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ABSTRACT 

 

COMPLEMENTING CURRENT ACTIVE QUEUE MANAGEMENT SCHEMES 

WITH RECHOKE AND RECEIVER-WINDOW MODIFICATION (RWM)  

 

  

 

Publication No. ______ 

 

Visvasuresh Govindaswamy, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Gergely Záruba  

Explicit Congestion Notification (ECN) and Active Queue Management (AQM) 

schemes have been proposed for present-day TCP/IP networks to better manage 

network congestion. ECN enabled AQMs were shown to have a promising advantage 

over existing drop-tail queues. However, when implemented, they were susceptible to 

the following problems: 1) the timeout mechanism or the duration of the reception of 

three duplicate acknowledgements (ACKs), due to early-dropped packets by these 

AQMs, delays the response time of TCP (in reducing the offered rate) 2) using ECN 

with these AQMs has its downsides: i) its messages may get delayed or dropped due to 

 v



congestion in downstream routers; and ii) TCP implementations at both the source and 

the destination have to be ECN-compliant (which presents a significant problem in 

today’s cores and end systems); and 3) these AQM schemes, with or without ECN, fail 

to protect TCP-friendly flows adequately in the presence of non TCP-friendly (e.g., 

UDP) or malicious flows. 

This dissertation presents solutions to these problems by proposing two novel 

AQM modification schemes called Receiver-Window Modification (RWM) and 

RECHOKe (REpeatedly CHOose and Keep for responsive flows, REpeatedly CHOose 

and Kill for unresponsive flows). By combining these two schemes with RED, we 

produce a new AQM scheme called RCUBE (Receiver-Window Modified Random 

Early Detection queues with RECHOKe). By using RECHOKe as a component, 

RCUBE easily identifies, controls and punishes malicious flows, by requiring only a 

small amount of information, approximately proportional to the order of magnitude of 

malicious flows. By using RWM, we reduce the average TCP queue sizes in the queues 

and in doing so, not only make it easier to identify malicious flows but also reduce the 

queuing delay resulting in significant improvements in one-way end-to-end packet 

delays, delay jitter, throughput and number of dropped packets for TCP-friendly flows. 

We compare RED, CHOKe, xCHOKe, RECHOKe and RCUBE schemes and show that 

RCUBE outperforms these schemes in identifying, controlling and punishing malicious 

flows and in protecting TCP-friendly flows. We also provide a theoretical analysis for 

RCUBE, RECHOKe and RWM schemes to validate our claims. 
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CHAPTER 1 

INTRODUCTION 

 

The Transmission Control Protocol (TCP) is the major connection oriented 

transport layer protocol used in today’s Internet [1]. It uses the services provided by the 

Internet Protocol (IP, at the network layer, which is responsible for end-to-end transfer 

of datagrams). Since IP does not inherently provide reliable service to applications, TCP 

is tailored to provide reliability and transmission rate control to applications using the 

Internet. The two transmission control features embedded in TCP are flow control and 

congestion control:  

• Flow control is responsible to provide means for transmitting nodes to reduce (and 

increase) their transmission rate in order to prevent buffer overload (and underload) 

at the receiving node. In TCP, flow control is enabled by the receiving node directly 

informing the transmitter about its available buffer size using designated fields in 

the TCP header of a packet.  

• Congestion control on the other hand is a process to deal with buffer overload at 

routers along the transmission path. If the buffer of a router on the relay path is 

saturated then the router may drop packets determined by its buffer control policy. If 

such congestion control was not available, TCP would retransmit the dropped 

packets thus increasing its transmission rate, in a positively fed-back manner. 
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This dissertation addresses congestion related to present-day networks, i.e. 

TCP/IP networks with best-effort traffic. This means that networks today provide a 

service that does not make any promise of whether a packet is actually delivered to the 

destination, or whether the packets are delivered in order or not however it will do its 

best to indeed deliver datagrams. The main goal in our research is to significantly 

improve the performance of the present-day networks while minimizing the change 

required in bringing about these improvements so as to minimize the cost of such 

changes. Hence, we do not consider traffic protected by Quality of Service (QoS) 

mechanisms such as Differentiated [2] and Integrated [3] Services although some of our 

proposed improvements can complement these mechanisms. To achieve our overall 

goal, additional mechanisms are only needed at routers to protect the network from 

congestion from both TCP-friendly and “misbehaving” (e.g., UDP) flows. The 

difference between these two types of flows is that the latter are flows that do not use 

conformant TCP congestion control. “Misbehaving” flows are also known in network 

literature as non-responsive or malicious flows while TCP-friendly flows are known as 

responsive flows or non-malicious flows.  

Several solutions, such as new Active Queue Management (AQM) [4] schemes, 

have been proposed to replace the existing drop-tail queues which dominate routers in 

present-day IP networks. Explicit Congestion Notification (ECN) [5][6] enabled AQMs 

were shown to have a promising advantage over existing drop-tail queues. However, 

when implemented, they were susceptible to the following problems:  
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1) the timeout mechanism or the duration of the reception of three duplicate 

acknowledgements (ACKs), due to early-dropped packets by these AQMs, 

delays the response time of TCP (in reducing the offered rate)  

2) using ECN with these AQMs has its downsides: i) its messages may get delayed 

or dropped due to congestion in downstream routers; and ii) TCP 

implementations at both the source and the destination have to be ECN-

compliant (which presents a significant problem in today’s cores and end 

systems) 

3) these AQM schemes, with or without ECN, fail to protect TCP-friendly flows 

adequately in the presence of non TCP-friendly (e.g., UDP) or malicious flows. 

In our research, we make use of flow control as well as congestion control to 

achieve transmission rate control using a scheme called Receiver-Window Modification 

(RWM). We also present a mathematical model to illustrate the benefits of using RWM 

on queues such as RED [7]. To protect TCP-friendly flows from “misbehaving” or 

malicious flows, we also propose a scheme called RECHOKe (REpeatedly CHOose 

and Keep for responsive flows, REpeatedly CHOose and Kill for unresponsive flows) 

to detect, control and punish malicious flows, thereby protecting the TCP-friendly or 

responsive flows. Finally, we present RCUBE (Receiver Window Modified Random 

Early Detection queues with RECHOKe) scheme that combines the benefits of RWM 

and RECHOKe.  Although both the RWM and the RECHOKe schemes are used in 

RCUBE, they can also be used with most other AQM schemes. Hence, this dissertation 

presents solutions to the above-mentioned problems. To solve problems identified with 
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the first and the second points above we introduce RWM and to address the third issue 

RECHOKe is presented.  

The remainder of this chapter is organized as follows. Sections 1.1 to 1.4 

present a bird’s eye view of the remaining chapters, outlining the motivations and 

contributions, reviewing current solutions briefly and providing brief overviews for 

each scheme. Thus these sections serve as extended abstracts for the rest of this 

dissertation with an aim to ease the reader into the discussed topics. Sections 1.1 and 1.2 

discuss the Receiver-Window Modification (RWM) Scheme and its mathematical 

model whereas the RECHOKe and RCUBE schemes are presented briefly in Sections 

1.3 and 1.4 respectively. Finally this chapter ends with information describing the 

organization of this dissertation. 

1.1 Receiver-Window Modification (RWM) Scheme 

In common TCP implementations congestion control employs indirect feedback 

[8], i.e., the transmitting node will deduce that a segment was dropped (or marked in the 

case of ECN), due to congestion if no (within a time period) or negative (in the form of 

duplicate positive acknowledgements) acknowledgements have been received. The 

transmission rate of the TCP sender is then drastically reduced to help the routers to 

recover. More precisely, TCP congestion control consists of two phases called 

Congestion Avoidance (CA) and Slow Start (SS) [9]. TCP senders thus need to probe 

the network as to how high of a rate it can support. TCP flows start off with the SS 

algorithm, where the number of allowable pending segments (the rate) is increased 

binary exponentially within each round trip time (RTT). When a predefined threshold is 
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reached the congestion control mechanism changes over to the CA. CA increases the 

rate with one segment per RTT. If congestion is encountered, then the rate is halved for 

each RTT a loss event has happened. If the rate drops below a dynamically adjusted 

threshold, the SS algorithm is invoked again. This unique combined behavior of the CA 

and SS algorithms may lead to what is known as the Global Synchronization Problem 

[10]. This problem occurs whenever multiple flows lose packets at the bottleneck 

router, leading to the flows “restarting” concurrently, resulting in reduced aggregate 

throughput. It has also been shown that the sudden changes in the TCP transmission 

window caused by the interaction of SS and CA create a chaotic process introducing 

self-similarity in the traffic [11]. Present day, queue management solutions, such as 

RED [7], use more sophisticated solutions in the queues of routers to determine which 

packets to drop thus trying to compensate for the Global Synchronization Problem. We 

provide a brief description of such techniques in Chapter 2.  

In the presence of bursty Internet traffic, routers along the path may buffer 

packets in their queues to absorb/reduce the burstiness. Queuing theory implies that the 

bigger the queue’s capacity is, the more a queue can deal with the burstiness without 

dropping a packet. Furthermore, recent results have also shown that queuing and 

aggregation of packets can reduce the order of self-similarity of Internet traffic [12]. 

Unfortunately, TCP’s congestion control can introduce a high variance (resulting in a 

high delay jitter) in the current buffer sizes. On the other hand, if the maximum buffer 

size of routers is increased, the TCP senders will be notified about congestion much 
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later. This will lead to an increase in the flow’s end-to-end delay. This delay is the sum 

of two components:  

i) the transmission, propagation and processing delays (which can be considered 

fixed delays from our perspective);  

ii) the queuing delays at the routers (which is variable and depends on the 

distribution and magnitude of rates).   

Hence, the greater the current queue size, the greater the queuing delay will be 

in a case of saturation, increasing the observed end-to-end packet delay. On the other 

hand, if the queue size is too small, packets will be dropped regularly due to buffer 

overflow. Hence, there is a need for solutions to determine an optimal (or sub-optimal) 

queue sizes. The research area dealing with the above phenomenon is called TCP Queue 

Management (QM). The aim of QM is to minimize the congestion in the network by 

properly managing routers’ queues. QM needs to differentiate between transient and 

long-term congestion. Transient congestion takes place when the congestion period is 

shorter than the reaction time needed for the TCP congestion control mechanisms to 

kick in. On the other hand, long-term congestion is due to overall heavy traffic load. 

QM approaches can be divided into two categories:  

i) passive queue management algorithms, where the queue of the routers needs 

to fill up before corrective action is taken; and  

ii) active queue management (AQM) [13], where preventive action is taken 

before the queue is fully saturated.  

AQM algorithms can again be subdivided into: 
 6



 

• Load based AQM approaches, including Random Exponential Marking (REM) [14], 

Adaptive Virtual Queue (AVQ) [15] and PI controller [16] algorithms. Load based 

approaches are out of the focus of this paper. They are merely mentioned for the 

completeness of discussion. 

• Queue-based AQM, including Random Early Detection (RED) [7], Stabilized RED 

(SRED) [17], Flow RED (FRED) [18], Adaptive RED (ARED) [19], and BLUE 

[20]. 

1.1.1  Motivation 

Changing implementation of transport and network layers in today’s TCP/IP 

networks to implement some of these schemes is difficult and expensive. Moreover, 

network administrators and users are more likely to be resisting such change. The 

present idea is to replace drop-tail queues with AQMs such as RED at congested 

regions of the network, i.e., at edge routers. The goals of these AQMs are ideally: no 

packet loss, 100% link utilization, low queuing delay and low jitter rate. Hence, our 

motivation behind this research is to improve these AQMs to get as close as possible to 

these ideal goals. 

Using AQM schemes that employ average queue length measures to manage 

congestion come with their own problems, e.g., such problems for RED are well-

documented [17][19][21][22]. The level of congestion at routers with their immediate 

links (neighbours), compounded with RED’s complex parameter tuning [22] induce 

large variations in RED queue sizes. The queue size is near the low threshold parameter 
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- Thmin, whenever the link is lightly congested or when the maximum blocking 

probability - Pmax is high. However, the queue size increases to around the high 

threshold parameter - Thmax with an increase in the congestion levels or if Pmax is set to a 

low value. Both these situations result in a degraded throughput, i.e., RED may 

underperform even the Drop-Tail mechanism [10]. RED may also introduce jitter into 

non-bursty streams. All of these disadvantages have generated more research using 

RED as a starting point for further improvements [14][19][20].  

 1.1.2 Major Research Contribution 

This paper deals with queue-based AQM, presenting a novel approach called 

Receiver-Window Modification (RWM) for congestion avoidance in TCP. Using our 

RWM scheme, the problems mentioned in the previous section are minimized in 

schemes that use the average queue length to manage congestion. In AQMs, such as 

RED, ARED and BLUE, the timeout mechanism or the duration of the reception of 

three duplicate ACKs, due to early-dropped packets, delays the response time of the 

TCP congestion scheme in reducing the network congestion. ECN may be used to mark 

packets instead of dropping them, however it also has its downsides:  

i) ECN marked messages may get delayed or worse, lost; and  

ii) TCP implementations at both the source and the destination (as well as all 

routers) have to be ECN-compliant (which presents a significant problem in today’s 

implementations).  

To minimize these problems, RWM, which can be used together with RED, 

ARED, BLUE or other AQM queues, is used for congestion avoidance in packet 
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switched networks, especially at the ingress and gateway routers. RWM works with 

RED, ARED and BLUE algorithms together relaxing their need for a modified TCP 

layer at servers and clients since it does not require modification to TCP 

implementations at servers or clients, i.e., no “RWM-compliancy” is needed. Our 

approach is specifically designed for ingress and gateway routers which are common 

locations of heavy congestion. The main idea of our approach is to restrict the TCP 

transmission window with the flow control window instead of the congestion control 

window, thus controlling the transmission window with a finer granularity. We will 

show that RWM modified queues improve on the average queue size, the one-way 

packet delay, number of dropped packets and throughput as compared to RED, RED-

ECN, ARED, ARED-ECN, BLUE and BLUE-ECN queues, especially in paths that 

have non-ECN compliant routers (which is a true reflection of present-day networks). 

Moreover, we also show that AQMs using ECN can be greatly influenced by the 

congestion state in downstream routers.  

1.2 Modeling of RWM  

There are two basic ways to perform congestion control for flows:  

1) End-to-end: where congestion is inferred from end-system observed segment 

loss and/or delay. There is no explicit feedback from the network routers; this is the 

current approach in the Internet.  

2) Network-assisted: where routers provide feedback to end systems or 

explicitly specify rate at which the sender should transmit. Extensions to TCP/IP have 
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been proposed for network-assisted congestion control, e.g., using a single bit in the 

headers indicating congestion (TCP/IP’s ECN). 

Modeling and analysis of TCP connections with queues has been an active 

research area. A Markov chain based model [23] has been presented for N TCP 

connections using either Tail-Drop or RED gateways, where the state space is the vector 

of window size of all of the N connections, the queue size is a function of the sum of the 

size of congestion windows and state transition probabilities are dependent on packet 

loss probability at the router buffer, the slow-start (SS) and congestion avoidance (CA) 

phases of TCP. Many of the past works assume that the packet loss probability is 

constant but it is in fact dependent on the buffer size and packet discarding discipline at 

the router and the window size of the transmission. In [24], the authors use a previously 

developed nonlinear dynamic model of TCP to analyze and design RED by relating its 

parameters such as the low-pass filter break point and loss probability profile to the 

network parameters. Finally, Tinnakornsrisuphap et al. [25][26][27][28][29][30][31] 

have modeled a RED queue with TCP connections that explicitly incorporate complete 

packet level operations in TCP, probabilistic packet marking mechanism in RED, 

heterogeneous round trip times (RTTs) of TCP flows and session-layer dynamics, i.e., 

connection arrivals and departures. Their model avoids the state space explosion of [23] 

as well, however assuming that the RED queue does not drop packets. 

1.2.1  Motivation 

AQM schemes, when implemented, have parameters that are difficult to 

configure and hence, they are usually sub-optimally set. The main goal behind the 
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introduction of these AQM schemes is to ease congestion within the networks. 

However, when configured poorly, they may make the congestion worse or the 

networks significantly underutilized. Thus, having a mathematical model that captures 

the behavior of TCP and its interaction with the AQM schemes can help to elevate the 

understanding of configuring such schemes to suit networks. We will model RWM in 

the context of RED, however the modeling work presented could be easily extended to 

other types of AQMs. 

1.2.2 Major Research Contribution 

We are going to present a mathematical model for the Receiver-Window 

Modification (RWM) scheme that can be used to complement the RED scheme at the 

ingress and gateway routers. Our model extends the modeling work done in 

[25][26][27][28][29][30][31] to the RWM scheme, henceforth known as RED-RWM, 

relaxing the assumption that the buffer capacities are infinite. Our model has the 

following features: 

1. Incorporates a more accurate model for the Additive Increase/Multiplicative 

Decrease (AIMD) window mechanism of TCP. The AIMD algorithm controls 

the window size in response to the modified acknowledgement packet from the 

bottleneck RED-RWM gateway. 

2. Provides more realistic session-level dynamics, i.e., arrivals and terminations of 

flows, and the variability of round-trip delays with modification of the receiver 

window field by the RWM scheme. 

3. Provides a realistic interaction between TCP and RED-RWM gateway. 
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4. Presents a RED-RWM model that deals with TCP transmission rate in terms of 

packet-level operations. 

5. Unlike the RED model in [25][26][27][28][29][30][31], our model incorporates 

packet drops. 

Using this model, we will provide:  

1. A weak convergence theorem for the number of connections; thus leading the 

way to more relaxed configuration of RED-RWM gateway parameters. We will 

show that the average queue size of RWM weakly converges to the number of 

connections N at steady state provided that N is large and, N > Thmin, and N < 

Thmax.  

2. A Monte Carlo simulation based on our model to compare outcomes to a 

discrete event simulation model of NS2 [32]. We will show that the two models 

validate each other. 

3. An asymptotic and steady-state analysis, showing that the average TCP 

dynamics for a large number of flows competing for a RED-RWM queue is 

closely related to that of a single flow using the queue utilizing the same TCP 

congestion control mechanism. 

4. The sessions become asymptotically independent as the number of flows 

becomes large, suggesting that RED-RWM alleviates the synchronization 

problem among flows. 

5. We thus have both theoretical and experimental proofs that RWM aids RED in 

reducing the average queue length, thereby lowering queuing delay.
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1.3 RECHOKe 

To control TCP-friendly flows from non-adaptive sources such as UDP and 

non-TCP-friendly sources, we are proposing a new preferential dropping scheme called 

RECHOKe (REpeatedly CHOose and Keep for responsive flows, REpeatedly CHOose 

and Kill for unresponsive flows). It aims to improve on proposed schemes such as 

CHOKe [33] and its variants such as Back CHOKe [33], Front CHOKe [33], Multi-

drop CHOKe (M-CHOKe) [33], Adaptive CHOKe (A-CHOKe) [33], CHOKe+ [34] 

and xCHOKe  [35][36] for router buffer management. 

CHOKe is a buffer management scheme that enables routers in an IP network to 

control congestion in the case when TCP segments are not the only segments queued. 

CHOKe compares each newly arriving packet with a randomly selected packet from the 

queue. If they are from the same flow (referred to as a CHOKe hit), then both packets 

are dropped; otherwise the arriving packet is allowed to enter the queue (referred to as a 

CHOKe miss). CHOKe has been shown to be erratic in recognizing malicious flows 

[35][36] while often punishing non-malicious flows. Its advantage of being stateless can 

become a disadvantage; if it had kept some state, it would be able to make better and 

more accurate decisions. To improve upon CHOKe, xCHOKe was introduced. In 

xCHOKe, hits are stored in a table which is refreshed periodically (e.g., every t ms). 

xCHOKe uses this table to check whether the arriving packet's flow label is already in 

it. If it is (referred to as a table hit), the arriving packet is dropped or marked for 

dropping with a probability p*. After this step the packet is compared with a randomly 

selected packet from the queue. If this results in a hit (referred to as a CHOKe hit), then 
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both packets are dropped or marked for dropping and the flow label is added to the 

lookup table (associated with a hit counter of one). If the flow is already in the table, the 

associated hit counter is incremented. The hit counter of flows in the lookup table is 

used to compute the probability p*.  

1.3.1 Motivation 

Since xCHOKe is dependent on CHOKe hits to drop packets and update its 

table, it often punishes non-malicious flows as well. xCHOKe performs better than 

CHOKe by keeping partial state, however it (similarly to CHOKe) does not control 

malicious flows with bandwidths smaller or slightly greater than the link capacity. 

xCHOKe was shown to behave like CHOKe when  

1) the number of malicious flows is small and/or   

2) the bandwidth of malicious flows are at or around the link capacity.  

There are other approaches to punish unresponsive flows but most of the time 

they incur too much overhead. Schemes like RED-PD [37] require proper values for 

their parameters such as the target RTT. The overhead of RED-PD and RED-NB [38] in 

today’s networks lies in that it is too complex for the router to constantly calculate 

flows’ RTTs, as RTTs are heavily dependent on the ever-changing state of the network. 

Schemes like RED-NB and Self Adjustable CHOKe [39] also need to access the 

protocol field in the IP packet header to differentiate between TCP and UDP flows and 

hence, are not safe as these fields can be disguised in denial-of-service attacks. Another 

example is the Core-Stateless Fair Queuing (CSFQ) scheme [40]. Although CSFQ is 

promising, it requires modifications to the entire network and an additional field in the 
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IP header; making CSFQ unpractical for today’s networks. CSFQ requires that packets 

be marked with an estimate on their current transmission rate at the edge router upon 

entering the network. Upon receiving these packets, core routers estimate the flow’s fair 

share and preferentially drop a segment if the fair share is less than the rate estimate 

carried by the packet. Yet other examples are schemes like Flow Random Early 

Detection (FRED) [18], which incur too much overhead as they seek to insure that all 

flows receive a fair share of the link’s capacity by logically managing the queue on a 

per-flow basis and maintaining statistics for every flow that has a packet queued in the 

router. Another scheme, which uses approximate fair queuing, is Stochastic Fair 

Queuing (SFQ) [41]. SFQ classifies packets into a smaller number of queues than Fair 

Queuing using a hash function, requiring around 1000 to 2000 queues in a typical router 

to achieve its full potential [42], thereby making it too costly. Hence, we need a scheme, 

which is not only reliant on CHOKe hits or RED hits, but is computationally 

inexpensive controlling and punishing both high- and low-bandwidth malicious flows 

while protecting TCP-friendly flows. 

1.3.2 Major Research Contribution 

Our scheme combines the ideas behind xCHOKe and RED-PD to detect, control 

and punish malicious flows which, we believe, are faster than xCHOKe and RED-PD. 

Since xCHOKe, uses the CHOKe hit history and RED-PD the RED drop/mark history, 

our scheme uses both these histories to isolate, control and punish malicious flows. We 

extend xCHOKe, by using RED drop history; this makes intuitive sense since the 

probability that a gateway chooses a particular flow to mark or drop during congestion 
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is roughly proportional to that flow's share of the bandwidth at the router. We believe 

(and show) that using both histories helps to lower the number of “false alarms” and 

detect malicious flows faster, especially when the numbers of flows using the queue are 

large. Hence, in xCHOKe, CHOKe hits are entered as CHOKe hit history in a table, 

while our scheme - RECHOKe both CHOKe hit and CHOKe-RED drop/mark histories 

are used to detect and thwart malicious flows. We denote the RED queue used by the 

CHOKe scheme by affixing “RED” after the name of the CHOKe, thus we will be 

talking about CHOKe-RED queues.  

Since these schemes are dependent on the accuracy of CHOKe hits, CHOKe 

misses and CHOKe-RED drops/marks, we analyze all three of them using NS2, verify 

their accuracy and provide suggestions. We also present two enlightening ad hoc 

variations of CHOKe called Half1- and Half2-CHOKe based on our analysis to show 

that CHOKe should adapt to the rate of flows. Both of these ad hoc schemes, like 

CHOKe, use a single selection from among the queued packets for comparison with 

each new packet that is arriving. Our results will show that RED, CHOKe and xCHOKe 

are limited in what they can achieve since malicious flows still get significantly more 

than their fair share and non-malicious flows get mistakenly penalized. We also show 

the unreliability of RED, CHOKe and xCHOKe in protecting malicious flows. 

RECHOKe helps to isolate, control and punish malicious flows and it can be used with 

any active queue management scheme such as Random Early Detection (RED) and 

Receiver-Window Modification (RWM), an approach detailed in the next section. 
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1.4 RCUBE 

In the previous section we have discussed how malicious and non-responsive 

flows can have a negative effect on TCP flows. These “non-TCP” flows do not reduce 

their rates even when their packets are dropped. Hence, over time, they dominate the 

network, choking and robbing bandwidth from TCP-friendly flows. 

1.4.1 Motivation 

Several schemes (as mentioned in the previous section) have been proposed to 

protect TCP-friendly flows from non-adaptive flows such as those from UDP, non TCP-

friendly and malicious sources. However, these schemes either incur too much overhead 

or do not sufficiently protect TCP-friendly flows from non-adaptive flows. Hence, we 

need a better method. 

1.4.2 Major Research Contribution 

RCUBE (Receiver Window Modified Random Early Detection queues with 

RECHOKe) combines the advantages of both Receiver Window Modification (RWM) 

and RECHOKe schemes. RECHOKe helps to isolate, control and punishes malicious 

flows when used with active queue management schemes such as Random Early 

Detection (RED) [7], Stabilized RED (SRED) [17], Adaptive RED (ARED) [19] and 

BLUE [20]. The RWM active queue management scheme, which can be implemented 

with other queue management schemes such as RED, BLUE, ARED, does not require 

modification to all end system TCP/IP stacks but can be solely implemented in heavily-

congested ingress and gateway routers. By using RECHOKe, the RWM scheme can be 

implemented anywhere in the network without any modification to all end system 
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TCP/IP stacks unlike Explicit Congestion Notification (ECN) [5][6]. We will show that 

by reducing the average queue sizes, RWM queues will be able to reduce the queuing 

delay resulting in significant improvements in one-way end-to-end packet delays, delay 

jitter, throughput and number of dropped packets.  

1.5 Dissertation Organization 

The rest of this dissertation is organized as follows: In Chapter 2, we present a 

thorough description of previous work as found in the research literature relating to our 

research. In Chapter 3, we introduce the Receiver Window Modification (RWM) 

scheme and present an extensive simulation based analysis, evaluating and comparing 

AQM algorithms with and without ECN, and with our proposed RWM scheme. In 

Chapter 4, we present a mathematical time-difference model for RWM and use that 

model to perform asymptotic and steady-state analysis, for an RED-RWM gateway with 

N TCP connections competing for bandwidth. Chapters 5 and 6 present the RECHOKe 

and RCUBE schemes respectively together with experimental results and analysis 

supporting our claims from the previous sections. Finally, in Chapter 7, we summarize 

the contributions of the Ph.D. dissertation and discuss future research directions. 
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CHAPTER 2 

BACKGROUND 

 

This chapter provides an overview of the various major topics involved in active 

queue management research. Sections 2.1 through 2.6 provide an insight into the 

Transmission Control Protocol’s (TCP) congestion control mechanisms, Conventional 

Queue Management Techniques, Random Early Detection (RED) AQM, Adaptive 

Random Early Detection (ARED) AQM, BLUE AQM, and Explicit Congestion 

Notification (ECN) respectively, while Section 2.7 provides an overview of Rate 

Control/Enforcement techniques. These sections provide relevant background 

information for RWM (as described in Chapter 3) and its model (as described in 

Chapter 4). Sections 2.8, 2.9 and 2.10 discuss the three main preferential dropping 

schemes proposed in network literature to identify, control and punish malicious flows, 

i.e., CHOKe, RED-Preferential Drop (RED-PD), and xCHOKe respectively. 

2.1 TCP Congestion Control 

As outlined in the previous sections current TCP implementations [8][9] contain 

a number of algorithms aimed at controlling network congestion. The algorithms used 

by TCP include among others SS (Slow Start), CA (Congestion Avoidance), fast-

retransmit, and fast recovery. For the purpose of this paper, only the SS and CA 

algorithms are investigated. The CA and SS algorithms are meant to work together.  
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The CA algorithm has a variable called ssthresh determining the actual SS 

threshold size. At the start of a transmission, the congestion window - cwnd is 

initialized to one segment while ssthresh to 64Kbytes. When congestion occurs 

(indicated by timeout or reception of duplicate ACKs), half of the current window size 

(the minimum of cwnd and the receiver’s advertised window, but at least two segments) 

is saved in ssthresh. Additionally, if the congestion is indicated by a timeout, cwnd is 

set to one segment size. When new data is acknowledged by the other end cwnd is 

increased depending on whether SS or CA is being performed. If the cwnd is less or 

equal to ssthresh, then SS is activated otherwise CA continues. SS lasts until it reaches 

the ssthresh, and then CA takes over. SS increments the cwnd by one segment, every 

time an ACK is received (thus increasing the cwnd approximately binary exponentially 

within a roundtrip time). On the other hand, CA dictates cwnd to be incremented by 

1/cwnd each time an ACK is received (thus increasing the cwnd by approximately one 

segment size in each round trip delay). Thus, packet drops are important indication of 

congestion for the TCP layer to decrease the transmission rate of flows. The reader is 

referred to [8] for a more detailed discussion.  

2.2 Conventional Queue Management Techniques 

In the Internet routers are responsible to store and forward datagrams containing 

segments of flow. Race conditions inside routers generated by their switching core’s 

speeds, or by the bandwidth of ports require datagrams to be buffered at the input and/or 

the output ports. These buffers may filled up as their temporal arrival processes are 

faster than their service process and thus can force datagrams in the buffer or potential 
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datagrams to be dropped. Initial congestion queue management research has focused on 

Tail Drop (Drop Tail)[18], Drop-from-front [43], Random Drop [7] and Early Random 

Drop [18] [43] techniques.  

In Drop Tail queues, packets arriving after the queue becomes saturated are 

dropped. Packets will continue to be dropped until buffer space becomes available in 

the queue. The advantages of this type of QM are that it is simple, fast and easy to 

implement. However Drop Tail queues have the following drawbacks:  

1) congestion control is not invoked until queues become saturated, thus 

congestion is not signaled to sources (which are still increasing their transmission rate) 

until queues are full;  

2) global synchronization, i.e., it does not allow maximal utilization of link 

capacity because of synchronous oscillation of TCP transmission rates of several flows;  

3) there is no control over which packets are dropped;  

4) there is a fairness problems since a sudden traffic burst from one source may 

fill up all the available buffer space and as a consequence:  

5) Drop Tail suffers from the lockout phenomenon whereby a single flow may 

not be able to get any packets through, if a window of segments arrives just when the 

queue becomes saturated.  

To solve the fairness problem, the queue could be subdivided into many sub-

queues with different service classes. However, this will lead to packets being discarded 

even if there was available buffer space in the queue. 



 

 22

 In Drop-from-front queues, congestion is signaled earlier to the TCP sources by 

dropping packets at the front of the queue when it becomes saturated, resulting in faster 

invocation of congestion control action by TCP. However Drop-from-front introduces a 

major fairness-flaw [43]. 

In Random Drop, the packet to be dropped is uniform randomly selected, as the 

queue becomes saturated. This can alleviate global synchronization since it is highly 

unlikely that it will drop packets from most or all of the flows at the same time, as was 

in the case of the Drop Tail. It also prevents the lockout problem since the dropping 

probability of packets belonging to the same flow is proportional to the bandwidth 

consumption of the flow.  

One of the first solutions that reacted to congestion before the queue became 

saturated is the Early Random Drop (ERD) mechanism. This scheme defines a queue 

length threshold value at some fraction of the total available queue size. Segments 

arriving after the queue size has reached this threshold will be randomly dropped (with 

a fixed probability). The disadvantage of this scheme is that it does not guarantee a fair 

treatment between flows nor does it guarantee that the contents of the queue will reflect 

the flow distribution of different sources. Moreover, ERD is bias against large bursts 

[44] as it favors flows with small amounts of segments. 

2.3 Random Early Detection 

Random Early Detection (RED) [7] prevents global synchronization by 

sacrificing a specific data flow whenever the average queue length increases indicating 

that overflow may occur soon. RED picks among flows fairly, discards a segment, 
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forcing the flow into congestion avoidance and hence, decreasing its aggregate 

transmission rate. The probability that the gateway chooses a particular flow to mark or 

drop during congestion is roughly proportional to that flow's share of the bandwidth at 

the router. In short, it is valid to say that if a flow has a large fraction of the recently 

dropped packets, then it has also most likely received a large portion of the recent 

bandwidth. RED also avoids biasness against bursty traffic. However, despite these 

advantages, there are some well-documented problems with RED [17][19][21][22].  

The level of congestion with its immediate links (neighbors), compounded with its 

complex parameter tuning [22] induces large variations in the queue size. The queue 

size is near Thmin, whenever the link is lightly congested or the Pmax is high. However, 

the queue size increases to around Thmax with an increase in the congestion levels or if 

Pmax is set to a low value. Both these situations result in a degraded throughput, i.e., 

RED may even underperform a Drop-Tail mechanism [10]. RED may also introduce 

jitter into non-bursty streams. All these disadvantages have generated more research 

using RED as a starting point for further improvements [14][19][20].  

There are two phases to the RED algorithm; the estimation of average queue 

size and the decision on which packet to drop (see pseudo-codes in figures 2.1 and 2.2 

respectively). The purpose of RED is to make the network more capable of 

accommodating bursty traffic rather than shaping bursty traffic to accommodate the 

needs of the network. It uses FIFO scheduling due to FIFO’s low overhead, lack of 

scaling problems, and reduction of weight of the tail of the delay distribution.  
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For each packet arrival 

If the queue is not empty 

avq = (1- wq) avq + wqq 

Else using a table lookup 

avq = (1- wq)(time-q_time)/s avq 

Where  

avq: average queue size 

wq: queue size 

q: current queue size 

s: typical transmission time 

time: current time 

q_time: start of the queue idle time  

 
Figure 2.1 Average queue size estimation algorithm 

 

In RED, if the average queue length is smaller than Thmin, then the arriving 

segment is accepted. If the average queue length is between Thmin and Thmax, then the 

segment is dropped with probability Pa. Pa is a linear function of the average queue 

length, possibly increasing to a pre-determined maximum value Pmax. However, if the 

calculated average queue length is larger than Thmax, then incoming segments are 

dropped with probability one. This behavior results in a larger virtual queue size for 

short-term bursts compared to long-term bursts. As the average queue length (avq) 
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varies from Thmin to Thmax, the packet-marking probability Pa varies linearly from 0 to 

Pmax with Pa = Pmax * (avq − Thmin)/( Thmax − Thmin). 

 
 

 
For each packet arrival 

Calculate avq 

If Thmin ≤ avq < Thmax  

Calculate Pa 

Mark/drop the arriving packet with Pa 

Else if Thmax < avq 

Drop the arriving packet 

Else  

Accept the arriving packet 

Where 

avq: average queue size 

Thmin: minimum queue threshold 

Thmax: maximum queue threshold 

Pa: marking/dropping probability 

 

 
Figure 2.2 Dropped packet selection algorithm 

 

There are a number of variations of RED, such as Adaptive RED (ARED) [7], 

Random Exponential Marking (REM) [14], BLUE [20] and RED with Preferential 
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Dropping (RED-PD) [37]. We are going to briefly outline ARED and BLUE in 

subsequent section as they are the most advanced AQM schemes available today.  

2.4 Adaptive Random Early Detection 

Adaptive RED (ARED) [19] is one of the many versions of RED. It is geared to 

achieve a predefined target queue length and hence lower packet loss and minimum 

variance in queuing delay. More importantly, it aims to solve the complex parameter 

setting problem in RED.  

In ARED, Pmax is not constant but is changed (adapted) at half-second intervals 

to keep the average queue around (Thmin + Thmax)/2. The pseudo code of Pmax adaptation 

is shown in figure 2.3 (an additive increase multiplicative decrease (AIMD) technique is 

used for adapting Pmax). 

2.5 BLUE 

The BLUE active queue management algorithm [20] uses packet loss and link 

utilization history to manage congestion by detecting and adjusting the rate of packets 

being dropped or marked. It uses the probability, Pa, to mark (by using ECN) or drop 

queued packets. Pa is increased whenever packets are dropped from the queue and 

decreased when the link is underutilized. 

The factor of increase to Pa is denoted by δ1 while δ2 represents the factor of 

decrease. The update on Pa takes place, whenever the queue length exceeds a certain 

threshold L, at the rate of 1/freeze_time. The parameter freeze_time represents the time 

interval between successive updates on Pa. Figure 2.4 shows a sample pseudo code of 

the BLUE algorithm. 
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Execute the following at every interval of 

0.5 seconds: 

If (avq > target and Pmax < 0.5) 

Pmax = Pmax + α 

Else if (avq < target and Pmax > 0.01) 

Pmax = Pmax * β 

Where 

avq: average queue size 

target: desired queue size 

Pmax: maximum probability 

α: min(0.01, Pmax/4) 

β: 0.9 

 
 

Figure 2.3 Algorithm to adapt Pmax 

 
 

2.6 Explicit Congestion Notification 

The Explicit Congestion Notification (ECN) [5][6] mechanism is used to notify 

the sender TCP process about congestion, ahead of time thus preventing unnecessary 

packet drops. In case of an ECN modified RED queue, if the average queue size is 

between Thmin and Thmax and the datagram is selected then it will be marked in its IP and 

TCP headers instead of being dropped. An ECN-compliant TCP source, on receiving 

the marked ACK packets (echoed from the ECN-compliant TCP receiver), will behave 
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as if it had encountered a dropped packet. Just like in the case of detecting a packet 

drop, the response of the TCP source to the congestion should happen at most once per 

round trip time (RTT). 

 
Upon packet loss: 

If ((now-last_update) > freeze_time) then 

Pa: = Pa + δ1 

Last_update = now 

Upon link idle: 

If ((now-last_update) > freeze_time) then 

Pa: = Pa - δ2 

Last_update = now 

Where 

Pa: marking/dropping probability 

δ1:  amount of increase by Pa 

δ2:  amount of decrease by Pa 

now: current time 

last_update: last time Pa was changed 

freeze_time: amount of time for Pa to take effect  

 
Figure 2.4 BLUE algorithm 
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ECN avoids unnecessary packet drops and accelerates the detection of 

congestion by the source, without having to wait to detect a dropped packet (a timeout 

from the transmit timer or on receiving three duplicate ACKs). However, as a downside 

ECN messages may get lost, and TCP implementations at both the source and the 

destination have to be ECN-compliant (which presents a significant problem in today’s 

implementations). Currently there is no practical benefit in setting ECN bits in Internet 

packets;  as this requires ECN capable routers (at least at bottleneck points), servers and 

clients throughout a network. In [45], experiments were conducted using TBIT (the 

TCP Behavior Inference Tool) showing that on the 13th of September, 2000, 21 out of 

26447 (0.07%) sites responded positively with an appropriate SYN/ACK to ECN. In 

March 2002, only 7 out of 12364 sites (0.05%) responded positively. These tests 

included end systems running a representative distribution of nearly all types of 

operating systems. 

A TCP sender reacts to an ECN flagged segment by halving both the congestion 

window cwnd and the slow-start threshold ssthresh at most once per RTT, while 

ignoring succeeding ECNs within that particular RTT. This is to ensure that the TCP 

source does not reduce its window repeatedly within that particular RTT. However, 

when the ECN-compliant TCP sender receives three duplicate ACKs without any 

ECNs, it will undergo Fast Retransmit and Fast Recovery procedures (see TCP Reno 

[9]). On the other hand, if the ECN-compliant TCP sender receives three duplicate 

ACKs after a reaction to an ECN notification within the RTT, it will not react since it 

has already reacted to the ECN notification.  



 

 To facilitate the ECN scheme, TCP uses a 2-bit ECN field [6] in the IP header 

(as shown in figure 2.5), with a possibility of marking four ECN codepoints from ‘00’ 

to ‘11’. Bit sequence ‘11’ is known as the Congestion Experienced (CE) codepoint 

which is used to indicate congestion to the end nodes. Codepoints ‘10’ and ‘01’, (also 

known as ECT(0) and ECT(1) respectively,) are used by the TCP sender to denote that 

it is ECN-capable. An ECN-compliant sender will use both of these codepoints to 

ensure that the routers along the path are not erasing the CE codepoint and that an 

ECN-compliant receiver is not erroneously reporting to the ECN-compliant sender the 

reception of packets with CE codepoints. Routers (that are ECN compliant) along the 

path treat both of these codepoints similarly. The ‘00’ codepoint (default assignment in 

any IP datagram) indicates that the packet is not using ECN. 

 

Figure 2.5 ECN bit in IP header 
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 The TCP header will also have to contain information for ECN. Flags: 

Congestion Window Reduced (CWR) and ECN-Echo (ECE) are introduced into the 

TCP header as shown in figure 2.6. ECE is used for negotiating ECN-capability 

between TCP senders and receiver, whereas the CWR is used by the TCP sender to 

inform the TCP receiver that the congestion window has been reduced (so that the TCP 

receiver can determine when to stop setting the ECN-Echo flag). 

 
 

Figure 2.6 The CWR and ECE bits  
 
 

A typical sequence of events is as follows. After positive negotiation between 

the sender and the receiver about using ECN, the sender sets the ECN-Capable 

Transport (ECT) codepoint in the packet’s IP header. When an ECN-capable router 

detects congestion, it selects a packet. If the packet had its ECT codepoint set, instead of 

dropping it, the router sets the packet’s Congestion Experienced (CE) codepoint in its IP 
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header, to indicate to its sender of the impending congestion. On receiving this packet, 

the TCP receiver sets the ECN-Echo (ECE) flag in its next ACK packet to the TCP 

sender. When the TCP sender receives this ACK packet, it will react as if it had 

encountered a packet dropped. It will also set the Congestion Window Reduced (CWR) 

flag in the TCP header of the next packet it sends to the receiver acknowledging the 

reception of the ACK with its ECE flag set (and that it had reacted to the impending 

congestion). 

2.7 Rate Control/Enforcement Techniques 
 

As outlined in the first chapter, a TCP stream may either be constrained by flow 

or congestion control (i.e., whichever window is smaller). Flow control compared to 

congestion control is a direct feedback process where the TCP receiver tells the TCP 

sender explicitly what its transmission window’s maximum value should be. Modifying 

the receiver window (the corresponding TCP header field) at intermediate routers can 

thus provide a mean to set TCP senders’ transmission window explicitly1. To improve 

overall communication latency an intermediate network element may modify the 

receiver’s advertised window in the returned TCP acknowledgments. This rate control 

or enforcement technique has been used in [46][47][48][49] and by Packeteer, Inc. [50] 

in 1995. This technique is referred to as Explicit Window Adaptation in [46], where the 

objective is to match the sum of the windows of active TCP connections sharing the 

buffer in the edge router to the effective network bandwidth delay product, thus 

                                                 
1 Some researchers claim that routers in general should not look at layer-4 headers as their function is 
limited to layer-3. Yet, enabling them to do so can provide significant benefits (see, e.g., NAT). 
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avoiding packet losses whenever possible. Hence, the receiver’s advertised windows in 

TCP acknowledgments are modified at the edge router. The feedback loop in their 

scheme extends only from the ATM Access Points (AAPs) to the sources of the TCP 

connections. In [51], Karandikar et al use a similar technique, as part of their TCP Rate 

Control, to achieve high throughput, fairness and low delay. They calculate the rate 

feedback to fit ATMs’ Available Bit Rate (ABR) service [52][53][54]; and then 

translate the rate into a window value to give feedback to the TCP source. 

Narvaez et al in [48] extend [54] by defining a complex TCP emulation engine 

at the rate-controller using an acknowledgment bucket scheme In [49], Satyavolu et al 

suggest a rate-to-window translation scheme based upon another ATM ABR algorithm, 

ERICA [53]. All these authors explored such ideas from the point of view of TCP/IP-

ATM internetworking, i.e. extending ATM ABR type rate control from ATM edges to 

TCP end systems. 

2.8 CHOKe 
 

CHOKe [33] has been proposed to punish non-responsive, i.e. non TCP- 

friendly, flows. It does so by calculating the average occupancy of the FIFO buffer in a 

manner similar to RED, i.e., by using an exponential moving average - avq. Hence, in 

that context it can be said that CHOKe is an extension to RED. It uses the RED’s 

thresholds, Thmin and Thmax, to monitor the avq. If the avq is smaller than Thmin, then the 

arriving segment is accepted. If the avq is greater than Thmin, each arriving packet is 

compared with a randomly selected packet already in the queue, called drop candidate 

packet, from the FIFO buffer. If they have the same flow ID, they are both dropped in  



 

which case a CHOKe hit has taken place (otherwise it is a CHOKe miss). When a 

CHOKe miss happens, the arriving packet is dropped with a probability of Pa; as in 

RED, Pa is a linear function of the average queue length, possibly increasing to Pmax. 

Figure 2.7 shows a simple flowchart of CHOKe. 

 

 

Figure 2.7 Flowchart of CHOKe 

 

There have been several CHOKe variants proposed in the literature:  

• Multi-drop CHOKe (M-CHOKe) [33]: Here, instead of one drop candidate packet, 

m candidate packets are chosen and compared with each arriving packet, thus 
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improving the chances of getting hits. The disadvantage of this scheme is that it 

might punish responsive flows at a greater extent as well.  

• Adaptive CHOKe (A-CHOKe) [33]: Here, the buffer between the two thresholds is 

partitioned into k regions and m is automatically set to 2i (i = 1, 2, …, k).  

• Front CHOKe [33]: The drop candidate packet is chosen from the head of the 

queue.  

• Back CHOKe [33]: The drop candidate packet is chosen from the tail of the queue.  

• CHOKe+ [34]: aims to solve the high-drop rate of CHOKe; its pseudocode is 

depicted in figure 2.8. 

 

For each incoming packet P 

Pick k packets at random from queue 

Let m be # of packets from the same flow as P 

Let 0 <= g2 < g1 <= 1 be constants 

If m > g1k,  

 P and the m packets are dropped 

Else if g2k <= m < g1k,  

Drop P and the m packets only if RED were to drop P 

Else  

                     Just drop P according to RED 

 

Figure 2.8 CHOKe+ algorithm



 

2.9 RED-PD 

By keeping partial flow state for high-bandwidth flows, RED-PD [37] detects 

and thwarts malicious flows by monitoring a subset of flows at the queue of the router 

and comparing their rates with a targeted bandwidth. If the rate of a flow is greater than 

the targeted bandwidth, then it is considered a malicious flow. This target bandwidth 

f(r,p), above which a flow is identified, is defined as the bandwidth obtained by the 

reference TCP flow with the target RTT r and the current drop rate p at the output 

queue and is: 

1.5( , )f r p
r p

≈  

RED-PD keeps the drop history over K * CL(R, p) seconds, where K = 3 and 

CL(R, p) is given by 

1( , )
( , ) 1.5

rCL r p
f r p p p

= =  

RED-PD keeps M lists as well, where a list is given by 

( , ) 1
( , ) 1.5

K CL r p r
M Mf r p p M p

×
= = , where M = 5. 

By using the packet drop history at the router to detect high bandwidth flows in 

times of congestion, RED-PD drops packets from these flows preferentially. By 

restricting these high-bandwidth flows, it improves the performance of low-bandwidth 

flows. Figure 2.9 shows the architecture of a RED-PD router. The difficulty of using the 

RED-PD router in today’s networks is that it is too time-consuming for the router to 
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calculate the RTT of a flow since RTT is heavily dependent on the state of the network. 

In addition, predefining r is neither realistic nor easy. 

 
Figure 2.9 The architecture of RED-PD 

 

2.10 xCHOKe 
 
xCHOKe [35][36], an extension to CHOKe and RED, uses partial state to 

identify malicious flows. It also uses the RED’s thresholds, minimum threshold (Thmin) 

and maximum threshold (Thmax), to monitor the average queue length (avq). 

xCHOKe works as follows: If the avq is smaller than Thmin, then the arriving 

segment is accepted. If the avq is greater than the Thmin, a lookup table is referenced to 

see whether the arriving packet's flow label is present in it. If it is indeed present (table 

hit), the arriving packet is dropped or marked for dropping. A packet is then selected at 
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random from the queue and its flow label is compared with that of the arriving packet. 

If the flow labels are the same (CHOKe hit), both packets are dropped or marked for 

dropping and the flow label is added to the lookup table with an initial value of one for 

an associated hit counter. If the flow is already in the table, the associated hit counter is 

incremented. The hit counter n of an entry in the lookup table is used to compute the 

probability p* with which an incoming packet with the same flow label as the entry will 

be dropped; p* is computed as follows: , where pa is RED’s 

dropping probability. If the avq is greater than Thmax, then the packet is dropped or 

marked for dropping. Figure 2.10 shows a flowchart of the xCHOKe scheme. xCHOKe 

associates a time-to-live (TTL) with each entry in the lookup table. Upon expiry of its 

TTL, an entry in the table is discarded. TTLs are not refreshed when an incoming 

packet has hits in the lookup table (table hits) nor if hits occur as an outcome to a 

comparison with a randomly chosen packet from the buffer (CHOKe hits). 

)2,1min(* n
app ×=
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Figure 2.10 Flowchart of the xCHOKe 
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CHAPTER 3 

RECEIVER-WINDOW MODIFICATION (RWM) SCHEME 

 

In this chapter we present our solution to solve the first two problems as 

identified in Chapter 1, faced by active queue management (AQM) schemes. To refresh 

the reader’s memory these problems are:  

1) the congestion detection, i.e., the timeout mechanism or the duration of the 

reception of three duplicate acknowledgements (ACKs), due to early-dropped packets 

by AQMs, delays the response time of TCP in reducing the network congestion, and  

2) The employment of ECN within AQMs has the following drawbacks: ECN 

messages may get delayed or worse, lost; and TCP implementations at both the source 

and the destination have to be ECN-compliant.  

Our goals are to provide solutions that work with present-day TCP/IP networks 

and at the same time, reduce the average TCP queue sizes in the queues and in doing so, 

reduce the queuing delay resulting in significant improvements in one-way end-to-end 

packet delays, delay jitter, throughput and number of dropped packets for TCP-friendly 

flows. If deployed, this enhancement should only be needed at the routers. In this 

chapter, we present this enhancement as a solution to address the above-mentioned 

problems at the ingress/gateway routers, and call it the Receiver-Window Modification 
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(RWM) scheme. We provide a further enhancement to this scheme in Chapter 5 so that 

it can be deployed at any router within the TCP/IP network. 

The rest of this chapter is organized as follows. The next section describes 

RWM while Section 3.2 presents simulation based analysis and comparisons of our 

RWM scheme to several proposed AQM schemes with and without ECN. Finally, 

Section 3.3 concludes the chapter by summarizing our results.  

3.1 Description of RWM  

AQM solutions use packet drops or marks at router queues to manipulate the 

TCP sender into decreasing its transmission rate. RED, ARED and BLUE queues 

prevent a queue in any intervening router from reaching its limit by dropping packets 

early. With ECN-compliant RED, ARED or BLUE queues, packets are not 

unnecessarily dropped but marked as if they were dropped. We denote these types of 

queues as RED-ECN, ARED-ECN and BLUE-ECN respectively.  

Using ECN, a queue accelerates the detection of congestion by the source, 

without having to wait to detect a dropped packet (a timeout from the transmit timer or 

on receiving three duplicate ACKs). However, as a downside: i) ECN messages may get 

delayed by congested downstream routers or lost; and ii) TCP implementations at the 

router and both the source and the destination have to be ECN-compliant. Currently 

there is no practical benefit in setting ECN bits in Internet packets; as this requires ECN 

capable routers (at least at bottleneck points such as ingress and gateway routers), 

servers and clients throughout a network. In present-day TCP/IP networks, few servers 
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and clients are “ECN-compliant”. Hence, “ECN-compliant” routers are not practical in 

present-day TCP/IP networks due to a lack of “ECN-compliant” servers and clients. 

Moreover, AQM schemes have several drawbacks as outlined in the second 

chapter. Research has shown that  RED may underperform even a Drop-Tail [10] 

queue. Our Receiver Window Modification (RWM) scheme alleviates these 

disadvantages of RED. 

We are proposing to use both flow and congestion control feedbacks to reduce 

congestion at routers. In this research, we will deal with congestion occurring especially 

at the ingress and gateway routers – two major congestion areas within the network. 

Instead of setting ECN related bit in the chosen packets of RED, ARED and BLUE 

queues, we propose the use of RWM at these routers. RWM sets the receiver window 

field to one maximum segment size (MSS) in the ACK packets that are going towards 

the sender from the receiver, instead of early-dropping or marking the packets at the 

queue. (The only exception that it will not modify the receiver window field is when the 

field has a value of 0. This occurs when a TCP application wants to tell its peer not to 

send any more data). We denote RWM modification to AQM schemes by affixing 

“RWM” after the name of the AQM, thus we will be talking about RED-RWM, ARED-

RWM and BLUE-RWM respectively.  

In the case of RED-RWM and ARED-RWM, the field is set to 1, instead of 

early-dropping or marking the packets, only if the average queue length (avq) is 

between Thmin and Thmax, where Thmin and Thmax, are the minimum and maximum 

threshold values respectively. However, if the avq is greater than Thmax, the packet is 
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not only dropped but the field in the ACK is also set to 1. The idea here is to reduce the 

rate as soon as possible without waiting for the timeout mechanism or the duration of 

the reception of three duplicate ACKs to take effect or elapse, thus cutting down on the 

number of packets that would have otherwise been dropped. The threshold values used 

are the same as in RED and ARED queues.  

In the case of RED-RWM and ARED-RWM, the recommended Pmax ranges are 

bounded from 0.3 to 1 respectively. For example, the RED algorithm (as shown in 

figure 2.2), is modified to what is shown in figure 3.1. 

In the case of BLUE-RWM, the probability, Pa is used (instead of marking (by 

using ECN) or early-dropping of queued packets (without ECN)) to modify the ACK 

packets. Pa is increased whenever ACK packets are modified or/and data packets are 

dropped from the queue due to overflow and decreased when the link is underutilized.  

If the queue is continually dropping packets due to buffer overflow, BLUE-RWM 

increments Pa, thus increasing the rate at which it modifies the field to 1. Conversely, if 

the queue becomes empty or if the link is idle, BLUE-RWM decreases Pa, thereby 

decreasing the rate of ACK modification. This effectively allows BLUE-RWM to 

“learn” the correct rate it needs to modify the field to. The freeze_time is randomized to 

avoid global synchronization. 
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For each packet arrival 

Calculate avq 

If Thmin ≤ avq < Thmax 

Calculate Pa 

Set receiver window field in ACKs to 1 

MSS with Pa 

Else if Thmax < avq 

Drop the arriving packet 

Else   

       Accept the arriving packet 

Where 

avq: average queue size 

Thmin : minimum queue threshold 

Thmax: maximum queue threshold 

Pa: marking/dropping probability 

 

 
Figure 3.1 Dropped packet selection algorithm 

 

Upon receiving a modified ACK packet, the sender will transmit the minimum 

of the congestion and the advertised received window sizes. (Whenever the TCP header 

of an ACK packet is modified, the checksum in the TCP header needs to be adjusted for 

error control.) The advantages of RWM queues are that they work with the current 
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implementation of TCP in end systems and do not require changes to the existing 

network schemes except at the ingress and gateway routers where the RWM scheme is 

to be implemented. Hence, they overcome the disadvantage of the ECN queues since in 

ECN; TCP/IP stacks at both ends require modifications to be “ECN-compliant” in 

addition to the router. Since, the feedback loop extends from the RWM queue on the 

router to the sender; the response time of the algorithm is determined by the delay 

between the router and the sender rather than the RTT of the connection, which is true 

for queues using the ECN mechanism. This implies that the longer the RTT is, the 

greater the advantage that RWM has over ECN queues. The delayed response of the 

sender to an ECN is further compounded if the congestion worsens at the downstream 

routers where ECN messages could be delayed or worse, dropped. Moreover, the 

response time will also be heavily dependent on the types of queue implementations at 

these routers. Presently, almost all the routers along a path use drop tail queues. We will 

show that using RED, ARED, BLUE AQM, and drop tail queues will only increase the 

response time when compared to RWM. The queues using the RWM mechanism enjoy 

the advantage of faster response times to the impending congestion since the 

notification of congestion arrives at the source quicker when compared to those using 

timeout or ECN mechanisms.  

In the next section, we model a small TCP/IP network by an NS2 simulator and 

show extensive results to support our claims. 



 

3.2 Simulation Analysis of RWM 

We have conducted an extensive set of simulation experiments to evaluate and 

compare AQM algorithms with and without ECN to the proposed RWM. Our 

simulations were based on an extended and corrected (the receiver window – congestion 

window interaction in NS2 does not follow common, linux-type TCP implementations) 

NS2 simulator. The subsequent subsections explain the details and discuss the results of 

the different simulation scenarios. We compare AQM schemes on the simple network 

topology of 4 sources connected to a sink via 4 routers as shown in figure 3.2; the 

nearest router to the sources employs the AQM to be investigated while the other 3 

routers contain Drop Tail queues which are kept large enough not to discard any 

packets. We use TCP Reno as most modern TCP implementations are “Reno” based.  

FTP  Sources

Sink

RED Queue

10M

1.5M 10M 10M 10M

Drop – Tail Queues

10M

10M

 
Figure 3.2 Simulation network topology 
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3.2.1 Scenario 1 – RED AQM 

We first study the performance of TCP with RED, RED-ECN and RED-RWM. 

We start four File Transfer Protocol (FTP) connections and monitor them for the next 

150 seconds; the size of the RED queue is set to accommodate 35 packets. Other RED 

parameters were set as follows: 

• Queue weight given to current queue size sample = 0.002  

• Minimum threshold of average queue size (Thmin) = 5 

• Maximum threshold of average queue size (Thmax) = 15 

• Max probability of dropping a packet = 1/linterm, where linterm = 3 

Figure 3.3 depicts the average queue size versus the simulation time of the 

investigated AQMs. RED-RWM reduces the average queue size by about 25% 

compared to RED and RED-ECN. In the case of the RED-ECN queues, the larger queue 

sizes are partly due to marked packets suffering congestion along the path, increasing 

the delay along their way to the destination and then being echoed back to the source 

via ACK packets. On the other hand, the feedback loop for the RED-RWM is much 

shorter and hence, the average queue sizes are closer to the Thmin of average queue size 

of 5 packets. The duration of the reception of three duplicate acknowledgements 

(ACKs), due to early-dropped packets as in the case of RED delayed the response time 

of the TCP congestion scheme causing the larger average queue sizes. The same 

observation was made when we had used timeouts in our experiments.  



 

Keeping the same topology and RED parameters but varying the number of 

sources, we investigated the performance of RED, RED-ECN and RED-RWM by 

collecting essential data and analyzing them in terms of  

 delay jitter (the variation in the time taken for packets to be transmitted from 

the source to the destination in a network.),  

 average packet delay,  

 number of packets dropped, and  

 throughput. 
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Figure 3.3 Average queue sizes for RED, RED-ECN and RED-RWM 
 

Figures 3.4, 3.5, 3.6 and 3.7 show the respective results obtained for 1000 

seconds of simulation time.  
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Larger average queue sizes mean greater buffering delay. When the buffering 

delay is increased, the corresponding round-trip times increase and cause the aggregate 

TCP behavior to be less aggressive. Likewise, when the buffering delay is decreased, 

the corresponding round-trip times decrease and cause the aggregate TCP behavior to 

be more aggressive. Hence, smaller average queue sizes imply smaller queuing delay 

and as a result, there is an improvement in the average one-way average packet delay 

with RED-RWM as compared to those obtained with RED-ECN and RED queues, as 

can be seen in figure 3.4. Since its average queue length is the least, the average packet 

delay of RED-RWM is 15-20% less than that of RED-ECN and RED. Moreover, RWM 

significantly and consistently reduces the variation of the delay by about 35%  (as 

shown in figures 3.3 and 3.5); the variation in the average queue length is the least in 

RWM. RWM outperforms its counterparts in terms of overall throughput (as shown in 

figure 3.6) and total packet drops (as shown in figure 3.7) as well. Since it modifies 

instead of early dropping, RED-RWM drops less packets than RED whereas the 

disadvantages of ECN, especially its dependence on the performance of downstream 

routers, leads to RED-ECN dropping more packets than RED-RWM. Similar results 

were also obtained with ARED (as shown in Section 3.3.2) and BLUE (as shown in 

Section 3.3.3). 
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Figure 3.4 Average packet delay for RED, RED-ECN and RED-RWM 
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Figure 3.5 Delay Jitter for RED, RED-ECN and RED-RWM 
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Figure 3.6 Throughput for RED, RED-ECN and RED-RWM 
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Figure 3.7 Total packet drops for RED, RED-ECN and RED-RWM 
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 3.2.2 Scenario 2 – ARED AQM 

Here, we investigate the performance of ARED, ARED-ECN and ARED-RWM 

queues with the same network topology and RED parameters as in our previous 

scenario. The average queue sizes for ARED, ARED-ECN and ARED-RWM are 

compared with each other. Generally, it can be observed that the average queue size for 

ARED-RWM is smaller than those of ARED and ARED-ECN (as shown in figure 3.8). 

(Note that the average queue length curves of ARED and ARED-ECN are comparable 

and semi-overlapping). The reasons for the variation between RWM, ARED and 

ARED-ECN are the same as they were in the previous scenario. It is due to faster 

response times to the impending congestions since the notification of congestion for 

ARED-RWM queue arrives at the source faster when compared to the ECN (in the case 

of ARED-ECN) mechanisms and the response time for the three duplicate ACKs (in the 

case of ARED). Note, that similarly to RED-ECN (as shown in Section 3.3.1) and 

BLUE-ECN (as shown in Section 3.3.3), in ARED-ECN, the notification is delayed by 

all of the queuing delays of the downstream routers. Hence, the average queue lengths 

for ARED-RWM are about 50% smaller compared to those of ARED-ECN and ARED. 
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Figure 3.8 Average queue sizes for ARED, ARED-ECN and ARED-RWM 
 
 

Keeping the same topology and RED parameters but varying the number of 

sources (increasing the duration of the experiments to 1000s), ARED, ARED-ECN and 

ARED-RWM queues were compared based on their one-way average packet delay, 

delay jitter, number of packet drops and throughput. Figures 3.9, 3.10, 3.11 and 3.12 

show the results that confirm that ARED-RWM outperforms ARED and ARED-ECN in 

all of these categories.  
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Figure 3.9 Average packet delay for ARED, ARED-ECN and ARED-RWM 
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Figure 3.10 Delay jitter for ARED, ARED-ECN and ARED-RWM 
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Figure 3.11 Throughput for ARED, ARED-ECN and ARED-RWM 

0

5000

10000

15000

20000

25000

4 8 12 16 20 25 30

Number of Sources

N
um

be
r o

f P
ac

ke
ts

ARED
ARED-ECN
ARED-RWM

 
Figure 3.12 Total packet drops for ARED, ARED-ECN and ARED-RWM 
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 3.2.3 Scenario 3 – BLUE AQM 

Here, we investigate the performance of BLUE, BLUE-ECN and BLUE-RWM 

queues using the network topology of our previous scenarios. We use the following 

BLUE parameters [20]:  

• Freeze_time = 10ms 

• δ1 = 0.02 

• δ2 = 0.002 

• threshold L = 15 packets 

The average queue sizes for BLUE, BLUE-ECN and BLUE-RWM are shown in 

figure 3.13. The average queue size for BLUE-RWM is slightly better than those of 

BLUE and BLUE-ECN.  

Keeping the same topology and BLUE parameters but varying the number of 

sources, BLUE, BLUE-ECN and BLUE-RWM queues are also evaluated in terms of 

their one-way average packet delay, delay jitter, throughput and number of total packet 

drops; figures 3.14, 3.15, 3.16 and 3.17 show the respective results. In terms of the 

packet delay, delay jitter, throughput and number of total packet drops, BLUE-RWM 

significantly outperforms BLUE and BLUE-ECN. 
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Figure 3.13 Average queue sizes for BLUE, BLUE-ECN and BLUE-RWM 
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Figure 3.14 Average packet delay for BLUE, BLUE-ECN and BLUE-RWM 
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Figure 3.15 Delay jitter for BLUE, BLUE-ECN and BLUE-RWM 
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Figure 3.16 Throughput for BLUE, BLUE-ECN and BLUE-RWM 
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Figure 3.17 Total packet drops for BLUE, BLUE-ECN and BLUE-RWM 

 

 3.2.4 Scenario 4 – Comparing RWM AQMs 

In this section we are comparing RED-RWM, ARED-RWM, and BLUE-RWM 

AQMS in terms of one-way average packet delay, delay jitter, number of total packet 

drops and throughput. Figures 3.18, 3.19, 3.20 and 3.21 show the respective simulation 

results. Overall, BLUE-RWM outperforms both RED-RWM and ARED-RWM as the 

number of sources increases. 
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Figure 3.18 Average packet delay for RED-RWM, ARED-RWM and BLUE-RWM 

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 25 30

Number of Sources

Ti
m

e 
(m

s)

RED-RWM
ARED-RWM
BLUE-RWM

 

Figure 3.19 Delay jitter for RED-RWM, ARED-RWM and BLUE-RWM 
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Figure 3.20 Throughput for RED-RWM, ARED-RWM and BLUE-RWM 
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Figure 3.21 Total packet drops for RED-RWM, ARED-RWM and BLUE-RWM 
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The reasons why BLUE-RWM performs better than RED-RWM and ARED-

RWN are due the fact that BLUE-RWM inherits BLUE’s ability to perform queue 

management based directly on packet loss and link utilization rather than on the 

instantaneous or average queue lengths as in the case of RED-RWM and ARED-RWM. 

Unlike RED-RWM and ARED-RWM, BLUE-RWM reduces congestion with a 

minimal amount of buffer space; hence it is performs better. The experiments also show 

that there is only slight difference between RED-RWM and ARED-RWM. 

3.3 Summary 

In this chapter we had proposed a modification to existing adaptive queue 

management protocols (AQM) called Receiver-Window Modification (RWM). RWM 

does not require modification to all end system TCP/IP stacks but could be solely 

implemented in heavily-congested ingress and gateway routers. This means that RWM 

does not require both the sources and receivers to be “RWM-compliant” as was the case 

for ECN-compliant queues. Our RWM scheme helped to reduce the average queue sizes 

of the RED, ARED, BLUE, ARED-ECN, RED-ECN and BLUE-ECN queues. By 

reducing the average queue sizes, RWM queues reduced the queuing delay resulting in 

significant improvements in one-way end-to-end average packet delays, delay jitter, 

throughput and number of dropped packets. We have also shown that the performance 

of RED-ECN, ARED-ECN and BLUE-ECN queues was heavily dependent on the 

queues of the downstream routers. RWM queues in ingress and gateway routers were 

not influenced by the number and state of the downstream router as they would 



 

piggyback congestion information to the source in the next available acknowledgement 

packet.  
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CHAPTER 4 

RECEIVER-WINDOW MODIFICATION MODEL 

 

This chapter presents the mathematical model, with asymptotic and steady-state 

analysis, for the RWM scheme, introduced in Chapter 3, using the RED gateway, i.e. 

RED-RWM gateway, with N TCP connections competing for bandwidth. We expand on 

the model developed for the RED-ECN gateway in [25][26][27][28][29][30][31] to the 

RWM extension, henceforth to the RED-RWM, relaxing the assumption that the buffer 

size should be infinite. Here, upon selection of packets, the RED-RWM queue, instead 

of marking them, sets the receiver window field to one maximum segment size (MSS) 

in the ACK packets that are going towards the sender from the receiver. The main idea 

of the RWM approach is to restrict the TCP transmission window with the flow control 

window instead of the congestion control window, thus controlling the transmission 

window with a finer granularity. Results from simulations in Chapter 3 have shown that 

RWM extended queues outperform their counterparts (functioning with and without 

ECN) in terms of number of total packet drops, average packet delay, delay jitter and 

throughput. 

The rest of this chapter is organized as follows. The next section describes our 

time difference RWM model while Section 4.2 and 4.3 present an asymptotic and a 

steady-state analysis respectively. Section 4.4 provides Monte Carlo simulation results 
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on our formulas, analyzing and comparing them to discrete event simulation results. 

Finally, Section 4.5 concludes the chapter. 

4.1 The RWM Time-Difference Model 

We now present our model. We will discretize time T with a uniform duration 

∆T and make use of timeslots represented by [t*∆T, (t+1)*∆T) where t is an integer 

starting at 0 (thus we will be talking about timeslot t or time t*∆T). The round-trip times 

(RTTs) of TCP connections are approximated as integer multiples of the length of 

timeslots (∆T). We define a logical indicator function we denote: 1[L] which evaluates 

to 1 if L is true and to 0 if L is false. We also define the following variables: 

1) fm
(N)(t) : R+ → [0,1]: the feedback (segment acknowledgement modifying) 

probability function in the RED-RWM gateway when there are x number of packets 

in the queue being used by N number of sources. Hence, the probability of 

acknowledgements being modified or segments being dropped by the RED-RWM 

gateway is fm
(N)(t). (fm

(N)(t) should scale with N.) 

2) fd
(N)(t): R+ → [0,1]: the segment dropping probability function in the RED-RWM 

gateway when there are x number of packets in the queue being used by N number 

of sources. The same rules apply to fd
(N)(t) as to fm

(N)(t).  

3) Q(N)(t): the queue size at time ∆T*t with N number of TCP connections. During 

timeslot t, this size will increase or decrease if the number of incoming packets at 

the queue is greater or less (respectively) than the number of outgoing packets. 
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4) Ai
(N)(t): the number TCP segments received by the RED-RWM gateway from TCP 

connection i (i є {1,…,N}) within timeslot t;  thus, the total number incoming 

segments at the RED-RWM queue is: 

( ) ( )

1
( ) ( )

NN N
ii

A t A
=
∑= t  4.1 

Ai
(N)(t) can be modeled by an integer-valued random variable that encodes the 

transmission window size (in packets) at time ∆T*t; we assume that Ai
(N)(t) є 

{0,…,Wmax}, where Wmax represents the receiver advertised window size of the 

connection (the transmission window size of an idle connection is zero).  

5) C(N)(t): the number of TCP segments served by the RED-RWM gateway during 

time slot t.  

6) Since the queue is always non-negative, using the above variables, the queue 

dynamics can be represented by the following recursive function:  

( ) ( ) ( ) ( )( 1) [ ( ) ( ) ( ) ]N N N NQ t Q t A t C t ++ = + −  4.2  

In addition, both A(N)(t)and C(N)(t) follow some stochastic recursions which 

depend on the current queue size thereby forming a stochastic feedback system. If 

we denote the average queue serving capacity per connection by C, then 

C(N)(t)=NC, thus equation 4.1 becomes: 

( ) ( ) ( )( 1) [ ( ) ( ) ]N N NQ t Q t A t NC ++ = + −  4.3 

7) Wi
(N)(t): the transmission window size at connection i at the beginning of timeslot t. 

The transmission windows size is the minimum of cwnd and rwnd. We assume that 
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each connection will transmit all TCP segments that it can during slot t. Note, that 

Ai
(N)(t)≤Wi

(N)(t). (More precisely if Φi
(N)(t) is the number of pending TCP segments 

for connection i at time ∆T*t and connections have an unlimited amount of 

segments to transmit, then Ai
(N)(t)=Wi

(N)(t)- Φi
(N)(t).) 

8) Xi
(N)(t): the remaining workload (in packets) at the TCP sending process of 

connection i at the beginning of timeslot t; thus, Ai
(N)(t) ≤ min(Wi

(N)(t),Xi
(N)(t)). 

(More precisely, Ai
(N)(t)=min(Wi

(N)(t)-Φi
(N)(t),Xi

(N)(t)) ) 

9) Di
(N)(t): the round trip time (RTT) at time t*∆T as observed by the TCP sending 

process of connection i; Di
(N)(t) will be given in integer multiples of ∆T. We model 

Di
(N)(t) as a random variable of possible outcomes: {2,…,Dmax}. 

10) We will assume that any congestion-control action occurs at the end of a round-

trip. We also simplify the segment transmissions to the queue by assuming that all 

segments allowed within an RTT are transmitted in the same slot to the queue. Let 

βi(N)(t) represent the number of timeslots (at timeslot t) since the last time 

connection i has transmitted a segment to the queue; then: 

( ) ( )

( ) ( ) ( ) ( ) ( )

                                 (0)  1[ (0) 0]

( 1) (1   ( ) 1[ ( ) ( )])  1[ ( ) 0]

N N
i i

N N N N N
i i i i i

X

t t t D t X

β

β β β

= >

+ = + < >t

 

With these assumptions our formula for Ai
(N)(t) will evolve to: 

]1)([1))(),(min()( )()()()( == ttXtWtA N
i

N
i

N
i

N
i β  
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where the indicator function ( )1[ ( ) 1]N
i tβ =  is to ensure that the connection transmits 

only once per RTT. (Note, that the above assumptions eliminate the need for 

variable Φi
(N)(t).) Now our formula for the queue evolution can be rewritten as: 

( ) ( ) ( )( ) ( )

1
[  min( 1) ( ) ( ( ), ( ) )1[ ( ) 1]]

NN N NN N
i i ii

t t NC t t tQ Q W X β
=

= ∑+ − + =

=

 4.4 

11) Let us introduce function Gi,t(a,b) evaluating to a if the last transmission action of 

connection i at time t*∆T was within the then applying roundtrip time, and 

evaluating to b otherwise. G will be a useful tool to change variables only after a 

RTT has passed. 

( ) ( )
, ( , ) *1[ ( ) 1] *1[ ( ) 1]N N

i t i iG a b a t b tβ β= > +  4.5 

12) Let the modifying and dropping probability functions be given by : 

min

( ) ( ) min
max maxmin

max min

max

( )      

                                               

ˆ0                                        

ˆˆ ˆ( ( ))

ˆ0 

N N
m

Th Q

Q Thf Q t P Th Q Th
Th Th

Q Th

−

−

⎧ >
⎪
⎪
⎪⎪= ≤⎨
⎪
⎪
⎪

>⎪⎩

≤  

 

max
( ) ( )

max

ˆ0                                   
ˆ( ( ))

ˆ1                                   

N N
d

Th Q
f Q t

Q Th

⎧ >
⎪= ⎨
⎪ >⎩

 

where Pmax is the maximum marking probability, Thmin is the minimum threshold, 

Thmax is the maximum threshold.  
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13) Since the RED-RWM scheme complements the RED queue, it uses the same queue 

averaging filter as the RED queue (known as Exponentially Weighted Moving 

Average - EWMA) to evaluate the average queue size based on the instantaneous 

queue size with a past-weighting parameter α (0< α ≤ 1). Let represent 

average queue at time t*∆T, then: 

( )ˆ ( )NQ t

( ) ( ) ( )ˆ ˆ( 1) (1 ) ( ) ( 1)N NQ t Q t Q tα α+ = − + +N

N

 4.6 

14) Let zi,j
(N)(t+1) represent random indicator variables for dropped packets, where j є 

{1, ...,Ai
(N)(t)}; zi

(N)(t+1) is zero if the jth  packet of connection i is dropped in 

timeslot t (and 1 otherwise). Thus:  

( ) ( ) ( )
, ,

ˆ( 1) 1[( ( 1) ( ( ))]N N
i j i j dz t L t f Q t+ = + >  

where Li,j(t)s are I..I.D. (in all their dimensions) uniform random variables taking 

values from [0, 1]. Hence, the indicator function of the event that no packet of 

connection i is dropped in timeslot t can be written as: 

( )( ) ( )( )
,1

( )

( )

( )

( 1) ( ) 1
( 1)

1, ( ) 0

(0) 1

N
i t NA N

ii jj
N

i
N

i

N
i

tz A t
z t

A t

z

= +
⎧ ≥∏⎪⎪+ =⎨
⎪ =
⎪⎩

=

 

If zi
(N)(t+1)= 0, then at least one packet from connection i in timeslot t has been 

dropped by the RED-RWM gateway. This information may only be used one RTT 

later to halve the value of the congestion window size, thus we need to propagate a 
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zero value to the end of the roundtrip time. We will use variable Zi
(N)(t) for such 

propagation. Zi
(N)(t) thus evolves according to: 

( ) ( )
, 1

( )

( 1) ( ( )* ( 1),1)

(0) 1

N NN
i i ii t

N
i

Z t G Z t z t

Z

++ = +

=

 

Now we can define variable to reflect that there was a drop during the 

previous RTT. evolves according to  

)(ˆ )( tZ N
i

)(ˆ )( tZ N
i

( ) ( )
, 1

ˆ ˆ( 1) ( ( ), ( ))N NN
i ii t iZ t G Z t Z t++ =  4.7 

15) Similarly, let the modification of acknowledgement packets by the RED-RWM 

gateway be represented by an indicator random variable mi,j
(N)(t+1) where j є {1, 

...,Ai
(N)(t)}; mi,j

(N)(t+1) is zero if the jth packet of connection i causes the 

acknowledgement packet to be modified by the RED-RWM gateway to one MSS 

in timeslot t:  

( ) ( ) ( )
, ,

ˆ( 1) 1[( ( 1) ( ( ))N N
i j i j mm t V t f Q t+ = + > ]N  

where Vi,j(t)s are I.I.D. (in all their dimensions) uniform random variables taking 

values from [0, 1]. Hence, the indicator function of the event that no packet of 

connection i is RWM-modified in timeslot t can be written as 
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( )( ) ( )( )
,1

( )

( )

( )

( 1) ( ) 1
( 1)

1, ( ) 0

(0) 1

N
i t NA N

ii jj
N

i
N

i

N
i

m t A t
m t

A t

m

=
⎧ + ≥∏⎪⎪+ =⎨
⎪ =
⎪⎩

=

 

If mi
(N)(t+1)= 0, then at least one packet from connection i in timeslot t has been 

RWM-modified by the RED-RWM gateway. This information may only be used 

one RTT later to modify the transmission to 1 MSS, thus we need to propagate a 

zero value to the end of the roundtrip time. We will use variable Mi
(N)(t) for such 

propagation. Mi
(N)(t) thus evolves according to: 

( ) ( )
, 1

( )

( 1) ( ( )* ( 1),1)

(0) 1

N NN
i i ii t

N
i

M t G M t m t

M

++ = +

=

 

Now we can define variable  to reflect that there was a modification during 

the previous RTT.  evolves according to:  

)(ˆ tM N
i

)(ˆ tM N
i

( ) ( )
, 1

ˆ ˆ( 1) ( ( ), ( ))N NN
i ii t iM t G M t M t++ =  4.8 

16) Connection i, after receiving the modified acknowledgement from the RED-RWM 

gateway, will transmit only one MSS for one RTT. After the RTT the source will 

transmit the minimum of the previous congestion window before modification and 

the new advertised receiver window (unless it receives more modified 

acknowledgements from the RED-RWM gateway). Thus, we need to save the 
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transmission window’s size before the RWM modification has happened using 

variable Ωi
(N)(t). Ωi

(N)(t) evolves according to: 

( ) ( )( ) ( )
, 1

( ) ( )

ˆ( 1) ( ( ) , ( 1) ( 1)

ˆ( )(1 ( 1)))

N NN N
i ti i i i

N N
ii

t t W t MG

t M t

++ = + + +Ω Ω

− +Ω

t
 

( )
 (0) 1N

i =Ω  

4.9 

17) We also need an indicator variable at each roundtrip’s end time, showing whether 

there has been a marking two roundtrips ago while there has been none in the 

roundtrip that was just finished.  

( ) ( ) ( )
, 1

ˆ( 1) (0,(1 ( )) ( )N N
i ti iE t M t M tG ++ = − )N

i  4.10 

18) Each connection may be in one of two basic modes i.e., either in an active or an 

idle mode. At the beginning of timeslot t if a session has no packet to transmit then 

it is in the idle mode. An idle connection may become active by the beginning of 

the next timeslot with probability par independently of previous events. Hence the 

duration of an idle period is geometrically distributed with parameter par (and a 

mean of 1/par). We can use this to capture the dynamics of connection arrivals, 

where the interarrival times are exponentially distributed (as the geometric 

distribution is the discrete equivalent to the exponential distribution), we let i) Ui(t) 

(i є {1,…,N}) represent a collection of I.I.D. uniform random variables on [0, 1] and  

ii) 1[Ui(t+1) ≤ par] represent an indicator function for an idle connection i for the 

event of the arrival of a new packet in timeslot t+1. 
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19) Let Fi(t) represent the total number of TCP segments (the session size) connection i 

will have to transmit if it becomes active at the beginning of timeslot t; Fi(t) can be 

modeled as a collection of I.I.D. non-negative integer-valued random variables 

with some general probability mass function (usually a geometric or a  discretized 

exponential pmf). Recall, that we used Xi
(N)(t) to denote the remaining workload 

(expressed in TCP segments) of connection i at the beginning of timeslot t; thus:  

( ) ( ) ( ) ( )

( )

( 1) 1[ ( ) 0]( ( ) ( ))

1[ ( ) 0]1[ ( 1) ] ( 1)

N N N N
i i i i

N
i i ar i

t t t tX X X A

t U t P F tX

+ = > −

+ = + ≤ +

t

 

4.11 

20) RTT will not change for a connection during the same RTT, thus we can formulate 

it using the Gi,t(a,b) function. At the beginning of time slot t+1 (if t+1 is the 

timeslot for connection i to send its data) the expected roundtrip time is determined 

by the proportion of how many segments are in the queue at time ∆T*(t+1) plus 

how many are expected during slot t+1 (which is A(N)(t+1)) and the rate with which 

the queue is served: 

( ) ( )( )
, 1

( )

max

,

( (( 1) ( ), ( ( 1)

( 1)) /( * )) 2)

N NN
i i t i

N

QG Dt tD

A t N C

+ =+ = + +

+

 

 

4.12 

Note, that this can lead to synchronization if we assume that all connections arrive 

at the same time. This synchronization will be removed by the random marking and 

dropping as t grows. The above formulation also requires Di
(N)(t) to be at least two 
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as we expect the acknowledgments to come back in a different time slot than what 

was used to send their segments. 

21) The evolution of the window mechanism for connection i can now be described 

through recursion. The congestion-control mechanism of TCP operates either in the 

slow start (SS) or the congestion avoidance (CA) phase. A new connection starts in 

SS in order to probe the available bandwidth of the network (the queue in our 

case). While in SS, the congestion window size is doubled every round-trip time 

until the receiver window field of one or more acknowledgement packets are 

modified by the RED-RWM gateway to one MSS or one or more packets are 

dropped by the RED-RWM gateway. Note that the transmission window size is 

limited by the receiver advertised window size Wmax. Thus, if the connection is in 

SS then the transmission window of connection i evolves according to 

( )( ) ( ) ( )
max, ,, 1

( ) ( )

( ) ( ) ( )

( )
( )( ) ( )

min max ˆ( 1) ( ( ), ( (2 ( ),1), ) ( 1)

ˆ(1 ( 1)) ( 1)

ˆ( 1)* ( ) (1 ( 1))

( ) ˆ ˆ( 1)(1- ( 1))(1 ( 1)))
2

NN N N
ii SS i SSi t i

N N
i i

N N N
i i i

N
NN Ni

i ii

t G t t tW W W W Z

E t M t

E t t M t

tW M t t E tZ

++ = + ×

− + + +

+ Ω + − + +

⎡ ⎤
+ + −⎢ ⎥

⎢ ⎥
+

 

 

 

 

 

4.13 

 

22) In CA, the congestion window size in the next timeslot (t+1) is incremented if no 

modified acknowledgement packet was received in timeslot t, while if one or more 
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segments are modified in timeslot t the congestion window in the next timeslot is 

set to one segment. The congestion window size in CA is then given by: 

( )( ) ( ) ( )
, ,, 1

( ) ( )

( )
( ) ( ) ( )

min , max

( ) ( ) ( )

( )

ˆ( 1) ( ( ), ( ( ) 1 ) ( 1)

ˆ(1 ( 1)) ( 1)

ˆ( 1)* ( ) (1 ( 1))

ˆˆ(1- ( 1))(1- ( 1)) ( 1))
2

NN N N
ii CA i CAi t i

N N
i i

N
N N Ni

i ii

N N N
i i i

t

t G t t tW W W W Z

E t M t

E t t M t

W t E t M tZ

++ = + + ×

− + + +

+ Ω + − + +

⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥

 

 

 

 

 

4.14 

 

23) Let the Si
(N)(t) random indicator variable denote the state of TCP connections 

(Si
(N)(t) is zero if connection i is in CA and one if it is in SS). Therefore, combining 

equations 4.14 and 4.15, the complete recursion of the congestion window size can 

be written as: 

( ) ( ) ( )
,

( ) ( ) ( ) ( )
, ( )

( 1) ( ( ) ( 1)

(1 - ( )) ( 1))1[ ( ) 0]

N N N
i i i SS

N N N N
i ii CA t

t t tW S W

t t tS W X A

+ = + +

i+ − >

 

The last indicator function is used to reset the congestion window size to zero when 

connection i runs out of data and returns to its idle state.  

24) Finally, the evolution of  Si
(N)(t) can be described as:  

( ) ( ) ( )

( )( ) ( ) ( )

( 1) 1[ ( ) ( ) ]

ˆ1[ ( ) ( ) ] ( ) ( 1)

N N N
i i i

NN N N
i i i i

t t tS WX

t t t tW SX Z

+ = ≤ +

> +

 
 

4.15 
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where connection i will be in the SS state during timeslot t if there is either i) no 

packet left to transmit (so the connection resets) at the beginning of the timeslot or 

ii) the connection was active and in the SS state then a packet drop or marking 

leads to the CA state. Equation 4.15 assumes that a new TCP connection, in the SS 

state, is set up one timeslot after the previous connection is torn down upon 

finishing its workload, and the new TCP connection becomes active when a new 

file/object arrives, initiating a three-way handshake. Moreover, it implies that the 

state is updated in the next timeslot following a transmission despite the window 

size being updated one RTT after transmission using the appropriate SS/CA state 

as in the correct operation of TCP. 

 4.2 Asymptotic Analysis 

Here, we present a theorem for the asymptotic analysis for the RED-RWM 

queue when the number of connections using the queue is large. First we present the 

initial conditions and then the theorem. 

 
(Initial condition 1) For i = 1, . . .,N, the initial conditions of random variables 

in the model are:  
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We denote the vector of state variables for connection i in timeslot t by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) : ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),

ˆ ˆ( ), ( ), ( ), ( ), ( )).

N N N N N N N N N
i i i i i i i i i

N N N N N
i i i i i

Y t W t X t E t S t D t t t m t

M t M t z t Z t Z t

β= Ω
 

 
4.16 

 

(Initial condition 2) All TCP connections are responsive to congestion control 

and the number of connections N is greater than the value of Thmin. 

Theorem 1.  

Assume that both Initial Conditions (1 and 2) are valid and  

( )( ) ( ),N
i Nt Y tY ⇒ ( )( ) ( )N

Ni t QQ ⇒ t

,

)

and  ( ) ˆˆ ( ) ( ),N
Ni

t Q tQ ⇒

where  denotes weak convergence or convergence in distribution with large N, then 

the sequences { } and { } with t= 0, 1, 2, 3…. are 

time-homogeneous Markov chains, i.e. their future states are dependent on the present 

state and not on past states. 

N⇒

( ) ( ) ( )ˆ( ), ( ), ( )N N N
i i iY t Q t Q t ˆ( ), ( ), ( )Y t Q t Q t

Given the recurrence of the RWM model as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( 1) ( ( 1), ( 1), ( 1), ( 1), ( 1), ( 1), ( 1)

ˆ ˆ( 1), ( 1), ( 1), ( 1), ( 1), ( 1))

N N N N N N N N
i i i i i i i i

N N N N N N
i i i i i i

Y t W t X t E t S t D t t t

m t M t M t z t Z t Z t

β+ = + + + + + + Ω +

+ + + + + +
                  
                  ( )( ( )N

st iP Y t=
     
                 ( ) ( ) ( )

1 2 13: ( ( ( )), ( ( )), , ( ( )))N N N
i i iP Y t P Y t P Y t= …

 
with the state space Y given by 
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max max maxmax

max

: {0,1, , } {0,1, , } {0,1} {0,1} {2,3, , } {0,1, , }

{0,1, , } {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}.

y W X D

X

= × × × × ×

× × × × × × ×

… … … …

…

D

)

+

,N
i

  

 
Then it holds by analysis that  are given by ( ) ( ) ( )

1 2 13( ( )), ( ( )), , ( ( )N N N
i i iP Y t P Y t P Y t…

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 , ,( ( )) ( ) ( 1) (1 ( )) ( 1)1[ ( ) ( ) 0],N N N N N N N

i i i SS i i CA i iP Y t S t W t S t W t X t A t= + + − + − >  
 

( ) ( ) ( ) ( ) ( )
2 ( ( )) 1[ ( ) 0]( ( ) ( )) 1[ ( ) 0] 1[ ( 1) ] ( 1),N N N N N

i i i i i i ar iP Y t X t X t A t X t U t P F t= > − + = + <  
 

3
( ) ( ) ( )

, 1 ˆ(0, (1 ( )) ( ))( ( ))N N
i ti iM t M tP Y t G += −  

 

4
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ˆ( ( )) 1[ 0] 1[ 0] ( ) ( 1),N N N N N N N

i i i i i i it W t t W tP Y t X X S t Z t− −= ≤ + > +

+

N

N
i +

,

N
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5
( ) ( ) ( ) ( )

, 1max( ,  ( ( )) ( ( ), ( ( 1) ( 1)) /( * )) 2),N N N N
i i i ii tP Y t G D t Q t A t N C+= = + + +  
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( ) ( ) ( ) ( ) ( )( ( )) (1   ( ) 1[ ( ) ( )])  1[ ( ) 0]N N N N N

i i i i iP Y t t t D t X tβ β= + < >  
 

7
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, 1
ˆ ˆ( ( )) ( ( ) , ( 1) ( 1) ( )(1 ( 1))),N N N N N N
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( )( ) ( )

1
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, ˆ ˆ( ( )) ( 1[ ( 1) ( ( ))]) ( 1),
N
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i ij
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1
( )

, ˆ ˆ ˆ( ( )) ( 1[ ( 1) ( ( ))]) ( 1) ( 1),
N

i tN NA
i ij

N
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12
( ) ( ) ( )

, 1 ,  ( ( )) ( ( )* ( 1) 1)N N N
i i ii tP Y t G Z t z t+= +  

 

13
( ) ( ) ( )

, 1 ,  ˆ( ( )) ( ( ) ( )),N N
i i ii tP Y t G Z t Z t+=  

 
where 

( ) ( )
, ( , ) *1[ ( ) 1] *1[ ( ) 1] , ,N N

i t i iG a b a t b t a bβ β= > + =  
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NN N N
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N N
i i

N
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t
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++ = + + ×

− + + +
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+ + +⎢ ⎥
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for i.i.d. [0, 1]-uniform rvs { Li,j(t + 1), Ui (t + 1), Vi,j (t + 1); t = 0, 1, . . .}. 

 

i. For any bounded function 13:g +Ζ →ℜ , we have 
 

1

( )1 ( ( )) [ ( ( ))].
N

P
N

t

N
ig Y t g Y t

N =

⎯⎯→ Ε∑  

 
where and ˆ ˆ( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))Y t W t X t E t S t D t t t m t M t M t z t Z t Z tβ= Ω
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P
N⎯⎯→  denotes convergence in probability when N tends to infinity, with the state 

space Y given by  

max max maxmax

max

: {0,1, , } {0,1, , } {0,1} {0,1} {2,3, , } {0,1, , }

{0,1, , } {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}.

y W X D

X

= × × × × ×

× × × × × × ×

… … … …

…

D

t

]

 

 
and  

 
( )( ) ( ).N
i Nt YY ⇒  

where  denotes weak convergence or convergence in distribution with large N. N⇒

 Here, we are implying that the average TCP dynamics for a large number of 

flows using a RED-RWM queue is closely related to that of a single flow utilizing the 

same TCP congestion control mechanism. 

 

ii. For any integer i = 1, 2, . . . , the random vector { , i = 1, . . . , I} becomes 

asymptotically independent as N becomes large, with 

)()(
1 tY N

( )

1

[ ( ) , 1, , ] [ ( )lim
I

N
i i i

N i

t y i I Y t yY
→∞ =

Ρ = = = Ρ =∏…  

for any yi є Y, i = 1, . . . , I. 

 Here, we are implying that as sessions become asymptotically independent as N 

becomes large, suggesting that the RED-RWM queue alleviates the synchronization 

problem among the flows. 

 

iii. For large N, we have 

 80



 

( )
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( ) ( ),

ˆ ( ) ˆ( ),

N

N

N P

N P

Q t q tN

Q t q tN

⎯⎯→

⎯⎯→

 

and 

( ) ( ) ( ),N
N

iA t NA⇒ t  

Resulting in 

( 1) ( ( ) ( ))q t q t C A t ++ = − +  

ˆ ˆ( 1) (1 ) ( ) ( 1)q t q t q tα α+ = − + +  

 

iv. For any bounded mapping ,: ℜ→Υg there exists a bounded and continuous 

mapping  such that ℜ→Υ×× ]1,0[]1,0[:F g

( ) ( )( )( ) ( ) ( )[ ( 1) | , ] ( ), ( ), (NN N
i t g i it iE g t t t tY F χτ+ =Ω Ψ )NY  4.17 

This assumption states that given the events leading up to the beginning of timeslot [t, t 

+ 1), the expected behavior of session i leading to the beginning of timeslot [t + 1, t + 

2) can also be determined using the expected knowledge of the conditional receiver 

window modifying probability, , the conditional dropping 

probability and . Hence, (Assumption 3) implies that 

( )( )N
i tΨ

)()( tN
iχ )()( tY N

i

( ) ( )( )( ) ( ) ( )[ ( 1) ] [ ( ), ( ), (NN N
i g i iE g t E t t tY F Yχ+ = Ψ ) ]N

i  4.18 

This leads to (from iii) 

 81



 

( ) ( )( )[ ( 1) ] [ ( ), ( ), (N
i gN ) ]E g t E t t Y tY F χ+ ⇒ Ψ  4.19 

implying that for large N, given the events leading up to the beginning of timeslot [t, t + 

1), the expected behavior of session i leading to the beginning of timeslot [t + 1, t + 2) 

can also be determined using the expected value of the conditional receiver window 

modifying probability, , the conditional dropping probability( )tΨ ( )tχ and . ( )Y t

The proof of Theorem 1 is presented in Appendix A.  

4.2.1 Limiting Cases 

Next, consider the resulting model from Theorem 1 in the regime when C is 

either very large or very small. 

C is large: the modifying probability per flow converges to zero for all t. 

Therefore, each incoming flow will always operate in the SS mode with each 

connection doubling its window sizes every round-trip.   

C is very small: the average queue size increases with the modifying 

probability. The rate of modifying acknowledgements increases as the modifying 

probability approaches 1. As a result, an increasing number of TCP connections will 

receive modified acknowledgements and will approximately transmit a single packet. If 

the dropping probability is 1, packets will be dropped.  

4.3 Steady-State Analysis 

Here, we present a theorem for the steady-state analysis for the RED-RWM 

model when the number of connections using the queue is large. 
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(Initial condition 3) The sequence { } with t= 0, 1, 2, 3…. 

admits a steady state such that where is a constant 

and  

ˆ( ), ( ), ( )Y t Q t Q t

ˆ( ( ), ( ), ( )) ( *, *, *)tY t q t q t Y q q⇒ *q

ˆ* ( *, *, *, *, *, *, *, *, *, *, *, *, *)Y W X E S D m M M z Z Zβ= Ω ˆ is a y-valued rv. 

Theorem 2. Assume that both Initial conditions (1, 2 and 3) and Theorem 1 are 

valid. Let us use the notation:  to denote a weak convergence in N to a steady state. 

Then: 

N⇒

.* N Nq ⇒   

The proof of Theorem 2 is presented in Appendix B. 

Intuitively, since RWM complements RED, it inherits RED’s property of 

choosing a particular flow, to mark or drop during congestion, which roughly is 

proportional to that flow's share of the bandwidth at the router. However, the ideal 

packet distribution in a RWM queue is one per flow for N TCP flows in steady state, 

especially for large N and, N > Thmin and N < Thmax. Hence, RWM’s potential is limited 

by the RED algorithm. 

4.4 Simulation Results And Analysis 

We have created an NS2 model of the RED-RWM scheme. We used a simple 

barbell topology with a single congested link and varied the number of connections N 

from 10 to 30. All connections were modeled as “File Transfer Protocol (FTP)” flows, 

i.e., as constant and inexhaustible source of information. We used the following RED 

parameters. 
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• Queue weight given to current queue size sample =0.002  

• Minimum threshold of average queue size (Thmin) = N-1 

• Maximum threshold of average queue size (Thmax ) = 3N 

• Max probability of dropping a packet = 1/linterm, where linterm = 3  

To verify our formulation we have also created a custom Monte Carlo 

simulation and implemented our time difference equations. We have performed 

simulation with parameters similar to those of the discrete event simulation. The 

average queue sizes were observed with both methods and are depicted in figure 4.1; 

curves with a DE suffix are results of the discrete event simulations (NS2) while curves 

with an MC suffice show the Monte Carlo results (analytic). (Note that the time frame 

of these two simulations is not identical however we plot them on the same figure, i.e., 

their variation may not be on the same time scale). We can observe a good match, 

validating our mathematical model (note, that more extensive simulations have been 

performed with changes in other parameters and those results underline this conclusion 

as well). 
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Figure 4.1 Average queue length at a RED-RWM queue 

 
4.5 Summary 

In this chapter, we have presented a mathematical model for the RED-RWM 

queue by extending the work done previously for RED-ECN queues. We have verified 

our model by comparing Monte Carlo simulations of our model to discrete event 

simulations of an NS2 model. We “theoretized” that the RWM modified RED queue 

will weakly converge to a steady state and that as the number of clients (TCP 

connections) grows, the queue size will weakly converge to the number of clients, 

assuming that the minimum marking threshold (Thmin) is less than the number of clients. 
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CHAPTER 5 

ReCHOKe 

 

In this chapter, we are proposing a scheme called RECHOKe (REpeatedly 

CHOose and Keep for responsive flows, REpeatedly CHOose and Kill for non-

responsive flows) to be used for detecting, controlling and punishing malicious flows in 

TCP/IP networks. It is an extension of xCHOKe [35][36], CHOKe [33] and RED-PD 

[37] schemes, combining both the CHOKe hit and RED [7] Drop/Mark histories, to 

detect, control and punish these flows more accurately while providing better protection 

to non-malicious flows. However, unlike xCHOKe and CHOKe, it does not drop 

packets during CHOKe hits; thereby eliminating the complexity of dropping or marking 

randomly selected packets already queued. We also analyze xCHOKe and RECHOKe 

in detail by using NS2 and  show that RECHOKe performs better than RED, CHOKe 

and xCHOKe which are limited in what they can achieve since malicious flows still get 

much more than their fair share and non-malicious flows get mistakenly penalized. 

CHOKe, xCHOKe and RECHOKe are preferential dropping schemes that have 

been proposed or are being proposed for detection, control and punishment of malicious 

flows at routers in IP networks. They use CHOKe hits, CHOKe misses and/or CHOKe-

RED drops to carry out these tasks. In this chapter we also investigate the accuracy of 

malicious flow detection by using these hits, misses and drops (using NS2). We also 
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point out the unreliability of CHOKe hits and misses, when compared to CHOKe-RED 

drops, as they affect TCP-friendly flows adversely. By doing so, we present two ad hoc 

enlightening variations of CHOKe called Half1- and Half2-CHOKe to improve CHOKe 

and compare them with CHOKe. As we will show Half1- and Half2-CHOKe 

outperform CHOKe when the combined rates of malicious flows are less or greater than 

the link capacity respectively. These two variations are used by RECHOKe to detect, 

control and punish malicious flows. 

The rest of this chapter is organized as follows. The next section outlines our 

solution while Section 5.2 presents simulation results and compares the RECHOKe 

scheme to several proposed AQM schemes. Finally, Section 5.3 concludes the chapter. 

5.1 Description of RECHOKe  

This section presents the functional description of RECHOKe; a flowchart of 

RECHOKe is depicted in figure 5.1. If the average queue length (avq) is smaller than 

the minimum threshold, Thmin, then the arriving packet is accepted. If the avq is greater 

than Thmin but smaller than Thmax, the lookup table is checked to see whether the 

arriving packet's flow label is present there. If it indeed is (called a table hit), the 

arriving packet is marked for dropping and the associated hit counter is incremented. A 

packet is then selected at random from the queue and its flow label is compared with 

that of the arriving packet. If the flow labels are the same (called a CHOKe hit), the 

flow label is added to the lookup table with an initial value of 1 for an associated hit 

counter. If the flow is already in the table, the associated hit counter is incremented. 

Unlike in xCHOKe, packets are not dropped or marked for dropping as a result of a 
 87



 

CHOKe hit. They are allowed to enter the FIFO buffer. This removes the complexity of 

dropping the random packet after it has been admitted into the buffer and the 

unreliability of CHOKe hits. To remove this complexity from CHOKe, the authors in 

[33] have proposed to add one extra bit to the packet header so that the bit is set to one 

if the random packet is to be dropped. When this packet advances to the head of the 

RED buffer, the status of this bit determines whether it is to be immediately discarded 

or transmitted on the outgoing line. We feel that this idea leads to a wasteful use of 

valuable buffer space and the addition of complexities due to the 1-bit modification to 

the present-day packet header and the need for the routers to check each and every 

packet on the outgoing line. 

If the packet is dropped or marked (in the presence of ECN [5][6]) by RED 

(called a RED hit), then its label is added to a lookup table with an initial value of 1 for 

an associated hit counter. If the flow is already in the table, the associated hit counter is 

incremented. 

If avq is greater than Thmax, then the packet is dropped and its label is added to a 

lookup table with an initial value of 1 for an associated hit counter. If the flow is already 

in the table (also called a table hit), the associated hit counter is incremented. The hit 

counter n of an entry in the lookup table is used to compute the probability p* and a 

boolean value c* with which an incoming packet with the same flow label as a table 

entry will be dropped. These values are computed as follows: 
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where pa is RED’s dropping probability and m is the number of entries in the 

table. If c* is true then the packet will be marked or dropped with probability p*. The 

purpose for c* is that we do not want to punish a TCP-friendly flow, whose previous 

packets just “accidentally” happened to experience a CHOKe hit leading to one of its 

recent packets experiencing a table hit. This scenario is common in CHOKe and 

xCHOKe, which results in TCP-friendly or responsive flows getting punished 

unnecessarily. 

Hence, in RECHOKe, we update the table when an incoming packet has:  

i) hits in the lookup table (table hits),  

ii) hits with a randomly chosen packet from the buffer (CHOKe hits), or  

iii) it has been selected to be dropped or marked by RED (RED hits).  

The first two cases are similar to xCHOKe, while the third is similar to RED 

and RED-PD behavior. We can use RED drop or mark history in the presence of ECN. 

In Section 5.2.1, we will analyze the RED buffer to verify how accurate these RED 

drops are in identifying malicious flows. The unreliability of CHOKe hits is mentioned 

in [35][36] but it is not analyzed. Hence, in Sections 5.2.2 and 5.2.3, we carry out 

studies of CHOKe and CHOKe-RED to verify their accuracy and to find ways to 

improve their accuracy. To improve on CHOKe and xCHOKe, we use two new 
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versions of the CHOKe algorithm. We call them Half1 and Half2. In Half1 CHOKe, the 

packets are randomly chosen from the first half of the buffer while in Half2 CHOKe, 

they are randomly chosen from the second half of the buffer. RECHOKe starts off with 

the original CHOKe algorithm, and then it samples the first quarter of the buffer with 

the entries in the table at t ms. It computes the occupancy percentage at the first quarter 

of the occupied queue by the entries in the table. If it is greater than 30%, then 

RECHOKe uses Half1-CHOKe, otherwise it uses Half2-CHOKe (see Section 5.3 for 

more details). 

In RECHOKe, we associate a time-to-live (TTL) with each entry in the lookup 

table. However, TTLs are not refreshed only when an incoming packet has:  

i) table hits,  

ii) CHOKe hits, or  

iii) RED hits.  

The first two cases again are similar to xCHOKe while the third case is unique 

to RECHOKe. 

5.1.1 Complexity Cost 

The computational complexity for RECHOKe is limited to:  

i) a hash lookup in the table for each packet which takes a constant time,  

ii) the computation of p* and c* if there is a table hit for that packet, and  

iii) the sampling of the first quarter of the occupied queue at t ms.  

The space complexity of RECHOKe is the size of the lookup table which can be 

either implemented as a variable table which grows as needed to approximately the 
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order of magnitude of malicious flows or based on a Least Recently Used or Least 

Frequently Used scheme [55]. 

5.1.2 Theoretical RECHOKe Model 

The approximate analysis for RECHOKe is an extension of the analysis for 

xCHOKe [35] where the system is modeled as a queue with a FIFO queuing discipline 

and assumes that each source is independent and identically distributed, and the arrival 

process is Poisson. Likewise, we denote the arrival rate of the ith source as λi and the 

mean service time for each packet as 1/µ. 

An incoming packet may suffer a hit in three phases of the RECHOKe 

algorithm:  

i) the flow label of the packet is in the lookup table (table hit),  

ii) the flow label of the packet matches that of a randomly drawn packet from 

the buffer (CHOKe hit) and  

iii) a RED drop  (RED hit).  

We will use a similar notation to [35], where  

1) PTABLE denotes the probability that an incoming packet will suffer a table hit,

 2) PCHOKe denotes the probability that the packet will suffer a CHOKe hit, and 

 3) PRED denotes the RED drop probability.  

Let us denote the number of Table, CHOKe and RED hits for a table entry by n. 

If the incoming packet’s flow label is in the lookup table, then the probability of 

dropping an incoming packet on a table hit can be given by 
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where m is the number of entries in the table. 

Assuming that no TTLs are refreshed, the maximum value of n can be 

approximated by: 

λi * TTL * (PTABLE + PCHOKe + PRED) 

where TTL is the initial time to live value for an entry in the lookup table. This 

is greater than xCHOKe’s 

k = λi * TTL * PCHOKe 

This is reflected in figure 5.38 implying the identification process is more 

rigorous in RECHOKe than in xCHOKe. Hence, the chances of the malicious flow’s 

packet getting dropped are greater in RECHOKe than in xCHOKe. The probability that 

a packet is not dropped by the RECHOKe algorithm is 

n
NoDrop TABLE RED REDP  = (1- P P  2 *) (1-Pc× × × × ) ,   thus: 

n 1
NoDrop TABLE RED REDP  = (1- P P  2 ) (1-P

(2 )

m

i
i

n
f n

m
=

⎛ ⎞
⎜ ⎟
⎜ ⎟× × × ≥ ×

×⎜ ⎟
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⎝ ⎠

∑
)

 

 

5.1 
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xCHOKe’s PNoDrop can be given by: 

k
NoDrop TABLE RED CHOKe REDP  = (1- P P  2 ) (1-P ) (1-P )× × × ×  5.2 

The value of PNoDrop in equation 5.1 is smaller than in equation 5.2, since at any 

instant of time, n > k and if c* is one, then it implies that the chances of dropping 

packets from malicious flows is greater for RECHOKe than for xCHOKe. This is 

reflected in figures 5.39 and 5.42. If c* is zero, it implies that the chances of dropping 

packets from low-bandwidth flows is greater for xCHOKe than for RECHOKe. This is 

reflected in figure 5.40 and 5.43. 

5.2 Simulation Results and Analysis 

This section presents the experiments and analysis to verify the accuracy of 

CHOKe hits, CHOKe misses and CHOKe-RED drops/marks. We have also performed 

experiments on RED, CHOKe and xCHOKe and compare them to RECHOKe. 

Using NS2, we simulate the bar-bell topology shown in figure 5.2. Here, we 

analyze the effects on the RED, CHOKe, xCHOKe and RECHOKe buffers in terms of 

buffer occupancy by a malicious flow, a constant-bit-rate UDP flow, and competing 

with 10 TCP flows over a 1-Mbps R1-R2 link. All TCP flows have the same round trip 

propagation delay of 20ms with each output link having a latency of 1ms and capacity 

of 10Mbps. The parameters for the RED, CHOKe, xCHOKe and RECHOKe buffers 

are: Thmin = 10, Thmax = 50, Pmax = 0.1. 
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Figure 5.1 The flowchart of RECHOKe 
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Figure 5.2 Simulation Network Topology 

We ran 11 simulation sets, starting with a 0.5 and then 1Mbps UDP flow rates 

and then increasing the rate of the malicious flows in 1Mbps increments. Each 

simulation was long enough for initial transients to settle and be insignificant. If 

simulation results do not have a time axis, then we have run enough simulation 

instances to claim a 95% confidence that our results are no more than 5% off. 

5.2.1 Experiments on RED 

In order to analyze the RED buffer to verify how accurate RED drops are in 

identifying malicious flows, we divide RED Drops into forced and unforced drops. 

Forced drops occur when the average queue length (avq) of the RED buffer is greater 

than Thmax, whereas unforced drops occur when Thmin< avq < Thmax. 
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To analyze the RED buffer, we define the following terms. RED victim: the 

packet that is randomly selected to be dropped from the FIFO buffer. A RED hit occurs 

when the RED victim represents the flow whose packets dominate the buffer at the time 

of selection of the RED victim. This can be either a good (proper) or a bad RED hit. 

Good RED hit: during a RED hit, the RED victim belongs to a malicious flow. Bad 

RED hit: during a RED hit, the RED victim belongs to a non-malicious (or TCP-

friendly) flow. It is a bad hit because we are punishing the non-malicious flow by 

dropping one of its packets. A RED miss occurs when the RED victim does not match 

the flow whose packets are dominating the buffer at the time of selection of the RED 

victim; this can again be a good or bad RED miss. Good RED miss: during a RED miss, 

the RED victim belongs to a malicious flow. Bad RED miss: during a RED miss, the 

RED victim belongs to a non-malicious flow. 

Figures 5.3 and 5.4 show the percentages of RED hits and misses for unforced 

and forced drops respectively. As it can be observed, the proportion of hits is greater in 

both figures when compared to that of the misses. This implies that the RED victim, 

whether it is due to a forced or unforced drop, belongs to the same flow whose packets 

dominate the RED buffer. To find the type of RED hits, we analyze both the good and 

bad RED hits for both types of drops. We have found that nearly all the RED hits are 

good hits for both types of drops. This means that the RED victims belong to the 

malicious flow and the malicious flow represents the dominant flow whose packets are 

occupying the buffer. Hence, this shows that the probability that a gateway picks a  
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Figure 5.3 The percentage of RED hits and misses for unforced drops 
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Figure 5.4 The percentage of RED hits and misses for forced drops 
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particular flow to mark or drop during congestion is roughly proportional to that flow's 

share of the bandwidth at the router. 

In both cases, there are prominent RED misses for 2 simulations, which occur 

when the rates of the UDP flow are at 0.5 and 1Mbps. Figures 5.5 and 5.6 show the 

number of good and bad RED misses for both types of drops. When the rate of the UDP 

flow is at 0.5Mbps, we have several good misses, implying that the RED victim, 

belonging to a malicious flow, did not match the flow whose packets dominate the 

buffer at the instance of selection of the victim packet. On the other hand, the number of 

bad misses (however very small, compared to those of good RED hits) gets reduced 

when the rate of the UDP flow increases for both types of drops. This means that the 

number of instances when the RED victim belongs to a non-malicious flow (and the 

non-malicious flow itself did not represent the dominant flow whose packets are 

occupying the buffer) are very small. 

With the RED experiments, we have shown that we can easily identify 

malicious flows by keeping track of the RED drops since the number of good RED hits 

is far greater than the number of RED misses and bad RED hits. The problem with RED 

hits is that they only increase as congestion increases. Hence, they do not control 

malicious flows on occasions when the congestion is light. They cannot be used alone 

to accomplish the goal of detecting, controlling and punishing malicious flows.  
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Figure 5.5 The number of RED good and bad misses for unforced drops 

0

20

40

60

80

100

120

140

160

0.5 1 2 3 4 5 6 7 8 9 10

Bandwidth (Mbps)

N
um

be
r o

f M
is

se
s

Good
Bad

 

Figure 5.6 The number of RED good and bad misses for forced drops 
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5.2.2 Experiments on CHOKe 

In this section, we study the CHOKe buffer by dividing the occupied portion of 

the buffer into four quarters to observe the following:  

i) the percentages of hits and misses, good and bad hits and misses,  

ii) the percentages of buffer occupancy within each quarter by the malicious 

flow for every packet arrival (i.e. in our experiment we use UDP flows as malicious 

flows),  

iii) the position of the victim packet within the buffer that are responsible for the 

hits and misses,  

iv) the relationship between the variation of the UDP rate with a constant R1-R2 

link and the buffer occupancy by the UDP flow in each quarter of the buffer. 

To analyze the CHOKe buffer, we define the following. CHOKe victim: the 

packet that is randomly selected from the FIFO buffer to be compared with each 

arriving packet. CHOKe hit occurs when the flow label of the CHOKe victim matches 

that of the arriving packet. A CHOKe hit can be either a good or bad CHOKe hit. Good 

CHOKe hit occurs when the arriving packet belongs to a malicious flow and hence, the 

CHOKe victim is also from that malicious flow. Bad CHOKe hit occurs when the 

arriving packet belongs to a TCP-friendly flow and hence, the CHOKe victim is also 

from that particular flow. CHOKe miss: this occurs when the CHOKe victim does not 

match the arriving packet. A CHOKe miss can be either a good or bad CHOKe miss. 

Good CHOKe miss occurs when the arriving packet belongs to a TCP-friendly flow and 

the CHOKe victim is from any other but that particular flow. Bad CHOKe miss occurs 
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when the arriving packet belongs to a malicious flow and the CHOKe victim is from 

any other but that particular flow. 

Figure 5.7 shows the percentages of CHOKe hits and misses. We can observe 

that when the UDP flow is less than three times the link capacity, the percentages of 

misses is about 5-40% greater than the percentages of hits. However, they drop rapidly 

from 68% to 53% when the UDP flow rate is increased from 0.5Mbps to 2Mbps. 

Increasing the rate of the UDP flow further only decreases the percentages of misses to 

about 3-7%. 
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Figure 5.7 Hits vs. misses 

 

As for hits, its percentages increase rapidly from 31% at 0.5Mbps to about 47% 

at 2Mbps. After 2Mbps, the increase hovers around 1-8% and improves only about 1-
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6% over that of the misses. This increase is small compared to that of the UDP rate. The 

increase in its rate should imply that more UDP packets should occupy the buffer 

enabling more hits and less misses. However, figure 5.7 shows that this was not the 

case. 

Figure 5.7 presents an interesting phenomenon. To investigate this, we divide 

the packets within the buffer into 4 quarters, where the first quarter is at the head of the 

queue. We call these quarters as Qtr1, Qtr2, Qtr3 and Qtr4. Figure 5.8 shows the results 

for this experiment. The tail quarter UDP occupancy percentage increases from 63% to 

98% as the UDP rate is varied whereas Qtr3 increases from 41% to 70%. In contrast the 

head quarter’s occupancy decreases rapidly from 42% to about 20% whereas those of 

Qtr3 are changing between 48% and 63%. The high UDP buffer occupancy percentages 

at the tail of the queue are expected since the UDP packets arrive at the tail section of 

the buffer. However, this results in choking TCP flows. The UDP flows advance in the 

queue is tapered off slowly due to the effects of the CHOKe hits. The head of the queue 

has the least UDP buffer occupancy percentages since it is at the head of the queue 

where the packets leave the buffer and it shows that CHOKe has been successful in 

reducing the number of packets in the buffer. However, overall, as shown in figure 5.8 

CHOKe does not lead to an overall increase in TCP packets in the buffer. The 

explanation is that CHOKe also affected the TCP-friendly flows by dropping TCP 

packets with bad misses (as shown in figures 5.9 and 5.10) and bad hits (as shown in 

figure 5.11). Although bad hits are small in numbers, they are effective in forcing the 
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TCP sources into reducing their rates. On the other hand, since the number of bad 

misses is large, UDP packets tend to occupy more buffer space than they should. 

An interesting observation is that the greater the rate of the malicious flows, the 

greater the buffer space they occupy at Qtr4. If there are more than one, let say, two 

UDP flows, one whose rate is at 10Mbps while another at 2Mbps. Then the packets 

from the UDP flow at 10Mbps will occupy greater buffer space at Qtr4 than those from 

the UDP flow at 2Mbps. The reverse is true at the head of the queue. 

Another observation is that the percentage at the head of the queue can provide 

a good upper bound in estimating the bandwidth share of the flows using the buffer. 

Here, in figure 5.8, Qtr1 gives an upper bound of about 42% of the bandwidth used by 

the UDP flow when its rate is at 0.5Mbps. 
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Figure 5.8 The percentage of average buffer occupancy by the UDP  
flow during CHOKe hits 
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Figure 5.9 shows CHOKe’s ratio of bad misses over good misses. At 0.5Mbps 

UDP rate the ratio is at 1.4 implying that the number of bad misses is only slightly 

higher than those of good misses, meaning that the number of arriving packets, 

belonging to the malicious flow and the victim that are chosen are from any other but 

that particular flow, is greater than the number of arriving packets, belonging to a TCP- 

friendly flow and the victim are chosen are from any other but that particular flow. 

However this ratio increases rapidly with a growing UDP transmission rate. The 

growing UDP rate should imply that instead of more bad misses, there should be a 

greater number of good hits. Hence, there should be less bad hits as the rate of the UDP 

flow is increased as evident from figure 5.11. Furthermore, there should be a greater 

number of good misses since there are many more UDP packets in the buffer that 

should have been chosen as victims to be compared with the incoming TCP packets. 

However, less good misses imply that TCP flows have encountered choke hits. This 

behavior has an adverse effect on the throughput of TCP flows. In fact, figure 5.9 

should ideally be a negatively sloped plot. Figure 5.10 shows the similar results on a 

different scale; obviously the victims are not chosen appropriately to ensure more good 

hits and good misses. 
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Figure 5.9 CHOKe’s ratio of bad misses over good misses 
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Figure 5.10 The percentage of bad and good misses 
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Figure 5.11 shows CHOKe’s ratio of bad hits over good hits. At low UDP rates 

this ratio is around 0.05 implying that the number of good hits is about 14 times greater 

than those of bad hits. This means that the conditions favoring that both the arriving 

packets and their randomly picked victims are from the same TCP-friendly flows are far 

smaller than the conditions favoring that both arriving packets and their randomly 

picked victims are from the UDP flow. This makes sense since as the rate of UDP flows 

increase, the number of good hits should also increase as more UDP packets are 

occupying the buffer. However, the number of bad hits (although small) has an adverse 

effect on the throughput of the TCP flows. 
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Figure 5.11 Ratio of bad and good hits against the UDP’s bandwidth 
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To verify the effects of CHOKe hits on the buffer in terms of reducing the rate 

of malicious flows, we measure the percentages of average buffer occupancy of the 

UDP flow at each buffer quarter during CHOKe hits for every 10s of a 30s simulation. 

The percentages are shown in figures 5.12, 5.13 and 5.14 respectively. High UDP buffer 

occupancy percentages at the tail of the queue are expected since UDP packets arrive at 

the tail section of the buffer. However, this may also result in choking TCP flows. As 

UDP flows advance in the queue they are tapered off slowly due to the effects of 

CHOKe hits. The head of the queue has the least UDP buffer occupancy percentages 

showing that CHOKe has been successful in reducing the number of packets in the 

buffer. Although there are some reductions before the first 10 seconds, the average UDP 

occupancy in Qtr1 is between 22 and 58% as the UDP rate is varied. After the first 10 

seconds, increasing the duration of the flows has no big effect on the outcome. The 

reduction in Qtr1 reflects the reduction in the bandwidth of the UDP flow but the 

unresponsiveness in the reduction is due to bad misses (as shown in figures 5.9 and 

5.10) and bad hits (as shown in figure 5.11). 
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Figure 5.12 The percentages of average buffer occupancy by the UDP  
flow during CHOKe hits (0-10s) 
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Figure 5.13 The percentages of average buffer occupancy by the UDP  
flow during CHOKe hits (10-20s) 
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Figure 5.14 The percentages of average buffer occupancy by the UDP  
flow during CHOKe hits (20-30s) 
 

Figure 5.15 shows the average UDP buffer occupancy percentages during 

CHOKe misses. The queue’s last quarter’s average UDP occupancy percentages 

increase from 46% to 82% compared to the 63% to 98% during CHOKe hits. In fact, as 

expected, all 4 quarters show reduced average UDP buffer occupancy during CHOKe 

misses when compared to cases with CHOKe hits. Of all the quarters, Qtr4 reduces the 

least. This is mainly due to the fact that most of the random packets are chosen from the 

first 3 quarters, leading to a large number of misses. As is in figure 5.8, similar 

observation is observed with respect to Qtr4, that is, the greater the rate of the UDP 

flow, the more buffer space it will occupy in Qtr4. 
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Figure 5.15 The percentages of average buffer occupancy by UDP  
flow during CHOKe misses 
 

We then plot the average percentage of buffer occupancy by the UDP flow at 

each quarter during CHOKe misses for every 10 seconds of a 30 second simulation. 

Figures 5.16, 5.17 and 5.18 show the average percentage of buffer occupancy by the 

UDP flow at each quarter during CHOKe misses for the first, second and third 10 

seconds respectively. From the 3 figures, we notice that the average UDP buffer 

occupancy rate for Qtr3 and Qtr4 remains quite the same. Qtr1 reduces after the first 10 

seconds, quite slowly due to the tremendous amounts of bad misses (as shown in figure 

5.10). After the first 10 seconds, increasing the time for the simulations has an 

insignificant effect on the outcome as could be seen in figures 5.17 and 5.18. Although 

there were some reductions just before the first 10 seconds, the average UDP occupancy 
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in Qtr1 was between 8 and 37% as the UDP rate was varied. Qtr2 reduced too but not as 

drastically as Qtr1. The reduction in Qtr1 reflected the reduction in the bandwidth of the 

UDP flow. Our aim is to reduce this occupancy it faster than what is achieved using 

CHOKe. 

Hence, figure 5.8, and figures 5.12 to 5.18 indicate that it would make sense to 

choose the random packet from Qtr4, thereby increasing the chances of achieving good 

hits. 
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Figure 5.16 The percentage of average buffer occupancy by the UDP  
flow during CHOKe misses (0-10s) 

 111



 

 

0

20

40

60

80

100

120

0.5 1 2 3 4 5 6 7 8 9 10

Bandwidth (Mbps)

B
uf

fe
r O

cc
up

an
cy

 (%
)

Qtr1
Qtr2
Qtr3
Qtr4

 

Figure 5.17 The percentage of average buffer occupancy by the UDP 
flow during CHOKe misses (10-20s) 
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Figure 5.18 The percentage of average buffer occupancy by the UDP 
flow during CHOKe misses (20-30s) 
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Figure 5.19 shows the percentages of the location of victims within each 

quarter. As expected, victims were chosen almost proportionately from the 4 regions. 

Figures 5.20 and 5.21 show the percentages of location of victims within each quarter; 

when the UDP flow’s rate is changed, during CHOKe hits and misses respectively. 

Figure 5.20 clearly shows that victims chosen from Qtr3 and Qtr4 increasingly matched 

the arriving packets as the rate of the UDP flow increased. The rate of increase, 

however, was more in Qtr 4 than Qtr3 since more UDP packets occupied the region (as 

shown in figure 5.8). We need to analyze these CHOKe hits to check whether they are 

good or bad CHOKe hits (as shown in figures 5.22 and 5.23). Figure 5.22 shows more 

good CHOKe hits for Qtr4 and Qtr3 as the rate is increases due to increasing occupancy 

of Qtr4 and Qtr3 by UDP packets. On the other hand, good CHOKe hits decline for 

Qtr2 and Qtr1 since there is a decreasing occupancy of Qtr2 and Qtr1 by UDP packets 

as the UDP rate increases. In figure 5.23, Qtr4 suffered more bad CHOKe hits when the 

UDP flow was at and around the R1-R2 link’s capacity. As a result, the TCP flows 

suffered losses leading to low throughput resulting in a reduced number of bad CHOKe 

hits at the other quarters. As the UDP rate increased, the number of bad CHOKe hits in 

Qtr4 has reduced due to the large increase in UDP packets.  

Hence, the number of bad CHOKe hits increases when 

i) the number of flows using the buffer decreases,  

ii) the rates of the TCP-friendly flows using the buffer increases, and  

iii) the rates of the malicious flows using the buffer decreases.  

On the other hand, the number of good CHOKe hits increases when  
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i) the number of flows using the buffer decreases,  

ii) the rates of the TCP-friendly flows using the buffer decreases and  

iii) the rates of the malicious flows using the buffer increases. 

In figure 5.20, the victim hits are very small for Qtr1 since this quarter has the 

lowest number of UDP packets among the 4 regions (as shown in figure 5.8). 

Conversely, in figure 5.21, the victim misses are very high for Qtr1 since this quarter 

has the lowest UDP packets among the 4 regions. However, we need to analyze these 

victim misses again to check whether they are good or bad CHOKe misses (as shown in 

figures 5.24 and 5.25 respectively). 

In figure 5.24, the percentages of good CHOKe misses are inversely 

proportional to the UDP rate. As the UDP rate is increased, the percentages of good 

CHOKe misses decrease. The percentages of good CHOKe misses for all the quarters 

are large at and around the link capacity since the number of packets from different 

flows using the buffer are greater at low UDP rates. 

In figure 5.25, the percentages of bad CHOKe misses were directly proportional 

to the UDP rate for Qtr1 and Qtr2 while it was inversely proportional to the UDP rate 

for Qtr3 and Qtr4. This was mainly because of the concentration of UDP packets in 

Qtr3 and Qtr4 (as shown in figure 5.8). Hence, the number of bad CHOKe misses 

increases when  

i) the number of flows using the buffer increases,  

ii) rates of TCP-friendly flows using the buffer increase, and  

iii) rates of malicious flows using the buffer decrease.  
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On the other hand, the number of good CHOKe misses increases when  

i) the number of flows using the buffer increases,  

ii) rates of TCP-friendly flows using the buffer decrease, and  

iii) rates of malicious flows using the buffer increase. 
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Figure 5.19 The percentages of location of victims within each quarter 
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Figure 5.20 The percentage of location of CHOKe hits within each quarter 

0
10
20
30
40
50
60
70
80
90

100

0.5 1 2 3 4 5 6 7 8 9 10

Bandwidth (Mbps)

C
H

O
Ke

 M
is

se
s 

(%
)

Qtr1
Qtr2
Qtr3
Qtr4

 

Figure 5.21 The percentage of location of CHOKe misses within each quarter 
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Figure 5.22 The percentage of location of good CHOKe hits within each quarter 
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Figure 5.23 The percentage of location of bad CHOKe hits within each quarter 
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Figure 5.24 The percentage of location of good CHOKe misses within each quarter 
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Figure 5.25 The percentage of location of bad CHOKe misses within each quarter 
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 5.2.3 Experiments on CHOKe-RED 

CHOKe victims that escape being dropped (Figure 5.7 - those involved in 

CHOKe misses) are received by the RED queue which either accepts or drops them. If 

avq > Thmax then packets are dropped; if Thmin < avq < Thmax then packets are dropped 

or marked probabilistically; if Thmin > avq then packets are accepted. To analyze 

CHOKe-RED, we define the following terms for RED drops. CHOKe miss victim is a 

packet which after experiencing a CHOKe miss enters the RED queue. CHOKe miss 

RED hit occurs when the flow id of the CHOKe miss victim matches the flow whose 

packets dominate the buffer at the time of selection of the CHOKe miss victim. A 

CHOKe miss RED hit could be either a good or bad CHOKe miss RED hit. Good 

CHOKe miss RED hit: during a CHOKe miss RED hit, the CHOKe miss victim 

belongs to a malicious flow. Bad CHOKe miss RED hit: during a CHOKe miss RED 

hit, the CHOKe miss victim belongs to a non-malicious flow. CHOKe miss RED miss 

occurs when the flow id of the CHOKe miss victim does not match the flow whose 

packets dominate the buffer at the time of selection of the CHOKe miss victim. This 

again could be either a good or bad CHOKe miss RED miss. Good CHOKe miss RED 

miss: during a CHOKe miss RED miss, the CHOKe miss victim belongs to a non-

malicious flow. Bad CHOKe miss RED miss: during a CHOKe miss RED miss, the 

CHOKe miss victim belongs to a malicious flow. 

Figure 5.26 shows that out of the packets that are dropped by the RED buffer, a 

large majority experience RED hits. Almost all RED hits are good CHOKe miss RED 

hits, thus RED was accurate in identifying malicious flows from CHOKe misses. It 
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seems that at lower rates, there is a large number of CHOKe misses. However, these are 

very few since at these rates, the queue drops or marks few packets. We also find that 

all CHOKe miss RED misses, although few in number, were bad. Hence, RED also acts 

as an additional filter, after CHOKe, to weed out the packets belonging to malicious 

flows. This implies that both CHOKe and RED history could (should) be used together 

to identify malicious flows faster than using one or the other. Although CHOKe-RED 

drops/marks are more accurate than CHOKe hits and misses, they occur less often since 

in RED, a packet is either accepted or dropped whenever avq is between Thmin and 

Thmax. Moreover, only one packet is dropped while in CHOKe, two packets are dropped 

for each hit. Hence, in the next section, we aim to improve on the accuracy of CHOKe 

hits and misses. 
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Figure 5.26 The percentage of RED hits and misses after CHOKe misses 
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5.3 Half1- and Half2-CHOKes 

From the experiments in the previous section, we see that if UDP flow rates are 

high and a victim packet is chosen from Qtr3 and Qtr4 (or Half2), that will improve the 

chances of having  

i) a good CHOKe hit if the arriving packet belongs to a malicious flow, or  

ii) a good CHOKe miss if the arriving packet belongs to a TCP-friendly flow, 

while decreasing the chances of  

iii) bad CHOKe hits if the arriving packet belongs to a malicious flow, or  

iv) bad CHOKe misses if the arriving packet belonged to a TCP-friendly flow. 

However, for UDP rates at or below the link capacity, the victim packet should be 

chosen from Qtr1 and Qtr2 (or Half1). Although at low rates, Half2 has slightly greater 

percentages in good CHOKe hits than at Half1, the latter gives better protection to non-

malicious flows (as shown in figure 5.23). Here we show by experiments that at lower 

rates, good CHOKe hits are more effective in Half1 than at Half2. Hence, we propose 

two versions of CHOKe. The first, Half2-CHOKe, chooses victim packets from Half2 

whereas the second, Half1-CHOKe, chooses from Half1. From figure 5.8, UDP packets 

occupancy of Qtr1 during CHOKe hits is consistently greater than 30% when the UDP 

rate is at and less than the link capacity. This is true whenever the sum of UDP rates is 

at or below the link capacity. 

Using the same network topology as before, we carried out simulations using 

NS2 to compare Half1, Half2 and CHOKe. Figures 5.27 and 5.28 illustrate two 

examples when the UDP rate is set to a rate greater than the link capacity using the 
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network topology in figure 5.2 and the number of TCP flows is set at 10. Here, the 

CHOKe version using Half2 (Half2-CHOKe) performs better than both regular CHOKe 

and Half1-CHOKe. Even when the number of UDP flows is increased, as long as the 

sum of their bandwidth is greater than the link capacity, Half2-CHOKe outperforms the 

other two. Figures 5.29, 5.30 and 5.31 illustrate an example of one of the many 

experiments that we have performed confirming this result. Figure 5.32 shows a 

comparison of bandwidths of malicious flows for all three schemes.  
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Figure 5.27 Link utilization with a UDP flow of 2Mbps 
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Figure 5.28 Link utilization with a UDP flow of 10Mbps 
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Figure 5.29 Link utilization of 2 UDP flows (1Mbps each) using CHOKe 
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Figure 5.30 Link utilization of 2 UDP flows (1Mbps each) using Half1 
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Figure 5.31 Link utilization of 2 UDP flows (1Mbps each) using Half2 
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Figure 5.32 Link utilization of 2 UDP flows at 1Mbps 

 

Figure 5.33 illustrates the situation when the UDP rate is set below the link 

capacity, i.e. at 0.5Mbps, using the same network topology as before. Here, Half1-

CHOKe performs better than both regular and Half2-CHOKe. When the number of 

UDP flows is increased, as long as the sum of their rate is below the link capacity 

Half1-CHOKe outperforms the other two variants. Figures 5.34, 5.35, and 5.36 show 

some sample experiment outcomes from the many experiments we performed 

confirming this result. Figure 5.37 shows a comparison of bandwidths of the malicious 

flows for the 3 schemes for 3 UDP flows at 0.3Mbps. Here, Half1-CHOKe decreases 

the UDP occupancy of Qtr1 and Qtr2 faster than regular CHOKe. The effects of 

CHOKe hits are far greater for Half1-CHOKe than for Half2-CHOKe as the former 
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focuses on the head of the queue, providing an approximate upper bound for the 

bandwidth of the outgoing UDP flow. 
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Figure 5.33 Link utilization of the UDP flow at 0.5Mbps 
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 Figure 5.34 Link utilization of 3 UDP flows (0.3Mbps each) using CHOKe 
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Figure 5.35 Link utilization of 3 UDP flows (0.3Mbps each) using Half1 
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Figure 5.36 Link utilization of 3 UDP flows (0.3Mbps each) using Half2 
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Figure 5.37 Link utilization of 3 UDP flows at 0.3Mbps 

 

Hence, for RECHOKe, we will start with Half2-CHOKe and at certain intervals 

(e.g., every quarter second) we monitor the first quarter of the buffer to check the 

occupancy of the buffer by the malicious flows recorded in the table. If the occupancy 

rate is greater than 30%, we can proceed with Half1-CHOKe otherwise we switch to 

Half2-CHOKe. 

5.4 Analysis of xCHOKe and RECHOKe 

In this section we analyze xCHOKe and RECHOKe buffers; to do this, we 

define the following terms. A table hit occurs when the flow id of the arriving packet 

matches a flow id entry already in the table. A table hit can be either good or bad. The 

table hit is good if the flow that the hit packet belongs to is malicious; it is a bad hit 
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otherwise. Table drops are table hits that were selected for dropping by xCHOKe (after 

drawing a random with probability p*); for RECHOKe, these are table hits that were 

selected after evaluating p* and c*. Good table drops occur when the dropped packet 

belongs to a malicious flow; bad table drops occur otherwise. A CHOKe miss victim is 

a packet which after experiencing a CHOKe miss enters the RED queue. CHOKe miss 

RED hit occurs when the flow id of the CHOKe miss victim matches the flow whose 

packets dominate the buffer at the time of selection of the CHOKe miss victim; CHOKe 

miss RED miss occur otherwise. A CHOKe miss RED hit could be either a good or bad: 

it is good if the victim packet belongs to a malicious flow; it is bad otherwise. A 

CHOKe miss RED miss again could be either a good or a bad CHOKe miss RED miss. 

Good CHOKe miss RED miss is when the victim packet belongs to a non-malicious 

flow; it is bad otherwise.  

Using NS2, we simulate a bar-bell topology and analyze the xCHOKe and 

RECHOKe buffers in terms of buffer occupancy by a malicious flow (a constant-bit-

rate UDP flow) competing with 10 TCP flows over a 3-Mbps link. All TCP flows have 

the same round trip propagation delay of 20ms with each output link having a latency of 

1ms and capacity of 10Mbps. The parameters for the xCHOKe and RECHOKe buffers 

are: Thmin = 10, Thmax = 50, Pmax = 0.1. 

We ran simulations in 11 steps, starting with a malicious UDP rate of 0.5Mbps, 

increasing the rate in 1Mbps increments. Each simulation was long enough for initial 

transients to settle and be insignificant. Where appropriate, enough simulations were 
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run to claim a 95% confidence that the confidence intervals are less than 5% of the 

mean. 

Figure 5.38 shows the number of table hits for both the xCHOKe and 

RECHOKe algorithms. The number of hits in RECHOKe was nearly 50-65% greater 

than when xCHOKe was used. The combination of CHOKe and RED histories allow 

RECHOKe to register a large number of hits and using these hits, RECHOKe can 

isolate these malicious flows faster and more accurately. RECHOKe does punish 

malicious flows more rigorously while not penalizing TCP-friendly flows as it can be 

observed by comparing figures 5.55 and 5.56. The majority of the hits shown in figure 

5.38 are good table hits as witnessed by figures 5.39 and 5.40. This points to 

RECHOKe identifying malicious flows better than xCHOKe. Figure 5.39 also shows 

that the number of good table hits for RECHOKe is 50-65% greater than that of 

xCHOKe; Figure 5.40 shows that the number of bad table hits for RECHOKe is 2-16 

times less as well. 
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Figure 5.38 The number of table hits vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.39 The number of good table hits vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.40 The number of bad table hits vs. UDP rate (RECHOKe and xCHOKe) 

 

Next, we analyze the number of table drops for both algorithms. Ideally drops 

should only consist of good table drops. Figure 5.41 shows the number of table drops 

for both algorithms. Figure 5.42 shows the number of good table drops; we can observe 

that RECHOKe outperforms xCHOKe significantly; while figure 5.43 shows that the 

same is true in terms of bad table drops. Nearly all the table misses (not shown here) for 

both algorithms are good table misses. We can conclude that RECHOKe drops fewer 

packets from TCP-friendly flows than xCHOKe, thereby penalizing TCP-friendly flows 

less significantly than xCHOKe. 
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Figure 5.41 The number of table drops vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.42 The number of good table drops vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.43 The number of bad table drops vs. UDP rate (RECHOKe and xCHOKe) 

 

Due to the large number of good table drops and the almost insignificant 

number of bad table drops, RECHOKe is faster and more accurate in the identification 

of flows. Unlike xCHOKe, RECHOKe updates the table after table hits. This is 

necessary because advancing farther in the simulations CHOKe hits become more 

unreliable as the number of packets belonging to the malicious flow in the buffer are 

reduced drastically leading to a greater number of bad CHOKe hits (as shown in figures 

5.46 and 5.47). The same phenomenon can be observed in xCHOKe and CHOKe, 

which leads to unnecessary punishment of TCP-friendly flows. Hence, in RECHOKe, 

we do not drop packets during CHOKe hits. Figures 5.44 and 5.45 show that the 

number of CHOKe hits and misses for both algorithms, reflect this trend. CHOKe hits 
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did not affect RECHOKe as the packets responsible for these hits were not dropped but 

passed on to the RED buffer. Although these hits were updated in the table, the c* 

condition prevents unnecessary drops of TCP-friendly packets. 
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Figure 5.44 The number of CHOKe hits vs. UDP rate (RECHOKe and xCHOKe) 

0

100000

200000

300000

400000

500000

600000

0.5 1 2 3 4 5 6 7 8 9 10

Bandwidth (Mbps)

N
um

be
r o

f C
H

O
K

e 
M

is
se

s RECHOKe
xCHOKe

 

Figure 5.45 The number of CHOKe misses vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.46 The number of good CHOKe hits vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.47 The number of bad CHOKe hits vs. UDP rate (RECHOKe and xCHOKe) 
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Upon analyzing the CHOKe misses in figure 5.48 and 5.49, we have found that 

RECHOKe significantly outperforms xCHOKe in both the number of bad CHOKe 

misses and good CHOKe misses despite having the larger number of CHOKe Misses. 

This shows that RECHOKe allows packets from TCP-friendly flows to enter the RED 

buffer more frequently than xCHOKe. 
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 Figure 5.48 The number of bad CHOKe misses vs. UDP rate (RECHOKe and 
 xCHOKe) 
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 Figure 5.49 The number of good CHOKe misses vs. UDP rate (RECHOKe  
 and xCHOKe) 

 

Next, we analyze RED hits and misses for both RECHOKe and xCHOKe. 

Figure 5.50 shows that the number of dropped packets was greater when using 

RECHOKe. This is true because during CHOKe hits packets are not dropped but 

admitted into the buffer; as a result, more packets need to be dropped by the RED 

buffer. Analyzing both figures 5.51 and 5.52 we can see that the most RED hits with 

RECHOKe are good, i.e., most dropped packets belong to malicious flows. This 

happens in spite of most of the admitted packets being from the ten TCP-friendly flows. 

After the good RED hits, the malicious flows became no longer dominant. Hence, RED 

took out more UDP packets from (the already the few) that had been admitted into the 

buffer.  
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Figure 5.50 The number of RED hits vs. UDP rate (RECHOKe and xCHOKe) 
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Figure 5.51 The percentages of good and bad RED hits vs. UDP rate (RECHOKe) 
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Figure 5.52 The percentages of good and bad RED hits vs. UDP rate (xCHOKe) 

 

5.5 Comparing RECHOKe with RED, CHOKe and xCHOKe  

In this section, we present experiments to compare RECHOKe with RED, 

CHOKe and xCHOKe. In these sets of experiments we again use the same barbell 

topology as before (as shown in figure 5.2), however with two malicious flows. Each of 

these flows is a constant-bit-rate UDP flow set at a) 1.2Mbps and b) 2Mbps, competing 

with 10 TCP flows over a 3-Mbps R1-R2 link. (UDP rates of 1.2Mbps result in flows 

with a capacity less than the link capacity, while using 2Mbps flows put us beyond this 

capacity.) All TCP flows have the same round trip propagation delay of 20ms with each 

output link having a latency of 1ms and a capacity of 10Mbps. The TTL is 10ms for 
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both xCHOKe and RECHOKe. The RED parameters for RED, CHOKe, xCHOKe and 

RECHOKe buffers are: Thmin = 10, Thmax = 50, Pmax = 0.1. 

We present two simulation scenarios; in Scenario 1, we study the impact of two 

malicious flows with non-identical rates on a set of well-behaved TCP flows with 

identical RTTs while in Scenario 2, we deal with non- identical RTTs. 

 5.5.1 Scenario 1 

Figures 5.53, 5.54, 5.55 and 5.56 show the bandwidth allocation on the 

congested link for each flow using RED, CHOKe, xCHOKe and RECHOKe buffer 

respectively when the UDP rate is low. Figure 5.57 shows a comparison of bandwidths 

of the malicious flows for the 4 schemes. RED, as expected, does not control the 

malicious flows (UDP1 and UDP2) from gaining control of almost the entire link 

bandwidth. The bandwidths of the TCP-friendly flows (TCP1 to TCP10) are almost 

zero. CHOKe and xCHOKe do control malicious flows, however, during the process of 

controlling these malicious flows, TCP flows suffer CHOKe hits and as a result suffer 

bandwidth losses. On the other hand, by reducing bad CHOKe hits, RECHOKe controls 

malicious flows better than CHOKe and xCHOKe. It also offers better protection for 

TCP-friendly flows. 
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Figure 5.53 Link utilization with RED 
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Figure 5.54 Link utilization with CHOKe  
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Figure 5.55 Link utilization with xCHOKe  
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Figure 5.56 Link utilization with RECHOKe 
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Figure 5.57 UDP flow rates with RECHOKe, xCHOKe, CHOKe and RED 

 

Figures 5.58 to 5.62 show results for a similar setup but with the high UDP flow 

rates. The results are also similar to the previous simulation results; RED, CHOKe and 

xCHOKe cannot control the two malicious flows as well as RECHOKe (which thus 

offers better protection to TCP-friendly flows). 
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Figure 5.58 Link utilization with RED 
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Figure 5.59 Link utilization with CHOKe 
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Figure 5.60 Link utilization with xCHOKe 
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Figure 5.61 Link utilization with RECHOKe 
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Figure 5.62 UDP flow rates with RECHOKe, xCHOKe, CHOKe and RED 

 

Next, we study the behavior of UDP flows when the number of TCP flows is 

increased.  In these sets of experiments we again use the same barbell topology as 

before (as shown in figure 5.2), however with the two malicious flows at 2Mbps each, 

competing with N number of TCP flows over a 3-Mbps R1-R2 link. 

 The results are shown in Table 5.1. Although the increase in the number 

of TCP flows implied an increase in the unreliability of CHOKe hits in affecting these 

TCP flows, it does not affect RECHOKe for the following reasons: 

 1) Packets are not dropped as a result of CHOKe hits and 

 2) The boolean function c* 
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 In fact, the increase in congestion leads to an increase in the number of RED 

hits. RED hits are more reliable in detecting malicious flows (Section 5.2.1). Packets 

dropped by RED are mostly UDP packets and the increase in updates in the Table due 

to these RED hits increases the chances of dropping UDP packets as a result of Table 

hits. 

Table 5.1 Affects of Increasing Number of TCP Flows 

 

N number of TCP flows Ave Link utilization by UDP Ave Link utilization by TCP

10 0.15 0.28 

20 0.06 0.14 

30 0.04 0.097 

40 0.025 0.073 

 5.5.2 Scenario 2  

In this set of experiments, the network setup is similar to that of the previous 

section; however, we make the two UDP flows rates asymmetric by setting them at 1 

and 3Mbps respectively. In addition, the ten TCP flows are simulated with non-identical 

round trip delays at 2ms delay increments across the flows. The R1-R2 link is set to a 

bandwidth of 3Mbps; RED parameters are the same as before. 

Figures 5.63 to 5.66 show the bandwidth allocation for the congested link for 

each flow for RED, CHOKe, xCHOKe, and RECHOKe respectively. Figure 5.67 shows 
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a comparison of bandwidths of the malicious flows for all 4 schemes. Again, as 

expected, RED does not control malicious flows from gaining control of almost the 

entire link bandwidth. CHOKe and xCHOKe do control these malicious flows however 

they also punish the TCP flows with bad CHOKe hits. By minimizing the bad CHOKe 

hits, RECHOKe controls malicious flows best (thus protecting TCP-friendly flows 

best). 
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Figure 5.63 Link utilization with RED 
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Figure 5.64 Link utilization with CHOKe 
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Figure 5.65 Link utilization with xCHOKe 
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Figure 5.66 Link utilization with RECHOKe 
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Figure 5.67 UDP flow rates with RECHOKe, xCHOKe, CHOKe, and RED 
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5.6 Summary  

In this chapter, we analyzed the accuracy of CHOKe hits, CHOKe misses and 

CHOKe-RED drops/marks. We found that 

1) CHOKe hits, in the form of bad CHOKe hits, were unreliable in that they 

affected non-malicious flows adversely by dropping their packets,  

2) CHOKe misses, in the form of bad CHOKe misses, were unreliable in that 

they allowed UDP packets to steal more bandwidth from TCP flows.  

To further investigate the cause of these problems, we presented and analyzed two 

variations of CHOKe called Half1 and Half2 to improve upon CHOKe. 

In this chapter, we have also presented RECHOKe based on Half1- and Half2-

CHOKe, a scheme for detecting, controlling and punishing malicious flows in IP 

networks. We showed that RECHOKe outperforms RED, CHOKe and xCHOKe by 

combining the techniques used by xCHOKe and RED-PD in identifying and punishing 

malicious flows while eliminating the complexity of dropping or marking randomly 

selected packets already queued (a method used by both CHOKe and xCHOKe) and the 

unreliability of CHOKe hits. 

 152



 

 

 

CHAPTER 6 

RCUBE 

 

In this chapter, we merge all our previous work to propose RCUBE (Receiver 

Window Modified Random Early Detection queues with RECHOKe) which combines 

the advantages of RWM (Receiver Window Modification - Chapter 4) with the 

RECHOKe scheme (introduced in Chapter 5). By using the RECHOKe scheme, 

RCUBE easily identifies malicious flows by using CHOKe hit and CHOKe-RED 

histories, while requiring only a small amount of information, approximately 

proportional to the order of magnitude of malicious flows. By using the RWM scheme, 

we reduce the average TCP queue sizes in the queues and in doing so, not only make it 

easier to identify malicious flows using RECHOKe but also reduce the queuing delay 

resulting in significant improvements in one-way end-to-end packet delays, delay jitter, 

throughput and number of dropped packets for TCP-friendly flows. We analyze 

xCHOKe, RECHOKe and RCUBE in detail using NS2 and show that RCUBE easily 

outperforms RED, either used by itself or with CHOKe, xCHOKe, or RECHOKe, in 

identifying, controlling and punishing malicious flows and in protecting TCP-friendly 

flows. 

The rest of this chapter is organized as follows. The next section describes 

RCUBE, while Section 6.2 presents a comparative analysis of xCHOKe, RECHOKe, 
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and RCUBE. Section 6.3 details simulation results and compares RCUBE to several 

other schemes. Finally, Section 6.4 concludes the chapter. 

6.1 Description of RCUBE 

In this section we are proposing RCUBE, an active queue management scheme 

that merges RWM and RECHOKe, thus combining the advantages of both of these 

schemes. As RECHOKe requires modifications to network routers we are going to 

investigate a situation when RWM is implemented at all network routers and not just at 

ingress or gateway routers. RECHOKe selects a segment to be dropped whenever the 

flow of that segment dominates the buffer. Hence, TCP flows whose acknowledgements 

did not follow a symmetrical reverse path will have their packets selected for dropping 

if they dominate the buffer. 

RCUBE works the following way: if the average queue length (avq) is greater 

than the minimum threshold, Thmin, and smaller than the maximum threshold, Thmax, 

then the lookup table is checked to see if the arriving packet's flow label is present in it. 

If there is a table hit, the arriving packet is marked for dropping and the associated hit 

counter is incremented. A packet is then selected at random from the queue and its flow 

label is compared with that of the arriving packet. If the flow labels are the same 

(CHOKe hit), the flow label is added to the lookup table with an initial value of one for 

the associated hit counter. If the flow is already in the table, the associated hit counter is 

incremented. Unlike in xCHOKe, packets are not dropped or marked for dropping as a 

result of CHOKe hits; they are allowed to enter the FIFO buffer. If the packet would be 

dropped by RED or the ACK would be modified by RWM, then the flows label is 
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added to a lookup table with an initial value of one for an associated hit counter or if the 

flow is already in the table, the associated hit counter is incremented. This behavior is 

depicted in the flowchart of figure 6.1. 

6.1.1 Complexity Cost 

The computational complexity for RCUBE is limited to:  

i) a hash lookup in the table for each packet which takes a constant time,  

ii) the computation of p* and c* if there is a table hit for that packet,  

iii) the sampling of the first quarter of the occupied queue at t ms, and 

iv) the modification of ACKs by the RWM scheme.  

The space complexity of RCUBE is the size of the lookup table which can be 

either implemented as a variable table which grows as needed to approximately the 

order of magnitude of malicious flows or based on a Least Recently Used or Least 

Frequently Used scheme [55]. 

6.1.2 Theoretical RCUBE Model 

The approximate analysis for RCUBE is an extension of the analysis for 

xCHOKe [35][36] where the system is modeled as a queue with a FIFO queuing 

discipline and assumes that each source is independent and identically distributed, and 

the arrival process is Poisson. Likewise, we denote the arrival rate of the ith source as λi 

and the mean service time for each packet as 1/µ. 
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Figure 6.1 The flowchart of RCUBE 
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An incoming packet may suffer a hit in three phases of the RCUBE algorithm:  

i) the flow label of the packet is in the lookup table (table hit),  

ii) the flow label of the packet matches that of a randomly drawn packet from 

the buffer (CHOKe hit) and  

iii) a RED drop and/or RWM ACK modification (RED hit).  

We will use a similar notation to [35][36], where  

1) PTABLE denotes the probability that an incoming packet will suffer a table hit,

 2) PCHOKe denotes the probability that the packet will suffer a CHOKe hit, and 

 3) PRED denotes the RED drop probability, and 

4) PRWM denotes the RED-RWM ACK modifying probability. 

Let us denote the number of table, CHOKe and RED hits using RCUBE for a 

table entry by r. If the incoming packet’s flow label is in the lookup table of size m, then 

the probability of dropping an incoming packet using RCUBE on a table hit can be 

given by: 

* min(1, 2 ) *r
RWMRCUBEP P= × s×  

where r is a function of PTABLE, PCHOKe and PRWM and s* is Boolean function 

represented by 

* 1

(2 )

m

i
i

r
s f r

m
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ≥

×⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 

Similarly, for RECHOKe,  

* min(1, 2 ) *n
REDRECHOKeP P= × c×  
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where n is a function of PTABLE, PCHOKe and PRED and c* is Boolean function 

represented by 

* 1

(2 )

m

i
i

n
c f n

m
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ≥

×⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 

Assuming that no TTLs are refreshed, the maximum value of r and n can be 

approximated by: 

r =λi * TTL * (PTABLE + PCHOKe + PRWM) and 

n = λi * TTL * (PTABLE + PCHOKe + PRED) 

where TTL is the initial time to live value for an entry in the lookup table. This 

is greater than xCHOKe’s 

k = λi * TTL * (PCHOKe) 

Whenever avq is between Thmin and Thmax, the RWM values for Pmax is greater 

than those of RED. Hence, since PRWM > PRED whenever avq is between Thmin and 

Thmax, r is always greater than n. 

This is reflected in figure 6.2 implying the identification process is more 

rigorous in RCUBE than in RECHOKe and xCHOKe. Hence, the chances of the 

malicious flow’s packet getting dropped are greater in RCUBE than in RECHOKe and 

xCHOKe.  

The probability that a packet is not dropped by the RCUBE is  

NoDrop TABLE RWM RWMP  = (1- P P  2 *) (1-Pr s× × × × )  6.1 

and that of RECHOKe is 
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NoDrop TABLE RED REDP  = (1- P P  2 *) (1-Pn c× × × × )  6.2 

xCHOKe’s PNoDrop can be given by: 

NoDrop TABLE RED CHOKe REDP  = (1- P P  2 ) (1-P ) (1-P )k× × × ×  6.3 

The value of PNoDrop in equation 6.3 is smaller than in equations 6.1 and 6.2, 

since at any instant of time, r > n > k and if s* and c* are one, then it implies that the 

chances of dropping packets from high-bandwidth flows is greater for RCUBE than for 

RECHOKe and xCHOKe. This is reflected in figures 6.3 and 6.6. If s* and c* is zero, it 

implies that the chances of dropping packets from TCP-friendly flows is greater for 

xCHOKe than for RECHOKe and RCUBE. This is reflected in figures 6.4 and 6.7. 

6.2 Evaluation of RCUBE, xCHOKe and RECHOKe  

In this section we analyze xCHOKe, RECHOKe and RCUBE; to do so, we 

define the following terms. A table hit occurs when the flow id of the arriving packet 

matches a flow id entry already in the table. A table hit can be either good or bad. The 

table hit is good if the flow that the hit packet belongs to is malicious; it is a bad hit 

otherwise. Table drops are table hits that were selected for dropping by xCHOKe (after 

drawing a random with probability p*); for RCUBE and RECHOKe, these are table hits 

that were selected after evaluating p* and c*. Good table drops occur when the dropped 

packet belongs to a malicious flow; bad table drops occur otherwise. A CHOKe miss 

victim is a packet which after experiencing a CHOKe miss enters the RED queue. 

CHOKe miss RED hit occurs when the flow id of the CHOKe miss victim matches the 

flow whose packets dominate the buffer at the time of selection of the CHOKe miss 
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victim; CHOKe miss RED miss occur otherwise. A CHOKe miss RED hit could be 

either a good or bad: it is good if the victim packet belongs to a malicious flow; it is bad 

otherwise. A CHOKe miss RED miss again could be either a good or a bad CHOKe 

miss RED miss. Good CHOKe miss RED miss is when the victim packet belongs to a 

non-malicious flow; it is bad otherwise.  

Using NS2, we simulate a bar-bell topology and analyze the xCHOKe, 

RECHOKe and RCUBE buffers in terms of buffer occupancy by a malicious flow (a 

constant-bit-rate UDP flow) competing with 10 TCP flows over a 3Mbps link. All TCP 

flows have the same round trip propagation delay of 20ms with each output link having 

a latency of 1ms and capacity of 10Mbps. The parameters for the xCHOKe, RECHOKe 

and RCUBE buffers are: Thmin = 10, Thmax = 50, Pmax = 0.1. 

We ran 11 sets of simulations, starting with a malicious UDP rate of 0.5Mbps, 

increasing the rate in 1Mbps increments. Each simulation was long enough for initial 

transients to settle and be insignificant. Where appropriate, enough simulations were 

run to claim a 95% confidence that the confidence intervals are less than 5% of the 

mean.  

Figure 6.2 shows the number of table hits for the xCHOKe, RECHOKe and 

RCUBE algorithms. As it can be observed, the number of hits for RCUBE is greater 

than those for xCHOKe and RECHOKe. The number of hits for RCUBE is 55-65% 

greater than with xCHOKe and slightly greater than RECHOKe. RCUBE’s dominance 

is due to:  
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1) RWM’s ability of keeping a lower average queue length than RED for TCP 

originated packets and  

2) the combination of CHOKe and CHOKe-RED histories, as RWM allows 

RCUBE to register a large number of hits and using these hits, RCUBE can 

isolate malicious flows faster and with a higher accuracy. 

RCUBE’s performance dominance increases when the number and/or rate of 

TCP-friendly and/or UDP flows increases. RCUBE has the:  

3) greatest number of good table hits (as shown in figure 6.3) and  

2)  smallest number of bad table hits (as shown in figure 6.4), thus providing 

the best protection for TCP flows. 

Next, we analyze the number of table drops for table hits for all three 

algorithms. Again, ideally, drops should only consist of good table drops. Figures 6.5 to 

6.7 show the number of table drops, good table drops and bad table drops respectively. 

We can observe that RCUBE outperforms xCHOKe and RECHOKe in all of these 

figures. We have also observed, that nearly all table misses (not shown) for all 

algorithms were good misses. From figures 6.6 and 6.7 we can deduce that RCUBE 

drops the greatest number of packets from the malicious flow while dropping the least 

number of packets from TCP-friendly flows. Hence, figure 6.6 shows that RCUBE is 

the fastest and most accurate in punishing malicious flows while figure 6.7 shows that it 

affects the TCP-friendly flows the least. By affecting the TCP-friendly flows the least 

and at the same time, punishing malicious flows, RCUBE provides the best protection 

for TCP-friendly flows.    
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Figure 6.2 The number of table hits vs. UDP rate 
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Figure 6.3 The number of good table hits vs. UDP rate 
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Figures 6.8, and 6.9 show the number of CHOKe hits and misses respectively. 

xCHOKe has the greatest number of CHOKe hits, followed by RCUBE and 

RECHOKe. To analyze these hits, we looked at the number of good (as shown in figure 

6.10) and bad (as shown in figure 6.11) CHOKe hits. xCHOKe and RCUBE had the 

greatest number of good and bad CHOKe hits respectively. When compared to RCUBE 

and RECHOKe, xCHOKe has the greatest number of UDP packets in the buffer and 

hence, has a higher probability of getting many good hits. Meanwhile, RCUBE needs 

the smallest queue size among the three resulting in the greatest number of bad CHOKe 

hits. This is due to less TCP segments placed in the buffer due to the RWM scheme. 

Unlike xCHOKe, both RCUBE and RECHOKe update their tables after table hits. This 

is necessary as with the lifetime of flows, CHOKe hits become more unreliable (since 

the number of packets belonging to the malicious flow in the buffer are reduced 

drastically leading to a greater number of bad CHOKe hits). The same phenomenon can 

be observed in xCHOKe and CHOKe, leading to an unnecessary punishment of TCP-

friendly flows if packets are to be dropped during CHOKe hits. Hence, in both RCUBE, 

and RECHOKe packets are not dropped during CHOKe hits but passed on to the RED 

buffer. Although these hits are updated in the table, the c* condition prevents 

unnecessary drops of TCP-friendly packets. 
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Figure 6.4 The number of bad table hits vs. UDP rate 
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Figure 6.5 The number of table drops vs. UDP rate 
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 Upon analyzing the CHOKe misses in figures 6.9, 6.12, and 6.13, we have 

found that RCUBE significantly outperforms xCHOKe and RECHOKe in the number 

of bad CHOKe misses while RECHOKe performs the best in the number of good 

CHOKe misses. Hence, both RECHOKe and RCUBE provide better protection than 

xCHOKe. Analyzing CHOKe misses (as shown in figure 6.9) we find that RECHOKe, 

compared with RCUBE, had more number of good CHOKe misses due to its larger 

TCP average queue size. The greater number of table hits (as shown in figure 6.3) for 

RCUBE imply that fewer packets from malicious flows are allowed to enter the RED 

buffer, leading to overall smaller average queue sizes. This again leads to significant 

improvements in one-way, end-to-end packet delays, delay jitter, throughput and 

number of dropped packets, similarly to the claims of [56][57][58].  
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Figure 6.6 The number of good table drops vs. UDP rate 
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Figure 6.7 The number of bad table drops vs. UDP rate 

 

Next, we analyze RED hits and misses for all three algorithms. Figure 6.14 

shows that the number of dropped packets due to RED hits is the largest when using 

RECHOKe. It is greater than in RCUBE because of RECHOKe’s larger queue sizes. 

The amount of dropped packets is greater for both RECHOKe and RCUBE buffers 

when compared to xCHOKe. This is because during CHOKe hits packets are not 

dropped but admitted into the RECHOKe and RCUBE buffers and as a result more 

packets are dropped by the RED buffer after RECHOKe and RCUBE than after 

xCHOKe.  

Figures 6.15 to 6.17 show the number of RED hits for RECHOKe, xCHOKe, 

and RCUBE. RED hits are mainly good, implying that most of the dropped packets are 
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from malicious flows. This happens despite the fact, that most of the packets admitted 

into the buffer are from the 10 TCP-friendly flows. After the good RED hits malicious 

flows become no longer dominant. Hence, RED drops even more UDP packets from the 

few that have been admitted into the buffer. Bad hits happen mainly because a TCP-

friendly flow was dominating the buffer at the time of drop or window modification and 

its packet was chosen to be dropped. 
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Figure 6.8 The number of CHOKe hits vs. the UDP rate 
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Figure 6.9 The number of CHOKe misses vs. the UDP rate 
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Figure 6.10 The number of good CHOKe hits vs. the UDP rate 
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Figure 6.11 The number of bad CHOKe hits vs. the UDP rate 
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Figure 6.12 The number of bad CHOKe misses vs. the UDP rate 
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Figure 6.13 The number of good CHOKe misses vs. the UDP rate 
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Figure 6.14 The number of RED hits vs. the UDP rate 
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Figure 6.15 The percentages of good and bad RED hits vs. the UDP rate (RCUBE) 
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Figure 6.16 The percentages of good and bad RED hits vs. the UDP rate (RECHOKe) 
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Figure 6.17 The percentages of good and bad RED hits vs. the UDP rate (xCHOKe) 

 

6.3 Comparing RCUBE with RED, CHOKe, xCHOKe and RECHOKe  

In this section, we present more experiments to compare RCUBE with RED, 

CHOKe, xCHOKe, and RECHOKe. In these sets of experiments we again use the same 

bar-bell topology as before (see figure 5.2), however with two malicious flows. Each of 

these flows is a constant-bit-rate UDP flow set at a) 1.2Mbps and b) 2Mbps, competing 

with 10 TCP flows over the 3Mbps “R1-R2” link. (UDP rates of 1.2Mbps result in 

flows with a capacity less than the link capacity, while using 2Mbps flows put us 

beyond this capacity.) The TTL is 10ms for both xCHOKe and RECHOKe. The RED 

parameters for the RED, CHOKe, xCHOKe, RECHOKe and RCUBE buffers are: Thmin 

= 10, Thmax = 50, Pmax = 0.1. 
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We again consider two scenarios; in the first scenario, we study the impact of 

two malicious flows with non-identical rates on a set of well-behaved TCP flows with 

identical RTTs while in Scenario 2, we deal with non- identical RTTs. 

 6.3.1 Scenario 1 

Figures 6.18 to 6.22 show the bandwidth allocation for the congested link for 

each flow with RED, CHOKe, xCHOKe, RECHOKe, and RCUBE buffers respectively 

at the low UDP rate (less than the link capacity). Figure 6.23 shows a comparison of 

bandwidths of the malicious flows for all five schemes while figure 6.24 compares 

RCUBE, and RECHOKe. RED, as expected, does not control the malicious flows 

(UDP1 and UDP2) from gaining control of almost the entire link bandwidth; the 

bandwidth shares of all TCP-friendly flows are almost zero. CHOKe and xCHOKe do 

control malicious flows; however TCP flows suffer CHOKe hits and as a result suffer 

bandwidth share losses. On the other hand, by reducing bad CHOKe hits, RECHOKe 

controls malicious flows thus offering a better protection for TCP-friendly flows. 

However, RCUBE does control the two malicious flows better than RECHOKe. 

Although the average queue lengths of RCUBE are less than those of RECHOKe, a 

larger number of good table drops (as shown in figure 6.6) and smaller number of bad 

table drops (as shown in figure 6.7) enable RCUBE to control the two malicious flows 

better. 
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Figure 6.18 Link utilization with RED 
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Figure 6.19 Link utilization with CHOKe 
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Figure 6.20 Link utilization with xCHOKe 
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Figure 6.21 Link utilization with RECHOKe 
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Figure 6.22 Link utilization with RCUBE 
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Figure 6.23 UDP flow rates with RCUBE, RECHOKe, xCHOKe, CHOKe, and RED 
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Figure 6.24 Link utilization of UDP flows for RECHOKe and RCUBE 

 

Figures 6.25 to 6.29 show results for the congested link for each flow with 

RED, CHOKe, xCHOKe, RECHOKe and RCUBE buffers respectively when the UDP 

flows are set to their high rate. Figure 6.30 shows a comparison of bandwidths of the 

malicious flows for all five schemes while Figures 6.31 to 6.35 present comparisons of 

scheme at rates of 1.2Mbps and 2Mbps. Finally, figure 6.36 compares RCUBE and 

RECHOKe at the high UDP flow rate. Figures 6.31, 6.32, and 6.33 show that as the rate 

of the malicious flows is increased from 1.2Mbps to 2Mbps, TCP flows lose more of 

their bandwidth share to the malicious flows. However, figures 6.34 and 6.35 show that 

both RECHOKe and RCUBE increase their control and punishment of the two 

malicious flows in these cases. Figure 6.36 shows that RCUBE controls malicious flows 
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better than RECHOKe. Although the average queue length of RCUBE is less than that 

of RECHOKe, more good table drops (as shown in figure 6.6) and less bad table drops 

(as shown in figure 6.7) enable RCUBE to control the malicious flows better. Figures 

6.28 and 6.29 also show that RCUBE drops fewer packets from TCP-friendly flows 

than RECHOKe. 
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Figure 6.25 Link utilization with RED 
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Figure 6.26 Link utilization with CHOKe 
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Figure 6.27 Link utilization with xCHOKe 
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Figure 6.28 Link utilization with RECHOKe 
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Figure 6.29 Link utilization with RCUBE 
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Figure 6.30 UDP flow shares with RCUBE, RECHOKe, xCHOKe, CHOKe, and RED 
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Figure 6.31 Link utilization of UDP flows at 1.2Mbps and 2 Mbps with RED 
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Figure 6.32 Link utilization of UDP flows at 1.2Mbps and 2 Mbps with CHOKe 
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Figure 6.33 Link utilization of UDP flows at 1.2Mbps and 2 Mbps with xCHOKe 
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 Figure 6.34 Link utilization of UDP flows at 1.2Mbps and 2 Mbps with RECHOKe 
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 Figure 6.35 Link utilization of UDP flows at 1.2Mbps and 2 Mbps with RCUBE 
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Figure 6.36 Link utilization of UDP flows with RECHOKe and RCUBE 
  

6.3.2 Scenario 2 

In these experiments, the network setup is similar to that of the previous section; 

however, we make the two UDP flows rates asymmetric by setting one at 1Mbps while 

the other at 3Mbps. In addition, the ten TCP flows are simulated with non-identical 

round trip delays at 2ms delay increments across the flows. The “R1-R2” link’s 

bandwidth is set at 3Mbps; RED parameters are the same as before. 

Figures 6.37 to 6.41 show the bandwidth allocation of the congested link for 

each flow for RED, CHOKe, xCHOKe, RECHOKe and RCUBE buffers respectively. 

RCUBE again controls malicious flows better than RECHOKe. Although the average 

queue length in RCUBE is less, the larger number of good table drops (as shown in 
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figure 6.6) and the fewer number of bad table drops (as shown in figure 6.7) enable 

RCUBE to achieve better control. Figures 6.42 and 6.43 also show that the RCUBE 

drops fewer packets from TCP-friendly flows leading to more stable bandwidth 

allocation even though TCP flows have heterogeneous RTTs. 
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Figure 6.37 Link utilization with RED 

 

6.4 Summary  

In this chapter, we have presented RCUBE which combined the advantages of 

both RWM and RECHOKe. We analyzed xCHOKe, RECHOKe and RCUBE in detail 

using NS2 and showed that  RCUBE better all of the other schemes studied and 

provided with a discussion on why that is. We have also compared RCUBE with RED, 
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either used alone or with RECHOKe, xCHOKe, and CHOKe; we have shown that 

RCUBE performed the best among all these schemes.  
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Figure 6.38 Link utilization with CHOKe 

 186



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 6 11.5 17 22.5 28 33.5 39 44.5 50 55.5 61 66.5 72 77.5 83 88.5 94 99.5

Time (s)

B
an

dw
id

th
 (M

bp
s)

TCP 1-10
UDP 1
UDP 2

 

Figure 6.39 Link utilization with xCHOKe 
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Figure 6.40 Link utilization with RECHOKe 
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Figure 6.41 Link utilization with RCUBE 
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Figure 6.42 UDP flow shares with RCUBE, RECHOKe, xCHOKe, CHOKe, and RED 
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Figure 6.43 Link utilization of UDP flows with RECHOKe and RCUBE 
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CHAPTER 7 

CONCLUSIONS 

 

In this dissertation, we had proposed three major schemes to solve three main 

problems that present-day networks encounter. These problems are: 

1) the TPC congestion detection, i.e., the timeout mechanism or the duration of 

the reception of three duplicate acknowledgements, due to early-dropped packets by 

queue management protocols in routers delays the response time of TCP in reducing the 

network congestion; 

2) using ECN with active queue management schemes has its downsides: i) 

ECN messages may get delayed or dropped by downstream routers; and ii) TCP 

implementations at both the source and the destination have to be ECN-compliant;  

3) active queue management schemes, with or without ECN, fail to protect 

TCP-friendly flows adequately in the presence of non TCP-friendly or malicious flows. 

To solve the first two problems we have introduced a novel AQM modification 

scheme called Receiver-Window Modification (RWM). To solve the third problem a 

scheme called RECHOKe was introduced that can detect, control, and punish malicious 

flows, thereby protecting TCP-friendly flows. Finally, we have combined the 

RECHOKe and the RWM schemes with RED to produce a new AQM scheme called 
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RCUBE (Receiver Window Modified Random Early Detection queues with 

RECHOKe). 

RWM does not require modification to all end system TCP/IP stacks but could 

be solely implemented in heavily-congested ingress and gateway routers. This means 

that RWM does not require both the sources and receivers to be “RWM-compliant” as 

was the case for ECN-compliant queues. Our RWM scheme helped to reduce the 

average queue sizes of the RED, ARED, BLUE, ARED-ECN, RED-ECN and BLUE-

ECN queues. By reducing the average queue sizes, RWM queues reduced the queuing 

delay resulting in significant improvements in one-way end-to-end average packet 

delays, delay jitter, throughput and number of total dropped packets. We have also 

shown that the performance of RED-ECN, ARED-ECN and BLUE-ECN queues was 

heavily dependent on the queues of the downstream routers. RWM queues in ingress 

and gateway routers were not influenced by the number and state of the downstream 

router as they would piggyback congestion information to the source in the next 

available acknowledgement packet. We have shown simulation experiments validating 

the performance of RWM.  

 We have also presented a mathematical model for the RED-RWM queue by 

extending the work previously done for RED-ECN queues. We have verified our model 

by comparing Monte Carlo simulations of our model to discrete event simulations of an 

NS2 model. We claimed and proofed that an RWM modified RED queue weakly 

converges to a steady state and that as the number of clients (TCP connections) grows, 

the queue size weakly converges to the number of clients, assuming that the minimum 
 191



 

marking threshold (Thmin) was less than the number of clients. We have also shown, 

using an asymptotic and steady-state analysis, that  

 1) the average TCP dynamics for a large number of flows using a RED-RWM 

queue is closely related to that of a single flow utilizing the same TCP congestion 

control mechanism and that  

 2) sessions become asymptotically independent as number of flows using the 

queue become large, suggesting that the RED-RWM queue alleviates the 

synchronization problem among flows. 

 We have also proposed a scheme called RECHOKe, a scheme for detecting, 

controlling and punishing malicious flows while protecting non-malicious flows. It 

worked by combining the techniques used by xCHOKe and RED-PD in identifying and 

punishing malicious flows. Hence, it used both the CHOKe hit and RED’s drop/mark 

histories to detect and control more quickly and accurately when compared to RED, 

CHOKe, and xCHOKe. 

We have presented RCUBE which combined the advantages of both RWM and 

RECHOKe schemes. We had analyzed xCHOKe, RECHOKe, and RCUBE in detail 

using NS2 and showed why RCUBE outperforms both xCHOKe and RECHOKe. We 

have also compared RCUBE with RED, either used alone or with RECHOKe, xCHOKe 

and CHOKe, and showed that RCUBE outperformed all previous schemes. 
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PROOF OF THEOREM 1 
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Proof of Theorem 1 

 
The sequence { } is a stochastic process with a finite 

number of states in which the probability of occurrence of a future state is conditional 

only upon current state (Markovian property). Considering an arbitrary bounded 

mapping and writing 

( ) ( ) ( )ˆ( ), ( ), ( )N N N
i i iY t Q t Q t
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ig Y t )+ as function of through a case 

analysis, it can be seen that the above argument is correct. The states that can 

transition from [t,t+1) are as follows: 
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+Ζ are associated with g and defined by: 

 195



 

( )1 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
max

( ) ( )

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

(min(max(2 ( ),1), ), ( ),0,1, ( ),1, ( ), ( ), ( ),

1, ( ), ( ),0)

NN N N N N NN N
i i i i i ii ig i

N N N NN N
i i i ii i

N N
i i

F t t t t t t t t tW mX D M z Z

g t W t t t tW mX D M

t tz Z

β Ω

= Ω t  

( )2 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
max

( ) ( )

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

(min( ( ) 1, ), ( ),0,0, ( ),1, ( ), ( ), ( ),

1, ( ), ( ),0)

NN N N N N NN N
i i i i i ii ig i

N N N NN N
i i i ii i

N N
i i

F t t t t t t t t tW mX D M z Z

g t W t t t t tW mX D M

t tz Z

β Ω

= + Ω  

 
( )3 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

( )( , ( ),0, ( ), ( ),1, ( ), ( ), ( ),1, ( ), ( ),0)
2

NN N N N N NN N
i i i i i ii ig i

N
i N N N N NN N

i i i i i ii i

F t t t t t t t t tW mX D M z Z

tXg t t t t t t tS mX D M z Z

β Ω

⎡ ⎤
= Ω⎢ ⎥

⎢ ⎥
N t

tz

 

 
( )4 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )( )

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

ˆ( ( ), ( ),1, ( ), ( ),1, ( ), ( ), ( ), ( ), ( ),

ˆ( ), ( ))

NN N N N N NN N
i i i i i ii ig i

NN N N N N NN N
i i i i i ii i i

NN
i i

F t t t t t t t t tW mX D M z Z

g t t t t t t t tS mX D M M

t tZ Z

β Ω

= Ω Ω  

 
We introduce the following terminology to facilitate the proof of the theorem: 

For each t = 0, 1, … the statements [A:t], [B:t], [C:t] and [D:t] refer to the following 

convergence statements: 

 

[A:t] There exist some non-random constants and such that ( )q t ˆ( )q t

( )( ) ( )N

N PQ t q tN ⎯⎯→ and 
( )ˆ ( ) ˆ( ),N

N PQ t q tN ⎯⎯→  
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[B:t] For some {0, 1, …, Wmax} g-valued rv , non-negative integer-valued 

rvs

( )W t

( ), ( ), ( ), ( ), ( )X t E t D t t tβ Ω  and {0,1}-valued rvs  ( ), ( ), ( ),S t m t M t

ˆ ( ), ( ), ( ), ( ),ˆM t z t Z t Z t   it holds that 

( ) ˆ ˆ( ) ( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))N
i Nt Y t W t X t E t S t D t t t m t M t M t z t Z t Z tY β⇒ = Ω

  

[C:t] For any integer i = 1, 2,… , the random vector { } becomes 

asymptotically independent as N becomes large, with 

( )( )N
i tY

( )

1

[ ( ) , 1, , ] [ ( )lim
I

N
i i i

N i

t y i I Y t yY
→∞ =

Ρ = = = Ρ =∏… ]  

where is given as in [B:t]. ( )( )N
i tY

 

[D:t] For any bounded function 13:g +Ζ →ℜ , the convergence 

1

( )1 ( ( )) [ ( ( ))].
N

P
N

t

N
ig Y t g Y t

N =

⎯⎯→ Ε∑  

holds with in [B:t]. ( )Y t

 

[E:t] For any bounded mapping ,: ℜ→Υg there exists a bounded and 

continuous mapping ℜ→Υ×× ]1,0[]1,0[:F g  such that 

( ) ( )( )( ) ( ) ( )[ ( 1) | , ] ( ), ( ), (NN N
i t g i it iE g t t t tY F χτ+ =Ω Ψ )NY  A2 

This assumption states that given the events leading up to the beginning of 

timeslot [t, t + 1), the expected behavior of session i leading to the beginning of timeslot 
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[t + 1, t + 2) can also be determined using the expected knowledge of the conditional 

receiver window modifying probability, , the conditional dropping 

probability and at [t, t + 1). Hence, it also implies that 

)()( tN
iΨ

)()( tN
iχ )()( tY N

i

( ) ( )])(),(),([])1([ )()()()( tYttFEtYgE N
i

N
i

N
ig

N
i χΨ=+  A3 

This leads to 

( ) ( )( )[ ( 1) ] [ ( ), ( ), (N
i gN ) ]E g t E t t Y tY F χ+ ⇒ Ψ  A4 

implying that for large N, given the events leading up to the beginning of timeslot [t, 

t+1), the expected behavior of session i leading to the beginning of timeslot [t + 1, t + 2) 

can also be determined using the expected value of the conditional receiver window 

modifying probability, , the conditional dropping probability( )tΨ ( )tχ and . ( )Y t

 
Lemma 1: If [A:t], [B:t] and [C:t] hold for some t = 0, 1, …, then [D:t] holds. 

 

Proof: From [B:t] and Proposition 4.7, Pg. 140 [59], if and  

is a continuous function, then . It immediately follows that  

( ) ( ) ( )N
iY t Y t→ 13:g +Ζ →ℜ

( )( ( )) ( ( )PN
Nig Y t g Y t⎯⎯→ )

1

( )1 ( ( )) [ ( ( ))].
N

P
N

t

N
ig Y t g Y t

N =

⎯⎯→ Ε∑  

Hence, [D:t] holds. 

 
Lemma 2: If [A:t] and [B:t] hold for some t = 0, 1, …, then [E:t] holds. 

The random vector for a session i in timeslot [t, t + 1) takes values )()(
1 tY N
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),N N N N N N N N N N N
i i i i i i i i i i iW t X t E t S t D t t t m t M t M t z tβ Ω

 

( )ˆ ( )N
iZ t and ( ) ( )N

iZ t in a discrete space Y. Hence, the rv can be determined as a 

function of , i.e., 

)()( tA N
i

)()( tY N
i )),(()( )()( tYtA N

i
N

i Φ= for some bounded continuous function 

 .: ℜ→ΥΦ

 Letting , we define },2,1,;1),(),0(),0({ ,
)()(

1 …=≤≤= jitssVYQ ji
N

i
N

t στ

( )( )
,( ) : ( 1) |NN

ti i jt m t τ⎡ ⎤= Ε +Ψ ⎣ ⎦           

( )( ) )()()(
)(

)(ˆ1
tANN

m

N
itQf−=  

to be the conditional probability that, given ,τ t connection i will receive receiver 

window modification acknowledgements from the RED-RWM gateway during the 

period [t, t + 1). Under the enforced independence assumptions, it is clear that 

( ) ( )( )
,1

[ ( 1) | ]A t NN
ii j tj

E tm τ=
+ = Ψ∏ ( )t

]t

 

( ) ( )( )
, ,1

( 1) 1[ ( 1) ( )A t NN
ii j i jstj

t tm V=
+ = + ≤ Ψ∏  

Letting , we also define  },2,1,;1),(),0(),0({ ,
)()(

2 …=≤≤=Ω jitssLYQ ji
N

i
N

t σ

( ) ( )
,( ) : ( 1) |N N

ti ji t z tχ ⎡ ⎤= Ε + Ω⎣ ⎦  

( )( ) )()()(
)(

)(ˆ1
tANN

d

N
itQf−=  

to be the conditional probability that, given ,Ωt connection i will experience packet 

drops by the RED-RWM gateway during the period [t, t + 1). Under the enforced 

independence assumptions, it is clear that 
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( )( )( )
1 ,[ ( 1) ] NNA t

j i j iE tz χ= + =∏ ( )t

]t

t

Z

Z

Z

Z

t

 

( )( )( )
,1 , ( 1) 1[ ( 1) ( )NNA t

i jj i j st it tVz χ= + = + ≤∏  

Finally, it follows from (R3) 

 
],|))1(([ )( τ tt

N
i tYgE Ω+       

]0)([1 )( == tX N
i  

[ (0,1[ ( 1) ] ( 1),0,1, 0, 0, 0,1,1,1,1,1,1)]ar iiE g t tU P F× + < +  

( )( ) ( ) ( )1[ ( ) ( ) 0, ( ) ( )]NN N N
i i iit t tX A Dβ+ > > ≥  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ[ ( ) ( ) ( ( 1), ( ) ( ), (1 ( )) ( ), ( ) ( ),

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),1,1, ( ),1,1, ( ))

N NN N N N NN N
i i i ii ii ii

N N N N N N NN
i i i i ii

t t g t t t t t t tW SX A M ZM

Q t A t N C t t t t t tW M M M

χ× + − −Ψ

+ + + −Ω

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )) (1 ( )) ( ( 1), ( ) ( ), (1 ( )) ( ), ( ) ( ),(1

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),0,1, ( ),0,1, ( ))

N N NN N N NN N
i i i ii iiii

N N N N N N NN
i i i i ii

t t g t t t t t t tW SX A M ZM

Q t A t N C t t t t t tW M M M

χ+ − + − −−Ψ

+ + + −Ω

 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )(1 ( )) ( ( 1), ( ) ( ), (1 ( )) ( ), ( ) ( ),

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),1,1, ( ),0,1, ( ))

N NN N N N NN N
i i i ii ii ii

N N N N N N NN
i i i i ii

t t g t t t t t t tW SX A M ZM

Q t A t N C t t t t t tW M M M

χ+ − + − −Ψ

+ + + −Ω

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )) ( ) ( ( 1), ( ) ( ), (1 ( )) ( ), ( ) ( ),(1

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),0,1, ( ),1,1, ( ))]

N N NN N N NN N
i i i ii iiii

N N N N N N NN
i i i i ii

t t g t t t t t t tW SX A M ZM

Q t A t N C t t t t t tW M M M

χ+ + − −−Ψ

+ + + −Ω

 

( )( ) ( ) ( )1[0 ( ) ( ), ( ) ( )]NN N N
i i iit t tX A Dβ+ < ≤ ≥  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A5 
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( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ[ ( ) ( ) ( ( 1), ( ), (1 ( )) ( ), ( ) ( ),

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),1,1, ( ),1,1, ( ))

N NN N N NN N
i i ii ii ii

N N N N N N NN
i i i i ii

t t g t t t t t tW SX M ZM

Q t A t N C t t t t t tW M M M

χ× + −Ψ

+ + + −Ω Z

Z

Z

Z

t

t+

+

t+

 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )) (1 ( )) ( ( 1), ( ), (1 ( )) ( ), ( ) ( ),(1

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),0,1, ( ),0,1, ( ))

N N NN N NN N
i i ii iiii

N N N N N N NN
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t t g t t t t t tW SX M ZM

Q t A t N C t t t t t tW M M M
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+ + + −Ω

 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )(1 ( )) ( ( 1), ( ), (1 ( )) ( ), ( ) ( ),

( ( ) ( )) /( * ),1, ( 1) ( ) ( )(1 ( )),1,1, ( ),0,1, ( ))

N NN N N NN N
i i ii ii ii

N N N N N N NN
i i i i ii

t t g t t t t t tW SX M ZM

Q t A t N C t t t t t tW M M M

χ+ − + −Ψ

+ + + −Ω

 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( )) ( ) ( ( 1), ( ), (1 ( )) ( ), ( ) ( ),(1
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+ + + −Ω

 

( )( ) ( ) ( )1[ ( ) ( ) 0, ( ) ( )]NN N N
i i iit t tX A Dβ+ > > <  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

ˆ[ ( ) ( ) ( ( ), ( ) ( ),0, ( ) ( ), ( ), ( ) 1, ( ),

ˆ ˆ1, ( ), ( ),1, ( ), ( ))

N N NN N N N NN N
i i i ii ii i ii

N NN N
i ii i

t t g t t t t t t tW SX A DZ

t t t tM ZM Z

χ β× −Ψ Ω
 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

ˆ( )) (1 ( )) ( ( ), ( ) ( ),0, ( ) ( ), ( ), ( ) 1,(1

ˆ ˆ( ),0,0, ( ),0,0, ( ))

N N N NN N NN N
i i ii i i iii

N NN
i i i

t t g t t t t t t tW SX A DZ

t t tM Z

χ β+ − −−Ψ

Ω

 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

ˆ( )(1 ( )) ( ( ), ( ) ( ),0, ( ) ( ), ( ), ( ) 1, ( ),1,

ˆ ˆ( ), ( ),0,0, ( ))

N N NN N N N NN N
i i i ii ii i ii

N NN
i i i

t t g t t t t t t tW SX A DZ

t t tM M Z

χ β+ − −Ψ Ω
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

ˆ( )) ( ) ( ( ), ( ) ( ),0, ( ) ( ), ( ), ( ) 1, ( ),0,(1

ˆ ˆ0, ( ),1, ( ), ( ))

N N N NN N N NN N
i i i ii i i iii

N NN
ii i

t t g t t t t t t t tW SX A DZ

t t tZM Z

χ β+ − +−Ψ Ω
 

( )( ) ( ) ( )1[0 ( ) ( ), ( ) ( )]NN N N
i i iit t tX A Dβ+ < ≤ < t

N
i t

N
i t

N
i

t

×

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

ˆ[ ( ) ( ) ( ( ), ( ),0, ( ) ( ), ( ), ( ) 1, ( ),

ˆ ˆ1, ( ), ( ),1, ( ), ( ))

N N NN N NN N
i ii ii i ii

N NN N
i ii i

t t g t t t t t tW SX DZ

t t t tM ZM Z

χ β× +Ψ Ω
 

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( )

ˆ( )) (1 ( )) ( ( ), ( ),0, ( ) ( ), ( ), ( ) 1,(1

ˆ ˆ( ),0,0, ( ),0,0, ( ))

N N N NN NN N
i ii i i iii

N NN
i i i

t t g t t t t t tW SX DZ

t t tM Z

χ β+ − +−Ψ

Ω

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

ˆ( )(1 ( )) ( ( ), ( ),0, ( ) ( ), ( ), ( ) 1, ( ),1,

ˆ ˆ( ), ( ),0,0, ( ))

N N NN N NN N
i ii ii i ii

N NN
i i i

t t g t t t t t tW SX DZ

t t tM M Z

χ β+ − +Ψ Ω
 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

ˆ( )) ( ) ( ( ), ( ),0, ( ) ( ), ( ), ( ) 1, ( ),0,(1

ˆ ˆ0, ( ),1, ( ), ( ))

N N N NN NN N
i ii i i iii

N NN
ii i

t t g t t t t t t tW SX DZ

t t tZM Z

χ β+ +−Ψ Ω
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),

ˆ ˆ( ), ( ), ( ), ( ), ( ))

N N N N N N N N NN
g i i i i i i i i ii

N N N N N
i i i i i

t t W t X t E t S t D t t t mF

M t M t z t Z t Z t

βχ= ΩΨ
       A6 

                                                   
 
where the mapping is: 

max maxmax

max max

:[0,1] [0,1] {0,1, , } {0,1, , } {0,1} {0,1} {2,3, , }

{0,1, , } {0,1, , } {0,1} {0,1} {0,1} {0,1} {0,1} {0,1}.

gF W X D

D X

× × × × × ×

× × × × × × ×

… … …

… …
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By using equation 4.16 to substitute in equation A6, we get ( )( )N
i tY

( )( ) ( ) ( )[ ( ( 1)) | , ] ( ( ), ( ), ( ))NN N
t gti i i

N
iE g t tY F χτ+ =Ω Ψ t tY

N
i

 A7 

 

Taking expectation on both sides, we get 

( )( ) ( ) ( )[ ( ( 1))] [ ( ( ), ( ), ( ))]NN N
gi i iE g t E t tY F Yχ+ = Ψ t  

Since gF is continuous on [0  and using Proposition 4.7, Pg. 140 [59], ,1] [0,1] y× ×

( )( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))NN N
g gi i Nit t t t t YF Y F χχ ⇒ ΨΨ t  

Hence 

( )( )[ ( 1) ] ( ( ), ( ), ( ))N
i gE g t E t t Y tY F χ+ = Ψ⎡ ⎤⎣ ⎦  A8 

 

Thus [E:t] holds. 

 

Lemma 3: If [A:t], [B:t] and [C:t] hold for some t = 0, 1, …, then [C:t+1] holds. 

 

Proof:  

From [C:t], we have 

( )( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))NN N
i i Nit t t t t YY χχ ⇒ ΨΨ t  

Since is independent of ( ) ( 1)N
iY t + , ttτ Ω .  

We can see that   

( ) ( )( ) ( )

1 1

( 1) | , ( 1) | ,
I I

N N
t tt ti i i i

i i

E g Y t E g Y tτ τ
= =

⎡ ⎤ ⎡ ⎤+ = +Ω Ω⎢ ⎥ ⎣ ⎦⎣ ⎦
∏ ∏  
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( )( ) ( )

1

( ( ), ( ), ( ))
i

I
NN N

g i ii
i

E t tF Yχ
=

⎡ ⎤
= Ψ⎢ ⎥

⎣ ⎦
∏ t

⎤
⎥
⎦

t

 

by using [27]. 

By using the bounded convergence theorem: 

( ) ( )( ) ( ) ( )

1 1

lim ( 1) lim ( ( ), ( ), ( ))
i

I I
NN N N

g i ii i iN Ni i

E g Y t E t t tF Yχ
→∞ →∞

= =

⎡ ⎤ ⎡
+ = Ψ⎢ ⎥ ⎢

⎣ ⎦ ⎣
∏ ∏  

1

( ( ), ( ), ( ))
i

I

g i i i
i

E t t YF χ
=

⎡ ⎤
= Ψ⎢ ⎥

⎣ ⎦
∏  

1

( ( ), ( ), ( ))
i

I

g i i i
i

E t t Y tF χ
=

= Ψ⎡ ⎤⎣ ⎦∏  

( )
1

( 1)
I

i i
i

E g Y t
=

= +⎡ ⎤⎣ ⎦∏  
 

A9 

From equation A9 we can see that  

( )

1

[ ( 1) , 1, , ] [ ( 1)lim
I

N
i i i

N i

t y i I Y tY
→∞ =

Ρ + = = = Ρ + =∏… ]y  

 
 
Lemma 4: If [A:t] and [D:t] hold for some t = 0, 1, …, then [A:t+1] holds. 

 

Proof: From [D:t], we can conclude that 

1

( )1 ( ) [ ( )]
N

P
N

t

N
iA t A

N =

⎯⎯→ Ε∑ t , 

and from [A:t], 

( )

1

( )( ) 1 ( ) ( ) [ ( )]
t N

P
N

t

N
i

Q t C A t q t C E A
N N =

− + ⎯⎯→ − +∑ t  
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Since 

( ) ( )

1

( )( 1) ( ) 1 ( )
t t N

t

N
i

Q t Q t C A
N N N =

+
= − + ∑ t

)

 

        ( ) [ ( )]P
N q t C E A t⎯⎯→ − +

          : ( 1q t= + . 

Since from [A:t],  

( ) ( )

( ) ( )

( ),

ˆ
ˆ( ),

N

N

N t P

N t P

Q q tN

Q q tN

⎯⎯→

⎯⎯→

 

and  

( ) ( ) ( )ˆ ˆ( 1) (1 ) ( ) ( 1N NQ t Q t Q tα α+ = − + + )N , 

we get 

( ) ( ) ( )ˆ ˆ( 1) ( ) ( 1)(1 )
N NQ t Q t Q t

N Nα α+ += − +
N

N  

Since from above,  

( ) ( 1) ( 1
t

P
N

Q t q t
N

⎯⎯→
+ )+  

we get 

        
( )ˆ ( 1) ˆ(1 ) ( ) ( 1)
N P

N
Q t q t q tN α α⎯⎯→

+ − + +  

ˆ( 1P
N q t⎯⎯→ )+  
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Lemma 5: If [A:t] and [B:t] hold for some t = 0, 1, …, then [B:t+1] holds with Y(t+1) 

related in distribution to Y(t) 

 

Proof:  

From equation A8, we have  

( )( )[ ( 1) ] ( ( ), ( ), ( ))N
i gE g t E t t Y tY F χ+ = Ψ⎡ ⎤⎣ ⎦ . 

Since g is a bounded mapping function, it follows that  

( )( 1) ( 1) ( ( 1), ( 1), ( 1), ( 1), ( 1), ( 1), ( 1),

ˆ ˆ( 1), ( 1), ( 1), ( 1), ( 1), ( 1))

N
i Nt Y t W t X t E t S t D t t tY

m t M t M t z t Z t Z t

β+ ⇒ + = + + + + + + Ω +

+ + + + + +
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 Proof of Theorem 2  

 
 From Theorem 1 (equation [7]) and assuming the following: 

i. Average queue size ( ) is currently N-1, where thmin= N-1. (This ensures 

that the next packet will trigger the RWM scheme.) 

)(ˆ )( tQ N

ii. The RWM queue modifies the receiver window in the acknowledgements to 1 

MSS for every packet arrival after the thmin threshold. 

we get 

* 1 ( 1) (1q qq N N w w= − + − − )  B1 

Simplifying this further, as N is varied from 1 to 500 and setting = 0.002, we get qw

.1)1()1( →−− qq wwN  

Hence, in equation B1,  

.* Nq N⇒  B2 

If, for example, the first packet, which enters after  has reached the Thmin, is 

from flow i, then the RWM queue will modify flow i’s acknowledgement to one MSS. 

This implies that in the next RTT, flow i will transmit only a single packet. Since there 

are N numbers of connections, at the steady state, all N connections will transmit a 

single packet. Since the number of packets in the queue will be approximately N (and 

hence greater than the Thmin) the RWM scheme will be triggered continuously until 

congestion eases.  

*q
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Next, we relax the assumption ii to figure out the number of packets beyond the 

Thmin that can be queued without triggering the RWM scheme that will lead to  to 

just exceed N+1. Let M represent the number of packets. Table B.1 shows the results of 

the increase in the instantaneous queue length to render such a situation.  

*q

 

Table B.1 Results of the Increase in the Instantaneous Queue Length  

 

Number of Connections M 

10 90 

50 195 

100 257 

200 328 

 

 

Since the equations 5.8, 5.13 and 5.14 (and thus the RWM scheme) is triggered 

often whenever the average queue is between Thmin and Thmax; well before these M 

values have been reached, equation B2 holds true. 
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