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ABSTRACT

DISCOVERY OF ANOMALOUS PATTERNS WITHIN MULTIDIMENSIONAL,

ASYNCHRONOUS TIME-SERIES WITH AN EMPHASIS

ON THE “INTERNET OF THINGS”

Stephen P. Emmons Jr., Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Farhad Kamangar

In this dissertation we examine “Internet-scale” systems that present us with

multidimensional time-series data characterized by many sources sending symbols at

irregular intervals over a common channel. We explore a unique method for the discov-

ery of hidden populations of similar sources and their previously-unknown behavioral

patterns, and using these discoveries, reveal anomalous sources and/or time-frames

based on their statistical properties. To do so, we employ several well-studied mech-

anisms, such as k-means and Principle Component Analysis (PCA), and bring to

bear analysis tools from other disciplines, such as the use of n-grams and “motifs,”

that have not previously been considered in these contexts. While applicable to the

study of any system whose attributes can map to the generalized model we present,

the approach is of particular interest when dealing with large numbers of remote de-

vices that make up the “Internet of Things” (IoT). The method is applied to several

discrete layers of cellular wireless communications infrastructure for a diverse set of

commercial Machine-to-Machine (M2M) applications where the behavior of the de-

v



vices was examined as they interacted with carrier network elements. While it is

common to study these systems in the context of their application-level duties, the

devices’ behavior at lower levels of the solution stack has received less attention, and

is often poorly understood by either the application engineers or network operators.
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CHAPTER 1

INTRODUCTION

1.1 Asking The Question

In June 2013, the Internet was estimated to be accessible to over 2.4 billion of

the world’s 7 billion humans [1]. But the Internet is never directly used by humans.

Instead, humans use some type of computing device – desktops, laptops, smartphones,

tablets – to access the Internet. And when connected to the Internet, these devices

communicate directly or indirectly with many other types of devices that assist them

in the performance of their tasks – servers, routers, and firewalls – or with which

they interact – home automation/security devices, video cameras, medical devices,

and vehicles.

When some human is not using these computing devices, they are often still

connected to the Internet. If not powered off, they can, and very often do, continue

performing functions of which the human user may only be vaguely aware. As an

everyday example, the casual observer of a common consumer WiFi router will notice

that its many status lights are almost always flickering to indicate a constant level of

activity by nearby connected devices, and might ask the question: “What are those

things doing?”

One might say that the Internet is really made up of “things” and that humans

are simply hovering around the edges. In fact, there are many more “things” that

use the Internet than humans. Kevin Ashton, co-founder of the Auto-ID Center at

MIT, is credited with first using the phrase “The Internet of Things” (IoT) in 2009.

Cisco’s Dave Evans estimates that the IoT was “born” around 2008 when the number
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of “things” connected to the Internet exceeded the number of humans, and further

estimates that they will exceed 25 billion by 2015 and then 50 billion by 2020 [2].

With so many “things,” a better question might be: “What are all those things

doing??”

The challenge for my research is to identify very specific ways to discover what

all those things are doing by examining the flow of information they produce at key

observation points within the Internet, cross-referencing that with other information

known about them, and bringing to light previously unknown or unclear information

about their condition and/or behavior.

1.2 Framing The Problem

The large and growing size of the IoT results from the opportunity provided

by the Internet to collect data about almost anything, anywhere, anytime, and then

send that data almost anywhere, anytime.

The commoditization of microprocessors has made it possible to create both

dense and widely-dispersed sensor networks used in the monitoring and control of

everything from security and surveillance systems, HVAC systems, appliances, all

types of vehicles, electric and other utility distribution/metering, medical devices,

and growing array of biometric devices to enhance the human experience.

With the ability to embed microprocessors connected to sensors in so many

places to collect data comes the need to deliver it somewhere that it can be used

most effectively. The Internet, with its global wired infrastructure augmented with

cellular, satellite, and other wireless networks, has become the medium of choice for

the delivery of this data. And the destinations are often aggregation points where

the data is processed, analyzed, and archived for many different purposes.
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Specific populations of embedded devices serving a given purpose, often with

one or more aggregation points for monitoring and control, are commonly called

“Machine-to-Machine” or M2M applications (Section 2.1). Such applications can

range in size from the hundreds to the millions of devices. In many cases, very few

humans are involved in the day-to-day operations of such systems. Thus, the IoT is

able to grow unconstrained by the number of humans who also use the Internet.

The designers, developers, and operators of M2M applications may instrument

and examine individual devices up to the point that they send data over the Internet,

and again at some data egress point from the Internet, such as a data center; however,

everything that happens in between is virtually unknown to them. And the methods

and access available to look deeply into the information flow to better understand

its behavior are limited. These applications’ device communications are aggregated

together with that of countless others by their service providers.

On the other hand, Internet providers for M2M applications have their own

monitoring of the data flow for all of their customers and generally know what traffic

belongs to each. Yet they typically have no specific knowledge of the significance

or importance of their available information apart from obvious conditions related to

outages and congestion. And while Internet providers have expanded their monitoring

of human-related traffic in many application-related areas such as spam filtering,

intrusion detection, and denial-of-service (DoS) attack mitigation, they currently have

little monitoring specific to IoT-related concerns.

Thus, both M2M applications and Internet providers can benefit from a better

understanding of the behavior of the many “things” that they must support.
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1.3 Laying The Foundation

First, it is important to have a more thorough understanding of the character-

istics of the environment within which both M2M applications and Internet providers

operate.

In Chapter 2, we start by describing the M2M application domain in greater

detail (Section 2.1), reviewing related work in this area, followed by an exploration

of key foundational concepts used throughout the remainder of this dissertation in

Section 2.2.1 and following.

We consider a form of dimensionality reduction through the creation of “meta-

dimensions” based on the identification of temporal sequences of data generated by

individual devices using a combination of “n-gram” (Section 2.3.1) and “motif” (Sec-

tion 2.3.2) techniques.

We survey several methods of clustering that may be used to discover associa-

tions within data, with a special focus on k-means, focusing on how to ensure that

the data is properly conditioned to yield meaningful results and leveraging the survey

of data properties performed earlier (Section 2.3.3).

We further consider ways to reduce the dimensionality of raw available data, fo-

cusing specifically on several methods for filtering, normalizing, and then “whitening”

the original data using Principal Component Analysis (Section 2.3.5).

With this foundation, we are able to focus on the unique contributions of this

dissertation.
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1.4 Attacking The Problem

The goal of this research is to look deeply into the flow of data available in the

IoT and discover previously unknown or unclear information about the behavior of

its denizens. I seek to reach this goal by accomplishing the following objectives:

1. Propose a set of methods to analyze time-series data sources such as those avail-

able in the IoT that characterizes their dimensionality, performs various meth-

ods of dimensionality reduction and enhancement, and uses clustering methods

to identify groupings of both devices and time periods (Chapter 3).

2. Apply this approach to several real-world data sources and assess which of the

various forms of the method produce the most useful results (Chapter 4).

The proposed methods go beyond the prior work by considering unique combina-

tions of foundational elements for pattern discovery. In particular, they introduce

novel variations of both n-grams and motifs helpful for the real-world data sets being

studied.

Several of the real-world scenarios included here have yet to be published outside

of this dissertation (Sections 4.2 & 4.3). Included in these studies is the use of “Big

Data” collection and analysis methods that were material in conducting much of the

experimentation [67] and [68].

1.5 Assessing The Results

At the conclusion (Chapter 5), I intend to show that these methods may be used

to discover previously-unknown patterns specific to the systems being studied. My

expectation is that this information will then be useful for historical trend analysis of

the past, anomaly detection in the present, and/or forecasting expected system state

into the future; however, these resulting applications are not my focus. These patterns
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should reveal important operational dynamics of the many devices interacting within

the IoT that will aid the designers, developers, administrators, and operators of M2M

and other applications to better understand what all those things are doing, and with

that understanding, improve existing systems, as well as more successfully plan, build,

and operate future systems.
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CHAPTER 2

BACKGROUND

2.1 “Machine-to-Machine” Applications

M2M applications bring together a wide array of technologies. They likewise

demand an equally-wide range of expertise to properly design, build, test, deploy, and

operate them. End-to-end implementation for such a system may involve any or all

of the following:

• Specialized sensors requiring calibration.

• Embedded microprocessors with customized firmware that may need future re-

mote updates.

• Battery life or other power management considerations.

• Wireless and other communications needs, with special attention to scalability,

routing, and even cost considerations.

• Centralized servers for collecting, processing, analyzing, and archiving sensor

data with scalability, reliability, and disaster recovery considerations.

• Human user interface needs for system administration and end-user access to

the information for reporting, notification, and other purposes.

Once completed, an M2M application should be thoroughly monitored to ensure

proper ongoing operation. Many aspects of the overall system may be monitored

using standard measures such as CPU, memory, storage, and communications levels

available for centralized servers and networking equipment. Software components

may be specifically instrumented during development to make other key operational

measures available through log files or by providing standardized access methods
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such as SNMP or JMX. Many established commercial and open source monitoring

systems exist that can capture this information and check for anomalies in order to

alert system operators to investigate.

Unfortunately and despite best efforts, this approach to monitoring an M2M

application is never enough. A monitoring system can only detect what it was de-

signed to find. Almost certainly, a complex M2M application that grows in size over

time will start to exhibit behavior that was not anticipated by the original designers

and whose causes are unclear. Invariably, there are clues within the observable data

about the overall application that may be found. These may be used to make some

corrective or adaptive change to one or more components, and likewise may be used

to enhance the monitoring system to detect future similar circumstances.

The longer after the original deployment of the M2M application that such

issues arise, the more challenging they become. Due to the diversity of expertise

required to build and run an M2M application, it is difficult in practice for any one

person to fully grasp the complexity involved in the whole system. Some on the

original design and development team may have such a grasp, but they may not be

involved with the day-to-day operations after a field trial. All knowledge by system

administrators and operators will likely derive from initial training plus their own

observation of limited parts of the system to which they have access. As a result, the

people who are the closest to the system – the administrators and operators – are

often the least qualified to understand the significance of what they see happening.

But eventually such issues should be escalated to the the original development team,

assuming they are available, to take the necessary action.

Perhaps the most challenging aspect of an M2M application is the very use of

the Internet as the communications medium for its many remote devices. As the

population of devices grows, so do the number of variables that can influence their
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behavior. Over time the devices may consist of units from different manufacturing

runs, may have slightly different firmware or configuration settings, may have differ-

ent remaining battery life due to both age and use, may be in different geographic

locations, or may be suffering from some network-related issue within the Internet

itself; all such factors may affect device behavior and be reflected in the aggregate

data flow to and from them.

Before M2M applications, there were SCADA systems and other telemetry sys-

tems. Current methods reflect the successful approaches used in earlier or similar

systems that are brought to bear on M2M systems with limited success. Traditional

systems SCADA and telemetry systems are closed and collect data at regular, high

sampling rates. Methods for analyzing such data borrows heavily from signal pro-

cessing. Monitoring, analysis, and visualization tools from these systems are mature

and well-understood.

In contrast, M2M applications tend to generate very low-frequency, even “under-

sampled,” data by comparison to minimize often-costly communications require-

ments. Concerns for possible spikes in capacity demand lead many system designers

to design and Internet providers to require the randomization of communications

from large populations of devices, the resulting aggregate data stream often requires

conditioning to prepare it for use in traditional tools.

M2M applications, and the specific aspects of the Internet infrastructure on

which they rely, have become growing subjects of research. Areas of particular fo-

cus are performing case studies on real-world systems in general [3] and in specific

(e.g., vehicle tracking [4, 5] and energy “smart grids” [6, 7]), developing standards

to benefit future solutions [8, 9, 10], measuring quality of service (QoS) for greater

accountability between M2M applications and Internet providers [11, 12, 13], simulat-

ing scale to anticipate future scenarios [14, 15], planning for and investigating future
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infrastructure needs [16, 17, 18], and optimizing various aspects of systems operations

[19, 20, 21, 22].

In the literature, researchers have started to distinguish M2M from “Human-

to-Human” or H2H system characteristics. Some H2H systems, such as “Twitter,”

share many common characteristics with M2M systems and may be considered part of

the IoT. Relevant research in this area includes identifying trends [23] and classifying

human actors [24].

2.2 Time-Series Basics

Before proceeding further to consider various foundational concepts and mech-

anisms used in the analysis of time-series data from systems like M2M applications,

we must first establish a common notation and constructs to use throughout the rest

of this dissertation.

2.2.1 Notation

Before proceeding further to consider various foundational concepts and mecha-

nisms used in the analysis of time-series data from systems like M2M applications, we

must first establish a common notation to use throughout the rest of this dissertation.

Suppose we have a set of information sources S which have sent a set of messages

M to a set of destinations D over some period of time. Each message µ in M may

be composed of many elements and the variety of messages in M fall within a larger

message domain M such that M ⊆M.

Within this larger message domain M, there is a set of functions V that can be

used to extract information values from M . Many message domains have functions

returning the time t when the message occurred (VT (µ) = t), plus the source and

destination of the message (VS(µ) = s where s ∈ S and VD(µ) = d where d ∈ D).
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Other functions may exist to extract discrete or continuous values from M . For

example, one function Vsym(µ) = vsym may produce a value vsym that must be one of

n discrete symbols sym1 . . . symn. Another function V0:1(w) = v0:1 may produce any

real number R between 0 and 1 inclusive.

Within this framework and depending on the domain, additional external con-

straints or conditions may exist that limit the possible content found in a message µ of

M . For example, the values of t produced by VT (µ) may occur at some fixed interval

(ti+1 = ti + ∆t), may allow multiple messages to occur at the same time (ti+1 ≥ ti),

or may disallow it (ti+1 > ti). Furthermore, the possible sources S may be the same

as the possible destinations D (S = D), may be mutually exclusive (S ∩D = {}), or

may have very different cardinality (||S|| � ||D|| or ||S|| � ||D||).

When working with time series where the information values are discrete and

countable, it is often desirable to count the frequency of occurrence of certain values

found within M or subsets of M . For notational convenience, we will use subscripts

and superscripts to characterize different subset of M by some criteria. Thus we may

say either Mx = {µ | VX(µ) = x} or M (y) = {µ | VY (µ) = y}, and use ||Mx|| or

||M (y)|| as the count of the number messages µ in Mx or M (y), respectively. We may

also say M
(y)
x = {µ | VX(µ) = x ∧ VY (µ) = y}, with ||M (y)

x || as the count of messages

µ having both criteria. Note that due to the use of superscripts, if a transpose or

inverse matrix is intended, we will denote these with parentheses (e.g., (M
(y)
x )T or

(M
(y)
x )−1, respectively).

Since Mx is a set and given that x is some discrete value of another set X

such that x ∈ X, it is convenient to consider MX as a vector of sets and ||MX || as a

vector of counts. For this to be possible, we must implicitly assume an ordering of

the elements of X that are not, strictly speaking, defined. However, if ||X|| = n and
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n 6= 0, then we can declare that the vector v = ||MX || has size ||v|| = n, and the

values of vi (or v(i)) where i = [1..n] correspond to the values of ||Mx(i)|| for all i.

Furthermore, we may consider ||MX || to be a horizontal vector, and similarly,

||M (Y )|| to be a vertical vector of size m = ||M (Y )|| = ||Y ||. And finally, it follows that

V = ||M (Y )
X || may be a rectangular matrix of size n×m where V (i, j) = ||M (y(j))

x(i) ||.

V =



||M (y(1))
x(1) || · · · ||M

(y(1))
x(i) || · · · ||M

(y(1))
x(n) ||

...
. . .

...
. . .

...

||M (y(j))
x(1) || · · · ||M

(y(j))
x(i) || · · · ||M

(y(j))
x(n) ||

...
. . .

...
. . .

...

||M (y(m))
x(1) || · · · ||M

(y(m))
x(i) || · · · ||M (y(m))

x(n) ||


(2.1)

2.2.2 Aggregate Time Windows

When working with time series, it is common to aggregate the messages of M

into subsets based on a sequence of time intervals, or “windows,” W . As mentioned

earlier, actual time values t extracted from M may or may not be subject to external

constraints, particularly for “real world” data that may occur at any time. It is

important, therefore, to precisely define the time intervals used to partition the larger

message set M .

A sequence of time intervals W necessarily has a size m = ||W || with the

intervals defined as [tj−1, tj) for j = [1 . . .m], and where the first interval is [t0, t1)

and the last is [tm−1, tm) and the entire sequence of intervals is bounded by [t0, tm).

Typically, there exists a fixed spacing between the values of t such that tj− tj−1 = ∆t

holds for all intervals. In the notation, we may refer to time intervals either by their

starting times t0 . . . tm−1 or by their sequence order w1 . . . wm.
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The values of m, t0, tm, and ∆t may be chosen in several ways depending

on the circumstances. A given message set M naturally has tmin and tmax values

corresponding to the smallest and largest values for t found for any message µ in M .

One obvious choice would be to declare m as some specific number (e.g, 10),

set t0 = tmin, and ∆t = (tmax − tmin)/m to fully utilize the entire message set M .

However, a more common choice is to choose some t0 representing the start of

an important overall time period to be analyzed (e.g., the start of a specific day),

and to likewise choose a ∆t to be period matching some practical duration of time

for analysis (e.g., one minute or one hour).

Note that such choices may either exclude messages in M where t0 > tmin or

tm < tmax, or result in partitioned sets of M (W ) where M (w1) and/or M (wm) are possi-

bly under-represented as compared to other sets M (wj)) when considering attributes

such as the counts of ||M (W )||. These are considerations for an analyst working with

W .

2.2.3 Probability

As we shall see later, probability distributions play an important role in the

detection of patterns with time series. Thus it is important to identify some important

distributions and briefly discuss their properties.

From a frequentist perspective and considering the sources S, we may calculate

the probability of messages in M being sent from any source s in S, or P (S), as

follows:

P (S) = {ps =
||Ms||
||M ||

| s ∈ S} (2.2)
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By extension, we may define the distribution for any of the functions V and set

of messages M . Using the previous example function Vsym, the distribution Psym is

simply. . .

P (sym) = {psym =
||Msym||
||M ||

| sym ∈ sym1 . . . symn} (2.3)

Next, a somewhat different distribution may be obtained for an arbitrary subset

of M for time interval w0 called M (w0).

P (w0)(S) = {p(w0)
s =

||M (w0)
s ||

||M (w0)||
| s ∈ S} (2.4)

Again for notational convenience, we may consider discrete distributions like

P (S) and P (w0)(S) as also representing horizontal vectors of size n where ||S|| = n.

P (S) = [ps(1) · · · ps(i) · · · ps(n)] =
||MS||
||M ||

(2.5)

P (w0)(S) = [p
(w0)
s(1) · · · p

(w0)
s(i) · · · p

(w0)
s(n) ] =

||M (w0)
S ||

||M (w0)||
(2.6)

Given that P (w0)(S) defines a horizontal vector, it follows that P (W )(S) defines

a matrix with each row being a corresponds the P (w(j))(S). Note that this matrix

is different than the joint probability distribution for S and W which might also

be represented as a matrix, but where the individual elements would represent the

probability of the occurrence of each unique combination of si and wj. As we shall

see, maintaining separate distributions as the rows in a matrix will be helpful later

when analyzing time series.
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2.2.4 Entropy And Divergence Measures

When working with many probability distributions such as those defined by

P (W )(S), it can be helpful to compare them to one another in different ways.

On way to compare distributions is to compute their “Shannon Entropy,” or H,

and use this as a metric [25]. The standard calculation for HS given some distribution

P (S) is as follows

HS = −
∑
s∈S

ps log2(ps) = −
∑

P (S) log2(P (S)T) (2.7)

Given P (W )(S), we can produce the a vertical vector H(W )(S).

H(W )(S) = −
∑
S

P (W )(S) log2(P (W )(S)T) (2.8)

Entropy represents a measure of the “uncertainty” present in the probability

distribution. Values for HS may range from 0 to log2(||S||).

A value of 0 occurs when there is no uncertainty in the distribution, or said

another way, when only one possibility exists, having a probability of one (1) and all

others being zero (0). In such cases, the 1 × log2(1) = 0 and 0 × log2(0) = 0. Thus

the sum of all such terms is likewise zero (0).

The maximum possible value of log2(||S||) occurs the occurrence of any symbol

of S is equally likely, making the probability 1/||S|| and each term (1/||S||) log2(1/||S||)

added together ||S|| times.

Comparing values of H for different distributions can distinguish between those

having differing levels of uncertainty, but similar values of H does not imply that the

distributions are similar.

For a more direct comparison of distributions, we may may measure how widely

they diverge from one another using Kullback-Leibler Divergence (KLD) [26]. Given
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two distributions P = {p1 . . . pn} and Q = {q1 . . . qn}, the definition of KLD is as

follows.

KLD(P,Q) =
n∑

i=1

pi log2

(
pi
qi

)
(2.9)

It is worth that, by convention, any terms having qi = 0 are ignored, since

the log2 term would therefore be undefined. One way to avoid this problem during

calculations is to add a minimal ε to each probability p or q to avoid the division by

zero with the expectation that the result remains the same within some acceptable

precision.

This is also sometimes called the Kullback-Leibler Distance, but strictly speak-

ing, it is not a true distance measure. The most critical reason for this is that it is not a

symmetric calculation. In other words, it is possible that KLD(P,Q) 6= KLD(Q,P ).

However, it is true that KLD(P, P ) = 0 since each term in the sum is multiplied by

log2(1) = 0, and in general, KLD has been found to be a good metric for ranking

tasks.

In our later work, we will focus on ensuring that divergences are calculated for

specific distributions P against some mean for overall family of distributions Q. In

this way, we guarantee that any divisor qi > 0.

The lack of symmetry was initially noted by Kullback and Leibler themselves,

leading them to combine the two permutations in their work –KLD(P,Q)+KLD(Q,P )

– to eliminate the sensitivity to the order of P and Q.

An alternative to KLD called the JensenShannon Divergence (JSD) solves the

symmetry problem by finding the divergence for distributions P and Q from their

mean (P +Q)/2 and averaging the sum as follows [27].
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JSD(P,Q) =
1

2
KLD

(
P,

(P +Q)

2

)
+

1

2
KLD

(
Q,

(P +Q)

2

)
(2.10)

Note that this equation similarly ensures that the divisor in the log2 term of

KLD is never zero (0) unless pi = qi = 0. As compared to the simple summing of

the permutations KLD(P,Q) + KLD(Q,P ), JSD has the advantage of producing

values in the same scale as KLD such that they may be compared as necessary. We

will use this as needed to compare individual distributions in the later parts of this

dissertation.

2.3 Building Blocks

Having established a notation for representing various aspects of any time series

in vector and matrix form, we may begin applying various statistical mechanisms for

analyzing them.

2.3.1 n-Grams

One important mechanism when working with time series with functions re-

turning a discrete value, such as symbol from a set A where VA(µ) ∈ A, is the

n-gram.

The use of n-grams is found in many disciplines: They first appeared in Shan-

non’s seminal work the theory of communication [25]. While n-grams were first stud-

ied using the Latin alphabet with many studies performed using English [28], they

easily apply to both written and spoken language by simply deciding on the symbol

set to use. Many examples can be found for Arabic text classification [29], Japanese

speech recognition [30], and textual classification of Greek and Chinese [31].
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Figure 2.1. The chart shows the top 25 character rankings by probability in X; the Y
axis shows the actual probability for each of the top characters, along with a reference
line indicating a theoretical hyperbolic distribution; a linear scale is used to highlight
the dramatic drop-off in probabilities consistent with a hyperbolic distribution.

In genetics they are used to help classify gene sequences in long strands of DNA

where complex patterns of amino acids – commonly labelled A, C, G, and T – may

be analyzed using many different methods [32, 33].

They are commonly in featured web-based analytics, most commonly using word

sequences where differences in word-sequence frequencies assist with classification

techniques [34, 35, 36].

Various schemes for identifying music through the discretization of both mono-

phonic and polyphonic audio tracks into symbol sequences have been based on n-

grams [37, 38]

By assigning symbolic labels to frequent geographic locations, n-grams have

been used to identify patterns of movement by users of smartphones with GPS capa-

bilities [39].

18



10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Character Rank

C
h
a
ra

c
te

r 
P

ro
b
a
b
ili

ty

Character Rank vs. Probability (Log/Log Scale)

 

 

Actuals

Theoretical

Figure 2.2. The chart shows all characters in descending rank order by probability
in X; the Y axis shows the actual probability for each character, along with a refer-
ence line indicating a theoretical hyperbolic distribution; the log/log scale us used to
illustrate the property of hyperbolic distributions to appear linear on such scales.

An n-gram is an ordered sequence of symbols of length n from some set, or

alphabet, A. Typically, n-grams identify occurrences of such symbol sequences within

some large corpus of data. The domain of possible n-grams, or Gn, is simply the

permutations of length n of the symbols in A, and as such, grows exponentially with

a maximum size ||Gn|| = ||A||n. However, it is often true that the actual number

distinct n-gram occurrences, or Gn, found in a given corpus is far smaller such that

||Gn|| � ||Gn||.

The theory behind n-grams have been widely studied. Values for n can be any

positive integer starting with the 1-gram, which is simply the starting alphabet A.

But given the exponential domain size, practical applications rarely involve a values

of n beyond 4 or 5 [38, 31].
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Figure 2.3. The chart shows the top 100 word rankings by probability in X; the Y
axis shows the actual probability for each of the top words, along with a reference
line indicating a theoretical hyperbolic distribution; a linear scale is used to highlight
the dramatic drop-off in probabilities consistent with a hyperbolic distribution.

As mentioned above, the most common applications for n-grams have involved

various kinds of textual analysis, with the symbol sets being either characters or

words. Often, and indeed in the case studies found later, the n-gram frequencies for

these systems follows “Zipf’s Law,” and as such, fall within the family of hyperbolic

distributions [40, 32].

To illustrate the characteristics of n-grams, consider the example data set de-

scribed in Table 2.1. The documents in this data set contain public domain works in

English, German, Spanish, and Portuguese and representing a wide variety of genres,

including drama, fiction, philosophy, poetry, and children’s stories.

Focusing on the English works, it is easy to visualize the hyperbolic frequency

distribution found in the data, whether considering characters or words. Figures 2.1
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Figure 2.4. The chart shows all words in descending rank order by probability in X;
the Y axis shows the actual probability for each word, along with a reference line
indicating a theoretical hyperbolic distribution; the log/log scale us used to illustrate
the property of hyperbolic distributions to appear linear on such scales.

& 2.2 for character occurrences and Figures 2.3 & 2.4 for word occurrences highlight

the frequency extrema seen in such data sets.

Figure 2.1 shows the actual letters in the top 25 rankings, confirming the com-

mon empirical observation that the letters ‘e’ followed by ‘t’ are the most common

letters in English. The full set of characters shown in Figure 2.2 falls short of matching

a hyperbolic distribution due to its relatively small set size.

Figure 2.3 does not show the top-ranked words due to space considerations on

the chart, but the first several are ‘the’, ‘and’, ‘of’, ‘to’, and ‘a’ which likewise are

top rankings expected from English text. The full set of words found in the data are

shown in Figure 2.4; however, unlike Figure 2.2, the larger number of words provides
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Figure 2.5. The chart shows all 2-grams in descending rank order by probability in X;
the Y axis shows the actual probability for each 2-gram, along with a reference line
indicating a theoretical hyperbolic distribution; the log/log scale us used to illustrate
the property of hyperbolic distributions to appear linear on such scales.

stronger evidence of the linear appearance of hyperbolic distributions plotted on the

log/log scale.

It is considered an empirical fact that language symbol frequencies follow such

hyperbolic distributions, but it is interesting to note that this behavior is observed

most clearly at the limit [41]. Given the small number of “rankable” characters,

together with the relatively small data set size of our example, the actual occurrences

of characters on the log/log scale only approximates the expected linear placement

on the chart. On the other hand, the chart of “actuals” for the much larger collection

of words more clearly appear linear on the log/log scale.
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Figure 2.6. The chart shows all 3-grams in descending rank order by probability in X;
the Y axis shows the actual probability for each 3-gram, along with a reference line
indicating a theoretical hyperbolic distribution; the log/log scale us used to illustrate
the property of hyperbolic distributions to appear linear on such scales.

In each of the charts of Figure 2.1 through 2.4, the “theoretical” line is pro-

portional to the frequency F (r) where r is a ranking from 2 to ||A|| + 1 and c is a

constant such that c > 3:

F (r) = r−1 log(r)−c (2.11)

An important difference between character vs. word frequencies is that, while

finite, the domain of words used in any living human language is constantly growing,

and their frequencies of use changing as well, whereas the character symbol set is

constant and comparatively small. From an example standpoint, the handling of

characters is more closely related to what one might find when dealing with discrete

time series values.
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Table 2.1. Example Document Data Set

Attribute Count
Documents 140
Lines 1,306,008
Words 10,905,526
Characters 59,597,048
Unique Words 109,984
Unique 1-grams 68
Unique 2-grams 1,837
Unique 3-grams 15,922

Table 2.2. Top 10 Example n-grams By Rank

Rank n = 1 n = 2 n = 3
1 ‘e’ ‘e ’ ‘ th’
2 ‘t’ ‘ t’ ‘the’
3 ‘a’ ‘th’ ‘he ’
4 ‘o’ ‘he’ ‘nd ’
5 ‘n’ ‘d ’ ‘ an’
6 ‘i’ ‘ a’ ‘and’
7 ‘h’ ‘s ’ ‘ed ’
8 ‘s’ ‘t ’ ‘ to’
9 ‘r’ ‘in’ ‘ of’
10 ‘d’ ‘n ’ ‘of ’

Continuing with characters, we observe that the characters themselves are the

“1-grams” in our example, of which our data set contains 68 distinct, case-insensitive

characters. This number could grow if we distinguished between upper- and lowercase

letters, but we chose case insensitivity for simplicity.

A “2-gram” is simply an adjacent pair of characters from the set of 68 possibili-

ties. Table 2.1 shows that we found 1,837 unique character pairs out of over 59 million

total occurrences. Note that the occurrences of 1-grams, 2-grams, or n-grams for any

value of n are essentially the same; for example, the text sequence ‘ the ’ contains
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Table 2.3. Example n-gram Entropic Dimensions

n ||Gn|| log2(||Gn||) ||Gn|| log2(||Gn||) H(P (Gn)) H/Hmax

1 68 6.09 68 6.09 4.38 72%
2 4,624 12.18 1,837 10.84 7.45 61%
3 314,432 18.26 15,922 13.96 9.87 54%

five(5) 1-grams – ‘ ’, ‘t’, ‘h’, ‘e’, and ‘ ’ – and four(4) 2-grams – ‘ t’, ‘th’, ‘he’, ‘e ’.

This difference of one(1) occurs at the boundary of the total original sequence. As

the sequence length grows, the difference in the total 1-grams vs. 2-grams continues

to differ only by one(1). Thus the difference in the number of 1-grams vs. n-grams

in any data set of containing s sequences is exactly s× (n− 1).

Similarly, a “3-gram” is an adjacent trio of characters from the same set of 68

possibilities of which 15,922 unique permutations were found. The “2-grams” with

1,837 unique pairs are only about 40% of the 4,624 permutations possible, and the

“3-grams” seen are only 5% of the 314,432 possible permutations.

It thus follows that collecting counts for messages of a time series where m =

||M || and a = ||A|| of all n-grams from 1 . . . n can be performed with a time complexity

of O(m×n), and using hash-based indexing of the various n-grams occurrences, with

space complexity of O(a log(a)(n−1)).

Figure 2.2 shown earlier, together with Figures 2.5 & 2.6, illustrate that the

frequencies of various levels of n-grams, from 1 through 3 respectively, all adhere to

the hyperbolic distribution model. And while there is no clear proof that this kind

of model will be true for all n, it has at least been empirically observed consistently

in research to date [32].

For practical reasons, only Figure 2.1 shows the actual 1-grams labels in rank

order. To help overcome this limitation and to clarify the occurrences seen, Table 2.2

25



e t a o n i h s r d l u m c w f g y , p b . v k "

0

0.02

0.04

0.06

0.08

0.1

0.12

1
−

G
ra

m
 P

ro
b

a
b

ili
ty

Top−25 1−�Grams by Rank vs. Probability For All Documents

Figure 2.7. For each document in the example data set, the charts show the rank
index of each n-gram on X and the corresponding probability on Y where A through
C corresponds to n of 1 through 3.

shows the top 10 n-grams for each n. Earlier we saw that the top three(3) words in the

example data are ‘the’, ‘and’, and ‘of’. Perhaps not surprisingly, we see all the char-

acters these words except ‘f’ in the top 10 1-gram list. However, only the word ‘the’

is fully captured by the top 10 2-grams. Further, all of the top three(3) words may be

reconstructed using the top 10 3-grams. The important thing to take away from these

observations is that differing values for n capture subtle differences in occurrence from

each other. The value of these specific differences varies by application.

The hyperbolic distributions observed in n-gram frequencies has a significant

impact on entropy measurable for these types of systems. Table 2.3 shows dimensions

of the example data set for n-grams 1 through 3. We recall that the maximum possible

entropy for any probability distribution of size X is log2(X). Thus the table shows

the following:
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Figure 2.8. For each document in the example data set, the charts show the rank
index of each n-gram on X and the corresponding probability on Y where A through
C corresponds to n of 1 through 3.

1. The theoretical maximum number of n-grams ||Gn||

2. The consequent maximum entropy for that theoretical size Hmax = log2(||Gn||)

3. The actual number of n-grams ||Gn||

4. The consequent maximum entropy for that actual size log2(||Gn||)

5. The calculated entropy for Gn where H(P (Gn)) = −
∑
P log2(P )

6. And finally, the ratio of H(P (Gn))/Hmax

For each type of n-gram, we see a loss of entropy due both to the smaller actual

size of unique n-grams seen, as well as the hyperbolic distribution that is far from

the maximal entropy expected from a uniform distribution. Furthermore, while the

actual entropy H increases with n, the ratio of H(P (Gn))/Hmax decreases with n. The

intuition from this observation is that, the larger the n, the greater the information
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Figure 2.9. For each document in the example data set, the charts show the rank
index of each n-gram on X and the corresponding probability on Y where A through
C corresponds to n of 1 through 3.

captured in the probability distribution, and thus the less “surprise” found overall in

the data as reflected in the lower entropy H(P (Gn)).

Moving beyond the summary aspects of n-grams as reflected in their class of

distribution, we look next at how the specific distribution of individual or groups of

sequences varies both from the average and among instances.

Each source of data in the corpus (i.e., s ∈ S) has its own probability distri-

bution. Figures 2.7 through 2.9 show the combined distributions of the individual

documents in our test example superimposed in one chart for each value of n. In these

charts, we can see obvious clustering about the mean for each n-gram with occasional

“outliers” standing out from the rest of the samples.

We now zero in on a few specific documents from the example data set in

Figures 2.10 through 2.11. Each figure shows the 1-gram through 3-gram probabilities
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20 Thousand Leagues Under The Sea
Anna Karenina
Unexpected XML Document
Overall Average

Figure 2.10. The chart shows the rank index of each 1-gram in rank order on X and
the corresponding probability on Y for 2 normal documents plus an unexpected XML
document as an “outlier,” along with a reference line showing the overall averages for
the data set.

for two selected works – Jules Verne’s “20 Thousand Leagues Under The Sea” and

Leo Tolstoy’s “Anna Karenina” (English translation) – plus an XML document that

unexpectedly found its way into the mix.

Not unexpectedly, the n-gram frequencies of the XML document are far from

the mean for many instances at all levels of n. Techniques for detecting anomalous

data sources using n-grams should easily be able to recognize such an outlier using

only the most basic 1-gram.

On the other hand, the two valid documents have very similar distributions

at the 1-gram level, only showing differences for a few specific n-gram instances at

the higher levels. For example, several of the 2-gram and 3-gram instances for “Anna

Karenina” fall farther from the mean than do the corresponding results for “20 Thou-
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Figure 2.11. The chart shows the rank index of the top 100 2-grams in rank order
on X and the corresponding probability on Y for 2 normal documents plus an unex-
pected XML document as an “outlier,” along with a reference line showing the overall
averages for the data set.

sand Leagues Under The Sea.” We will see later that these more subtle differences at

higher levels of n may be used to recognize important differences among data sources

not “visible” at the 1-gram level.

2.3.2 Motifs

The study of “motifs” within time series data has received much attention in

recent years. A motif is basically some sequence of data that has important qualities

to the researcher. For example, a motif may represent some sought-after event or a

pattern that is found to occur frequently.
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Figure 2.12. The chart shows the rank index of the top 100 3-grams in rank order
on X and the corresponding probability on Y for 2 normal documents plus an unex-
pected XML document as an “outlier,” along with a reference line showing the overall
averages for the data set.

Some of the earliest research using the motif concept started in the field of

genetics where the data sources are the naturally-symbolic sequences of amino acids

in gene sequences [42, 43].

More recently, the study of motifs has shifted into the realm of signal processing

where time-series data is represented more often as relatively high-resolution samples

of some continuous-value data source [44, 45, 46]. In such areas, one of the key

challenges is in finding relevant motifs where the start and end of the sequence is

uncertain [43, 44, 47], and/or where the data values of similar motifs require some

flexible matching scheme, such as the use of Dynamic Time Warping, or DTW [46].
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Many areas of study seek to transform the highly-varying data into a more

symbolic form through discretization, with the goal of having a more tractable data

set to analyze using string processing techniques and the like [48, 49].

As it relates to our later research, motifs in the form of discrete symbol sequences

share common characteristics with several of our target data sources. One important

similarity that we shall see is that message arrivals occur at irregular intervals, making

the starting and stopping conditions of a motif unclear. In later chapters we will

discuss ways to address this uncertainty.

2.3.3 Clustering and k-Means

Clustering refers to many types of algorithms and techniques that attempt to

identify groups, or “clusters,” of data according to some criteria such that members

of the group are more alike than members of any other group. Several clustering

approaches figure prominently in the literature, including Expectation Maximization

(EM) [50] and k-means [51].

For our purposes, we will use k-means as way to identify related groups of

data so that we may be able to further analyze their properties. We choose k-means

somewhat arbitrarily on the basis of its much-studied use within related research and

with the assumption that the specific qualities of any particular clustering approach

will help us achieve our goals.

k-means starts with the assertion that a data set may be grouped into k clusters.

The method does not specify how k is chosen or whether k is the “right” number of

clusters into which the data set naturally groups. But given some value of k and

a set of n observations S = {s1 . . . sn}, the method seeks to find the set of clusters

G = {G1 . . . Gk} where each Gi has a mean of µi such that the “within-cluster sum

of squares” (WCSS) is minimized as follows:
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arg min
G

k∑
i=1

∑
sj∈Gi

||sj − µi||2 (2.12)

It has been established that k-means falls into the class of NP -hard problems

[52], so it is difficult to find the optimal solution; however, there are several strategies

for usable results.

The most common approach uses an iterative approach similar to the EM algo-

rithm. It starts by choose k observations in S that are considered the mean of each

set µ
(0)
1 through µ

(0)
k . There are several ways these k observations can be chosen, but

most often, they are chosen at random. Then each observation of S is assigned to

an initial set G
(1)
1 through G

(1)
k based on having the smallest Euclidean distance to

the set’s mean. The resulting sets have their own means µ
(1)
1 through µ

(1)
k that likely

differ from the initial ones.

This process of assigning observations to sets and computing the new set means

is continued until the means before and after converge, or until some maximum num-

ber of steps at which point the there is a failure to converge, and the process is tried

again with new initial observations. The general form of these steps are as follows

for steps t = 1 . . . tmax and given i, j = 1 . . . k, s ∈ S, and some minimum measure of

convergence ε:

G
(t)
i =

s :
||s− µ(t−1)

i ||2 < ||s− µ(t−1)
j ||2 and i 6= j

||s− µ(t−1)
i ||2 = ||s− µ(t−1)

j ||2 and i < j

 (2.13)

µ
(t)
i =

1

||G(t)
i ||

∑
sg∈G(t)

i

sg (2.14)

converged? = |µ(t)
i − µ

(t−1)
i | ≤ ε (2.15)
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Note that the means in this case may, in fact, be vectors, and as such represent

a location in some multi-dimensional space encompassing the observations of S. As

such, it is common to call them “centroids” for the clusters. A convenient property

of these centroids that we will exploit later is that, once chosen, possible “new”

observations for some expanded data set S ′ can be assigned to one of the G clusters

using the conditions specified in Equation 2.13.

As stated earlier, k must be chosen prior to the application of k-means to find

clusters within some data set. How to choose k depends on the problem domain, and

we shall see later a method to test multiple choices for k, selecting the “best” choice.

However, in practical terms, data sets whose observations are “near” each other

in Euclidean terms, tend to fall within the same cluster regardless of the value of

k. For example, in our data set of classic literature documents, we have 11 “Tom

Swift” novels by Victor Appleton. In experiments applying k-means to the n-gram

frequency distribution of these documents using a range of choices for k, all 11 “Tom

Swift” novels were together in one of the resulting clusters. This outcome is perhaps

unsurprising given the expectation from prior studies that the works of a given author

tend to have similar n-gram distributions, and that as such, their distances from any

cluster centroid will likely be similar, resulting in similar cluster assignments.

2.3.4 Finding The “Best” k

Many methods have been studied for finding optimal values of k [53, 54, 55,

56]. One typical approach is based on minimizing the sum-of-squares within clusters

(SSW) – sometimes called the “cluster distortion” – and maximizing the sum-of-

squares between clusters (SSB) as presented by [57]. The method is defined using the

following equations given i = 1 . . . k, X̄ is the mean of the entire data set, Ci is the

centroid of a cluster, and Gi is the elements assigned to the cluster.
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SSW (k) =
k∑

i=1

∑
g∈Gi

||g − Ci||2 (2.16)

SSB(k) =
k∑

i=1

||Gi|| × ||Ci − X̄||2 (2.17)

J(k) = k
SSW (k)

SSB(k)
(2.18)

By performing clustering for a range of values for k, each producing a set of

cluster assignments and centroids, then computing the value of J for each result, we

will select the value of k which has the smallest value of J .

2.3.5 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely-used tools for

analyzing data represented in matrix form. PCA has been heavily studied and the

mathematics behind it have many formulations.

The basic concepts behind PCA are straightforward, but the applications are

varied and sometimes surprising. Given some n-dimensional data set having m obser-

vations, PCA will create a square n×n “coefficients” matrix with special properties.

This matrix contains an ordered set of eigenvectors that can transform the original

data set into a new n×m data set, sometimes called “scores,” whose new dimensions

capture the greatest to least amount of covariance within the original observations.

To illustrate how the coefficients matrix is derived and how it may be used,

we return to our example data set of text documents, and 1-grams in particular.

Figure 2.13 plots the various 1-gram probabilities for each of the documents in our

data set with the 1-gram rank on X and the probabilities on Y. Our intent is to show

that range of probability values that may be found for each 1-gram in general, but

we highlight the “xml outlier” to be explained later.

35



0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1−Gram Rank Order

P
ro

b
a

b
ili

ty

1−Gram Rank Order vs. Probability

Figure 2.13. The chart shows 1-gram rank order on X and plots the probabilities for
each document in the example data set on Y to illustrate the variability of values for
each rank, with special emphasis given to the “xml outlier” using larger red dots.

PCA starts by requiring all the data in each dimension – in our case, the

dimensions are the 1-grams – to be “mean adjusted;” that is, to offset the data values

in each column such that mean is at zero and all values have a positive or negative

value based on their distance from the mean. For our example, this is shown in

Figure 2.14. We note that the range of values in each dimension can be large even

as the rank of the 1-gram decreases. Also, the “xml outlier” has both values far less

than the mean for higher-rank 1-grams and values far higher than the mean for very

low-rank 1-grams.
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1−Gram Rank Order vs. Mean−Adjusted Probability

Figure 2.14. The chart shows 1-gram rank order on X and plots the mean-adjusted
probabilities within each rank for each document in the example data set on Y to
highlight the variability of of values regardless of rank, with special emphasis given
to the “xml outlier” using larger red dots.

X̄ =

{
x̄j :

1

m

m∑
i=1

xi,j ∀j = 1 . . . n

}
(2.19)

Y = {yi,j : xi,j − x̄j ∀i = 1 . . .m ∀j = 1 . . . n} (2.20)

covX =
1

m
Y Y T (2.21)

D = {di : covXi,i ∀i = 1 . . . n} (2.22)

V −1(covX)V = D (2.23)

C =

 v∗,i if if di > dj

v∗,j if if di <= dj

∀i = 1 . . . n ∀j = 1 . . . n

 (2.24)

Given a matrix X with n dimensional columns and m observational rows, the

n×n coefficients matrix C is constructed by computing the covariance matrix (Equa-

tion 2.21) of the mean-adjusted data set (Equation 2.20), computing eigenvectors V
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from the covariance matrix (Equation 2.23), and then ordering the eigenvectors in

descending order based on their magnitude (Equation 2.24).

Figure 2.15. The heat map chart shows the correlation between PCA eigenvector rank
on X against original 1-gram rank on Y; a high positive intensity in red indicates high
correlation; a high negative intensity in dark blue shows a high anti-correlation, with
no correlation showing as a neutral light-blue; in addition, the strong presence of
XML tag characters for the “xml outlier” are circled in red.

The contents of the coefficients matrix for our data set can be seen in the

form of a “heat map” in Figure 2.15. Each column of in the matrix represents the

eigenvector for the new coordinate system into which the data may be mapped in

descending order. The left-most column represent the axis whose data values have

the greatest variance within the entire data set. Each row of the matrix corresponds

to the original 1-gram dimensions. By examining this column, we can see which 1-

grams were highly correlated and contributed the most to this new “principal axis”
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Figure 2.16. The chart shows the rank order of the principal axes resulting from PCA
on X and plots the “scored” probability values from the original data set on Y, with
special emphasis given to the “xml outlier” using larger red dots.

by finding those with the largest positive magnitudes. Those rows with the largest

negative values represent values that represent anti-correlations on this axis.

Looking closely at this heat map, we can see that several, but not all, of the high-

ranking 1-gram dimensions are correlated and have strong participation in several

of the left-most principle axes. We can also easily see the effect of a strong anti-

correlation due to the XML tag characters in the top-left area, representing their

low-rank in the original data set and negative contribution to many of the most

significant, and therefore left-most, axes.

As stated, with a coefficients matrix, we are able to define a new set of values

E that map the original data into the eigenspace whose dimensions are governed by

the eigenvectors of the matrix.

E = XC (2.25)
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Figure 2.16 shows the result of passing the original 1-gram data through the co-

efficients matrix (Equation 2.25) and plotting the result. As compared to Figures 2.13

& 2.14, we note the charts have similar dimensions, but that the X axis is no longer

the descending rank order of 1-grams nor is the Y axis a probability. Instead, the

X axis is the descending rank order of the principal component axes and the Y axis

plots the magnitudes of the “scored” original probabilities within their new dimen-

sional ranges. By showing the values of the “xml outlier” on this chart, we see how

the various values from the original data which were often anti-correlated to the data

set as a whole, continue to make their presence known as a strong outlier within the

second principal axis, as well somewhat less strongly in the third and sixth axes.

This leads us to note another important characteristics of PCA – its ability

to preserve statistical significance within a data set while reducing the number of

dimensions of the data. When working with high-dimensional data, it is often helpful

to reduce the number of dimensions being considered for further analysis. Fewer

dimensions can be computationally faster to process and easier to visualize.

In our example of the “xml outlier,” we see that the “scored” data captures

some of the statistical properties of the low-rank values within the new high-rank

principal axes. As a result, the lower-rank principal axes may be safely discarded as

providing little statistical significance to the overall data set. By transforming the

“scored” data back into the original coordinate system using only the most-significant

eigenvectors of the coefficients matrix, we can create a revised original data set that is

only based on these most-significant principal components – this is sometimes called

“whitening” the data. The following equations show how this can be achieved using

the following equations using some number of eigenvectors L.
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W =

 v∗,i if i <= L

0 if i > L
∀i = 1 . . . n ∀j = 1 . . . n

 (2.26)

X ′ = XWW−1 (2.27)
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Figure 2.17. The chart shows a histagram of the probability distribution of the top 3
1-grams in the example data set, illustrating their apparent Gaussian distribution.

As seen in Equation 2.21, the heart of PCA is the creation of a covariance

matrix that relies effectively on a “least squares” calculation to capture correlations

within the data. It is well known that these calculations are sensitive to “outliers”

and that it is important to establish that the data being considered follows a Gaussian

distribution, as illustrated in Figure 2.17 for our example data set.

Various research efforts have explored the use of PCA, sometimes using different

names, as a precursor to applying clustering algorithms such as k-means [58, 59, 60].

The general finding is that the process of transforming a data set from its original
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coordinate system into one that emphasizes its inherent statistical correlations helps

various clustering algorithms, and in particular k-means, to more effectively identify

clusters.
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CHAPTER 3

RESEARCH FOCUS

3.1 Process Overview

At this stage, we have established the mathematical notation and elaborated

on key mechanisms that form the foundation of this dissertation. Furthermore, we

have reviewed related research work in these areas that have previously explored the

problem space. We now turn our attention to a class of problems that allow us to

build on the prior art and reveal new insights into the behavior of systems based on

their communications flow.

We start with the basic proposition that, for any system with an observable

communications flow, we may characterize aspects of its behavior both temporally and

demographically using a combination of absolute and relative statistical properties.

The outcome of our characterization is a collection of statistical intersections that

can be expected to occur over time.

As new observations for a system arrive, we can categorized them as match-

ing one or more of the known intersections, or in failing to do so, identify them as

anomalies requiring further investigation. Once identified, the expected intersections

and unexpected anomalies may be assigned some meaning, depending on the system

being observed.

As anomalies occur, we also have the opportunity to review and revise the

characterization intersections to account for their presence.

In order to characterize some target system, we must ask the following questions:

1) Who was “talking”? 2) When were they “talking?” 3) What were they “saying?”
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We can answer these questions for a given temporal message domain M having

a set of functions V to extract information using our notation. Given a subset of

messages M ⊂M, we have a function VS(M) = S for the “sources” of the messages,

answering question #1. We can answer question #2 with the function VT (M) = T

for all messages, and VT (µ) = t for any specific message.

Figure 3.1. The figure shows the high-level process stages from the original acquisition
of data through the marginal analyses, culminating in the X-based analysis to identify
anomalies.
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So far, the answers are pretty obvious, but answering question #3 can be more

difficult. For message domains of any complexity, there may be many additional

functions available to extract information content in the form of both discrete and

continuous values. As a result, we must choose those functions from which we can

construct a discrete symbol set that encodes some relevant subset of the information

available. There may be multiple options for this encoding similar to the choice

of letters or words in textual analysis. For our purposes, we will call this function

VA(M) = A and consider A to be the “lexicon” or “alphabet” for further analysis.

With this as a foundation, we may apply the analysis process shown in Fig-

ure 3.1 and described as follows:

1. Capture Input Time-Series – Construct an ordered 3× ||M || matrix where

each row consists of a source s, symbol a, and time t of the form (s, a, t) where

s ∈ S, a ∈ A, and min(T ) ≤ t ≤ max(T ).

2. Construct n-Grams – With A as the set of “1-gram” symbols occurring in

M , we may rewrite it as A(1) and we will denote the set of symbols representing

additional levels as A(n). So for example, the set of 2-grams are written as A(2).

In addition for n-grams where n > 1, we may want to limit symbol sequences

based on the concept of “motifs” (see Section 3.2).

3. Establish Source and Time Dimensions – For sources, this step is simply

the materialization of the set S. For time, we choose a time window size ∆w

that allows us to aggregate occurrences of A(n) into statistical “bins” for further

analysis, the set of which we call W (see Section 3.3).

4. Prepare Source and Time Samples – With each of the elements of either

S or W represented as sample rows and elements of A(n) as the columns, we

construct two-dimensional matrices S × A(n) and W × A(n), respectively. We
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may then apply various additional transformations on these matrices in order

to ready them for the next stage in the process (see Section 3.4).

5. Partition Source and Time Samples – Given S × A(n) and W × A(n), we

next perform multiple evaluations of the k-means algorithm to find the “best k”

that partitions S and W into a set of groupings. We refer to the source-based

groupings as Γ and the time-based groupings as Φ, each having its own “best

k” size such that ||Γ|| = kΓ and ||Φ|| = kΦ, respectively. Each element of S and

W is assigned membership to γi ∈ Γ where i = {1 · · · kΓ} and φj ∈ Φ where

j = {1 · · · kΦ}, respectively as well (see Section 3.5).

6. Intersect Source and Time Partitions – Using the source- and time-base

partitions of Γ and Φ, construct a combined three-dimensional partitioning of

M into S ×W × A(n) that we call X (see Section 3.6).

7. Analyze Source, Time, and Cross-Section Partitions – At this point we

are able to perform various statistical analyses on the partitions Γ, Φ, and X

to both characterize M in various ways and to identify anomalous samples that

fall outside of the norms established by these partitions (see Section 3.7)

When applying the process, we first start with some captured history defining

W . But once we have produced our partitions – Γ, Φ, and X – we have two basic

choices for dealing with new data for times where tnew > max(T ).

• Baseline Processing – The first and simplest approach is to use the Γ×Φ×X

partitions as a static characterization of the system, comparing each subsequent

time window of size ∆w to find which time window partition φ. Since each of the

sources have a definite assignment to a source partition γ, once the time window

is assigned to a φ, we also have a χ assignment as well. The advantage of this

approach is that only the data for a single time window need be considered for

progressive analysis, but it cannot adapt to a changing “normal” if the current
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state of the system differs from the past and we want to consider this to be the

“new normal.”

• Sliding Window Processing – To address the problem of a changing defi-

nition of “normal,” we can shift the time range over which we define W and

redefine the Γ × Φ × X partitions accordingly. Of course, the reprocessing of

the data set to produce the partitioning may also be quite expensive and may

not be something that is practical for each newly available time window.

3.2 Defining A

What we choose as a symbol set A extracted from the possibilities within the

message domain M depends greatly on the domain itself. But we must have knowledge

of the domain perhaps to decode the data format to extract one or more discrete values

whose combinations can be assigned to individual symbols, it does not follow that

we must know the significance of the values or have any preconceived notions of their

merits – the data itself will tell us that as a consequence of the analytical process.

Whatever the initial symbol set chosen, we may assume that symbol arrival

within messages for the target system conveys some information, and effectively form

a “language” used by the message sources.

Therefore, just as we saw in our explanation of n-grams earlier, we may rea-

sonably expect that measurable information content of those sources based on such a

symbol set – the “1-grams” – may be enhanced by considering sequence combinations

as well in the form 2-grams, 3-grams, and the like.

Since we are collecting statistics within discrete time window boundaries, it

may easily occur that any two symbol occurrences in the channel may straddle such

a boundary. As a result, we must decide how to count any n-gram occurrence in

such cases. As a convention throughout the remainder of this dissertation, we will
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assume that n-grams frequency will be counted in the time period within within the

terminating symbol occurred.

As we will see in some of our studies, messages from some sources may arrive

in bursts, but with no definitive boundary separating such bursts. As a consequence,

we may have widely varying time delays between some symbol pair occurrences. The

question then becomes: Should we count n-grams regardless of the time interval

between symbol occurrences?

While we will explore options for maximum relevant time intervals within our

subsequent experiments, we will assert in principle that there is a period after which

an n− gram will not be counted.

In addition to n-grams at the “alphabet” level, we may also consider treating

message “bursts” some what like a “dictionary” of words as we saw earlier with motifs.

We may even further apply an n-gram approach to counting such motif sequences.

Whether a simple “alphabet” of per-message symbols, a “dictionary” of message

motifs, or n-gram sequences of either, the resulting discrete, unique occurrences may

be used to define the final A used for the subsequent analysis using our process.

However, as we know from our introduction to n-grams and the nature of hy-

perbolic probability distributions, there may be a large number of symbols in A which

rarely occur and offer little statistical impact.

Rather than discard these symbols, we choose to truncate A by eliminating

the least-occurring symbols, replacing them with an “other” symbol to which the

truncated symbols are mapped. Ideally, the probability of the “other” symbol is such

that it is less than or equal to that of the least-significant remaining symbol in A.

The resulting symbol set we call A′ and the corresponding function on M is therefore

properly defined as VA′ .
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Using our notation, we now define two matrices representing the absolute num-

ber of occurrences of symbols in A′ by time period and by source with Equations 3.3

and 3.4. Each has columns corresponding to the symbols in A′, where the row of VW

contains the occurrences of those symbols in separate time periods of size W , and

where each row of VS contains the occurrences of those symbols for each source.

As suggested earlier, an examination of the overall distribution of the symbols of

A for a collection of messages M , and more generally, for the overall message domain

M, often follow Zipf’s Law; that is, having a hyperbolic distribution. We can easily

compute the overall distribution of A using Equation 3.1. This distribution has a

descending rank order that we can express as ρ(A), where ρ(ai) = 1 when ai has the

highest probability in A, and ρ(aj) = ||A|| when aj has the lowest probability in A.

With P (A) and ρ(A) and some target size of ||A′|| = n, the definition of A′ is defined

in Equation 3.2.

P (A) =
||MA||
||M ||

(3.1)

A′ = {∀a ∈ A | ifρ(a) < n then a, otherwise ‘other ’ } (3.2)

While using A′ in practice, we may, for convenience simply use A elsewhere in

our notation unless we are explicitly discussing the differences between the two sets.

3.3 Choosing W

When choosing W , we must balance the need for the sufficient statistical signif-

icance of the resulting aggregation periods with the need for useful resolution of the

intersect space in the temporal dimension. Depending on the message domain, there

may be multiple choices possible, each with its own justification. Small values for W
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provide high resolution over the temporal dimension, and paired with a larger value

of k, could help make fine distinctions among the intersects possible for the system.

3.4 Choosing Conditioning Options

Figure 3.2. This figure illustrates the combinations of parameter choices when con-
ditioning data in preparation for the partitioning process; each box represents a con-
ditioning scenario.

With established definitions for S, W , and A(n), we are able to construct two

parallel two-dimensional matrices with S and W as the rows and A(n) as the columns,

which we are S×A(n) andW×A(n), respectively. After constructing these matrices, we

have many options for further conditioning of the data to prepare it for the subsequent

stages of the process as illustrated in Figure 3.2.
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In Section 3.2, we addressed whether or not to limit n-grams by the notion

of “motif,” but additionally, we may choose to work with the original occurrence

counts of A(n) within each sample for S and W , or we may convert these values into

probability distributions of their occurrence within each sample. Additionally, we

may use PCA as a tool to help identify similarities among the samples.

VW = ||MW
A || (3.3)

VS = ||MS
A || (3.4)

Using VW and VS to capture the scale of M , we may also define two additional

matrices to capture the lexical “mix,” or ratios, of those occurrences by row with

Equations 3.5 and 3.6.

RW =
V W

||MA||
(3.5)

RS =
V S

||MA||
(3.6)

With matrices for magnitude V and ratio R, we are ready to classify M into

window and source types using PCA and k-Means. As we saw in the introduction,

PCA is able to identify relationships among the dimensions of a data set – in our case,

the occurrences of A in M . Thus we pass our matrices through PCA to construct

the eigenvectors defining a new space that emphasizes those relationships. Next we

project our data into the new eigenspace and then apply k-Means to assign the time

periods of W and sources S to window types Φ and source types Γ, respectively. The

actual number of window and source types is defined by the size of k for each marginal

classification by W and S. We use kΦ and kΓ for the number of window and source

types, respectively.
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As mentioned above, we may classify the time periods and sources of M by

either “scale” or lexical “mix.” “Scale” effectively considers the count of messages,

while “mix” considers the ratio, or probability distribution, of the “alphabet” used to

communicate. Each perspective has its own ability to characterize M . For example,

we expect changes in the message occurrence rate throughout the day and from day-

to-day for systems that exhibit a diurnal cycle of activity. However, even though the

amount of information may change throughout the day, the probability distribution

of the communications may remain constant. On the other hand, if a system exhibits

constant communications flow with little change in volume over time, the content of

the messages may change in their distribution, representing other important changes

in activity that warrant separate classification.

3.5 Choosing Source/Time Partitioning Options

The choices of kΦ and kΓ are somewhat arbitrary. Small values limit the “res-

olution” of intersects, while larger ones may create unnecessary computational or

storage overhead and may provide little additional value. The key to “good” values

of k is their ability to partition the available data into clusters that have a minimum

of internal variation and are maximum of separation among each other. Since we

would rather learn, rather than impose, the “intersect resolution” of our system, we

need a way to automatically choose our values of k.

Since k-means is not guaranteed to produce an optimal result for any evaluation

of a given data set, it is necessary to perform multiple evaluations for each value of k

and test each for how well it meets the criteria. We saw in Section 2.3.4 that multiple

approaches exist for making this determination, but for our purposes which we will

detail in our experiments in Chapter 4, we will settle on a simplified method simply
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using the SSW function defined in Equation 2.16 and choose the evaluation results

where this value is minimized.

By finding the “best” evaluation for each k for some range where k ≥ 2 but

also k ≤ kmax for some pre-selected value of kmax, we must next decide which value

of k to use. To do this, we simply select the value of k with the lowest overall SSW or

“cluster distortion” value. However, as k increases the time complexity also increases

proportionally, so for practical reasons we want to find a balance between SSW (k)

and k. For this reason, we use a cost function J in Equation 3.7 and find the “best k”

where argminkJ(k) with choices for constants C1 and C2 provide weighting factors

to help tune the equation based on experimentation.

J(k) = C1SSW (k) + C2k (3.7)

A variant of k-means with some unique characteristics that we will find useful

later is called “kernel” k-means, or KK-means. As presented by [61, 62], KK-means

allows us to replace the Euclidean distance “kernel” function for determining mem-

bership in a cluster with some other function that computes a “distance” between

two samples using some other means. [61, 62] use this approach to introduce weight-

ing factors to the terms of each sample, but once weightings have been applied, the

fundamental calculation remains a minimization of the sum of squares.

arg min
G

k∑
i=1

∑
sj∈Gi

KLD(sj, µi) (3.8)

As a unique contribution of this dissertation, we consider using KL-Divergence

as an alternative distance function for those data sets whose samples are intrinsically

probability distributions of the symbol occurrence ratios within each sample. The

challenge in doing so is that KL-Divergence does not obey the triangle property of
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a true “metric” and when introduced into the k-means algorithm can easily fail to

converge. As a consequence, our algorithm must use a heuristic for determining that

successive iterations are failing to converge and terminate the evaluation. Since we are

already performing multiple evaluations for each value of k as mentioned earlier, failed

evaluations are simply discarded. And in some situations, if we fail to achieve any

converged results for a given k, we simply discard the k altogether from consideration

for the “best k.”

3.6 Computing Source/Time Intersections

Figure 3.3. An illustration of multiple message sources – S1 through S6 – communi-
cating one of several symbols – A,B,C – over a series of time intervals – T1 through
T3.

For a more concrete example, consider Figure 3.3 which shows six different

message sources labelled S1 through S6. It should be easy to see that the volume

of messages decreases from S1 through S6. I should also be easy to see that sources
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S1 and S4 repeat the sequence ABC, while S2 and S5 repeat the sequence AB, and

finally, S3 and S6 repeat the sequence BC. If we choose kΓ = 3, we might find the

following source types by absolute count – (S1, S2) , (S3, S4), and (S5, S6) – and

different source types by “mix” – (S1, S4), (S2, S5), and (S3, S6). In this example,

T1 through T3 contain a similar total count of messages and might easily be classified

together in the same window type.

Having established marginal classifications for M by time window type Φ and

population source type Γ for both volume and ratio of occurrences of symbols in

A, we use each combination of window type φ and source type γ to create statistical

“intersect” χ = (φ, γ). This gives us two sets of intersects, one based on volume called

XV and another on ratio called XR. Each intersect defines a subset of occurrences

of A that has a statistical signature. For intersects based on volume, we have mean,

standard deviation, minimum, and maximum values as statistics for each symbol in

each intersect. Whereas for intersects based on XR, we have an average probability

distribution P (A) and a KLD for each of the samples making up XR with respect to

that average. These KLD values for a “half-gaussian” distribution having standard

deviation.

As illustrated in Figure 3.4, we can think about M as a three-dimensional space

where S, W , and A bound a volume. Using Γ, Φ, and A, M may be partitioned into

many non-overlapping cuboid regions such that the entire S×W×A space is contained

in one and only one cuboid corresponding to each χ ∈ X – the gray portion of the

figure showing one such cuboid.
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Figure 3.4. The figure shows M as a volume of three dimensions S, W , and A along
with a cuboid in light blue showing χ1 representing a portion of M further bounded
by γ1 on the S axis, φ1 on the W axis.

3.7 Detection of Anomalies

Once we have partitioned our data into window types Φ, source types Γ, and

intersects X, we are now in a better position to look for anomalies within these

subsets. For convenience, we can classify anomalies along several lines as follows:

• Source Anomaly – The statistical properties of a given source within M falls

outside established thresholds for any source type in Γ.

• Window Anomaly – The statistical properties for a given time period within

M falls outside established thresholds for any window type in Φ.

• Intersect Anomaly – The statistical properties for the sources of a source type

γ for a time period assigned to window type φ from M falls outside established

thresholds for the expected intersect χ = (φ, γ).
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• Migration Anomaly – Since our assignment of samples to “intesects” in X are

based on membership in Φ and Γ, it is possible that an an “intersect anomaly”

may in fact be a good fit for membership in another intersect than the one to

which it has been assigned. In a sense, we can think of the sources within a

time window as defined by χ as “migrating” to match another χ.

How we define the notion of falling “outside of established thresholds” when iden-

tifying anomalies depends on the statistical characteristics of the specific problem

domain. However, whether when dealing with the marginal partitions – Φ and Γ –

or the intersect partitions – X – we have a standard set of statistics for each. This

is because we have designed the process so that each partition has a common set of

columns defined by A(n). As a result, we may use any statistic applied to them for

our anomaly definitions.

Perhaps the most common type of anomaly is that defined by the distance of

each sample from the mean of its partition. Each partition has, by definition a sample

mean, which also happens to be the k-means centroid used when assigning sample

membership. And although cluster assignments for Φ and Γ are directly the result

of k-means such that no “better” assignment is available, the distance of any given

sample from the mean may be quite large as compared to others in the partition.

To calculate distance, we may use either Euclidean distance, or when dealing with

samples known to be conditioned as ratios, KL-Divergence or Entropy. Then we

may easily compute the standard deviation of the collected distances of each sample.

Finally, we may then choose some multiple of the standard deviation as a threshold

beyond which the sample is classified as an anomaly.
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3.8 Visualizing Marginal and Intersect Statistics and Anomalies

In order to review the outcome of the statistical analysis performed by our

process, there are several ways to visualize the partitions. Two of particular interest

to us are the “classification matrix” and the “strip chart.”
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Figure 3.5. Example classification grid showing ||Γ|| = 4 and ||Φ|| = 4 where each
the resulting ||X|| = 16 intersect partitions form a 4x4 set of charts with the Γ charts
on the right side and the Φ charts on the bottom.

The classification matrix works by allowing us to see some aspect of both the

marginal and intersect partitions at the same time. Figure 3.5 illustrates how each of

the partitions may be laid out in a visual matrix. Scanning horizontally on each row,

we see the X partitions showing variations of Γ for each Φ and with the Γ summary

partition on the right. Scanning vertically on each column, we see the X partitions

showing variations of Φ for each Γ and with the Φ summary partition on the bottom.
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Figure 3.6. Example strip chart showing a row for each Γ and status indicators for
each sample placed horizontally according to its occurrence in W .

The strip chart shows some visual indicator of status for each Γ represented by

a horizontal chart with the status of each sample in X positioned according to its

original location in time corresponding to the time window aggregations of W . The

horizontal charts for each Γ align vertically showing how they occur at corresponding

times, but in parallel. This visualization is useful for seeing when in time an anomaly

occurs as seen in the example of Figure 3.6.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 An Example Of The Process In Action

Consider the scenario where we are an Internet hosting service provider, and are

approached by a company that wants to us to host and monitor their new “e-Book

Broadcasting” service. They tell us that their service creates a “virtual broadcast

channel” for each of the e-Books in their catalog. On each channel they send out the

textual content of the assigned e-Book one character at a time in a UDP/IP packet

to some unspecified, but distinct destination IP address. Once all of the characters

in the e-Book have been sent, they will start to resend the entire book again after

some period of delay which they do not specify.

They say that their service is patent-pending, so they do not feel comfortable

providing too many details. They will not tell us what books are in their catalog, so we

don’t know what languages are used or what genres included, whether fiction or non-

fiction, literature or poetry, or any other characteristics of their content. Nevertheless,

they want us to monitor the service and let them know if “anything unusual” happens.

They further say that they believe the system is working properly, but could really

use our help to better understand the its operational dynamics.

We setup their hosting environment and they begin “broadcasting.” Since we

can capture the UDP/IP traffic within our network, we begin recording their mes-

sages. Based on the little they told us about the service, we apply our process to the

message flow.
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Figure 4.1. The figure displays messages counts on the Y axis captured from the
example system for each minute of a 24-hour period on the X axis.

After a full day of operation, we have a captured message flow M as shown in

Figure 4.1. The total message flow clearly shows some uniform periodicity, but it is

not clear what it signifies. To examine it further, we now need to define the functions

VS, VW , and VA′ as they apply to our customer’s service.

• Function VS – We decide to treat each of our customer’s logical “channels,” one

for each e-Book being “broadcast,” as our set of sources S. Unbeknown to us,

their catalog of e-Books are the collection of public domain documents from our

earlier example in Section 2.3.1. As a result, we quickly discover that M has a

set of sources where ||S|| = 128.

• Function VW – Our customer is expecting to greatly expand their service, so

they have apparently chosen to limit the message rate of each channel. Through

simple observation, we can tell that they send about 10K messages per minute

for each of their “channels,” and we decide to choose a time window size W of

1 minute as well.
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• Function VA′ – Knowing that each message simply includes a single character

of their e-Book content, we find that they the set of characters in their “alpha-

bet” A consists of 68 symbols – the 26 Roman letters (mono-case), 10 decimal

numerals, and 32 punctuation marks. As we saw in the previous analysis of

this data set in Section 2.3.1, the distribution of these characters is hyperbolic.

Since many of the characters are thus rarely seen, and therefore their statistical

contribution minimal, we collapse the least-occurring characters into a single

“other” category for the all characters whose combined probability is less than

0.1%. The resulting A′ contains only 39 symbols, including “other.” Figure 4.2

shows where this threshold falls within the rank-ordered set of symbols by prob-

ability.
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Figure 4.2. This figure shows the characters A occurring in the example data set in
descending rank order on the X axis. It shows the probability of each character on the
Y axis using the Log scale to help clarify the hyperbolic character of the distribution.
The change in color of the data points into two groups shows the point at which the
remaining probability of the least-frequent characters totals less than 0.1%.
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With S, W , and A′, we are able to define our marginal summaries of M by volume

and ratio as defined by the process: VS, VW , RS, and RW . By applying both PCA

and then k-Means to each, we settle for simplicity on a value of k = 10 to define our

source types ΓV and ΓR, as well as our window types ΦV and ΦR.

Table 4.1. Count Of Documents For Each Cluster In Γ

Cluster Count
γ1 28
γ2 20
γ3 18
γ4 18
γ5 12
γ6 10
γ7 9
γ8 7
γ9 5
γ10 1

Looking closely at ΓR, we note that one of the clusters contains only one (1)

source γ10 as shown in Table 4.1. The significance of this is that a single document

stands out from all others in the eigenspace characterized by the probability distribu-

tion of A′. A smaller value of k would have clustered this document along with others,

but it would likely have been far from the cluster centroid and been characterized as

a “source anomaly.”

We return to the customer with this document as “something unusual.” After

reviewing the contents of the document in question, they tell us that they found the

content of the document to have been corrupted. Instead of an actual e-Book, the

document contained the HTML content of an error page they had received from their

content provider when they were originally building their catalog. They thanked us
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for helping them find this error, noting that the volume of content in their catalog

made it impossible for them to review and verify all documents.
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Figure 4.3. This figure uses the categorizations of Φ to color-code the 1-minute time
periods of M on the X axis and the total message counts seen in each period on the
Y axis.

Next we look at ΦR and note similar situation where a cluster has only four (4)

periods during the course of the day. Color coding the time periods to our original

Figure 4.1 by Φ and circling the four (4) time periods in the smallest cluster in

Figure 4.3, we see that this cluster φ10 also corresponds to the minimum volume

window periods.

We return to the customer noting these minimal message rate windows φ10.

They reveal that they wait for all the characters for all “broadcast channels” to be

sent before restarting each channel. The customer noted that the uniqueness of the

φ10 cluster suggested that a minimal statistical sample that had such little data as

to poorly represent the typical distribution of the single, longest document in their
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catalog. Again, they thanked us for the insight into their system, recognizing that

their approach overall poorly utilizes their available bandwidth.

As with γ10, the nominal elements of the φ10 cluster are such that a smaller value

for k would likely have resulted in these time periods being categorized as “window

anomalies.”
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Figure 4.4. This figure uses the categorizations of Φ to color-code the 1-minute time
periods of M on the X axis and the total message counts seen in each period on the
Y axis for day 1.

Taking both ΓR and ΦR together to find intersects XR, we consider the KLD

of each intersection sample matching the elements of the intersects X compared to

average. Figure 4.4 shows that a small number of these intersections (in red) fall

outside of a threshold of 2 or about half of the entropy value H of the information

measure for A′ of 4. The “red” items in Figure 4.4 correspond to “intersect anomalies”

that we bring to the customer’s attention.

While waiting for the customer to investigate the cause of the “intersect anoma-

lies” for source types γ2 and γ4, we continue capturing the message flow for the service
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Figure 4.5. This figure uses the categorizations of Φ to color-code the 1-minute time
periods of M on the X axis and the total message counts seen in each period on the
Y axis for day 2, with special note of a new “intersect anomaly” as compared to day
1.

for a second day. In doing so, we notice that a new “intersect anomaly” occurs as

noted in Figure 4.5.

After bringing the new anomaly detected on day 2 to the customer’s attention

for γ7, they investigated their logs and find that during the second broadcast of one

of the documents in the group categorized by γ7 failed was, in fact, not “broadcast”

as expected. The customer, again, thanked us for noting the “something unusual” in

their system’s behavior.

4.2 Study: Cellular Wireless Signaling

“Signaling” is a standard part of connection-oriented communications proto-

cols and is generally transparent to the application-level visible to operators of M2M
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applications within the IoT, being several levels removed in a tiered services envi-

ronment with multiple layers of abstraction hiding its presence. For older cellular

wireless networks such as “Global System for Mobile Communications” (GSM) [63],

this signaling layer is provided by “Signaling System 7” (SS7) [64]. In the newer

“Long-Term Evolution” (LTE) network standard [65], the signaling layer is provided

by the Diameter protocol [66].

With SS7, a wireless device communicates with a local cell tower for the pur-

pose of registering its presence, establishing a connection through which to send its

application data, and other activities. The tower follows the signaling protocol to

communicate with other network elements on behalf of the device to authenticate it,

authorize its actions, and perform those authorized actions. In the case of SS7, the

protocol defines over one hundred operations – think predicates – invoked on behalf of

a device – think subject – by one network element and responded to. Device subjects

with invocation/response predicates form the basis for a linguistic dialog that may be

studied to discern patterns of behavior for the devices that give rise to the signaling

activity among the network elements of the communications infrastructure.

Using methods developed in [67] and [68], we are able to capture the raw network

packets exchanged among cellular network elements and convert them into a stream

of timestamped subject/predicate pairs that are the essential linguistic components

of the SS7 protocol.

For this investigation, we consider several subsets of the larger population of

devices whose communications are captured and made available using [67] and [68].

In particular, we consider the SS7 traffic for the devices of several commercial M2M

applications over a one week period as seen in Table 4.2. The selected applications

serve very different business purposes, vary in population of two orders of magnitude,

and generated a number of messages that range over three orders of magnitude.
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Table 4.2. M2M Applications Considered

Type Devices (D) Messages (M) Ratio (M/D)

Security 374,268 167,759,619 448.2
Real Estate 291,654 80,044,881 274.5
Vehicle Tracking 8,972 3,091,959 344.6
Oil & Gas 1,159 903,341 779.4

4.2.1 Considering Aggregate Messages Over Time

The devices in our selected applications communicate over the course of the

target week to to produce the message counts shown in Table 4.2. So we next consider

the message arrival over time to better understand their behavior.
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Figure 4.6. The chart shows the total SS7 message count on Y for every hour of the
target week on X for all devices in the data set.

The target M2M application devices’ SS7 traffic represent only a portion of

that for over 1.6 million wireless devices sharing the same network resources. The

combined traffic seen using [67] for the target week is shown if Figure 4.6. In it, we

easily observe the diurnal character of the SS7 traffic as more activity by the device

population takes place during the day and less at night.
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Figure 4.7. The chart shows the total SS7 message count on Y for each 10-minute
interval of a single day on X for all devices in the data set.

Looking more closely at a single day with a smaller time increment of 10-

minutes, we further observe additional variations such as hourly spikes in the message

counts as seen in Figure 4.7.

As stated, Figures 4.6 and 4.7 represent message frequency counts for all appli-

cation traffic captured, but as might be expected, not all applications exhibit have

the same reporting profile over time nor the same distribution of message types. Fig-

ures 4.8a-d and 4.9a-d show the same weekly and single day message frequency counts

for each of the target M2M applications in this study. These figures break out the

data for each application into separate charts to allow the large differences in Y-values

to vary independently.

In Figures 4.8a-d, we observe that the all four target applications exhibit some

nominal diurnal properties, but have very different amplitudes. In the case of the

“Security” and “Oil & Gas” applications, we saw in Table 4.2 that they had the

highest message count per device (M / D) values. We also see in corresponding Fig-

ures 4.8a and 4.8d that these applications also have much higher minimum message

rates relative to their maximum rates that help explain the higher messages count

per device. By contrast, the “Real Estate” and ”Vehicle Tracking” applications in
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Figure 4.8. Charts “a” through ”d” show the total SS7 message count on Y for every
hour of the target week on X for each of the four labeled target M2M applications.

Figures 4.8b and 4.8c experience minimum message rates approaching zero which

helps lower the overall message count per device for each.

As the time interval decreases in size, we observe that some applications exhibit

more “bursty” variation as shown in Figures 4.9b and 4.9d as compared to Figures 4.9a

and 4.9c. In the case of the application if Figure 4.9b (i.e., “Real Estate”), the

pronounced message-count spikes correspond to those in the message counts for all

applications from Figure 4.7.

70



0 12 24 36 48 60 72 84 96 108 120 132 144
1.4

1.6

1.8

2
x 10

5 a) Counts Every 10 Minutes For Security

0 12 24 36 48 60 72 84 96 108 120 132 144
0

2

4
x 10

5 b) Counts Every 10 Minutes For Real Estate

0 12 24 36 48 60 72 84 96 108 120 132 144
0

5000

10000

c) Counts Every 10 Minutes For Vehicle Tracking

0 12 24 36 48 60 72 84 96 108 120 132 144
0

1000

2000

d) Counts Every 10 Minutes For Oil & Gas

Figure 4.9. Charts “a” through ”d” show the total SS7 message count on Y for each
10-minute interval for a selected day on X for each of the four labeled target M2M
applications.

4.2.2 Considering Message Types

Of course, all messages arriving over time from the applications are not the

same type. Understanding what type of messages arrive and their frequency is the

next level of analysis we need to perform.

For our purposes, we construct an alphabet for SS7 signaling based on the

network elements initiating and receiving messages, the operation code of the message

if an invocation or response, as well as an error code when the response is unsuccessful.

The official SS7 specification identifies 106 unique operation codes and 60 error codes
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[69]. However, in our sample week, we observe only 19 operation codes and 10 error

codes, resulting in an alphabet of 72 symbolic message types.
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Figure 4.10. The chart shows the number of SS7 message-type occurrences on Y for
each message type in rank order on X.

Figure 4.10 shows evidence of the hyperbolic distribution one should expect from

the frequency distribution of language symbols by plotting the message counts for each

of the symbols in rank order on the log/log scale. The result is an approximately-

linear arrangement of the data. It is perhaps worth noting that the qualification of

approximately linear results from the fact that the data set, as well as the symbols

set, is relatively small, and as such, these results are similar to those found in other

language alphabets. While it is considered an empirical fact that language symbol

frequencies follow such hyperbolic distributions, this behavior is observed most clearly

at the limit [41].

Looking at the probability distribution of message types for each application in

Figure 4.11, we easily see differences in how the devices communicate with respect

to the average of all 1.6 million devices and with respect to each other. By using

probability in this case, instead of total message count, we are able to compare how

each application communicates regardless of the size of the device population in each.
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Figure 4.11. The chart shows the number SS7 message type probabilities on Y for
each of the top 25 message types by rank on X.

At this stage, we do not care what the message types are but only their rank as a

function of message type frequency from Equation 2.11 so that we can compare how

the use of the message types differs by application. Regardless of what the message

types represent operationally, it is clear that some the applications have similarities

as well as differences from each other in terms of their use of these message types.

4.2.3 Considering n-Grams Based On Message Type

Without elaborating on the specifics of the actual SS7 message types, we can

state that the order of occurrence of different messages for a specific device represent

different operational scenarios for the application. Similarly, the sequence of message

types generated by devices within an application may differ as well. Furthermore,

two applications that have similar message type frequencies may have different results

from each other when considering message-type sequence frequencies. Such message-

type sequences can be considered using an n-gram analysis.

For the target week, we stated that a total of 72 message types were observed.

Over the course of a year, the source environment has encountered very few addi-

tional message types, so the 72 types here are very representative the operational

characteristics of a far longer time frame.
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Table 4.3. Possible vs. Actual n-Gram Occurrences for SS7

N ||A||N = Possible (P) Actual (A) Percent (A/P)

1 721 = 72 72 100.00%
2 722 = 5,184 1,080 20.83%
3 723 = 373,248 4,516 1.21%
4 724 = 26,873,856 12,867 0.05%

With 72 message types, we have 72 possible “1-grams.” By passing through the

data set for each unique device, we can identify successive pairs of messages whose

occurrence represent possible “2-grams.” It is possible to the record pair of types as

a 2-gram either as a combination or permutation – in our case, we use permutations.

By expanding the size of the sequence from 2 to 3 and 4, we likewise identify

type occurrences that we can call “3-grams” and “4-grams.” Counting unique per-

mutations of 2-, 3-, and 4-grams, we arrive at the data found in Table 4.3. In this

table we can see that the possible number of observed n-grams at each value of n

grows exponentially, but the actual number of permutations that occur is dramati-

cally smaller.
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Figure 4.12. The chart shows the number of occurrences on Y for each n-gram
permutation in rank order on X for 1-, 2-, 3-, and 4-grams.
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As n grows, the frequency of n-gram permutations more closely matches the

expected linear relationship on a log/log scale as expected of a hyperbolic distribution

as shown on Figure 4.12. Note that the 1-gram data on the chart is duplicated

from Figure 4.10 for reference and to show how 2-, 3-, and 4-grams progressively

“straighten” their curvature.
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Figure 4.13. The heat map indicates the occurrence of 2-grams defined by a starting
message type on X and an ending message type on Y where the black squares represent
2-gram occurrences for the “Vehicle Tracking” application, gray squares represent
occurrences for all applications, and the white squares represent no occurrence; note
that message types are represented by their rank index from 1 to 72.

Figure 4.13 visualizes the sparsity of message-type permutations that occur in

practice by showing which starting/ending message-type permutations occur as 2-
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grams within the overall data set. In this figure, the white (blank) cells indicate

permutations that did not occur in the data set, while the gray cells indicate those

that did occur. In addition, the black cells are the subset of all 2-grams that occurred

for the “Vehicle Tracking” application. Notice that the the permutations are not

symmetrical; that is, a given pair of message types (e.g., ‘A’ followed by ‘B’) may

occur but not the reverse (e.g., ‘B’ followed by ‘A’), either for a specific application,

like “Vehicle Tracking” in black, or all applications combined in gray.

4.2.4 Mapping n-Grams To Operational Semantics

Until now we have been focusing on the probabilistic differences of specific

M2M applications and the overall system within which they operate. We have been

considering n-gram frequencies with simple rank assignments to each occurrence,

regardless of their meaning. We are now ready to reveal the semantics of the n-grams

and consider what they say about the behavior of the M2M devices that give rise to

them within the data set.

Before we can do this, we must first briefly describe the network elements in-

volved in SS7 signaling. All devices communicating over the network must exist in

the inventory database of a “Home Location Register” (HLR). When a device begins

communicating with a cell tower, it must first authenticate itself. The cell tower

forwards the authentication request, called an “invocation,” to a “Visitor Location

Register” (VLR) which handles all such traffic for a group of towers and which keeps

an inventory of all devices currently “visiting” a tower within its domain. The VLR

submits a “Send Authentication Info” (code 56) invocation to the HLR to which

the device belongs. If the device is authorized to communicate over the network,

the HLR responds in the affirmative, otherwise it might respond an “Unknown Sub-

scriber” (code 01) error code. If the VLR does not current have the device in its
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register, it will next submit an “Update Location” (code 02) invocation to the HLR.

In response, the HLR will contact the previous VLR by sending a “Cancel Location”

(code 03) invocation, allowing the VLR to remove the device from its inventory, and

will send an “Insert Subscriber Data” (code 07) invocation to the new VLR. Table 4.4

summarizes the most common events in the data set that we will be considering.

Table 4.4. Common SS7 Event Codes

Code Description

02 Update Location
03 Cancel Location
07 Insert Subscriber Data
23 Update GPRS Location
56 Send Authentication Info

With the advent of cellular data communications using the GPRS protocol at

a level above the SS7 signaling layer, instead of enhancing the function of the VLR,

a new type of network element was introduced side-by-side with the VLR called the

“Serving GPRS Support Node” (SGSN). Devices that communicate using (typically)

IP communication must also be authenticated by the SGSN which generate a simi-

lar sequences of “Send Authentication Info,” “Update Location,” “Insert Subscriber

Data,” and “Unknown Subscriber” invocations, responses, and errors.

In the rest of this paper, we will use a short-hand symbolic reference for SS7

events following the pattern “<event-type><origin-code><destination-code><event-

code>” where event types are “I” for invocations, “R” for responses, “E” for errors,

and where origin and destination codes are the first letter of the network element

type (i.e., “V” for VLR, “H” for HLR, and “S” for SGSN). Thus a VLR sending a
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“Send Authentication Info” invocation to an HLR takes the form IVH56, the HLR’s

successful response is RVH56, and an “Unknown Subscriber” error is EVH01.

We saw previously the probability distributions of the 1-grams for all applica-

tions together and our four selected applications in Figure 4.11, focusing only on the

top 25 and likewise most-significant values. As highlighted in Table 4.5, the single

most frequent 1-gram for all applications, and a relatively high-probability one for

our selected applications, is the “Send Authentication Info” invocation by a VLR

(IVH56) with the second most frequent 1-gram for all applications being the “Un-

known Subscriber” error (EVH01). The third and fourth 1-grams by rank are the

“Send Authentication Info” invocation by SGSN elements (ISH56) followed by the

“Unknown Subscriber” error as well (ESH01).

Table 4.5. Top 10 1-Gram Symbols and Probabilities

Rank Symbol Probability

1 IVH56 0.2443
2 EVH01 0.1734
3 ISH56 0.1111
4 ESH01 0.0710
5 RVH56 0.0710
6 IVH02 0.0486
7 RVH02 0.0482
8 RSH56 0.0400
9 IVH07 0.0266
10 RVH07 0.0266

The presence of “Unknown Subscriber” errors as the third and fourth highest

ranking 1-grams is surprising and we will investigate further. However, it is clear

from Figure 4.11 that the four selected M2M applications have much lower, almost
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zero, probability of these errors, with the exception of “Unknown Subscriber” errors

in response to VLR invocations (EVH01) only for the “Security” application.
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Figure 4.14. The chart shows the probability of occurrence on Y for the top 40 2-
gram permutations in rank order on X for all applications combined, as well as for
the “Vehicle Tracking” and “Oil & Gas” applications.

Figure 4.14 shows visually and Table 4.6 empirically that the first and second

ranked 2-grams are the IVH56-EVH01 pair followed by its reverse permutation of EVH01-

IVH56, both related to VLR activity. The third ranked 2-gram is the ISH56-ESH01

pair, but its reverse permutation drops down to rank 36 – not shown in the table.

Instead, the most-likely event paired with ESH01 is IVH56 at rank 5. The reason for

this will become more apparent when considering 4-grams.

The “apriori principle” used in association rule mining [70] says effectively

that a high-probability combination of length n+ 1 must be constructed using high-

probability combinations of length n. So it stands to reason that the highest-probability

4-grams would consist of high-probability 2-grams as well. And by looking at the top

4-grams, we see a more clear picture of frequent communication patterns occurring

within the data set.
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Table 4.6. Top 20 2-Gram Symbols and Probabilities

Rank Symbol Sequence Probability

1 IVH56-EVH01 0.1736
2 EVH01-IVH56 0.1071
3 ISH56-ESH01 0.0712
4 IVH56-RVH56 0.0694
5 ESH01-IVH56 0.0670
6 EVH01-ISH56 0.0664
7 ISH56-RSH56 0.0401
8 RVH56-IVH56 0.0306
9 RVH56-IVH02 0.0270
10 RVH07-RVH02 0.0260
11 IVH02-IVH07 0.0256
12 IVH02-RVH02 0.0162
13 RSH07-RSH23 0.0145
14 ISH23-ISH07 0.0144
15 ISH07-IHS03 0.0136
16 IVH07-RVH07 0.0135
17 RSH56-ISH56 0.0134
18 RVH02-IVH02 0.0127
19 RVH02-IVH56 0.0125
20 IVH07-IHV03 0.0121

As we saw with the figure and table for 2-grams, Figure 4.15 shows visually and

Table 4.7 empirically the highest-ranking 4-gram probabilities. The first two ranks

correspond almost equal probabilities for the two possible permutations of alternating

IVH56 and EVH01 symbols. The third through sixth ranks correspond to the almost

equal probabilities for each phase of the four-symbol sequence of IVH56-EVH01-ISH56-

ESH01.

The first two ranks represent the common occurrence within the data set of

devices whose only interaction within the SS7 layer is the repeated request to au-

thenticate via a VLR (IVH56) and the denial of that request (EVH01). The next four
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Figure 4.15. The chart shows the probability of occurrence on Y for the top 40 4-
gram permutations in rank order on X for all applications combined, as well as for
the “Vehicle Tracking” and “Oil & Gas” applications.

ranks represent a similar scenario where devices repeat the same request for both

a VLR and its paired SGSN. These two scenarios relate to 1) devices whose use of

the network may only include SMS communication and thus do not engage with an

SGSN as part of their operation, and 2) devices who use GPRS communication and

therefore must authenticate both via both a VLR for basic network access and SGSN

for data-communications access.

The significance of these scenarios is that the devices in question are receiving

“Unknown Subscriber” responses because their service has been terminated by the

carrier. Nevertheless, the devices continue to try and connect to the network and

do so in some cases at a higher frequency than they would had their authentication

request been accepted. Were the devices in question to be consumer cell phones as

might have been assumed by the designers of SS7 and GPRS networking protocols, the

termination of service would typically be associated with the consumer’s discontinuing

to use the phone. Even if the phone remained powered on, its battery would eventually
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Table 4.7. Top 20 4-Gram Symbols and Probabilities

Rank Symbol Sequence Probability

1 IVH56-EVH01-IVH56-EVH01 0.1075
2 EVH01-IVH56-EVH01-IVH56 0.1060
3 IVH56-EVH01-ISH56-ESH01 0.0666
4 ISH56-ESH01-IVH56-EVH01 0.0666
5 EVH01-ISH56-ESH01-IVH56 0.0660
6 ESH01-IVH56-EVH01-ISH56 0.0652
7 IVH56-RVH56-IVH56-RVH56 0.0304
8 RVH56-IVH56-RVH56-IVH56 0.0259
9 IVH56-RVH56-IVH02-IVH07 0.0212
10 ISH56-RSH56-ISH56-RSH56 0.0134
11 IVH02-IVH07-RVH07-RVH02 0.0132
12 RVH56-IVH02-IVH07-IHV03 0.0110
13 ISH56-RSH56-IVH56-RVH56 0.0108
14 ISH56-RSH56-ISH23-ISH07 0.0106
15 RVH56-IVH02-IVH07-RVH07 0.0101
16 RSH56-ISH23-ISH07-IHS03 0.0098
17 RSH56-ISH56-RSH56-ISH56 0.0093
18 IVH56-RVH56-ISH56-RSH56 0.0088
19 RVH02-IVH56-RVH56-IVH02 0.0083
20 RVH07-RVH02-IVH56-RVH56 0.0080

die and it would stop attempting to connect to the network. However, it is quite

common for M2M devices to be connected to a permanent power source and to be

embedded in some larger piece of equipment (e.g., wired into a vehicle), perhaps even

unknown to or forgotten by the equipment operator. As a result, the termination

of service at the carrier level would be insufficient to ensure that M2M device stops

operating. In fact, such an operational condition may not even have been considered

by the M2M device designer.

Moving beyond the “Unknown Subscriber” scenarios, the n-gram analysis gives

us additional insight into the operational dynamics of our selected M2M applications.
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Since these applications have few, if any, devices with discontinued service, their high

probability n-grams involve many other activities.

To illustrate, we look closely at the “Vehicle Tracking” and “Oil & Gas” ap-

plications whose 1-, 2-, and 4-gram probabilities are seen in Figures 4.11, 4.14, and

4.15. The 1-gram probabilities for these applications appear similar except for ranks

3, 6, 7, and 8, corresponding to events ISH56, IVH02, RVH02, RSH56, respectively. It

is also evident that, despite a general decrease in probability for these events overall,

the probability of the invocation of each type of event closely matches the successful

response for each application.

The 2-gram probabilities likewise are similar for these two applications as shown

in Figure 4.14 with significant differences seen at ranks 7, 12, and 17, corresponding

to event pairs ISH56-RSH56, IVH02-RVH02, and RSH56-ISH56, respectively. Note that

these 2-grams contain the same events primitive events that were different between

the applications at the 1-gram level. What we see at the 7th rank are almost twice

as many “Send Authentication Info” invocation/response pairs by SGSNs on behalf

of the “Oil & Gas” devices than for the “Vehicle Tracking” devices even though the

1-gram distribution shows that only roughly 30% more invocations are submitted.

The 12th ranked 2-gram indicates that the “Vehicle Tracking” application has a

large number of successful “Update Location” invocation/response pairs compared a

negligible number for the “Oil & Gas” application. Furthermore, the 17th rank 2-

gram shows that one successful “Send Authentication Info” invocation/response pair

is followed by another almost 50% of the time for the “Oil & Gas” application as

compared to perhaps 20% of the time for the “Vehicle Tracking” application.

Finally, the 4-gram probabilities in Figure 4.15 bring into sharper focus how

these event sequences differ between the applications. Here we see that the most sig-

nificant difference between the two applications is the dramatically higher probability
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for the “Oil & Gas” application at ranks 10 and 17, corresponding to symbol sequences

ISH56-RSH56-ISH56-RSH56 and RSH56-ISH56-RSH56-ISH56, respectively, which repre-

sent the two phases of alternating symbols ISH56 and RSH56.

Taking the 1-, 2-, and 4-gram observations together, a picture emerges of be-

havioral difference between the “Vehicle Tracking” and “Oil & Gas” applications.

As the name suggests, the “Vehicle Tracking” application employs devices that

are attached to vehicles which, when moving from place to place, require registration

with different towers, and therefore result not only in a high occurrence of “Send

Authentication Info” messages sent on behalf of the devices by VLRs, but also the

need for “Update Location” messages that are triggered when the current VLR of

record changes. That the ”Update GPRS Location” message frequency by SGSNs is

not high in the list of frequent events suggests that the devices may be moving more

frequently than their need to employ the services of an SGSN for data communica-

tions. And in fact we know that this particular application has a device configuration

designed for very low-frequency reporting. Nevertheless, certain signaling activity

must take place “just in case” the device decides to send a payload.

In the case of the “Oil & Gas” application, the M2M devices employed are in

fixed geographic locations and use cellular wireless communications to overcome the

limited availability of terrestrial options at remote service sites. The high frequency

of repeated alternating ISH56 and RSH56 events reflect the fact that the devices

frequently connect and report their application payload with very little additional

interaction with the network required. That these devices still need to authenticate

and update the network elements with their presence corresponds to the need for the

network refresh their their inventory of “visiting” devices, given the design expectation

that mobile devices might leave the network without notice.
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4.2.5 Considering n-Grams for Time-Bounded “Motifs”

When performing n-gram analysis on a corpus of textual documents, it makes

sense that there is a first and last n-gram instance in each document consisting of the

first and last n characters or words, and there are not n-gram instances for characters

or words that span documents. However, when working with messages sequences of

the type generated by M2M devices, notions like document boundaries are not clearly

defined.

Casual inspection of the data flow such as that in our M2M signaling data

reveals that messages often arrive in bursts with over several seconds separated by

long intervals measured in minutes or hours.

So far, our n-gram occurrences have been collected regardless of the inter-

message interval, but like the last characters/words in one text document and the

first characters/words in a following text document, the last messages in one burst

and the first messages in a following burst may have very little informational meaning,

and counting them in our statistics could skew the results.

For this reason, we consider the bursts as sequences messages with some min-

imum interval as “motifs” and may perform our n-gram analysis on those messages

which occur only within each motif in the data set, discarding message sequences

across motifs.

By imposing this construct on our data, we immediately see a change in the

n-gram occurrences. Table 4.8 shows an example of the number of unique n-grams

occurring with the “Vehicle Tracking” application are significantly reduced when con-

sidering only motifs separated by 60 seconds or more.
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Table 4.8. All vs. “Motif” n-Gram Counts for “Vehicle Tracking”

N All (A) Motif (M) Percent (M/A)

2 302 262 86.8%
3 862 695 80.6%
4 2,095 1,460 69.7%

4.2.6 Considering k-Means Clustering Scenarios

As outlined in Chapter 3, our process involves the composition of time-series

data set along several dimensions in order to characterize its behavior. We have

already examined the linguistic properties of M2M applications using signaling data

using n-gram and “motif” analysis, so we are ready to discover different ways to group

similar devices and time intervals together using these characteristics.
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Figure 4.16. Message counts on Y for each device in the “Vehicle Tracking” applica-
tion in rank order on X.

So far we have learned that devices in aggregate send varying numbers of mes-

sages at different times of day, that this can vary from day to day, and that one

application can vary from another as we saw in Figure 4.8. We also easily observe
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that, even within the same application, devices may communicate at widely different

rates. Figure 4.16 shows that a log/log scale is required to clearly capture the hyper-

bolic distribution of message counts across the population of devices for the “Vehicle

Tracking” application.

In our data set, we have the discrete dimension of M2M device population

wherein each device is uniquely identifiable, and the continuous dimension of message

arrival time that we must “discretize” into time intervals, or windows. Along each of

these dimensions we may then count the occurrences of n-grams for any n, with or

without considering a maximum time separation of messages that identifies “motif”

boundaries. In addition, we may consider the n-gram count volumes as they are, or

as representing a probabilistic ratio of all messages within each sample. And lastly,

we may use PCA to project the data set into a dimensional space that amplifies

statistical correlations within the data.

If we limit ourselves to a single time window size of 10-minutes, n-grams of one

(1) through four (4), “motif” boundaries or not for n two (2) through (4), volume

vs. ratio, as well as use of PCA or not, the number of combinations available for

investigation comes to 2 × 2 × (4 + 3) = 28. For each of these combinations, we

will need to perform k-means clustering to identify groupings of devices and time

windows for many values of k, and with these groupings further determine cross-

sections of the data set in both population and time resulting in 282k possible scenarios

to consider. Thus for practical reasons we will need to prune the possibilities by

analyzing the attributes of each factor to determine which lines of inquiry merit

further consideration.

Since there are so many possible processing scenarios to consider, we will use

the following notation when referring them:

• Original vs. PCA-projected n-gram counts
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• V olume vs. Ratio of n-gram counts

• All vs Motif-based n-grams considered

• n value of the n-grams considered

Thus the original 1-gram counts without consideration for “motifs” will be labeled

OVA1, whereas the the PCA-projected 2-gram ratios based on “motifs” will be labeled

PRM2, and so on.

One additional scenario that we will evaluate is the alternative to using the

“ratio” of n-gram counts where we use KL-Divergence instead of Eclidean distance

as the metric for evaluating group membership. In this case, we will use K as label

code instead of V or R.

4.2.7 Evaluating Values of k for Each Scenario

For each of our clustering scenarios, we have chosen to apply the k-means

algorithm for a range of values of k from 2 through 16. In our initial experiments,

we considered values of k through 32, but found that these larger values added no

additional value and are not included in this dissertation.

Since k-means is not guaranteed to find the optimal clustering solution for any

given value of k and since the result for any evaluation is sensitive to the random

seeding of starting conditions, we chose to perform multiple evaluations for each

scenario and value of k, considering the “best” solution to be that for which the

SSW equation for calculating cluster distortion is minimized.

An example of this for the ORA1 scenario of the “Vehicle Tracking” application

is shown in Figure 4.17. In it, we see that for the same value of k multiple evaluations

yield different cluster distortion values. What this example further highlights is a

general reduction of cluster distortion as k increases, but with “local minima” found

as some combinations of cluster centroid yield a “tighter” fit to the data than others.
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Figure 4.17. Cluster distortions computed using SSW on Y representing multiple
evaluations of the k-means algorithm yielding varying results as hollow dots for each
value of k from 2 through 16 on X with the “best” result for each k indicated as
a solid dot; these results represent the ORA1 scenario for the “Vehicle Tracking”
application.

For simplicity, we will only use the “best” solution for each value of k in each

scenario and will make no further reference to the less-optimal evaluations.

After finding the “best” clustering for a range of k values for each scenario, we

are in a position to compare and contrast them to each other. In Figure 4.18 we see

the cluster distortion differences among eight (8) pairs of scenarios varying original

vs. PCA-projected 1- through 4-grams by volume and ratio – OVA1-4 vs. PVA1-4

and ORA1-4 vs. PRA1-4.

One of the first things we see in these charts is that the application of PCA prior

to performing k-means against the data set seems to yield different results more often

for ratio-based (i.e., the right-hand column of charts showing ORA1-4 vs. PRA1-4 ),

rather than volume-based values (i.e., the left-hand column of charts showing OVA1-4

vs. PVA1-4 ). Specifically, in the left-hand column of charts, the cluster distortion

values appear almost identical for the OVA1-4 vs. PVA1-4 scenarios, especially for

smaller-values of k, whereas in the right-hand column of charts, there the cluster

distortions for OVA1-4 vs. PVA1-4 scenarios show more variation from one another.
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Figure 4.18. For “Vehicle Tracking” application device population clustering, charts
“a,” “c,” “e,” and “g” show the Cluster Distortion (SSW ) on Y for each k from 2
through 16 on X for Volumes of 1- through 4-grams, respectively, while charts “b,”
“d,” “f,” and “h” show the Cluster Distortion (SSW ) on Y for each k from 2 through
16 on X for Ratios of 1- through 4-grams, respectively.

To better understand why volume-based values seem to yield similar results, we

can compare the clustering assignments of k-means with and without the prior use

of PCA as seen in Figure 4.19. In each chart for values of k from 2 through 16, the

charts show how the cluster assignments match between the two methods. The charts

show that k of 2 through 5 result in exactly the same clustering results as indicated

by the existence of matching clusters along the diagonal axis of the heat map. And

even though for higher values of k the the cluster assignments do not exactly match

between the two methods, as indicated by some cluster assignments differing such
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Figure 4.19. For “Vehicle Tracking” application device population 1-gram clustering
by volume, heat maps labelled with values of k from 2 through 16 represent a compar-
ison of the rank-ordered clustering assignments for the OVA1 vs. PVA1 scenarios.

that some of the assignments in one methods are spread across multiple clusters in

the other, the amount of dispersal is relatively low.

By contrast when considering n-gram count ratios in scenarios ORA1-4 vs.

PRA1-4, Figure 4.20 shows a high degree of variation on the assignment of data

samples to clusters with and without the application of PCA prior to k-means.

In order to understand this difference between the results using volume- and

ratio-based values, we must look at the numerical properties of the two data sets.
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Figure 4.20. For “Vehicle Tracking” application device population 1-gram clustering
by ratio, heat maps labelled with values of k from 2 through 16 represent a comparison
of the rank-ordered clustering assignments for the ORA1 vs. PRA1 scenarios.

In this particular example, the raw message counts aggregated by device vary in

the extreme as indicated in Figure 4.16. We also know that a very few message types

dominate the overall message volume based on the hyperbolic distribution they follow

as seen in Figure 4.10. Since we know that both k-means and PCA inherently are

based on a least-squares, Euclidean distance internally, that they are both sensitive

to “outliers,” and both work best when the data distribution is Gaussian, it stands

to reason that the few large-volume n-grams might dominate. We see the evidence of
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Figure 4.21. The heat map shows shows the Eigenvectors for the “Vehicle Tracking”
application device population by volumeused in the PRA1 scenario.

this in Figure 4.21 which is heat map showing the Eigenvectors that are the result of

apply PCA to the 1-gram volume counts for the “Vehicle Tracking” application. In

the left-most column representing the first and most significant principle axis of the

data set, we can see that the highest-ranking 1-grams dominate and with a relatively

uniform contribution. As a result, projecting the original values into the resulting

Eigenspace result in a data set presented to k-means that is not substantially different

in the magnitude of the values used within the least-squares distance calculation that

would generate a different clustering outcome.
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As for the ratios used in this example, the ORA1 data simply divides the

count for each 1-gram by the sum of all 1-gram counts to produce the probability

distribution for each device sample per Equation 2.2. By doing this, each device

sample is normalized to reflect the relative relationships among the 1-gram occurrence

such that a device reporting at low-frequency may have a similar range of values as

one reporting at high-frequency. In this way, the extreme spread seen in the devices

measured in total message counts reported from Figure 4.16 is effectively eliminated.

4.2.8 Combining Clustering Results for Population and Time

Having established clustering options for the device population and time window

dimensions of our data, we are now able to use these cross-sections of the data along

two independent dimensions to construct a “grid” that can partition it into smaller

data sets that may reveal statistical structure hidden within the data set as a whole.

Tables 4.9 & 4.10 summarized the result of processing various scenarios labeled with

the designators outlined in Section 4.2.6 for source and time-window partitioning in

our process by S and W for the “Vehicle Tracking” sample week.

Table 4.9. “Best k” Values for “Vehicle Tracking” Sources

Label k(n=1) k(n=2) k(n=3) k(n=4)

OVAn 4 6 8 9
ORAn 5 6 7 9
OKAn 3 5 5 6
PVAn 4 5 6 7
PRAn 4 5 9 11
OVMn - 6 7 8
ORMn - 6 8 9
PVMn - 5 6 7
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Table 4.10. “Best k” Values for “Vehicle Tracking” Time Windows

Label k(n=1) k(n=2) k(n=3) k(n=4)

OVAn 6 6 6 6
ORAn 6 8 8 9
PVAn 6 6 6 6
PRAn 4 4 5 7
OVMn - 6 7 8
ORMn - 6 7 8
PVMn - 4 5 5

With we have so many scenarios for source and time clustering and so many

possible k values for each, we start by looking at a specific example to gain an un-

derstanding of the what this process reveals.

The first scenario we consider is where we partition the sources S using scenario

ORM2 and time windows W using scenario OVM2. Most significantly, S is parti-

tioned by the ratios of message frequency and W by absolute message counts. From

Tables 4.9 & 4.10 we select kΓ = 6 and kΦ = 6. Figure 4.22 shows each intersect χ in

a grid with each γ in a column on the right and each φ on the bottom. Each cell of

the grid shows the mean, standard deviation, and min/max envelope of the samples

in the partitions.

What we can see in Figure 4.22 that γ1, γ2, γ3, and γ6
1 are populations of

devices that each show very specific message usage profiles at relatively low frequency.

Conversely populations represented by γ4 and γ5 show far higher levels of message

counts. The actual number of devices assigned to each γ is shown in Table 4.11.

1Due to limitations in the character set available for the charting package, the labels for γ and φ

partitions will use S and W , respectively, instead.
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Figure 4.22. Each chart shows the absolute counts of the “Vehicle Tracking” SS7
SORM2 × WOVM2 partitioning where kΓ = 6 and kΦ = 6 with the mean in black,
standard deviation in green, and min/max envelope in blue for each intersect Sy/Wx

with source summaries Sy in the right-hand column, window summaries Wx in the
bottom row, and a summary for the entire data set in the bottom-right corner.

By using OVM2 as the scenario for partitioning W , we see that each column in

Figure 4.22 corresponds to a φ partition that shows clear variation in absolute counts

and likewise the corresponding χ partitions for γ4 and γ5 show correlation in rise

and fall of total counts, while the γ1, γ2, γ3, and γ6 message counts remain relatively

constant for all φ partitions.

What we observe about these constant-reporting device populations is that

they each communicate using a very small number of messages repetitively. For

example, source partitions γ1 and γ2 each send almost equal occurrence counts of

2-grams ISH56-RSH56 and IVH07-RVH07 corresponding to separate requests for “Send

Authentication Info” and “Insert Subscriber Data.” Given our use of “motifs,” the

absence of the occurrence of RSH56-RVH07 2-gram tells us that these message sequences

occur at times separated by more than ∆m (that is, 60 seconds) and do not occur in
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Figure 4.23. Each chart shows the ratios of the “Vehicle Tracking” SS7 SORM2 ×
WORM2 partitioning where kΓ = 6 and kΦ = 6 with the mean in black, standard
deviation in green, and min/max envelope in blue for each intersect Sy/Wx with
source summaries Sy in the right-hand column, window summaries Wx in the bottom
row, and a summary for the entire data set in the bottom-right corner.

a single burst. This kind of information is useful to anyone who needs to understand

the meaning of these occurrence patterns.

Another way to create X intersects is using the the ORM2 as the scenario for

partitioning W . This pairs a partitioning of source and time window by the same

scenario using message occurrence ratios rather than absolute counts. Figure 4.23

shows this breakdown and uses a similar statistical summary of each partition of

mean, standard deviation, and min/max envelope, but with the Y-axis showing the

probabilities of each symbol instead of the absolute counts. In this case, the φ parti-

tions of W , and therefore the χ intersects of both S and W , are not related to rise

and fall of data over time, but to the “mix” of messages occurring at different times.

In Figure 4.23 we still see similar statistics for χ partitions corresponding to

each γ, but do observe small variations across different φ groupings as different 2-
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Table 4.11. “Vehicle Tracking” SS7 Partitioning Statistics Using kΓ = 6

Partition Devices (D) Messages (M) Rate (M / D)

γ1 240 54,781 228
γ2 4 40,678 10,169
γ3 30 195,154 6,505
γ4 45 1,411,645 31,369
γ5 7,963 1,283,979 161
γ6 690 96,750 140

gram occurrences change in their relative contribution to the ratios. Looking closely

at the specific message types that vary from φ to φ will inform the analyst as to what

kind of behavioral differences exist from time to time.

4.2.9 Identification of Anomalies

At one level, the outcome of the intersect partitioning may show an analyst

interested in the system that ths behavior patterns of certain device populations is,

in and of itself, anomalous. For example, Table 4.11 highlights that the γ2, γ3, and

γ4 partitions have dramatically higher reporting rates that may represent aberrant

behavior. In fact, this is an example of how valuable information is derived at all

steps of our process.

But our method makes no judgements as to the “correctness” of the behavior

identified. It simply discovers the existence of differences. So from the standpoint of

process, an anomaly is simply the occurrence of a sample in our data set that falls

outside some norm.

The most straightforward norm to consider is the distance of a sample from the

centroids of either the marginal – γ or φ – and intersect – χ – partitions to which it
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Figure 4.24. Each histogram shows the number of “Vehicle Tracking” SS7 samples
with standard deviations of the distances from the mean from 0 through 5 for the
SORM2×WORM2 partitioning where kΓ = 6 and kΦ = 6 for each intersect Sy/Wx with
source summaries Sy in the right-hand column, window summaries Wx in the bottom
row, and a summary for the entire data set in the bottom-right corner.

is assigned. A simple way to status the distance of the samples is by assigning each

to a “bin” defined by the number of standard deviations it is away from the centroid.

Figure 4.24 shows an example of our partition grid visualization where each cell of is

a corresponding histogram of these bins.

We may further simplify the visualization of these histograms into simple pie

charts that show “good” as green for bins ≤ 2, “bad” as yellow for bins > 2 and ≤ 4,

and “worse” as red for bins > 4.

One of the types of anomalies that we can detect with this process we called a

“migration anomaly” where the behavior of a source changes to appear like another

type of source. An anomaly of this type is shown in Figure 4.26. Using the “baseline”

method for analyzing newly arriving time windows of size ∆w, we see a change in

a large number of the devices in source partition γ4 that began to communicate
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Figure 4.25. Each pie chart shows the percent of “Vehicle Tracking” SS7 samples
with standard deviations of the distances from the mean as “good” (≤ 2) “bad”
(> 2 ≤ 4), and “worse” (> 4) for the SORM2×WORM2 partitioning where kΓ = 6 and
kΦ = 6 for each intersect Sy/Wx with source summaries Sy in the right-hand column,
window summaries Wx in the bottom row, and a summary for the entire data set in
the bottom-right corner.

using the same behavior as γ1 after 1, 4, and 24 hours. In the figure, we see how,

as the duration of the migration anomaly persists, the impact shows up within a

larger number of χ partitions where χ∗,4 = (φ∗, γ4) using both the pie and histogram

visualizations.

Note that the “migration anomaly” represented here may, in fact, be a desirable

outcome since the high-reporting γ4 devices reporting at the low levels of the γ1

devices represents a drop in message traffic levels. Again, our method does not truly

consider changes detected as “good, bad, worse” but something more like “similar”

vs. ”different.”
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Figure 4.26. The figure shows the “Vehicle Tracking” SS7 SORM2×WORM2 partition-
ing pie charts for kΓ = 6 and kΦ = 6 where a “migration” of devices in group γ4 begin
behaving like γ1 after 1, 4, and 24 hours.

4.2.10 Summary of SS7 Experimental Learnings

As shown in Tables 4.9 & 4.10, we performed partitioning for 28 source sce-

narios and 24 time window scenarios. making for a total of 672 possible partitioning

combinations. Of these, we found OVM2 and ORM2 of most utility from a qualita-

tive perspective – hence the prominence of these in our examples. That said, several

other combinations seemed to have merit, and under the right circumstances could

easily have been chosen instead. The following are some observations regarding the

other scenario options.

• PCA – PCA featured heavily in our analysis, especially for the PV** scenarios.

Since the cost of clustering has a time complexity of that increases proportion-

ally to the number of dimensions, using a subset of the dimension of our data
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sets after projecting them into an eigenspace defined by the PCA process pro-

duced clusters and could “detect anomalies” within the eigenspace, but this

made mapping the results to the actual n-gram messaging domain difficult to

interpret.

As as alternative, we used the PCA coefficients matrix such as in Figure 4.13 to

identify those n-gram columns that were represented with non-zero contribution

in the first several eigenvectors to limit the n-grams considered for subsequent

processing, assigning all other n-grams to “other” as outlined in Section 3.2.

This approach has the advantage of reducing the time complexity of the process

and shows promise for practical applications.

• KK-means and KL-Divergence – As stated, this method is only possible

when dealing the the *R** scenarios as it requires the samples to be probability

distributions that have meaning as input to the KL-Divergence function.

In our experiments, we were not able to get this method to converge with any of

our data sets for the W dimension. The reason for this could be that the overall

distribution of n-grams over time is relatively uniform that it was difficult for the

algorithm to converge on a solution since cluster membership would continually

shift between iterations.

We were able to get reasonable convergence after many evaluations for S, but

only for lower values of k. Since all other scenarios ultimately rely on Euclidean

distance and statistics like standard deviation, using KL-Divergence made com-

paring results difficult. In general, this approach has promise and is worth

further study.

• All n-Grams – Given the clear “bursty” arrival of the messages in this domain,

eliminating those n-grams with internal time delays > ∆m seemed to make

sense. In performing the partitioning calculations both with all vs. “motif”
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n-grams, we did see similar results, so perhaps the most significant advantage

to “motif” over all n-grams comes through the information provided to ana-

lysts trying to interpret results. Also, since all n-grams generally require the

collection of 15-20% more symbols, their elimination has a modest improvement

on process performance. As a result, we see no reason to pursue both all vs.

“motif” n-gram scenarios further for this domain.

4.3 Study: Cellular Wireless Connection Management

Now that we have explored the SS7 protocol layer, we turn our attention to an-

other layer of the cellular wireless communications stack handling connection manage-

ment with similar linguistic properties called “General Packet Radio Service” (GPRS)

[71]. This layer is used by M2M applications that rely on IP-based data communi-

cations and the remote devices interact with different network elements than those

used in signalling, and use a different “language” for communicating with them.

Since we went into much detail using SS7 to explain the nuances of the our

process at each stage, we will be able to move much more quickly with GPRS.

The first thing we notice when working with GPRS is that, as with SS7, there

are hundreds of message types in the GPRS “alphabet” as defined by the “GPRS

Tunnelling Protocol” (GTP). However, in practice we experience far fewer unique

occurrences for the same population of M2M devices than we saw using SS7.

Table 4.12. Comparison of SS7 and GPRS Metrics

Attribute SS7 (S) GPRS (G) Percent (G / S)
Unique Devices 1,651,967 754,875 46%
Total Messages 804,302,527 45,785,702 6%
Messages Per Device 487 60 12%
Message Types 72 9 14%
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Table 4.12 compares some of the metrics that differ between SS7 and GPRS

for a given sample week for our experimental data sources. The devices are the same

with both SS7 and GPRS, but the GPRS count is smaller since only a subset of the

devices actually use the GPRS services for IP communications. Not only does GPRS

experience far fewer message types operationally as compared with SS7, messages are

sent less frequently.

Table 4.13. GPRS Message Types and Occurrences

Label Occurrences Description
0x10:128 19,939,221 Create PDP Context - OK
0x14:128 19,428,593 Delete PDP Context - OK
0x12:128 4,022,993 Update PDP Context - OK
0x10:222 2,221,451 Create PDP Context - Access Denied
0x14:192 60,579 Delete PDP Context - Not Found
0x10:211 29,932 Create PDP Context - No Address Available
0x12:209 10,643 Update PDP Context - Auth Failure
0x10:209 297 Create PDP Context - Auth Failure
0x10:199 1 Create PDP Context - No Resources Available

Table 4.13 shows the nine (9) message types that typically occur, with only four

(4) logical operations paired with response code of either success or one of several

possible errors. Since GPRS provides connection (PDP context) management for

IP packets sent and received by mobile devices, the primary messages we see are

create, update, and delete operations that establish the PDP context that must exist

to allow an IP packet to be transmitted. The occurrence counts in Table 4.13 show

the dramatic difference in frequency of these messages consistent with “Zipf’s Law”

as we’ve seen elsewhere. Along with these messages, 70% of the total GPRS message

traffic are the actual application-level IP packets. So this analysis looks only at the

“control” messages that enable those application packets.
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Figure 4.27. The chart shows the total GPRS message count on Y for every hour of
the target week on X for all devices in the data set.

As with SS7, the arrival of messages shows strong diurnal and other periodic

trends which we can see in Figure 4.27. In addition, we see a notable spike in traffic

in the third trough from the left.

Moving on the n-gram analysis, Table 4.14 shows the slow growth of actual

unique occurrences as compared to the exponential maximum that we have seen

before.

Table 4.14. Possible vs. Actual n-Gram Occurrences for GPRS

N ||A||N = Possible (P) Actual (A) Percent (A/P)

1 91 = 9 9 100.0%
2 92 = 81 51 63.0%
3 93 = 729 197 27.0%
4 94 = 6,561 564 8.6%

Due to the small census of n-grams at any level, we set aside an analysis of

PCA since its ability to reduce dimensionality is not required. Since the control

messages for connection management are intended to be infrequent, we do not use
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the notion of “motifs” either. Thus we focus only on the OVAn and ORAn scenarios

for partitioning.

In applying k-means to S, we quickly find that it consistently fails to converge

when kΓ = 5. Furthermore, when applying our cost function from Equation 3.7

kΓ = 4 consistently emerges as the choice. For W we evaluate kΦ from 2 through 16,

we settle on kΦ = 6.
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Figure 4.28. The top-left heat map shows matching cluster assignments for GPRS
1-gram γ’s on X and 4-gram γ’s on Y. The bottom bar chart shows the number of
assignments for each of the 1-gram γ’s below the X axis. The right-hand bar chart
shows the number of assignments for each of the 4-gram γ’s aligned with the Y axis.
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When considering what level of n-gram to use for our analysis, we compared

the results of the partitioning for each and found that they were remarkably consis-

tent from levels 1 through 4. Figure 4.28 shows a visual comparison of the cluster

assignments using a heat map that shows the similarity of each cluster assignment for

1-grams and 4-grams when kΓ = 4. The high similarity is reflected in the fact that

most of the assignments follow the diagonal. As a result, we choose to simply use

1-grams for our further analysis, since additional n-grams provide little no additional

criteria for partitioning.

Table 4.15. GPRS Partitioning Statistics Using kΓ = 4

Partition Devices (D) Messages (M) Rate (M / D)

γ1 1,537 2,448,211 1,592
γ2 4,427 3,713,898 838
γ3 1,045 5,348,473 5,118
γ4 747,866 34,275,120 45

Table 4.15 shows that most of the devices cluster into the γ4 partition and have

a relatively low per-device reporting rate. The other smaller clusters in γ1 through

γ3 have much higher reporting rates. These clusters could, in and of themselves,

represent anomalous populations from an external perspective, but in this case, they

are simply identified as what exists.

Using a classification matrix for SORA1 × WOV A1 showing absolute counts in

Figure 4.29, we can see clear similarity to the absolute counts of (φ∗, γ4) due to its

overwhelming size in terms of message counts seen in Table 4.15. The variations

found in the other χ are overwhelmed and have very little impact on the totals.
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Figure 4.29. Each chart shows the absolute counts of the GPRS SORA1 ×WOV A1

partitioning where kΓ = 4 and kΦ = 6 with the mean in black, standard deviation
in green, and min/max envelope in blue for each intersect Sy/Wx with source sum-
maries Sy in the right-hand column, window summaries Wx in the bottom row, and
a summary for the entire data set in the bottom-right corner.

Figure 4.30 shows the SORA1×WORA1 partitioning statistics for ratios, followed

by the histogram and pie status grids for the same in Figures 4.31 and 4.32, respec-

tively.

Were we to see a material change in the flow of any of the source partitions as

we did with the “migration anomaly” in the SS7 study, we could likewise see similar

changes in the histograms and pies. But in this study, we show how we can detect

other classes of anomalies. In particular, we show in Figure 4.33 a strip chart that

shows an indication of the message volume for each γ source partition with W on the

X axis and the values of the strip chart also showing green to indicate OK message

responses and red for error responses. What we see is that errors are frequent for the
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Figure 4.30. Each chart shows the ratios of the GPRS SORA1 ×WORA1 partitioning
where kΓ = 4 and kΦ = 6 with the mean in black, standard deviation in green, and
min/max envelope in blue for each intersect Sy/Wx with source summaries Sy in the
right-hand column, window summaries Wx in the bottom row, and a summary for
the entire data set in the bottom-right corner.

γ3 partition, but there is also a clear error event occurring across the other partitions

near minute 6000 on the time line.
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Figure 4.31. Each histogram shows the number of GPRS samples with standard de-
viations of the distances from the mean from 0 through 5 for the SORA1 × WORA1

partitioning where kΓ = 4 and kΦ = 6 for each intersect Sy/Wx with source sum-
maries Sy in the right-hand column, window summaries Wx in the bottom row, and
a summary for the entire data set in the bottom-right corner.
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Figure 4.32. Each pie chart shows the percent of GPRS samples with standard devi-
ations of the distances from the mean as “good” (≤ 2) “bad” (> 2 ≤ 4), and “worse”
(> 4) for the SORA1×WORA1 partitioning where kΓ = 4 and kΦ = 6 for each intersect
Sy/Wx with source summaries Sy in the right-hand column, window summaries Wx

in the bottom row, and a summary for the entire data set in the bottom-right corner.
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Figure 4.33. The strip chart shows GPRS samples on the time line broken out for
each γ with “good = green” for OK responses and “bad = red” for error responses to
the various PDP context operations for the SORA1×WORA1 partitioning where kΓ = 4
and kΦ = 6; the blue oval highlights an event occurring across all source partitions.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary of Findings

To review, we have identified a class of multidimensional time-series that exhibit

“bursty,” asynchronous data arrival from perhaps very large numbers of sources over

a common channel in which internal structure is suspected to exist, but for which

clear means for identifying that structure do not.

We have laid out the mathematical notation and selected several mechanisms as

building blocks for a unique process to decompose such time-series into groupings de-

fined by similar information source, on the one hand, and aggregate time windows, on

the other, and combine these groupings to partition our time-series into cross-sections

whose statistical properties reveal previously-unknown attributes that illuminate dif-

ferences in behavior of the information sources that may occur at different times.

Using these source/time partitions, we have identified anomalous sources and

time periods that were previously undetectable. We have demonstrated this with

several contrived and real-world data sources, each with different scale and dimension,

highlighting the adaptability of the approach. In addition, we have several ways to

visualize anomalies, as well as basic behavioral properties, that are of value to anyone

trying to understand the systems being studied.

Our unique contributions here are, first and foremost, the characterization and

analysis process itself which represents a new method of discovering hidden internal

aspects of a systems behavior. Included in this process are several additional unique

contributions. We have applied the notion of n-grams and a linguistic analysis to
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time-series not previously encountered in the literature, and in addition, have intro-

duced a novel “motif” concept to identify boundaries of symbol sequences that would

otherwise not exist. Finally, we have combined “marginal” clustering along several

dimensions to form “intersects” of time-series that are key to revealing the hidden

behavior of the information sources of the systems being studied.

5.2 Potential Target Systems

While we have shown how our process applies to several real-world systems,

there are others with quite different qualities that we can envision.

Once such target system would be Twitter. This H2H system is characterized by

millions of end-users (think S) broadcasting short messages on no particular schedule.

As we saw with M2M systems, some sources may frequently send message while

others may not. Given that humans follow diurnal patterns, we would expect much

temporal variability in message rates as well (think W ). Several lines of inquiry such

as in [72, 73, 74] are underway to classify “tweets” using a discrete dictionary of

sentiments, emotions, and the like (think A) that suggest that Twitter might well be

a good fit for our methods.

Another target system would be location-based applications. While one of the

applications in our experiments is a vehicle tracking application, we were investigating

the behavior of this system at a level where geographic locations were not being

considered. But we know that such applications contain histories of latitude/longitude

coordinates for vehicles (think S) reporting at different times (think W ), some while

in motion and others at rest. We can imagine that some locations, such frequent

overnight stops or well known “geofences,” could be converted to a discrete set of

symbols (think A). As such, we have all the elements necessary to apply our method.

114



5.3 Additional Future Work

In the future, there are many more avenues that we may pursue with this

approach. Our process is highly parametrized, and offers many different options

for conditioning the data for a variety of outcomes. We explored several of the

parameter combinations, but much more could be done to investigate them. It is also

possible to introduce alternative mechanisms to the ones in our studies. For example,

alternatives to k-means as a clustering tool could be considered. It is also possible

that more “marginal” dimensions other than source and aggregate time window could

be brought to bear for a further partitioning of time-series into cross-sections that

might reveal additional structure within the data.
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