
         

   

           
   (        )       

Then take derivative         and let it be zero, we can get: 

(    
  

         
   

           
    )               

Next, we get the following formula for solving the Problem (14): 

(    
  

         
   

           
    )            

So, we can update   iteratively. 

          One more interesting step is to fix     and solving  .Then problem (9) become: 

   
     

            

∑             
    

 
     

           
     

   ∑         
 

 

     

            

The above problem can be solved separately for each    as below: 
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∑    
          

      
     

 

   

         

      
             

Here,    
   

            
 

           
 and    

          
 . 

The problem above can be rewritten as below: 

   
  
           

    
 

  
    

           

Here        
       

 . Based on    , we can update   . By following the three steps which we 

described above, it is easily to update     and   accordingly. 

         For the problem (9), we can summary it as below: 

Input: 

Data matrix       , number of cluster  , reduced dimension  , parameter  , a large enough  . 

Output: 

Projection        and probability matrix        with exactly   connected components. 

Initialize   by the optimal solution to the problem (9) without the constraint on         , while not 

converge do 

1. Update       
    

 
, where         is a diagonal matrix with the  -th diagonal 

element as ∑             . 

2. Update  , whose columns are the   eigenvectors of    corresponding to the   smallest 

eigenvalues. Update  , whose columns are the   eigenvectors of matrix in Eq. (15) 

corresponding to the   smallest eigenvalues. Update   iteratively until converges. 

3. For each  , update the  -th row of   by solving the problem (18). 

End while 
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Chapter 6  

Experiments on synthetic data and real-world benchmark data sets. 

        In this chapter, we will apply our proposed dimensionality reduction method on both 

synthetic data and benchmark data sets. We denote our proposed Discriminative Unsupervised 

Dimensionality Reduction as DUDR in this chapter. 

 

6.1 Experiments on Synthetic Datasets 

        The synthetic data in this experiment is the data set that is stochastically generated two-

Gaussian matrix. Based on the Gaussian distribution, we randomly generate two clusters of 

data. Our main aim is to find an effective projection matrix which makes the two clusters could 

be separated sharply. In this experiment, we also apply some other popular methods, PCA and 

LPP, on the dataset to compare the result with our proposed method DUDR. Figure 6-1, Figure 

6-2, and Figure 6-3 show the comparison results about it. We can see from the Figure 6-1 that it 

is easily to get a good project direction if these two clusters are far from each other.  

          However, the experiment result changed as the distance between the two clusters 

become close. As we seen, PCA becomes incompetent whereas LPP lose the way to achieve 

the projection aim. However, our proposed method DUDR method consistently works well even 

as the distance between the two clusters gets closer. In the previous chapter, we already 

reviewed the PCA and LPP. PCA is a method is good at performance on the global structure. 

PCA is not capable of distinguishing one cluster from the other, that’s why it becomes 

incompetent immediately. For LPP, it works worse also when two clusters get too close from 

each other since it is a method that focused on the local structure. However, our proposed 

method DUDR pays more attention on the discriminative structure. This improves its projection 

ability. Figure 6-1, Figure 6-2 and Figure 6-3, these three figures are projection results on the 

two-Gaussian synthetic data. 
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Figure 6-1 Cluster Far Away 

 

Figure 6-2 Clusters Relatively Close 
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Figure 6-3 Clusters Fairly Close 

 

6.2 Experiments on Real Benchmark Datasets 

          In this Chapter, we will show the experiment results on real benchmark datasets. The 

benchmark datasets we used contains: Ecoli, Pathbased, Aggregation, BreastCancer, 

Compound, Yeast, R15, Glass, Spiral, Abalone, Movements, Jaffe, AR_ImData, XM2VTS,  and 

Coil20. Five of them are shape set data, six of them are data sets from UCI Machine Learning 

Repository and the other four are image data sets. We summarize these 15 datasets in Table 1. 
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Table 6-1 Description of data sets 

 

      In this section, we will apply the 15 datasets to test both the projection and clustering ability 

of DUDR.  

 

6.2.1 Experiments on Projection 

         We test our proposed method DUDR on the 5 benchmark data sets such as AR_ImData, 

Movements, Coil20, Jaffe and XM2VT. Similarly, we tested our proposed method DUDR and 

compared DUDR with PCA method and LPP method in this experiment. 

         In our experiment, we firstly test these three methods, DUDR, PCA and LPP, and then we  

learned the projection matrix separately. Based on the results we get, we will apply clustering 

method, K-means for 100 times with the same initialization. From the 100 runs, we choose the 

best clustering result.   

          For LPP method, it requires an affinity matrix constructed beforehand. Based on this, we 

construct the graph with the self-tune Gaussian method [39]. In this experiment, we set the 

parameter   to be self-tuned and we set 5 neighbors for testing. 

          For our proposed method, DUDR, we also set the parameter   to be self-tuned. Firstly, 

we compute the number of zero eigenvalues in each iteration. Here when the number of zero 
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eigenvalues is larger than  , we divide   by 2. Whereas the number of zero eigenvalues is 

smaller than   then we do multiply   by 2. Otherwise we stop the iteration process.  We set the 

number of projected dimensions from 1 to 100. However, the dimension of the data set 

Movement is too large and we test the performance with dimensions from 1 to 16. 

        In this experiment, we get the report of the projection results which shown in Figure 6-4~ 

Figure 6-8. From those figures, we can verify the projection ability of our proposed method. 

Obviously, for different circumstances, our proposed DUDR method, it has good performance 

than PCA and LPP. We can get from the result that DUDR outperforms than PCA and LPP 

especially in the situation that the number of projected dimension is small. The proposed 

method is capability of projecting the original data set to a subspace which has small 

dimensions    , where   is the number of clusters in the data set. Therefore, the DUDR is 

able to project the data to a lower dimensional space after clustering. It is apparently to get that 

the clustering process is important and it makes the dimensionality reduction process more 

efficient and effective. 

 

 

Figure 6-4 Projection results on AR-mData data sets 
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Figure 6-5 Projection results on XM2VT 

 

 

Figure 6-6 Projection results on Movements 
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Figure 6-7 Projection results on Jaffe 

 

 

Figure 6-8 Projection results on Coil20 
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6.2.2 Experiments on Clustering 

         In this section, we will evaluate the clustering ability of proposed method, DUDR, on all the 

benchmark datasets. Also, we will compare DUDR with other methods, such as K-means, Ratio 

Cut, Normalized Cut and NMF methods. 

          Firstly, we set the number of clusters is   in each data set and the projected dimension in 

DUDR is    . Similarly, these methods such as Ratio Cut, Normalized Cut and NMF, all 

require an affinity matrix as an input. The graph is constructed with the self-tune Gaussian 

method. And then we run k-means for 100 times with the same initialization for all the methods 

such as K-means, Ratio Cut and Normalized Cut. After applying the method, we get their 

average performance, standard deviation and the performance corresponding to the best K-

means objection function value whereas for NMF and DUDR, we run once and get the results. 

We use two clustering metrics to evaluate the experiment result. One is accuracy, another one 

is NMI (Normalized Mutual Information). We summarize the result in Table 2 and Table 3. From 

both table, we can easily get that DUDR has better performance than other related methods on 

the benchmark data sets.  Because DUDR run less iteration than other methods (K-means, 

Ratio Cut and Normalized Cut), it is less time consumed but has a better accuracy. For NMF, it 

requires a graph constructed beforehand. Moreover, in most cases DUDR is more steady in a 

certain setting and independent on the initialization than other methods. 
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Table 6-2 Clustering accuracy on 15 benchmark data sets 

 

Table 6-3 Clustering NMI on 15 benchmark data sets         
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Chapter 7  

Conclusions 

          In this thesis, we proposed a novel graph embedding dimensionality reduction model.  

Simultaneously, we conducted two processes instead of learning a probabilistic affinity matrix 

before dimensionality reduction. Based on the projected local connectivity, we assigned the 

adaptive and optimal neighbors to the model.   

          In the proposed method, the learnt graph has a block diagonal structure with exactly   

connected components. Here   denotes the number of clusters. We impose rank constraint on 

the Laplacian matrix of graph to achieve the goal. In this thesis, we developed an efficient 

dimensionality reduction method to optimize the proposed objective. Also, we implement the 

experiments on both synthetic data and 15 real-world benchmark data sets to reveal the 

superiority of our proposed dimensionality reduction method. 
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