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The bargaining sets have been inErcduced as solution concepts

for cooperative n-person games with side payments by R. i. Aumann

and M. Maschler (L964). A further study on the relationships between

various concepts of solution for such games is due Eo R. J. Aumann

and J Dreze (1g75). The Aumann/l'laschler definition of a bargaining

set relies upon a stability principle imposed to the payoffs in this

set: an admissible payoff belongs to a bargaining set if for every

objection against this payoff there is a counter objection. Two mo-

difications of the stability principle have been discussed in earlier

papers of the author (Dragan,1985, L987 ,1988) .

The present paper is considering another modification: an ob.jec-

tion is valid only if the players who intend to move to new coalitions

agree upon a prior commitment, namely that of compensating all part-

ners who _join che venEure, in case of failure due to a subsequent move.

The mathematical deseription of the model is given in the first section,

where the new stability principle and the corresponding compensaEory

bargaining set M" are defined. A feasibiliEy theorem for the existen-

ce of a flow in a bipartite network associated to a payoff and Ewo

parcial coalition structures (Th.2.l) is derived in the second section

from a similar theorem by D. Gale (1957). The result is used in Ehe

third section for proving a combinatorial characterizaLion of Ehe non

core payoffs belonging to the compensatory bargaining set (Th.3.5). In
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ThnK # 0, h=1,..,9, ro=N-Htn,T AK = 0.o
l1 ?\

and

e(x,Tn)) o, h=l,..,9. (1.4)

In words, K is a group of players who could increase their pay-
(-

offs w.r.t. x by moving rc J, if their partners agree.v

l_

(-
De fini tionnition L.2: A bargaining distribution for V initiated by

is any y€ Rn-co, Eo = lTol, such that

y(Tn) = v(Trr), h=1,..,9, yj.)*i,Vrer, yt).*i,#i.w-to (1.5)

In words, a bargaining distribution for -Zi" a payoff that could

could motivate the players in K to move Eo f and the players in

N - To - K to give their agreement for this move. It is easy to see

that 17-subject to (1.3) can offer a bargaining disEribution if and

only if (1.4) ho1ds.

Note that the pair (y;7) is similar to an Aumann/Maschler ob-

jection. The difference is that no rationality condition is imposed to

x in F.ro and K may not be a subset of a block in d. Moreover,
a)

$;7) is not an objection against another group of players, but is

an objeetion against ("; f).

NoEe also that (1.5) is equivalent to

cC(Tir) = e(x,T6),'h=1,.,,9, 4rro, ie K, 4r)o, i6 N - To, (1.6)

n the following, .di will be called

. The set of bargaining distributions

for Y initiated by K, defined by (1.5), or (1.6), will be denoted

by B(F,K). Bargaining proposals and bargaining distributions have been

considered in earlier papers of the author (Dragan,1985,1987,1988) and

this terms have been used to avoid any confusion wich Aumann/Maschler

objections and counter objections.

Now, before going co precise definitions let us describe the spe-

cific manner of counLering the bargaining proposals introduced in the

PresenE paPer.

,I

r
where di = Ii - *i, i€N - To

the extra win of player i in
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The new assumpLion of our bargaining

nowledging their bargainlng proposal Ehe

upon the following commitmenE: a group of

able to leave F arra join coalitions of

structure only if t concains players of

model is that before ack-

players in N - To agree

players KS N - To will be

another partial coalition

all coalitions of tT, i.e.

?nfn * b, h=1,..,g, and for each coalition Tn the players in ?'nfn

will compensate Tn wiEh e(x,Tn) from their extra wins in their new

N

coalitions. In oEher words, for each Tn Ehe players in KnTh should

compensate all members of Tn (including themselves) for losing Eheir

extra wins in Th. If there is a group of players k- able to leave

under the above staced conditions and move to a ner./ partial coalition

structure U , then we shal1 eonsider that k can count "t 
F. This

condition can be expressed mathematically as a systen of conditions im-

)
posed to 4 , as shown hereafter.

Consider a partial coalition structure 14 = $t,.,,U.), different

of 7, such that

K- = (N-U_)nT. { fi, h=L,..,g,no'n o=N-?rr, (1.7)

ancl

e(x,U.) )o, j=L,,.,t.

Note that tt k aifferenE of 7 " means that no coalition

is a coalition in rF. Obviously, f = pq will be Ehe group
.n

ers who may be willing to move to U .

Consider z€Rn-to, ,o = I u" [ , such thaE

P @) = e(x,u,), i=L,.,,t, F ir. o,V i€ N - uo,
lJJl!

where F: = r: - x. , i€N - Uo,
lLtn-o

Clearly, the pl-ayers in 'K will be able to leave J and move

if and only if we have

rL /ut
i € (N-uo)n Th

Now, to make the bargaining model precise, we introduce the fo1

(1.8)

in l/-

of play-

(1.e)

ro l/, ,

1o)

fo1 lowing
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1.3: Lec f = (T1,..,rq) be

of some coalition K against x € F, , * {C(G) ,

coalition slructure h.= (u1, . .,uri aireere.t

and (1. S) . Any z 6'Rn-uo sub ject Eo (1 .9) and

ieN - Uo, is a compensatory bargaining counter

gainst 7. t such a counter disEribution does

a bargaining proposal

and consider a partial

of T, subject tc (1.7)

(1. lo) , where f f="i-*t
disEribution for A, a-

exist, then U is a

fxCFc, xf, C(G), a bargaining propo-
I

x and a partial coaliEion struc-

to (1.7) and (1.8), First, we de-

Definition

compensauory bargaining counEer proposal aganisa F'

NoEe that ? = U ?'" may contain K, or not.
h

A characterization of the compensaEory bargaining counter proposals

will be given in the third section and examples will be shown in the last

section. Now, we introduce the principle of stability.

Definition 1.4: An admissible pavoff x for a coalition structure
ad is compensatory sEable (c-stable), if for every bargaining proposal

T of every coalition K -€N, there exists a compensatory bargalning coun-
\.

Eer proposal LL again* .F.

Note that the core payoffs are consi.dered to be c-stab1e, because

there is no bargaining proposal of any group of players against such a

payoff.

Definition 1.5: The compensaEory bargaining set M of G is the

set of c-stable payoffs.

2. A bipartite network associated with a payoff and a pair of partial

In this section, we consider

coalition structure d, a payoff

coalition structures.
/L ir?d":'*

as giveFfelem6nts of the game G: a

- 'lsal v ofacoalition K against
'), G-

Eure 4, dLff.erenE of V , subject

fine a bipartiEe capacitated netrporU KCI(,7) with demands and supplies

associated wich x, .7 and u. Secondly, vre present a feasibility theo-

rem in fftk,T1 , In the nexL section, this theorem will be used co

derive a characterization of the compensaEory bargaining counEer proposals.



A nondirected graph [-(N) = (Nf,Ef) can be associated to a

game with che set of players N, as follows: for every coalition S-cN,

a vertex rS is taken in Nf, if S1nS2 I O, an edge ["r,,nrJ is
"1 "2

taken in Ef. Obviously, anY partlal coaliEion structure of the game is

represented in l-tnl as an independenc verEex set.

For our given x, lve can define a weight function on N , namely

w(nr) = e(x,S), sSN, s + b (2.L)

Obvlously, we have w(nr) = o for all S € J . The weight function

defines a subgraph [-" = (N",Eo) of l-(u), where N.= I ", I .s€ Nf ,

) r,.-

w(na)) o J and E is the set of edges in Uf connecting vertices

in No, i.e. f " is the subgraph of l-trq) generated by the vertices

corresponding to coallEions of positive excess.-

The coalition K is represented bI n*€Na which could be in No,

or not. To our given bargaining proposal Tot K corresPonds an inde-

pendent vertex seE N.- of fo, consisting of vertices Rr , h=1,..,9,
*/ ^h

adjacent to n*. To our given partial coalicion scructure k , atterent

of 7, subject to (1.7) and (1.8) , corresponds an independent vertex
+

set N2f of l- consisting of vertices t , 
, .j=1, .. ,r, such that every

h=1,..19, is adjacent to at least one verEex in N

The supporting direct

l rr\, ,n, ) I :=t e. .1t 2
I V. 1n

not tle edge [ \r,"rn]

"ih = "(\.,\. ) = {-j -h (

j=lr..,r and h=l,..

t(fu.) = w(
1

d(n, ) = w(
-h

I\J

ed graph l- = (V,A) has ! =

)h=1,..,g I ; note Ehat i5.
_'1

belongs to E. The capacity

oo if [q,,n*l€Eu j th J

o otherwise

, q. l,le denote

fu.) = e(x,Ur), .j=1,..,r
1-

r, ) = e(x,T"), h=1,..,9
n

mUU u,- and

,trn) whether

function is

as follows:
u

(2.2)

vertex n.F , h=rr..19, ls adJacenE co aE

tf ,
Now, we defined a network JY ( U ,J )

[=

or

for

(2.3)



a supply and a demand funcEion, respectively. In words, d(nr, ),
n

h=1,..,g are the amounts chat the grouPs of player" E from a1L

Tt need in order to be able to leave 7 and torru to 4 , and ,(\.),

J=L,..rt are the amounEs that all Uj can offer to attract player!

in N - T^. obviousty,Jf(U,T) is a bipartite capaciEaged network
o

with supplies and demands (see L. R. Ford and D. R. Fulkerson (1962)).

A f 1ow in .MU.,77 satisfying Ehe demands with the given sup-

plies is a functLon f ; tr 
-;'g 

such that

q

Z rin( e(x,ur), j=1,..,F
h=1 r "
r
--\';1f ft). e(x,Tn), h=l,..,9

o-tf.1 n("jn, i=11";8, h=1,"'9

where f,. is che flow on arc (nr, ,., ).
1n-Jn

In general, it is used to say that a network with demands and

supplies is feasible, if there exist a flow satisfying the demands

with the given supplies, i.e. the system (2.4) is consistent. Now,

we give a theorem sirnllar to a feasibillty theorem by D. Gale (L957),

(see Ford/FuLkerson,L962,Chapter II,Th.1.1,PP.38-39). This theorem will

characterize the networks l\f1k,f 1 which are feasible. We consider

only the nervrorks -Af1h ,f1 subject to the assumpEion

(A) U.n(N - to) + 0, j=1,..,f.

U Jf (h,7), this assumption means that each vertex in *JC is

linked by at least one arc of infinite capacity Eo some vertex in \2.
NoEe that by (1.7) such arcs are entering every vertex in 

\f 
. of

course, there may sti1l exisE pairs of vertices \i , trn corresPon-

ding to pairs Uj , Th of disjoinE coaliEions-

By extending the neEwork .ttf < k,r> and using the same procedure

as in Ehe proof of Galets Theorem' t^7e can Prove:

Theorem 2.1: There exists a flow satisfying the demands l,liEh the

(2.4)
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given supplies in a netwo*.Af14,n to assumption (A),

if and only if for every subset *laa

subj eet

N, , (inc
4

s
+ e(x,Ur)u#u r '/ 4{ 7rx2

is Ehe set of vertices in *f

luding *l'c = b), we have

e (x,Tn) (2.s)

to verEicesad-'i acentl-where , (XA)

in XU.

Proof: We should impose the condition thac in the extended net-

arc of infinite capa-

consisting of al1

the redundant condi-

work the capacity of every cuE which contains no

city is at least equal to the capaciEy of the cut

exiE arcs. By examinlng all cuts and eliminating

tions we end up with (2.5).

3. A combinatorial characterization of the elements of che compensatory

bargaining seE.

We intend to prove firsC a characterization of compensatory bar-

gaining counter proposals. Therefore, $/e consider as given the same

elements of the game G as in the previous section, i-.e. a coalition
.p

structure Q7 , a payoff *ak , *fC(G), a bargaining propo."1 t7- of

a coaliEion K against x and a ParEiat coalition structure k , dif-

ferent of J , subject to (1.7) and (1.8). By definiEion 1-3 , anl

" 
€ Rt-to subject to

SA/- /"i = e(x,ur), j=1,..,r, Ft) o' ieN - uo
i€U.' I J " ," ',.,'--t,

.1-^ p i). e(x,Tn), h=l ,.,,9,
i€(N-uo)fitn,

where h, = z, - x,, i€N - U-, is a compensatory bargaining counter
t1

' . -- )t
discribution for )/. against 9-. If (3.1) is consiscenE, then /( is

a compensatory bargaining counter proPosal against 9-.

Notice Ehat in (3.1), if Ur0{u-fo) = 6 for some i, then the

third group of conditions does not conEain che unknowns P, with i€U.

while the subsystem which conEains these unknwons is consisEent and

contains no other variables. Therefore, in the following it will be



eaough to consider a partial coalition structure h

assumption (A), as shown by the Lemma 3.3 beLow;

subject to

Lemma 3.1: Let J- U" a bargaining proposal of some coaliEion

K against x and consider a parEial coalition structure U. subjeet

to (1.7), (1.8) and (A). There exists a compensaEory bargaining coun-

ter distribution z for k against 7-, if and only if there exists

a flow satisfying the demands with the given supplies in the network
t/;

){f k,7> associated with * , T and ?/. .

Proof: Suppose that there is a compensaEory bargaining counter

disEribution z for k against .[ i.e. (3.1) is consistent. Define

f
ahJ^.

where fA. = z.
/L L

(3.1) and (3.2)
q

: r,h=
n=r

r
G -4h
2-1 J "

= Z b, ,
i€u.f\T,' IJn

- *i, icN - uo

we have

Z B,<i6u.4(N-rj) r

i=1 r h=l d
J.,..,-'...'..'],

,and fjh=o

(3.2)

if uj0tn = d. From

s
L F, = e(x,uq), j=1,..,r,
ieu I

J

L f' (3. 3)
ie(N-uo)nrfi

'jn), 
o 

'

and if "jh = o, i.e. u.n rh = 0, we have f-jn = ".jh = o.

f : A +R defined by (3.2) satisfies (2.4), i.e. f is a

fytng the demands with the given supplies in Jt/'1h,7).

Conversely, suppose Ehat there is a flow f: A -) R

the demands with the given supplies in -lf t h.,T\, i.e.

consistent, Define f{ ieN - Uo, as follows

A

------J

if ieN - u

lr

N.T o'

+b

I{ence,

flow saEis-

sa ti s fying

(2.4) is

(3.4)
13, = o'
t'

f

B. = --11- +I L lu.nr. Ir J nr

o'

i AII

+
iorr,lu: n (N-ro) |

q

z
h=l

where

Oj = e(x,Ur) - r-jh '
l-1l-rr.. r !. (3.s)



e , [u.,nrn I a.i

= f ., T --=--in luj n 1u-rolf

On the oiher hand, for U.nTL
J rr

\i
i a \f

i.u.ir, /- i // - jh
Jn

As l|i= o if ieN - Uo, i/N - ro, for

As all flows and

by (2.4), we have

frour (3.4):

lo

all dif ferences U.j,

F ,)ro, l€N - U
lL'o

h/u.nrhlo i

j=1r.. rr, are nonnegative

For U.nTh # 0 we get

(3.6)

we geE from

Z B,
ieu.nT,l IJn

As frn = o if u.0Tn = d,

(3.s) and (3.6):

Zp, =
i€u.l

J

and (3.8) :

sL
eu.o

J

get from (2,4) and (3.E):

Z -p,i€(N-uo)nril L ' 1/u jnTh+b 
''" j=1

because tjn = o if u.ntn = /. rt follows that fi, i€N - uo,

for every Ui, j=I,..,r,

/3
I

T.
n

*0

q

, = Z fr" t di = "(x,u.,), (3'7>
- L-l J-' J J

ll- !

we get from (3.4):

(3.8)

every Tn, h=1r..,q, we

(3. e)

defined by (3.4) satisfy (3.1), hence ,t = *t+f t , L€ N - Uo,

is a compensatory bargaining counter distribution for U agains 
" 

T

From Definition 1.3, Theorem 2.1 and Lemma 3.1, follows
(7

Theorem 3.2: Let J = (T1,..,tq) be a bargaining proposal of

some coalirion K against x €F, , x# c(G), and consider a partial
J.

coalition structure k = (Ul,..,Ur) subject to
P
Kh = (N-uo) nTh + 6, h=1,..,Q, uo = N

e(x,U.)) o, j=I,.-,r,

and

(A) Uj n (N-To) * 0, .i=1,..,f .

Then, )/- is a compensatory bargaining counter'

if and only if for every subset f of blocks

t = O>, we have

z
u:#

r
- U ui,

j=l J (3.1o)

proposal against 7,

ot )t- , (including

T
.d.n,

(c)
U* 

e(x,ur) ) 
T

e(x,Tn),
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rrrhere f* is the subset of blocks of 7 defined by

(D) The r* r*for some U.e L(
J

NoEe that every )/- subjecc to (3,1o) and (A) should be

considered in order to determine whether or not f can be eounte-

red. Note also that one can check wheEher or noE (C) is satisfied

by finding a maxirnum f low in the extended net\tork rct {( h,7); it

the maximum flow saturates the exit arcs, Lhen (C) are satisfied and

h- i" countering T , otherwise a new h- , if any, should be consi-

dered. Moreover, in Che first case the formulas (3.4) define a com-

pensatory bargainlng counter distribut ior- for h against J-.

Now, we intend to give a combinatorial characterization of the

elements of the compensatory batgaining set. Two previous Lemmas are

needed.

Lemrna 3.3: For a bargaining proposaL 7 of some coalitlon K

against "eV, "fC(G), rhere is a eompensatory bargaining eounter

proposal, if and only if there is a compensatory bargaining counter

proposal U. agains t T satifying condition (A).

Proof: If i is a compensatory bargaining counter proposal

dagainst J which does not satisfy conditions of type (A), then accor-

ding to the remark given before Lemma 3.1, the partial coaliEion struc-
^-/ture k consisting of those blocks of k thac satisfy (A) wilL

also be a compensaLory bargaining councer proposal against f .

By Lemma 3.3, in uhe search for compensatory bargaining counter

proposals able to counter various bargaining ProPosals, we can confine

ourselves Lo consider only those partial coalition strucEures U sub-

ject Lo (3.1o) and (A) for every baragining proPosal 9-.

Lemma 3.4: If 9- i" a bargaining proposal of some coalition K

against x€F.p, * f c1c;, Ehen ?- is also a bargaining proposal of
dr

everv coalition K/ which has members in all blocks of 7 .

Proof: Follows from Definition 1.1, where (1.4) do not depend



By Definition 1.3 and Lemma 3.4, if k is able to counter a

bargaining proposa t 7, Ehen

subject Eo (1.3) has initiated

councering at once all particular distributions for F 1tnf"h de-

pend on K). Therefore, in our search for bargaining proposals against

x, which may be counEered or not, we can confine ourselves to consider

all partial coalicion sLruetures 7 subject to (1.4). A useless

waste of computational effort would be to consider for every coalicion

K all possible bargaining proposals initiated by K.

From Theorem 3.2, Lemmas 3.3 and 3.4 follows

Theorem 3.5: An admissible payoff vecEor "ak
an element of the compensatory bargaining set if and

every partial coalition structure f = (T1,..,To)

oll K.

it does not matEer whaE coalition

7-. rti" happens because )/ is

c(c), is
lff^f

t t,o

(3 . 11)

= (u1, . . ,ur) , dif ferentthere is

of J,

and

e(x,U.) ) o,
J

such that for every subset

we have

,*f
only

subjec

e(x,Tn) ) o, h=1,..,9,

a oartial coalition strucEure /L

subject to

(N-uo) otn * b,

uJn(N-ro) * 6.

(c) e (x,T) ,

**(lb-(D) J- =)Tl TeJ , TOU+0 forsome

This combinatorial characterizaEion of the elemenls

r4f

T =lrf-o

:-1J -r.. r-,

\. *k^ of blocks of U

(3.13)
$

(includtng lL =6)

r
Ur-1l-r

q

U
h=1

ti t
J

T'ht

(3.L2)

:
u# U* 

e(x'u)

+)
Ue//-'t

of the

where
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pensatory bargaining set could be used Eo derive an algorithm for

Eesting whether an admissible payoff which is not in the core belongs

or not to the compensaEory bargaining set. The algorithm should inclu-

de as subroutines algorithms for listing the independent vercex sets

in a graph, for solving covering set problems and for finding a fea-

sible flow in a bipartite neEv/ork. Anyway, the problem in Ehe general

case is NP hard.

In the next sect,ion, Theorem 3.5 will be used for finding admis-

sible payoffs in M.-C(G) for a 3-person game. In this way, on Ehe

one hand, we sha1l have the opportunity of compairing the compensatory

bargaining set with the Aumann/Maschler bargaining set M for the
Jee

same game and on the other hand, we shalT€hat the compensatory com-

mitmenLs imposed in our model could be fulfl11ed for some non core

admissible payoffs at least in some games. Of course, the general exi-

stence problem is sEi1l open.

4. The 3-person games.

Consider the 3-person game

(G) v(1)=v12;=v(3)=o, v(12)=s, v(23)=b, v(13)=s, v(123)=d,

where 8, b, c, d, are nonnegative numbers. This game has been chosen

because the bargaining set M of Aumann/Maschler is known (1964).

We intend co determine those non core elements of Ehe compensatory bar-

gaining seE which are coalitionally rational, because the coalitional

racionality has been a requirernenE in the definition of M. LeE us re-

call that for a coalition struct.ure dF = (Sl,..,rO), an admissible

payoff vecEor x, i.e, a vector xeRn subject Lo

is coalitionally rational, if for every S cSL, k=l,..,p, we have

: x. )- v(S). (4.2)
i€s

Three remarks about our game (G) will be useful in the following.

Zxi=
iesk

(4. 1)
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First, note that for every coaliEionally ratlonat admissible payoff

x, f.rcn (4.2) we should have *)o, so chat all excesses e(x,i) =

=-*i, L=L,213, are nonposiEive. Therefore, a singleton can not be a

coalition ln a bargaining proposal or in a compensaEory bargaining

councer proposal. Secondly, every pair of coalitions of cardinality at

least two consists of coalitions with aE least one common element. The-

refore, if one such coalition is a bargaining proposal against xeF,

i.e. its excess is posiEive, then conditions (3.I2) of Theorem 3.5
*Lf*'t"

hold for each of the other three coalitions of cardinality/Ewo, so

that to determine whether x is c-stable, we should check only condi-

tions (3.13) and (C). In Ehis way, for x * o we have at most three

possible bargaining proposals, because one of the excesses is zeto, and

for each bargaining proposal against x we have at most two possible

compensaEory bargaining counter proposals. Third, for every pair of

coaltions with positive excesses our condition (C) of Theorem 3.5

reduced to a very simple one; namely, if 7= (T) wich lrl> f is

bargaining proposal against x, i.e. e(x,T))o, then by Theorem 3.5,

)L = (u) wirh u + T, lult t, e(x,u)) o, is a compensatory bargaining

counter proposal against 7 t and only if we have

e(x,U) ) e(x,T).

These remarks'prove

Theorern 4.1: For the 3-person

1s

a

*, *fc(G), which is coalitionally

bargaining set if and only if !l =

aE least two coalitions.

(4. 3)

an admissible payoff vector

belongs to Ehe compensacory

is reached for

game (c),

rational,

max e(x,S)
J

Theorem 4.L wi.l1 be used be1ow, so Ehat iE is convenienE Lo call

any eoalition of highest excess a principal coalicion.

Now, we intend to determine the coalitionally rational admissible

payoffs belonging to M -C(G). Three cases should be considered:
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and only if H = max (arbrc,d)

(A) $ = <t,2,3); (B) $ consists of one singleton and one coalition

of cardinality Erto; (C) I = (I23).

Case (A), J= (1,2,3), x= (o,o,o).

Theorem 4.2: In game (G), x = (o,o,o) belongs to M.-C(G) if

is positive and at. least two of the

numbers arbrcrd, are equal to H.

Proof : Follows from Theorem 4.1 and e(x,12)=3, e(x,23)=b,

e(x,13)=s and e(x,123)=d.

Case (B): Three coalition structures should be considered:

d -- (12,3) . The f irst

other two the similar

Consider (Br): I = (23,L), x = (o ,x2,x3), where

x, * x, = b, *21 o, xr).o. (4,4)

If xeMc-C(G), then besides (4.4) x should satisfy one of the fol-

1-owing group of conditions:

(Bi) 1l = e(x,13) = e(x,Lz) > o and e(x,123) $ H;

(Bi') H= e(x,13) = e(x,123) )o and e(x,12)-< H;

(Bi") H = e(x,12) = e(X,L23) > o and e(x,13) -< H.

Note thaE these groups of conditions may coincide only if e(x'13) =

= e(x,12) = e(X,123). Note also that each grouP of conditions could

be satisfied only if the game itself satisfies some conditions to be

derived hereafter.

(Bi) From e(x,13) = e(x,12) and (4.4) we get

*1 = o, x2= L/2(a+b-c), x3 = L/z(-a+b+c), (4.5)

and we have H = I/2(a-b+c), €(x,123) = 6-5' hence, from e(x,123)-( H,

H)o and (4.4), we get

a*b*c>2d, b(a*c, c(a*b, a(b*c. (4.6)

Conversely, (4.5) and (4,6) are sufficient for x = (o,*2'*3) to

belong to M^-C(G) and to be coalicionally rational.

,,0 .,(Br) J = (23,1) ; (Bz) e) = (L3,2); (B:)

subcase wilL be discussed in details. for the

results will be given.



16

(Bi' ) From e (x, 13) = e (x, 123) and (4,4) vre get

*1 = o, x2 = d-c, x3 = b*c-d,

and we have H = d-b, e(x,12) = a*c-d; hence, from

H) o and (4.4), r,/e get

(4.7)

e(x,12)-( H,

(4.e)

e (x,13)-( H,

(4. 1o)

= (orxrrxr) to

a*b*cSZd, b(d, c-(d, d-<b*c. (4.8)

Conversely, (4.7) and (4.8) are sufficient for x = (o,x2,x3) to

belong to Mc-C(G) and to be coalitionally rational.

(Bj " ). From e(x,12) = e(x,123) and (4.4) we get

*1 = o, x2 = a*b'd, x3 = d-;t,

and we have H = d-b, e(xr13) = a*c-d; hence, from

H ) o and (4.4), v/e get

a*b*c(2d, b<d, a-(d, d{b+a.

Conversely, (4.9) and (4.1o) are sufficient for x

belong co M^-C(G) and Eo be coalicionally rational.

The above considerations prove

Lemma 4.3: For Jl = (23,I), there is a coalitionally rational

x€14"-C(G) if and only if (G) saEisfies the conditions of one of

the columns

a+b*c) 2d

a -( b*c

b <a*c

cSa*b

a*b*c.< 2d

b<d

cSd

d 5b+c

a*b*c.( 2d

a-<d

b <d

d {a*b

and x is given, respectively, by

(o,l/2(a+b-e),L/2(-a+b*c)), (o,d-c,b*c-d), (o,a*b-d,d-a).

Obviously, (G) may saEisfy the conditions of all three columns

only if a*b*c = 2d; it is easy to see Ehat all three columns coincide

in this case. If a*b*c)2d, then (G) may satisfy only the condiEions

of the first column; noQ that b( a*c could not be replaced by b(a*c,

because in this case for b = a*c we have x = (o,a,c) which is in C(G).
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If a*b*c(2d, then (G) could satisfy one of the last two columns or

both. For example, if a=1, b=l, c=3, d=3, (G) satisfies the second

column but noE the third and if a=3, b=1, c=1, d=3, (G) satisfies

che third column but not the second. If a='l-, b=2, c=1, d=3, (G) sa-

Lisfies both and gives cwo differerit payoffs (o,2,o) and (o,o,2), res-

pectively. Note EhaL b<d could not be replaeed by b-(d, because in

this case for b=d we have (o,d-c,c) and/or (o,a,d-a) which are

in c(c).

Sirnilar resulEs

Lernma 4.4: For

xEM.-G(G) if and only

the columns

a+b+c) 2d

a<b*c

b{ a*c

c<a*b

a+b+c) 2d

a <b*c

b -( a*c

c (a*b

and remarks could be given for (B2) and (B:).

and x is given, respectively, by

(L/2(a-b+c),o,L/2(-a+b+c)) (a*e-d,o,d-a) (d-b,o,b*c-d).

Lemma 4.5: For J = (L2,3), there is a coalitionally rational

x€M"-C(G) if and only if (G) satisfies the conditions of one of

the columns

a*b*c -( 2d

b <d

ccd

d $b+c

a*b*c-( 2d

a< d

c-(d

d .< a*c

(a*c-drd-c,o).

Eogether in Ewo Eheorems

and x is given, respecEively,

(L/2(a-b+c),L12(a*b-c),o) (d-b,a*b-d,o)

The results obtained in case (B) can be put

8 = (L3,2), there is a coalitionally rational

if (G) satisfies the conditions of one of

a*b+c ( 2d

a(d

c (d

d<a*c

a*b*c.( 2d

a(d

b-<d

d Sa+b

by
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Theorem 4.6: If a nontrivial game (G) satisfies a+b+c) 2d

and the triangle inequalities a.( b*c, b .( a*c, e-( a*b, then Ehe

coalitionally rational payoffs in Mc-C(G) for coalition sErucEures

consisting of one singleton and ficoalition of cardinality two are

(o,l/2(a+b-c) ,L/2(-a+b+c)) for S = (23,1), if b (a*c;

(L/2(a-b+c) , o, 1/2(-a+b+c)) for J2 = (L3,2) , i-f c ( a*b;

(L/ Z(a-b+e) ,L/ 2(a*b-c) , o) for E = (12,3) , Lf a ( b*c.

Proof: Follows from Lemmas 4.3, 4.4, 4.5, in which the resulEs

given in the first columns have been used, taking into account that

all three columns coincide when a*b*c = 2d. Moreover, all triangle

inequalities can be satisfied with equality signes only for a=b=c-oi

therefore, except for the trivial game a-b=c=d=o, there is always at

least one strict inequality, hence the payoffs in M.-C(G) shown in

Theorem 4.6 are exacEly Ehose given by the Lemmas

Theorem 4.7: If (G) satisfies a*b+c<2d and the inequalities

aSd, bSd, c (d, chen the coalitionally rational payoffs in M.-C(G)

V
for coalitior{scructures consisting of one singleton and one coalition

of cardinality two are

( o, d- c, b*c-d )

( o, a*b-d , d-a )

(a*c-d, o, d-a )

(d-bro,b*c-d)

(d-b, a*b-d, o)

(a*c-d,d-c, o)

, d(a*b,
a(d and(- d-(a*c'

e(d ""a((r3,2) , Lf

d -( b+c,

d ( a+b;

d ( a*c,

d( b+c;

Proof : Follows from Lemmas 4.3, 4.4, 4.5, in which the results

given in Ehe last two columns have been used. In each of the six situ-

ations the inequality added is redundant; for example, from a*b*c(2d

and d -( b*c follows a( d. luloreover, among Ehe inequalities a r( d,

b<d, c<d, at least two should be strict, because a*b*c(2d, hence

the payoffs in M^-C(G) given by Theorem 4.7 are exacEly Ehose given
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NoEe that if a+b+c)Zd' we may have at most 3 payoffs in

M.-C(G); for example, when e=3, b=4, c=5, d=2, we get Ehe payoffs

(o,1r3), (2,o,3), (2,L,o). If a*b*c 42d \^te may have at most 6 pay-

offs in M.-C(G); for example, when a=2, b=2, c=3, d=4, we get the

payoffs (or1,1), (o,o,2), (l ,o12), (2,o,L), (2,o,o), (1'1'o). However'

it is aLso possible that no coalitionally rational payoff in Mc-C(G)

does exist for case (B). Tf. a*b*c)Zd, this situation occurs when at

least one triangle inequalicy does noE hold; for example, when 3=4,

b=1, c=I, d=2, Ehis happens even though a+b+c)2d ho1ds, because we

have a ) b+c. If a*b*c < 2d, this situaEion occurs \{hen d ) a+b , d> b+c,

d)a*c; for example, this is the case when a=b-c=1, d=3.

Case (C), I = G23), X= (tL,*2,x3), where

xr*xr*xr=d, *t)o, x2).o, *3)-o, xr*xr).at xr*xr)b'

As al1 excesses are nonpositive, we have

Theorem 4.8: In game (G), there is no coalitionaLly rational
a

payoff in Mc-C(c) for J = (123).

Theorems 4.2, 4.6, 4,7, 4.8, describe completely the set of coali-

rionally raEional payoffs in Mc-C(G). In Aumann/Maschler paper (L964)

is given the bargaining set M of (G), which obviously contains also

t.he core. However, it will be easy to separate the non core elements

of M and to compair them with those in M.-C(G). For Lhe sake of

completeness, ne give the Aumann/Maschler resulEs hereafter.

Theorem 4.9, (Aumann/Maschler,Th-4-1): In (G), if the grand coali-

Eion can not be formed, essenEially Ewo cases arise:

Case (a): If 8, b, c, satisfy Ehe triangle inequalities a5lb*c'

xr*xr) c.

,1/2(-a+b+c);23,1)

set M is:

b(a+c, c{a*b, then the bargaining set M is;

(o, o, o;1,2,3) , (L/2(a'b+c) ,L/2(a+b-c) ,o;L2,3) ,

(L/2(a-b+c) , o, L/2('a+b+c);13,2) , (o,l/2(a+b-c)

Case (b): If, e.g. a)b+c, Ehen Ehe bargaining



(ororo;Lr2r3),

(c, o, o;!3 ,2) ,

(c-( x, ( a-b,a-x1 ,oiLZ,3)

(o,b,o;23,L).

Theorem 4.Lo, (Aumann/MaschLer,Th.5.L): In (G), the bargaining

set M consists of the adrnissibl.e payoff configurations given by Theo-

rem 4.9 and also the admissible payoff configurations (*1r*2,xr;123)

which satisfy xr*xr*xr=a, xr) o, x27o, *3)o, xr*xZ)-^, xr*xr>-b,

*1**3)ac. The latter payoff configurations exist if and onLy if

a( d, b( d, c{ d, a*b*c{ 2d. (4.11)

Now, we intend to compair our results (Ths. 4.2, 4.6, 4.7, 4-8)

with Aurnann/Maschler results (Ths. 4.9, 4.Lo), taking into account that

Ehe latter contain also core payoffs. We consider separateLy each coali-

tion structure.

For J = (L,2,3), x = (o,o,o) is always in M, while this payoff

belongs to MC-C(G) only in those cases explained in Theorem 4.2. The

reason is that Aumann/Maschler definiEion of M does not al-low any ob-

jection against (o,o, o;L,2r3).

Consider the coaliEion structures consisting of one singleton and

one coalition of cardinaLity tero. Let us discuss only the coalition struc-

ture J= (12,3), because the payoff configurations in M are completely

shown in Aumann/Maschler proof of Theorem 4.9, (1964,p.456) I in fact,

they can be obtained from Theorem 4.9, (including the circuLar Permuca-

t.ion of resuLts given in case (b)). These payoff configuraEions are

(L/Z(a-b+c) ,L/2(a+b-c) ,o;L2,3) if a -( b*c, b -( a*c, c S a*b (4'L2)

(cSxtr(a-b,a-x1,o;12,3) if a)b*c (4.13)

(o,a,o;I},3) if b)a+c (4.1'4)

(a,o,o;L2,3) if c>a+b (4.15)

As shor.rn by Theoren 4.6, (4.12) belongs also to M.-C(G), how-

ever, a+b+c)2d and a <b*c should also be saLisfied. The reason is

chat Aumann/Maschler definition of M does not a11ow an objection

based upon the grand coalition and this fact elirninates our condition
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a+b+c>/2d. The second condition, a(b+c is elimi-nating the payoffs

belonging to Ehe core which are included in Aumann/$aschler results.

It is easy to see that the oayof fs (4.13) give e(x,23)=;t-(a-b)-< o,

e(x,l3)-q-xrr( o. As Che grand coaliEion can noE be used for objection

and all excesses are nonpositive, t.he payoffs (4.13) are not Lhreatened

by any Aumann/Maschler obiection. Our approach is either including them

in the core, if e(x,123)'=d-a-to, or excludi,ng Ehem from Mc-C(G) be-

cause (123) is a bar:gaininq proposal which can noE be countered, if

e(x,123)=d-a) o.

For (4.14), i.". J =(12,3), xr=o, *2=t, *3=o, af,Y ( €,o,c-€- i 13,2)

witho<t-< c isanobjecEionof 1 against 2; if b;a+c, aoY

(o,a* y' ,r-t-/ ;23,L) with o-< /Sb-a-c+t is a counter objection of 2

against 1. Further, any (o,a*L,b-a- E ;23,I) with o<ES b-a is an ob-

jection of 2 against 1, which can be countered by 1 playing a1one.

As no objection by means of the grand coalition is al1owed, (o,a,s;12,3)

is in M. In our approach, v?e have e(x,13)=c, €(x,23;=5-"' e(x,123)=6-6'

if b) a+c, (13) is a bargaining proposal and (23) is a comper,rsalory bar-

gaining counter proposal because e(x,23)) e(x,13). However, (23) is also

a bargaining proposal which can not be compensated by (13) or a singleton.
I

If b=d, then (o,a,o)€ Mc-c(G) and (o,a,o)f c(G), because e(x,23)=e(x,L23),

otherwise either (23) or (123) can not be countered. Similarly, for (4.15)

if c) a+b then (a,o,o)€ M, but (a,o,o1/u"-c(c) and (a,o, o\f. c1e1, excepE

if c=d. Clear1y, the compensatory commitments are eliminating (4.14) and

(4.15) from the compensatory bargaining set, together with Ehe possibility

of using the grand coalition as a bargaining proposal.

Note that Theorem 4.7 is giving other payoffs which belong to

M.-C(G) and do not belong Eo M because a counEer objection can noE use

the grand coalifion, so that some objecEions can nog be counEered.
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aFor d = (L23) , Lf. (G) satisfies (4.11) the payoffs are belon-

ging to the core when Ehey are in M, so that they can not be in M.-C(G).

The above discussion shows some of the differences -between the

c-stable payoffs and the payoffs included in'the Aumann/l4aschler stable

payoff configurations, Some c-stable payoffs can noE be included in stable

payoff configurations because the grand coalition can be used for compen-

saEory countering, but can noL be used for counEer ob.jections. Some ob-

jections can be countered because no compensation is needed in M, while

the corresponding bargaining proposals are valid because no compensation

is possible. Other relevant differences have not been illustrated because

(C) is a 3-person game and/or has a parEicular form, so that those sicu-

ations can not occur.

Note that we have exhibiEed a game for

adrnissible payoffs outside the core aE least

when the parameters of the game saEisfy some

of c-stability is meaningful. Of course, the

games is interesting.

which there are c-stable

for some coalition structures

eonditions, hence the concepE

existence problem in general
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