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Abstract 

SIMULATION FEASIBILITY STUDIES OF A HIGH DENSITY FNIRS IMAGING SYSTEM 

 

Pallavi Natekar, M.S. 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Dr. George Alexandrakis 

Functional near infrared spectroscopy (fNIRS) is a technique that enables 

monitoring brain function, by detecting changes in near-infrared light absorbance 

resulting from changes in brain hemodynamics during periods of rest and activation. 

Although the technique has some advantages over other conventional functional imaging 

methods with its inherently high temporal sampling and detection sensitivity, the sparse 

spatial sampling of current fNIRS systems limits spatial resolution and requires help from 

Magnetic Resonance Imaging (MRI) to attain spatial co-registration with anatomical 

structures. In this work we have performed simulations to test the feasibility of using a 

high density spatial sampling system as a means to detect anatomical structures on the 

brain surface using near-infrared light signals only while also significantly improving the 

efficiency of signal detection.   

We chose to perform our simulation using a Monte Carlo eXtreme code, which is 

an accelerated GPU-based Monte Carlo simulation technique that resulted in 

computational time gains of 300X over a traditional code on a non-GPU set-up. This 

acceleration is achieved due to high thread parallelization and improved memory latency 

that speeds up the algorithm to trace multiple simulated photons in parallel. With the 

vision to create a simulation set-up that mimics reality as much as possible, we sourced 

an anatomical brain model from MRI and included hemodynamic fluctuations in different 
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tissue compartments as explained below. The 3-D image volume was spatially processed 

in Statistical Parametric Modeling software and subsequently in MATLAB to transform it 

into a simulated tissue model. The simulation set-up was designed to place a dense 1mm 

grid of detector fibers on the scalp. Tissue optical properties were defined at the common 

fNIRS wavelength of 830 nm. An estimate for an adequate simulated photon number to 

make the stochastic noise from Monte Carlo smaller than the amplitude of hemodynamic 

fluctuations was made by running independent trials on the tissue model and analyzing 

the standard error between trials.  

A resting state brain model was considered to be appropriate for testing the 

feasibility of detecting cortical sulci by high density fNIRS since background 

hemodynamics are known to be present during all times. In order to create the 

hemodynamic background, information of common sources of physiological 

hemodynamics, namely Mayer waves (~0.1Hz) and respiratory waves (0.2 – 0.4 Hz) was 

sourced from the fMRI BOLD data coregistered with the anatomical MRI image volume 

used previously. The fMRI dataset had lower temporal sampling (0.5 Hz) and hence only 

Mayer waves and not respiratory waves could be sourced from the fMRI data. 

Respiratory waves from an fNIRS baseline data set sampled at 10.35 Hz were introduced 

into the brain tissue model at the scalp and gray matter in a depth-independent manner.  

The power spectra of hemodynamic fluctuations from Mayer waves and respiration were 

combined into a consistent single power spectrum and were added to the brain tissue 

voxels. The resulting hemodynamic fluctuation data were used to modify the light 

absorbance simulated by Monte Carlo and create resting state time-series reflectance 

data for the simulated high density fNIRS system. Four simulations for sources at the 

corners of a 27 mm sized source paired with detectors along a circle of 24 mm radial 

distance were chosen as the best geometry for reconstructing 2-D cortical hemodynamic 
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fluctuation maps. We analyzed the resulting images by a signal cross-correlation method 

and were able to identify cortical sulci from gyri within the center of the imaging field of 

view. Interestingly this approach could detect sulci that were even 2mm deep form the 

cortical surface. These preliminary results show that it may be worthy building a very high 

density fNIRS for mapping anatomical features along with activation maps. 

Furthermore, to quantify the benefits of dense spatial sampling on signal 

collection, a simulated activation region was embedded into the central sulcus of the 

sensorimotor region in the cortex. Appropriate hemodynamic response functions for this 

activation region were designed for finger tapping at 1 Hz for 16 sec, 8 sec and 4 sec. 

Detector fibers in the proposed system were grouped to determine an effective detector 

diameter size of 13 mm as the most appropriate for maximizing the activation signal-to-

noise ratio of activation. Compared with sparser spatial sampling from a conventional 

fNIRS system, the high density system offered gains of 125% - 400% in signal-to-noise 

ratio depending on detector placement with respect to the activation location. Also, the 

dense spatial sampling system showed prospects of reducing the total duration of an 

activation protocol by half.  

Finally, photon budget calculations demonstrated the feasibility of collecting 

adequate signal from a single detector fiber while staying within light power exposure 

safety limits, which would have to be taken into account in a real life system. The 

simulation feasibility studies performed here show that a high density sampling systems 

holds potential for revolutionizing the fNIRS field.   
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Chapter 1 

Introduction 

1.1 Brain Activation 

1.1.1 Neurovascular Coupling 

The brain works constantly in the resting state to regulate physiological activities 

in the body as well to coordinate the responses to external stimuli. As a result of neuronal 

activation an increased flow in the arteriolar bed is seen to spread in the activating areas 

of the cortex thereby increasing the availability of glucose and oxygen to the activating 

neurons through those blood vessels {Bunce, 2006 #1234}. The brain requires a steady 

supply of oxygen during normal processes and a surplus of oxygen to fuel neuronal 

activity. An overcompensation of oxygenated blood in the local arteriolar bed results with 

this increased demand for oxygen {Buxton, 2001 #1210} {Ferrari, 2012 #1215}. 

Hemoglobin is the oxygen transporter protein in blood and oxy hemoglobin (HbO) and 

deoxy hemoglobin (Hb) are the two forms of hemoglobin when bound with and without 

oxygen respectively. At times when the requirement for glucose and oxygen increases 

due to increased activity, the levels of glucose and oxygen drop causing local arteriolar 

dilation and subsequently increased cerebral blood flow and cerebral blood volume 

{Ferrari, 2012 #1215}. The underlying phenomenon that causes change in concentration 

levels of HbO and Hb as a result of neuronal activity is called ‘Neurovascular Coupling’ 

{Bunce, 2006 #1234}. Thus, an increased neuronal activity results in increased cerebral 

oxygenation and neurovascular coupling is the principle basis of using optical imaging 

techniques to study cortical function. An increase in HbO and a decrease in Hb in a 

spatially localized region is observed in response to a functional task {Strangman, 2002 

#1205}.  
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1.1.2 Sensorimotor Cortex 

The integration of the primary motor cortex and primary somatosensory cortex 

regions the cerebral cortex is commonly termed as the sensorimotor cortex. The central 

sulcus is the cortical fold between these two regions. The primary motor cortex lies 

anterior to the central sulcus and is associated with planning and execution of movement 

in co-ordination with other motor control areas. The somatosensory cortex is positioned 

posterior to the central sulcus and is the process for receiving and processing senses like 

touch, temperature, proprioception and pain {Silverthorn, 2012 #1245}. An integration of 

somatosensory and motor systems exists, called ’Sensorimotor Coupling’, because of 

which a motor response is coupled with a sensory stimulus and vice-versa {Flanders, 

2011 #1223}. Senses from the entire body are received by specific regions of the 

somatosensory cortex and similarly control of body parts for motor action is possible via 

specific associated regions on the primary motor cortex. Figure 1-3 shows the Cortical 

Motor Homunculus and Cortical Sensory Homunculus for the sensorimotor cortex.  

 

Figure 1-1 Cortical Homunculus - Motor and Somatosensory cortices 

[Source: https://neurowiki2012.wikispaces.com/Phantom+Sensations+and+Perceptions] 
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This work is focused on the somatosensory cortical region. By use of the 10-20 

electrode set-up the somatosensory cortex area is defined as being ~ 7.5 cm away from 

either side of the longitudinal fissure, conventionally marked as C3 and C4, can be 

identified as the sensorimotor cortex anatomically in the brain {Flanders, 2011 #1223}. 

This region that is primarily associated with control and sensation from hand digits. 

In this work we are studying neuronal activity by simulating changes in the 

hemodynamics of the primary motor cortex. This hemodynamic activation which is a 

result of neurovascular coupling is detected by an optical method that is explained here 

below. 

1.2 Principle of Near Infrared Spectroscopy 

1.2.1 Functional Near Infrared Spectroscopy 

FNIRS is a non-invasive and safe technique that capitalizes on the difference in 

absorption spectra of HbO and Hb to study brain functioning in vivo using more than one 

wavelength in the Near Infrared (NIR) ‘Optical Window’ where their spectra differ {A P 

Gibson1, 2005 #1247}. A typical fNIRS set-up consists of a fiber optic source and 

detector optodes placed in contact with the subject’s scalp along with the associated 

electronics. The photons from the illumination are transmitted along the various layers of 

the tissue and interact with the HbO and Hb primarily at NIR wavelengths on their 

trajectory before finding their way to the fiber optic detectors positioned to collect the 

transmitted light. Interaction of photons with these chromophores is important because 

studies have indicated their association with neuronal activity by the phenomenon of 

‘Neurovascular Coupling’ {Bunce, 2006 #1234} discussed in section 1.1.1. The photons 

reflected at the detectors are the key to study the activity in the region of the brain it 

traversed. The length of path of the NIR light is longer than the source-detector 

separation and estimated to be about one half of the source-detector separation. For an 
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adequate depth of 1.5 cm, measured from scalp, by NIR light to detect activation in the 

cerebral sub-cortex, the source-detector separation is computed to be 2.5 to 4 cm 

{Bunce, 2006 #1234} {A P Gibson1, 2005 #1247} {Ferrari, 2012 #1215}. The head 

regions visited by photon trajectories for shorter spaced detectors and farther spaced 

ones are pictured in Figure 1-2. FNIRS assumes that scattering co-efficient remains 

constant while absorption co-efficient varies with changes in concentrations of HbO and 

Hb in the NIR wavelength region {Montcel, 2005 #1209}. 

1.2.2 Baseline Hemodynamic Fluctuations 

During resting periods, fluctuations in concentration of HbO and Hb are present 

in tissue types that are perfused with blood supply, namely the gray matter and scalp 

regions. These fluctuations occur irrespective of any cortical activation due to presence of 

hemodynamic fluctuations along the blood vessels. Commonly observed physiological 

sources of resting state hemodynamics are cardiac and blood pressure pulsations, 

breathing and arterial pulsatile pressure {Tong, 2011 #1236} {Tong, 2010 #1222}. The 

Mayer waves are arterial pressure waves that are coupled with sympathetic nervous 

activity {Julien, 2006 #1219} and categorized at low frequency oscillations (LFO) in the 

range of 0.07 – 0.2 Hz) {Vermeij, 2014 #1211}. These waves have a stable frequency of 

~0.1 Hz in humans irrespective of cortical activity. Spontaneous Very Low frequency 

Oscillations (VLFO) in the range of 0.02 – 0.07 Hz are also known to be present. These 

waves get stronger with cortical activation {Vermeij, 2014 #1211}. Respiratory waves are 

generated from a full cycle of respiration and are found between 0.25 Hz – 0.4 Hz {Tong, 

2010 #1222}. Cardiac waves are concentrated around 1 Hz and are spatially global and 

temporally coherent {Tian, 2008 #1214}. The shorter spaced detectors  only detect scalp 

hemodynamics (Fig. 1-2) and can therefore be used as a reference to filter out 
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physiological hemodynamics contributions to the activation signal as will be explained 

further in section 2.3. {Tong, 2011 #1236}. 

 

Figure 1-2 Photon trajectory at shorter and farther spaced detectors {Zhang, 2012 #1244} 

This optical method for imaging is very applicable in a clinical as well as a lab 

setting. The advantage of using this method is that it is agile, portable, non-ionizing and 

relatively low cost. Since the optodes are placed and held along the scalp, it is relatively 

immune to motion artifacts due to breathing or any involuntary movements {Bunce, 2006 

#1234}. 

1.2.3 The Optical Window 

Optical imaging through biological tissues is challenged by their highly scattering 

and absorbing properties at optical wavelengths that limit photon penetration {Bunce, 

2006 #1234}.Light absorption by blood and tissue components is very high in the green-

blue optical and ultraviolet wavelengths, while absorption by water becomes dominant at 

wavelengths greater than 1200 nm {Bunce, 2006 #1234} {A P Gibson1, 2005 #1247}. In-

between these two wavelength regions, the NIR electromagnetic spectrum is termed as 

the optical window for noninvasive optical imaging since absorption from blood is reduced 

significantly in this wavelength range (700 – 900 nm) {Bunce, 2006 #1234}. Within the 

optical window scattering is dominant over absorption, which enables NIR photons 

entering tissue to scatter multiple times and exit without being absorbed. {A P Gibson1, 
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2005 #1247}.  The absorption spectra for HbO and Hb in the optical window are shown in 

Figure 1-3. 

 

Figure 1-3 Absorption Spectra of HbO, Hb and Water in Optical Window {Bunce, 2006 

#1234} 

Optical imaging of neuronal function, which is the focus of this work, exploits the 

optical window that allows NIR photons to reach the cortical surface and detect time-

dependent changes in absorption by HbO and Hb occurring due to neurovascular 

coupling. The NIR light that bounces back to the head surface is detected as a function of 

time and the areas of activation are localized by an imaging method introduced here 

below.  

1.2.4 Modified Beer-Lambert Law (MBLL) 

The optical properties of tissue, absorption and scattering, are wavelength 

dependent {Bunce, 2006 #1234}. The change in optical density (ΔO.D.) is directly 

proportion to change in the absorption co-efficient (µa), which is the result of change in 

chromophore concentrations in tissue (Eq. 1.2) {Boas, 2004 #1204}. The intensity of light 
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detected at the detectors of an fNIRS system is thus a function of change in 

concentration of HbO and Hb. The MBLL is an empirical formula to quantify this 

measured light intensity at the surface for a highly scattering medium like biological 

tissues {Strangman, 2002 #1205}. The formula enables calculation of light attenuation 

along a scattering medium and has been applied in measuring neuronal activity 

associated with motor, visual and auditory tasks {Bunce, 2006 #1234}. The formula, as 

represented in Equation 1.1 enables calculation of change in optical density as a natural 

logarithm of change in detected light intensity {Montcel, 2005 #1209}. This change in 

optical density is interpreted as the change absorption in tissue due to drawing of HbO as 

a result of neuronal activation.  

 

O.D = log10 (I0/I) = ϵCL = k*C      1.1 

O.D = Optical Density 

Io = Incident Light Intensity 

I = Detected Light Intensity 

ϵ = Extinction co-efficient of absorption 

C = Concentration of absorption 

L = Path length through tissue   

K = constant (ϵ*C) 

 

ΔO.D = Δµa * L        1.2 

The actual physical path length of diffused light through tissue is calculated by 

scaling the source-detector separation distance by the Differential Path-length Factor 

(DPF) {Okada, 1997 #1229}. The DPF is a constant based on the optical properties of the 
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tissue medium. The formula to calculate L is as shown in Equation 1.3, assuming a 

homogenous medium. 

 

L = d*DPF        1.3 

d = Source-detector separation distance 

DPF = Differential Path length Factor 

Equation 1.2 can be extended to in-homogenous medium by considering several 

homogenous layers and defining Partial Path-length Factor (PPF) per tissue type. {Fukui, 

2003 #1228} {Tian, 2008 #1214}. 

1.2.5 Tissue Optical Properties 

Photons on interaction with tissue organelles undergo elastic and inelastic 

scattering. With every advancing interaction there is a likelihood of absorption of their 

energies and deviation in direction of propagation depending on the nature of interacting 

medium. The Mean Free Path (MFP) is defined as 1/µt (transport coefficient); where µt = 

µa + µs & for biological tissues µs>> µa. The absorption coefficient, µa, and the scattering 

coefficient, µs are quantification of absorption and scattering events occurring per unit 

length (unit: mm-1). When a photon undergoes multiple scattering events, the reduced 

scattering coefficient which is defined as µs’ = µs (1-g), is preferred because it takes into 

account the degree of forward scattering – called the anisotropy factor ‘g’ {Boas, 2004 

#1204} The anisotropy factor ‘g’ is effectively the mean of cosine of scatter angles and in 

the range of 0.8 – 1.0 in biological tissues. The Transport Mean Free Path (TMFP) for 

multiple scattering events is thus defined as 1/µs’ since µs’>> µa in NIR wavelength of 

electromagnetic spectrum which results in a diffuse photon flux for distances exceeding a 

few mm {Ntziachristos, 2010 #1238} {Rolfe, 2000 #1231}. MPF > TMPF {Tuchin, 2007 

#1248}. As explained in the section 1.2.1, the source-detector separations for functional 
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brain imaging need to be several cm, and therefore the reflected light is completely 

diffused. {A P Gibson1, 2005 #1247}  

1.3 Development of FNIRS Applications 

Over the years, fNIRS systems have transitioned from simple, single-channel, 

cumbersome electrode placement systems towards multi-channel, wearable electrode 

ability systems that are portable. The number of source and detector available for pairing 

with the instruments are ~32 and can cover the entire head region in adults. Ongoing 

research is driving fNIRS technology towards low-cost portable set-up {Ferrari, 2012 

#1215}. 

1.3.1 Limitations to Current Systems 

The current fNIRS systems allow about a dozen source-detector pairs and spatial 

resolution in the range of 1 cm and source-detector separation of 3 cm ) {Boas, 2004 

#1204} {Bunce, 2006 #1234} {A P Gibson1, 2005 #1247}. The numbers of source-

detector pairs that can be used are limited by the detector optode size which is typically 3 

mm in diameter (CW-6, Techen Inc., Milford, MA) as well as the cost of increasing the 

number of channels and associated hardware. Furthermore, the relatively sparse spatial 

sampling of the head surface by current systems cannot provide any intrinsic imaging of 

brain anatomical landmarks, which are identified by separate anatomical MRI imaging 

{Fukui, 2003 #1228} {Boas, 2002 #1208}. The sensitivity of activation detection can also 

be compromised in fNIRS systems with sparse spatial sampling if activation occurs in 

areas away from the sensitive detection regions. Finally, studies have described 

attenuation in light intensity due to interference by hair on the scalp {Orihuela-Espina, 

2010 #1221}, though a novel type of brush optode has been proposed as a solution to 

this problem {Khan, 2011 #1202}.  
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1.4 Focus of this Work 

The focus of this work was to test through simulation studies the feasibility of 

using a very high source-detector density fNIRS system to resolve some of the problems 

with existing systems, namely (A) to enable intrinsic identification of anatomical 

landmarks on the cortical surface and (B) increase activation detection sensitivity 

irrespective of activation location on the cortex. To that end, simulated fNIRS studies 

were performed in a realistic head model obtained from anatomical MRI with typical 

physiological hemodynamic fluctuations added at all tissue depths as explained in the 

Methods below.  

It is shown that very dense spatial sampling with fNIRS can help identify the 

central sulcus and other nearby sulci based on analyzing baseline hemodynamic 

fluctuations alone. Furthermore, it is shown that very dense spatial sampling can 

enhance the detection sensitivity of activation signals very significantly. The capacity of 

an fNIRS system to identify cortical anatomical landmarks could enable spatial co-

registration of images from different patients, or from the same patient on different days, 

while the increased detection sensitivity could reduce experimental protocol time, or 

enable performing more activation studies within a given amount of time. 
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Chapter 2 

Methods 

2.1 Monte Carlo Simulations Set-up 

2.1.1 Monte Carlo Simulations for Photon Migration 

Simulations of NIR photon propagation through turbid tissues are typically 

performed through the diffusion approximations of the photon transport equation 

{Liemert, 2010 #1220} {A P Gibson1, 2005 #1247} or through Monte Carlo simulations. 

The diffusion approximations is computationally efficient when simple tissue geometries 

are assumed, especially the semi-infinite homogeneous medium approximation {A P 

Gibson1, 2005 #1247} , and has therefore been popular as an approximate method for 

reconstructing fNIRS activation images {Huppert, 2009 #1207}. Nevertheless, one of the 

major focus points of this work is the identification of anatomical landmarks on the cortical 

surface, which implying they study of optical photon propagation in a realistic head 

geometry, in the presence of spatially heterogeneous background hemodynamic 

fluctuations. Clearly, a spatially homogeneous model was not appropriate for the scope of 

this work, and a Monte Carlo approach was selected instead {A P Gibson1, 2005 #1247} 

{Boas, 2002 #1208} to simulate photon propagation through the head with very high 

spatial sampling. For the sake of completeness, it should be mentioned that a numerical 

approach to solving the diffusion equation on a head geometry {Liemert, 2010 #1220} 

was also briefly pursued initially, but it was found to be very taxing in terms of computer 

memory requirements to simulate enough spatial detail of the head geometry and was 

not pursued further.  

Monte Carlo algorithms simulate photon propagation stochastically by sampling 

appropriate probability distributions for distance travelled between two sequential 

scattering events, and the new travel direction after a scattering event, all the way from 
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the point of photon entry to its exit from tissue. Source and detector locations are placed 

on the surface of the head to simulate the spatial arrangement of fibers or fiber bundles 

used in the fNIRS experiment being simulated. Physiological hemodynamic fluctuations 

and neuronal activation are simulated by transient changes in photon, as this occurs in 

real-life experiments too. For the sake of computational efficiency, each tissue voxel with 

temporally distinct hemodynamic fluctuation patterns is typically tagged with a different 

index and the total path length of each photon for each tissue index is recorded 

separately {Boas, 2002 #1208}. Recording photon reflectance data this way enables re-

computing the reflectance when the absorption in different voxels changes as a function 

of time by application of the MBLL (Eq. 1.2) without having to repeat the Monte Carlo 

simulation {Boas, 2002 #1208} as expressed in Equation 2-1.  

 

Reflectance = Σ exp (-Δµa.L)             2.1 

R = Reflectance in Joules/mm2 

∑〖Δμa.L〗 = Sum of product of change in absorption coefficient and path length 

per photon per tissue type 

 

 This way, time-series reflectance data could be generated efficiently.  It should 

also be clarified that the Monte Carlo codes themselves can track the photon transit times 

and separate them in user-defined time gates in addition to tracking path lengths. In this 

work all temporal information was added into a single time gate, thus converting the 

reflectance data to CW. The photon transit times in tissue are in the nanosecond range, 

which is much shorter than the simulated temporal fluctuations of absorption by blood 

that occur in the seconds range. 
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2.1.2 GPU Accelerated Photon Migration  

Due to the stochastic nature of Monte Carlo simulations propagating a large 

number of NIR photons through tissue is very time consuming. This was a major hurdle 

for the present work, which required the reflectance simulation for a very large number of 

source-detector pairs separated by 2.5 – 3.5 cm that required a large number of photon 

histories being simulated so as to attain satisfactory photon statistics at these larger 

separations (>100 million). The requirements for this work made the use of older Monte 

Carlo algorithms that were previously used for fNIRS simulations impractical {Boas, 2002 

#1208} {LI, 2010 #1224}. Fortunately, there have been recent developments towards 

speeding up these simulations by exploiting parallel computation ability of Graphical 

Processing Units (GPUs). We chose Monte Carlo eXtreme (MCX) as the simulation 

technique {Fang, 2009 #1213}  which achieves computation acceleration using parallel 

threads and low memory latency in a GPU environment. A maximum of 128 tissue types 

and 3712 detectors for a single source is possible for version 0.9.7 used in this project. 

MCX results have been validated against the standard diffusion theory solution in a 

homogenous medium and medium with absorber cases {Fang, 2009 #1213}. The MCX is 

marked to accelerate by a 300X times when tested on an nVidia GTX 760 graphics card 

against a conventional Monte Carlo technique, MCVM on a CPU.  

With MCX, an nVidia GTX 760 series dedicated graphics card was used to 

benefit from the time advantage GPU based accelerated processing offered. The output 

files generated at the end of execution were two – photon history file and flux data file. 

The photon history file (.mch) traced the history of every photon that reached a defined 

detector location on the surface and carried information on the path length traversed for 

each distinct tissue type. It should be repeated that distinct tissue types were not only 

those with different baseline optical properties (section 2.2 and section 2.3), but also 
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each tissue voxel that would be assigned distinct time-series fluctuations in absorption 

depending on the simulation scenarios described here below. The flux data file (.mc2) 

recorded the flux distribution at every tissue voxel within the tissue model.  The voxel 

units were in millimeters. Three distinct Monte Carlo simulation scenarios were studies in 

this work: 

1. Static Tissue Model: A steady state tissue model with no hemodynamic fluctuations 

was used at first in order to estimate the minimum number of photons needed to 

produce a simulation-based standard error that was significantly smaller than typical 

activation amplitudes as well as perform an initial feasibility test to see if anatomical 

landmarks can be identified under ideal conditions.  

2. Baseline Hemodynamic Fluctuations Model: A tissue model with baseline 

hemodynamic fluctuations, without any cortical activation, was simulated to assess 

feasibility of localizing cortical anatomical features with the proposed high density 

fNIRS system in the presence of physiological noise. 

3. Cortical Activation Model: A tissue model with cortical activation in the sensorimotor 

areas, in addition to baseline hemodynamic fluctuations, was simulated to study how 

much activation detection sensitivity improves with the proposed high density fNIRS 

system. 

2.2 Static Tissue Model 

2.2.1 Anatomical MRI Tissue Model 

An anatomical MRI image was obtained from the Statistical Parametric Mapping 

package (SPM, UCL, www.fil.ion.ucl.ac.uk/spm), which is a freely available tool to 

process and analyze neuro-imaging data. The software performs spatial tasks such as 

normalization, re-alignment, eliminating effects from motion artifacts, normalizations, co-

registration of functional and anatomical datasets and spatial smoothing on a series of 
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functional brain images. It is further capable of testing functional hypothesis by statistical 

methods.  

The provided anatomical image was 256 X 256 X108 in voxel dimensions with 

voxel resolution being 1mm X 1mm X 1.5mm. For the purpose of creating a structure 

model of the human head, a segmented anatomical image volume was chosen. The 

regions of cerebrospinal fluid (CSF) merged with the sub-arachnoid space and pia 

matter, gray matter and white matter regions. The anatomical image was also spatially 

normalized with the Talairach and Tournox head atlas. (SPM8_manual)). In order to use 

these images as a tissue model for photon propagation simulations, a few additional 

image processing steps were necessary. First, it was required to read the Analyze 

formatted (binary file .img and header file .hdr) files and convert them into a MATLAB 

(The Mathworks, Inc., Natick, Massachusetts, United States) usable structure. Since 

SPM was a MATLAB compatible tool, this task was performed with the piece of code that 

converts each image into a *.mat variable file. (SPM function spm_slice_vol.m). Next, 

image processing was required to identify and label the various tissue types representing 

anatomical structures. This 3-D image volume was manually segmented into tissues that 

were assigned different grey scale values as scalp and skull, which is typically the case 

for such data sets {Montcel, 2005 #1209}. As MRI pulse sequences are not typically 

optimized for displaying the skull this appeared to be highly pixilated when labeled based 

on grey level intensity. Hence a layer of skull and scalp were computationally modeled 

and added to the MRI image volume by fitting a 3-D spline using the curve fitting toolbox 

in MATLAB over the top of the pia matter and subarachnoid space to give the model a 

smooth and even outer layer. The scalp was a 4 mm thick layer and skull was about 5 

mm thick {Okada, 1997 #1229}. Once that was achieved, the subarachnoid space and 

the pia mater were merged with the CSF layer as these are very thin structures 
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compared to an MRI voxel and their optical properties are not known from current 

literature. The entire image was considerably voxelated and was smoothened with a 3 X 

3 guassian kernel and a 3-D spline interpolant (MATLAB functions: imfilter.m and 

interp3d.m ) to assure that voxelation effects will not have a strong distortion effect on the 

reflectance measured on the scalp surface. After all the above image processing was 

performed, the anatomical image was resampled to a 1mm X 1mm X 1mm voxel size in 

order to reduce possible computational biases in the Monte Carlo simulation that could 

occur when tissue voxels are a lot larger than the photon transport mean free path. The 

retained tissue types were tagged by a unique numerical code to assign individual optical 

properties to them (Table 2-1). The region of the image that was air was tagged as 0.  

After identifying and tagging the various tissue types in the brain a 70 mm deep, 

70 mm long and 66 mm wide region was chosen around the left sensorimotor region as 

the anatomical tissue model for simulating photon propagation. To achieve this, the 

central sulcus that divides the primary motor cortex and somatosensory cortex was used 

as reference. By the conventional 10-20 electrode system, this region was marked 75 

mm from the longitudinal fissure. This structural cropping was done keeping in mind the 

amount of tissue model size that the simulation could handle while preventing any edge 

effects in the reflectance results due to photons escaping events at tissue boundaries. 

Finally the anatomical tissue model was converted to a 70 mm X 70 mm X 66 mm binary 

file. The transformation is depicted in Figure 2-1. 
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Figure 2-1 Anatomical tissue model from anatomical MRI 

 
2.2.2 Optical Properties of Head and Brain Tissues  

The purpose behind identifying the tissue layers with a numerical tag was to 

assign each tissue with its optical properties in order to prepare the anatomical model for 
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photon simulation. As previously discussed in 1.2.4 the optical properties were 

characteristic of the wavelength of light. We chose a commonly used optical neuro-

imaging wavelength of 830 nm while assigning optical properties {Okada, 1997 #1229} 

{Montcel, 2005 #1209}. The units of these were in the millimeter scale for maintaining 

consistency with the tissue model voxel units. 

 

Table 2-1 Tissue optical properties at 830 nm wavelength 

Tissue Layer
 
  
   

Scattering 
Coefficient 
(1/mm) 

Absorption  
Coefficient 
(1/mm) 

Anisotropy 
Factor 

Refractive 
Index 

Scalp 9.09 0.060 0.89 1.37 

Skull 18.18 0.040 0.89 1.37 

Cerebrospinal 
Fluid (CSF) 

0.09 0.001 0.89 1.37 

Grey Matter 22.72 0.025 0.89 1.37 

White Matter 37.50 0.005 0.84 1.37 

 

Thus a static structural tissue model was created. The source-detector imaging 

geometry definition was the next step towards setting up inputs for the Monte Carlo 

simulations for photon migration. 

2.2.3 Source-Detector Layout 

The simulations required information regarding the source and detector positions 

indexed to the voxel co-ordinates. A 41 X 20 grid of optodes was placed in a 1 mm grid 

ensuring the central sulcus to be centrally positioned. The optodes could be selected to 

function as sources or detectors. One isotropic source perpendicular to scalp was 

selected per simulation. Since the scalp surface was curved and not flat, the optode 

placement depth varied along the lateral curvature of brain; albeit the inclination 

perpendicular to the topmost surface of the voxel. A fiber diameter was set as 500 µm 

based on the knowledge of perfluorinated fiber dimension tested in the brush optodes 
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{Khan, 2011 #1202}. By defining the tissue model, the source and detector layout, and 

explicitly assigning tissue optical properties the human brain model and imaging set-up 

was ready for simulations. 

2.2.4 Data Processing & Analysis 

As discussed in section 2.1.2, the photon history output file that the MCX 

simulations generate contains the pathlengths through each tissue type for each 

simulated photon reaching a certain detector. Using this information, the fractional photon 

weight (R) (Eq. 2.1) measured at the detectors is calculated using the MBLL and the 

summation of all fractional photon weights gives the reflectance that a given detector 

collects.  

The reflectance data were studied as a function of the separation distance 

between source and detector which dropped steeply with increasing separation. Another 

dimension to the reflectance measurements was that only detectors at longer separations 

were the ones that sampled the cortical surface (Fig. 1-2). Thus, as expected, fewer 

photons emerged at farther detectors. These results were studied for repeatability over 

five independent Monte Carlo runs, using different initial random number generator 

seeds, and the deviation from the mean at each detector location was calculated as an 

estimate of stochastic error from the simulation. The total number of simulated photons 

was varied until the standard error to the mean (Eq.2.2) was below 1% for source-

detector distances up to 35 cm. This number of photo histories of 400 million was kept 

constant for all subsequent simulations. With the knowledge of baseline hemodynamics 

and cortical activation fluctuating between 2 - 4 % over the mean optical density, a 

stochastic variation of less than 1% was assumed safe without extending simulation 

times excessively {Zhang, 2007 #1240}.  
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e = σ/√n        2.2 

e = Standard error of mean 

σ = Standard deviation 

n = number of samples 

2.3 Baseline Hemodynamic Fluctuations Model 

2.3.1 Hemodynamic Fluctuations Simulations 

The static tissue model simulations were a preliminary step towards optimizing 

the simulation set-up and testing the feasibility of using dense fNIRS spatial sampling to 

detect cortical sulci as will be described below. However, it would be necessary to do so 

in the presence of hemodynamic fluctuations that are always there, even at rest. In order 

to achieve that, low frequency oscillations due to physiological fluctuations occurring in 

the brain during the resting state (section 1.2.2)  were included as part of the simulation 

model. 

 Simulation of cardiac pulsations was redundant because of their high temporal 

coherence and spatially global nature. Elimination of cardiac noise from the simulation 

results is generally straightforward. Simulating Mayer and respiratory waves was 

necessary because of their lower temporal coherence to create a resting brain model. 

{Tian, 2008 #1214}. Since fNIRS did not have depth resolution the same noise was 

added at all depths though the phase of respiration waves across the scalp surface was 

preserved as recorded. The duration of both the fMRI and fNIRS measurements was 

adjusted to the same length of 300 sec for consistency. 

2.3.1.1 Extracting Mayer waves from an fMRI Data Set 

The SPM Epoch data set used for creating the anatomical MRI image also came 

with 351 fMRI images that were recorded during a visual memory task. The functional 

MRI images were acquired by T2* - weighted transverse Echo-Planar Imaging (EPI) 
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method in a descending slice order with BOLD contrast. The image dimensions were 64 

X 64 X 24 voxels with voxel resolution being 3 mm X 3 mm X 4.5 mm.  The functional 

image package included 351 images sampled with scan repetition time, TR = 2 s and 

echo time TE = 40 ms in descending order in Analyze format (binary file .img and header 

file .hdr). Since the anatomical region of interest in this work was the sensorimotor cortex, 

which is not affected by the visual memory task, the fMRI over that region were treated 

as baseline hemodynamic fluctuation data. The fMRI images were sampled at 0.5 Hz 

temporal resolution and the information in fMRI images was expressed as a Blood 

Oxygenation Level Dependent (BOLD) metric that was represented by gray scale 

intensity. The fMRI images were spatially coregistered with the anatomical MRI image 

and normalized with the Talairach co-ordinates system. The image processing steps 

performed above for the anatomical MRI image (section 2.2.1) were repeated on the 

fMRI images. Finally, the images were up-sampled so the voxel size of 1 mm X 1 mm X 1 

mm and matched that of the structural tissue model.  

By the Nyquist principle of sampling frequency, the fMRI images contained 

hemodynamic fluctuations in the gray matter region for frequencies less than 0.25 Hz. 

Thus, in regards to hemodynamic activity they only contained Mayer waves that were 

slower than respiratory waves. A band pass Butterworth filter of order 3 was applied to 

isolate the Mayer wave signal in the frequency region of 0.01 Hz – 0.15 Hz. Given that 

the fMRI data set did not capture respiratory fluctuations or any signal form the scalp 

(Mayer waves or respiration) it was necessary to obtain these from another source, which 

was an fNIRS data set.  

2.3.1.2 Extracting Baseline Hemodynamic Fluctuations from an fNIRS Data Set 

The higher sensitivity of fNIRS enables sampling the hemodynamic signal 

frequencies that are higher than fMRI. For the analysis performed in this work an fNIRS 
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data set recorded at 830 nm wavelength from a healthy subject and sampled at 10.35 Hz 

was procured from the Adaptive Filtering and Depth Compensation Algorithm studies 

previously by Dr. Fengua Tian. {Tian, 2008 #1214}This dataset included measurements 

for a NIR brain imager (DyNOT, NIRx Medical Technologies, LLC.,Glen Head, NY) 

system, in a 3 source and 5 detector probe geometry, where the detectors were located 

at 1 cm, 2 cm and 3 cm from the sources, along the forehead of a healthy subject. By 

applying Nyquist sampling theory, this dataset would include hemodynamic fluctuations 

<5.2 Hz. It was therefore possible to derive respiratory and Mayer hemodynamics from 

the fNIRS dataset. 

 Based on the knowledge that detectors closer to source receive photons that 

traverse the superficial layers and the farther spaced detectors mostly detect photons 

emerging from deeper layers, the detectors located 1 cm away from the source were 

chosen as the ones detecting photons primarily traversing through the scalp layer of the 

head while those detectors at 3 cm away were chosen to detect photons traversing 

through the deeper cortical layers of tissue. In order to isolate these signals, fNIRS data 

was filtered with a 3rd order Butterworth band-pass filter and a 9th order Butterworth band-

pass filter with lower cut-off frequencies 0.01 Hz, 0.15 Hz, and upper cut-off frequencies 

0.25 Hz and 0.4 Hz for Mayer waves and respiratory waves, respectively {Tong, 2010 

#1222} {Zhang, 2005 #1241}. Once, that was achieved Δ O.D. was converted into ∆μa 

(Eq. 2.3). This conversion was possible by solving for the change in absorption coefficient 

by the MBLL (Eq. 1.2). The Partial Path length Factor (PPF) is the differential path length 

factor (DPF) per tissue in the heterogeneous brain model and the information for scalp 

and gray matter PPF was calculated from the Monte Carlo photon history file for the static 

anatomical model simulation. The PPF values were determined to be 37.26 and 112.03 

for scalp and gray matter respectively.   
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ΔO.D = Σ Δµa * PPF              2.3 

∆O.D. = total change in optical density  

∆μa = change in absorption co-efficient  

 

From Equation 2-1 and 2-3 conversion between ∆O.D. and R is a natural 

logarithmic conversion. 

2.3.2 Combining Baseline Hemodynamic Fluctuations from FMRI and FNIRS 

At this juncture, we had retrieved Mayer cortical data from fMRI at the voxel level 

and Mayer and respiratory data for the scalp and cortex as 2D maps from the fNIRS data. 

To combine this information, the power spectrum of the cortical Mayer from both data 

sources were compared. A conversion of BOLD signal to Δµa conversion constant was 

determined by comparing power spectrum peaks of Mayer BOLD signal with Mayer ΔO.D 

for the highest peak at ~0.1Hz. The Mayer wave spectrum from fMRI was then converted 

to Δµa was combined with Δµa respiratory wave spectrum from fNIRS. Further, non-Mayer 

background sampled by fMRI is also combined Mayer and respiratory spectrum and this 

Δµa physiological noise series is added for one voxel of tissue model. As respiratory data 

is added to the fMRI voxels, a 0.004 sec/mm phase shift laterally away from vasculature 

along longitudinal fissure and central sulcus is manually added {Filosa, 2007 #1230} 

{Silverthorn, 2012 #1245}. The phase shift information is calculated based on laterally 

spaced source-detector pairs from the fNIRS measurement. Amplitude scaling of 

respiratory and Mayer waves from the fNIRS between cortex and scalp was calculated 

since unlike gray matter, voxel level hemodynamic information was not available for scalp 

layer. Based on this amplitude scaling observation, combined noise spectrum from 

superficial layer of cortex was directly projected onto the scalp. At the end of this process, 

the tissue model had a 300 sec long baseline hemodynamic fluctuation time-series data 
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for all scalp and gray matter voxels. Figure 2-2 explains how the filtered noise spectrum 

from fMRI BOLD data and fNIRS Δµa were sourced.  The low and very low frequency 

oscillations, LFO and VLFO respectively {Obrig, 2000 #1227} {Vermeij, 2014 #1211}, can 

be distinguished as the two peaks in green at 0.04 Hz and 0.12 Hz. The power spectrum 

of respiratory waves shown in blue is concentrated around 0.32 Hz. By combining all 

sources of noise, a single spectrum was created as shown in the bottom panel of Fig. 2-

2. 

Once the noise information was added, closely synced voxels identified by a 

cross correlation test with correlation coefficient threshold of 0.5 were grouped together 

and re-tagged. The purpose of regrouping was to limit the total number of tissue types 

below the maximum number of 128 that the MCX code allowed. In the final retagged 

tissue model the gray matter had 12 voxel groups and the scalp had 21, making a total of 

33 tissue indices.  
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Figure 2-2 (top) Power spectrum for respiratory and Mayer waves from an fNIRS and an 

fMRI dataset respectively; (bottom) Power spectrum of combined hemodynamic noise 

embedded into a tissue model voxel 
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2.3.3 Simulation Set-up for the Tissue Model with Baseline Hemodynamic Fluctuations 

The simulation set-up was similar to the static tissue model where 500 µm 

optodes were placed in a 1 mm grid and each one could be defined as source or 

detector. A detector grid of 27 X 27 centrally around the central sulcus was selected and 

4 simulations were run for 4 sources positioned at every corner of the grid. A square grid 

was chosen to have a spatially balanced sampling of the central sulcus that was centrally 

positioned in the field of view (FOV). While defining optical properties of tissue layers, the 

skull, CSF and white matter had constant optical properties while the scalp voxel and 

gray matter voxel groups had μa + ∆μa  for time point in the time series data due to the 

baseline hemodynamic fluctuations added to the background absorption coefficient of 

each tissue type.  

2.3.4 Data Processing & Analysis 

Once the simulations were run and output files generated by MCX, the 

reflectance for the entire time-series data was calculated using the MBLL. Further, noise 

filtering was essential to remove interference from the hemodynamic fluctuations that 

were added to the scalp and gray matter areas. These noise sources are complex and 

cannot be eliminated by simple filtering and this issue has been addressed by some 

researchers {Tong, 2011 #1236} {Tian, 2008 #1214} {Zhang, 2005 #1241} {Zhang, 2009 

#1242} {Saager, 2005 #1233}. Different methods have been adopted to eliminate the 

effects hemodynamic fluctuations have on reflected photons like the PCA or adaptive 

noise cancellation {Zhang, 2009 #1242}. We chose the adaptive noise cancellation 

method by least mean square error technique for removal of Mayer and respiratory 

complex from the reflectance {Tian, 2008 #1214}.  

It is important to note here that the noise removal process was not the exact 

inverse of the noise (hemodynamic fluctuation) addition process that was performed in 
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the previous step above. Rather, the physiological noise removal mirrored the method 

used in physical experiments where a single reference channel at short source-detector 

distances is used as a reference signal for an adaptive filter algorithm without taking into 

account and lateral or depth wise variability in these baseline hemodynamic fluctuations. 

2.3.4.1 Adaptive Filtering to Remove Hemodynamic Noise 

Hemodynamic noise from baseline fluctuations was an integral part of the 

reflected signal thanks to its globally systemic nature. An adaptive filtering strategy was 

implemented to remove these background signals {Tian, 2008 #1214}. An adaptive filter 

tunes its response based on the defined reference signal. In this case, the adaptive filter 

was applied on detectors beyond 1cm based on the signal measured at detectors at 

about 1cm distance with respect to the source. By using this strategy the noise 

originating mostly from the scalp, which was present in all the measurements, was 

eliminated by a least means square error technique that is at the core of the adaptive 

filtering algorithm {Khan, 2010 #1200} {Zhang, 2007 #1240}{Zhang, 2009 #1242}. We 

fine-tuned the filter co-efficients to achieve a clean ΔO.D. response for processing (length 

L = 750 and step size µ = 0.001)  

2.3.4.2 Image Reconstruction 

Our interest in the baseline reflectance data was to identify anatomical markers 

on the cortical surface from a resting state simulation data. The image reconstruction 

technique that is commonly used for reconstructing 2-D topographical map for activation 

measurements seemed like a good point to start with, although there were a few 

assumptions to be made due to the nature of set-up of the existing algorithm. Specifically, 

the image reconstruction algorithm assumes a homogenous infinite medium to calculate 

A-matrix and solves using the inverse problem. To move ahead, we assumed the 

simulation model as homogenous and defined optical properties for the hypothesized 
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model as µa = 0.015 mm-1 and µs’ = 0.11 mm-1. {Khan, 2011 #1202}. Also, the curvature 

along the scalp was ignored as the method assumes plane 2-D topography for 

reconstruction, which is implemented using Equation. 2.4.  

 

X = Ainv * Y        2.4 

X = Reconstructed change in O.D. image (Total Surface Pixels x Time series) 

Ainv = Inverse of A matrix (Total Surface Pixels x Source-Detector pairs) 

Y = Change in O.D. at detector level (Source-Detector pairs x Time series) 

 

‘Y’ or Change in O.D. at the detectors is required as input for the reconstruction 

and is deduced from the baseline reflectance data for the four sources using Equation. 

2.5:  

 

ΔO.D (t) = log10 (Reflectance / mean (Reflectance))          2.5 

 

When combining all possible source-detector pairs to reconstruct an image using 

Equation. 2.4 the operation was not successful. This was a surprise given that Equation. 

2.4 is the standard equation to reconstruct images in the fNIRS field currently. The 

difference here was that the A-matrix was very large due to the large number of source-

detector pairs, which created computer memory problems. Even when the data sizes 

were reduced the reconstruction results were not successful when using a regular grid 

source-detector pattern. One preliminary thought is that the large number of source-

detector pairs contributes noise that destabilizes the reconstruction. This topic requires 

further study and was not pursued in this work. It was empirically found though that a ring 

of detectors at 24 mm away from their respective sources did produce a uniform image 
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as would be expected for these time-series data. It was this source-detector arrangement 

that was used in the subsequent image reconstruction step. Once the reconstruction 

model was set-up, the reconstructed image was analyzed for presence of anatomical 

markers on the cortical surface by selecting different fNIRS image pixels as seeds and 

performing a cross-correlation with all other pixels in the image. The premise here was 

that when the seed pixel happened to be over a sulcus the correlation result with other 

image pixels would be different form the case where the seed pixel happened to be over 

a cortical gyrus area.  

2.4 Cortical Activation Tissue Model 

2.4.1 Simulation Set-up 

For the cortical activation model a 35 x 48 detector grid was laid out over scalp 

on top of the sensorimotor area. The grid dimensions were chosen so that the activation 

region that was placed at the central sulcus, simulating sensorimotor activation due to 

finger tapping, was well sampled by many source-detector pairs in the FOV. The detector 

sizes were 500 µm and the grid was 1 mm dense. A total of 400 million photons were 

simulated for each source-detector pair.  
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Figure 2-3 Sagittal view of source-detector layout (source = red square; detectors = white 

squares) and photon trajectories through sensorimotor cortex 

2.4.2 Sensorimotor Activation Protocol Simulation 

Firstly, the location and size of the activation due finger tapping had to be 

decided. Based on established homunculus mapping {Silverthorn, 2012 #1245}, the 

anatomical region that controls or senses motor activation in fingers consists of two 

regions of approximately 9 mm X 9 mm X 9 mm each and is marked on the anatomical 

model (Fig. 2-4). The specific dimensions were opted based on fMRI studies that are 

considered the gold standard in functional imaging {Habermehl, 2012 #1226} {Bunce, 

2006 #1234}. Of these two regions, the one anterior to the sulcus was the primary motor 

cortex and the one posterior was the primary somatosensory cortex. 



 

31 

lateral length (mm)

d
e

p
th

 (
m

m
)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Detectors Source

Scalp

Air

Gray Matter

CSF

White Matter

Skull

   Central sulcus

Primary motor cortex

Somatosensory

 Cortex

 

Figure 2-4 Sagittal view of source-detector layout (source = red square; detectors = white 

squares) and primary motor and somatosensory activation areas along the central sulcus 

  
Secondly, in order to simulate an activation protocol an idealized hemodynamic 

response to a finger tapping activity was modeled as described below using information 

from the fMRI literature {Franceschini, 2003 #1206} {Toyoda, 2008 #1237}. Specifically a 

hemodynamic response function was simulated and convolved with a block-design finger 

tapping protocol.  Specifically, a finger tapping protocol commonly used for fNIRS 

measurements was chosen to be simulated in the 5 minute long duration of available 

baseline data. The protocol consists of 16 sec of finger tapping, generally at 1 Hz with 16 

sec of no tapping interval before the next tapping epoch. The no-tapping interval is 

necessary to allow the cortical response to return to baseline before the next activation 

signal. Seven activation epochs were designed using the non-linear transform for 
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hemodynamic response function {Toyoda, 2008 #1237}. Also, in this work it was 

attempted to find the minimum number of taps detectable with the high density sampling 

fNIRS system. To achieve this latter goal the same block protocol was simulated with a 

reduced number of taps per block thereby reducing the tapping duration. In the case of 

short tapping protocols (> 7 sec per block) the non-linearity of neuronal response needs 

to be taken into account {Toyoda, 2008 #1237}. 

In order to use a hemodynamic response function that simulates the non-linearity 

in neuronal response for short stimulation intervals while also correctly simulating the 

HRF for longer stimulation intervals a two-step strategy described by Toyoda et. al. 

{Toyoda, 2008 #1237} was adopted:  

In the first step, a neural adaptation function was modeled by Equation. 2.6: 

 

      2.6 

t = time after onset of stimulus 

n(t) = neural adaptation function 

s(t) = stimulus function 

a = initial offset constant 

b = decay constant 

The neural adaptation function was then convolved with an impulse response 

function to model a BOLD or Hb response to an activation stimulus. The impulse 

response function is characterized by the Equation: 

       2.7 

h(t) = impulse response function 

α, β, τ are parameters characterizing h(t) 
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The activation response function r(t) was then characterized by convolving n(t) 

and h(t) and scaling by a factor D(ϱ-1) {Toyoda, 2008 #1237} {Miller, 2001 #1225} 

{Soltysik, 2004 #1235}. The constant values were estimated by comparing the response 

to best-fit match with a standard hemodynamic response function (linear response) by a 

one-to-one comparison. This brought us to determine a = 3, b = 0.5 and ϱ = 1.14. The 

free impulse response characterizing parameters α, β, τ were tuned to be 0.05, 9.39 and 

4.8 for the 16 sec duration function. In addition to a 16 sec activation protocol, sample 

protocols were also designed for shorter epoch durations of 1 sec, 2sec, 4 sec and 8 sec 

for comparing with the conventional 16 sec duration. All protocols maintained a 16 sec 

interval between two successive tapping events to accommodate the return of cortical 

activity back to its baseline fluctuations. The free impulse response characterizing 

parameters were determined in a similar manner for each of the tapping duration. All 

tapping protocols were designed for 1 Hz tapping frequency and only varied in their 

length of duration. 

The normalized hemodynamic activation response was determined in terms of 

ΔO.D. The implicit assumption here is that the Hb change that is detected by BOLD had 

the same time-series profile as the HbO data that are typically reconstructed for fNIRS. 

The activation amplitude was converted into change in absorption coefficient and scaled 

by applying a factor of 5% over the maximum deviation in noise amplitude as this is the 

largest activation amplitude found in the sensorimotor cortex for finger tapping relative to 

baseline fluctuations {Montcel, 2005 #1209} {Boas, 2004 #1204} {Hoge, 1999 #1217} 

{Hoge, 2005 #1255} (Fig. 2-5 (top)). This idealized hemodynamic response was added to 

the previously computed baseline hemodynamic fluctuation time series data to yield a 

more realistic fNIRS data set (Fig. 2.5 (bottom)). 
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Figure 2-5 (top) Hemodynamic response to a 16 sec finger tapping protocol; (bottom) 

Activation added over baseline fluctuation data 

2.4.3 Data Processing & Analysis 

Post simulations, the reflectance results for the sensorimotor activation protocol 

were calculated and adaptive filtering was performed to remove the hemodynamic noise 

using a reference form the scalp as done for the baseline fluctuation model described 

above also. Using the filtered data, the ΔO.D. was calculated similarly to the baseline 

fluctuation data (Eq. 2.5).  

This detector level change in O.D. gave a 2-D representation of the detectors 

that detect photons emerging from the activation area in the cortex. This information was 

analyzed further to determine the optimum detector size for maximizing the sensitivity in 

activation detection relative to existing fNIRS systems. 
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Chapter 3 

Results 

3.1 Speed Benchmark for GPU based Monte Carlo 

A common MRI brain simulation set-up was run on GPU and non-GPU based 

systems to test acceleration in simulation speed. The speed benchmarks were as 

tabulated in Table 3-1. With the right system architecture, MCX is claimed to accelerate 

processes over 700X fold. {Fang, 2009 #1213} over conventional methods. The MCX 

was marked to accelerate by a 300X times when tested on an nVidia GTX 760 graphics 

card against a conventional Monte Carlo technique, MCVM on a CPU. This leap in speed 

was extremely useful in simulating large number of photon histories in a complex 

anatomical brain model.   

Table 3-1 Performance benchmarks for run-time: 1e8 photons | 30x30 detectors | 5 tissue 

types | MRI-based brain geometry 
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3.2 Monte Carlo Results for Static Anatomical Tissue Model  

The static tissue model was tested to optimize the number of photons required 

for determining reflectance accurately in the 25 – 35 mm source-detector separation 

range due to the stochastic nature of Monte Carlo methods. In order to determine an 

adequate number of photons to be simulated, the standard error between 5 independent 

simulations initiated with different random number generator seeds was calculated. A 

photon count of 400 million was found to be a good compromise between simulation 

duration and reflectance accuracy because it maintained the standard error below 1% for 

separation distances up to 35 mm. The 1 % limit was chosen as acceptable because we 

estimated a 2 - 4 % variability contribution on addition of physiological noise from 

hemodynamic fluctuations during the resting state. As the uncertainty in reflectance 

determination goes approximately with the square root of the number of photon histories 

simulated, an improvement in uncertainty by a factor of 2 would require running each 

simulation for 4 times the number of photons. This would be impractically long 

considering the number of source-detector pair combinations that had to be simulated in 

this work. Thus, 400 million photons were picked as the optimal number of photons to be 

simulated for the considered simulation set-up across the various detector layout cases.  

The results from the static tissue model simulations were studied by plotting a 

surface reflectance profile as a function of source-detector separation. As expected, we 

notice that the reflectance intensity drops very steeply as the separation distance 

increases. This happens because of the diffuse nature of light and the attenuation of light 

intensity that occurs during the large number of tissue interactions that occur along the 

path to surface {A P Gibson1, 2005 #1247} {Fukui, 2003 #1228} {Boas, 2002 #1208} . 

The primary observation made from the reflectance profile in the static tissue model is the 

presence of two signal dips in along the reflectance curve near the 20 mm and 25 mm 



 

37 

source-detector separations. Such dips do not occur in the reflectance curves when the 

underlying medium is homogeneous {Fukui, 2003 #1228} {Boas, 2002 #1208}. Although 

this finding was exciting as it showed that dense spatial sampling of tissue reflectance 

could be used to identify cortical landmarks, in real life there are always hemodynamic 

fluctuations of physiological origin that are always present and could mask these signal 

dips. In order to assess whither anatomical landmarks could still be identified even in the 

presence of background hemodynamics further analysis was essential.  

 

Figure 3-1 (top) Reflectance profile as a function of source-detector separation; (bottom) 

Sagittal view of tissue model marking the detectors that observe the dips in reflectance 
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3.3 Monte Carlo Results for a Baseline Hemodynamic Fluctuations Model 

A consistent pattern was observed from the cross-correlation analysis of the 

reconstructed time series when compared between two sulci. The cross-correlation 

coefficient obtained when time series from the pixels over sulci were typically observed to 

be > 0.5 and < 0.5 when obtained for pixels over a sulcus and a cortical region. Based on 

these results, further analyses were performed to substantiate the feasibility of this 

method to mark anatomical features using the conventional image reconstruction 

method. The underlying principle of this study was that the correlation seed, when 

considered as a point on top of a cortical fold, correlates well with data from over other 

cortical folds, but the same is not true when the seed is selected from cortical plateau 

areas. Typical results obtained by using this method are shown in Figure 3-2. 

The baseline hemodynamic fluctuations simulation model was analyzed by the 2-

D image reconstruction algorithm. The results of this method are time-series of ΔO.D at 

the topographical level. Since the baseline model was inclusive of hemodynamic noise 

activity and devoid of any cortical activation, the 2-D reconstruction was investigated for 

presence of any anatomical markers to support the inferences from the static tissue 

model results. On cross-correlating data along multiple pixels with the correlation seed on 

top of a sulcus, we observe other sulci regions correlating well with the seed pixel (Fig. 3-

2). For the purpose of testing feasibility of using the cross-correlation technique for 

anatomical mapping, further analyses treats the correlation coefficient as a metric for 

sulcus detection with the correlation threshold being 0.5. 

 

Skull 
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Figure 3-2 (top) Cross-correlation profiles for different correlation seed placements; 

(bottom) Sagittal view of the tissue model used to verify the correlation trends 

3.3.1 Translation of FOV  

The imaging FOV was translated laterally so that the central sulcus was moved 

from the center of the FOV to one side of the FOV in steps of 2mm. The sensitive region 

of the cross-correlation method was verified by cross-correlating the time-series for the 

same pixel location in the displaced FOV with relation to the central sulcus. The results of 

this analysis were interesting, indicating the a slightly displaced seed pixel with respect to 

the center point of the central sulcus could only detect the central sulcus if it is within 3.5 

mm in lateral range, thus making for highly sensitive detection approach. The sensitivity 

index (cross-correlation coefficient) dropped below 50% at larger distances (Fig. 3-4). 

This estimation was consistent when the set-up was shifted along different sagittal slices 

and translating laterally along the brain image volume with the embedded hemodynamic 
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fluctuations. This finding makes a case that dense spatial sampling would be needed by 

fNIRS in order to localize anatomical landmarks. The current study had a limitation in that 

reflectance measurements were only simulated over the part of the sensorimotor cortex 

where the skull was relatively flat. However, it is possible to set up simulations in future 

work where source and detector fibers are normal to the local curvature and therefore 

apply this method to all cortical areas irrespective of head curvature.  

 

Figure 3-3 Transverse view of tissue model with four sources (red) each paired with 39 

detectors (white) translated (white ->grey) laterally 
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Figure 3-4 Translation of the FOV by 3.5 mm is enough for cross-correlations using the 

central sulcus as the seed to become decorrelated 

 
3.3.2 Effect of Depth of Sulcus on its Detection Sensitivity 

Once the sensitive region within the FOV was estimated, the detection sensitivity 

with respect to the depth of different sulci on the cortical surface was studied. The 

previously described cross-correlation technique was used as a metric for analysis of the 

detection sensitivity with respect to sulcus depth (Eq. 3.1):   

Sensitivity = True Positives / Total Number of Positives      3.1 

‘True Positives’ was defined as correctly determining pixels as sulci by cross-

correlation 

‘Total Number of Positives’ was the number of pixels over sulci, which is known 

from the anatomical image model 

0.5 
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Sulci depths were determined as the depth of the CSF column from the deepest 

point of a fold to the gyri elevation in an adjacent region (Fig. 3-5). Results showed that 

sensitivity improved for increasing sulci depths (Fig. 3-6) which indicated higher chances 

of deeper sulci to be detected by this method. The method showed reasonable sensitivity 

(> 60%) for sulci as shallow as 2 mm which is remarkable. Therefore these simulations 

showcase the feasibility of the proposed method for anatomically distinguishing cortical 

folds from cortical plateaus in the presence of resting state hemodynamic fluctuations 

and thereby enabling the identification of anatomical cortical features by optical means 

alone. 

 

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

C
o
r
r
e
la

ti
o
n
 C

o
e
ff

lateral distance (mm)

D
e
p
th

 i
n
 m

m

lateral distance (mm)

8 10 12 14 16 18 20

5

10

15

Scalp

Skull

CSF

Gray Matter

White Matter

depth (mm)

 

Figure 3-5 Depth measurement along a Sagittal plane of the tissue model 
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Figure 3-6 Sensitivity of sulcus detection as a function of sulcus depth 

 
3.4 Activation Detection Sensitivity Analysis 

By pushing the detector spacing to a tight 1 mm grid layout from an approximate 

15 mm spatial sampling that is typical of current fNIRS systems much higher area 

coverage of the scalp is possible. It is therefore of high interest to calculate the 

advantages in signal detection efficiency due to dense spatial sampling. In current fNIRS 

systems detector fiber bundles can often not be packed closer than 10 mm from each 

other due to the thickness of fiber bundle holders. In the proposed design the fibers are 

not bundled, but have a brush formation than enables their tight packing on the scalp 

surface. The proposed system allows grouping the signal read out from multiple detectors 

virtually and thus attain any desired detector diameter or shape. This dense layout also 

ensures that there are always detectors positioned at the most sensitive detection region 

for a given activation location, which cannot be guaranteed with sparser sampling. The 

optical density spatial profile of the emerging light at the scalp after traversing through the 
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cortical region of interest can be thought to have a point spread function profile and 

hence the size and position of the detector becomes crucial for measuring the signal at 

the most sensitive spot and exploiting the entire measurable signal intensity over the 

existing background coming from hemodynamics i.e. to obtain a good Signal-to-Noise 

Ratio (SNR). 

The change in optical density at detector level data series determined in section 

2.3. (Eq. 2.5) is used towards SNR analysis for investigating the optimum detector size 

and optimum detector placement with respect to the relative light source position and the 

activation region location in brain. The SNR is calculated as (Eq. 3.2): 

SNR = (Mean of amplitude at peak) 2sec / (Std. deviation of amplitudes at baseline) 5sec 

                      3.2 

The SNR was calculated for cases where the signal was averaged for multiple 

epochs. In this case an epoch was defined as tapping for 16 sec at 1Hz and repeating 

the block 7 times as explained in section 2.4.2. Signal at peak was averaged for a 2 sec 

interval in order to eliminate noise contributions. Contrast-to-Noise (CNR) is also a 

commonly used metric to define signal strength over background by cancelling the signal 

offset that may result from baseline signals. However, with fNIRS time-series data being 

converted to ΔO.D. the baseline is centered on zero and SNR and CNR yield the same 

results. Hence, we proceed with the SNR metric to estimate an optimum detector size 

and detector placement for detecting activation signal and to also quantify by how much 

the proposed fNIRS architecture could improve the detected activation SNR compared to 

existing fNIRS systems. 

3.4.1 Detector Size Analysis 

The physical size of areas of the scalp containing information about activation is 

larger than the 3 mm fiber bundle detector diameter that current fNIRS systems often 



 

45 

use. The remaining area on the scalp carrying information about activation is not 

collected in those cases. It was therefore hypothesized that the dense carpeting of the 

scalp with optical fibers would greatly improve the amount of activation signal detected. 

However, increasing detector size indefinitely, i.e. integrating signal from an ever larger 

number of detector fibers, would not improve SNR as beyond a certain size all that is 

being detected is background hemodynamic noise. This logic led to the hypothesis that 

an optimal detector size must exist, though at the cost of the spatial resolution of 

reconstructed images which is not studied in this work. To identify the optimum SNR 

detector size, we grouped multiple fibers and added their signals within circles of  3 mm,  

5 mm,  7 mm,  9 mm,  11 mm,  13 mm, 15 mm, and  17 mm diameter and compared their 

SNR. These detectors were arranged concentrically and centered over most sensitive 

area to activation signal, i.e. these were source-detectors whose ‘banana’-shaped 

sensitivity area intersected with the activation region in the brain. The detector layout and 

SNR results are plotted in Figure 3-7, respectively. SNR increased as the detector size 

increased until it reached a 13 mm diameter beyond which point it dropped, indicating 

that background noise contributions were growing stronger for larger diameters. The SNR 

results were consistent for all the averaged epoch cases. The gain in sensitivity of 13 mm 

versus the 3 mm diameter detectors was ~125%.  
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Figure 3-7 (top) Sagittal view of the tissue model with overlaid source, detectors and the 

‘banana’ shaped area that photon trajectories sampled through the activation area 

(source= red square; detectors= white squares); (bottom) Detector level ΔO.D. map with 

2-D 
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Figure 3-8 SNR results for 1 through 4 averaged 16 sec taping epochs to determine 

optimum detector size 

3.4.2 Detector Placement Analysis 

In section 3.3.1, the detectors were intentionally placed over the sensitive 

detection zone so as to estimate optimum detector size in the best case scenario. In that 

case the gain in SNR over the standard 3 mm detector was ~125%. However, in reality, 

such a situation is rare due to the limited spatial sampling permitted by the conventional 

systems and hence we need to also explore the relative gain in SNR when the traditional 

3 mm diameter fiber bundles do not happen to be at the most sensitive location. In this 

comparison it is implicitly assumed that the dense carpeting with individual detector fibers 

will always enable to have some detectors centered over the sensitive area. This SNR 

comparison was performed between 13mm diameter detector optimally positioned (as 

this is always possible) and the 3mm diameter detectors centered at the source-detector 

distance by laterally displaced by an angle of 15o and 60o (Fig. 3-9). The13mm detector 
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placed in line with the light source and the activation region over the most sensitive 

detectors detected 1.7 – 4.1 times the SNR for a detector displaced at 60o depending on 

the number of tapping epochs included in the averaging, while the detector deviated by 

15o did not show significant additional losses compared to the optical location (Fig. 3-10). 

The conclusion from this part of the work is therefore that dense spatial sampling can 

always offer SNR improvements, but the main advantage is that it can do so in a spatially 

uniform manner that is not possible to attain with the sparse spatial sampling of current 

fNIRS systems. Further work is needed to determine the SNR at the image, rather than 

the single source-detector channel level. 
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Figure 3-9 Sagittal view of tissue model with overlaid source, detectors and the ‘banana’ 

shaped area that photon trajectories sampled through the activation area (source= red 

square; detector= white squares); (bottom) Detector level ΔO.D. with 2-D detector place 
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Figure 3-10 Results for 1 through 4 averaged 16 sec tapping epochs were used to 

quantify how detector placement relative to the activation location affected SNR 

 
3.4.3 Protocol Duration Analyses 

Based on the merits in detection sensitivity of the13mm diameter detector over 

the traditional 3mm diameter detector observed in sections 3.3.1 and 3.3.2, it was 

intriguing to see if epoch duration had an effect on SNR when comparing the optical to 

the traditional detector sizes. Two epoch duration cases of 4 sec and 8 sec were 

compared with the original 16 sec case, with all tapping tasks designed at 1Hz for the 13 

mm diameter (Fig. 3-11) and 3 mm diameter (Fig. 3-12) detectors respectively. The 

detectability limit was defined as SNR=1. Based on the SNR results found, minimum 

detectable epoch duration for the 13 mm diameter detector was ~8 sec whereas it was 

>16 sec for the 3 mm diameter detector. These simulations results indicate that total 
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protocol duration could be shortened by at least a factor of two with the high-density 

fNIRS system.  

 

 

Figure 3-11 SNR results when averaging 1 through 4 epochs for epoch durations of 16 

sec, 8 sec, and 4 sec and a 3 mm detector diameter, centered over the activation area on 

the scalp 

Ø13mm 
detector 

Ø3mm 
detector 
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3.5 Photon Budget 

It was important to estimate the photons that would be reaching the detectors 

and if the results were true and within the safety limits {Strangman, 2002 #1205}. In order 

to do so, we calculated the power reaching the detectors and the losses in the path of 

photons. Tissue propagation losses of the order of 106 are commonly observed along the 

path of light through head. Further, at the interface of scalp with detector fibers, losses 

might occur commonly and are quantified based on photon detection efficiency {Khan, 

2012 #1201}. Losses in photons along the detector fiber occur due to bundling of multiple 

fibers defined by fiber fill factor (60%) and also due to attenuation along the fiber length 

(60db/km). Total loss factor assuming good fiber-scalp contact and a 3m long optical 

bundle is 100% photon detection efficiency X 60% fill factor X 95% attenuation along a 

3m long fiber = 57%. Considering safety limits in assuming 5mW power at source the 

power reaching the Avalanche Photodiode (APD) detector is: 5mW x fraction of photon x 

total loss factor. Calculating rate of photons reaching the APD for cases of detectors 

placed at 25mm, 30 mm and 35 mm is shown in Table 3-2. 

Table 3-2 Detector photon rate calculation 

Source-detector 

separation 

distance (mm) 

Fraction of 

photons arriving at 

detector fibers 

Power reaching at APD 

(5mW x fraction of photon x 

total loss factor) 

Rate of photons 

at 830 nm  

(per sec) 

25 mm 3.7x10-6 2.6 nW 1 x 10 10 

30 mm 1.5x10-6 1 nW 4 x10 9 

35 mm 9x10-7 0.7 nW 3 x 10 9 
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Since, APD dark count rates are in the range of 500 photons/sec, we conclude 

that photons reaching the APD are detectable from an individual fiber under laser safety 

condition for tissues.    
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Chapter 4 

Conclusions and Future Work 

4.1 Main Results of the Simulation Studies on the Proposed High Density FNIRS System 

This work explored some of the potential improvements that a high density fNIRS 

system could offer compared to current systems. Though this work did not deal with the 

great challenges involved in building the hardware for such a system, the simulations 

performed on a realistic head geometry indicate the great potential of such a system. The 

proposed capitalizes on the possibility of higher spatial sampling made possible by the 

advancements in optodes with introduction of the brush optode concept. In this large-

scale imaging set-up, detectors can be overlaid on the entire scalp that could offer new 

capabilities compared to traditional fNIRS systems.  

One novel capability that high spatial sampling could offer is the mapping of 

anatomical features by optical means alone. The 2-D topographical image reconstruction 

data derived by solving the inverse problem in a resting state condition holds the key for 

identifying anatomical markers. This was demonstrated by distinguishing a cortical fold 

from a cortical gyri region by applying the cross-correlation technique described in 

section 3.3. The resulting sulcus localization was shown to work for signals collected form 

within 3.5 mm on either side of the region where the sulcus projects on the scalp. Due to 

the flexibility of the proposed system afforded by dense spatial sampling there would 

always be some detector fibers within that distance to enable detecting the sulcus. The 

simulation results also showed that the system could identify even a 2 mm deep sulcus 

with over 50% sensitivity (section 3.3.2). The proposed analysis method shows potential 

to tell deeper and shallower sulci apart, but this was not pursued in this work.  
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The proposed imaging set-up also showed superiority in the SNR detected for 

cortical activation resulting from a finger tapping motor task when compared to the 

corresponding performance by a conventional fNIRS system. Results from this study 

indicated that a detector of diameter size 13 mm was ideal for the strongest activation 

detection over baseline hemodynamics. The SNR gain ranged from 125% to 400% over 

the conventional detectors of diameter size 3mm as was calculated based on the 

placement of the conventional detectors (sections 3.4.1 and 3.4.2). These estimates were 

made on the premise that the proposed system can group fibers from the region that 

detects the most activation, which cannot be guaranteed by conventional fNIRS systems 

due to their much sparser spatial sampling. The estimated improvements in SNR by the 

proposed system are likely to contribute in reducing the length of protocols, as the 

improved signal collection efficiency would reduce the minimum number of repetitions 

needed to attain detectable activation. The proposed system promises a protocol 

reduction by a factor of ~2 (section 3.4.3) though image based, rather than single 

channel based studies need to be done to verify this result. Shortening the protocol 

duration is very important in cases where the subjects have challenges to execute the 

task and secondarily in reducing the costs associated with administering these 

measurements.  

The simulation results in this study have shown an optimistic potential to take 

fNIRS imaging studies towards the next generation system that could become a good 

complement to the other current imaging modalities.  More work would however be 

needed to further assert these computational results and develop the hardware 

capacities needed to implement such measurements in the real world.  
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4.2 Future Work 

Although the studies performed in this work showed the great potential of a high 

density fNIRS system to be used as a new technique for marking anatomical features, 

these results were limited by a few shortcomings.  

The most important limitation was using a homogenous ‘A’ matrix (section 

2.3.4.2) for the 2-D reconstruction of simulation data for the anatomical tissue model. It 

would be preferable to calculate the ‘A’ matrix based on the heterogeneous tissues that 

exist in the brain and assess for any improvements on the anatomical mapping potential 

of the proposed method. However, calculating an ‘A’ matrix for a heterogeneous tissue 

geometry by use of Monte Carlo would require very long computation times even when 

using the MCX code. From the simulation set-up (section 2.3.3) run-time, a prorated time 

estimate is about 4 months!  

The next limitation in this study came from the assumption that the surface 

curvature in the anatomical tissue model was in fact a horizontal plane projection, to 

support the existing design of the 2-D reconstruction algorithm (section2.3.4.2). The 

assumption of a planar scalp surface could have possibly created errors in the computed 

results for areas near the edge of the FOV used in this work where the curvature was not 

flat. Clearly this limitation would have to be overcome for the proposed method to be 

applicable over the entire head surface. However, switching to a curved geometry 

requires a lot of additional work, e.g. it makes it harder to compute where a point is on a 

surface or what the distance between two points on the surface is. These challenges 

would need to be addressed in future work. 

Furthermore, when it came to reconstructing images form very densely sampled 

data, the usual fNIRS image reconstruction algorithm failed due to excessive memory 

requirements. Furthermore, the number of source-detector pairs that could contribute 
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more noise than signal into the image reconstruction is a lot higher in this densely 

sampled geometry. These issues could be addressed by selective filtering of noisy 

source-detector pairs before data are incorporated into a memory efficient image 

reconstruction algorithm. (Yodh_DOIcomplex)  

Also, image resolution could potentially be improved by improving spatial 

sampling and signal detection sensitivity. This area of work is called super-resolution and 

has been explored very little to date. (Zhang_superresolution)
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Appendix A 

MATLAB Codes for Noise Sourcing and Addition 
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SOURCING NOISE FROM FNIRS SOURCE 

 

clc 

% clear all 

% close all 

 

%% load input 

 

data = load('WL_830_Fenghua.mat'); 

fNIRs_data(:,2:16) = data.OD830; 

fNIRs_data(:,1) = 0.0966:1/10.35:306.5; 

% Time Src1:Det1 Src1:Det2 Src1:Det3 Src1:Det4

 Src1:Det5 Src2:Det1 Src2:Det2 Src2:Det3 Src2:Det4

 Src2:Det5 Src3:Det1 Src3:Det2 Src3:Det3 Src3:Det4

 Src3:Det5 

% S3D5 = 1 4 2 5 3 ; S(1 2 3) ; D(1 2 3 4 5) 

% we chose Src1:Det4 Src1:Det2 Src1:Det5 Src1:Det3 for analysis 

time = fNIRs_data(:,1); 

s1_dist1 = fNIRs_data(:,5); s3_dist1 = fNIRs_data(:,16); 

s1_dist2 = fNIRs_data(:,3); s3_dist2 = fNIRs_data(:,13); 

s1_dist3 = fNIRs_data(:,6); s3_dist3 = fNIRs_data(:,15); 

s1_dist4 = fNIRs_data(:,4); s3_dist4 = fNIRs_data(:,12); 

figure(3); hold on; plot(time,s1_dist1,'r'); plot(time,s1_dist2,'m'); 

plot(time,s1_dist3,'g'); plot(time,s1_dist4,'b'); hold off; 
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title('Original Reflectance Response @ 830nm Source #1'); legend('1cm' ,'2 cm', 

'3 cm', '4 cm');  

% figure(4); hold on; plot(time,s3_dist1,'r'); plot(time,s3_dist2,'m'); 

plot(time,s3_dist3,'g'); plot(time,s3_dist4,'b'); hold off; 

% title('Original Reflectance Response @ 830nm Source #3'); legend('1cm' ,'2 

cm', '3 cm', '4 cm'); axis([100 150 0.2 3]); 

 

%% Band pass filter 

 

fs = abs(1/(time(2,1)-time(1,1))); 

tlow = 1;  

ylow = -0.05; 

thigh = 3172;  

yhigh = 0.05; 

L = length(time(1:3172)); 

NFFT = 2^nextpow2(L); % Next power of 2 from length of signal 

 

%% Mayer source #1 

 

[b1,a1] = butter(3,0.15*2/fs); 

M_S1_Dist1 = filtfilt(b1,a1,s1_dist1); M_S1_Dist2 = filtfilt(b1,a1,s1_dist2); 

M_S1_Dist3 = filtfilt(b1,a1,s1_dist3); M_S1_Dist4 = filtfilt(b1,a1,s1_dist4); 

[b1,a1] = butter(3,0.01*2/fs,'high'); 

M_S1_Dist1 = filtfilt(b1,a1,M_S1_Dist1); M_S1_Dist2 = filtfilt(b1,a1,M_S1_Dist2); 

M_S1_Dist3 = filtfilt(b1,a1,M_S1_Dist3); M_S1_Dist4 = filtfilt(b1,a1,M_S1_Dist4); 



 

61 

%Plot Time response source #1 

figure(13); 

plot(time,M_S1_Dist1,'r',time,M_S1_Dist2,'m',time,M_S1_Dist3,'g',time,M_S1_Dist4,'b');  

title('Band Filtered Mayer Waves source #1'); legend('1cm' ,'2 cm', '3 cm', '4 cm'); 

xlabel('Time (sec)'); ylabel('Delta O.D @ 830nm'); %axis([tlow thigh ylow yhigh]); 

Y1 = fft(M_S1_Dist1(tlow:thigh),NFFT)/L; Y2 = 

fft(M_S1_Dist2(tlow:thigh),NFFT)/L; Y3 = fft(M_S1_Dist3(tlow:thigh),NFFT)/L; Y4 = 

fft(M_S1_Dist4(tlow:thigh),NFFT)/L; 

f1 = fs/2*linspace(0,1,NFFT/2+1); f2 = fs/2*linspace(0,1,NFFT/2+1); f3 = 

fs/2*linspace(0,1,NFFT/2+1); f4 = fs/2*linspace(0,1,NFFT/2+1); 

y1 = abs(Y1)/max(abs(Y1)); 

% Plot single-sided amplitude spectrum source #1 

figure(141); subplot(2,1,1); 

plot(f1,2*abs(y1(1:NFFT/2+1)),'r');xlim([0 0.2]); %f3,2*abs(Y3(1:NFFT/2+1)),'g'); 

% divide by 11.1 

title('Mayer Single-Sided Spectrum Source #1'); legend('1cm' ,'3 cm'); 

xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle source #1 

subplot(2,1,2); 

phase1 = unwrap(angle(Y1(1:NFFT/2+1))); phase2 = 

unwrap(angle(Y2(1:NFFT/2+1))); phase3 = unwrap(angle(Y3(1:NFFT/2+1))); phase4 = 

unwrap(angle(Y4(1:NFFT/2+1))); 

plot(f1,phase1,'r',f3,phase3,'g');legend('1cm' ,'3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0 0.2]); grid on 
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%% Mayer waves distance comparison pt 1 

 

figure(97); subplot(2,1,1); hold on; 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'b'); xlim([0 0.2]);  

 

figure(98); subplot(2,1,1); hold on; 

plot(f2,2*abs(Y2(1:NFFT/2+1)),'b'); xlim([0 0.2]);  

 

figure(99); subplot(2,1,1); hold on; 

plot(f3,2*abs(Y3(1:NFFT/2+1)),'b'); xlim([0 0.2]);  

 

% Plot phase angle  

figure(97); subplot(2,1,2); hold on; 

plot(f1,phase1,'b'); 

 

figure(98); subplot(2,1,2); hold on; 

plot(f2,phase2,'b'); 

 

figure(99); subplot(2,1,2); hold on; 

plot(f3,phase3,'b'); 

 

clear b1 a1 Y1 Y2 Y3 Y4 f1 f2 f3 f4; 

%% Mayer source #3 
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[b1,a1] = butter(3,0.15*2/fs); % 0.15 Hz Upper limit 

M_S3_Dist1 = filtfilt(b1,a1,s3_dist1); M_S3_Dist2 = filtfilt(b1,a1,s3_dist2); 

M_S3_Dist3 = filtfilt(b1,a1,s3_dist3); M_S3_Dist4 = filtfilt(b1,a1,s3_dist4); 

[b1,a1] = butter(3,0.01*2/fs,'high'); % 0.01 Hz Lower limit 

M_S3_Dist1 = filtfilt(b1,a1,M_S3_Dist1); M_S3_Dist2 = filtfilt(b1,a1,M_S3_Dist2); 

M_S3_Dist3 = filtfilt(b1,a1,M_S3_Dist3); M_S3_Dist4 = filtfilt(b1,a1,M_S3_Dist4); 

 

%Plot Time response source #3 

figure(33); 

plot(time,M_S3_Dist1,'r',time,M_S3_Dist2,'m',time,M_S3_Dist3,'g',time,M_S3_Dist4,'b');  

title('Band Filtered Mayer Waves source #3'); legend('1cm' ,'2 cm', '3 cm', '4 cm'); 

xlabel('Time (sec)'); ylabel('Reflectance @ 830nm'); %axis([tlow thigh ylow yhigh]); 

Y1 = fft(M_S3_Dist1(tlow:thigh),NFFT)/L; Y2 = 

fft(M_S3_Dist2(tlow:thigh),NFFT)/L; Y3 = fft(M_S3_Dist3(tlow:thigh),NFFT)/L; Y4 = 

fft(M_S3_Dist4(tlow:thigh),NFFT)/L; 

f1 = fs/2*linspace(0,1,NFFT/2+1); f2 = fs/2*linspace(0,1,NFFT/2+1); f3 = 

fs/2*linspace(0,1,NFFT/2+1); f4 = fs/2*linspace(0,1,NFFT/2+1); 

 

% Plot single-sided amplitude spectrum source #3 

figure(34); subplot(2,1,1); 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'r',f3,2*abs(Y3(1:NFFT/2+1)),'g') ; xlim([0 0.2]); 

title('Mayer Single-Sided Spectrum Source #3'); legend('1cm' ,'3 cm'); 

xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle source #13 
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subplot(2,1,2); 

phase1 = unwrap(angle(Y1(1:NFFT/2+1))); phase2 = 

unwrap(angle(Y2(1:NFFT/2+1))); phase3 = unwrap(angle(Y3(1:NFFT/2+1))); phase4 = 

unwrap(angle(Y4(1:NFFT/2+1))); 

plot(f1,phase1,'r',f3,phase3,'g');legend('1cm' , '3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0 0.2]); grid on;  

 

%% Mayer waves distance comparison pt 2 

 

figure(97); subplot(2,1,1); hold on; 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'r'); xlim([0 0.2]);  

title('Mayer Single-Sided Spectrum for Source-Detectors 1 cm apart');  

legend('Source #1 1 cm', 'Source #3 1 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

figure(98); subplot(2,1,1); hold on; 

plot(f2,2*abs(Y2(1:NFFT/2+1)),'r'); xlim([0 0.2]);  

title('Mayer Single-Sided Spectrum for Source-Detectors 2 cm apart');  

legend('Source #1 2 cm', 'Source #3 2 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

figure(99); subplot(2,1,1); hold on; 

plot(f3,2*abs(Y3(1:NFFT/2+1)),'r'); xlim([0 0.2]);  

title('Mayer Single-Sided Spectrum for Source-Detectors 3 cm apart');  
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legend('Source #1 3 cm', 'Source #3 3 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle  

figure(97); subplot(2,1,2); hold on; 

plot(f2,phase2,'r');legend('Source #1 1 cm', 'Source #3 1 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0 0.2]); grid on 

 

figure(98); subplot(2,1,2); hold on; 

plot(f1,phase1,'r');legend('Source #1 2 cm', 'Source #3 2 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0 0.2]); grid on 

 

figure(99); subplot(2,1,2); hold on; 

plot(f3,phase3,'r');legend('Source #1 3 cm','Source #3 3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0 0.2]); grid on 

 

clear b1 a1 Y1 Y2 Y3 Y4 f1 f2 f3 f4; 

 

%% Resp source #1 

 

[b2,a2] = butter(9, 0.4*2/fs); % 0.4 Hz Upper limit 

R_S1_Dist1 = filtfilt(b2,a2,s1_dist1); R_S1_Dist2 = filtfilt(b2,a2,s1_dist2); 

R_S1_Dist3 = filtfilt(b2,a2,s1_dist3); R_S1_Dist4 = filtfilt(b2,a2,s1_dist4); 

[b2,a2] = butter(9, 0.25*2/fs,'high'); % 0.25 Hz Lower limit 
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R_S1_Dist1 = filtfilt(b2,a2,R_S1_Dist1); R_S1_Dist2 = filtfilt(b2,a2,R_S1_Dist2); 

R_S1_Dist3 = filtfilt(b2,a2,R_S1_Dist3); R_S1_Dist4 = filtfilt(b2,a2,R_S1_Dist4); 

 

%Plot Time response 

figure(15); 

plot(time,R_S1_Dist1,'r',time,R_S1_Dist2,'m',time,R_S1_Dist3,'g',time,R_S1_Dist4,'b');  

title('Band Filtered Respiratory Waves for source #1'); legend('1cm' ,'2 cm', '3 

cm', '4 cm'); xlabel('Time (sec)'); ylabel('Reflectance @ 830nm'); axis([101 160 -0.005 

0.005]); 

Y1 = fft(R_S1_Dist1(tlow:thigh),NFFT)/L; Y2 = 

fft(R_S1_Dist2(tlow:thigh),NFFT)/L; Y3 = fft(R_S1_Dist3(tlow:thigh),NFFT)/L; Y4 = 

fft(R_S1_Dist4(tlow:thigh),NFFT)/L; 

f1 = fs/2*linspace(0,1,NFFT/2+1);f2 = fs/2*linspace(0,1,NFFT/2+1);f3 = 

fs/2*linspace(0,1,NFFT/2+1);f4 = fs/2*linspace(0,1,NFFT/2+1); 

 

% Plot single-sided amplitude spectrum. 

figure(16); subplot(2,1,1); 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'r',f3,2*abs(Y3(1:NFFT/2+1)),'g') ; xlim([0.1 0.55]); 

title('Respiratory Single-Sided Spectrum for Source #1'); legend('1cm' ,'3 cm'); 

xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle 

subplot(2,1,2); 
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phase1 = unwrap(angle(Y1(1:NFFT/2+1))); phase2 = 

unwrap(angle(Y2(1:NFFT/2+1))); phase3 = unwrap(angle(Y3(1:NFFT/2+1))); phase4 = 

unwrap(angle(Y4(1:NFFT/2+1))); 

plot(f1,phase1,'r',f3,phase3,'g');legend('1cm' ,'3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)');grid on; xlim([0.1 0.55]); 

 

%% Resp waves distance comparison pt 1 

 

figure(87); subplot(2,1,1); hold on; 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'b'); xlim([0.1 0.55]);  

 

figure(88); subplot(2,1,1); hold on; 

plot(f2,2*abs(Y2(1:NFFT/2+1)),'b'); xlim([0.1 0.55]);  

 

figure(89); subplot(2,1,1); hold on; 

plot(f3,2*abs(Y3(1:NFFT/2+1)),'b'); xlim([0.1 0.55]);  

 

% Plot phase angle  

figure(87); subplot(2,1,2); hold on; 

plot(f1,phase1,'b');  xlim([0.1 0.55]);  

 

figure(88); subplot(2,1,2); hold on; 

plot(f2,phase2,'b');  xlim([0.1 0.55]);  

 

figure(89); subplot(2,1,2); hold on; 
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plot(f3,phase3,'b'); xlim([0.1 0.55]);  

 

clear b2 a2 Y1 Y2 Y3 Y4 f1 f2 f3 f4; 

 

%% Resp source #3 

 

[b2,a2] = butter(9, 0.4*2/fs); 

R_S3_Dist1 = filtfilt(b2,a2,s3_dist1); R_S3_Dist2 = filtfilt(b2,a2,s3_dist2); 

R_S3_Dist3 = filtfilt(b2,a2,s3_dist3); R_S3_Dist4 = filtfilt(b2,a2,s3_dist4); 

[b2,a2] = butter(9, 0.25*2/fs,'high'); 

R_S3_Dist1 = filtfilt(b2,a2,R_S3_Dist1); R_S3_Dist2 = filtfilt(b2,a2,R_S3_Dist2); 

R_S3_Dist3 = filtfilt(b2,a2,R_S3_Dist3); R_S3_Dist4 = filtfilt(b2,a2,R_S3_Dist4); 

 

% Plot Time response 

figure(35); 

plot(time,R_S3_Dist1,'r',time,R_S3_Dist2,'m',time,R_S3_Dist3,'g',time,R_S3_Dist4,'b');  

title('Band Filtered Respiratory Waves for source #3'); legend('1cm' ,'2 cm', '3 

cm', '4 cm'); xlabel('Time (sec)'); ylabel('Reflectance @ 830nm'); axis([101 160 -0.005 

0.005]); 

Y1 = fft(R_S3_Dist1(tlow:thigh),NFFT)/L; Y2 = 

fft(R_S3_Dist2(tlow:thigh),NFFT)/L; Y3 = fft(R_S3_Dist3(tlow:thigh),NFFT)/L; Y4 = 

fft(R_S3_Dist4(tlow:thigh),NFFT)/L; 

f1 = fs/2*linspace(0,1,NFFT/2+1);f2 = fs/2*linspace(0,1,NFFT/2+1);f3 = 

fs/2*linspace(0,1,NFFT/2+1);f4 = fs/2*linspace(0,1,NFFT/2+1); 

% Plot single-sided amplitude spectrum. 
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figure(36); subplot(2,1,1); 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'r',f3,2*abs(Y3(1:NFFT/2+1)),'g') ;xlim([0.1 0.55]); 

title('Respiratory Single-Sided Spectrum for Source #3'); legend('1cm' ,'3 cm'); 

xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle 

subplot(2,1,2); 

phase1 = unwrap(angle(Y1(1:NFFT/2+1))); phase2 = 

unwrap(angle(Y2(1:NFFT/2+1))); phase3 = unwrap(angle(Y3(1:NFFT/2+1))); phase4 = 

unwrap(angle(Y4(1:NFFT/2+1))); 

plot(f1,phase1,'r',f3,phase3,'g');legend('1cm' , '3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)');grid on;xlim([0.1 0.55]); 

 

%% Resp waves distance comparison pt 3 

 

figure(87); subplot(2,1,1); hold on; 

plot(f1,2*abs(Y1(1:NFFT/2+1)),'r'); xlim([0.1 0.55]);  

title('Respiratory Single-Sided Spectrum for sources 1 cm apart');  

legend('Source #1 1 cm', 'Source #3 1 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

figure(88); subplot(2,1,1); hold on; 

plot(f2,2*abs(Y2(1:NFFT/2+1)),'r'); xlim([0.1 0.55]);  

title('Respiratory Single-Sided Spectrum for sources at 2cm apart');  
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legend('Source #1 2 cm', 'Source #3 2 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

figure(89); subplot(2,1,1); hold on; 

plot(f3,2*abs(Y3(1:NFFT/2+1)),'r'); xlim([0.1 0.55]);  

title('Respiratory Single-Sided Spectrum for sources at 3cm apart');  

legend('Source #1 3 cm', 'Source #3 3 cm');xlabel('Frequency (Hz)'); 

ylabel('|Y(f)|'); grid on; 

 

% Plot phase angle  

figure(87); subplot(2,1,2); hold on; 

plot(f1,phase1,'r');legend('Source #1 1 cm', 'Source #3 1 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0.1 0.55]); grid on 

 

figure(88); subplot(2,1,2); hold on; 

plot(f2,phase2,'r');legend('Source #1 2 cm', 'Source #3 2 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0.1 0.55]); grid on 

 

figure(89); subplot(2,1,2); hold on; 

plot(f3,phase3,'r');legend('Source #1 3 cm','Source #3 3 cm'); xlabel('Frequency 

(Hz)');ylabel('Phase (Degrees)'); xlim([0.1 0.55]); grid on 

 

clear b2 a2 Y1 Y2 Y3 Y4 f1 f2 f3 f4; 

 

%% Reconstruction of scalp signals in time domain 
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err1=sqrt(mse(M_S1_Dist3/1.4,M_S1_Dist1)); 

figure(53); plot(time,M_S1_Dist3/1.4,'r',time,M_S1_Dist1,'g');  

title('Reconstructed scalp Mayer Waves source #1'); legend('1cm reconstructed' , 

'1 cm recorded'); xlabel('Time (sec)'); ylabel('O.D @ 830nm'); %axis([tlow thigh ylow 

yhigh]); 

err2=sqrt(mse(M_S3_Dist3/1.6,M_S3_Dist1)); 

figure(55); plot(time,M_S3_Dist3/1.6,'r',time,M_S3_Dist1,'g');  

title('Reconstructed scalp Mayer Waves source #3'); legend('1cm reconstructed' , 

'1 cm recorded'); xlabel('Time (sec)'); ylabel('O.D @ 830nm'); %axis([tlow thigh ylow 

yhigh]); 

 

err3=sqrt(mse(R_S1_Dist3/0.96,R_S1_Dist1)); 

figure(73); plot(time,R_S1_Dist3/0.96,'r',time,R_S1_Dist1,'g');  

title('Reconstructed scalp Respiratory Waves source #1'); legend('1cm 

reconstructed' , '1 cm recorded'); xlabel('Time (sec)'); ylabel('O.D @ 830nm'); %axis([101 

160 -0.005 0.005]); 

err4=sqrt(mse(R_S3_Dist3/0.91,R_S3_Dist1)); 

figure(75); plot(time,R_S3_Dist3/0.91,'r',time,R_S3_Dist1,'g');  

title('Reconstructed scalp Respiratory Waves source #3'); legend('1cm 

reconstructed' , '1 cm recorded'); xlabel('Time (sec)'); ylabel('O.D @ 830nm'); %axis([101 

160 -0.005 0.005]); 

 

%% Save time series for grey and scalp after verification 
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%close all; 

save('fNIRs_mayer_resp_filtered_data','fs','time','M_S1_Dist3','M_S1_Dist1','M_S

3_Dist3','M_S3_Dist1','R_S1_Dist3','R_S1_Dist1','R_S3_Dist3','R_S3_Dist1'); 

%clear all;
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SOURCE NOISE FROM FMRI SOURCE 

 

% % The code takes ~2 hrs for execution so save variables intermittently 

% % It does the following : Upscale fMRI data from 3mm*3mm*3mm to 

1mm*1mm*1mm 

% % It Maps the normalized fMRI data series with bias-corrected anatomical 

structure 

% % It filters the f-MRI data for Mayer waves and up-samples it from 0.5 Hz 

% % to 10.35 Hz to match the f-NIRs data 

% % It performs cross-correlation between all grey voxels and based on USER 

% % INPUT cross correlation metric groups the grey voxels together 

% % It forcefully writes the voxels in premotor activation as independent 

% % tissue types 

% % It also groups the scalp voxels based on corresponding grey voxels 

%  

%% f-MRI Input and band pass filtering 

 

clear all; 

data = load('fseries.mat'); 

series = data.img_fseries(6:28,16:40,18:42,1:153); % permute normalized to bias 

corrected ref 

clear data; 

 

%% Up-scale fMRI data to 1mm*1mm*1mm 
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[X,Y,Z]=ndgrid(1:23,1:25,1:25); 

[X1,Y1,Z1]=ndgrid(1:1/3:23,1:1/3:25,1:1/3:25); 

keep_V2=zeros(66,70,70,153); 

for t = 1:size(series,4) 

    for z = 1:size(series,3) 

        temp_data(:,:,size(series,3)-z+1)=series(:,:,z,t); % reverse z 

    end 

    V2=interpn(X,Y,Z,temp_data,X1,Y1,Z1,'nearest'); 

    keep_V2(:,:,:,t) = V2(1:66,2:71,2:71); % keep reqd data in 1mm dimension 

    clear data temp_data keep_data V2; 

end 

clear series X Y Z T X1 Y1 Z1 T1; 

 

%% Anatomical Input 

 

load('tissue_model.mat'); 

grey = tissue_model==4; 

grey_window=zeros(66,70,70,153); 

for t = 1:153 

    grey_window(:,:,:,t)= grey; 

end 

scalp = (tissue_model==1); 

clear t; 
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%% Map f-MRI to anatomical input 

fMRI_grey_map = grey_window.*keep_V2; 

 

i = 1;j=1; 

for ref_x = 1:66 

    for ref_y = 1:70 

        for ref_z = 1:70 

            if grey(ref_x,ref_y,ref_z)==1 

            coords_g(i,1:3) = [ref_x,ref_y,ref_z]; 

            time_series(i,1:153) = (fMRI_grey_map(ref_x,ref_y,ref_z,1:153)); 

            i=i+1; 

            end 

            if scalp(ref_x,ref_y,ref_z)==1 

            coords_s(j,1:3) = [ref_x,ref_y,ref_z]; 

            j = j+1; 

            end 

        end 

    end 

end 

clear i j ref_x ref_y ref_z grey_window keep_V2; 

 

%% Filter Mayer waves from f-MRI  

 

fs = 0.5; %fMRI frequency 

for row = 1:size(time_series,1) 
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    tic 

    [b2,a2] = butter(3, 0.15*2/fs); 

    filt_high(row,1:153) = filtfilt(b2,a2,time_series(row,:)); 

    [b1,a1] = butter(3, 0.01*2/fs,'high'); 

    mayer_series(row,1:153) = filtfilt(b1,a1,filt_high(row,:)); 

    toc 

end 

clear row fs a2 b2 a1 b1 filt_high; 

 

%% Filter non-Mayer waves from f-MRI for furture inclusion 

 

fs = 0.5; %fMRI frequency 

for row = 1:size(time_series,1) 

    tic 

    [b2,a2] = butter(3, 0.01*2/fs); 

    filt_low(row,1:153) = filtfilt(b2,a2,time_series(row,:)); 

    [b1,a1] = butter(3, 0.15*2/fs,'high'); 

    non_mayer_series(row,1:153) = filtfilt(b1,a1,filt_low(row,:)); 

    toc 

end 

clear row fs a2 b2 a1 b1 filt_high; 

 

%% Save Mayer series 

save('fMRI_preproc_part1'); 

load('fMRI_preproc_part1'); 
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%  

% %% Upsample the mapped grey f-MRI Mayer series 

%  

% %     javaaddpath(which('MatlabGarbageCollector.jar')) 

% %     jheapcl 

for row = 1:size(mayer_series,1) 

    tic 

    t=1:153; 

    T=1:1/(2*10.35):153; % go from 0.5 to 10.35 Hz 

    mayer_us_series(row,:) = spline(t,mayer_series(row,1:153),T); 

    toc 

end 

 

clear t row; 

 

%% Upsample the mapped grey f-MRI non Mayer series 

 

%     javaaddpath(which('MatlabGarbageCollector.jar')) 

%     jheapcl 

for row = 1:size(non_mayer_series,1) 

    tic 

    t=1:153; 

    T=1:1/(2*10.35):153; % go from 0.5 to 10.35 Hz 

    non_mayer_us_series(row,:) = spline(t,non_mayer_series(row,1:153),T); 

    toc 
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end 

 

clear t row; 

%% Save upsampled Mayer series 

save('fMRI_preproc_part2','mayer_us_series','non_mayer_us_series','-v7.3'); 

load('fMRI_preproc_part2.mat') 

%% Input f-NIRs preprocessed data 

 

load('fNIRs_mayer_resp_filtered_data.mat') 

OD_M_G = (M_S1_Dist3(5:3114))'; % we chose to keep 5 min sequence 

OD_M_S = (M_S1_Dist1(5:3114))'; 

OD_R_G = (R_S1_Dist3)'; % dont time limit for phase shift reasons 

OD_R_S = (R_S1_Dist1)'; 

 

clear M_S1_Dist3 M_S1 Dist1 M_S3_Dist1 M_S3_Dist3 R_S1_Dist3 R_S1 Dist1 

R_S3_Dist1 R_S3_Dist3; 

% Convert Mayer and Respiratory from change in O.D to change in MuA 

 

Mua_M_S = OD_M_S/36.04; 

Mua_M_G = Mua_M_S +(OD_M_G/145.24); % factors derived from mean of 

photon path length in tissues from MC simulation 

figure(1); plot(Mua_M_S); 

Mua_R_S = OD_R_S/36.04; 

Mua_R_G = Mua_R_S +(OD_R_G/145.24); % factors derived from mean of 

photon path length in tissues from MC simulation 
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clear OD_M_G OD_M_S OD_R_G OD_R_S; 

%% Normalize f-MRI mayer time series 

 

load('fMRI_preproc_part2.mat') 

test_BOLD_M_G = mayer_us_series(47015,5:3114);   % coords_g(47015,1:3) = 

(44,37,20)  

test_N_BOLD_M_G = 

bsxfun(@rdivide,bsxfun(@minus,test_BOLD_M_G,mean(test_BOLD_M_G)),std(test_BO

LD_M_G));%BOLD_M_G(:,1)./norm(BOLD_M_G(:,1)); 

figure(2); plot(test_N_BOLD_M_G); 

  

clear test_BOLD_M_G; 

% Convert BOLD to MuA - Grey & Scalp 

 

factor_BOLD_Mua = max(Mua_M_G)/max(test_N_BOLD_M_G); 

N_BOLD_M_G = zeros(size(mayer_us_series(:,5:3114))); 

for row = 1:size(mayer_us_series,1) 

    N_BOLD_M_G (row,:) =  

bsxfun(@rdivide,bsxfun(@minus,mayer_us_series(row,5:3114),mean(mayer_us_series(r

ow,5:3114))),std(mayer_us_series(row,5:3114))); 

end 

N_BOLD_NM_G = zeros(size(non_mayer_us_series(:,5:3114))); 

for row = 1:size(non_mayer_us_series,1) 
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    N_BOLD_NM_G (row,:) = 

bsxfun(@rdivide,bsxfun(@minus,non_mayer_us_series(row,5:3114),mean(non_mayer_u

s_series(row,5:3114))),std(non_mayer_us_series(row,5:3114))); 

end 

%% 

fs = 10.35%abs(1/(time(2,1)-time(1,1))); 

tlow = 1;  

ylow = -0.05; 

thigh = 3174;  

yhigh = 0.05; 

L = length(time(1:3147)); 

NFFT = 2^nextpow2(L);  

f1 = fs/2*linspace(0,1,NFFT/2+1); 

Y1 = fft(mayer_us_series(tlow:thigh),NFFT)/L; 

Y2 = (abs(Y1) - mean(abs(Y1)))/std(abs(Y1)); 

 

figure(14); subplot(2,1,1); 

plot(f1,2*abs(Y2(1:NFFT/2+1)),'r'); xlim([0 0.2]); % divide by 11.1 

title('Mayer Single-Sided Spectrum Source #1'); legend('BOLD'); 

xlabel('Frequency'); 

%% 

% Mayer 

Anat_Mua_M_G = N_BOLD_M_G*factor_BOLD_Mua; 

Anat_Mua_M_S = zeros(size(coords_s,1),size(Anat_Mua_M_G,2)); 

for row = 1:size(coords_s,1) 
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    row_ref = strmatch(coords_s(row,1:2),coords_g(:,1:2)); 

    if size(row_ref,1)==0 

        Anat_Mua_M_S(row,:) = (1/1.5)*Anat_Mua_M_G(1,:); % unmapped scalp - 

grey mapped to first voxel 

    else 

        Anat_Mua_M_S(row,:) = (1/1.5)*Anat_Mua_M_G(row_ref(1),:); 

    end 

end 

 

%Non-Mayer 

Anat_Mua_NM_G = N_BOLD_NM_G*factor_BOLD_Mua; 

 

% Respiratory 

 

load('delay_matrix.mat')  

% the delay file is created in excel keeping 44,37,20 as ref 

% the scalp allows a delay of 0.004 sec/mm. Data sampling is 0.0966 sec 

% the propagation is away from the partition of the hemisphere and sulcus 

 

Anat_Mua_R_G = zeros(size(Anat_Mua_M_G)); 

for row = 1:size(coords_g,1) 

    Anat_Mua_R_G(row,:) = Mua_R_G(5:3114); 

end 

Anat_Mua_R_S = zeros(size(Anat_Mua_M_S)); 

for row = 1:size(coords_s,1) 
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    x = coords_s(row,1); y = coords_s(row,2); 

    shift_delay = shift(x,y); 

    Anat_Mua_R_S(row,:) = Mua_R_S(5+shift_delay:3114+shift_delay);  

end 

 

clear row x y shift_delay test_BOLD_M_G test_N_BOLD_M_G N_BOLD_M_G 

Mua_R_G Mua_R_S Mua_M_G Mua_M_S; 

% Total Mua 

 

Anat_Mua_G = Anat_Mua_M_G + Anat_Mua_R_G + Anat_Mua_NM_G; 

Anat_Mua_S = Anat_Mua_M_S + Anat_Mua_R_S; 

 

clear Anat_Mua_M_G Anat_Mua_M_S Anat_Mua_R_G Anat_Mua_R_S; 

 

% Save Delta MuA data 

save('Delta_MuA_part_1','Anat_Mua_G','Anat_Mua_S','-v7.3'); 

%% Group f-MRI grey voxels & scalp voxels based on correlation metric 

 

tag_value_g = 0; 

[g,iga,igc] = unique(Anat_Mua_G(:,1:311),'rows'); 

tag_g = zeros(size(g,1),1); 

for row = 1:size(g,1) 

    tic 

    if tag_g(row) == 0; 

        tag_value_g = tag_value_g+1; 
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        tag_g(row) = tag_value_g; 

        Gcomp(:,1) = gpuArray(g(row,1:311)); % use only 0.5 min sequence 

        for j = row+1:size(g,1) 

            if tag_g(j) == 0; 

                Gcomp(:,2) = gpuArray(g(j,1:311)); 

                Gtest = xcorr(Gcomp(:,1),Gcomp(:,2),'coeff'); 

                [argvalue,argmax] = max(gather(Gtest)); 

                if argvalue >= 0.5 && argmax >=261 && argmax <=361 % 50% chosen 

because it gives an ideal tissue type number 

                    tag_g(j) = tag_value_g; 

                end 

            end 

        end 

    end  

    toc 

end 

clear row j Gcomp argvalue argmax Gtest; 

 

tag_value_s = 0; 

[s,isa,isc] = unique(Anat_Mua_S(:,1:311),'rows'); 

tag_s = zeros(size(s,1),1); 

for row = 1:size(s,1) 

    tic 

    if tag_s(row) ==0; 

        tag_value_s = tag_value_s+1; 
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        tag_s(row) = tag_value_s; 

        Gcomp(:,1) = gpuArray(s(row,1:311)); % use only 0.5 min sequence 

        for j = row+1:size(s,1) 

            if tag_s(j) == 0; 

                Gcomp(:,2) = gpuArray(s(j,1:311)); 

                Gtest = xcorr(Gcomp(:,1),Gcomp(:,2),'coeff'); 

                [argvalue,argmax] = max(gather(Gtest)); 

                if argvalue >= 0.5 && argmax >=261 && argmax <=361 % 50% chosen 

because it gives an ideal tissue type number 

                    tag_s(j) = tag_value_s; 

                end 

            end 

        end 

    end 

     

    toc 

end 

clear row j Gcomp argvalue argmax Gtest; 

 

save('Delta_MuA_part_2','g','iga','igc','tag_g','s','isa','isc','tag_s'); 

 

% Delta MuA for unique tags 

[unique_tag_g,uga,ugc] = unique(tag_g,'rows'); 

[unique_tag_s,usa,usc] = unique(tag_s,'rows');   

unique_Anat_Mua_G = Anat_Mua_G(iga(uga,1),:); 
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unique_Anat_Mua_S = Anat_Mua_S(isa(usa,1),:); 

save('Delta_MuA_part_3','unique_tag_g','uga','ugc','unique_tag_s','usa','usc','uniq

ue_Anat_Mua_G','unique_Anat_Mua_S','g','s'); 

 

% Grey Scalp Group tagging | Sulcus Forced tagging 

% re-rank = 1 Skull; 2 CSF; 3 White; 4:max grey Grey; 

% max grey:max scalp Scalp; Rest forced sulcus tags 

load('tissue_model.mat'); 

skull_mask = (tissue_model ==2); 

csf_mask = (tissue_model ==3); 

white_mask = (tissue_model ==5); 

tagged_tissue_model = skull_mask*1 + csf_mask*2 + white_mask*3; 

 

offset = 3; % scalp 

for i = 1:size(coords_s,1) 

    tagged_tissue_model(coords_s(i,1),coords_s(i,2),coords_s(i,3)) = 

tag_s(isc(i))+offset; 

end 

 

offset = offset+tag_value_s; % grey 

for i = 1:size(coords_g,1) 

    tagged_tissue_model(coords_g(i,1),coords_g(i,2),coords_g(i,3)) = 

tag_g(igc(i))+offset; 

end 
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offset = offset + tag_value_g + 1;  % sulcus pre-motor cortex 

tagged_tissue_model(42,31:34,20) = offset; tagged_tissue_model(43,32:36,20) = 

offset; tagged_tissue_model(44,33:37,20) = offset;  

tagged_tissue_model(45,36:37,20) = offset;  

tagged_tissue_model(41,29:33,19) = offset; tagged_tissue_model(42,30:34,19) = 

offset; tagged_tissue_model(43,30:35,19) = offset;  

tagged_tissue_model(44,30:36,19) = offset; tagged_tissue_model(45,35:37,19) = 

offset;  

tagged_tissue_model(38,27:30,18) = offset; tagged_tissue_model(39,27:31,18) = 

offset; tagged_tissue_model(40,27:32,18) = offset;  

tagged_tissue_model(41,27:32,18) = offset; tagged_tissue_model(42,27:33,18) = 

offset; tagged_tissue_model(43,28:34,18) = offset; 

tagged_tissue_model(44,29:36,18) = offset; tagged_tissue_model(45,35:36,18) = 

offset;  

tagged_tissue_model(38,27:29,17) = offset; tagged_tissue_model(39,28:29,17) = 

offset; tagged_tissue_model(40,28:30,17) = offset;  

tagged_tissue_model(41,28:32,17) = offset; tagged_tissue_model(42,28:32,17) = 

offset; tagged_tissue_model(43,28:34,17) = offset; 

tagged_tissue_model(44,28:35,17) = offset; tagged_tissue_model(45,29:36,17) = 

offset;  

tagged_tissue_model(41,30,16) = offset; tagged_tissue_model(42,29:31,16) = 

offset; tagged_tissue_model(43,29:32,16) = offset; 

tagged_tissue_model(44,29:34,16) = offset; tagged_tissue_model(45,29:34,16) = 

offset;  
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tagged_tissue_model(44,31:32,15) = offset; tagged_tissue_model(45,31:33,15) = 

offset; tagged_tissue_model(46,31:35,15) = offset;  
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tagged_tissue_model(48,32:33,14) = offset; tagged_tissue_model(49,32,14) = 

offset;  

 

offset = offset + 1;    % sulcus somatosensory cortex 

 

tagged_tissue_model(42,37:40,20) = offset; tagged_tissue_model(43,38:41,20) = 

offset; tagged_tissue_model(44,39:41,20) = offset;  

tagged_tissue_model(45,40:41,20) = offset; 

tagged_tissue_model(41,36:40,19) = offset; tagged_tissue_model(42,37:41,19) = 

offset; tagged_tissue_model(43,38:41,19) = offset;  

tagged_tissue_model(44,40:41,19) = offset; tagged_tissue_model(45,40:41,19) = 

offset; 

tagged_tissue_model(38,32:38,18) = offset; tagged_tissue_model(39,33:38,18) = 

offset; tagged_tissue_model(40,34:40,18) = offset; 

tagged_tissue_model(41,36:41,18) = offset; tagged_tissue_model(42,37:41,18) = 

offset; tagged_tissue_model(43,39:41,18) = offset; 

tagged_tissue_model(44,40:41,18) = offset; tagged_tissue_model(45,40:41,18) = 

offset; 

tagged_tissue_model(37,33:39,17) = offset; tagged_tissue_model(38,34:39,17) = 

offset; tagged_tissue_model(39,34:39,17) = offset;  

tagged_tissue_model(40,35:40,17) = offset; tagged_tissue_model(41,36:42,17) = 

offset; tagged_tissue_model(42,38:42,17) = offset;  
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tagged_tissue_model(43,39:42,17) = offset; tagged_tissue_model(44,40:42,17) = 

offset; tagged_tissue_model(45,40:42,17) = offset; 

tagged_tissue_model(38,35:37,16) = offset; tagged_tissue_model(39,35:39,16) = 

offset; tagged_tissue_model(40,36:40,16) = offset;  

tagged_tissue_model(41,37:42,16) = offset; tagged_tissue_model(42,39:43,16) = 

offset; tagged_tissue_model(43,40:43,16) = offset;  

tagged_tissue_model(44,40:42,16) = offset; tagged_tissue_model(45,41:42,16) = 

offset; 

tagged_tissue_model(42,40:42,15) = offset; tagged_tissue_model(43,41:43,15) = 

offset; tagged_tissue_model(44,42:44,15) = offset;  

tagged_tissue_model(45,42:44,15) = offset; tagged_tissue_model(46,43:45,15) = 

offset; 

tagged_tissue_model(42,42:44,14) = offset; tagged_tissue_model(43,42:44,14) = 

offset; tagged_tissue_model(44,42:44,14) = offset;  

 

clear skull_mask csf_mask white_mask offset; 

save('tagged_tissue_model','tagged_tissue_model'); 
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Appendix B 

MATLAB Codes for Simulation Input, MCX Simulation, Output post-processing and 

Analysis  
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DEFINING SIMULATION INPUTS 

clc; clear all; 

load tagged_tissue_model_new.mat; 

 

%% create binary tissue model in uchar format 

fid=fopen('tagged_tissue_model.bin','wb'); 

bb=fwrite(fid,tagged_tissue_model,'uchar'); 

fclose(fid); 

 

%% define detector position 

 

col = (32:66)'; 

detector_position = zeros(48*size(col,1),3); 

for loop = 1:size(col); 

    c = col(loop); 

    for slice = 1:48 

        detector_position((loop-1)*48+slice,2)=slice+13; % y starts from 13 

        detector_position((loop-1)*48+slice,1)=c; 

        detector_position((loop-

1)*48+slice,3)=max(find(tagged_tissue_model(c,slice+13,:)==0))+1; 

    end 

end 

clear col slice loop s c i ; 

save('detector_position','detector_position'); 
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%% define source position 

 

col = (32:66)'; 

source_position = zeros(48*size(col,1),3); 

for loop = 1:size(col); 

    c = col(loop); 

    for slice = 1:48 

        source_position((loop-1)*48+slice,2)=slice+13; % y starts from 13 

        source_position((loop-1)*48+slice,1)=c; 

        source_position((loop-

1)*48+slice,3)=max(find(tagged_tissue_model(c,slice+13,:)==0))+1; 

    end 

end 

clear col slice loop s c i ; 

save('source_position','source_position'); 

 

%% tissue optical properties for baseline 

 

w_sulcus = [ 

    18.18 0.89 0.04 1.37%   #1 Skull 

    0.09 0.89 0.001 1.37%   #2 CSF 

    37.5 0.84 0.005 1.37%   #3 White 

    9.09 0.89 0.06 1.37 %   #4 Scalp 

    9.09 0.89 0.06 1.37 %   #5 Scalp 

    9.09 0.89 0.06 1.37 %   #6 Scalp 
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    9.09 0.89 0.06 1.37 %   #7 Scalp 

    9.09 0.89 0.06 1.37 %   #8 Scalp 

    9.09 0.89 0.06 1.37 %   #9 Scalp 

    9.09 0.89 0.06 1.37 %   #10 Scalp 

    9.09 0.89 0.06 1.37 %   #11 Scalp 

    9.09 0.89 0.06 1.37 %   #12 Scalp 

    9.09 0.89 0.06 1.37 %   #13 Scalp 

    9.09 0.89 0.06 1.37 %   #14 Scalp 

    9.09 0.89 0.06 1.37 %   #15 Scalp 

    9.09 0.89 0.06 1.37 %   #16 Scalp 

    9.09 0.89 0.06 1.37 %   #17 Scalp 

    9.09 0.89 0.06 1.37 %   #18 Scalp 

    9.09 0.89 0.06 1.37 %   #19 Scalp 

    9.09 0.89 0.06 1.37 %   #20 Scalp 

    9.09 0.89 0.06 1.37 %   #21 Scalp 

    9.09 0.89 0.06 1.37 %   #22 Scalp 

    9.09 0.89 0.06 1.37 %   #23 Scalp 

    22.72 0.89 0.025 1.37 %   #24 Grey 

    22.72 0.89 0.025 1.37 %   #25 Grey 

    22.72 0.89 0.025 1.37 %   #26 Grey 

    22.72 0.89 0.025 1.37 %   #27 Grey 

    22.72 0.89 0.025 1.37 %   #28 Grey 

    22.72 0.89 0.025 1.37 %   #29 Grey 

    22.72 0.89 0.025 1.37 %   #30 Grey 

    22.72 0.89 0.025 1.37 %   #31 Grey 
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    22.72 0.89 0.025 1.37 %   #32 Grey 

    22.72 0.89 0.025 1.37 %   #33 Grey 

    22.72 0.89 0.025 1.37 %   #34 Grey 

    22.72 0.89 0.025 1.37 %   #35 Grey 

    22.72 0.89 0.025 1.37 %   #36 Grey - Primary Motor 

    22.72 0.89 0.025 1.37%   #37 Grey - Primary Somatosensory 

    ]; 

save('tissue_opt_prop','w_sulcus'); 

     

%% Baseline Noise - Tissue absorption properties for 5 min physiological noise 

load('Delta_MuA_part_3.mat'); 

Delta_MuA = w_sulcus(:,3)*ones(1,3110); 

Delta_MuA(4:23,:) = Delta_MuA(4:23,:) + unique_Anat_Mua_S; 

Delta_MuA(24:35,:) = Delta_MuA(24:35,:) + unique_Anat_Mua_G; 

Delta_MuA(36,:) = Delta_MuA(36,:) + unique_Anat_Mua_G(11,:); 

Delta_MuA(37,:) = Delta_MuA(37,:) + unique_Anat_Mua_G(11,:); 

 

figure(1); subplot(2,1,2); plot(1:3110,Delta_MuA(36,:)); 

 

figure(2); plot(1:3110,Delta_MuA(24:37,:)); 

title('Grey Voxels Delta MuA activation signal'); xlabel('time samples'); 

ylabel('MuA (1/mm)'); 

 

figure(3); plot(1:3110,Delta_MuA(4:23,:)); 
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title('Scalp Voxels Delta MuA activation signal'); xlabel('time samples'); 

ylabel('MuA (1/mm)'); 

 

file_nm = cat(2,'Baseline_Delta_MuA'); 

save(file_nm, 'Delta_MuA'); 
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MONTE CARLO SIMULATION 

clc; clear all; 

 

load('tissue_opt_prop.mat'); 

tissue_opt_prop = w_sulcus; 

media_count = size(tissue_opt_prop,1); 

 

load('source_position.mat'); 

src_count = size(source_position,1); 

 

load('detector_position.mat'); 

det_count = size(detector_position,1); 

det_radius = 0.5; 

det_set = 1; 

phot_set = 100; 

 

random_seed = ones(phot_set,1); 

for c=1:phot_set 

    random_seed(c,1)=randi([2000 10000]); 

end 

 

src =[91]; 

clear c; 

tic 
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for s = 1:4 

    sim=src(s); 

    x=source_position(sim,1); 

    y=source_position(sim,2); 

    z=source_position(sim,3); 

    

    tic 

    for loop = 1:phot_set 

        iter = det_set; 

          

        filenm = sprintf('tagged_tissue_%d_%d_%d_%d.inp',sim,x,y,z); 

        fid = fopen(filenm,'wt'); 

         

        fprintf(fid,'1000000                       # No. of photons\n'); 

        fprintf(fid,'%d                       # RNG seed, negative to 

generate\n',random_seed(loop)); 

        fprintf(fid,'%d %d %d              # x,z,y Position (mm) of the source\n',x,y,z); 

        fprintf(fid,'0.0 0.0 1.0          # ux,uz,uy Direction cosin of the source\n'); 

        fprintf(fid,'0.e+00 12.e-09 12.e-09          # sample times and time intervel 

(sec)\n'); 

        fprintf(fid,'tagged_tissue_model.bin   # volume filename, ASCII/Binary\n'); 

        fprintf(fid,'1 66 1 66                     # x: voxel size (isotropic only), dim, 

start/end indices\n'); 

        fprintf(fid,'1 70 1 70                   # y: voxel size, dim, start/end indices\n'); 

        fprintf(fid,'1 70 1 70                     # z: voxel size, dim, start/end indices\n'); 
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        fprintf(fid,'%d                            # No. of media\n', media_count); 

         

        for i = 1:media_count 

            fprintf(fid,'%0.3f %0.2f %0.3f %0.2f     # scat(1/mm), g, mua (1/mm), 

n\n',tissue_opt_prop(i,1),tissue_opt_prop(i,2),tissue_opt_prop(i,3),tissue_opt_prop(i,4)); 

        end 

         

        fprintf(fid,'%d %0.2f       # detector number and radius (in grid 

unit)\n',det_count, det_radius); 

        for j = 1+((iter-1)*det_count):det_count+((iter-1)*det_count) 

            fprintf(fid,'%d %d %d   # detector position (in grid 

unit)\n',detector_position(j,1),detector_position(j,2),detector_position(j,3)); 

        end 

         

        % execute the mcx_det in cmd prompt 

        fclose(fid); 

        change_dir_cmd = 'cd 

C:\Users\Bane\Documents\MATLAB\mcx\mcx\bin\Thesis\BaselineNoiseModel\Simulation

'; 

        system(change_dir_cmd); 

        output_file_id = sprintf('tagged_tissue_%d_%d_%d_%d_%d',sim,loop,x,y,z); 

        exe_mcx_cmd = sprintf('mcx_det_128_1700 -A -n 1e6 -r 65 -f 

tagged_tissue_%d_%d_%d_%d.inp -s %s -d 1 -G 1 -S 0 -E 

%i',sim,x,y,z,output_file_id,random_seed(loop)); % saving flux field 

        system(exe_mcx_cmd); 
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    end 

    toc 

end 

toc 

 

clear source x y z media_count a detector_position source_position det_count 

src_count det_radius phot_set det_set seed filenm fid change_dir_cmd output_file_id 

exe_mcx_cmd ans sim iter loop i j; 
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POST PROCESSING SIMULATION OUTPUTS 

% Load output from MCX & other inputs 

clc; 

clear all; 

 

load('tissue_opt_prop.mat'); 

tissue_opt_prop = w_sulcus; 

media_count = size(tissue_opt_prop,1); 

 

load('source_position.mat'); 

src_count = size(source_position,1); 

 

load('detector_position.mat'); 

det_count = size(detector_position,1); 

 

det_set = 1;  

phot_set = 100; 

append_end = 0; 

 

Ndet = det_set*det_count; 

 

tic 

src = [85;111;1151;1177]; 

sum_length = zeros(Ndet,media_count); 
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for i = 1:4 

    sim = src(i); 

     

    file_nm = cat(2,'Baseline_Delta_MuA'); 

    load(file_nm); 

     

    x=source_position(sim,1); 

    y=source_position(sim,2); 

    z=source_position(sim,3); 

     

    photon_count = zeros(Ndet,1); 

    detfile = zeros(Ndet,7+size(Delta_MuA,2)); 

    detfile(:,1:3) = detector_position(:,1:3); 

    detfile(:,5) = 1:Ndet; 

    detfile(:,6) = 0; 

    detfile(:,7) = getdistance([x,y,z],detfile(:,1:3)); 

    for loop = 1:phot_set 

        load_data = 

loadmch(sprintf('tagged_tissue_%d_%d_%d_%d_%d.mch',sim,loop,x,y,z)); 

         

        for d=1:Ndet 

                scatter_length(:,1:media_count) = 

load_data(find(detfile(d,5)==load_data(:,1)),3:(2+media_count)); 

                photon_count(d,1) = photon_count(d,:)+size(scatter_length,1); 

                ex = exp(-(scatter_length*tissue_opt_prop(:,3))); 
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                ref = sum(ex); 

                detfile(d,6) = detfile(d,6)+ref; 

                 

                ex2 = exp(-(scatter_length*Delta_MuA)); 

                ref2 = sum(ex2,1); 

                detfile(d,8:3117) = detfile(d,8:3117)+ref2; % 6 baseline 7 distance 8 

through 3117 is time series reflectance 

                 

                sum_length(d,:) = sum_length(d,:)+sum(scatter_length,1); 

                clear scatter_length ex ref ex2 ref2; 

        end 

        clear load_data; 

    end 

    toc 

     

    filenm = 

cat(2,'baseline_MCX_postproc_brain','_N',num2str(sim),'_X',num2str(x),'_Y',num2str(y),'_

Z',num2str(z),'.mat'); 

    save(filenm,'detfile','sum_length','photon_count') 

end 

 

tic 

 

% for i = 1:4 

%     sim = src(i); 
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%      

%     file_nm = cat(2,'Activation_Delta_MuA_16s'); 

%     load(file_nm); 

%      

%     x=source_position(sim,1); 

%     y=source_position(sim,2); 

%     z=source_position(sim,3); 

%      

%     photon_count = zeros(Ndet,1); 

%     detfile = zeros(Ndet,7+size(Delta_MuA,2)); 

%     detfile(:,1:3) = detector_position(:,1:3); 

%     detfile(:,5) = 1:Ndet; 

%     detfile(:,6) = 0; 

%     detfile(:,7) = getdistance([x,y,z],detfile(:,1:3)); 

%     for loop = 1:phot_set 

%         load_data = 

loadmch(sprintf('tagged_tissue_%d_%d_%d_%d_%d.mch',sim,loop,x,y,z)); 

%          

%         for d=1:Ndet 

%                 scatter_length(:,1:media_count) = 

load_data(find(detfile(d,5)==load_data(:,1)),3:(2+media_count)); 

%                 photon_count(d,1) = photon_count(d,:)+size(scatter_length,1); 

%                 ex = exp(-(scatter_length*tissue_opt_prop(:,3))); 

%                 ref = sum(ex); 

%                 detfile(d,6) = detfile(d,6)+ref; 
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%                  

%                 ex2 = exp(-(scatter_length*Delta_MuA)); 

%                 ref2 = sum(ex2,1); 

%                 detfile(d,8:3117) = detfile(d,8:3117)+ref2; % 6 baseline 7 distance 8 

through 3117 is time series reflectance 

%                  

%                 sum_length(d,:) = sum_length(d,:)+sum(scatter_length,1); 

%                 clear scatter_length ex ref ex2 ref2; 

%         end 

%         clear load_data; 

%     end 

%     toc 

%      

%     filenm = 

cat(2,'activation_16s_MCX_postproc_brain','_N',num2str(sim),'_X',num2str(x),'_Y',num2s

tr(y),'_Z',num2str(z),'.mat'); 

%     save(filenm,'detfile','sum_length','photon_count') 

% end 

% clear all 
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ANALYSING RESULTS 

 

clc; 

clear; 

close all; 

 

%% Part - 1 %% 

load('source_position.mat'); 

src_count=size(source_position,1); 

 

load('tagged_tissue_model_new.mat'); 

load('Baseline_Delta_MuA.mat');        

  

sim = 37;                     % source# for analysis 

x = source_position(sim,1); y = source_position(sim,2); z = 

source_position(sim,3); 

 

load(sprintf('baseline_MCX_postproc_brain_N%d_X%d_Y%d_Z%d.mat',sim,x,y,

z)); 

 

%% Photon count Profile in 2-D 

 

photon_escape = 

zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

for i = 1:size(detfile,1) 
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    photon_escape(detfile(i,1),detfile(i,2)) = photon_count(i,1); 

end 

clear photon_count i; 

 

plane_1 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

plane_2 = tagged_tissue_model(:,:,19); % transverse slice at depth ~ 11 mm 

 

%% Identify detectors in-line with source and sulcus @ 1cm and beyond 

 

a = find(abs(detfile(:,2)-source_position(sim,2))==10); 

det_row = a(find(detfile(a,1)==source_position(sim,1)),1);  % det_row is detectors 

@1cm 

del_ref_s = -log(detfile(det_row(1,1),108:3017)./detfile(det_row(1,1),6)); % -

loge(exp(MuA+Del_MuA)L/exp(MuA)L) % Reference noise 

 

b = find(abs(detfile(:,7))>=11); 

c = find(abs(detfile(:,2)-source_position(sim,2))>=10); % filt_row are detectors 

beyond @1cm 

filt_row = b;%(find(detfile(c,1)==source_position(sim,1)),1);  

% filt_row = b;  

 

%% Adaptive Filtering scalp noise from grey 

 

close all; 

mu = 0.000005; 
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L = 300; 

noise = del_ref_s'; 

noise = (noise - mean(noise))/std(noise); 

for i = 1:length(b) 

    sig = detfile(b(i),108:3017)'; 

    sigf = (sig - mean(sig))/std(sig); 

    [o(:,i), e(:,i)] = LMSFilter(mu, L, sigf, noise); %filter all detectors beyond 1cm 

    o(:,i) = (o(:,i) * std(sig))+ mean(sig); 

end 

filt_detfile = detfile; 

filt_detfile(b,108:3017)=o'; 

 

loc = 218; %find(b == 81); 

 

%% Plot 1-D reflectance post filtering 

 

% Calculate 2-D reflectance post filtering 

filt_plane = 

zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2),2910); 

for row = 1:size(filt_detfile,1) 

    filt_plane(filt_detfile(row,1),filt_detfile(row,2),:)=filt_detfile(row,108:3017); 

end 

clear row; 

 

%% Statistical Check for effect of Physiological noise 
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err_pct = 

std(detfile(:,108:3017),0,2)./(mean(detfile(:,108:3017),2)*sqrt(length(108:3017)))*100; 

err_pct_filt = 

std(filt_detfile(:,108:3017),0,2)./(mean(filt_detfile(:,108:3017),2)*sqrt(length(108:3017)))*1

00; 

clear detfile; 

 

% Plot 2-d std deviation on surface - before and after filtering 

plane_4 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

plane_5 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

for row = 1:size(filt_detfile,1) 

    plane_4(filt_detfile(row,1),filt_detfile(row,2))=err_pct(row,1); 

    plane_5(filt_detfile(row,1),filt_detfile(row,2))=err_pct_filt(row,1); 

end 

 

%% calculate 2-D Delta O.D at detectors 

 

baseline = filt_plane; 

save(sprintf('baseline_N%d_X%d_Y%d_Z%d.mat',sim,x,y,z),'baseline'); 

%% Part -2 %% 

% load('Baseline_Delta_MuA.mat');       % for activation signal reference only 

% 

load(sprintf('baseline_MCX_postproc_brain_N%d_X%d_Y%d_Z%d.mat',sim,x,y,z)); 

 

load('Activation_Delta_MuA_16s.mat');       % for activation signal reference only 
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load(sprintf('activation_16s_MCX_postproc_brain_N%d_X%d_Y%d_Z%d.mat',si

m,x,y,z)); 

 

%% Calculate Photon count in 2-D 

 

photon_escape = 

zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

for i = 1:size(detfile,1) 

    photon_escape(detfile(i,1),detfile(i,2)) = photon_count(i,1); 

end 

clear photon_count i; 

 

% %% Plot 1-D reflectance with noise 

% detfile_subset = detfile(find(detfile(:,1)==source_position(sim,1)),:); 

% figure(10+sim); subplot(2,1,1); plot(detfile_subset(:,7 

),log10(detfile_subset(:,6)),'*b'); 

% hold on; 

plot(detfile_subset(:,7),log10(detfile_subset(:,108:3017)),'*r','MarkerSize',2); 

% ylabel ('Reflectance unit?'); xlabel('source-detector seperation (mm)'); 

% title(sprintf('1-D Reflectance comparison for effect of physiological noise | 

Source#%d X%d Y%d Z%d',sim,x,y,z)); 

% legend('no-noise baseline','physiologiocal noise baseline'); xlim([10,35]); 

 

% %% Plot 2-D reflectance and overlap on anatomy 

% plane_1 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 



 

110 

plane_2 = tagged_tissue_model(:,:,19); 

% plane_2_overlap = plane_2; 

% for i = 1:size(detfile,1) 

%     plane_1(detfile(i,1),detfile(i,2)) = log10(detfile(i,6)); 

%     plane_2_overlap(detfile(i,1),detfile(i,2)) = 

plane_2(detfile(i,1),detfile(i,2))+(90*log10(detfile(i,6))); 

% end 

% figure(20+sim); imagesc(plane_1); 

% title(sprintf('2-D reflectance at detectors on surface | Source#%d X%d Y%d 

Z%d',sim,x,y,z)); 

% figure(30+sim); imagesc(plane_2_overlap); 

% title(sprintf('2-D reflectance overlapped on Transverse slice at depth ~ 9mm | 

Source#%d X%d Y%d Z%d',sim,x,y,z)); 

figure(40+sim); imagesc(plane_2); title('Transverse slice at depth ~ 9mm'); 

% clear  plane_2 plane_2_overlap i; 

 

%% Identify detectors in-line with source and sulcus @ 1cm and beyond 

 

a = find(abs(detfile(:,2)-source_position(sim,2))==10); 

det_row = a(find(detfile(a,1)==source_position(sim,1)),1);  % det_row is detectors 

@1cm 

del_ref_s = -log(detfile(det_row(1,1),108:3017)./detfile(det_row(1,1),6)); % -

loge(exp(MuA+Del_MuA)L/exp(MuA)L) % Reference noise 

 

b = find(abs(detfile(:,7))>=11); 
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c = find(abs(detfile(:,2)-source_position(sim,2))>=10); % filt_row are detectors 

beyond @1cm 

filt_row = b;%(find(detfile(c,1)==source_position(sim,1)),1);  

% filt_row = b;  

 

%% Adaptive Filtering scalp noise from grey 

 

close all; 

 

noise = del_ref_s'; 

noise = (noise - mean(noise))/std(noise); 

for i = 1:length(b) 

    sig = detfile(b(i),108:3017)'; 

    sigf = (sig - mean(sig))/std(sig); 

    [o(:,i), e(:,i)] = LMSFilter(mu, L, sigf, noise); %filter all detectors beyond 1cm 

    o(:,i) = (o(:,i) * std(sig))+ mean(sig); 

end 

filt_detfile = detfile; 

filt_detfile(b,108:3017)=o'; 

 

loc = 218; %find(b == 81); 

 

% % Plot effects of filtering 

% figure(50+sim); subplot(2,2,1);  

% plot(101:3010,del_ref_s'); title('noise'); 
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% subplot(2,2,2); hold on;  

% plot(101:3010,detfile(loc,108:3017)','y'); title('original signal'); 

% plot(101:3010,filt_detfile(loc,108:3017),'r'); title('filtered output'); hold off; 

% subplot(2,2,3);  

% plot(101:3010,e(:,loc)); title('error'); 

% subplot(2,2,4);  

% plot(101:3010,Delta_MuA(36,101:3010),'r'); title('activation MuA for ref'); 

figure(55+sim); subplot(2,1,1); plot(101:3010,Delta_MuA(36,101:3010),'r'); 

title('activation MuA for ref');grid on; 

%% Plot 1-D reflectance post filtering 

 

% figure(10+sim); subplot(2,1,2); hold on;  

% plot(detfile(filt_row,7),log10(detfile(filt_row,6)),'*b'); 

% 

plot(filt_detfile(filt_row,7),log10(filt_detfile(filt_row,108:3017)),'*r','MarkerSize',2);grid on; 

% ylabel ('Reflectance unit?'); xlabel('source-detector seperation (mm)'); 

% title(sprintf('1-D Filtered Reflectance | Source#%d X%d Y%d Z%d',sim,x,y,z)); 

% legend('Filtered baseline','Filtered physiological noise'); xlim([10,35]); 

% clear a b mu L e; 

 

% Calculate 2-D reflectance post filtering 

filt_plane = 

zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2),2910); 

for row = 1:size(filt_detfile,1) 

    filt_plane(filt_detfile(row,1),filt_detfile(row,2),:)=filt_detfile(row,108:3017); 
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end 

clear row; 

 

%% Statistical Check for effect of Physiological noise 

err_pct = 

std(detfile(:,108:3017),0,2)./(mean(detfile(:,108:3017),2)*sqrt(length(108:3017)))*100; 

err_pct_filt = 

std(filt_detfile(:,108:3017),0,2)./(mean(filt_detfile(:,108:3017),2)*sqrt(length(108:3017)))*1

00; 

clear detfile; 

 

% % Plot 1-D error along in-line detectors 

% figure(100+sim); plot(filt_detfile(filt_row,7),err_pct(filt_row),'*b'); 

% hold on; plot(filt_detfile(filt_row,7),err_pct_filt(filt_row),'*g'); 

% ylabel('Error %'); xlabel('Source-detector seperation distance (mm)'); 

% title(sprintf('Pct Error before and after filtering | Source#%d X%d Y%d 

Z%d',sim,x,y,z)); 

% legend('before filtering','after filtering'); 

 

% Plot 2-d std deviation on surface - before and after filtering 

plane_4 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

plane_5 = zeros(size(tagged_tissue_model,1),size(tagged_tissue_model,2)); 

for row = 1:size(filt_detfile,1) 

    plane_4(filt_detfile(row,1),filt_detfile(row,2))=err_pct(row,1); 

    plane_5(filt_detfile(row,1),filt_detfile(row,2))=err_pct_filt(row,1); 
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end 

% % figure(110+sim); imagesc(plane_4); title(sprintf('Standard deviation before 

filtering | Source#%d X%d Y%d Z%d',sim,x,y,z)); colorbar; 

% % figure(120+sim); imagesc(plane_5); title(sprintf('Standard deviation after 

filtering | Source#%d X%d Y%d Z%d',sim,x,y,z)); colorbar; 

 

%% calculate 2-D Delta O.D at detectors 

 

load(sprintf('baseline_N%d_X%d_Y%d_Z%d.mat',sim,x,y,z)); 

mean_baseline = mean(baseline(30:58,19:51,:),3); 

DOD10 = ones(size(filt_plane)); 

 

for t = 1:2910 

    DOD10(30:58,19:51,t) = (filt_plane(30:58,19:51,t))./mean_baseline; 

end 

 

keep_DOD_1 = -log10(DOD10); 

keep_dod_1 = zeros(1107,size(keep_DOD_1,3)); 

i=1; 

for row = min(filt_detfile(:,1)):max(filt_detfile(:,1)) 

    for col = min(filt_detfile(:,2)):max(filt_detfile(:,2)) 

        keep_dod_1(i,:) = keep_DOD_1(row,col,:); 

        i = i+1; 

    end 

end 
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figure(55+sim) 

subplot(2,1,2); hold on; plot(101:3010,keep_dod_1(306,:),'b'); 

grid on; 

hold off; 

filenm = sprintf('0s_dod_N%d_X%d_Y%d_Z%d.mat',sim,x,y,z); 

save(filenm,'keep_dod_1','keep_DOD_1'); 

 

[keep_DOD_3,keep_DOD_7,keep_DOD_11,keep_DOD_13,keep_DOD_17,keep

_dod_3,keep_dod_7,keep_dod_11,keep_dod_13,keep_dod_17] = 

moving_summation(filt_detfile,filt_plane,keep_DOD_1,baseline); 

view3dgui(keep_DOD_13); 

clear row t DOD10 baseline; 

 

 

%% 1-D plot of Delta O.D for groups of 3, 5, 7, 9 and 11 detectors 

 

loc = 306; 

figure(130+sim); subplot(2,1,1);  

plot(1:2910,Delta_MuA(36,101:3010));title('Primary Motor cortex activation 

signal'); xlabel('Times Samples'); ylabel('MuA (1/mm)'); 

 

% for i = 1:35 

subplot(2,1,2); hold on; 

plot(1:2910,keep_dod_1(loc,1:2910),'b'); 

plot(1:2910,keep_dod_3(loc,1:2910),'g'); 
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plot(1:2910,keep_dod_7(loc,1:2910),'c'); 

%      plot(1:2910,keep_dod_9(loc,1:2910),'m'); 

plot(1:2910,keep_dod_11(loc,1:2910),'r'); 

plot(1:2910,keep_dod_13(loc,1:2910),'k'); 

plot(1:2910,keep_dod_17(loc,1:2910),'m'); 

legend('1 mm','3 mm','7 mm','11 mm','13 mm','17mm'); 

% end 

 

%% Identify centrally summed detector that detects most 

 

a=Delta_MuA(36,101:3010);               % Delta MuA activation signal as ref 

Gref(:,1) = gpuArray(a); 

for row = 1:size(keep_DOD_3,1) 

    for col = 1:size(keep_DOD_3,2) 

        q(1,:) = keep_DOD_3(row,col,1:2910); % moving summed delta O.D at 

detectors for comparison 

        Gref(:,2) = gpuArray(q); 

        Gtest = xcorr(Gref(:,1),Gref(:,2),'coeff'); 

        [argvalue] = max(gather(Gtest)); 

        DOD_3_tag(row,col) = argvalue; 

    end 

end 

 

% 2-D plot of correlated detectors 

figure(140+sim); imagesc(DOD_3_tag); colorbar; 
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title(sprintf('Detectors detecting from primary-motor activation | Source#%d X%d 

Y%d Z%d',sim,x,y,z)); 

 

clear a q Gref Gtest argvalue argmax row col; 

 

%% See delta O.D change for different sum sizes 

 

sel_x = 47; sel_y = 47;      % detector co-ords for analysis 

fs = 10.35; 

pretime = 5; 

a=Delta_MuA(36,:); 

start = 25; 

 

box(1,:) = keep_DOD_3(sel_x,sel_y,:);       % orig 

box(2,:) = keep_DOD_3(sel_x,sel_y,:);       % 3*3 box 

box(3,:) = keep_DOD_7(sel_x,sel_y,:);       % 5*5 box 

box(4,:) = keep_DOD_7(sel_x,sel_y,:);       % 7*7 box 

box(5,:) = keep_DOD_11(sel_x,sel_y,:);       % 9*9 box 

box(6,:) = keep_DOD_11(sel_x,sel_y,:);      % 11*11 box 

box(7,:) = keep_DOD_13(sel_x,sel_y,:);      % 13*13 box 

box(8,:) = keep_DOD_17(sel_x,sel_y,:);      % 17*17 box 

box(9,:) = keep_DOD_17(sel_x,sel_y,:);      % 21*21 box 

 

stim = [start start+32 start+64 start+96 start+128 start+160 start+192]-10;%-10 to 

account for clipping 
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mean_base_1 = zeros(size(box,1),1);  

mean_base_2 = zeros(size(box,1),1); 

mean_base_3 = zeros(size(box,1),1); 

mean_base_4 = zeros(size(box,1),1); 

mean_base_5 = zeros(size(box,1),1); 

mean_base_6 = zeros(size(box,1),1); 

mean_base_7 = zeros(size(box,1),1); 

 

for detgrp = 1:size(box,1) 

    mean_base_1(detgrp,:) = mean(box(detgrp,round((stim(1) - 

pretime)*fs):round(stim(1)*fs)),2); 

    mean_base_2(detgrp,:) = mean(box(detgrp,round((stim(2) - 

pretime)*fs):round(stim(2)*fs)),2); 

    mean_base_3(detgrp,:) = mean(box(detgrp,round((stim(3) - 

pretime)*fs):round(stim(3)*fs)),2); 

    mean_base_4(detgrp,:) = mean(box(detgrp,round((stim(4) - 

pretime)*fs):round(stim(4)*fs)),2); 

    mean_base_5(detgrp,:) = mean(box(detgrp,round((stim(5) - 

pretime)*fs):round(stim(5)*fs)),2); 

    mean_base_6(detgrp,:) = mean(box(detgrp,round((stim(6) - 

pretime)*fs):round(stim(6)*fs)),2); 

    mean_base_7(detgrp,:) = mean(box(detgrp,round((stim(7) - 

pretime)*fs):round(stim(7)*fs)),2); 
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    block_1(detgrp,:) = box(detgrp,round((stim(1) - pretime)*fs):round(stim(2)*fs))- 

mean_base_1(detgrp,:); 

    block_2(detgrp,:) = box(detgrp,round((stim(2) - pretime)*fs):round(stim(3)*fs))- 

mean_base_2(detgrp,:); 

    block_3(detgrp,:) = box(detgrp,round((stim(3) - pretime)*fs):round(stim(4)*fs))- 

mean_base_3(detgrp,:); 

    block_4(detgrp,:) = box(detgrp,round((stim(4) - pretime)*fs):round(stim(5)*fs))- 

mean_base_4(detgrp,:); 

    block_5(detgrp,:) = box(detgrp,round((stim(5) - pretime)*fs):round(stim(6)*fs))- 

mean_base_5(detgrp,:); 

    block_6(detgrp,:) = box(detgrp,round((stim(6) - pretime)*fs):round(stim(7)*fs))- 

mean_base_6(detgrp,:); 

    block_7(detgrp,:) = box(detgrp,round((stim(7) - pretime)*fs):round((stim(7) + 

32)*fs)) - mean_base_7(detgrp,:); 

end 

 

% Plot individual blocks 

figure(200+sim); hold on; 

plot(block_1(1,:),'k'); plot(block_2(1,:),'b'); plot(block_3(1,:),'c'); 

plot(block_4(1,:),'m'); plot(block_5(1,:),'r'); plot(block_6(1,:),'y');  

plot(block_7(1,:),'g'); hold off; title ('Individual epoch blocks'); 

legend('block1','block2','block3','block4','block5','block6','block7'); 

 

% Average of tapping blocks 

avg_block_1 = block_3(:,1:383); 
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avg_block_2 = (block_3(:,1:383)+block_2(:,1:383))/2; 

avg_block_3 = (block_3(:,1:383)+block_2(:,1:383)+block_1(:,1:383))/3; 

avg_block_4 = 

(block_3(:,1:383)+block_2(:,1:383)+block_1(:,1:383)+block_6(:,1:383))/4; % originally 

block_5 

avg_block_5 = 

(block_3(:,1:383)+block_2(:,1:383)+block_1(:,1:383)+block_6(:,1:383)+block_7(:,1:383))/

5; 

avg_block_6 = 

(block_3(:,1:383)+block_2(:,1:383)+block_1(:,1:383)+block_6(:,1:383)+block_7(:,1:383)+

block_5(:,1:383))/6; 

avg_block_7 = 

(block_3(:,1:383)+block_2(:,1:383)+block_1(:,1:383)+block_6(:,1:383)+block_7(:,1:383)+

block_5(:,1:383)+block_4(:,1:383))/7; 

 

% Plot average blocks 

figure(210+sim); hold on; 

plot(avg_block_1(3,:),'k'); plot(avg_block_2(3,:),'b'); plot(avg_block_3(3,:),'c'); 

plot(avg_block_4(3,:),'m'); plot(avg_block_5(3,:),'r'); plot(avg_block_6(3,:),'y');  

plot(avg_block_7(3,:),'g');  title ('Average epoch blocks'); 

legend('avgblock1','avgblock2','avgblock3','avgblock4','avgblock5','avgblock6','av

gblock7');  

hold off; 

 

% finding location of max of averaged pulse (seconds) 
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max_range = round(15.0*fs:16.0*fs); 

length_base = round(6*fs);    

length_max = round(0.5*fs);  

sample_max = zeros(size(box,1),7); 

max_start = zeros(size(box,1),7); 

max_end = zeros(size(box,1),7); 

 

for detgrp = 1:size(box,1) 

    sample_max(detgrp,1) = 

find(avg_block_1(detgrp,:)==max(avg_block_1(detgrp,max_range),[],2));%round(14*fs);    

% max value co-ordinate of activation pulses for reference 

    sample_max(detgrp,2) = 

find(avg_block_2(detgrp,:)==max(avg_block_2(detgrp,max_range),[],2)); 

    sample_max(detgrp,3) = 

find(avg_block_3(detgrp,:)==max(avg_block_3(detgrp,max_range),[],2)); 

    sample_max(detgrp,4) = 

find(avg_block_4(detgrp,:)==max(avg_block_4(detgrp,max_range),[],2)); 

    sample_max(detgrp,5) = 

find(avg_block_5(detgrp,:)==max(avg_block_5(detgrp,max_range),[],2)); 

    sample_max(detgrp,6) = 

find(avg_block_6(detgrp,:)==max(avg_block_6(detgrp,max_range),[],2)); 

    sample_max(detgrp,7) = 

find(avg_block_7(detgrp,:)==max(avg_block_7(detgrp,max_range),[],2)); 

    max_start(detgrp,:)= sample_max(detgrp,:) - length_max*ones(1,7); 

    max_end(detgrp,:) = sample_max(detgrp,:) + length_max*ones(1,7); 
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end 

 

% Calculate mean of max, std dev of max and std dev of baseline 

mean_max = zeros(size(box,1),7); 

std_max = zeros(size(box,1),7); 

std_base = zeros(size(box,1),7); 

 

for detgrp = 1:size(box,1) 

    mean_max(detgrp,1) = 

mean(avg_block_1(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,1) = 

std(avg_block_1(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,1) = std(avg_block_1(detgrp,1:length_base),0,2); 

     

    mean_max(detgrp,2) = 

mean(avg_block_2(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,2) = 

std(avg_block_2(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,2) = std(avg_block_2(detgrp,1:length_base),0,2); 

     

    mean_max(detgrp,3) = 

mean(avg_block_3(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,3) = 

std(avg_block_3(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,3) = std(avg_block_3(detgrp,1:length_base),0,2); 
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    mean_max(detgrp,4) = 

mean(avg_block_4(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,4) = 

std(avg_block_4(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,4) = std(avg_block_4(detgrp,1:length_base),0,2); 

     

    mean_max(detgrp,5) = 

mean(avg_block_5(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,5) = 

std(avg_block_5(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,5) = std(avg_block_5(detgrp,1:length_base),0,2); 

     

    mean_max(detgrp,6) = 

mean(avg_block_6(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,6) = 

std(avg_block_6(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,6) = std(avg_block_6(detgrp,1:length_base),0,2); 

     

    mean_max(detgrp,7) = 

mean(avg_block_7(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    std_max(detgrp,7) = 

std(avg_block_7(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    std_base(detgrp,7) = std(avg_block_7(detgrp,1:length_base),0,2); 

end 
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snr = mean_max/0.0013; % averaged blocks 

 

% 1-D SNR Plot for averaged tapping blocks 

figure(180+sim); plot(1:5,snr(:,1:5)'); xlim([0 7]); 

title('Signal to noise ratio per activation block averages for grouped detectors'); 

legend('1mm','3mm','5mm','7mm','9mm','11mm','13mm','17mm','21mm'); 

xlabel('Average Epochs'); ylabel('SNR'); 

 

% Calculate mean of max std of max and std of baseline 

ind_mean_max = zeros(size(box,1),7); 

ind_std_max = zeros(size(box,1),7); 

ind_std_base = zeros(size(box,1),7); 

 

for detgrp = 1:size(box,1) 

    ind_mean_max(detgrp,1) = 

mean(block_1(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,1) = 

std(block_1(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,1) = std(block_1(detgrp,1:length_base),0,2); 

     

    ind_mean_max(detgrp,2) = 

mean(block_2(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,2) = 

std(block_2(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 



 

125 

    ind_std_base(detgrp,2) = std(block_2(detgrp,1:length_base),0,2); 

     

    ind_mean_max(detgrp,3) = 

mean(block_3(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,3) = 

std(block_3(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,3) = std(block_3(detgrp,1:length_base),0,2); 

     

    ind_mean_max(detgrp,4) = 

mean(block_4(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,4) = 

std(block_4(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,4) = std(block_4(detgrp,1:length_base),0,2); 

     

    ind_mean_max(detgrp,5) = 

mean(block_5(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,5) = 

std(block_5(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,5) = std(block_5(detgrp,1:length_base),0,2); 

     

    ind_mean_max(detgrp,6) = 

mean(block_6(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,6) = 

std(block_6(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,6) = std(block_6(detgrp,1:length_base),0,2); 
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    ind_mean_max(detgrp,7) = 

mean(block_7(detgrp,max_start(detgrp,1):max_end(detgrp,1)),2); 

    ind_std_max(detgrp,7) = 

std(block_7(detgrp,max_start(detgrp,1):max_end(detgrp,1)),0,2); 

    ind_std_base(detgrp,7) = std(block_7(detgrp,1:length_base),0,2); 

end 

 

ind_snr = ind_mean_max/0.0013; % averaged blocks 

 

% 1-D std deviation SNR Plot 

figure(190+sim); 

plot(1:7,ind_snr'); xlim([0 7]); 

title('Signal to noise ratio variations per activation block averages for grouped 

detectors'); legend('1*1','3*3','5*5','7*7','9*9','11*11'); 

xlabel('Individual Blocks'); ylabel('SNR'); 

 

% Count escaped photons from grouped detectors 

sum_photon = sum(sum(photon_escape(35:46,13:53))); 

 

 

% %% figures 

% load('tissue_model.mat'); 

% image = permute(tissue_model,[2 3 1]); 

% for x = 1:66 
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%     rev_image(x,:,:) = image(67-x,:,:); 

% end 

% figure(1); imagesc(rev_image(:,:,42)');title('Vertical slice through central 

sulcus'); xlabel('width (mm)');ylabel('depth (mm)');grid on; 

% figure(2); plot(filt_detfile(filt_row,7),log10(filt_detfile(filt_row,6)),'*'); 

xlabel('Source-Detector Separation (mm)');ylabel('Reflectance (J/mm2)'); 

% figure(3); plot(10:35,plane_5(42,10:35),'*'); title('Standard deviation profile 

along series of detectors'); xlabel('source-detector seperation (mm)'); ylabel('standard 

deviation (%)'); 

% figure(4); plot(10:35,DOD_3_tag(42,10:35)*100,'*'); title('Cross-correlation 

profile with activation signal along series of detectors'); xlabel('source-detector seperation 

(mm)'); ylabel('correlation co-efficient(%)'); 
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