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ABSTRACT

AIRDATA SENSOR BASED POSITION ESTIMATION AND FAULT

DIAGNOSIS IN AERIAL REFUELING

HAKKI ERHAN SEVIL, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Atilla Dogan

Aerial refueling is the process of transferring fuel from one aircraft (the tanker)

to another (the receiver) during flight. In aerial refueling operations, the receiver

aircraft is exposed to a nonuniform wind field induced by the tanker aircraft, and

this nonuniform wind field leads to differences in readings of airdata sensors placed at

different locations on the receiver aircraft. There are advantages and disadvantages

of this phenomenon. As an advantage, it is used as a mechanism to estimate relative

position of the receiver aircraft inside the nonuniform wind field behind the tanker.

A model of the nonuniform wind field is used to construct maps of the wind field as

functions of relative position in terms of airspeed, side slip angle and angle of attack.

Several algorithms are developed that use measurements from three airdata sensors

placed at different locations on the receiver aircraft and the inverse of the maps to

estimate the relative position of the receiver with respect to the tanker.

The disadvantage of the phenomenon is that the differences in the readings

of airdata sensors cause false fault detections in a redundant-sensor-based Fault De-

tection and Isolation (FDI) system developed based on the assumption of identical
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sensor readings from three airdata sensors. Such an FDI algorithm successfully per-

forms detection and isolation of sensor faults when the receiver aircraft flies solo or

outside the wake of the tanker aircraft. However, the FDI algorithm yields false fault

detection when the receiver aircraft enters the tanker’s wake. This problem is re-

solved by modifying the FDI algorithm. For robustness, the expected values of the

sensor measurements are incorporated in the FDI algorithm, instead of the assump-

tion of identical measurements from the sensors. The expected values, which depend

on the position of the receiver relative to the tanker, are obtained from the maps of

the nonuniform wind field as functions of the relative position. The new robust FDI

detects and isolates sensor faults, as well as it eliminates the false fault detection in

the nonuniform wind field induced by the tanker aircraft.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

An aircraft flying in air induces a nonuniform wind field around its surroundings

through various mechanisms such as trailing vortices emanated from the wings and the

tail (Fig. 1.1). In aerial refueling operations, the receiver aircraft needs to fly in this

nonuniform wind field. In this wind velocity field, the flow has different magnitude

and direction depending on the position relative to wind-generating aircraft.

Figure 1.1. The Wing and Horizontal Tail Vortices Induced by Tanker Aircraft [1].

Airdata measurements provide aircraft velocity vector information with respect

to the local air. An airdata sensor on an aircraft, which is the receiver aircraft

in aerial refueling, flying within the nonuniform wind field will measure different

airspeed, side slip angle, and angle of attack values depending on its position relative
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to the tanker aircraft. At a fixed position of the receiver aircraft relative to the tanker,

airdata sensors placed at different positions on the receiver will also measure different

airspeeds, side slip angles and angles of attack. This is because the nonuniform

wind field has significant velocity variation over the span of receiver aircraft (Fig.

1.2). This phenomenon can be an advantage or a disadvantage for the receiver flight

control system depending on what aspect of the aerial refueling problem is considered.

An important advantage is to consider the nonuniform wind field as a signature of

the tanker aircraft in the air and thus use it to determine the relative position with

respect to the tanker. If a map of the wind field is available in terms of the magnitude

and direction as a function of the relative position, the inverse of this map can be

used to estimate the relative position given the wind velocity vector measurement.

Airdata sensor measurements (airspeed, side slip angle and angle of attack) can be

used to determine where the airdata sensor is relative to the tanker aircraft. For

this idea to work, there should be a one-to-one mapping from relative position to

airdata sensor measurements. This would permit inverse maps to be generated that

use airdata measurements to predict the relative position without any ambiguity.

A disadvantage of flying in nonuniform wind field appears for the Fault Detec-

tion and Isolation (FDI) system of the receiver aircraft in the form of differences in

measurements from multiple airdata sensors placed on different locations on the air-

craft. In an FDI system relying on redundant measurements from identical sensors,

the sensor readings are compared to each other and after a decision making process, a

sensor that has a fault can be identified. However, if the difference in sensor readings

is caused by nonuniform wind field instead of a fault in a sensor as in aerial refueling,

this leads to a false fault detection. In other words, since the receiver aircraft flies

within the nonuniform wind field in an aerial refueling operation, the FDI algorithm

(based on the assumption that multiple sensors provide measurements with identi-
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Figure 1.2. Nonuniform Wind Distribution that Receiver Aircraft is Exposed during
Aerial Refueling [1].

cal mean in no-fault conditions) tends to experience a high probability of false fault

detections. Thus, such an FDI system should be improved to become robust to op-

erate satisfactorily based on multiple airdata sensors placed at different locations on

receiver aircraft in an aerial refueling operation as well as in all other flight phases.

This research addresses both the advantage and the disadvantage of flying in

the nonuniform wind field for the receiver aircraft in aerial refueling operation

• By utilizing the variation of the induced wind vector field relative to the tanker

aircraft, a position estimation algorithm can be developed that calculates the

position of the receiver relative to the tanker based on multiple airdata sensor.

• After confirming that the wake of the tanker causes false fault detection in

a hardware-redundant FDI system on the receiver aircraft, the maps of the

nonuniform wind field is used to provide robustness to the FDI system against

the exposure to nonuniform wind field.
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1.2 Literature Survey

This section provides a literature review of related topics relevant to the research

presented in this dissertation. Specifically, the literature review focuses on relative

position estimation techniques and FDI methods. Additionally, the papers related

to modeling and control system design for aerial refueling, aerodynamic effects of

the tanker over receiver in aerial refueling, and several reports related to accidents

associated with the failure of airdata sensors are also presented in various subsections.

1.2.1 Modeling and Control System Design for Aerial Refueling

Recent research has been conducted in the areas of modeling, guidance, and

control to support the addition of aerial refueling capabilities to both piloted and un-

manned aircarft. Ro and Kamman [2] present a finite-segment approach to modeling

dynamic equations for hose-paradrogue aerial refueling systems. Waishek et al. [3]

introduce the derivation of the dynamics equations of receiver aircraft in aerial refu-

eling that include time varying mass and inertia caused by the fuel transfer. In that

study, the speed and direction of the fuel flow and the location of the receptacle in the

receiver are taken into consideration in the dynamic equations of the receiver aircraft.

An adaptive flight controller for unmanned combat aerial vehicle and aerial refueling

is presented by Wang et al. [4]. Enomoto et al. [5] introduce an automatic chase

guidance and control system with a dynamic inversion approach. In Ref. [6], con-

trol algorithms for relative motion during aerial refueling in racetrack maneuvers are

presented. The controllers designed for both lead and follower aircraft are based on

gain-scheduling according to the commanded speed and yaw rate. In that study, linear

quadratic regulator (LQR)-based multi-input/multi-output (MIMO) state feedback

and integral control techniques are used for both aircraft. The first control system is

used to track commanded speed, altitude, and yaw rate for the lead aircraft. The sec-
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ond controller is used to track commanded trajectory expressed in the lead aircraft’s

body frame.

1.2.2 Aerodynamic Coupling in Aerial Refueling

One important topic in aerial refueling is the aerodynamic effects of the tanker

aircraft on the receiver aircraft. The tanker aircraft induces a significant nonuni-

form wind gradient over the receiver aircraft’s span, length, and height depending

on its position relative to the tanker aircraft. Aerodynamic effects in aerial refueling

have been widely investigated and wake vortex models are available in the literature

[7, 8, 9, 10]. Han et al. [11] present a study of the wake shape behind the wings in

close formation using a discrete vortex method. In that study, unsteady wake vortex

evolution is investigated for the wings, and load distributions along the lifting wings

are represented with point vortices with finite circulation. Based on the assumption

of point vortices that deform freely with a force-free position, trailing wakes from each

wing are simulated in close formation flight. A new technique for the vortex effect

modeling is presented by Venkataramanan et al. [7]. They use a Helmholtz profile

based modified horseshoe vortex model that is incorporated in a six-DOF analysis

of a close formation flight. This model includes the effects of geometric parame-

ters and the relative orientation between the lead and follower aircraft, resulting in

a vortex-induced-velocity field that can be used directly to obtain the effect on the

dynamics of the trailing aircraft. A model for wake-vortex induced wind with turbu-

lence is presented by Dogan et al. [9]. In that study, VEMT (Vortex Effect Modeling

Technique) is used to model the dynamic effect of the nonuniform wind induced by

the lead aircraft wake vortices on the follower. Also, the turbulence is modeled by

either identifying turbulence components from flight data, or by using the Dryden

translational and rotational turbulence model. In another study, Dogan et al. [8]
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present methods for modeling the three sources of wind, i.e. prevailing wind, wake-

vortex-induced wind, and turbulence that the aircraft are exposed to in a formation

flight. In that study, a direct computation of the winds experienced by the lead and

follower aircraft are obtained from the available flight data. The wind and turbulence

modeling techniques are validated by comparing the simulation results with the flight

data in terms of the power spectral densities and mean variations.

1.2.3 Relative Position Estimation

In aerial refueling operations, the receiver aircraft’s position should be controlled

relative to the tanker aircraft. This requires the relative position information to be

provided to the pilot or controller of the receiver aircraft. In a piloted aircraft, this is

accomplished by the visual senses of the pilot. In order to reduce the pilot workload

as well as enable Unmanned Aerial Vehicles (UAVs) with aerial refueling capability,

recent efforts focus on automating the aerial refueling operation for receiver aircraft

[12, 13]. Automated aerial refueling (AAR) is important especially for UAVs because,

with the human pilot board, they can operate for a long time without having to land

for refueling [14, 15]. DARPA recently announced the results of test flights from their

Autonomous High-Altitude Refueling (AHR) program [16]. Their reported results

indicate that 60% of their automated aerial refueling tests achieved successful contact.

In order to develop an automated aerial refueling system, relative position of

the receiver aircraft should be accurately and reliably measured. Global Positioning

System (GPS) data along with advanced vision-based methods are most commonly

considered for this purpose, and they are presented in the literature. These methods

can be grouped in two major categories. The first category consists of the methods

which are based on camera vision, pixel motion tracking, radar/infrared/laser/lidar

signals or optical systems. In this category, modifications are needed to be done only

6



on trailing aircraft, and the methods in this category do not require any communi-

cation between the receiver and the tanker. The second category includes all the

methods that require a data-link between lead and follower aircraft, or require that

equipment be mounted on both aircraft. The methods in this category require a com-

munication link between the receiver and the tanker, and modifications are needed

to be done on both aircraft. There are also hybrid methods using some combination

of methods from each category.

One of the methods from the first category is presented in Ref. [17] that uses a

visual snake optical sensor. In that system, an algorithm is used to segment the image

of the target by having a closed, nonintersecting contour. Then, the controller receives

relative position measurements from the optical sensor and associated relative nav-

igation algorithms, and performs a boom-receptacle autonomous air refueling task,

within specifications of docking accuracy and maximum docking velocity. Tangale et

al. [18] introduce a reference-observer-based tracking controller using a vision-based

relative navigation sensor for hose-drogue aerial refueling. In that study, the system

on the receiver aircraft generates a smooth reference trajectory for the sensor mea-

surement of relative drogue position, then feedforward control and the reference states

to be tracked are estimated by an output injection observer. In another study [19],

a vision based navigation (VisNav) system that enables probe-drogue autonomous

aerial refueling for unmanned aerial vehicles is introduced. The VisNav consists of a

new kind of optical sensor combined with structured active light sources (beacons)

to achieve a selective vision, and it provides relative position measurements for an

optimal proportional-integral-filter nonzero setpoint controller. A semi-autonomous

docking problem for UAVs is investigated by DellAquila et al. [20]. They introduce

a real-time machine-vision position sensing system for boom-receptacle aerial refu-

eling operations. Johnson et al. [21] present two Extended Kalman Filter (EKF)
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based methods for relative navigation that are named Center Only Relative State

Estimation (CORSE) and Subtended Angle Relative State Estimation (SARSE). In

these methods, the idea is to use only information from a single camera mounted

on the follower aircraft. Image processing techniques are used to output either only

the center of the target, or locations of the wingtips of the target in addition to the

center of the target. This information is then fed to the EKF in order to estimate

both the velocity and position of the aircraft relative to the target. A vision-based

sensor and navigation system is introduced for UAVs by Valasek et al. [22], in order

to achieve precise and reliable probe-and-drogue autonomous aerial refueling. Re-

cently, two algorithms based on a scanning Light Detection and Ranging (LiDAR)

sensor are presented by Curro [23] for determining the position of the receiver aircraft

relative to the tanker aircraft. The first algorithm finds the closest points between a

tanker model and the LiDAR measurements by comparing the measured values with

the model of the aircraft. The second algorithm, on the other hand, tries to match

the actual LiDAR measurements with a perturbed position of the tanker. One of

the drawbacks of all the systems in this category is that they are highly dependent

on environment conditions. For instance, the camera systems can be blinded by the

direct sun light. The systems that use pixel-tracking methods or optical devices are

not suitable for all weather conditions. Especially, cloudy or foggy weather can cause

problems with the performance of these systems. Additionally, if the view or objec-

tive area of the sensors is blocked, the systems in this category cannot perform at

all.

Various other approaches and methods have been developed that fall into the

second category. A method of relative position algorithm is presented by Jiang and

Chen [24] that is based on the error model of an internal navigation system (INS).

They use the combination of a least squared estimation and the Taylor series method
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to obtain relative position of multiple aircraft. Similarly, a vision algorithm that in-

cludes optimal marker labeling is presented by Pollini et al. [25] for probe-and-drogue

refueling. This approach allows estimation of the relative displacement via using lo-

calization of infrared light emitting diode (LED) markers placed on the body to be

tracked. Mahboubi et al. [26] introduce a method that is based on the same princi-

pal. In their study, the follower aircraft uses a camera to capture the images of the

high-intensity LEDs that are mounted on the lead aircraft. Then, relative position

and orientation of the follower aircraft with respect to the lead aircraft is determined

by using a computer vision algorithm. Smith [27] introduces a proportional navi-

gation method with adaptive terminal guidance for midair constant-altitude aircraft

rendezvous. In that study, the proposed navigation system coupled with a velocity

control system uses airspeed, ground speed, velocity, heading, and position of the

lead aircraft in its equations. Moreover, a high-accuracy and redundant navigation

system is applied to boom-receptacle aerial refueling to estimate position, velocity,

and attitude of aircraft is presented by Williamson et al. [28]. In that study, an

Extended Kalman Filter based sensor fusion technique is introduced, which is com-

posed of electro-optic (EO) image sensors, a wireless communication system, and a

differential carrier-phase (DCP) GPS receiver. Navigation of autonomous airborne re-

fueling is analyzed and optimal navigation architecture is defined by Khanafseh and

Pervan [29]. They developed a high-fidelity dynamic sky-blockage model for GPS

blockage problem by the tanker aircraft during boom-receptacle type aerial refuel-

ing. The methods that are classified in this category have an important and common

drawback. These systems are not self contained systems. Any disconnection of the

datalink required by these systems will make them nonfunctional. Another drawback

of these systems is that they are subject to jamming which affects the performance

of the system.
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In Ref. [30], a hybrid system that includes an Extended Kalman Filter based

relative position estimation method is presented. In this approach, the states of the

lead aircraft are assumed to be known and the relative states are estimated using

(i) line-of-sight measurements between the vehicles, and (ii) acceleration and angular

rate measurements of the follower. Visual navigation beacons are placed on the

follower for the line-of-sight measurements. Campa et al. [31] present a combination

of GPS and Machine Vision (MV) guidance for automated boom-receptacle aerial

refueling in which a sensor fusion between MV based measurements and GPS signals

is proposed. Naturally, this system along with all the systems that can be titled as

hybrid systems have drawbacks from the first or second categories. Hybrid systems

are not self contained and are not suitable for all weather use.

1.2.4 Fault Detection and Isolation

FDI algorithms are used to identify any occurrence of a fault in a system (de-

tection) and to pinpoint the type and location of the fault (isolation). Analytical and

hardware redundancy are the two main FDI methods. The methods of analytical re-

dundancy are based on the comparison of estimated states against the measurements.

Anwar and Chen present an observer-based analytical FDI algorithm that uses a full-

state observer for vehicle-body sideslip angle [32]. A bank of residual generators and

a discrete-event system-based actuator fault diagnoser is presented by Meskin et al.

for a network of multiple quad-rotors [33]. In another study, Tousi et al. introduce

an observer-based fault detection method for a team of unmanned aerial vehicles [34].

Unknown input observers are also used for fault detection of aircraft sensor and ac-

tuator faults. This method is implemented on a large cargo jet aircraft model [35].

Hajiyev presents a sensor fault detection method based on testing the innovation co-

variance of the Kalman filter using Tracy-Widom Distribution [36]. A model-based
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approach to fault detection for an air data system is proposed by Freeman et al., who

use H∞ synthesis of a robust fault detection filter [37].

The methods of hardware redundancy are based on the comparison of measure-

ments from multiple sensors of the same kind. Shaoping et al. present a redundant-

sensor-based fault reasoning [38] that uses a logic algebra reasoning technique based

on sequential variables for the fault diagnosis of magnetic bearing systems. A fault

detection algorithm using the double exponential smoothing method that is applied

to a brake pedal signal is given by Kim et al. [39]. Dajani-Brown et al. present

a sensor voter algorithm in order to manage three redundant sensors [40]. Another

voter-based fault detection system is presented by Kerr that is implemented on mul-

tiple simultaneous sensor subsystems such as GPS, INS, and Doppler AHRS [41].

An FDI method using singular value decomposition (SVD) is presented by Shim and

Yang for INS sensor redundancy [42]. Berdjag et al. present an application of FDI

on redundant aircraft sensors using Fuzzy logic approach [43]. Eubank et al. imple-

ment a fault detection algorithm for air-data systems of an unmanned autonomous

seaplane [44].

There are also hybrid FDI systems that use a combination of hardware and

analytical redundancy. Kim et al. present a FDI algorithm for an UAV inertial sen-

sor that is based on hardware redundancy combined with an analytic redundancy by

utilizing the unscented Kalman Filter [45]. In another study, Kim et al. propose an-

other hybrid algorithm that is based on an Extended Kalman Filter [46]. A statistical

overlap test based approach is presented by Brumback and Srinath that is applied

to a dual-inertial/Doppler radar navigation system [47]. Implementations of hybrid

FDI on air data systems are also presented in the literature. An approach that is

based on a bank of extended H∞ observers is proposed by Mattei and Paviglianiti

for a redundant airdata system for a small commercial aircraft [48]. Wheeler et al.
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applied a probabilistic performance metrics based fault detection scheme to air-data

sensors [49].

One of the well known and widely used approach in both analytical and hard-

ware redundant systems is the parity space approach with roots going back to early

1980s. In parity space based fault detection, the idea is to create residuals that rep-

resent the difference between the actual system and the model outputs [50]. Gertler

and Monajemy present a method for generating directional residuals using dynamic

parity relations [51], and Gertler presents the design of dynamic parity relations for

the detection and isolation of both additive and multiplicative faults [52]. General-

ization of parity space for FDI to the continuous-time case is presented by Medvedev

[53]. Kratz et al. show a residual generator using parity relations for time-delay

systems [54]. A Kalman filter based FDI algorithm that provides estimates of redun-

dant strapdown inertial measurement units (IMUs), that affect the parity vector is

proposed by Hali et al. [55]. Chow and Willsky also present a design for residual

generation using analytical redundancy and parity space [56]. A fault detection al-

gorithm based on the parity approach and chi-square hypothesis testing is presented

by Sturza for redundant strapdown inertial navigation systems, and GPS navigation

sets [57]. Oliveira et al. present a FDI system based on χ2-CUSUM that uses parity

space projection and Wavelet Packets that is applied to redundant IMUs [58]. A com-

parative review of three FDI approaches (the parity space method, the Mahalanobis

distance method and its direct robustification) is presented by Guerrier et al. for

multiple MEMS-IMU configurations [59].
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1.2.5 Flight Accidents attributed to the Failure of Airdata Sensors

In this study, a FDI system is developed for multiple airdata sensors. Sev-

eral accidents associated with the failure of airdata systems are discuessed below to

demonstrate the importance of reliable airdata measurements.

On September 29, 2004, an F/A-22 suffered a Class A mishap near Edwards Air

Force Base [60]. As the F/A-22 passed behind an F-16 during an air-to-air tracking

flight, wake vortices from the F-16 caused extremely large perturbations in the air-

data sensor measurements on the F/A-22. These caused a divergent oscillation in the

pitch axis of the F/A-22, which resulted in the aircraft exceeding both angle of attack

and structural limits, even though there were limiters in the flight control system. On

September 17, 2007, an F-16 was lost in Italy when icing conditions froze the air data

probe, resulting in inaccurate angle of attack and airspeed measurements [60]. When

the aircraft attempted to climb out of the icing conditions, the airspeed reduced and

angle of attack increased. The faulty sensor prevented the flight control system from

initiating inputs to reduce the angle of attack. The aircraft eventually departed from

controlled flight and crashed. On February 23, 2008, a B-2 Spirit crashed after take-

off from Andersen Air Force Base, Guam. According to the accident report [61], the

aircraft’s flight control computers calculated an inaccurate airspeed, low altitude/low

airspeed, and a negative angle of attack, which led to an uncommanded 30 degree

nose pitch-up on takeoff, causing the aircraft to stall. The reason for the inaccurate

airspeed calculation was moisture in the aircraft’s Port Transducer Units during air

data calibration. On October 7, 2008, an Airbus A330-303 aircraft had an in-flight

upset at 154 km west of Learmonth, WA, while it was flying from Singapore to Perth,

Australia with 303 passengers, nine cabin crew and three flight crew onboard. Dur-

ing the flight, the autopilot disconnected, followed by various aircraft system failure

indications. After that, the aircraft suddenly pitched nose-down. Approximately 3
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minutes later, the aircraft started a second uncommanded pitch-down maneuver. In

both events, the aircraft reached maximum pitch angles, 8.4 degrees nose-down and

3.5 degrees nose-down, respectively. According to the investigation report [62], two

safety factors were identified associated with pitch-down movement. One of them is

the airdata inertial reference units (ADIRUs), which provided erroneous data (spikes)

on many parameters to other aircraft systems. The cabin crew declared MAYDAY

and the aircraft landed at Learmonth. Eleven passengers and 1 flight attendant were

injured during this incident. On June 1, 2009, Air France Flight 447 crashed into the

Atlantic Ocean, killing all passengers and crew [63]. A preliminary analysis of the

recently recovered flight data recorder suggests that a problem with the plane’s pitot

tubes giving inconsistent speed readings might have contributed to the crash [63].

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 describes the modeling of

both tanker and receiver aircraft dynamics, their controller design, and the modeling

of the wind sources and their dynamic effect on receiver aircraft. The equations of

motion of receiver and tanker aircraft are given in Chapter 2, as well as equations

for prevailing wind, turbulence, and wake vortex induced wind. The effect of the

nonuniform wind field on the airdata sensor measurements is discussed in Chapter 3.

Also, a general information about the airdata sensors and positions of receiver aircraft

during aerial refueling operation is presented in Chapter 3. Definitions of the relative

estimation algorithms developed in this research and performance metrics defined for

evaluating the algorithms are presented in Chapter 4. Chapter 5 describes the FDI

algorithm developed using a statistical approach. The robust FDI algorithm is also

presented in Chapter 5, as well as the equations used for the measurement correction

due to the rigid body motion of the aircraft. Metrics for evaluating the FDI algorithm
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are also prensented. Chapter 6 contains the simulation results and discussions of the

performance of the both the position estimation and FDI algorithms. Conclusions

and suggestions for future work are presented in Chapter 7.

1.4 Original Contributions

The original contributions of this dissertation can be separated in two parts.

For the relative position estimation component of this work, airdata sensor measure-

ments (airspeed, side slip angle, and angle-of-attack) of a trailing aircraft are used to

estimate its relative position with respect to the lead aircraft which generates bound

and tip vortices. The following contributions have been made in this part:

• Reference airspeed, side slip angle and angle of attack measurements (or calcu-

lations) from three airdata sensors placed at different locations on the aircraft

for various relative positions with respect to the lead aircraft are organized as

maps. Absence or the number of intersection of the contour lines of the maps de-

termines whether the position estimation is possible with the minimum number

of sensors.

• Various logical rule based algorithms are developed that estimate the relative

position of the trailing aircraft with respect to the lead aircraft using the mea-

surements of airspeed, side slip angle and angle of attack by single or multiple

sensors. This is done by determining the intersections of the contour lines of the

preformed maps of the reference airspeed, side slip angle and angle of attack.

The contour lines are selected based on the measurements of the respective

airdata variable, airspeed, side slip angle and/or angle of attack.

• A procedure is developed that quantify the efficiency of a given algorithm in

terms of its accuracy in the relative position estimation and its ability to pro-

duce a relative position estimation. This procedure is also used to quantify the
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robustness of a given algorithm against the level of turbulence and the mea-

surement noise.

In the fault detection and isolation section of this research, a redundant sensor based

FDI system is developed and applied to the FDI of multiple airdata sensors on a

receiver aircraft in aerial refueling. The FDI system uses the parity space approach

along with the chi-square test hypothesis for detection and isolation purposes. The

following contributions have been made:

• The effect of a nonuniform wind distribution that is induced by the tanker

aircraft over receiver aircraft on such an FDI system is demonstrated through

simulation.

• The FDI algorithm is improved to eliminate false fault detections caused by the

assumption of identical sensor readings in the nonuniform wind field. The new

robust FDI algorithm developed in this research accounts for the variations of

the airdata variables in a nonuniform wind field during aerial refueling.

• The expected values of airdata measurements are obtained from a model of the

nonuniform wind field and organized as maps of the airspeed, side slip angle,

and angle of attack as functions of the relative position.

• The expected values of the sensor measurements are incorporated in the FDI

algorithm, and the FDI system is improved against the measurement variation

among the multiple sensors due to the nonuniform wind field.
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CHAPTER 2

MODELING OF AIRCRAFT DYNAMICS AND WIND, AND CONTROLLLER

DESIGN

This chapter presents full 6-DOF nonlinear equations of motions including the

wind effects for receiver and tanker aircraft, their controllers as well as the aerody-

namic coupling, prevailing wind and turbulence equations used for simulating Learjet

25 aircraft flying behind a KC-135R tanker aircraft in an aerial refueling flight. These

equations were developed in previous research efforts [1, 6, 8, 9, 64, 65, 66] and they

are repeated here. Three different frames are used in describing the equations; inertial

frame, body-fix frame and wind-frame.

2.1 Equations of Motion of the Tanker Aircraft

The equations of motion for a tanker aircraft are used to model a KC-135R

aircraft flying in an aerial refueling operation. The translational kinematics equation

of the tanker aircraft is written in terms of the position vector of the tanker with

respect to an inertial frame. The translational kinematics equation in matrix form is

ṙBT = RT
BTIRBTWT

VwT +WIT (2.1)

where ṙBT is inertial-frame representation of the velocity of the tanker aircraft relative

to the inertial frame, RBTI is the rotation matrix from the inertial frame to the

tanker’s body frame, RBTWT
is rotation matrix from tanker’s wind frame to tanker’s

body frame, VwT is wind-frame representation of the velocity of the tanker relative to
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the surrounding air, and WIT is the representation of wind in the inertial frame. The

integration of the velocity is the position vector.

The rotational kinematics equation in matrix form is

RBTIṘBTI = −S(ωBT
) (2.2)

where ωBT
is the body-frame representation of the angular velocity vector of the

tanker relative to the inertial frame and is written in terms of the components as

ωBT
=


pT

qT

rT

 (2.3)

The rotational motion of the tanker aircraft is represented in terms of following Euler

angles

ψ̇
T

= (q
T

sinφ
T

+ r
T

cosφ
T
) sec θ

T

θ̇
T

= (q
T

cosφ
T
− r

T
sinφ

T
)

φ̇
T

= p
T

+ (q
T

sinφ
T

+ r
T

cosφ
T
) tan θ

T

(2.4)

where (ψ
T
, θ

T
, φ

T
) are the Euler angles relative to the inertial frame. The translational

dynamics are


V̇
T

β̇
T

α̇
T

 = ε−1T S(ωBT )(RBTWT
VwT )− ε−1T RBTIẆIT

+
1

m
T

ε−1T (RBTIMT + RBTWT
AT + PT ) (2.5)
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where the expressions for ε−1T and VwT are expressed as

ε−1T =


cosα

T
cos β

T
sin β

T
cos β

T
sinα

T

− 1
V
T

cosα
T

sin β
T

1
V
T

cos β
T
− 1
V
T

sinα
T

sin β
T

− 1
V
T

sec β
T

sinα
T

0 1
V
T

cosα
T

sec β
T

 , VwT =


VT

0

0

 (2.6)

where (V
T
, β

T
, α

T
) are airspeed, side slip angle, and angle of attack, respectively.

There are also external forces acting on the tanker, the gravitational force (MT ),

the aerodynamic force (AT ), and the propulsive force (PT ). It should be noted that

the gravitational force is expressed in the inertial frame, the aerodynamic force is

expressed in the wind frame, and the propulsive force is expressed in the tanker’s

body frame. These forces are represented as

MT =


0

0

m
T
g

AT =


−DT

−ST

−LT

PT =


Tx

Ty

Tz

 =


T
T

cos δT

0

−T
T

sin δT

 (2.7)

where m
T

is the mass of the tanker aircraft, g is the gravitational acceleration,

(DT , ST , LT ) are the drag, side force, and lift on the tanker, TT is the thrust mag-

nitude, and δT is the thrust inclination angle. In Eq. (2.5), S(ωBT ) is the skew-

symmetric matrix, and is defined as

S(ωBT ) =


0 r

T
−q

T

−r
T

0 p
T

q
T
−p

T
0

 (2.8)
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The aerodynamic forces are expressed in the standard form as

DT =
1

2
ρV 2

T
S
T
CDT (2.9)

ST =
1

2
ρV 2

T
S
T
CST (2.10)

LT =
1

2
ρV 2

T
S
T
CLT (2.11)

where S
T

is the reference area of the aircraft and ρ is the air density. The aerodynamic

coefficients are

CDT = CD0 + CDα2α
2
T

(2.12a)

CST = CS0 + CSββT + CSδr δrT (2.12b)

CLT = CL0 + CLααT + CLα2 (α
T
− αref )2 + CLq

c
T

2V
T

qrel + CLδeδeT (2.12c)

where δr
T

and δeT are the control surface deflections, rudder and elevator, respectively.

cT is chord length for the tanker, and qrel is y-component of the angular velocity

of the aircraft relative to the surrounding air, which is different from the angular

velocity relative to the inertial frame in the presence of angular wind. In the case of

nonuniform wind exposure, aircraft effectively experiences rotational wind along with

the translational wind. Considering the vector relation among the angular velocity of

aircraft, angular velocity of air and relative angular velocity of aircraft with respect

to the air, the components are similarly related as

p
rel

= p
T
− p

eff

q
rel

= q
T
− q

eff

r
rel

= r
T
− r

eff

(2.13)
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where (prel, qrel, rrel) are the angular velocity components relative to the surrounding

air, (p
T
, q

T
, r

T
) are the angular velocity components relative to the inertial frame,

(p
eff
, q

eff
, r

eff
) are the rotational wind components relative to the inertial frame. The

rotational dynamic equation of the tanker aircraft is

ω̇
BT

= I
¯
−1
T

[
MBT + S(ω

BT
)I
T̄
ω
BT

]
(2.14)

where I
¯T

is the moment of inertia matrix of the tanker aircraft, and MBT is the applied

moment on the tanker aircraft expressed in its body frame. The rolling, pitching and

yawing moments (LT , MT , NT ) are given as

LT =
1

2
ρV 2

T
SabTCLT

MT =
1

2
ρV 2

T
SacTCMT

+4zTTT

NT =
1

2
ρV 2

T
SabTCNT

(2.15)

where b
T

is the wingspan of the tanker aircraft, 4zT is the moment arms of the thrust

in the tanker’s body frame. The moment coefficients are expressed as

CLT = CL0 + CLδaδaT + CLδr δrT + CLββT + CLp
b
T

2V
T

prel + CLr
b
T

2V
T

rrel

CMT
= CMααT + CMδe

δeT + CMq

c
T

2V
T

qrel

CNT = CN0 + CNδaδaT + CNδr δrT + CNββT + CNp
b
T

2V
T

prel + CNr
b
T

2V
T

rrel

(2.16)

where δa
T

is the aileron deflection.
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2.2 Equations of Motion of the Receiver Aircraft

In this dissertation, the equations of motion of the receiver aircraft are used to

model a Learjet 25 aircraft. In an aerial refueling operation, the receiver needs to be

controlled with respect to the tanker’s position and orientation. Thus, the equations

of motion are written in terms of the position and orientation of the receiver relative

to the body frame of the tanker. The position vector of the receiver aircraft relative to

the inertial frame is the sum of the position vector of the tanker relative to the inertial

frame and the relative position vector of the receiver with respect to the tanker. This

vector relation is written in terms of the vector representations as

[̂I
¯
]T rR = [̂I

¯
]T rT + [̂I

¯
]TRT

BTIξ (2.17)

where rR is inertial-frame representation of the position of the receiver relative to

the inertial frame, rT is the inertial-frame representation of the position of the tanker

relative to the inertial frame, and ξ is tanker body frame representation of the receiver

position relative to the tanker. Considering this relation, the relative translational

kinematics is given in matrix form as

ξ̇ = RT
BRBT

RBRWR
Vw + RT

BRBT
WBR −RBTIṙT + S(ω

BT
)ξ (2.18)

where ξ is

ξ =


ξ1

ξ2

ξ3

 (2.19)
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Rotational kinematics of the receiver aircraft is given as

ψ̇ = (q sinφ+ r cosφ) sec θ

θ̇ = (q cosφ− r sinφ)

φ̇ = p+ (q sinφ+ r cosφ) tan θ

(2.20)

where (ψ, θ, φ) are the orientation, and (p,q,r) are the angular velocities. They both

are represented in the receiver body frame relative to the tanker.

Translational dynamics in matrix form are given as


V̇

β̇

α̇

 = ε−1R

[
S(ω

BRBT
) + RBRBT

S(ω
BT

)RT
BRBT

]
(RBRWR

Vw +WBR)

− ε−1R ẆBR +
1

m
R

ε−1R (RBRBT
RBTIMR + RBRWR

AR + PR) (2.21)

where

ε−1R =


cosα cos β sin β cos β sinα

− 1
V

cosα sin β 1
V

cos β − 1
V

sinα sin β

− 1
V

sec β sinα 0 1
V

cosα sec β

 (2.22)

where (V, β α) are airspeed, side slip angle, and angle of attack, respectively. Also,

Vw is the velocity relative to the wind frame, ω
BRBT

is the relative angular velocity,

mR is the mass of the receiver aircraft, WBR represents the wind expressed in the

receiver body frame, and ẆBR represents the wind derivative relative to the receiver

body frame expressed in the receiver body frame, RBRBT
is the rotation matrix from

the tanker’s body frame to the receiver’s body frame, RBRWR
is the rotation matrix

from the receiver’s wind frame to the receiver’s body frame.

23



There are external forces acting on the receiver, gravitational force (MR), aero-

dynamic force (AR), and propulsive force (PR). It should be noted that gravitational

force is expressed in inertial frame, aerodynamic force is expressed in wind frame,

and propulsive force is expressed in receiver aircraft’s body frame. These forces are

represented as

MR =


0

0

m
R
g

AR =


−D

−S

−L

PR =


Tx

Ty

Tz

 (2.23)

where m
R

is the mass of the receiver, g is the gravitational acceleration, (D, S, L) are

drag, side force, and lift on the receiver, (Tx, Ty, Tz) are the thrust in x-y-z directions

of the receiver body frame.

The aerodynamic forces are expressed in standard form as

D =
1

2
ρV 2S

R
CD (2.24a)

S =
1

2
ρV 2S

R
CS (2.24b)

L =
1

2
ρV 2S

R
CL (2.24c)

where S
R

is the reference area of the aircraft and ρ is the air density. The coefficients

of aerodynamic force are given as

CD = CD0 + CDαα + CDα2α
2 + CDδeδe + CDδe2δ

2
e + CDδsδs + CDδs2δ

2
s (2.25a)

CS = CS0 + CSββ + CSδaδa + CSδr δr (2.25b)

CL = CL0 + CLαα + CLα2(α− αref )2 + CLq
c

2V
R

qrel + CLδeδe + CLδsδs (2.25c)

where δr, δe and δa, and δs are the deflections for rudder, elevator, aileron, and stabi-

lizer respectively. qrel in CL expression is y-component of the angular velocity of the
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aircraft relative to the surrounding air in the body frame. With all the components,

the representation of the angular velocity of the receiver relative to the surrounding

air in the body frame is

ωrel =


p
rel

q
rel

r
rel

 (2.26)

The angular velocity of the receiver aircraft relative to the air expressed in the body

frame can be represented using angular velocity of the receiver relative to the tanker,

angular velocity of the receiver relative to the inertial frame and rotational wind, as

ωrel = ω
BRBT

+ RBRBT
ω
BT
−


p
eff

q
eff

r
eff

 (2.27)

where rotation matrix RBRBT
is used due to the fact that ω

BT
is the tankers angular

velocity in the tankers body frame, and [p
eff

q
eff

r
eff

]T are the effective rotational

wind components relative to the inertial frame expressed in the body frame of the

receiver.

The matrix form of the rotational dynamics in terms of the angular velocity

and orientation of the receiver relative to the tankers body frame is given as

ω̇
BRBT

= I
¯
−1
R
MBR + I

¯
−1
R

S(ω
BRBT

+ RBRBT
ω
BT

)I
¯R

(ω
BRBT

+ RBRBT
ω
BT

)

− S(ω
BRBT

)RBRBT
ω
BT
−RBRBT

ω̇
BT

(2.28)
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where I
¯R

is the inertia matrix of the receiver aircraft, and MBR is applied moment

on the receiver aircraft in its body frame. The moment of the receiver aircraft at the

receiver body frame can be written as

MBR =


L

M

N

 (2.29)

where (L, M, N ) are the rolling, pitching and yawing moments, respectively. The

expression of the moments are expressed as

L =
1

2
ρV 2S

R
bCL −4zTy +4yTz

M =
1

2
ρV 2S

R
cCM +4zTx +4xTz

N =
1

2
ρV 2S

R
bCN −4yTx −4xTy

(2.30)

where b is the wingspan, c is the chord length of the receiver aircraft, (4x, 4y, 4z)

are the moment arms of the thrust in the body frame of the receiver. The moment

coefficients are expressed as

CL = CL0 + CLδaδa + CLδr δr + CLββ + CLp
b

2V
prel + CLrrel

b

2V
rrel

CM = CM0 + CMαα + CMδe
δe + CMq

c

2V
qrel + CMδs

δs

CN = CN0 + CNδaδa + CNδr δr + CNββ + CNp
b

2V
prel + CNrrel

b

2V
rrel

(2.31)

2.3 Modeling of Wind Sources

The tanker and receiver aircraft are both subject to prevailing wind and at-

mospheric turbulence during the aerial refueling operations. The receiver aircraft is

also subject to nonuniform wind field induced by the wake of the tanker aircraft.
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The magnitude and direction of the nonuniform wind field over the receiver aircraft

vary with respect to its position relative to tanker aircraft. The total wind that re-

ceiver aircraft is exposed to is the superposition of the prevailing wind, turbulence

and vortex induced wind. Similarly, the total wind that is experienced by the tanker

aircraft is superposition of prevailing wind and turbulence. In this section, modeling

techniques for each wind components are presented.

2.3.1 Modeling of Prevailing Wind

The prevailing wind is represented relative to the inertial frame. One of the

methods for modeling the prevailing wind is to use actual flight data. Lewis [67]

presents a method based on flight data for obtaining prevailing wind. The total

wind is calculated by using velocity triangle vector and flight data of both aircraft

previously recorded from an aerial refueling test flight of KC-135R and a Learjet 25.

The velocity equation is formulated as

WI = ṙBT −RT
BTIRBTWT

[VT 0 0]T (2.32)

where WI represents the total wind vector in the inertial frame, VT is the tanker

aircraft’s airspeed obtained from an airdata sensor, ṙBT is the tanker aircraft’s velocity

in the inertial frame obtained from a GPS unit, RBTI is the rotational matrix from

the inertial frame to the tanker’s body frame obtained from a IMU, and RBTWT
is the

rotational matrix from the tanker’s wind frame to the body frame and constructed

from the side slip angle and angle of attack, which are measured by airdata sensor.

Prevailing wind is considered to be the mean value after the turbulence effect is

removed from the total wind calculated by using Eq. (2.32).
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2.3.2 Modeling of Turbulence

The Dryden model PSD functions are used to model turbulence as a random

process [67, 68]. Zero mean Gaussian white noise with unity power spectrum is taken

as input. The differential equations of the Dryden model are



ẋw1

ẋw2

ẋw3

ẋw4

ẋw5


=



− V
Lu

0 0 0 0

0 0 1 0 0

0 − V
Lv
−2 V

Lv
0 0

0 0 0 0 1

0 0 0 − V
Lw
−2 V

Lw





xw1

xw2

xw3

xw4

xw5


+



√
2V σ2

u

πLu
0 0

0 0 0

0 1 0

0 0 0

0 0 1




η1

η2

η3

 (2.33)

where (xw1, xw2, xw3, xw4, xw5) are states of the Dryden model, V is the airspeed of

the aircraft, and (η1, η2, η3) are the zero mean Gaussian white noise with unity power

spectrum.

The wind components due to turbulence in the body frame are given as

Wtur =


1 0 0 0 0

0 σv√
π

(
V
Lv

)1.5
σv

√
3V
πLv

0 0

0 0 0 σw√
π

(
V
Lw

)1.5
σw

√
3V
πLw





xw1

xw2

xw3

xw4

xw5


(2.34)

where σu, σv, and σw are the RMS turbulence intensities, Lu, Lv, and Lw represent

the scale lengths. From Ref. [67], the intensity and scale length values are taken as

σu = σv = σw and Lu = Lv = Lw due to isotropy for turbulence above 20,000 ft.

Scale lengths are set to 533.4 m, and turbulence intensities are set to 0.39 m/s (1.3
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ft/s) for the altitude of 22,998 ft. (7010 m). These values represent a light turbulence

condition [68].

2.3.3 Modeling of Wake Vortex Induced Wind

The wing and horizontal tail of the tanker aircraft are modeled as horseshoe

vortices (Fig. 1.1). Tail vortices rotate outward generating a negative lift and wing

vortices rotate inward generating a positive lift. The magnitude of the wind induced

by each filament is

Wr =
Γ r

2π(r2 + r2c )

[
1− exp(− r2

4υτ
)

]
(2.35)

where Γ is the vortex strength, r is the radial distance from the point of interest to

the filament, rc is the radius of the vortex core, υ is the viscosity parameter specified,

and τ is the distance to the filament over the speed of the tanker. The strength of a

vortex filament is given as

Γ =
L

ρ V (π/4) b

cos γ1 + cos γ2
2

(2.36)

where L is the lift generated by the wing or tail, ρ is the air density, V is the airspeed

of the tanker, b is the span of the wing or tail, and γi are the angles of the vectors

from the filament to the point of interest.

During aerial refueling operations, the tanker’s wake vortex creates a nonuni-

form wind field over the receiver aircraft. In Ref. [64], a method is introduced to

model the effect of the nonuniform wind over the dynamics of the receiver aircraft.

This method approximates the nonuniform wind distribution by using uniform wind

component ((Wi)eff ) and uniform wind gradient ((∂Wi/∂i)eff ). All three components

of wind distribution is approximated using the same approach, and three components

of effective translational wind velocity and three components of effective rotational
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wind velocity can be computed. The effective rotational wind components, which are

used in Eq. (2.13), are formulated as

peff =

(
∂Wz

∂y

)
eff

−
(
∂Wy

∂z

)
eff

(2.37)

qeff =

(
∂Wx

∂z

)
eff

−
(
∂Wz

∂x

)
eff

(2.38)

reff =

(
∂Wy

∂x

)
eff

−
(
∂Wx

∂y

)
eff

(2.39)

2.4 Controller Design for the Tanker Aircraft

The controller for the tanker aircraft is designed in Ref. [66] and the equations

are summarized in this section. The controller flies the aircraft in a pre-specified

trajectory including straight level and turn segments, at a constant altitude and

with a constant airspeed. The controller of the tanker aircraft is based on LQR-

based approach using gain scheduling technique with the altitude and speed hold, and

yaw rate tracking. Commanded airspeed and commanded yaw rate are used in gain

scheduling, and there are six nominal conditions associated with the gain scheduling.

Equations of motion of the tanker aircraft are linearized and LQR-controller based

on the linear model is used. The linear model for each nominal condition is expressed

as

∆ẋT = A∆xT + B∆u (2.40)

where ∆ terms indicates deviation from the nominal condition, ∆xT is the perturba-

tions of the system state vector of the tanker aircraft from their nominal values, and

∆u is the perturbations of the control input. The linearized state vector vector is

∆x
T

= [∆V
T

∆β
T

∆α
T

∆p
T

∆q
T

∆r
T

∆ψ
T

∆θ
T

∆φ
T

∆x
T

∆y
T

∆z
T
]T (2.41)
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and the linearized control input vector is

∆u = [∆δa
T

∆δe
T

∆δr
T

∆T
T

]T (2.42)

Integral control terms are added to LQR-controllers in order to improve steady-state

tracking performance. For the integral control terms, the error signals are defined as

ė = ∆y
T
−∆yc (2.43)

where error is defined as

e =


∆V −∆Vc

∆z −∆zc

∆ψ̇ −∆ψ̇c

 (2.44)

the subscript c in Eq. (2.44) indicates the commanded signal. By combining the Eq.

(2.40) and Eq. (2.43), the augmented system equation can be obtained as

∆ẋT

ė

 =

A 0

C 0


∆xT

e

+

B

0

∆u+

 0

−∆yc

 (2.45)

With the feedback gain matrices obtained through the LQR method, the control law

is formulated as

∆ui = −Ki ·∆xTi −Ke,i · e (2.46)

where

ui = u0,i + ∆ui (2.47)

∆x
Ti

= x
T
− x

T0,i
(2.48)
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where i represents corresponding nominal conditions, and [Ki Ke,i] is the augmented

state feedback gain matrix obtained by minimizing the cost function in LQR. A La-

grange interpolation is used between linear controllers associated with the nominal

conditions in implementing the gain scheduling. The gain scheduling controller equa-

tion is given as

u =
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V1 − V2)

u1 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V1 − V2)

u3

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V2)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V1 − V2)

u5 +
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V2 − V1)

u2

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V2 − V1)

u4 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V1)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V2 − V1)

u6

(2.49)

2.5 Controller Design for the Receiver Aircraft

While the tanker aircraft flies through its pre-specified trajectory, the receiver

aircraft’s position should be controlled relative to the tanker during aerial refueling

operation. For this purpose, a relative position tracking controller is designed for

the receiver aircraft. Similar to the tanker aircraft’s controller, a state-feedback and

integral control method with gain scheduling approach is used. The gains are calcu-

lated by using LQR technique at the pre-defined six nominal conditions. The tanker’s

commanded airspeed and yaw rate are used as scheduling variables. Equations of mo-

tion of the receiver aircraft are linearized, and the linearized model for each nominal

condition is expressed as

∆ẋR = A∆xR + B∆u (2.50)
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where ∆ terms indicates deviation from the nominal condition, ∆xR is the perturba-

tion of the system state vector of the receiver aircraft from their nominal values, and

∆u is the perturbation of the control input. The linearized state vector vector is

∆x
R

= [∆V
R

∆β
R

∆α
R

∆p
R

∆q
R

∆r
R

∆ψ
R

∆θ
R

∆φ
R

∆ξ1 ∆ξ2 ∆ξ3]
T (2.51)

and linearized control input vector is given as

∆u = [∆δa ∆δe ∆δr ∆T ∆δy ∆δz]
T (2.52)

where T is the thrust, (δy, δz) are engine nozzle deflections for an aircraft capable of

thrust vectoring control and (δa, δe, δr) are the aileron, elevator and rudder deflections,

respectively. In this dissertation, the engine nozzle deflections are set to zero as thrust

vectoring capability is not used. For the integral control of the relative position, the

error signals are defined as

ė = ∆y
R
−∆yc (2.53)

where error is defined as

e =


∆ξ1 −∆ξ1,c

∆ξ2 −∆ξ2,c

∆ξ3 −∆ξ3,c

 (2.54)

the subscript c indicates the commanded signal. By combining the Eq. (2.50) and

Eq. (2.53), the augmented system equation can be obtained as

∆ẋR

ė

 =

A 0

C 0


∆xR

e

+

B

0

∆u+

 0

−∆yc

 (2.55)
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With the feedback gain matrices obtained through the LQR method, the control law

is formulated as

∆ui = −Ki ·∆xRi −Ke,i · e (2.56)

where

ui = u0,i + ∆ui (2.57)

∆x
Ri

= x
R
− x

R0,i
(2.58)

where i represents corresponding nominal conditions, and [Ki Ke,i] is the augmented

state feedback gain matrix obtained by minimizing the cost function in LQR. A

Lagrange interpolation is used between linear controllers associated with the nominal

conditions in implementing the gain scheduling. The gain scheduling controller is

given as

u =
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V1 − V2)

u1 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V2)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V1 − V2)

u3

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V2)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V1 − V2)

u5 +
(ψ̇c − ψ̇2)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇1 − ψ̇2)(ψ̇1 − ψ̇3)(V2 − V1)

u2

+
(ψ̇c − ψ̇1)(ψ̇c − ψ̇3)(Vc − V1)
(ψ̇2 − ψ̇1)(ψ̇2 − ψ̇3)(V2 − V1)

u4 +
(ψ̇c − ψ̇1)(ψ̇c − ψ̇2)(Vc − V1)
(ψ̇3 − ψ̇1)(ψ̇3 − ψ̇2)(V2 − V1)

u6

(2.59)
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CHAPTER 3

AIRDATA SENSOR MEASUREMENTS IN NONUNIFORM WIND FIELD

This chapter provides information about the effect of nonuniform wind field on

the airdata sensor measurements. Considering that the receiver aircraft is exposed

to nonuniform wind field induced by tanker aircraft in aerial refueling operation, the

influence of the wind field on the airdata sensors is presented, as it causes difference

in sensor readings even the sensors are mounted on the same aircraft. First, infor-

mation about the airdata sensors and their working principles for measuring airdata

variables is presented to understand better why their readings are affected by the air

surrounds them. Also, information about the positions of the receiver aircraft inside

the nonuniform wind field during the aerial refueling operation is provided. Lastly,

the procedure for creating maps of wind field in terms of magnitude and direction

with respect to the receiver’s position relative to the tanker, is explained.

3.1 General Introduction to Airdata Sensors

Basic airdata sensor is used to retrieve information about physical characteris-

tics of air that surrounds the aircraft. Modern airdata sensors usually provide the air

pressure, airflow and temperature measurements. Airdata sensors have the advantage

that multiple sensors can be mounted for having redundant measurements which are

safety monitored [69]. Today’s aircraft use Air Data Computers (ADC) which process

the airdata sensor measurements and compute the following variables of the aircraft

• Airspeed

• Side Slip Angle
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• Angle of Attack

• Static/Total Pressure

• Outside/Total Temperature

The airdata sensors are mounted on the aircraft in a location where measured

air flow is in its natural form, generally side of the nose (Fig. 3.1). Typical airdata

sensor (probe) (Fig. 3.2) has the following components; pressure head, temperature

head, mast, and heaters [70].

Figure 3.1. Typical Location for Airdata Sensors [69].

Airdata sensor is one of the core elements in avionic systems, and they are

required in all today’s aircraft, civilian or military [71]. In order to continue flying

safely, the reliable provision of air data of the aircraft should be provided, and that

information provided by airdata systems is very essential for some key avionic sub-

systems which enable the (auto)pilot to carry out his mission [69, 71]. For instance,

onboard Guidance, Navigation, and Control (GNC) sub-system uses the information

about the movement of the aircraft in the atmosphere, which is provided by airdata
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Figure 3.2. Typical Airdata Sensor (Probe) [70].

sensors [70]. Thus, airdata systems should provide information about the ambient

atmosphere and the state of the aircraft flight relative to ambient air by combining

information with other onboard or remote measurements [72]. Airdata sensors provide

pressure values as electrical signals on the altimeter, vertical speed indicator, airspeed

indicator, and Machmeter to be used to obtain airspeed and altitude [69, 73]. Static

pressure can be described as the local pressure surrounding the aircraft and varies

with altitude [69], and total pressure can be described as the sum of static pressure

and the pressure caused by the forward motion of the aircraft [69]. Side slip angle

and angle of attack values are obtained from measured local flow angles. Also, true

airspeed and other parameters can be obtained using algorithms in air data computers

given the pressure and flow information.

Airspeed sensors need to quantify two main information. The first one is the

information of air that surrounds the aircraft [72]. For this information, the pressure
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measurement (or density value) and air temperature is needed. The second one is

information about aerodynamic state of the aircraft, which is determined by the

velocity vector relative to surrounding air in a body fixed coordinate system. Three

scalar quantities are required in order to determine velocity vector, (i) magnitude of

velocity V (ii) angle of attack α and (iii) side slip angle β [72].

Airdata sensors consist of two main components, i.e. pressure sensor and tem-

perature sensor [71]. The temperature sensor is relatively simple and straightforward

device that is composed of a simple resistance bridge where one resistant arm of

that bridge is exposed to airstream. Pressure sensors, on the other hand, require

an extremely high accuracy and they are affected by acceleration, humidity, shock,

vibration and temperature changes. Thus it takes long and expensive process to de-

velop pressure sensors [71]. Different companies and organizations have developed

wide variety of air data pressure sensors. Generally pitot and static probes are used

to measure static and pitot pressure. Pitot probe (tube) is named after his inventor

French mathematician and scientist Henri Pitot.

Pitot probes with separate static pressure orifices are used in some civil aircraft,

and they are placed between the nose and the wing. Generally, L type pitot-static

probes (Fig. 3.2) are used in civil transport aircraft (e.g., Boeing 747) [71]. In Fig.

3.3, a typical flight test noseboom is shown that measures local flow angles and pitot-

static pressures [73].

Another example of pitot-static probe is shown in Fig. 3.4. The face of this

probe has pitot and static orifices, as well as the orifices for side slip angle mea-

surements [69]. The principle is to use the differential output (Pβ1 − Pβ2) for cor-

responding measurement. Similarly, face of a probe with angle of attack orifices is

given in Fig. 3.5, which gives differential output (Pα1 − Pα2) for angle of attack

measurements.
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Figure 3.3. Typical Airdata Noseboom [73].

Figure 3.4. Side Slip Angle Measurement [69].

Figure 3.5. Angle of Attack Measurement [69].

3.2 Positions of Receiver Aircraft during Aerial Refueling Operation

In aerial refueling operation, the receiver aircraft is required to fly relative to

the tanker aircraft. This flight includes two positions, i.e. observation and contact
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position, as well as transition between these positions (Fig. 3.6). The contact position

is where the actual fuel transfer takes place. It is right behind the tanker, slightly

below and behind the tail of the tanker. At this position, the receiver is in the down-

wash region of the vortex induced nonuniform wind. Besides the contact position, the

observation position and the area between these two are also important. During aerial

refueling operations, the receiver aircraft maneuvers from the observation position to

the contact position. The observation position is at the same altitude as the tanker’s

on the right side of the tanker, outside the wake of the tanker. Thus, the effect of the

wake vortices in the wind field the receiver flies in is minimal.

(a) (b)

Figure 3.6. Aerial Refueling Positions (a) Observation Position (b) Contact Position
[74].

3.3 Maps of Wind Field in Terms of Magnitude and Direction

When receiver aircraft flies in aerial refueling operation, it is exposed to nonuni-

form wind field. Wind vector has varying magnitude and direction with the relative

position with respect to the tanker. To construct maps illustrating the variation of
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airdata variables (V , β, α), a set of discrete points are defined around the contact

position. This set of points is referred to as “the grid”.

The grid is defined around the contact position with 2 meters margins in y and

z directions (Fig. 3.7). It should be noted that coordinates of the contact position is

y = 0 and z = 8.5 (meters) relative to the tanker aircraft. Thus, the grid is defined

between -2 and 2 meters in y direction, and between 6.5 and 10.5 meters in z direction.

In both directions, 0.2 meters step size is used. This adds up to equally spaced 441

points within a range of 4 meters, where the center of the grid is the contact position.

The points in the grid varies in y and z directions only. In this study, variation of the

grid in x direction is not taken into consideration due the fact that the wind vortex

model used has negligible variation in x direction of the specified contact position of

the flight.

Figure 3.7. The Representation of the Grid for Receiver Aircraft behind the Tanker.

In order to create maps of wind field in terms of magnitude and direction, static

simulations are run by placing the receiver (the origin of the receiver’s body frame)
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at each point of the grid and airdata variables (airspeed V , angle of attack α, sideslip

angle β) are recorded from each sensor. Figure 3.8 shows the placements of three

identical airdata sensors on the Learjet-25. Since the nonuniform wind has significant

variation our the receiver aircraft, the airdata sensors placed at different locations on

the receiver record different variables at each point of the grid.

Figure 3.8. Placement of the Sensors.

In static simulations, the tanker and receiver aircraft are placed statically and

the position and orientation are kept fixed. In other words, static simulations are

similar to wind tunnel tests, where two aircraft models are placed in wind tunnel

with fixed position and orientation relative to each other. Also, the effects of the

turbulence and prevailing winds are turned off, and the measurement noise is not

added to the sensor readings in order to isolate the nonuniform wind effect. In this

step, the receiver aircraft flies at a point in the grid, and airdata measurements are

recorded and saved with the associated coordinate (y, z) information. Then, same

procedure is repeated for other points in the grid until all 441 locations are covered.

Figures 3.9-3.11 show the maps of the airdata variables. As seen from the

figures, each variable from a given sensor varies as the position of the aircraft on the
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grid changes. Further, each sensor gives different reading at a given point as well as

different variation over the grid.

Figure 3.9. Distribution of Airdata Measurements - Airspeed.

Figure 3.10. Distribution of Airdata Measurements - Angle of attack.

For fuel transfer, the receiver aircraft needs to stay at the contact position.

However, an entire refueling operation requires the receiver to fly in formation with

the tanker at the observation position and transition to the contact position. Thus,
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Figure 3.11. Distribution of Airdata Measurements - Side slip angle.

a larger set of points is defined to cover the whole y and z ranges. This set of points

is referred to as “the extended grid” (Fig. 3.12). The extended grid has a 20 meters

length in z direction, and 70 meters length in y direction. The airdata measurements

are saved between -4 to 68 meters in y direction, and between -6 and 14 meters in z

direction. The points are placed on the extended grid with 1 meter spacing in both

y- and z- directions. This adds up to 1533 equally spaced points.

Figure 3.12. The Representation of the Extended Grid for Receiver Aircraft behind
the Tanker.
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Same as the first grid, simulations are performed at every point on the extended

grid, and the airspeed (V ), angle of attack (α), sideslip angle (β) measurements are

recorded from each sensor. Same as in simulations for the first grid, the effects of

the turbulence and prevailing winds are turned off, and the measurement noise is not

added to the sensor readings in order to isolate the nonuniform wind effect.

After the simulations are run for all points in the extended grid, maps are

created. Distributions of all airdata measurements are presented in Figs. 3.13 to

3.15. In each plot, three sensors’ measurement for one variable is shown as contour

plots.

Figure 3.13. Distribution of Airdata Measurements - Airspeed in Extended Grid.

The maps discussed in this chapter are used in both estimation of relative po-

sition and the improvement of FDI algorithm. In relative position estimation part of
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Figure 3.14. Distribution of Airdata Measurements - Angle of attack in Extended
Grid.

this research, the instant sensor readings are compared with the corresponding map

and a set of possible lateral (y) and vertical (z) position information is determined.

The algorithms developed to process the maps to estimate relative position are dis-

cussed in Chapter 4. For the fault diagnosis part, the aim is to find expected values

of the measurements at a given position by using these maps. The current relative

position is given as an input, and then the expected values of airdata measurements

are found by reading the maps, and this process is repeated for other sensors and for

other variables. The details of this procedure are given in Chapter 5.
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Figure 3.15. Distribution of Airdata Measurements - Side slip angle in Extended
Grid.
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CHAPTER 4

RELATIVE POSITION ESTIMATION USING AIRDATA SENSORS

This research uses airdata measurements to determine where the airdata sensor

is relative to the tanker aircraft. If a map of the wind field is available in terms

of the magnitude and direction as a function of the relative position, the inverse

of this map may be used to estimate the relative position given the wind velocity

vector measurement. For this idea to work, there should be a one-to-one mapping

from relative position to airdata sensor measurements. This is to be able to generate

the inverse map that reads airdata measurements and gives the relative position

without any ambiguity. This research assumes the availability of the maps of the

wind field. The maps can be built using different methods such as analytic models,

CFD simulations and wind tunnel tests. Section 3.3 presents the maps constructed

from a model of vortex-induced wind field and used in this research. Before developing

any algorithm implementing this idea, the following questions should be answered:

i. Whether there is a one-to-one mapping between position and any one of the three

airdata sensor measurements

ii. If there is, which variable can give the most accurate and reliable inverse map

iii. If there is not, is it possible to use the maps of the wind field in terms of two or

three of airdata variables measured at the same position on the receiver aircraft

to determine the relative position

iv. If that is not possible, what is the minimum number of sensors placed at different

locations to determine relative position without ambiguity
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v. Is there any benefit of using more than the minimum required number of sensors

in terms of accuracy and reliability

Based on the answers to these questions, several algorithms are developed that

compute the relative position based on airdata sensor measurements. The estimation

procedure is as follows. The instant airdata measurements are given as an input to

the associated wind field map, and the output will be isolines representing possible

y − z positions. Considering different measurements from different sensors, there are

different contour lines for each input. To estimate the relative position, intersection

between individual contour lines are used. Various algorithms developed herein differ

from each other based on the method of finding the intersections, number of sensor

and variables used, and the decision process for estimation. Details of each algorithm

are given in next subsection.

4.1 Position Estimation Algorithms

The proposed position estimation procedure consists of taking instant airdata

measurements and comparing them with the corresponding map of the wind field.

For each input, different contour level curves can be obtained, and the intersection of

these contour lines gives the possible positions of the aircraft at that instant. Mainly,

the contour lines are formed by set of points. In order to find the intersection of

different contour lines, the points that form a given contour line are processed. The

following paragraphs describe the two methods developed to determine if there is an

intersection between two given contour lines and, if so, where the intersection point

is.

The first method for finding the intersection takes a pair of consecutive points

from each contour line. Each pair of points are connected to each other with a straight

line. Two lines from two pairs are then checked if there is an intersection. Afterwards,
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one pair of points is kept, and another closest pair is taken from other contour line

until all points are checked. This process is repeated for all points of the contour

lines. The accuracy of finding the intersection point by using this method depends

on the number of points that represent the contour line, yet this method is fast and

gives accurate results. This method is referred to as “intersection method-1 (IM-1)”

in this research. Figure 4.1 shows an illustration of the technique used in intersection

method-1.

Figure 4.1. The Illustration of Intersection Method-1.

The second method also relies on the comparison of points from the contour

lines. In this method, one point from each contour line is taken and the distance

between those is calculated. Similar to the first method, one point from first contour

line is kept and the next point from the second contour line is taken until all points
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are checked, and this process repeated for all points of the first contour line. Then,

the minimum of the calculated distances is selected and the middle point between the

points with minimum distance is obtained as the intersection point. The drawback

of this method is that it gives a result even though two contour lines do not intersect.

Basically, this method performs successfully under the assumption that there exists an

intersection point between two contour lines. Also, unless the distances between the

points are the same, this method cannot provide more than one intersection point,

despite of existence of multiple intersection points. This method is referred to as

“intersection method-2 (IM-2)” in this dissertation. An illustration of intersection

method-2 is given in Fig. 4.2. The IM-2 is relatively faster than IM-2 in sense of

computational speed due to the fact IM-1 needs not to only to compare all points

to each other, also needs to find intersection point of two vectors. Although this

difference is not significant, the computational time difference will grow exponentially

as the number of points increases. Also, the main reason for introducing IM-2 is to

use it to find common intersection points from different variables.

In addition to the method of finding intersections, the position estimation algo-

rithms differ from each other by the number of sensors used, the number of measure-

ments processed, and the criterion used for choosing the estimated position from set

of intersection points. 16 algorithms using various combinations of these factors are

described below. It should be noted that there are 3 different airdata measurements

from three sensors which gives the total number of the combinations as 511 without

taking account of choosing criterion and method of intersection.

Algorithm-1) Measurements of sideslip angle (β) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position
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Figure 4.2. The Illustration of Intersection Method-2.

estimation. In the case of multiple intersections of two contour lines, the first element

of the set of intersection points is chosen.

Algorithm-2) Measurements of sideslip angle (β) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position

estimation. In the case of multiple intersections of two contour lines, the last element

of the set of intersection points is chosen.

Algorithm-3) Measurements of angle of attack (α) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position

estimation. In the case of multiple intersections of two contour lines, the first element

of the set of intersection points is chosen.
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Algorithm-4) Measurements of angle of attack (α) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position

estimation. In the case of multiple intersections of two contour lines, the last element

of the set of intersection points is chosen.

Algorithm-5) Measurements of sideslip angle (β) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position

estimation. In the case of multiple intersections, the default value is assigned for

estimated value. The default value indicates that no absolute decision for estimation

is made.

Algorithm-6) Measurements of angle of attack (α) from two sensors (located at

left wing tip and right wing tip) and respective contour lines are used. The intersection

of these two contour lines is obtained by using intersection method-1 as the position

estimation. In the case of multiple intersections, the default value is assigned for

estimated value.

Algorithm-7) Measurements of angle of attack (α) and sideslip angle (β) from

two sensors (located at left wing tip and right wing tip) and respective contour lines

are used. The intersection of two contour lines obtained from same airdata measure-

ment is found by using intersection method-1. Position estimation is performed only

when intersection points found from angle of attack (α) readings and intersection

points found from sideslip angle (β) readings are the same. In the case of having

multiple common points, the first element of the set of intersection points is chosen.

Algorithm-8) Measurements of angle of attack (α) and sideslip angle (β) from

two sensors (located at left wing tip and right wing tip) and respective contour lines

are used. The intersection of two contour lines obtained from same airdata mea-
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surement is found by using intersection method-1. The set of distances between the

intersection points found by using angle of attack (α) and sideslip angle (β) readings

is calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position.

Algorithm-9) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-1. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are

calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position.

Algorithm-10) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-1. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are

calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position. In the case of only from one variable there is

only one intersection point, that point is taken as estimated position. If there are

more than one intersection point from one variable, the first element of the set of

intersection points is chosen.

Algorithm-11) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-1. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are
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calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position. In the case of only from one variable there is only

one intersection point, that point is taken as as estimated position. If there are more

than one intersection point from one variable, the distances between those points are

calculated. The distances first are compared with a threshold, epsilon (ε). The ones

which are smaller than epsilon are compared with each other. The closest pair of

points is obtained and the center point of those two is taken as estimated position.

If there is no pair of points that are closer than epsilon, the default value is assigned

for estimated value.

Algorithm-12) Measurements of angle of attack (α) and sideslip angle (β) from

one sensor (located at nose of the aircraft) and respective contour lines are used.

Instead of determining intersection points from same variables taken from different

sensor, in this algorithm intersection of different variables from the same sensor is

used. In the case of multiple intersections, the first element of the set of intersection

points is chosen.

Algorithm-13) Measurements of angle of attack (α) and sideslip angle (β) from

one sensor (located at nose of the aircraft) and respective contour lines are used.

Instead of determining intersection points from same variables taken from different

sensor, in this algorithm intersection of different variables from the same sensor is

used. In the case of multiple intersections, the last element of the set of intersection

points is chosen.

Algorithm-14) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-2. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are
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calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position.

Algorithm-15) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-1. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are

calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position. In the case of only from one variable there is

only one intersection point, the default value is assigned for estimated value. If there

are more than one intersection point from one variable, the distances between those

points are calculated. The distances first are compared with a threshold, epsilon (ε).

The ones which are smaller than epsilon are compared with each other. The closest

pair of points is obtained and the center point of those two is taken as estimated

position. If there is no pair of points that are closer than epsilon, the default value is

assigned for estimated value.

Algorithm-16) Measurements of angle of attack (α) and sideslip angle (β) from

three sensors (located at nose, left wing tip and right wing tip) and respective contour

lines are used. The intersection of two contour lines obtained from same airdata

measurement is found by using intersection method-1. The set of distances between

the intersection points found from angle of attack (α) and sideslip angle (β) are

calculated. Then the pair of closest points is obtained and the center of these points

is taken as the estimated position. In the case of only from one variable there is only

one intersection point, the default value is assigned for estimated value. If there are

more than one intersection point from one variable, the first element of the set of

intersection points is chosen.
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Table 4.1. Definitions of Variables for the Algorithm-15 Pseudocode

{(yi, zi, βi), . . .} set of points from sensor q

Uβ
q set of all points (yi, zi, βi) from sensor q

Uα
q set of all points (yi, zi, αi) from sensor q

Aβq set of points (yn, zn) for given αn from sensor q

Aαq set of points (yn, zn) for given βn from sensor q

aβn elements of set Aβ

aαn elements of set Aα

L
aβj ,a

β
j+1

q straight line between elements aβj and aβj+1 from sensor q

L
aαj ,a

α
j+1

q straight line between elements aαj and aαj+1 from sensor q

L
aβj ,a

β
j+1

q ∩ La
β
j ,a

β
j+1

r intersection of two lines from sensor q and r

Cα
i,j ∪ Cα

j,k Union of sets Cα
i,j and Cα

j,k

Cβ set of points that are intersection of two lines

Cα set of points that are intersection of two lines

cβn elements of set Cβ

cαn elements of set Cα

D(cj, ck) straight line distance between two elements cj and ck

{c : φ} The set of all c for which φ is true

∃c : φ There exists c such that φ is true

∅ Empty set

|Aαm| The number of elements in set Aαm

As seen from the descriptions of the algorithms, the complexity of the algorithms

increases by the algorithm number. The differences between the algorithms can be

seen in Table 4.2. The increase in complexity is due to the number of sensors and

number of variables used, i.e., the number and variety of contour lines used, as well as
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the decision criterion for choosing from multiple intersection points. As an example,

the pseudocode of Algorithm-15 is provided in Table 4.1 and Algorithm 15.

Table 4.2. Comparison of the Algorithms

Airdata
Variable

Used

Intersection
Method

Method to
find

common
Intersec-

tion

In the case
of multiple

results

In the case
of single

result from
one

variable
only

Algorithm-1 Aβ2,3 IM-1 N/A First Found Keep

Algorithm-2 Aβ2,3 IM-1 N/A Last Found Keep

Algorithm-3 Aα2,3 IM-1 N/A First Found Keep

Algorithm-4 Aα2,3 IM-1 N/A Last Found Keep

Algorithm-5 Aβ2,3 IM-1 N/A Discard Keep

Algorithm-6 Aα2,3 IM-1 N/A Discard Keep

Algorithm-7 Aβ2,3,A
α
2,3 IM-1 IM-2 First Found Discard

Algorithm-8 Aβ2,3,A
α
2,3 IM-1 IM-2 First Found Keep

Algorithm-9 Aβ1,2,3,A
α
1,2,3 IM-1 IM-2 Last Found Keep

Algorithm-10 Aβ1,2,3,A
α
1,2,3 IM-1 IM-2 First Found Keep

Algorithm-11 Aβ1,2,3,A
α
1,2,3 IM-1 IM-2

Compare
with ε

Keep

Algorithm-12 Aβ1 ,A
α
1 IM-1 N/A First Found N/A

Algorithm-13 Aβ1 ,A
α
1 IM-1 N/A Last Found N/A

Algorithm-14 Aβ1,2,3,A
α
1,2,3 IM-2 IM-2 First Found Keep

Algorithm-15 Aβ1,2,3,A
α
1,2,3 IM-1 IM-2

Compare
with ε

Discard

Algorithm-16 Aβ1,2,3,A
α
1,2,3 IM-1 IM-2 First Found Discard
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Algorithm 15 The Pseudocode Representation.
Input: β1(k), α1(k), β2(k), α2(k), β3(k), α3(k)
Parameters: ε, γ (γ is the default value)
Output: e(k) (estimated position e(k) = (ŷ(k), ẑ(k))

Aβ1 ≡ {(yi, zi) : U
β
1 (β1(k))} A

β
2 ≡ {(yi, zi) : U

β
2 (β2(k))} A

β
3 ≡ {(yi, zi) : U

β
3 (β3(k))}

Aα1 ≡ {(yi, zi) : Uα1 (α1(k))} Aα2 ≡ {(yi, zi) : Uα2 (α2(k))} Aα3 ≡ {(yi, zi) : Uα3 (α3(k))}
for j = 1 to |Aβ1 | − 1 do

for l = 1 to |Aβ2 | − 1 do

5: for p = 1 to |Aβ3 | − 1 do

Cβ1,2 ≡ {c
β
i : L

aβj ,a
β
j+1

1 ∩ La
β
l ,a

β
l+1

2 }

Cβ1,3 ≡ {c
β
i : L

aβj ,a
β
j+1

1 ∩ La
β
p ,a

β
p+1

3 }

Cβ2,3 ≡ {c
β
i : L

aβl ,a
β
l+1

2 ∩ La
β
p ,a

β
p+1

3 }
end for

10: end for
end for
Cβ ≡ Cβ1,2 ∪ C

β
1,3 ∪ C

β
2,3

for j = 1 to |Aα1 | − 1 do
for l = 1 to |Aα2 | − 1 do

15: for p = 1 to |Aα3 | − 1 do

Cα1,2 ≡ {cαi : L
aαj ,a

α
j+1

1 ∩ La
α
l ,a

α
l+1

2 }
Cα1,3 ≡ {cαi : L

aαj ,a
α
j+1

1 ∩ La
α
p ,a

α
p+1

3 }
Cα2,3 ≡ {cαi : L

aαl ,a
α
l+1

2 ∩ La
α
p ,a

α
p+1

3 }
end for

20: end for
end for
Cα ≡ Cα1,2 ∪ Cα1,3 ∪ Cα2,3
if Cβ 6≡ ∅& Cα 6≡ ∅ then
∃minD(cβn, c

α
m)

25: e(k) = {(y, z) : (cβn + cαm)/2}
else if Cβ 6≡ ∅& Cα ≡ ∅ then

if |Cβ | = 1 then
e(k) = γ

else
30: ∃minD(cβn, c

β
m) : D(cβn, c

β
m) < ε

e(k) = {(y, z) : (cβn + cβm)/2}
end if

else if Cβ ≡ ∅& Cα 6≡ ∅ then
if |Cα| = 1 then

35: e(k) = γ
else
∃minD(cαn, c

α
m) : D(cαn, c

α
m) < ε

e(k) = {(y, z) : (cαn + cαm)/2}
end if

40: else if Cβ ≡ ∅& Cα ≡ ∅ then
e(k) = γ

end if
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4.2 Performance Metrics for Evaluating Position Estimation Algorithms

This section presents two metrics defined to quantify the accuracy and reliability

of each of the 16 algorithms. The metrics are used to evaluate the performance of

each algorithm and to make comparison among the various algorithms. The metrics

are also utilized to quantify the sensitivity of the performance of the algorithms

against the strength of the atmospheric turbulence and the variances of the sensor

measurement noises. The metric quantifying the accuracy of the estimated position

is referred to as “Cumulative Error (CE)” and that for the reliability as “Estimation

Ratio (ER)”. Cumulative error (CE) is the sum of the estimated position error for all

locations in the grid, and formulated as

CE =
M∑
i=1

ei (4.1)

where ei is position error at ith point of the grid, and M is the number of points at

which the estimation algorithm can generate an estimate. That is, the grid points at

which the algorithm fails to estimate a position are excluded. The estimation ratio

(ER) is the ratio of the number of grid points (M) at which the algorithm generates

an estimate to the total number of points in the grid (N).

ER =
M

N
(4.2)

In the above definitions of the metrics, all the points in the grid are considered equally

important. In the case of aerial refueling, the most important region of the grid is at

the contact position. As the position is further away from the contact position, more

error in position estimation could be tolerated. Based on the concept, “weighted”

versions of the metrics are defined. The weighting function is defined, as depicted
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in Fig. 4.3, as to reduce the importance of the points as they are located at longer

distance from the contact position. The maximum value of the weighting function is

1, at the point corresponding to the contact position, and decreases linearly to 0.1 at

the edge of the grid.

Figure 4.3. Performance Index Weighting.

Using the weighting function, the weighted Cumulative Error (WCE) is defined

as

WCE =
M∑
i=1

wi ei (4.3)
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where wi is the value of the weighting function at the ith point of the grid. Recall that

M points used in WCE calculations are the ones at which the algorithm can produce

an estimated position. Similarly, weighted Estimation Ratio (WER) is formulated as

WER =

M∑
i=1

wi

N
(4.4)

where the total number of points in the grid (N) in the denominator while the numer-

ator sums up the weighting function only over the points at which the algorithm can

produce a solution. Note that, when weighting function is 1 everywhere, Eq. (4.2) is

recovered from Eq. (4.4).
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CHAPTER 5

AIRDATA SENSOR FAULT DETECTION AND ISOLATION

This chapter presents the application of a Fault Detection and Isolation (FDI)

algorithm to the airdata sensors of a receiver aircraft in aerial refueling flight. FDI

algorithms are used to identify any occurrence of a fault in the system (detection) and

to pinpoint the type and location of the fault (isolation). While there are various types

of FDI development methods, the FDI presented here is based on sensor redundancy.

Such an FDI system processes the measurements from a group of the same type of

sensors in order to detect and isolate any fault in any one of the sensors in the group.

The receiver aircraft is assumed to be equipped with same type of airdata sensors,

placed at different locations. The airdata sensors are to measure the airspeed, angle-

of-attack and side-slip angle of aircraft.

5.1 Sensor Fault Detection and Isolation using Statistical Approach

In order to detect faults in the redundant airdata sensor system, a parity space

approach with chi-square test hypothesis is used [75, 76]. In a parity space based

fault detection, the idea is to create residuals that represent the difference between

actual system and the model outputs [50]. The procedure for developing the residual

vector starts from the measurement equation for three sensors


ym1(k)

ym2(k)

ym3(k)

 =


1

1

1

 y(k) +


ξ1(k)

ξ2(k)

ξ3(k)

+


f1(k)

f2(k)

f3(k)

 (5.1)
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where ymi(k) is the measured value by the ith sensor of state variable y(k), ξi(k) is the

measurement noise and fi(k) is the fault value for the ith sensor. The measurement

noises ξi(k), i = {1, 2, 3}, are assumed to be normally distributed random sequences

with zero mean and standard devaiation of σ and independent from each other. The

measurement equation in Eq. (5.1) can be written in matrix form as

Y(k) = Hy(k) + Ξ(k) + F(k) (5.2)

where Y = [ym1 ym2 ym3 ]
T , H = [1 1 1]T , Ξ = [ξ1 ξ2 ξ3]

T with covariance matrix

R = diag(σ2
1, σ

2
2, σ

2
3) ∈ R3×3 and F = [f1 f2 f3]

T .

To eliminate the state variable from Eq. (5.2), the left null space of the vector

H is introduced to the equation. A left null vector of H, v ∈ R1×3, is a row vector

such that vHT = 0. The matrix V ∈ R2×3 is defined to represent the left null space

of H and can be constructed by the two independent null vectors of H such that

V =

 v1

v2

 (5.3)

Premultiplying the measurement equation in Eq. (5.2) by V eliminates the state

variable y(k) and leads to a two-dimensional vector as

T(k) = VY(k) = VΞ(k) + VF(k) (5.4)

where T(k) = [τ1(k) τ2(k)]T ∈ R2×1 is defined as the residuals, which are to indicate

any inconsistency in the measurement signals, ymi(k), i = {1, 2, 3}.
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In the case of no faulty sensor, F(k) = 0, Eq. (5.4) implies that the residuals

are simply the measurement noises multiplied by the null space matrix as

T(k) = VΞ(k) (5.5)

where note that the expected value of the residuals are zero because V is deterministic

constant and the measurement noise vector Ξ(k) has zero means. In this case, the

covariance of the residual vector is calculated as

E[T(k)TT (k)] = E[VΞ(k)ΞT (k)VT ] = ΓTΓ (5.6)

where a new matrix Γ ∈ R2×2 is introduced such that

VRVT = ΓTΓ (5.7)

This new matrix Γ is used to normalize the residuals as

T̄(k) = Γ−TT(k) (5.8)

such that the covariance of the normalized residuals are

E[T̄(k)T̄T (k)] = Γ−TE[T(k)TT (k)]Γ−1 (5.9)

which, using Eq. (5.6), leads to

E[T̄(k)T̄T (k)] = Γ−TΓTΓΓ−1 = I2×2 (5.10)
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which is a 2× 2 identity matrix. That is, the normalized residuals τ̄1(k) and τ̄2(k) have

unity variance. Note also that the expected values of T̄(k) are zero since E[T(k)] = 0.

In the case of a faulty sensor, by Eq. (5.4), the expected value of the residuals

are

E[T(k)] = VF(k) 6= 0 (5.11)

which implies

E[T̄(k)] = Γ−TVF(k) 6= 0 (5.12)

This observation is used to set the hypothesis test for detecting sensor fault as

H0 : E[T̄(k)] = 0

H1 : E[T̄(k)] 6= 0 (5.13)

The acceptance of the hypothesis is carried out by the second degree chi-square test

as

χ2(2, k) = γ(k) = τ̄ 21 (k) + τ̄ 22 (k) (5.14)

The chi-square test is based on a look-up table that gives the threshold value h for a

given false alarm probability α

Pr(γ(k) ≤ h) = 1− α (5.15)

In order to detect faults, the χ2 random variable γ(k) is compared to h. If γ(k) is

equal or smaller than the given value, the test results in the acceptance of H0. On

the other hand, if γ(k) is greater than h, the test results in the acceptance of H1. It

should be noted that this evaluation includes a false alarm probability of α.
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Once a fault is detected, the isolation is accomplished by the angle between

the residual vector and the columns of the null space. It should be noted that, in

this study, a fault is assumed to occur in one sensor only at a time. In parity space

approach, inconsistency in one of the sensors results in orthogonal projection of the

fault vector on the null space [77]. In the case of a fault in one of the sensors, F(k)

is non-zero and the residual equation in Eq.(5.4) becomes

T(k) = VΞ(k) + VF(k) (5.16)

which can be rewritten in terms of matrix V, Vi ∈ R2×1, i = {1, 2, 3} as

T(k) = VΞ(k) + V1f1(k) + V2f2(k) + V3f3(k) (5.17)

which indicates that the expected value of the residual vector T(k) is shifted in the

direction of Vi when there is a fault in the ith sensor, i.e., fi(k) 6= 0. Thus, simply

by checking the angle between normalized residual vector and the column vectors of

matrix V, the sensor with the fault can be determined. For this purpose, the angle

difference index ϑ is introduced as

ϑi(k) =

∥∥∥∥ T̄(k)

‖T̄(k)‖
− µi
‖µi‖

∥∥∥∥ , i = {1, 2, 3} (5.18)

where µi = Γ−TVi is the normalized ith column vector of the null space matrix V.

Note in Eq. (5.18) that T̄(k)/‖T̄(k)‖ is the unit vector along the direction of T(k)

and µi/‖µi‖ is the unit vector along the ith null space vector. The angles of these
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unit vectors are denoted as θ(k) and φi, respectively. Thus, the unit vector can be

written in terms of their angles as

T̄(k)

‖T̄(k)‖
=

 cos θ(k)

sin θ(k)

 and
µi
‖µi‖

=

 cosφi

sinφi

 (5.19)

The angle difference index can be rewritten in terms of these angles as

ϑi(k) =
√

(cos θ(k)− cosφi)2 + (sin θ(k)− sinφi)2 (5.20)

which, using the trigonometric relations after carrying out the squares, becomes

ϑi(k) =
√

2− 2 cos(θ(k)− φi) , i = {1, 2, 3} (5.21)

Note that maximum angle difference, θ(k) − φi, can be π, in which case ϑi(k) = 2,

and the minimum angle difference is 0 when θ(k) = φi, in which case ϑi(k) = 0. Thus,

ϑi(k) ∈ (0, 2). Among ϑ1(k), ϑ2(k) and ϑ3(k) calculated by Eq. (5.21), the smallest

ϑi(k) is

ϑk(k) = min{ϑi(k), i = 1, 2, 3} (5.22)

which will indicate the kth sensor as the faulty one because the residuals will be shifted

in the direction of the kth column of the null space matrix.

To visualize the detection and isolation processes described above, the residuals

can be plotted with respect to τ̄1(k) and τ̄2(k) as shown in Fig. 5.1. In the case of

no fault, normalized residuals appear at the origin in the residual portrait plot (Fig.

5.1(a)). From statistical point of view, if there is no fault in the system, normalized

residuals should be inside a disc centered at the origin. The size of this disc is defined

by the threshold h, and residuals are expected to fall outside only by the false alarm
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probability α. In the presence of a fault in one of the sensors, the normalized residuals

are not only shifted from the origin and located outside the disc much more than false

alarm probability, they are shifted in the direction of the corresponding null space

column vector (Fig. 5.1(b)). In Fig. 5.1(b), the vector directions of columns of

the null space Vi are shown. For example, when there exists a fault in sensor 3,

the normalized residuals will move to the new location as shown in Fig. 5.1(b). By

checking the minimum angle difference between normalized residuals vector and the

column vectors leads to the isolation of the faulty sensor. Further details of this

approach can be found in Ref. [78].

(a) (b)

Figure 5.1. Residual Portrait of Side Slip Angle Data (a) Typical Example of the
Residuals Plot in the Case of No Fault (b) In the Case of Faulty Sensor 3, Residuals
are Shifted in the Vector Direction of the Corresponding Column of the Null Space.

5.2 Robust Fault Detection and Isolation using Relative Position Information

The proposed measurement equation for Fault Detection and Isolation algo-

rithm in Section 5.1 is based on the assumption that the sensor readings are identical.
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This assumption is presented as the vector H being equal to [1 1 1]T . Consequently,

the left null space V of the vector H is calculated once and it is constant. In aerial

refueling operations, the receiver aircraft is exposed to nonuniform wind field in-

duced by tanker aircraft, and this nonuniform wind field leads to differences in sensor

readings. In other words, due to the nonuniform wind field, different sensors placed

at different location on the aircraft give different airdata measurements. Thus, the

identical readings assumption for FDI algorithm is not valid when aircraft flies in a

nonuniform wind field. To overcome this problem, the expected values of each sensor

reading are used instead of the vector H, and the null space is calculated accordingly

based on the expected values.

Recall that Section 3.3 gives the maps of the nonuniform wind field in terms of

airspeed, side slip angle and angle of attack as functions of the relative position with

respect to the tanker aircraft. These maps are used to compute the expected values of

the airdata variables at each sensor given the relative position of the receiver aircraft.

This approach is formulates as follows. At time k, given the position of the aircraft,

especially y(k) and z(k), the expected values of airspeed (V ), sideslip angle (β) and

angle-of-attack (α) are obtained from the maps of the nonuniform wind field for the

ith sensor as

V̂i(k) = UV
i (y(k), z(k))

β̂i(k) = Uβ
i (y(k), z(k))

α̂i(k) = Uα
i (y(k), z(k)) (5.23)
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where UV
i , Uβ

i , Uα
i are the the maps (used as lookup tables) and V , β and α are

expected airdata measurements for ith sensor, and (y, z) are the relative position.

Using expected values, the measurement equation (Eq. (5.1)) becomes


ym1(k)

ym2(k)

ym3(k)

 =


a(r)

b(r)

c(r)

 y(k) +


ξ1(k)

ξ2(k)

ξ3(k)

+


f1(k)

f2(k)

f3(k)

 (5.24)

where a(r), b(r), c(r) are expected values obtained from nonuniform wind map, ymi(k)

is the measured value by the ith sensor of state variable y(k). Similar to in the Eq.

(5.1), ξi(k) and fi(k) are the normally distributed measurement noise with zero mean

and covariance R and the corresponding fault values, respectively.

To eliminate the first vector from Eq. (5.24), the left null space is employed. For

Eq. (5.1), the null space matrix V was constant and thus calculated once. Considering

that the expected values of airdata variables vary with relative position in Eq. (5.24),

the left null space for this equation should be recalculated for varying relative position.

After pre multiplying both sides of Eq. (5.24) with the computed null space Vr(k),

the measurement equation becomes

Tr(k) = Vr(k)Y(k) = Vr(k)Ξ(k) + Vr(k)F(k) (5.25)

where Tr(k) is two dimensional residual vector with elements [τr1(k) τr2(k)]T . The

subscript r means robust which indicates that null space values (Vr(k)) are varying

in each sample step (k). In the no-fault case, the measured values are simply equal
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to measurement noise multiplied by the null space matrix. Thus, the covariance of

the robust residuals in no fault case can be found as

E[Tr(k)TT
r (k)] = ΓT

r Γr (5.26)

The normalized residuals can be found in terms of variable Γr as

T̄r(k) = Γ−TTr(k) (5.27)

The covariance of the robust normalized residuals can be found by combining the Eq.

(5.26) and (5.27) in no fault case as

E[T̄r(k)T̄T
r (k)] = Γ−Tr E[Tr(k)TT

r (k)]Γ−1r = I2×2 (5.28)

which shows, as in Eq. (5.10), that the normalized residuals have unity variance.

Once the residuals are calculated, the remaining steps of the detection and

isolation procedure in this case are the same as the ones in Section 5.1.

5.3 Performance Metrics for Evaluating FDI Algorithms

In order to quantify the statistical test of the FDI, the “Alarm Index” (AI (k))

is introduced as

AI(k) =

 1 if γr(k) ≤ h; acceptance of H0

0 if γr(k) > h; acceptance of H1

(5.29)

where γr(k) is χ2 random variable and h is the threshold corresponding to the false

alarm probability α. AI (k) in Eq. (5.29) simply gives 1 when the H0 is accepted
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which indicates of fault detection, and gives 0 when there is no fault detected. For

the isolation, “Sensor Isolation Index” (SII (k)) is introduces as

SII(k) =



0 if AI(k) = 0

1 if AI(k) = 1 & min{ϑri(k)} = ϑr1(k)

2 if AI(k) = 1 & min{ϑri(k)} = ϑr2(k)

3 if AI(k) = 1 & min{ϑri(k)} = ϑr3(k)

(5.30)

which is 0 when there is no fault detected, and gives the number corresponding to the

sensor with the minimum angle difference when the algorithm leads to an alarm. The

performance of both FDI and robust FDI algorithms are quantified by two metrics

called “True Alarm Percentage” (TAP) and “False Alarm Percentage”(FAP). FAP

is the ratio of the number of data points with alarm cases to all data points while

there is no fault injected in the system and is formulated as

FAP = 100 · 1

N

N∑
k=1

AI(k) (5.31)

where N is the total number of data points. Similarly, TAP is expressed as

TAP = 100 · 1

(M − P ) + 1

M∑
k=P

AI(k) (5.32)

where the fault is injected between the interval P and M. Also, if any fault is injected

to the system, the Eq. (5.31) becomes

FAP = 100 · 1

N

1

(M − P ) + 1

{
N∑
k=1

AI(k) −
M∑
k=P

AI(k)

}
(5.33)
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It should be noted that, if there is no fault injected to the system, Eq. (5.33) is

equivalent to Eq. (5.31). The AI, SII, TAP and FAP can also be calculated for the

FDI algorithm presented in Section 5.1, only the variables without subscript r should

be used in the equations.

The robust detection and isolation processes stated above can be summarized

as follows. In the case of no fault, the normalized residuals should appear inside a

disc centered at the origin, and the AI and SII will be zero. In the presence of a

fault at one of the sensors, the normalized residuals are shifted in the direction of the

corresponding null space column vector. For example, when there exists a fault in

sensor 3, the normalized residuals will be shifted in the direction of the corresponding

null space column vector and this results in AI = 1. By checking the minimum angle

leads to an isolation of the faulty sensor, and it will indicate that the angle between

the residual vector and Vr3 is the minimum, and consequently SII will be equal to

3.

5.4 Sensor Measurement Correction

Airdata sensor measurements give the information of the aircraft velocity vector

with respect to the local air. If the translational velocities of the sensors relative to

the air are different, the sensors will give different measurements of airspeed, sideslip

angle and angle-of-attack even though they are on the same aircraft. There are mainly

two mechanisms that can cause different translational velocity relative to the air. (1)

The air has different translational velocities relative to the inertial frame. (2) The

positions of the sensor have different translational velocities relative to an inertial

frame. An example of the former is the nonuniform wind distribution previously

mentioned in the case of aerial refueling. The latter occurs when a rigid aircraft

has rotational motion in addition to the translational motion. Given the angular
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velocity measurement of the aircraft and the position of the sensors, the contribution

of the rotational motion on the airdata measurements can be isolated. With this

correction, all the airdata sensors regardless of their positions in the aircraft give

the translational velocity of the aircraft relative to the surrounding air. Then, any

occurrence of difference in the airdata measurements can be attributed to either (1)

difference in the wind velocity at the sensor positions or (2) fault in a sensor. Airdata

sensor measurements, airspeed, sideslip angle and angle-of-attack, are to parameterize

the translational velocity of the aircraft relative to the air. This translational velocity

vector can also be written in terms of its components in the body frame of the aircraft.

Then, the components, u, v, w and the sensor readings are related as

um = Vm cos βm cosαm

vm = Vm sin βm

wm = Vm cos βm sinαm (5.34)

where the subscript m indicates that values are measured values. The airdata sensors

are to measure the airspeed, angle-of-attack and sideslip angle of aircraft, thus from

the sensors, Vm, βm and αm values are read. By Eq. (5.34), (um, vm, wm) are the

components of the translational velocity vector of an airdata sensor with respect to

air, which includes the effect of the rotational motion of the aircraft. The components

of the translational velocity due to only the rotational motion of the aircraft are


us

vs

ωs

 = −S(ωBR
)ρpt (5.35)
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where S(ωBR
) is skew-symmetric matrix of angular velocity of the receiver relative

to inertial frame, and ρpt is the representation of pitot-tube location in receiver’s

body frame. The skew-symmetric matrix is constructed from the angular velocity

components of the receiver with respect to the inertial frame (pR, qR and rR). The

components of the translational velocity of an airdata sensor relative to the local air

without the effect of the rotational motion of the aircraft can be determined as

uc = um − us

vc = vm − vs

wc = wm − ws (5.36)

which are used to calculate the corrected airspeed, sideslip angle, angle of attack

(Vc, βc, αc) that will be fed into the FDI system as

Vc =
√
u2c + v2c + w2

c

βc = arcsin
vc
Vc

αc = arctan
wc
uc

(5.37)
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CHAPTER 6

SIMULATION RESULTS AND DISCUSSIONS

The simulations are performed in an integrated aerial refueling simulation en-

vironment. The simulation consists of both tanker and receiver aircraft models, their

respective controllers, vortex-induced wind model and turbulence model. The simula-

tion also models the effect of the vortex induced wind on the dynamics of the receiver

aircraft. The aircraft models are based on the full 6-DOF nonlinear equations of

motions including the wind effects, as presented in Chapter 2. The tanker aircraft

under the influence of turbulence is flown by its controller with constant airspeed and

at constant altitude in a straight level flight. The trajectory tracking controller of

the receiver flies the aircraft relative to the tanker aircraft. In the wake of the tanker

aircraft, the receiver flies in a nonuniform wind field in addition to turbulence and

prevailing wind. The magnitude and direction of the vortex induced wind field change

with the position relative to the tanker, as detailed in Section 2.3.3. The tanker air-

craft model represents a KC-135R and the receiver model is a representation of a

Learjet 25 in an aerial refueling test flight condition [1].

6.1 Relative Position Estimation Simulation Results

This section presents the simulation results of relative position estimation algo-

rithms and the results of a parameter analysis. The position estimation algorithms

are performed in both static and dynamic cases. The static simulation term indi-

cates that the receiver and tanker aircraft are placed statically and their positions

and orientations are fixed. In dynamic simulation, the full dynamics of both aircraft
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are simulated. The tanker aircraft is flown by its controller based on the commanded

altitude and airspeed. The controller of the receiver flies the aircraft through the

commanded trajectory or position relative to the tanker. For parameter analysis,

the effects of turbulence intensity, the prevailing wind and measurement noise vari-

ance are taken into consideration and the influence of these effects on the position

estimation algorithms are presented.

6.1.1 Static Simulation Results and Parameter Study

The simulations are first run with no turbulence or measurement error at each

point of the grid and the instant airdata measurements are provided as inputs for the

position estimation algorithm. In all simulation runs, the parameter epsilon (ε) is set

to be 0.1 m. As an example, the estimated positions computed by Algorithm-11 for

all locations are presented as contour plots on the grid in Fig. 6.1. In Fig. 6.1(a), the

contour of the y-component of the estimated position, which is plotted with respect

to actual position of the receiver aircraft, are shown. In Fig. 6.1(b), the result for

z-component is given. As can be seen from the figures, the algorithm successfully

estimates the position of the receiver aircraft at most of the points in the grid. At the

bottom of the plots, the algorithm gives estimations with some error or no estimation

due to the fact that the isolines in those areas do not have enough number of points

for intersection calculation.

A comparison of the all algorithms in terms of the performance metrics is given

in Fig. 6.2. The performance indices, ER and CE, are computed for each algorithm

after the respective simulation. The results are presented in the ER-CE plane, as

shown in Fig. 6.2. Each marker on the figure represents the performance of an

algorithm, indicated by the number next to the marker. In the best case, ER and

CE should both be zero, implying that the algorithm can estimate exact position

78



(a)

(b)

Figure 6.1. Estimated Position Results for all Locations in the Grid.

without any error at all the points of the grid. Such an algorithm would be placed at

the origin of the ER-CE plane. Any algorithm placed at any other position indicates

the degradation in its performance. The distance from the origin in ER direction

means that the algorithm cannot produce any position estimation at some points of

the grid; number of such points is proportional to the coordinate in the ER direction.

Similarly, the coordinate in the CE direction indicates the cumulative error in position

estimation at all the points at which the algorithm can generate some estimation.
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For example, an algorithm placed somewhere away from the origin on the ER axis

means that there are points of the grid at which it cannot compute any estimation,

but at the other points, it can generate perfect estimation. Similarly, an algorithm

placed on the CE axis indicates that the algorithm generate some estimates at all

points of the grid, but with some error in the estimated positions. As clearly seen

in Fig. 6.2, the best two algorithms are 11 and 15 as they are the closest to the

origin. Note that algorithm-9 and -8 results in slightly better performance in the CE

direction however they are placed further in the ER direction (i.e., fail to compute

some estimation at more points than algorithm-11 and -15 do) and, thus, perform

worse overall. Therefore, for the further investigation, only algorithm-11 and -15 are

considered.

Recall from Section 4.2 that weighted ER and CE are defined to put more em-

phasis at and around the contact position than those away from the contact position.

Fig. 6.3 shows the performance comparison of the algorithms in terms of WER and

WCE.

As the next step, the turbulence effect on the performance of the position esti-

mation is investigated. Different turbulence intensities are set in the simulation. The

simulations are run for all points and for each point the airdata measurements are

given as input to the position estimation system. Due to the fact that turbulence

causes fluctuations in the airdata measurements, instead of instant airdata measure-

ments, the average values of last 1 second of readings are given as an input to the

algorithm. In these simulations, the parameter epsilon (ε) is set as 0.1. The resulting

plots are given in Fig. 6.4. In the figure, the square marker indicates the results

from Algorithm-11, the star marker is used for the results of Algorithm-15, and the

corresponding turbulence level is indicated with a text next to each marker. The

results show that the increase of the turbulence intensity degrades the performance
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(a)

(b)

Figure 6.2. (a) Performance Index for Different Position Estimation Algorithms (b)
Detail View of Part a.

of the position estimation. Both estimation ratio and cumulative error are increased

as the turbulence intensity increases, and thus, the sensitivity of the algorithms to

turbulence is quantified. Figure 6.4 also indicates the difference in sensitivity between

the two algorithms. Recall that in Algorithm-11, in the case of one intersection point

occurrence from one airdata variable, that point is taken as the estimated position;

however Algorithm-15 in the same case discards that value. As a result, the per-
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Figure 6.3. Weighted Performance Index for Different Position Estimation Algo-
rithms.

formance index results of Algorithm-11 are higher in cumulative error and lower in

estimation ratio compared to those of Algorithm-15 for the same turbulence intensity.

Figure 6.4. Performance Index for Turbulence Effect. The Results from Algorithm-
11 are Shown with Square and the Results from Algorithm-15 are Shown with Star.
Turbulence Levels are Shown with a Text Next to the Markers.

The sensitivity to turbulence effect can be reduced if the turbulence effect in the

measurements is filtered. This is attempted in this research by increasing the length
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of the Moving Average Window (MAW) although a larger window size is expected to

introduce larger time lags in the mean value calculation relative to the actual signal.

Fig. 6.5 shows the performances of the algorithms-11 and 15 with different MAW

sizes, 1 sec to 25 sec, when the turbulence intensity is 0.39 m/s. Both algorithms

initially show the same level of sensitivity when MAW is increased to 10. As the

length of mean value calculation increases, the error in estimation decreases but the

estimation ratio increases. Even larger MAW size then leads to decrease of estimation

ratio, thus results of the algorithms approach to the origin in ER-CE plane.

Figure 6.5. Performance Index for Turbulence Effect with Different MAW. The Re-
sults from Algorithm-11 are Shown with Square and the Results from Algorithm-15
are Shown with Star. MAW Values are Shown with a Text Next to the Markers.

The sensitivity of the algorithms to the measurement noise is also investigated.

Fig. 6.6 shows the performances of the algorithms with 1 second MAW size and four

different values of noise variance. In the figure, the square markers refer to the results

from Algorithm-11, the star markers to Algorithm-15. The noise variance for each

case is indicated with a text next to each marker. Both algorithms initially show the

same level of sensitivity when variance is increased to 0.0002 as the corresponding
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markers move to almost same position in ER-CE plane. However, any further increase

in the noise variance affects Algorithm-11 more in CE direction.

Figure 6.6. Performance Index for Measurement Noise Effect. The Results from
Algorithm-11 are Shown with Square and the Results from Algorithm-15 are Shown
with Star. Noise Variances are Shown with a Text Next to the Markers.

Similar to the turbulence effect, the sensitivity to measurement noise effect can

also be reduced if the it is filtered. Fig. 6.7 shows the performances of the algorithms-

11 and 15 with two different MAW sizes, 1 sec to 25 sec when the measurement noise

variance is 0.002 (deg)2. Same as in the turbulence effect analysis, both algorithms

produce less error when MAW is increased to 10 but the estimation ratio increases.

As the MAW size increases further, estimation ratio is also decreased, thus results of

the algorithms approach to the origin in ER-CE plane.

Similarly, prevailing wind effect on position estimation performances is ana-

lyzed. The simulations are run for all points in the grid and 1 second average values

of the airdata measurements are given as an input to the position estimation system.

The resulting plots for prevailing effect is presented in Fig. 6.8. In the figure, the case

whether prevailing wind on or off is indicated with a text next to the marker. Similar
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Figure 6.7. Performance Index for Measurement Noise Effect with Different MAW.
The Results from Algorithm-11 are Shown with Square and the Results from
Algorithm-15 are Shown with Star. MAW Values are Shown with a Text Next to
the Markers.

to the results from turbulence and noise effect analysis, both estimation ratio and

cumulative error increases with addition of prevailing wind. This is because prevail-

ing wind causes a shift on wind field. As the values are shifted and become different

that the values in the nonuniform wind map that the algorithms use, performance of

the algorithms is degraded. The effect of the prevailing wind is different than those

of turbulence and measurement noise. Thus, the larger MAW size will not make any

difference on the performance of the algorithms.

In static simulations, further analysis are performed using the extended grid

(Fig. 3.12). The resulting estimated positions for all locations are presented in

Fig. 6.9. The plots show the results of the position estimation performed by using

Algorithm-11.

In Fig. 6.9(a), the contour of the y-component of the estimated position are

shown. In Fig. 6.9(b), the result for z-component is given. As depicted in the figure,

the algorithm successfully estimates the position of the receiver aircraft for almost all
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Figure 6.8. Performance Index for Prevailing Wind Effect. The Results from
Algorithm-11 are Shown with Square and the Results from Algorithm-15 are Shown
with Star. The Cases of Prevailing Wind are Shown with a Text Next to the Markers.

of the points in the grid. The algorithm generates zero error in position estimation for

the points at which it gives an output, and at only 3 out of 1533 points the algorithm

cannot produce an estimation.

The main reason to construct the extended grid is to use it in aerial refueling

flight cases, in which the receiver maneuvers from the observation position to the

contact position (Fig. 3.6). Recall that the observation position is at the right side of

the tanker, and extended grid includes the observation position. In the next section,

dynamic simulation results are presented. And in the dynamic cases, the relative

position estimation performance of the algorithm is demonstrated for all points in

the grid. Also, the time histories of the estimation are presented when the receiver is

commanded to fly at certain points around the contact position, as well as when the

receiver maneuvers from observation position to contact position.
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(a)

(b)

Figure 6.9. Estimated Position Results for all Locations in the Extended Grid.

6.1.2 Dynamic Simulation Results

The dynamic simulations are run for all points in the grid defined around the

contact position, and the resulting estimated positions for all locations are presented

in Fig. 6.10. The plots show the results of the position estimation performed by

using Algorithm-11. In these simulation runs, the parameter epsilon (ε) is taken as

0.1, prevailing wind and turbulence effects are turned off, and no measurement noise

is added. In Fig. 6.10(a), the contour of the y-component of the estimated position,

which is plotted with respect to actual position of the receiver aircraft, are shown. In

Fig. 6.10(b), the result for z-component is given. Unlike the static case, the algorithm

cannot estimate the position of the receiver aircraft for most of the points in the grid,
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or it gives estimations with large errors. The main factor for that is the orientation

difference of the receiver aircraft. In dynamic case, the controller of the receiver trims

the orientations and if the trim values are different from that in static simulations used

to generate the nonuniform wind maps, this results in the degradation of the relative

position estimation performance. However, considering that the point of interest here

is the contact position (y = 0 and z = 8.5), the algorithm still successfully estimates

the position of the receiver aircraft.

(a)

(b)

Figure 6.10. Estimated Position Results for all Locations in the Grid.
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As seen in Fig. 6.10, the performance of the algorithm is satisfactory for the

contact position in dynamic simulations. To quantify this and examine the time

history of the estimations, Fig. 6.11 is presented. These results are obtained from

dynamic simulations where the receiver aircraft is commanded to fly at contact po-

sition. In Fig. 6.11, top plot shows commanded and actual positions of the receiver

aircraft in y-direction, as well as the position estimations provided by the Algorithm-

11. The bottom plot in the same figure shows the z-components of the estimations.

On the right side of the figure (Fig. 6.11(b)), the Euler angles of the receiver aircraft

relative to the tanker, are shown for the same period of time of the simulations. The

reason for providing Euler angle information side by side to estimation plots is the

fact that changes in Euler angles directly affect the position estimation procedure.

This is because in the static simulations used to generate wind field data to construct

the nonuniform wind maps, the orientation of the receiver relative to the tanker is set

to be fixed. However, in dynamic simulations representing actual flight, aircraft trim

orientation varies with relative position because the receiver is to exposed to different

induced aerodynamic moments. Any change in the orientation of the receiver moves

the locations of the sensors in the wind field and different airdata variable readings

are obtained at the same relative position. Also, this can lead to no estimation case

where the algorithms cannot find any intersection point, thus cannot generate an

output. At the contact position, however, the algorithms perform satisfactorily, and

this is because nonuniform wind has a symmetry axis through the contact position.

In the beginning of the simulations (up to 42 seconds), the algorithm cannot provide

any estimation. This is due to fact that at the beginning of the simulation, the wake

induced wind is turned off. The wind is turned on after 15 sec, then the system

gives the transient response. Once it reaches the steady state, the algorithm provides
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estimations. Also by looking to the Euler angles, especially θ in the same period of

time, this situation can be identified.

(a) (b)

Figure 6.11. Estimated Position Results at Contact Position (a) Estimation in y and
z-direction (b) Euler angles.

In order to demonstrate the effect of the trim orientation over relative estimation

performance, the time histories of the simulation results are presented for two more

points other than contact position are selected, (y = −0.5, z = 9.5) and (y = 0.5, z =

6.5). In Fig. 6.12, y and z components of the results for the first point are given.

Unlike the results from the contact position, the error in y direction during these

simulations does not approach to zero, instead it goes to a constant value. The

estimation in the z-direction, however, still goes to zero after the initial absence of the

output of estimation. Recalling the reason of this caused by the the trim orientations

in the dynamic case.

At the point (y = 0.5, z = 6.5), the similar results are obtained with the pre-

vious point, only the direction of the error in y-direction is changed. This can be

explained by the symmetry feature of the nonuniform wind field through the contact
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(a) (b)

Figure 6.12. Estimated Position Results at (y = −0.5, z = 9.5) (a) Estimation in y
and z-direction (b) Euler angles.

position. Also, by checking the Euler angle values, it can be concluded that the devi-

ation in position estimation outputs are because of the trim orientation of the aircraft

in dynamic case is different than the aircraft’s orientation used in construction of the

maps wind field. Since the receiver is exposed to different aerodynamic force and

moments in the nonuniform wind field, in dynamic simulations, the controller trims

the aircraft with different orientations at different relative positions. The difference

in orientation between the static setup that generates the maps and the dynamic

simulation when the aircraft is trimmed, results in different relative positions of the

individual airdata sensors relative to the tanker. Hence, this causes a variation in

sensor readings from their static cases, which leads to deviation in estimation perfor-

mance or the algorithms cannot generate any outputs.

The performance of the estimation algorithm is also evaluated during the ma-

neuver from the observation to contact position. In this simulation case, the nonuni-

form wind maps on the extended grid are used. In Fig. 6.14, the y and z-component

of the estimations and the Euler angles during the same period are provided. The
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(a) (b)

Figure 6.13. Estimated Position Results at (y = 0.5, z = 6.5) (a) Estimation in y and
z-direction (b) Euler angles.

algorithm cannot produce any estimate when the receiver is at the observation posi-

tion and during the transition maneuver to contact position. Three possible reasons

are considered contributing to the failure of the algorithm. The main factor is the

difference in orientation of the receiver from that in the static simulations used to

generate the nonuniform wind maps. The orientation difference is prominent in the

observation position and during the maneuver. The second factor, particularly at the

observation position, is the fact the induced wind is very small as the receiver is away

from the wake of the tanker. This results in minimal variation in the wind maps and

thus large deviation in the inverse map even with small orientation differences. The

third factor, effective during the maneuver, is the variation of the sensor readings due

to the motion of the receiver. To improve the position estimation algorithms even

further, the trim orientation on the sensor readings should be incorporated into either

the construction of the maps or into the processing of the inverse maps. This effort

will result in dynamic simulation to have closer performance to the static simulations.
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(a) (b)

Figure 6.14. Estimated Position Results During Maneuver (a) Estimation in y and
z-direction (b) Euler angles.

6.2 Airdata Sensor Fault Detection and Isolation Simulation Results

In this study, the FDI system is not integrated into the feedback control sys-

tem; the FDI runs as a separate unit. The tanker aircraft is flown by its controller

with constant airspeed and at constant altitude in a straight level flight. In the sim-

ulations, the variance of sensor noise for airspeed, sideslip angle and angle of attack

measurements are set as 0.2 (m/s)2, 0.002 (deg)2 and 0.002 (deg)2, respectively. The

data sets are collected with a sampling rate of 20 Hz. The tanker is flying at the

speed of 200 m/sec, with the nominal altitude of 7010 meters.

6.2.1 Solo Flight Simulation Results and Parameter Study

In solo flight simulations, first FDI algorithm is analyzed without any fault

injection. While the tanker aircraft flies straight level, the receiver aircraft flies at

a constant position relative to the tanker. In the simulation, the wake vortex effect

is turned off to represent the receiver aircraft flying solo. The commanded position

and actual position of the receiver aircraft relative to the tanker is shown in Fig.
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6.15(a) in terms of the coordinates in the body frame of the tanker. The receiver

aircraft flies at the observation position without the wake effect of tanker aircraft. In

Fig. 6.15(c), the relative angle difference index value varies due to the fact that the

normalized residuals scatter within the disc centered at the origin (Fig. 6.15(b)) and

they do not favor a vector direction. Thus, there is no distinct difference throughout

the simulation. Additionally, two more index plots, Alarm Index (AI ) and Sensor

Isolation Index (SII ), are presented. In Fig. 6.15(d), the top plot shows the alarm

index. Whenever the chi-square test results fail to reject, in other words, whenever

the normalized residuals fall out of the disc prescribed by the threshold h, the alarm

index gives 1. Otherwise, in the case of acceptance of H0, the alarm index gives

0, that can be interpreted as there is no fault detected. It should be noted that,

alarm index also gives value 1 with the false alarm probability α. The bottom plot

in Fig. 6.15(d) represents the sensor isolation index plot. Fault index points out the

sensor number which has the fault by checking minimum angle difference between

the normalized residuals and the column vectors of matrix V. The fault index value

is depended on the alarm index. Only when the alarm index gives 1, which means

detection of a fault, the fault index checks for the minimum angle difference index

and gives the corresponding sensor number which has the fault. In the case of the

alarm index being 0, the fault index shows 0 value. Similarly, because of the false

alarm probability, the fault index gives 1, 2 or 3 in a random fashion even though no

fault exists. The False Alarm Percentage (FAP) values for solo flight without fault

injection are given in Table 6.1. As it is expected, the FAP values turn out to be

around 1%. It should be noted that, for all cases, the false alarm probability, α, is

set as 1%

The detection and isolation performance of the algorithms is also tested in the

simulations. The fixed type faults (bias-type) are introduced into measurement model
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(a) (b)

(c) (d)

Figure 6.15. (a)Commanded Trajectory and the x-y-z Positions of the Receiver Air-
craft (b) Residual Portrait of Side slip Angle Data of the Receiver Aircraft during the
Flight without the Wake Vortex Effect of Tanker Aircraft (c) Relative Angle Differ-
ence Index between Residual Vector and the Column Vectors of the Null Space (d)
FDI Alarm Index and Sensor Isolation Index.

Table 6.1. Alarm Percentages of FDI in Straight Level Solo Flight

Alarm Percentages
Airspeed Sideslip Angle Angle of Attack

No Fault FAP 0.99% 0.99% 0.95%
Fault
Injected

TAP 99.40% 100% 100%
FAP 1.01% 1.03% 0.91%
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by changing the fault vector, F(k). The faults are introduced on only one sensor at

a time with the values of 3 m/s for airspeed and 1 deg for sideslip angle and angle

of attack. Different variations of fault injection are applied in the simulations. In

one case, bias-type fault is created on sensor 2 between 500 and 1500 seconds, in

other case fault is added to sensor 1 between 1125 and 2125 seconds, and in another

simulation, fault is introduced on sensor 3 between 1750 and 2750 seconds. In all

these cases, FDI algorithm successfully detects the fault and pinpoints the sensor

which has the fault (Fig. 6.16). In Fig. 6.16(a), AI and SII values are shown

for airspeed measurements where the fault is injected during the simulation to the

sensor 2 between 500 and 1500 seconds. During the fault occurrence from 500 to

1500 seconds of the simulation, the AI notifies the fault detection by giving value 1

consistently. Moreover, fault index marks the sensor number 2 as the faulty sensor

during that period, again consistently. Similarly, Fig. 6.16(b) and 6.16(c) show the

AI and SII for sideslip angle measurements where the fault is injected to the sensor

1 between 1125 and 2125 seconds, and for angle of attack measurements where the

fault is injected to the sensor 3 between 1750 and 2750 seconds, respectively. The

True Alarm Percentage (TAP) and False Alarm Percentage (FAP) values for solo

flight with fault injection are given in Table 6.1. It should be noted that the FAP

in this case is calculated for the period except the fault injected interval. The FDI

algorithm detects faults for sideslip angle and angle-of-attack measurement without

missing any alarm case (TAP=100%), and for airspeed measurements it detects faults

99.40% of the time. And all FAP values which cover the remaining simulation period

are around 1%.

In addition to the above simulation experiments, the performance of the FDI

algorithm is investigated with varying sensor noise levels as well, and it is observed

that the noise level affects the fault detection performance (Fig. 6.17). As the noise
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(a) (b)

(c)

Figure 6.16. FDI Alarm Index and Sensor Isolation Index (a) For Airspeed Measure-
ments where Fault is Injected to Sensor 2 between 500 and 1500 sec (b) For Side slip
Angle Measurements where Fault is Injected to Sensor 1 between 1125 and 2125 sec
(c) For Angle of Attack Measurements where Fault is Injected to Sensor 3 between
1750 and 2750 sec.

variance increase, the chance of detecting small differences between sensors, which

could be a indication of a fault, decreases. This observation can also be made by a

closer look at the normalization process of the residuals in Eq. (5.27). The residuals

are pre-multiplied by a term which includes covariance matrix. In a faulty-case, when

the fault term in the residual equation in Eq. (5.25) is not zero, if the sensor noise

variances increase, this results in decrease of contribution of sensor fault values in

the sensor readings. Further, similar analysis is done for magnitude of the additive
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fault (Fig. 6.18). If the value of fault is bigger, in other words if the difference of one

sensor readings from the other sensors is larger, the FDI algorithm detects that fault

more easily.

Figure 6.17. Measurement Noise Variance Effect on the Performance of FDI in terms
of TAP.

Figure 6.18. Magnitude of Additive Fault Effect on the Performance of FDI in terms
of TAP.
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6.2.2 Aerial Refueling Flight Simulation Results

In aerial refueling flight simulations, the wake vortex effect is turned on and

no fault is injected into the sensor readings throughout the simulation. While the

tanker aircraft flies straight level, the receiver aircraft maneuvers from the observation

position to the contact position. The observation position is at the same altitude as

the tanker’s on the right side of the tanker, outside the wake of the tanker. Thus, the

effect of the wake vortices in the wind field the receiver flies in is minimal.

At the contact position, the receiver is in the downwash region of the vortex in-

duced nonuniform wind. The receiver transitions from the observation to the contact

position by (i) lowering its altitude from that of the tanker to that of the contact po-

sition, (ii) maneuvers laterally to the centerline of the tanker, and (iii) moves forward

towards the tanker until it reaches the contact position.

The tanker is flying at the speed of 200 m/sec, with the nominal altitude of

7010 meters. The simulation starts when the tanker is in a straight-level flight and

stays in this condition and the receiver aircraft follows the tanker. For the first 670

seconds of 3000 seconds of the total simulation time, the receiver aircraft flies at the

observation position, and then it moves from the observation position (coordinates

(-59.13, 56.33, 0) in meters with respect to tanker’s body frame) to the refueling

contact position (coordinates (-35.5, 0, 8.5) in meters with respect to tanker’s body

frame)(Fig. 6.19(a)).

As stated previously, when the receiver moves behind the tanker, it enters into

the nonuniform wind field induced by the vortices of the tanker. Thus, the three

airdata sensors are exposed to different wind vectors, especially when receiver is at the

contact position. If FDI system with the assumption of three identical measurement

is used (Eq. (5.1)), the algorithm leads to false detection and isolation although there

is no fault introduced to the system. The corresponding plots are given in Fig. 6.19
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(a) (b)

(c) (d)

Figure 6.19. (a)Commanded Trajectory and the x-y-z Positions of the Receiver Air-
craft (b) Residual Portrait of Side Slip Angle Data during the Flight with Receiver
Aircraft is Exposed to Wake Vortex of Tanker Aircraft (c) Relative Angle Difference
Index between Residual Vector and the Column Vectors of the Null Space (d) FDI
Alarm Index and Sensor Isolation Index.

for sideslip angle data. The x-y-z coordinates of the receiver aircraft with respect

to tanker aircraft’s body frame is given in Fig. 6.19(a). After 670 seconds, receiver

aircraft starts to maneuver from observation position to contact position, where it

is exposed to wake vortex of the tanker aircraft. Thus, the normalized residuals

move away from the origin (Fig. 6.19(b)), which leads to the acceptance of H1. As

a result, the algorithm gives alarm consistently and indicates a faulty sensor after

the receiver aircraft starts its maneuver from observation position to contact position

100



(Fig. 6.19(d)), although there is no fault in the system at all. In Fig. 6.19(b),

the relative angle difference index ϑ2(k) conclusively appear to be minimum, which

indicates that the normalized residuals are located in the vector direction of second

column vector of the matrix V(k) at the contact position. As a result, the fault index

consistently marks the sensor 2 (the one on the left wing) as it has fault. In airspeed

and angle of attack data, this false detection and isolation is not clear as it is in

sideslip angle, however wake vortex causes an increase in the false alarm probability

in all measurements. The resulting false alarm percentages are given in Table 6.2.

As listed in the table, an increase in false alarm percentage is observed during the

maneuver from the observation position to the contact position due to the nonuniform

wind distribution. This results in a false fault detection. False alarm percentages are

calculated in three phases of the simulation. In the first phase, the receiver aircraft

flies at the observation position. It is indicated that even in the observation position,

the receiver aircraft is affected by the wake vortices of the tanker aircraft, and the

false alarm percentages appear to be higher than the expected value 1%. During the

maneuver, the false alarm percentages are significantly increased, yielding false fault

detection. But most important result appears at the contact position stage. Sideslip

angle measurements consistently give alarm although no fault exists in the system.

In other words, at the contact position due to nonuniform wind field, FDI algorithm

is led to a false fault detection decisively with sideslip angle readings.

6.2.3 Flight around Contact Position Simulation Results using Robust FDI

In the third group of simulations, robust FDI algorithm is used instead of FDI

which leads to false fault detection in nonuniform wind field. Contrary to previous two

simulation group, in this group of simulations prevailing wind and turbulence effects

are turned off, and only the wake vortex effect is kept on in order to observe the
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Table 6.2. False Alarm Percentages of FDI during Aerial Refueling Maneuver

False Alarm Percentages (FAP)
Airspeed Sideslip Angle Angle of Attack

Before Maneuver 1.10% 1.11% 2.16%
During Maneuver 0.87% 77.03% 15.27%
After Maneuver 1.15% 100% 2.42%

performance of robust FDI. Recall that the robust FDI uses expected airdata values

which are obtained from the nonuniform wind maps based on the relative position.

It should be noted that in the simulation, relative position values, (y(k), z(k)), are

assumed to be available from a relative position sensor as discussed in Section 1.2.3.

Noted that the measurement noise of this position information is not taken into

consideration in this study, and is left as a future work. Simulations are run while

the receiver aircraft flies at the contact position. In Fig. 6.20(a) the trajectory of

the aircraft relative to tanker is given. In these simulations, robust FDI algorithm is

analyzed first without any fault injection. In Fig. 6.20, resulting plots are given for

sideslip angle measurements. The relative angle difference index value that is given

in Fig. 6.20(c), varies due to the fact that the normalized residuals scatter within the

disc centered at the origin (Fig. 6.20(b)) and they do not favor a vector direction.

Thus, there is no distinct difference throughout the simulation which indicates that

no fault is detected and isolated. In Fig. 6.20(d), the top plot shows the AI, and the

bottom plot in Fig. 6.20(d) represents the SII. The False Alarm Percentage (FAP)

values for simulations at contact position without fault injection are given in Table

6.3. By using robust FDI, the FAP values at contact position are found around 1%,

which indicates that the false fault detection problem is successfully avoided.

Also in this set of simulations, the detection and isolation performance of the

algorithms is evaluated. As done in the first group of simulations, the fixed type faults
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(a) (b)

(c) (d)

Figure 6.20. (a)Commanded Trajectory and the x-y-z Positions of the Receiver Air-
craft (b) Residual Portrait of Side Slip Angle Data of the Receiver Aircraft during
the Flight with the Wake Vortex Effect of Tanker Aircraft at Contact Position (c)
Relative Angle Difference Index between Residual Vector and the Column Vectors of
the Null Space (d) FDI Alarm Index and Sensor Isolation Index.

Table 6.3. Alarm Percentages of Robust FDI at Contact Position

Alarm Percentages
Airspeed Sideslip Angle Angle of Attack

No Fault FAP 1.01% 0.97% 0.95%
Fault
Injected

TAP 99.40% 100% 100%
FAP 1.04% 0.93% 0.91%

103



(bias-type) are introduced into measurement model by changing the fault vector, F(k).

The faults are introduced on only one sensor at a time with the values of 3 m/s for

airspeed and 1 deg for sideslip angle and angle of attack. Different variations of fault

injection are applied in the simulations. In one case, a bias-type fault is introduced

at sensor 2 between 500 and 1500 seconds; in other case, a fault is added to sensor

1 between 1125 and 2125 seconds; and in another simulation, a fault is injected on

sensor 3 between 1750 and 2750 seconds. In all these cases, robust FDI algorithm

successfully detects the fault and pinpoints the faulty sensor (Fig. 6.21). In Fig.

6.21(a), AI and SII values are shown for airspeed measurements when the fault is

injected at the sensor 2 between 500 and 1500 seconds. During the fault occurrence,

the AI notifies the fault detection by giving value 1 consistently. Also, SII marks the

sensor number 2 as the faulty sensor during that period, again consistently. Similarly,

Fig. 6.21(b) and 6.21(c) show the AI and SII for sideslip angle measurements where

the fault is injected to the sensor 1 between 1125 and 2125 seconds, and for angle

of attack measurements where the fault is injected to the sensor 3 between 1750 and

2750 seconds, respectively. The TAP and FAP values with fault injection are given

in Table 6.3. It should be noted that the FAP in this case is calculated during the

time with no fault. The FDI algorithm detects faults for sideslip angle and angle-of-

attack measurement without missing any alarm case (TAP=100%), and for airspeed

measurements it detects faults 99.40% of the time. And all FAP values which cover

the remaining simulation period are around 1%. These results demonstrate that the

robust FDI algorithm successfully overcome the false fault detection problem caused

by nonuniform wind field, and it successfully detects and isolates any injected faults.
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(a) (b)

(c)

Figure 6.21. Robust FDI Alarm Index and Sensor Isolation Index (a) For Airspeed
Measurements where Fault is Injected to Sensor 2 between 500 and 1500 sec (b) For
Side Slip Angle Measurements where Fault is Injected to Sensor 1 between 1125 and
2125 sec (c) For Angle of Attack Measurements where Fault is Injected to Sensor 3
between 1750 and 2750 sec.

6.2.4 Aerial Refueling Flight Simulation Results using Robust FDI

Finally, aerial refueling flight simulations using robust FDI are performed. In

this section, the robust FDI algorithm is analyzed first without any fault injection

while the receiver aircraft maneuvers from the observation position to the contact

position. During simulations, prevailing wind and turbulence effects are turned off,

and only the wake vortex effect is kept on in order to observe the performance of

robust FDI. Recall that the robust FDI uses expected airdata values obtained from
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the nonuniform wind field maps based on the relative position. The following results

are obtained with using the maps in the extended grid (Figs. 3.13 to 3.15).

The commanded position and actual position of the receiver aircraft relative to

the tanker is shown in Fig. 6.22(a) in terms of the coordinates in the body frame of

the tanker. The receiver aircraft flies at the observation position first, and then it

moves from the observation position to the contact position. The receiver is exposed

to the nonuniform wind field, when it starts its maneuver towards to contact position.

Although the new robust FDI algorithm is used here to eliminate this effect, the effect

of maneuver and cross winds appears in the normalized residuals plot (Fig. 6.22(b))

of side slip angle measurements as residuals move away from origin. Unlike the fault

occurrence case where residuals are shifted from origin to another single point, in this

case residuals move arbitrarily around the origin. Mainly it is due to the fact that

the robust FDI is not affected by the nonuniform wind as much as the FDI, even

during maneuver from the observation to contact position. This can be observed by

comparing the relative angle difference index plot of FDI (Fig. 6.19(c)) and robust

FDI (Fig. 6.22(c)). In the robust FDI results, the relative angle difference index does

not show any obvious distinction in any sensor. Similarly, the AI and SII show no

distinct difference throughout the simulation (Fig. 6.22(d)).

The resulting false alarm percentages are given in Table 6.4. As listed in table,

an increase in false alarm percentage is observed during the maneuver from the ob-

servation position to the contact position due to the nonuniform wind distribution.

This results in a false fault detection. False alarm percentages are calculated in three

phases of the simulation. In the first phase, the receiver aircraft flies at the observa-

tion position, then in the second phase it maneuvers from the observation position to

the contact position, and in the last phase it flies at the contact position. During the

maneuver, the false alarm percentages are increased, yielding false fault detection.
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(a) (b)

(c) (d)

Figure 6.22. (a)Commanded Trajectory and the x-y-z Positions of the Receiver Air-
craft (b) Residual Portrait of Side Slip Angle Data of the Receiver Aircraft during
the Flight with Receiver Aircraft is Exposed to Wake Vortex of Tanker Aircraft (c)
Relative Angle Difference Index between Residual Vector and the Column Vectors of
the Null Space (d) FDI Alarm Index and Sensor Isolation Index.

However, by using robust FDI algorithm, the false alarm percentages are reduced

considerably. In all three phases, the false alarm problem is avoided for airspeed

measurements. For angle of attack measurements, the false alarm percentage is still

slightly higher than 1% during the maneuver, but at the contact and observation po-

sitions, the false alarm percentages are less than 1%. Although the percentage value

is reduced by more than half for side slip angle during the maneuver by using robust

FDI, the value is still too high to be considered as false alarm free. Meanwhile, the
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false alarm percentage of side slip angle at contact position is reduced to less than

1%, which means the false fault detection is avoided. This is particularly important

because the FAP in the same phase is 100% if the FDI is used.

Table 6.4. False Alarm Percentages of Robust FDI in Aerial Refueling Flight

False Alarm Percentages (FAP)
Airspeed Sideslip Angle Angle of Attack

Before Maneuver 1.02% 2.82% 0.94%
During Maneuver 1.07% 36.03% 2.33%
After Maneuver 1.00% 0.93% 0.98%

The detection and isolation performance of the robust FDI is also tested in

the simulations. The fixed type faults (bias-type) are introduced into measurement

model with the values of 3 m/s for airspeed and 1 deg for sideslip angle and angle

of attack. In the first case, bias-type fault is added on sensor 2 between 500 and

1500 seconds, in the other case fault, a is added to sensor 1 between 1125 and 2125

seconds, and in the last simulation, a fault is introduced on sensor 3 between 1750

and 2750 seconds. In all these cases, the robust FDI algorithm successfully detects

the fault and pinpoints the sensor with the fault (Fig. 6.23). In Fig. 6.23(a), AI and

SII values are shown for airspeed measurements, in Fig. 6.23(b) for sideslip angle

measurements, and in Fig. 6.23(c) for angle of attack measurements. The TAP and

FAP values for aerial refueling flight with fault injection are given in Table 6.5.

It should be noted that the FAP in faulty case is calculated for the period except

the fault injected interval. The robust FDI algorithm detects faults for side slip angle

and angle of attack measurement without missing any alarm case (TAP=100%), and

for airspeed measurements it detects faults 99.42% of the time. And all FAP values

covering the remaining simulation period are around 1%, except for side slip angle
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(a) (b)

(c)

Figure 6.23. Robust FDI Alarm Index and Sensor Isolation Index (a) For Airspeed
Measurements where Fault is Injected to Sensor 2 between 500 and 1500 sec (b) For
Side Slip Angle Measurements where Fault is Injected to Sensor 1 between 1125 and
2125 sec (c) For Angle of Attack Measurements where Fault is Injected to Sensor 3
between 1750 and 2750 sec.

Table 6.5. Alarm Percentages of Robust FDI in Aerial Refueling Flight

Alarm Percentages
Airspeed Sideslip Angle Angle of Attack

No Fault FAP 1.00% 3.11% 1.04%
Fault
Injected

TAP 99.42% 100% 100%
FAP 1.03% 4.13% 1.04%
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measurements. Even in side slip angle measurements, the FAP is 3.11% in no fault

case, and it is 4.13% in the faulty case. Recall the fact that the reason for higher

FAP is the maneuver of the receiver aircraft. Considering the straight flights of the

receiver aircraft at observation position and at contact position, it is obvious that

the false alarm in the FDI occurred due to the nonuniform wind field, is successfully

avoided when the robust FDI is employed.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In aerial refueling, the tanker aircraft induces a nonuniform wind field in its wake

where the receiver aircraft needs to fly. The nonuniform wind field has wind velocity

vector with varying magnitude and direction depending on the relative position with

respect to the tanker. As a result, the receiver aircraft experiences varying induced

aerodynamic forces and moments depending on its position relative to the tanker.

The airdata sensors on the receiver aircraft measure varying airspeed, side slip angle

and angle of attack as the receiver moves relative to the tanker. Further, multiple

airdata sensors placed at different locations on the receiver aircraft measure different

airdata variables as the nonuniform wind field has a wind variations in magnitude and

direction over the length and span of the aircraft. This research develops a relative

position estimation method by utilizing the nonuniform wind field as a signature of the

tanker aircraft position. Further, this research develops a robust redundant-sensor-

based FDI (Fault Detection and Isolation) method that can successfully detects and

isolates faults in multiple airdata sensors despite the differences in airdata variable

readings due to the nonuniform variation of the wind over the receiver aircraft.

The inspection of the nonuniform wind field generated from a model validated

by wind tunnel and flight tests and CFD simulations shows that there are isolines

on a relative position plot for each of the airdata variables. Thus, there is no one-

to-one mapping between the relative position and each one of the airdata variables.

This means the nonuniform wind field maps expressed in terms of the airdata variables
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cannot be reversed to obtain relative position information for the measurements of an

airdata variable by a single sensor. It is shown that isolines of different variables from

a single sensor have intersections, but in a limited region behind the tanker aircraft,

which implies that position estimation is possible with at least two variables from a

single sensor. The simulations of the estimation algorithms reveal that the errors in

the estimated position even in the limited region where estimation is possible are very

large. The simulations of other algorithms that utilize multiple airdata variables from

multiple sensors shows that the feasible region (where position estimation is possible

without ambiguity) becomes larger and the accuracy of the estimation improves as

more variables from more sensors are used in position estimation. The best ones

among the algorithms developed and evaluated in this research use two variables

(side slip angle and angle of attack) from three sensors located at the wing tips and

the nose of the aircraft.

Two metrics are defined and used to quantify the performance of the algorithms:

(i) the size of the feasible region where it can produce a position estimate and (ii)

the accuracy of the estimation in the feasible region. These two metrics are also used

to evaluate the sensitivity of the algorithms against the turbulence, measurement

noise and prevailing wind. The simulation results show performance degradations

to various degree in position estimation in the presence of such disturbances. This

is because the nonuniform wind maps used by the algorithms as inverse maps are

constructed in ideal conditions when there is no turbulence, measurement noise or

prevailing wind. Performance degradation is also observed when the algorithms are

evaluated on-line in dynamic simulations when the tanker and the receiver are flown

by controllers. Specifically, the receiver aircraft is trimmed by the controller at the

commanded positions relative to the tanker. Since the receiver is exposed to different

aerodynamic force and moments in the nonuniform wind field, the controller trims
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the aircraft with different orientations at different relative positions. The difference

in orientation between the static setup that generates the maps and the dynamic

simulation when the aircraft is trimmed results in different relative positions of the

individual airdata sensors relative to the tanker. Such differences causing variation

in sensor readings results in degradation in estimation accuracy or failure to generate

estimation especially in the regions where the wind maps have high slopes.

The standard parity-space-based FDI algorithm is developed that relies on sen-

sor redundacy (three airdata sensors), uses a chi-square hypothesis that for detection

and employs a relative angle comparison in the residual space for isolation. The FDI

algorithm can work with only one faulty sensor. The simulation experiments show

that the FDI system can successfully detect and isolate additive (bias) fault in any of

the three airdata sensors considered in the presence of atmospheric turbulence, mea-

surement noise and prevailing wind when the receiver flies solo or outside the wake

of the tanker. The simulations also reveal that the FDI generates false fault alarms

when the receiver enters the wake of the tanker. This is because the nonuniform wind

field causes the three sensors to measure different airdata variables and this deceives

the FDI that is based on the assumption that the sensors when no fault is present

provide identical readings of airdata variables. This weakness of the FDI is elimi-

nated by utilizing the maps of the nonuniform wind field consisting of the data of the

airdata variables as functions of relative position. By employing this maps to calcu-

late the expected values of the airdata variables depending on the relative position,

the FDI algorithm no longer assumes the identical readings from the sensors. This

leads to successful operation of the FDI system even in the wake of the tanker. The

performance limitations of the FDI system is investigated by a parameter study that

varies the variance of the measurement noise and the magnitude of the bias error.
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7.2 Future Work

The following topics are recommended for future work considering the results

and conclusions obtained from this research. During construction of the maps of

nonuniform wind field in the case of multiple intersection points are found, estima-

tion algorithms either picks the first or last one found, or discard them all. In making

such a decision, previous known or estimated location of the aircraft could be used

considering the kinematics of the aircraft. Also, position estimation algorithms rely

on the nonuniform wind maps constructed from static simulation in the absence of

turbulence, measurement noise, prevailing wind and the kinematics of the aircraft.

When the inverse of these maps are used for position estimation in the presence of

such effects, the performance of the position estimation degrades as these factors

causes mismatch. Incorporation of these effects in the construction of the nonuniform

wind maps should be investigated. Another important point is the method used for

construction of the nonlinear wind field maps. In this study, those maps are created

in simulation environment. Instead of using an analytical model in the construction

of wind field maps, wind tunnel and flight test experiments as well as CFD methods

could be utilized. Such methods should yield more accurate wind field maps and this

improve the performance of the position estimation in real-time implementations. In

addition to that, in the static simulations used to generate wind field data to construct

the nonuniform wind maps, the orientation of the receiver relative to the tanker is set

to be fixed. However, in dynamic simulations representing actual flight, aircraft trim

orientation varies with position because the receiver is to exposed to different induced

aerodynamic moments. Any change in the orientation of the receiver moves the lo-

cations of the sensors in the wind field and different and different airdata variable

readings are obtained at the same relative position. The effort of the trim orientation

on the sensor readings should be incorporated into either the construction of the maps
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or into the processing of the inverse maps. This should cause dynamic simulation to

have closer performance to the static simulations. It is shown that the proposed tech-

niques are affected highly by the measurement noise, turbulence and prevailing winds.

The methods for eliminating of these effects can further be investigated. Filtering of

the measured airdata signals should help attenuate the noise in the signals, which,

in turn, improve the position estimation performance. Airdata sensor based position

is intended to complement other relative position estimation methods. Data fusion

methods that use airdata sensor based position estimation with other relative posi-

tion measurements should be investigated to improve the performance and reliability

of position estimation. Further, incorporation of the position estimation system into

the flight control system should be considered in order to contribute for developing

autonomous aerial refueling operation.

The FDI system studied herein is based on sensor redundancy. Software re-

dundancy methods such as Kalman filtering and neural networks should also be in-

vestigated in order to combine additional residual generating process to the existing

system. This research only considered single sensor failure. Using software redun-

dancy or a hybrid approach, the feasibility of the FDI of multiple sensor faults can be

investigated. Further, incorporation of the FDI system into the flight control system

should be considered to develop fault tolerant flight control systems.

Finally, the proposed systems can be tested in real-time implementations. The

developed algorithms can be implemented first by the Processor-in-the-loop (PIL)

technique where it allows to test proposed system on the actual microprocessor. Also,

the algorithms can be compiled to a microprocessor and can be tested by using rela-

tively simple and small platforms, before being tested in actual aircraft.
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