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Introduction.

The bargaining sets have been introduced as solution concepts
for cooperative n-person games with side payments by R. J. Aumann
and M. Maschler (1964). A further study on the relationships between
various concepts of solution for such games is due to R. J. Aumann
and J. Dreze (1975). The Aumann/Maschler defiﬁition of a bargaining
set relies upon a stability principle imposed to the payoffs in this
set: an admissible payoff belongs to a bargaining set if for every
objection against this payoff there is a counter objection. Two mo-
difications of the stability principle have been discussed in earlier
papers of the author (Dragan,1985,1987,1988).

The present paper 1s considering another modification: an objec-
tion is valid only if the players who intend to move to new coalitions
agree upon a prior commitment, namely that of compensating all part-
ners who join the venture, in case of failure due to a subsequent move.
The mathematical description of the model is given in the first section,
where the new stability principle and the corresponding compensatory
bargaining set Mc are defined, A feasibility theorem for the existen-
ce of a flow in a bipartite network associated to a payoff and two
partial coalition structures (Th.2.1) 1is derived in the second section
from a similar theorem by D. Gale (1957). The result is used in the
third section for proving a combinatorial characterization of the non

core payoffs belonging to the compensatory bargaining set (Th.3.5). In



the tast section, in the set of such payoffs MC-C(G) the subset

of coalitionally rational payoffs has been found, for a 3-person
game (Ths. 4.2, 4.6, 4.7, 4.8). This subset is compaired with the
Aumann/ Maschler bargaining set M for the same game, in order to
illustrate the particularities of the new model by a comparison with

a well known one.

1. Bargaining proposals with commitments and the compensatory

bargaining set.

Consider G=(N,v) a cooperative n-person game; N 1is the set
of players, N =lnL and v: P(N) —» R subject to v(P) = o 1is the
characteristic function. Any partition éf of N 1is a coalition

structure. The set of admissible payoffs for éf is

%=§x\ xeR", x(8) = v(8), ¥se &} (1.1)

where x(8) = 2: X, and the set F of admissible payoffs for G
ies
is the union of all Féf for all coalition structures S?

Cooperative games with coalition structures have been considered
by R. J. Aumann and M. Maschler (1964). The core of the game is defined
by means of the excess function e(x,S) = v(S) - x(5), SeP(N), x€F, as

c(G) =§x | xer, e(x,S)So,VSSNS, (1.2)
(éee Aumann/Dreze,1975,p.224). A new concept of bargaining set for such
games will be introduced in this section.

Consider a givencoalition structure ég and an admissible payoff
xéFéf. If x&€C(G), then x will be assesed as stable, so that in the
following we shall assume 1{¢C(G), which means that there are coalitions
S with a positive excess. A partial partition of N is a set of non
empty pairwise disjoint coalitioms, that may cover N, or not. Such a
partial partition will be called a partial coalition structure,

Definition 1.1: A bargaining proposal of K&N against x 1is a

O
partial coalition structure J = (Tl,..,Tq) subject to




T,NK # @, h=1,..,q, TAK=0, T =N -Lé, T, , (1.3)
and
e(x,T,)> 0, h=1,..,q. (1.4)

In words, K 1is a group of players Who-could increase their pay-
offs w.r.t. x by moving to :7~, if their partners agree,

Definition 1.2: A bargaining distribution for :7?-initiated by K
is any yeRn_to, to =tTol, such that

y(T) = v(T), b=l,..,q, v,>x,,¥1iek, y px  ¥ien-T_ (1.5)

In words, a bargaining distribution for :7—is a payoff that could
could motivate the players in K to move to J7r- and the players in
N - To - K to give their agreement for this move. It is easy to see
that S7F-subject to (1.3) can offer a bargaining distribution if and
only if (1.4) holds.

Note that the pair (y;¥ ) 1is similar to an Aumann/Maschler ob-
jection. The difference is that no rationality condition is imposed to
x in Faf and K may not be a subset of a block in df. Moreover,
(v; ) 1is not an objection against another group of players, but is
an objection against (x;af).

Note also that (1.5) 1is equivalent to

OC(Th) = e(x,Th),'h=1,..,q, O{i>o, ieKk, Oli;o, ieEN - To’ (1.6)
where O(i =y, - xi, iéEN - To. In the following, .o(i will be called
the extra win of player 1 in :7‘. The set of bargaining distributions
for T initiated by K, defined by (1.5), or (l1.6), will be denoted
by B(J,K). Bargaining proposals and bargaining distribuﬁions have been
considered in earlier papers of the author (Dragan,1985,1987,1988) and
this terms have been used to avoid any confusion with Aumann/Maschler
objections and counter objections.

Now, before going to precise definitions let us describe the spe-

cific manner of countering the bargaining proposals introduced in the

present paper,



The new assumption of our bargaining model is that before ack-

nowledging their bargaining proposal the players in N - TO agree
o~
upon the following commitment: a group of players KCN - To will be
able to leave §7~ and join coalitions of another partial coalition
~

structure only if K contains players of all coalitions of J?P: i.e.
~~ ~
Kr'\Th # 0, h=1,..,q, and for each coalition T, the players in KﬁTh
will compensate T with e(x,Th) from their extra wins in their new

h

coalitions., In other words, for each Th the players in ‘E?\Th should
compensate all members of Th (including themselves) for losing their
v
extra wins in Th. If there is a group of players K able to leave
under the above stated conditions and move to a new partial coalition
(\
structure Zl , then we shall consider that Z( can counter ¥ , This
condition can be expressed mathematically as a system of conditions im-
posed to Z(, as shown hereafter.
Consider a partial coalition structure Z( = (Ul,..,Ur), different
o
of v , such that
Kh = (N-UO)('\Th # 0, h=1,..,q, Uo =N - j Uj , (L.7)
and
e(x,Uj)>0, j=1,..,r. (1.8)
[
Note that " U different of ¥ " means that no coalition in Z(
o ~ ~
is a coalition in ~/ . Obviously, K = L)Kh will be the group of play-
h
ers who may be willing to move to Z( .
Consider zeRn-uo, u, = i Uo‘ , such that
U,
/'}( 3

where ﬂi = zi - X ieéN - Uo'

T \ 3
e(x,Uj), i=1l,..,r, /Gi) o,‘v[léN - Uo’ (1.9).

r~ ~
Clearly, the players in K will be able to leave <  and move to Z( ,

if and only if we have

2 /3 > exT), hel,...q. (1.10)
ié(N-Uo)ﬂTh

Now, to make the bargaining model precise, we introduce the following



—

Definition 1.3: Let < = (Tl""Tq) be a bargaining proposal
of some coalition K against xél;,, x%C(G), and consider a partial

U i va
coalition structure = (U,,..,U0 ), different of VA subject to (1.7)

1 r
and (1.8). Any zéRn-uo subject to (1.9) and (1l.lo), where ﬁi=zi—xi
ieéN - Uo’ is a compensatory bargaining counter distribution for ZZ a-
o Z{
gainst / ., If such a counter distribution does exist, then is a
compensatory bargaining counter proposal aganist J .
~ o
Note that K = L) Kh may contain X, or not,.

h

A characterization of the compensatory bargaining counter proposals
will be given in the third section and exampies will be shown in the last
section. Now, we introduce the principle of stability.

Definition 1.4: An admissible payoff x for a coalition structure
éf is compensatory stable (c-stable), if for every bargaining proposal
57_ of every coalition K EWN, there exists a compensatory bargaining coun-

(\-
ter proposal Z( against J.

Note that the core payoffs are considered to be c-stable, because
there is no bargaining proposal of any group of players against such a
payoff,

Definition 1.5: The compensatory bargaining set MC of G 1is the

set of c-stable payoffs.

2. A bipartite network associated with a payoff and a pair of partial

coalition structures.
He £ A0
In this section, we consider as givéﬁYé&ements of the game G: a

coalition structure Qf , a payoff xelzj,, X%C(G), a bargaining propo-
—
sal ~ of a coalition K against x and a partial coalition struc-
(-Np
ture 22 , different of v/ |, subject to (1.7) and (1.8). First, we de-
fine a bipartite capacitated network .AFQZ(,Sr) with demands and supplies
—
associated with x, v and ZX . Secondly, we present a feasibility theo-

h-
rem in ,A/?Z(pf). In the next section, this theorem will be used to

derive a characterization of the compensatory bargaining counter proposals.



A nondirected graph rkN) = (NF’EF) can be associated to a

game with the set of players N, as follows: for every coalition SE&N,

S

taken in E_. Obviously, any partial coalition structure of the game is

r

represented in r(N) as an independent vertex set,

a vertex n, 1is taken in NV; if Slﬁs2 # ¢, an edge [nsl,nsz] is

For our given x, we can define a weight function on N , namely

If

W<ns) e(x,8), SEN, S # 0. (2.1)

o for all S e€ éf . The weight function

Obviously, we have w(nS)
% * K *

defines a subgraph [ = (N ,E ) of l—(N), where N =§ nS, nse Nr ,

w(ns)> o } and E  is the set of edges in Er connecting vertices

wla
w

in N*, ie. | is the subgraph of rkN) generated by the vertices
corresponding to coalitions of positive excess..

The coalition K 1is represented by nKEN{' which could be in N*,
or not, To our given bargaining proposal 57—5f K corresponds an inde-
pendent vertex set N of r*, consisting of vertices np > h=1,..,q,

va h

adjacent to - To our given partial coalition structure 4 , different

of~3’, subject to (1.7) and (1.8), corresponds an independent vertex
—
set NL{ of | consisting of vertices 0 j=1,..,r, such that every
i
vertex o h=1,..,q, is adjacent to at least one vertex in N, .
“h Z‘.
Now, we defined a network .fJ}Z(,JF) as follows:
~

The supporting directed graph r-= (V,A) has V = NZJJ N?_ and

A= ?(nt,nTh) l j=1,..,r, h=l,..,q ? ; note that (nUi,nTh)e‘A whether

or not the edge [-nU »A ] belongs to E. The capacity‘function is
j "h

oo if [ﬁ%g%h]e E

¢, =c(n, ,n, ) = (2.2)
in nt nTh o) otherwise
for j=1,..,r and h=1l,..,q. We denote
s(n; ) =w(n, ) =e(xU), i=l,..,r
] j ] (2.3)

h

d(n = e(x,T 1,..,q

) = w(ag ) By

Ty h



a supply and a demand function, respectively. In words, d(n

h=1,..,q are the amounts that the groups of players 'E; from all

h

j=1,..,r are the amounts that all Uj can offer to attract players

- B P i
T need in order to be able to leave J and move to Z{ , and s(nU )
j

in N - To. Obviously,-ﬁ/}«k,sr) is a bipartite capacitated network
with supplies and demands (see L. R. Ford and D. R. Fulkerson (1962)).
A flow in -A/ZZ(,Gr) satisfying the demands with the given sup-

plies is a function f£: A —>R such that
q
> £, € e, Jol.r

£, 2 e(xT), bh=l,...q (2.4)

Osf j=1yo-,r’ =19~-9q

i< Cyn
where fjh is the flow on arc (nU.,nTh).

In general, it is used to sathhat a network with demands and
supplies is feasible, if there exist a flow satisfying the demands
with the given supplies, i.e. the system (2.4) 1is consistent. Now,
we give a theorem similar to a feasibility theorem by D. Gale (1957),
(see Ford/Fulkerson,1962,Chapter II,Th.1.1,pp.38-39). This theorem will
characterize the networks ,A/EZ(,?') which are feasible, We consider
only the networks «Afilc,ﬂ’) subject to the assumption

@  UN-T)EB, =l

In JVF(Z(,JP), this assumption means that each vertex in NZL is
linked by at least one arc of infinite capacity to some vertex in qy_.'
Note that by (1.7) such arcs are entering every vertex in N__. of

'

course, there may still exist pairs of vertices oy 5 Op correspon-
i h
ding to pairs Uj s Th of disjoint coalitions.

By extending the network JV?{&,5?3 and using the same procedure

as in the proof of Gale's Theorem, we can prove:

Theorem 2.1: There exists a flow satisfying the demands with the
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given supplies in a network VA/2£?,J73 subject to assumption (A),

if and only if for every subset XZLC'NZ(’ (including %%:= @), we have

-
e(x,U,) > Z e(x,T,) (2.5)
U, €x 77 Fix b

- 1F%% nf M
where [—(X&? is the set of vertices 1in Ny_ adjacent to vertices
in Xu.
Proof: We should impose the condition that in the extended net-
work the capacity of every cut which contains no arc of infinite capa-
city is at least equal to the capacity of the cut comsisting of all

exit arcs, By examining all cuts and eliminating the redundant condi-

tions we end up with (2.5).

3. A combinatorial characterization of the elements of the compensatory

bargaining set.

We intend to prove first a characterization of compensatory bar-
gaining counter proposals. Therefore, we consider as given the same
elements of the game G as in the previous section, i.e. a coalition

f ini 7
structure , a payoff xe%, x#C(G), a bargaining proposal v of
a coalition K against x and a partial coalition structure A , dif-

P- 3 » k] »
ferent of </ , subject to (1.7) and (1.8). By definition 1.3 , any

z €R" "o subject to

Z. Pi = e(x,UJ.), j=1,..,r, ﬁ1> o, ieN - Uo
1€U,
j (3.1)

2 %4 (> e(x,T), h=l,...q,

ie(N-U)DNT,
where /51 =z, - X, ieN - Uo’ is a compensatory bargaining counter
~

distribution for & against / . If (3.1) 1is consistent, then U is
(o

a compensatory bargaining counter proposal against v

Notice that in (3.1), if an(N-TO) = ¢ for some j, then the
third group of conditions does not contain the unknowns /Bi with ier

while the subsystem which contains these unknwons is consistent and

contains no other variables. Therefore, in the following it will be



- 9 -

enough to consider a partial coalition structure 2( subject to
assumption (A), as shown by the Lemma 3.3 below.
Lemma 3.1: Let :7- be a bargaining proposal of some coalition

K against x and consider a partial coalition structure Z( subject

to (1.7), (1.8) and (A). There exists a compensatory bargaining coun-

ter distribution 2z for 2( against :7d, if and only if there exists

a flow satisfying the demands with the given supplies in the network
Mk,y) agssociated with x , I and Z{ .

Proof: Suppose that there is a compensatory bargaining counter

~——
distribution z for 2( against </, i.e. (3.1) 1is consistent. Define
fo= 2 By s d=h..or, belq, (3.2)
B ey 50T,

where /91 =z, - x, ieN - U, and fjh =0 if Uj()Th = ¢. From

(3.1) and (3.2) we have

q
L P

jh

h=1 iern(N-To) leU
T
P D pyemi woa G
j=1 4 ie(N-U )HNT
o h
fjh>/o: j=1,",r, h=l:--,q’

and if cjh = o, i.e, UJ.(‘]Th = ¢, we have fjh = cjh = o, Hence,
f: AR defined by (3.2) satisfies (2.4), i.e, f is a flow satis-
fying the demands with the given supplies in JVA(Zl’ﬂ’ .

Conversely, suppose that there is a flow f: A —» R satisfying
the demands with the given supplies in -J/}<Q,573, i.e. (2.4) 1is

consistent, Define /%i’ ienN - Uo’ as follows

/5,=o, if ieN-U_, ifN-T,
1 o] o]
£, d, . (3.4)
ﬂi S | A S L1f 1€U.NT, # B
[anTh] lu,na-t Bl s
where q
d; =e(xU) - 2. fip > 1=l (3.5)

h=1



As all flows and all differences dj’ j=1,..,r, are nonnegative

by (2.4), we have /6],_)0, 1{€N - U_. For anTh # 0 we get

from (3.4): l ,
U.NT, | d.
L2 By - P L I (3.6)
ieU 0T lU. n(N-TO)(
As fjh = o 1if UjﬂTh = @, for every Uj’ j=1,..,r, we get from

(3.5) and (3.6):

< q
Zp, - Z_ 2o =5 £ +d, =e®xU), (3.7
1EU h J ]

On the other hand, for U.ﬂT # 0 we get from (3.4):

AL I (3.8)
1€U ﬂ’I‘ ﬂl

As ﬁi =o if 1eN-T, iF/N - T for every T, h=1,..,q, we

get from (2.4) and (3.8):

> B

r
Z % e(x,T,), (3.9
ie(N-U )nT j=1

h ~
/U nT, #0 E
because fjh =0 |if an T, = 51( It follows that ﬂi’ ien - Uo’
defined by (3.4) satisfy (3.1), hence z, = X, +ﬂi , 1ieN - Uo’
—
is a compensatory bargaining counter distribution for 2( against < .
From Definition 1.3, Theorem 2.1 and Lemma 3.1, follows
~
Theorem 3.2: Let «/ = (Tl"”Tq) be a bargaining proposal of
some coalition K against xeFéo, x,éC(G), and consider a partial
coalition structure Z( = (Ul,..,Ur) subJect to
. r
Kh = (N-UO)nTh # ¢3 h=1"':qs U U ’
j=1 (3.10)
e(x,Uj)) o, j=1,..,r,
and
(A) v, N(N-T ) # 6, j=1,..,r.
Then, 2(. is a compensatory bargaining counter proposal against ?’
u* X
if and only if for every subset of blocks of , (including
% .
U = 9), we have

(C) ' Z ”* e(vaj) ; Z‘ % e(xsTh))

Uj¢u T ET



* —
where J  1is the subset of blocks of J defined by

h
Note that every 2( subject to (3.lo) and (A) should be

i ,
M T.&T &> T,NU, # § for some U € u* .

~

considered in order to determine whether or not ~/ can be counte-
red. Note also that one can check whether or not (C) 1is satisfied
by finding a maximum flow in the extended network for ,Af}:%,&’); if
the maximum flow saturates the exit arcs, then (C) are satisfied and
ZL is countering I , otherwise a new 2( , if any, should be consi-
dered. Moreover, in the first case the formulas (3.4) define a com-

. . I3 [ I o
pensatory bargaining counter distribution for 2( against Vv

Now, we intend to give a combinatorial characterization of the
elements of the compensatory bargaining set. Two previous lemmas are
needed.

—

Lemma 3.3: For a bargaining proposal </ of some coalition K
against xél;?, x¢C(G), there is a compensatory bargaining counter
proposal, if and only if there is a compensatory bargaining counter
proposal 2( against J satifying condition (A).

~o
Proof: If X 1is a compensatory bargaining counter proposal
Lo rd R
against <~/ which does not satisfy conditions of type (A), then accor-
ding to the remark given before Lemma 3.1, the partial coalition struc-

~
ture X consisting of those blocks of 2L that satisfy (A) will

(o
also be a compensatory bargaining counter proposal against v
By Lemma 3.3, in the search for compensatory bargaining counter
proposals able to counter various bargaining proposals, we can confine
ourselves to consider only those partial coalition structures 4 sub-~
o
ject to (3.1o) and (A) for every baragining proposal < .
Lemma 3.4: If & 1s a bargaining proposal of some coalition K
, —
against er;\f, xfC(G), then < is also a bargaining proposal of

/ \and
every coalition X' which has members in all blocks of v .

Proof: Follows from Definition 1.1, where (1.4) do not depend



on K.

By Definition 1.3 and Lemma 3.4, if 2( is able to counter a
N a
bargaining proposal v , then it does not matter what coalition K
—
subject to (1.3) has initiated /. This happens because 2( is
(\o
countering at once all particular distributions for v (which de-
pend on K). Therefore, in our search for bargaining proposals against
x, which may be countered or not, we can confine ourselves to consider
—

all partial coalition structures /. subject to (l.4). A useless
waste of computational effort would be to consider for every coalition
K all possible bargaining proposals initiated by K.

From Theorem 3.2, Lemmas 3.3 and 3.4 follows

Theorem 3.5: An admissible payoff vector xC—:—Fg, x#C(G), is
an element of the compensatory bargaining set if and only if, for
every partial coalition structure :7J= (Tl"”Tq) subject to

e(x,Th) > o, h=1,..,q, (3.11)

there is a partial coalition structure ZL U Ur), different

1"'1

~
of J , subject to

Cr
[we]

—
0
—
[

(N-Uo)f]Th # 0, h=1,..,q, U =N -

(3.12)

Ca
]
=

=2
1]
—_

Ujﬂ(N—To) # 0. j=1,..,r, To =N -

and
e(x,Uj) > o, j=1,..,r, (3.13)
. _
such that for every subset U” of blocks of X (including ZL*=®)

we have

-
©) p - e(x,U) 2 Z* e(x,T),
Ué¢ & T¢T
where ’

(D) \7‘*=§T( Te?‘, TAU # § for some UGZ(_*f.

This combinatorial characterization of the elements of the com-
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pensatory bargaining set could be used to derive an algorithm for
testing whether an admissible payoff which is not in the core belongs
or not to the compensatory bargaining set. The algorithm should inclu-
de as subroutines algorithms for listing the independent vertex sets
in a graph, for solving covering set problems and for finding a fea-
sible flow in a bipartite network. Anyway, the problem in the general
case is NP hard.

In the next section, Theorem 3.5 will be used for finding admis-
sible payoffs in MC-C(G) for a 3-person game., In this way, on the
one hand, we shall have the opportunity of compairing the compensatory
bargaining set with the Aumann/Maschler bargaining set M for the
same game and on the other hand, we shaf%s%hat the compensatory com-
mitments imposed in our model could be fulfilled for some non core

admissible payoffs at least in some games. Of course, the general exi-

stence problem is still open.

4, The 3-person games.

Consider the 3-person game

(¢&) v(L)=v(2)=v(3)=o, v(12)=a, v(23)=b, v(13)=c, v(123)=d,
where a, b, ¢, d, are nonnegative numbers. This game has been chosen
because the bargaining set M of Aumann/Maschler is known (1964).
We intend to determine those non core elements of the compensatory bar-
gaining set which are coalitionally rational, because the coalitional
rationality has been a requirement in the definition of M. Let us re-
call that for a coalition structure d? = (Sl,..,Sp), an admissible

; n .
payoff vector x, i.e. a vector xX€&R subject to

2. x. =v(S,), k=l,...p, : (4.1)
ies, k

is coalitionally rational, if for every Sc:Sk, k=1,..,p, we have
Z oz % v(S). (4.2)
ies -7

Three remarks about our game (G) will be useful in the following.



First, note that for every coalitionally rational admissible payoff
x, from (4.2) we should have x)w% so that all excesses e(x,1i) =
==X, i=1,2,3, are nonpositive. Therefore, a singleton can not be a
coalition in a bargaining proposal or in a compensatory bargaining
counter proposal. Secondly, every pair of coalitions of cardinality at
least two consists of coalitions with at least one common element, The-
refore, if one such coalition is a bargaining proposal against x€F,
i.e, its excess is positive, then conditions (3.12) of Theorem 3.5
o Lol
hold for each of the other three coalitions of cardinality/f%o, so
that to determine whether =x 1is c-stable, we should check only condi-
tions (3.13) and (C)., In this way, for x # o we have at most three
possible bargaining proposals, because one of the excesses is zero, and
for each bargaining proposal against x we have at most two possible
compensatory bargaining counter proposals. Third, for every pair of
coaltions with positive excesses our condition (C) of Theorem 3.5 1is
reduced to a very simple one; namely, if T = (T) with {Tl) 1 is a
bargaining proposal against x, i1.e. e(x,T) > o, then by Theorem 3.5,
2( = (U) with U # T, \Uf> 1, e(x,U)> o0, is a compensatory bargaining
counter proposal against :7, if and only if we have
e(x,U);; e(x,T). (4.3)

These remarks-prove

Theorem 4.1: For the 3-person game (G), an admissible payoff vector
x,}<¢(KG), which is coalitionally rational, belongs to the compensatory
bargaining set if and only if H = max e(x,S) > o is reached for
at least two coalitions. °

Theorem 4.1 will be used below, so that it is convenient to call
any coalition of highest excess a principal coalition.

Now, we intend to determine the coalitionally rational admissible

payoffs belonging to Mé-C(G). Three cases should be considered:

o
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(A) §f== (1,2,3); (B) gf consists of one singleton and one coalition
of cardinality two; (C) Ef = (123).

Case (A): §f== (1,2,3), x = (0,0,0).

Theo;em 4,2: In game (G), x = (0,0,0) belongs to MC—C(G) if

max (a,b,c,d) 1is positive and at least two of the

and only if H
numbers a,b,c,d, are equal to H.

Proof: Follows from Theorem 4.1 and e(x,12)=a, e(x,23)=b,
e(x,13)=c and e(x,123)=d.

Case (B): Three coalition structures should be considered:
3 =a32; 6y $ = (12,3). The first

3.y F=(23,1); G

1) 2)
subcase will be discussed in details, for the other two the similar
results will be given.
Consider (Bl): éf = (23,1), x = (o,xz,x3), where
X, + Xy = b, ng o, x32,0. (4.4)
If xe—MC-C(G), then besides (4.4) x should satisfy one of the fol-

lowing group of conditions:

(BH) H= e(x,13) e(x,12) > o and e(x,123) £ H;

1
(Bi') H=e(x,13) = e(x,123) >0 and e(x,12) £ H;
(B]'_”) H=-e(x,12) = e(x,123) > 0o and e(x,13) $ H.

Note that these groups of conditions may coincide only if e(x,13) =
= e(x,12) = e(x,123), Note also that each group of conditions could
be satisfied only if the game itself satisfies some conditions to be
derived hereafter,.

(B!) From e(x,13) = e(x,12) and (4.4) we get

1
X =0, X, = 1/2(a+b-c), Xy = 1/2(-a+b+e), (&.5)
and we have H = 1/2(a-b+c), e(x,123) = d-b; hence, from e(x,123)< H,
H>o and (4.4), we get

a+b+c;2d, b<atc, cgatb, agbtc. (4.6)

Conversely, (4.5) and (4.6) are sufficient for x = (o,xz,x3) to

belong to Mc-C(G) and to be coalitionally rational.

-



(Bi’) From e(x,13) = e(x,123) and (4.4) we get
X, = 0, X, = d-c, Xq = b+c-d, 4.7
and we have H = d-b, e(x,12) = atc-d; hence, from e(x,12)<H,
H>o and (4.4), we get
atb+c £2d, b<d, cg£d, dg£ btc. (4.8)
Conversely, (4.7) and (4.8) are sufficient for x = (o,xz,x3) to
belong to MC-C(G) and to be coalitionally rational.
(Bi"). From e(x,12) = e(x,123) and (4.4) we get
X, = 0, X, = a+b-d, Xy = d-a, (4.9)
and we have H = d-b, e(x,13) = atc-d; hence, from e(x,13)X H,
H>o and (4.4), we get
at+b+c< 2d, b<d, a<d, dgb+a, (4.10)
Conversely, (4.9) and (4.1lo) are sufficient for x = (o,xz,x3) to
belong to MC-C(G) and to be coalitionally rational.
The above considerations prove
Lemma 4.3: For df = (23,1), there is a coalitionally rational

1<6MC-C(G) if and only if (G) satisfies the conditions of one of

the columns

a+b+c 2 2d a+b+c £ 2d ! atb+c & 2d
a < b+c bg d agd

b < at+c c &d b <d
cSatb d ¢b+c d €a+b

and x 1is given, respectively, by
(0,1/2(a+b-c),1/2(-a+b+c)), (o0,d-c,b+c-d), (o,at+b-d,d-a).
Obviously, (G) may satisfy the conditions of all three columns
only if a+b+c = 2d; it is easy to see that all three columns coincide
in this case. If a+b+c >2d, then (G) may satisfy only the conditions

of the first column; nots that b<at+ec could not be replaced by b Sa+c,

because in this case for b = atc we have x = (o0,a,c) which is in C(G).



If a+b+c ¢ 2d, then (G) could satisfy one of the last two colummns or
both. For example, if a=1, b=1, c=3, d=3, (G) satisfies the second
column but not the third and if a=3, b=1, c=1, d=3, (G) satisfies
the third column but not the second. If a=1, b=2, c=1, d=3, (G) sa-
tisfies both and gives two differernt payoffs (0,2,0) and (o0,0,2), res-
pectively. Note that b<d could not be replaced by bgd, because in
this case for b=d we have (o,d-c,c) and/or (o,a,d-a) which are
in C(G).

Similar results and remarks could be given for (B2) and (B3).

Lemma 4.4: For 5f= (13,2), there is a coalitionally rational
:céb%;C(G) if and only if (G) satisfies the conditions of one of

the columns

a+b+c 2 2d a+b+c g 2d a+b+c g 2d
ag bte agd b<d

b £ atc c<d c<d

c < a+b dsa+c d £b+c

and x 1is given, respectively, by
(1/2(a-b+c),0,1/2(-a+b+c)) (a+c-d,o0,d-a) (d-b,0,b+c-d).
Lemma 4.5: For E? = (12,3), there is a coalitionally rational
1<eb%;C(G) if and only if (G) satisfies the conditions of one of

the columns

atb+c 2 2d a+b+c § 2d a+b+c £ 2d
a ¢ b+c acd a<d

b £ a+c b$d csd

¢ Sa+b d ga+b d g at+c

and x 1is given, respectively, by
(1/2(a-b+c),1/2(a+b-c),0) (d-b,a+b-d, o) (a+c-d,d-c,0).

The results obtained in case (B) can be put together in two theorems
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Theorem 4.6: If a nontrivial game (G) satisfies a+b+c2 2d
and the triangle inequalities agb+ec, bgatc, cgatb, then the
coalitionally rational payoffs in MC-C(G) for coalition structures

consisting of one singleton and @ coalition of cardinality two are

(0,1/2(a+b-c),1/2(-a+b+c)) for of (23,1), if b<a+c;

(1/2(a-b+c),0,1/2(-a+btec)) for o = (13,2), if c<a+b;

(12,3), if a<b+c,

(1/2(a-b+c),1/2(at+b-c),0) for &

Proof: Follows from Lemmas 4.3, 4.4, 4.5, in which the results
given in the first columns have been used, taking into account that
all three columns coincide when a+b+c = 2d. Moreover, all triangle
inequalities can be satisfied with equality signes only for a=b=c=o0;
therefore, except for the trivial game a=b=c=d=o0, there is always at
least one strict inequality, hence the payoffs in MC—C(G) shown in
Theorem 4.6 are exactly those given by the Lemmas.

Theorem 4.7; If (G) satisfies a+b+c¢ 2d and the inequalities
ad, bsd, c £€d, then the coalitionally rational payoffs in MC-C(G)
for coalitio%%tructures consisting of one singleton and one coalition

of cardinality two are

(o,d=-c,b+c-d) d £ bt+c,
> for & = (23,1), if b<d and<
(o,a+b-d,d-a) d £ a+b;
(a+c-d,0,d-a) d £ atc,
N for S - (13,2), if c<d and<
(d-b,0,b+c-d) : d € btc;
(d-b,a+b-d,0) d< a+b,
N for Qf = (12,3), if a<d and\
(atc-d,d-c,0) d gate.

Proof: Follows from Lemmas 4.3, 4.4, 4.5, in which the results
given in the last two columns have been used. In each of the six situ-
ations the inequality added is redundant; for example, from a+b+c<2d
and dgb+c follows a<d. Moreover, among the inequalities a(d,

b {d, c<d, at least two should be strict, because a+b+c< 2d, hence

the payoffs in MC-C(G) given by Theorem 4,7 are exactly those given



by the Lemmas.

Noté that if a+b+c2,2d' we may have at most 3 payoffs in
MC-C(G); for example, when a=3, b=4, c=5, d=2, we get the payoffs
(0,1,3), (2,0,3), (2,1,0). If a+b+c¢2d we may have at most 6 pay-
offs in MC-C(G); for example, when a=2, b=2, c=3, d=4, we get the
payoffs (o,1,1), (0,0,2), (1,0,2), (2,0,1), (2,0,0), (1,1,0). However,
it is also possible that no coalitionally rational payoff in MC-C(G)
does exist for case (B). If a+b+c;32d, this situation occurs when at
least one triangle inequality does not hold; for example, when a=4,
b=1, c=1, d=2, this happens even though a+b+c).2d holds, because we
have aMb+c. If a+b+c< 2d, this situation occurs when d>a+b, d> b+c,
d > a+c; for example, this is the case when a=b=c=1, d=3,

case (©): o = (123), x = (x],x,,%,), where

X, +x,+X

17273

As all excesses are nonpositive, we have

=d, x1> o, x220, x3>/ 0, x1+x2>,a, x2+x3; b, x1+x3_>, c.

Theorem 4.8: 1In game (G), there is no coalitionally rational
payoff in M_-C(G) for I = (123).

Theorems 4,2, 4.6, 4,7, 4.8, describe completely the set of coali-
tionally rational payoffs in MC-C(G). In Aumann/Maschler paper (1964)
is given the bargaining set M of (G), which obviously contains also
the core. However, it will be easy to separate the non core elements
of M and to compair them with those in MC-C(G). For the sake of
completeness, we give the Aumann/Maschler results hereafter.

Theorem 4.9, (Aumann/Mascﬁler,Th.A.l): In (G), if the grand coali-
tion can not be formed, essentially two cases arise:

Case (a): If a, b, c, satisfy the triangle inequalities ag b+c,
b{a+c, cat+b, then the bargaining set M is:

(0,0,0;1,2,3), (1/2(a-b+c),1/2(a+b-c),0;12,3),

(1/2(a-b+c),0,1/2(-a+b+c);13,2), (0,1/2(a+b-¢c),1/2(-a+b+c);23,1).

Ccase (b): If, e.g. a)b+c, then the bargaining set M 1is:



(0,0,0;1,2,3), (c5x1Sa-b,a-x1,o;12,3)
(c,0,0;13,2), (o,b,0;23,1).

Theorem 4.lo, (Aumann/Maschler,Th.5.1): In (G), the bargaining
set M consists of the admissible payoff éonfigurations given by Theo-
rem 4.9 and also the admissible payoff configurations (xl,xz,x3;l23)
which satisfy x +x,+x,=d, xl-}- 0, x,20, x3)o, x %, a, x2+x3>/b,
x1+x3;,c. The latter payoff configurations exist if and only if

agd, bgd, cg£d, a+b+c.< 2d, (4.11)
Now, we intend to compair our results (Ths. 4.2, 4.6, 4.7, 4.8)
with Aumann/Maschler results (Ths. 4.9, 4.lo), taking into account that
the latter contain also core payoffs. We consider separately each coali-
tion structure,

For df = (1,2,3), x = (0,0,0) is always in M, while this payoff
belongs to MC-C(G) only in those cases explained in Theorem 4,2, The
reason is that Aumann/Maschler definition of M does not allow any ob-
jection against (0,0,0;1,2,3).

Consider the coalition structures consisting of one singleton and
one coalition of cardinality two. Let us discuss only the coalition struc-
ture &f= (12,3), because the payoff configurations in M are completely
shown in Aumann/Maschler proof of Theorem 4.9, (1964,p.456); in fact,
they can be obtained from Theorem 4.9, (including the circular permuta-
tion of results given in case (b)). These payoff configurations are

(1/2(a-b+c),1/2(a+b-c),0;12,3) if aS$b+c, bgate, cSatb (4.12)

(c$x € a-b,a-x,0312,3) if a>btc ' (4.13)
(09350;1293) if b>a+c (&,14)
(a,0,0;12,3) if c> atb (4.15)

As shown by Theorem 4.6, (4.12) belongs also to MC-C(G), how-
ever, a+b+c2_2d and a ¢b+c should also be satisfied. The reason is
that Aumann/Maschler definition of M does not allow an objection

based upon the grand coalition and this fact eliminates our condition
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atb+c¥» 2d. The second condition, a<{b+c 1is eliminating the payoffs
belonging to the core which are included in Aumann/Maschler results.

It is easy to see that the payoffs (4.13) give e(x,23)=x1—(a-b)<‘o,
e(x,13)-c-x1$ o. As the grand coalition can not be used for objection
and all excesses are nonpositive, the payoffs (4.13) are not threatened
by any Aumann/Maschler objection. Our approach is either including them
in the core, if e(x,123)=d-a< o0, or excluding them from MC—C(C) be-
cause (123) 1is a bargaining proposal which can not be countered, if
e(x,123)=d-a} o,

For (4.14), i.e, d?=(12,3), x,=0, x2=é, x,=0, any ( £,0,c-£& ;13,2)
with 0< & € ¢ 1is an objection of 1 against 2; if b>»at+c, any
(o,a+;7 ,b-a-7 ;323,1) with oSbe-a-c%—& is a counter objection of 2
against 1. Further, any (o,a+& ,b-a-& ;23,1) with o<egb-a 1is an ob-
jection of 2 against 1, which can be countered by 1 playing alone.
As no objection by means of the grand coalition is allowed, (o0,a,0:12,3)
is in M. In our approach, we have e(x,13)=c, e(x,23)=b-a, e(x,123)=d-a;
if b atc, (13) 1is a bargaining proposal and (23) is a compensatory bar-
gaining coﬁnter.proposal because e(x,23)> e(x,13). However, (23) 1is also
a bargaining proposal which can not be compensated by (13) or a singleton.
If b=d, then (0,a,0)& M_-C(G) and (o,a,-o)/é C(G), because e(x,23)=e(x,123),
otherwise either (23) or (123) can not be countered. Similarly, for (4.15)
if c¢> a+b then (a,0,0)€ M, but (a,o,o)#MC-C(G) and (a,o,o);é C(G), except
if c¢=d. Clearly, the compensatory commitments are eliminating (4.14) and
(4.15) from the compensatory bargaining set, together with the possibility
of using the grand coalition as a bargaining proposal.

Note that Theorem 4.7 1is giving other payoffs which belong to

MC-C(G) and do not belong to M because a counter objection can not use

the grand coalition, so that some objections can not be countered.
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For af = (123), if (G) satisfies (4.11) the payoffs are belon-
ging to the core when they are in M, so that they can not be in Mc-C(G).
The above discussion shows some of the differences-between the

c-stable payoffs and the payoffs included in the Aumann/Maschler stable
payoff configurations., Some c-stable payoffs can not be included in stable
payoff configurations because the grand coalition can be used for compen-
satory éountering, but can not be used for counter objections., Some ob-
jections can be countered because no compensation is needed in M, while
the corresponding bargaining proposals are valid because no compensation
is possible. Other relevant differences have not been illustrated because
(G) is a 3-person game and/or has a particular form, so that those situ-
ations can not occur,

Note that we have exhibited a game for which there are c-stable
admissible payoffs outside the core at least for some coalition structures
 when the parameters of the game satisfy some conditions, hence the concept
of c-stability is meaningful. Of course, the existence problem in general

games is interesting.
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