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ABSTRACT

INTEGRATIVE APPROACHES FOR BIOLOGICAL NETWORK INFERENCES

Dongchul Kim, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Jean X. Gao

Inferring biological networks from high-throughput bioinformatics data is one
of the most interesting areas in the systems biology research in order to elucidate
cellular and physiological mechanisms. In this thesis, network inference methods are
proposed to solve biological problems.

We first investigated how the exposure to low dose ionizing radiation (IR) af-
fects the human body by observing the signaling pathway associated with Ataxia
Telangiectasia mutated using Reverse Phase Protein Array and isogenic human Ataxia
Telangiectasia cells under different amounts and durations of IR exposure. DNA
damage-caused pathways are derived from learning Bayesian networks in integration
with prior knowledge such as Protein-Protein Interactions and signaling pathways
from well-known databases. The experimental results show which proteins are in-
volved in signaling pathways under IR, how the inferred pathways are different under
low and high doses of IR, and how the selected proteins regulate each other in the
inferred pathways.

In network inference research, there are two issues to solve. First, depending on

the structural or computational model of inference method, the performance tends to



be inconsistent due to innately different advantages and limitations of the methods.
Second, sparse linear regression that is penalized by the regularization parameter and
bootstrapping-based sparse linear regression methods were suggested as state of the
art in recent related works for network inference. However, they are not effective
for a small sample size data and also a true regulator could be missed if the target
gene is strongly affected by an indirect regulator with high correlation or another true
regulator. To solve the limitations of bootstrapping, a lasso-based random feature
selection algorithm is proposed to achieve better performance.

In order to elucidate the overall relationships between gene expressions and
genetic perturbations, we propose a network inference method to infer gene regulatory
network where Single Nucleotide Polymorphism (SNP) is involved as a regulator of
genes. In the most of the network inferences named as SNP-Gene Regulatory Network
(SGRN) inference, pairs of SNP-gene are given by separately performing expression
Quantitative Trait Loci (eQTL) mappings. A SGRN inference method without pre-
defined eQTL information is proposed assuming a gene is regulated by a single SNP
at most.

We also studied how a medicine can be customized to individual patients con-
sidering biological features of the patients, i.e., Personalized Medicine. Our goal is to
predict drug sensitivity levels of cancer patients in order to provide an optimal drug
to the patients avoiding a waste of time with ineffective treatments. For the clas-
sification of patients to the optimal drug, we employed Bayesian Network Classifier
(BNC) that consists of two components, parameters and network structure. Since the
networks of BNC represent the dependency of proteins, these multiple networks of
BNCs for multiple drugs also provide important information of relationships between
proteins in order to identify the biomarkers of a target cancer from the integration of

the multiple networks.
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CHAPTER 1
Introduction

Most of biological process are operated by interactions of a number of biological
components such as proteins and genes. Many scientists have carried out the research
on the discovery of biological networks such as gene regulatory network and signal
transduction in order to gain the insight of diseases for the development of possible
therapies. Over the last few decades, high-throughput technologies such as gene
microarray and protein microarray have been developed and they enable us to more
effectively infer what relationships are there between genes and proteins. In this
thesis, we propose computational methods to infer gene regulatory networks and
protein signaling pathways for four different problems and applications as follows.

In chapter 2, DNA damage-related pathway was inferred to analyze the effect
of low dose IR exposure to human body. To construct the signaling pathway, protein
expression levels are measured by using Reverse Phase Protein Array under different
amounts and durations of IR exposure In order to verify which proteins could be
involved in a DNA damage-caused pathway, only proteins that highly interact with
each other under IR are selected by using correlation coefficient. Then we performed
the pathway inference that is derived from learning Bayesian networks in combina-
tion with prior knowledge such as Protein-Protein Interactions (PPIs) and signaling
pathways from well-known databases. Learning Bayesian networks is based on a score
and search scheme that provides the highest-scored network structure given a score
function, and the prior knowledge is included in the score function as a prior proba-

bility by using Dempster-Shafer theory (DST). In this way, the inferred network can



be more likely to be similar to already discovered pathways and consistent with con-
firmed PPIs for more reliable inference. The experimental results show which proteins
are involved in signaling pathways under IR, how the inferred pathways are different
under low and high doses of IR, and how the selected proteins regulate each other in
the inferred pathways. As our contribution, overall results confirm that low dose IR
could cause DNA damage and thereby induce and affect related signaling pathways
such as apoptosis, cell cycle, and DNA repair.

In chapter 3, a novel network inference was proposed by integrating two meth-
ods, which have different type of criterion. Many inference methods have been de-
veloped by using a variety of computational models and approaches such as Bayesian
networks, information theory, regression model with bootstrapping, and so on. How-
ever, there are two issues to solve. First, depending on the structural or computational
model of inference method, the results tend to be inconsistent due to innately different
advantages and limitations of the methods. Therefore the combination of dissimilar
approaches is demanded as an alternative way in order to overcome the limitations
of standalone methods through complementary integration. Second, sparse linear re-
gression that is penalized by the regularization parameter (lasso) and bootstrapping-
based sparse linear regression methods were suggested as state of the art in recent
related works for network inference but they are not effective for a small sample
size data and also a true regulator could be missed if the target gene is strongly af-
fected by an indirect regulator with high correlation or another true regulator. We
present two novel network inference methods based on the integration of three dif-
ferent criteria, (i) z-score to measure the variation of gene expression from knockout
data, (ii) mutual information for the dependency between two genes, and (iii) linear
regression-based feature selection. We proposed a lasso-based random feature selec-

tion algorithm (LARF) to achieve better performance overcoming the limitations of
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bootstrapping as mentioned above. There are three contributions as follows. First,
our z score-based method to measure gene expression variations from knockout data
is more effective than similar criteria of related works. Second, we confirmed that the
true regulator selection can be effectively improved by LARF. Lastly, we verified that
an integrative approach can clearly outperform a single method when two different
methods are effectively jointed. In the experiments, our method is validated by out-
performing the state of the art on DREAM challenge data, and then LARF is applied
to inferences of gene regulatory network associated with Psychiatric disorders.

In chapter 4, we proposed a network inference method to infer gene regulatory
network integrating gene expression data with Single Nucleotide Polymorphism (SNP)
in order to elucidate the overall relationships between gene expressions and genetic
perturbations. In the most of the network inferences named as SNP-Gene Regulatory
Network (SGRN) inference, pairs of SNP-gene are given by separately performing
expression Quantitative Trait Loci (eQTL) mappings. In this chapter, we propose a
SGRN inference method without pre-defined eQTL information assuming a gene is
regulated by a single SNP at most. To evaluate the performance, the proposed method
was applied to random data generated from synthetic networks and parameters. There
are three contributions. First, the proposed method provides both the gene regulatory
inference and eQTL identification. Second, the experimental results demonstrated
that integration of multiple methods can produce competitive performances. Lastly,
the proposed method was also applied to psychiatric disorder data in order to explore
how the method works with real data.

In chapter 5, we proposed a novel learning structure method for Bayesian net-
work classifier (BNC) that represents the conditional relationships between proteins.
Based on the proposed BNC, we introduced Personalized Medicine (PM) that pro-

vides the optimal drug for a given patient. More precisely, BNC predicts the effect of
3



drug for the patient and the drug that is more likely to work better is recommended
to the patient. BNC has attracted researchers’ attention since the naive Bayes classi-
fier is fast and simple but competitive to state-of-the-art algorithms in performance
comparisons. BNC consists of two components, a structure of Bayesian network and
conditional probabilities of each variable given parent variables in the network struc-
ture. In BNC studies, it is crucial to construct and estimate discriminative network
and parameters for better performance. Over the last decade, the research has been
focused on learning a structure that maximizes conditional likelihood (CL) for more
discriminative classifier than maximum likelihood-based methods. However, finding
the optimal structure is NP problem as searching space is exponential. Thus, only
if CL function is decomposed, we may find the optimal structure in linear time. As
it is known that there is no closed form of CL function which is decomposable into
each variable, it is still challenge to build a network structure that maximizes CL.
In this chapter, we proposed conditional mutual information-based scoring criterion,
which is decomposable so that we can find the structure where CL is maximized. We
performed the evaluation variety of benchmark data sets in order to demonstrate the
performance of proposed classifier in comparison to state-of-the-art methods. After
the proposed method was applied to lung cancer, the network structures of 23 BNCs

are integrated to discover biomarkers.



CHAPTER 2

Effects of Low Dose lonizing Radiation in DNA Damage-caused Pathways Inferred

by using Reverse Phase Protein Array and Bayesian Networks

2.1 Introduction

Recently, the importance of understanding the biological effects of exposure to
low dose Tonizing Radiation (IR) emerged because of not only occupational exposures
to uranium miners, X-ray operators and astronauts but also from non-occupational
exposures such as nuclear power plant accidents caused by natural disasters such as
earthquakes and the aftermath of tsunamis [4, 5]. IR-caused damage to Deoxyri-
bonucleic acid (DNA) constitutes a broad range of base damage and double strand
breaks and induces the operation of relevant signaling pathways such as DNA repair,
cell cycle control, and cell apoptosis [6]. In this chapter, we aim to investigate which
signaling pathways are activated and how they operated under different doses (0 cGy,
4 cGy, 10 cGy, 50 cGy, 1 Gy, and 5 Gy) and time periods (1, 6, 24, 48, and 72
hours) in order to verify if our body is affected by low dose IR as well as high dose
IR. More precisely our subgoals are to understand the effect of low dose IR. We aim
(i) to verify which proteins could be involved in DNA damage-caused pathways and
to discover candidate biomarkers associated with the response of IR exposure, (ii)
to investigate how DNA damage-caused pathways are activated by IR and how the
inferred pathways are different under low and high doses of IR, and (iii) to analyze
how the expression levels of selected proteins are changed and regulated by each other

on the inferred pathways.



To achieve this aim, we mainly analyzed how the activated signaling pathways
are inferred by measuring how the protein expression level is different under low dose
(4 ¢cGy, 10 ¢Gy) and high dose (1 Gy, 5 Gy) IR. To quantitatively measure the systemic
responses of proteins in pathways, Reverse Phase Protein Array (RPPA) is used in
conjunction with the Quantum dots (Qdot) nano-technology. RPPA was originally
introduced by Liotta [7, 8] and it was designed for quantitatively profiling protein
expression levels in a large number of biological samples. In RPPA, sample lysates
are immobilized in a series of dilutions to generate dilution curves for quantitative
measurements. It is able to use only a small amount (nanoliter) of sample while
other protein arrays immobilize antibodies. After primary and secondary antibodies
are probed, a signal is detected by Qdot assays. Qdot is a nano-metal fluorophore
with a brighter and linear signal, which prevents photo-bleaching effect that often
occurs in organic fluorophores. In addition, RPPA offers more accurate information
to infer a signaling pathway with post-translational modifications (phosphorylation)
not obtainable by gene microarray and PPI [9, 10]. We refer the readers to previous
work|[11] for more details.

Once DNA damage is caused by IR, the detection of DNA damage through the
MRN complex (MRE11-RAD50-NBS1) initiates the response of DNA damage. Then
the signal of DNA damage is transmitted to the ataxia-telangiectasia mutated (ATM),
that passes the signal to various protective pathways [12]. Hence, isogenic human
Ataxia Telangiectasia (A-T) cells are suitable to study of DNA damage response
induced by IR because cellular phenotype of A-T cells shows the hypersensitivity to
ionization radiation and defects in the ATM signal transduction. In fact, ATM is now
widely used as a sensitive monitor of the activation of DNA damage responses after
exposure to ionizing radiation [13]. In this way, A-T cells are used to study DNA

damage responses possibly induced by low dose IR.
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In order to observe how ATM related-pathways are operated by IR, the net-
work inference is performed with proteins, which highly interact with each other by
using the correlation coefficient. The network inference we use is based on learning
Bayesian networks, in which an optimal structure is constructed by maximizing the
probabilistic fitness of the network structure to a given data [14]. Learning struc-
tures of Bayesian networks has been explored over the last decade, which contains
the development of searching and scoring schemes. To find the optimal structure
maximizing the score function, we apply the searching method that is based on linear
programming relaxation approach and originally developed by Jaakkola et al.[15] as
an exact method [16] rather than a heuristic searching approach [17]. In addition, to
overcome inherent limitations of biological data such as noise and limited number of
samples, many methods have been proposed to integrate observed data with existing
knowledge of interactions so as to increase more reliability and decrease false positive
and false negative [18, 19]. To this end, we integrate RPPA with existing PPIs and
pathways as prior knowledge using Dempster’s combination rule and heuristic basic
belief assignments of DST in learning Bayesian networks.

By analyzing the experiments, we can imply that low dose IR causes DNA dam-
age and induces the DNA damage-caused signaling pathways such as the responses
to high dose IR by observing the following results. First, the networks that consist
of high correlated edges show the similarity in low and high dose IR data compared
to non-treatment data (0 cGy). Secondly, the inferred pathways of low dose IR
data (ATM+-/-) are more similar to those of high dose IR data than non-treatment
data. Lastly, when we observe ATM+ data only, the expression level of ATM in
non-treatment data is discriminative with low dose IR as well as high dose.

Through the analysis in the experiments, we not only confirm that ATM,

CHEK1, CHEK2, and TP53 conduct DNA damage-caused signaling but also pro-
7



vide the evidence that CDKN1A, PTEN, AKT1, BCL2, and GSK3B could have a
significant role in DNA damage response. In addition, ATM-CHEK1/2-TP53-PTEN
pathway is distinctly activated in both low and high dose IR and it seems that this
pathway is related to regulation of CDKN1A and GSK3B that are associated with
cell cycle. Although CASP8 and CASP3, which operate apoptosis, were not selected
in the correlation test, the result shows that both CASP8 and CASP3 are gradually

activated by the exposure to low and high doses of IR but not non-treatment.

2.2  Methods

2.2.1 Learning Bayesian Networks

Consider a finite set V' = {X3, Xs,..., X,,} of n discrete random variables for
a given data set. These variables are represented by a set of nodes and can be
connected by edges in Bayesian networks. A Bayesian network is a directed acyclic
graph (DAG) which represents the conditional dependence between variables through
oriented edges. The joint distribution with these conditional probability distributions

is defined as follows:

(X X0) = [ [ p(ilm) (2.1)

i=1
where 7; is a set of variables which are the parent nodes of X, in network structure

1

and we define a possible parent set of X; as II; = {«;

,..,m2"'}. Learning Bayesian
network is to find the structure that best fits a given data. In this paper, score and
search scheme is used for learning Bayesian network. First, we measure the degree

of fitness between estimated network and given data using score function [20], and

then try other structures until the optimal structure which has the maximum score is



found. Given a network structure G and data D (samples of random variables), the

score function K2 [21] is defined as follows:

Score(G : D) = log(p(Q)) + ZZ [log ( rjk_r 1_ i ) Zlog Niji! ] (2.2)

i=1 j=1

where r; is the number of states for variable X; and ¢; is the number of possible
configurations of a parent set of X;. N;j;, is the number of instances where the
variable X; takes the ky, state and the parent nodes of X; have the jy, (j = 1,2,...,4)
configuration. NNV;; is the total number of instance where the parent nodes of X; have
the jy, configuration. If the prior probability log(p(G)) in (2) is fixed or ignored given a
network structure, the second term of scoring function can be decomposable into each
node 7 like Y | S;(m}) where 7} is a selected parent set of X; among II; and S; is a
decomposed second term of score function (2.2). The goal is to find G* = {n}, ..., 7}
maximizing Y., S;(m;). However, since graph G should be acyclic, each 7; cannot
be selected independently without considering the parents of the other nodes. This

is the most critical problem in learning Bayesian network.

2.2.2  Reducing Search Space

As the number of possible parent set of a node is 2! and the total number of
possible network structure is n2" including cyclic structures, exponential searching
space is another difficult problem. Even if we limit the number of possible parents to
one node, the total number of possible structures will be n™. Still searching space is
exponential. For this reason, we prune away as many edges as possible from searching

space using Mutual Information (MI) which is defined as
p(Xi)p(X;)

After we build MI matrix in which each element MI;; indicates MI value between

MI(X;, X;) = ) p(Xi, X;) log(

Xi,X;

), (2.3)

X; and X, we select only the edges whose M1;; is higher than heuristic threshold.
9



Hence, we exclude unnecessary edges effectively so that the number of possible m; can
be reduced effectively. In addition, the number of parent of each node can be limited
by given a priori number from 27! to (";1) where m is the maximum number of

parent nodes of each node. In our experiments, m is set to 4.

2.2.3 Cluster based Linear Programming Relaxation
To find the optimal structure that maximizes the score, we employed learning
Bayesian networks based on linear programming relaxation [15]. First, the objective

function is defined as

m(z}XZZ:;Si(m) st.meqG (2.4)

Constraint to be relaxed is defined as
> Io(m)>1 st. CeC (2.5)
ieC
where C' is a cluster (or set) of nodes and I (7;) is an indicator function. If any node
of m; is in the cluster C, Io(m;) = 0. Otherwise, Io(m;) = 1. This constraint is from
the fact that any subset of nodes in acyclic graph has at least one node whose parent
is outside of the acyclic graph. So if selected 7 of all nodes satisfies the constraint
for every possible clusters (all subset of nodes), G* is a acyclic graph. With this

constraint, dual problem can be defined as

min Y max[S;(m;) + D Aele(m)] = Ac (2.6)
i=1 C:ieC ceC

S.t.)\c Z O,VC g %
where V' is all subsets of nodes and A¢ is a dual variable for each cluster (each
constraint). Since the number of \¢ is exponential, we initially set all A\¢ to zero and
C to ), and then we iteratively add a single cluster into C and optimize Ac. In every

iteration, the relaxation for a single constraint is performed by adding a cluster and
10



all dual variables (A¢) is updated (optimized). Until dual value is equal to primal
value, a new cluster is added in C in each iteration.

For more details about optimization of dual problem in learning Bayesian net-
works using cluster-based linear programming relaxation, we refer the reader to the

literatures[15, 22]

2.2.4 Prior Knowledge

2.2.4.1 Prior Probability

For a more reliable network inference, RPPA is integrated with STRING PPI
data [23] and KEGG pathway data [24] as prior knowledge using prior probability
of score function (2). p(E;; = 1) is the probability of the edge that is oriented from
node ¢ to j. The probability that there is no directed edge between parent node
i to child node j is p(E;; = 0) = 1 — p(E;; = 1). Through this probability of
a single directed edge rather than the probability for all cases between two nodes
(p(Eij =0, Ej; = 0),p(Ey; = 1, E; = 0),p(Ey; = 0, By = 1), p(Ey; = 1, Ej; = 1)), we

can define a prior probability of a network structure G as

log(p(@) =Y Y log(p(Ey; = eali, ) (2.7)
i=1 j=1,j#i

where e (4, j) is a binary indicator function for E;; € Eg, i.e., that the edge E;; exists
in structure G. p(£;;) also allows the prior probability, log(p(G)), to be decomposed
in Bayesian scoring function as follows;

Score(G : D) = Z [ Z log(p(Ehi = eg(h,1)))

i=1 h=1,h#i

+aqzl [log ((Nz‘gr;_nlz! 1)!) + §10g(Nijk! )H (2.8)
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2.2.4.2  Dempster-Shafer Theory (DST)

To combine different evidences about the existence of two interactive proteins
in real signaling pathways, we adopt DST as a fusion method being able to inte-
grate different types of biological data. In the DST model, the Frame of Discernment
is defined as © = {6y,...,6,} that consists of a finite discrete set of exhaustive
and exclusive elements as hypotheses space. In our case, there are two discrete hy-
potheses, © = {01,605}, where 0, represents that an edge exists between given two
nodes, otherwise ,. The power set of ©, denoted 2°, is defined by all subsets of
0, i.e.,2° = {61,0,,{01,0:},¢}. Basic Belief Assignment (BBA) is a mass function
m : 29 — [0, 1], that encodes a support of an element A of 2° satisfying m(¢) = 0 and
> ace™m(A) = 1. For example, m(f,) indicates the degree of belief that two nodes
are connected, m(6, 02) represents the uncertainty of the connection of two nodes. In
DST, uncertainty of two proteins’ interaction in signaling pathway is represented by
an interval rather than a single probability. The lower and upper bounds are called
Belief and Plausibility respectively.

Bel,(A) = > m(A) Plaus,(A) = > m(A) (2.9)

A'CA ANA#£D
Bel is the degree of a belief to which the evidence supports A, whereas Plaus is the
degree of belief to which the evidence fails to refute A. Multiple evidences, i.e., m;

and msy for a belief can be combined by Dempster’s rule of combination defined as

ZAmAFA mi (A1)ma(As)
1-— ZAluAgzz my(Ar)ma(Az)

After we combine different evidence for an edge, the Smets pignistic probability trans-

(m1 & ma)(A) =ms(A) = (2.10)

formation is used to calculate the probability of A from combined BBAs [25].

Py =Y 204, ) (2.11)

/
A’EQQ
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For example, if BBAs in Table 2.2 for two sources of evidence are given with o = 0.4

and we assume that an edge £;; exists in KEGG pathway but not in STRING PPI,

we can calculate prior probability of E;;, p(E;; = 1), as follows;

m1(91) . m2(€1) + m1<91) . m2(91, 92) + ml(el, (92> . m2(01)

e 0.4 x 0 %;O%g”bmﬁ%%+mﬂ%fnww”)
- 'ﬁ—£é§;4}gx3. = 0.2857
ma (61, 62) = 1— (Tm(gf)l (0717;26(29)2)T2751011<7£2>) my(61))
.0 X U.
- 1—@2202i0x0):0M&3
PO} = m3(0) + %mg(eh 05) = 0.2857 + 0.5x0.4286 = 0.5

2.3 Experiments

2.3.1 Materials

2.3.1.1 Reverse Phase Protein Array

Quantum dot reverse-phase protein array is used to profile the dynamic re-

sponses under different doses of IR. ATM-deficient (ATM-) human fibroblasts were

Table 2.1: 67 antibodies of RPPA.

MTOR  CTNNB1 CHEKI1
pCHEK?2 pATM RB1
STAT3 CASPS IGF1R
pSTAT3 AKT1 pAKT1
pEGFR RELA pRELA
pMAP3K1 BCL2 pBCL2
MAPKS KL CDKN2A
VIM CLU ATM
pCHEK1 pSMAD3 H2AFX

CDH1
pRB1
IRS1
CASP3
NQO1
CASP9
TP53
CHEK2

MDM?2 MAPK14
MAP3K1 pSRC
GSK3B pGSK3

PRKDC pPRKDC
CDKN1A CDKN1B

CDK4 pMAPK1
pTP53 SMAD3
MAPK1 HSPB1

pMTOR pMAPKS8  pIRS1(y896)

pPRKDC(S2056) pIGF1R(y1158.62.63) pIGF1R(y1162.63)

pMAPK14
PTEN
pMDM?2
EGFR
pPTEN
NFKBIA
SRC
IGFBP3
pIRS1(y1179)
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Figure 2.1: Relevance networks for (A) low and (B) high dose IR. The edge weight
is correlation coefficient between connected two nodes. The network consists of only
edges which weight is higher than 0.9 and excludes the isolated nodes.

isolated from a patient with A-T phenotype, and ATM-proficient (ATM+, clone YZ5)
cells were those cells complemented with a wild-type ATM gene. The isogenic pair
of ATM cells were treated with a series of IR doses (0 cGy, 4 cGy, 10 cGy, 50 cGy,
1 Gy, and 5 Gy); cell lysates were collected at different time points (1, 6, 24, 48,
and 72 h), serially diluted and spotted on protein arrays in triplicates. To profile the
dynamic responses of proteins in relevant signaling pathways, we use commercially
available antibody sampler kits (Cell Signaling Technology, Inc.) including 67 an-
tibodies (Table 2.1). For better signal detection, biotinylated secondary antibodies
and streptoavidin conjugated Quantum Dot 655 (Invitrogen, Inc.) are used to amplify
the signals. Signal readouts are the intensities of EC50 of each dilution curve. The
measured intensities are corrected by intensities of total protein stain (SyproRuby,
Invitrogen, Inc.) for protein loading, then normalized into zero to one [26]. In our
experiments, we grouped data into three data sets, (i) 0 cGy (ii) 4 ¢Gy and 10 cGy,

and (iii) 1 Gy and 5 Gy as non-treatment, low dose IR, and high dose IR respectively.
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2.3.2 Results

Each subsection presents the results of our subgoals; what proteins could be
involved in a DNA damage-caused pathway, how a DNA damage-caused pathway is
activated by IR and how the inferred pathways are different under low and high doses
of IR, and how the expression levels of selected proteins are regulated by each other
on the inferred pathways. In addition, how the prior knowledge is defined is presented

here.
2.3.2.1 DNA Damage-associated Proteins

In order to infer the activated signaling pathways, we selected the proteins that
are strongly interact with each other using the correlation coefficient. To do this, after
we constructed a clique graph, in which edge weight represents correlation coefficient
between two proteins, all edges were removed except the edges whose correlation was
higher than the pre-defined threshold (0.9 in our experiment). We call this network
relevance networks. As shown in Figure 2.1, there are two relevance networks for
low and high dose IR data. It is assumed that highly interconnected components
(yellow colored connected graph in Figure 2.1(b) of the relevance network for high
dose IR are likely to be associated with DNA damage-caused signaling pathways.
Not surprisingly it is shown that the 9 proteins selected in high dose IR appear in
the relevance network of low dose IR and the selected protein set includes CHEK1
and CHEK2 that mediate the signals from ATM as it is known well. Also we need
to note that the two network structures are similar which means that low dose IR
affects the human body and induce related signaling pathways in the same manner
as high dose IR. Additionally we selected three proteins, ATM, AKT1, TP53 that

have relationships with the already selected 9 proteins or have a significant role in
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Figure 2.2: Prior knowledge for signaling pathway of selected proteins. (A) Signal-
ing pathway from KEGG where red colored edges (TP53-CASP8 and TP53-PTEN)
indicate indirect regulation. (B) PPIs from STRING PPI database.

cell cycle, apoptosis pathway. A total of 12 selected proteins are marked by bold text
in Table 2.1.

2.3.2.2  Prior Knowledge

The prior knowledge we used is from the PPI and signaling pathway database,
STRING and KEGG respectively. According to the signaling pathways in KEGG,

our 67 proteins are involved in a total of 58 pathways. Among 58 pathways, we focus

Table 2.2: Basic belief assignment for evidence KEGG pathway and STRING PPIL.
0, and 6 represent connected and disconnected respectively. In our experiment, « is
set to 0.3.

Evidence m(0y) m(6y) m(6,0,)
connected a 0 1-«
KEGG disconnected 0 « 1-«
connected « 0 l-«
STRING disconnected 0 «Q 1-a
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on only four pathways (cell cycle, p53, PI3K-AKT, and apoptosis) that are directly
associated with 12 pre-selected proteins (Figure 2.2). As shown in Figure 2.2(a), the
interactions between the selected proteins are retrieved from four selected pathways.
CASPS8-CASP3 associated with apoptosis are also included to display the relationship
between selected proteins and apoptosis. Red edges, TP53-CASP8 and TP53-PTEN,
indicate the interaction that requires additional mediation in the signaling pathway.
The interactions between ATM, CHEK1/2, PRKDC, TP53, and CDKN1A are from
the cell cycle pathway. TP53, CDKN1A, PTEN, and AKT1 interact in the PI3K-
AKT pathway. For PPIs, we gained 14 interactions which have a high (experimental)
confidence level in the STRING database. Since EGFR and MAP3K1 do not have
any PPI with other proteins, they are excluded from prior knowledge for PPIs and
pathways. The parameter o in DST is heuristically set to 0.3 since we have to set a
balanced value, which means that the inferred network is too similar to the reference

network (Figure 2.2(a)) if « is set closer to 1.

2.3.2.3 DNA Damage-caused Pathways

In Figure 2.3, the inferred pathways for non-treatment, low dose IR, high dose
IR data are displayed, and the parameter alpha is set to 0 and 0.3 for each data so
as to compare the inferred networks with and without prior knowledge of signaling
pathways of 12 selected proteins. For example, Figure 2.3(a) and (b) is for non-
treatment data with 0 and 0.3 for parameter alpha. The most discriminative feature
between exposure to IR and non-exposure is the regulation between TP53 and PTEN.
In both low and high dose IR, TP53 regulates PTEN but not in non-treatment. The
fact that TP53 regulated by ATM or CHEK1/2 interacts with PTEN that is related
to cell survival being consistent with [27] implies that DNA damage-caused pathway

such as PTEN-dependent cell survival pathway could be more likely to be induced
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Figure 2.3: Inferred signaling pathways. (A) non-treatment without prior knowledge,
(B) non-treatment with prior knowledge, (C) low dose IR without prior knowledge,
and (D) low dose IR with prior knowledge, and (E) high dose IR without prior
knowledge, (F) high dose IR with prior knowledge. Red edge indicates the regulation
that exists in KEGG pathway. Dotted edge refers that the direction is reversed
compared to the direction of edge in KEGG pathway. Blue colored edge (TP53-
GSK3B) is referred by STRING PPIs
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by low dose as well as high does compared to non-treatment. By extension, we note
that ATM-TP53-PTEN-mediated signal in both low and high dose IR is transferred
into AKT that has the important role of cell cycle progression and survival similarly
suggested in related works [28]. The common feature of all the data sets is first
that interactions between ATM, CHEK1/2, and TP53. The only difference between
non-treatment and exposure to IR is what TP53 regulates after ATM or CHEK1/2-
mediated signal. Another common feature we note is the edge between TP53 and
GSK3B that is related to apoptosis as discussed in other studies [29]. In addition, it
seems that BCL2 is also highly correlated with TP53 and GSK3B in the pathway as

concluded in other works [30].

non-treatment 4 cGy 10 cGy 1Gy 5 Gy

ATM ATM ATM
0.8 CHEK2 0.8 :mw 0.8 xcnw

= P53 =l P53 =l P53

P TP53

e GSK3B
= CASPS
= CASP3

P TP53

e GSK3B 0.8
= CASPE
pe= CASP3

l1lid

h 6h  24h  48h 72h 1h 6h  24h  48h  72h 1h 6h  24h  48h 72h 1h 6h  24h 48h 72h

P TP53 o TP53
b= pPTEN . b= pPTEN
= COKNIA = COKN1A
= pBOL2 Je== pBCL2

: P53
0.8 PPTEN

JURV S

0.6!

0. 0. 0. 0. 0.
1h 6h  24h  48h  72h 1h 6h  24h  48h  72h 1h 6h  24h  48h  72h 1h 6h  24h 48nh 72h 1h 6h  24h  48h 72h

Figure 2.4: The changes of expression intensities of selected proteins in different time
periods and doses of IR.
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2.3.2.4 Regulatory in DNA Damage-caused Pathways

Even if an edge between two proteins commonly in both non-treatment and
IR exposure data, we need to analyze how they regulate through the interaction.
We need to especially see how ATM interacts with CHEK1/2 and TP53 in more
quantitative regulation rather than just connectivity since the edges between them
appear commonly in all the data sets. Figure 2.4 shows the changes of expression of
selected proteins under different time periods and IR doses so that we can analyze how
they regulate differently through the inferred pathways. The first row of Figure 2.4 is
about three proteins, ATM, CHEK2, and TP53, which are directly affected by DNA
damage. Since ATM is the important mediator to transmit DNA damage signal, not
surprisingly, expressions of ATM in all dose levels are higher than in non-treatment
(0 cGy). Note that ATM and TP53 mostly have a same trend of expression changes
after being exposed to low/high dose IR for more than 6 hours. In other words, if
ATM increases, TP53 increase or otherwise, TP53 decreases. As the synchronized
trend is not shown in 0 cGy, we can imply that TP53 is regulated by ATM in both
low and high dose IR. CHEK2 also has similar change of expression with TP53 and
ATM as it is known that CHEK1/2 mediate the signal from ATM to TP53. In the
second row of Figure 2.4, the expression of CASP8 and CASP3 are analyzed in order
to see how apoptosis-associated proteins are regulated under different dose levels
and time periods even though we didn’t include these two proteins in the pathway
inference. In both low and high dose IR, CASP8 and CASP3 are more activated when
higher dose for a longer time is applied. So, although we need more investigation to
understand how DNA damage-caused ATM-TP53 signal is transmitted to CASP8-
CASP3 pathway through what mediators like studied in other works [31], it can be

implied that the body responds to low dose IR activating apoptosis pathways. The
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last row of Figure 2.4 is to verify the strong dependency of PTEN, CDKN1A, and
BCL2 to TP53 while IR dose and exposure time period increases. As we mentioned
in section 3.2.3, it has been confirmed that these three proteins associated with cell

cycle control pathways are involved in the DNA damage-caused signaling pathways

under both low and high dose IR.

2.4  Conclusion

In this chapter, we investigate how DNA damage caused by the exposure to low
dose IR affects signaling pathways. To measure the expression intensities of protein,
RPPA is used with 67 antibodies. Using relevance network, 12 proteins that are
highly correlated to each other are selected as DNA damage-associated proteins. The
signaling pathways of those proteins are inferred by leaning Bayesian networks and
prior knowledge of PPIs and pathways are referred for more reliable inference. The
pathways are inferred with three data sets based on different IR doses (non-treatment,
low dose, high dose). In the inferred pathways both with and without prior knowledge,
the networks for low and high dose IR have more similarity compared to the network
for non-treatment. Especially discriminative feature of networks for low /high dose IR
is ATM-CHEK1/2-TP53-PTEN-AKT1 pathway. The evidences that low dose IR can
affect the body through DNA damage-caused signaling pathway are clearly provided
by not only the similarity of networks for low/high dose IR but also quantitative
analysis for expression intensities of ATM and CASP8/3. In addition the role of
PTEN, CDKN1A, and BCL2 in DNA damage-caused signaling pathway could be
studied to fully understand the mechanism of DNA damage response as a future

work.
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CHAPTER 3

Integrative Approach for Inference of Gene Regulatory Networks using Lasso-based

Random Featuring

3.1 Introduction

In chapter 2, biological networks were inferred by using learning Bayesian net-
works as a standalone method. In chapter 3, we introduce an integration of two
different methods in order to overcome limitations of standalone methods. Basically
the inference method should be determined depending on both what kind of data such
as gene expression, gene-Transcription Factor (TF) [35], or protein-protein interac-
tion (PPI) [36] are used to infer and which type of network model, such as directed
or indirected graph [37], we assume. In addition, we have to consider the case of
data integration. Namely, not only individual data but also multiple data types to-
gether (i.e. integration of gene expression and gene-TF data [38]) can be used for
more reliable inference [39, 40]. As an assumption in this work, we limit our inference
methods for directed network with a single data type: gene expression data. In order
to decipher regulatory interactions with gene microarray data, which provides the
gene expression level regulated by the other genes directly or indirectly, the number
of effective network inference methods have been proposed by employing a variety of
computational and structural models based on boolean networks [41], Bayesian net-
works [42], information theory [43], regression model [44], and so on. Depending on
the different approaches, however, the results tend to be irregular due to inherently
different advantages and limitations of each of the inference solutions [45]. The results

of the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project
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[46] describe well the pros and cons of the different methods as well as how effectively
they can work together when the advantages of all methods are integrated (but it
doesn’t mean any combination always outperforms any other standalone method).
More specifically, we note that they conclude two points through the experiments
that (i) there is a limit to a single criterion for continuous improvement of network
inference research without the integration and (ii) specifically the bootstrapping (re-
sampling) based regression method [47] is required to avoid overfitting in regression
methods [46].

As the motivation of our first strategy to this end, we focus on an integration
of Mutual Information (MI) and L; regularized linear regression referred to as lasso
[48] but we exclude the learning Bayesian network in the integration. The learning
structure of Bayesian networks is somewhat infeasible due to both the discretization
problem of a small sample size data and the high cost of computational learning in
large scale data. MI is an information theoretic criteria that has been conventionally
used for learning large scale network structure [49]. Although MI based approaches
such as CLR [50] and ARACNE [51] are limited to reconstructing only an indirected
graph unlike linear regression and Bayesian networks, these methods have the pop-
ular advantages of computational simplicity and non-linear dependency enabler. In
practice, the shortcoming of MI is that it is prone to fail in differentiation between
indirect regulation and direct ones. For example, when the edge from G1 to G3 in
Figure 3.1 is indirect regulation and the edge from G2 to G3 is direct, MI can recover
feed-forward loops comparatively well but not cascades. Highly correlated indirect
regulation edges of cascades (G1—G3 in figure 3.1(b) are likely to be selected by MI.
Lasso is also frequently used to select the regulators of a given target gene assuming
sparseness of GRN in order to avoid the overfitting of the least-squares problem. In

contrast to MI, indirect regulation edge in cascades could be pruned away by lasso in
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A B
Figure 3.1: (A) Feed-forward loops and (B) Cascades. When G3 is a target gene,
G1—G3 and G2—G3 of Cascades are indirect and direct regulations respectively.
In MI-based methods, indirect regulations are likely to be selected incorrectly in

Cascades. In regression based method, strong direct regulators are more likely to be
selected than another direct regulator in Feed-forward loops.

which the objective function is penalized for sparsity by a regularization parameter,
called the tuning parameter A\. However, a weakness of regression-based method is
that only a strong direct regulator is more likely to be selected than another direct
regulator in Feed-forward loops. Therefore, the integration of two methods is con-
sidered to deal with the trade-off. The motivation of our second strategy is that
the property of knockout data allows us to measure statistical variations between
wild-type gene expression and perturbed gene expression after knocking them out to
provide the cause-effect information between those two genes. However, there is the
limitation that the method is only applicable to gene knockout data.

In this chapter, we propose two methods, IMLARF and ISLARF. First, IM-
LARF indicates the integration of MI and LARF and consists of three steps. The
first step of IMLARF is to build a matrix where each element is an edge score calcu-
lated by MI. In order to overcome the limitation of MI as mentioned above, the second
step is to construct another edge score matrix using LARF, then the two edge score
matrices are combined as the last step. In LARF, we regard a sparse linear regression

as a feature selection since our goal is to identify the regulators that best predict
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the expression level of target genes. The problem is that features selected by lasso
tend to be overfitted to a given tuning parameter A\, and thus the unstability problem
caused by this overfitting can be solved by using bootstrapping [52, 43| in which data
is randomly re-sampled so that a more stable selection can be achieved. However,
the limitation of re-sampling is that it could not be effective in the case of a small
sample size. Another limitation of bootstrapping is that the true variable (regulator
gene) is likely to be missed (false negative) when strong indirect or direct regulators
exist. LARF is similar to bootstrapping but LARF selects variables among randomly
pre-selected candidate features in each iteration over different tuning parameters of
lasso optimization so that true features weakly correlated to the target gene could not
be missed, excluding indirect or direct regulators from the feature set. The second
method we propose is ISLARF, which integrates two criteria, ZS and LARF. ZS is
the name of the criteria that uses the z-score of variation of the knocked out gene
expression. Although ISLARF is available only to knockout data, the performance
is highly superior to other z-score based similar methods with knockout data in re-
lated works. In the experimental evaluation, we validate the proposed method on a
dataset from the DREAMS3 challenge [53]. In addition, we explore the gene networks
of Psychiatric disease with the related genes. The results shows that the proposed
method significantly outperforms the state-of-the art [54, 55| and re-builds the known

regulations of genes possibly associated with Psychiatric Disorders.

3.2 Methods
3.2.1 Problem Definition

We begin with a brief definition of problems and notations. The network we

target is a directed graph that consists of n nodes and n(n — 1) edges representing
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genes and regulations respectively. Given a matrix X€RY*" where N is number of
samples, we denote the -th column by a vector x; indicating expression levels of i-th
gene over N samples, and we also let X = {Xj,..., X,,} be a set of variables (genes,
features, node, and variable are interchangeably used in this chapter). The goal of
our work is to not only identify the regulators given a target gene but also to define
the confidence level of regulation as a weight of the edge. In other words, we estimate
the weight of all possible regulations, which are directed edges between all pairs of
nodes {X;<—X, : 7,j€X} in the network , then select only edges that have a higher
weight than pre-defined threshold 6. As a final result, therefore, a weight matrix
WeR™ ™ is returned by the inference method, and W]’ represents a confidence level
of the regulation when target gene ¢ is connected to activator or suppressor gene j.
In the following sections, we present how the edge weight is estimated by information

theory, the LARF algorithm, and the z-score from knockout data.

3.2.2 Overview

3.2.2.1 IMLARF and ISLARF

The first method we propose, IMLARF, consists of three steps. Figure 3.2
describes the overview of the proposed method. First, a symmetric edge weight matrix
M is calculated by mutual information assuming that, if two genes have a higher
mutual dependency, they are more likely to be in the regulation relationship. Second,
another edge weight matrix F' is produced by the LARF algorithm that consistently
gives higher weight to the true edge from regulator to target gene. Lastly, the two
weight matrices are combined by their entry-wise product MoF = {M]Z . F;|z, 7 =
1,...,n}. The second method, ISLARF, is similar to IMLARF but using z-score

matrix, S, is used instead of MI matrix. If S; has higher value, gene i is more likely
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to be regulated by gene j. So in the last step .S is combined with F' by their entry-wise

product SoF

3.2.3 Information Theoretic Approach

3.2.3.1 Mutual Information Matrix

The dependency of two genes, X; and X, can be measured by MI defined as

p(Xi= Xj)

(X, X)) =Y p(Xi,Xj)logm

X, X

) (3.1)
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Figure 3.2: (A) Overview of IMLARF. The algorithm consists of three steps, the
construction of matrix (i) M and (ii) F' and (iii) pairwise product of M and F. In
ISLARF, the matrix M in step 1 is simply replaced with the matrix S (Section 2.4).
(B) An example of procedures of LARF. It shows how the row vector F'! of frequency
matrix F' given target gene G1 and 8 other candidate regulators (G2~G9). By a
predefined «, four random features are selected among eight genes in each iteration.
In the beginning, F'! is not increased and four random features are selected without
sparsity since A is not increased enough yet. The more A is increased, the more the
number of selected features (blue-colored cells) is decreased. If no feature is selected
due to a highly increased A, the iteration and frequency measure is finished.
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The strength of MI is the ability to measure non-linear dependencies of genes,
but the limitation in practice is that the discretization of gene expression is required to
calculate the probability of X; and X;. Instead, if we assume the Gaussian distribution
of gene expression, MI can be computed with its original continuous values by using
Gaussian mutual information [56] defined as

1 lcov(X;, X;)|
I(X;, X;))=—=1 )
(Xi i) = =3 loe R X eon (X, )|

(3.2)

where cov(X;) is the covariance matrix of variable X;, and |cov| is the determinant
of covariance matrix. The reader is referred to [57] for more details. We build MI
matrix in which each element M ; indicates the dependency between X; and X; which
means that X; and X are independent if M ; =0or M ; is relatively lower than other
edges. Networks with the edges whose M; are higher than the heuristic threshold
are referred to as relevance networks. Two critical limitations of relevance networks,
however, are that firstly, MI does not provide the direction of edges due to M J’ = sz ,

and secondly, the high co-expression and indirect regulation may cause false positives.

3.2.4 Statistical Approach

3.2.4.1 Z-score and gene knockout data

We note that knockout data implies cause-effect information. The gene ex-
pression level after the perturbation of another certain gene provides the chance to
observe if the gene is downstream of the perturbed gene. For example, if the varia-
tion between wild type of gene j (X;-”t) and gene j expression measured after gene i is
knocked out is high, gene j is likely to be regulated by gene i. The variation matrix
D is defined as

D;- = Xj’i — X}”t (3.3)
D ; — Hp,

UDj
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where X j_i is the expression level of gene j after knocking gene ¢ out, and pp, and
op; is mean and standard deviation of j-th column vector D; of variation matrix D
respectively. As the z-score of Dj- over D; is the weight of regulation edge Gi — G7,
the z-score of Dj- is equivalent to Sz-j of edge weight matrix S. The limitation of this

criterion is the availability only in knockout data.

Algorithm 1 LARF algorithm
1: procedure LARF (X, «, r,stepsize,t)

2: for i < 1,n do

3: for h + 1,t do

4: A < stepsize

5: repeat

6: Xrandom  RandomFeatures(XV, (n — 1) x a)
7 X' < RandomSamples(X, N x r)
8: Xsetected < Lasso( X[, X! o ioms )
9: if 0 < [Xserectea| < n X a then
Pl Pl 1

11: end if

12: A <= X+ stepsize

13: until Xecteq = 0

14: end for

15: F' < Normalization(F*)

16: end for
17: return F

18: end procedure
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3.2.5 LARF Algorithm

The third approach for complementary integration of inference methods is based

on Lj-regularized linear regression (lasso) defined as
argming||Xi = X\ B+l (35)

where coefficient column vector (; represents regulation relationships between the tar-
get gene ¢ and others. More precisely, after 3; is optimized to minimize the objective
function (3.5), then if the j-th element of j3; is zero, gene j does not regulate gene 1,
otherwise it does. The optimization is performed for each target gene ¢, ¢ € X. Coef-
ficient matrix B = {1, ..., 3.} is equivalent to adjacency matrix where non-zero B;;
is the regulation edge from regulator gene j to target gene ¢. The tuning parameter
A in lasso is used to enforce network sparsity, so the number of selected (non-zero co-
efficient) variables varies with different A. In our works, we regard variable selection
of lasso as a feature selection to predict a target gene’s expression level.

To overcome the overfitting problem and the strong indirect regulation problem,
lasso is iteratively performed over different A with randomly pre-defined candidate fea-
tures rather than random samples like bootstrapping. More precisely, the basic idea
of LARF is that lasso is iteratively performed with only randomly selected candidate
features while increasing the tuning parameter, then giving weight to each feature by
counting how many times each feature is selected in the iterations. We predefine the
fraction of the number of all possible features as a parameter a (0 < o < 1) for the
candidate features. For example, when the number of all possible regulators is n=100,
a=0.2 means that only 20 random candidate genes are used in a single iteration of
lasso. After random featuring, random sampling is performed with parameter r which
decides how many samples are used from the original data. For instance, when the

original sample size is N=200 and r=0.7, only 140 random samples are used in each
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iteration of lasso. With randomly (uniform distribution) selected features and sam-
ples by parameter a, we iteratively run lasso over increasing tuning parameter A until
lasso does not select any features due to a certain high \. In each iteration, random
candidate features and samples are re-defined again. Tuning parameter starts from
zero and increases by the parameter stepsize that should be small enough, (e.g 0.001).
Otherwise, both re-featuring and re-sampling will be biased. For each iteration, the
frequency matrix F' is updated. The i-th row of F' is the frequency of feature selection
for target gene i (F! is supposed to be zero). For example, Figure 3.2(b) describes
how the F*is measured. After finishing the iterations (repeat in line 5), we iteratively
perform ¢ times (¢=10 in our experiments) of the process from line 5 to 13 again, and

then i-th row vector of the frequency matrix is normalized by

() — max(F")

F = : : 3.6
7 max(FY) — min(F*;)’ (3.6)

where
Flo={F,j=1,..,i—1i+1,.n}, (3.7)

and maz(F?) and maz(F,) is maximum value of i-th row vector of F' and minimum

of Ft..

3.3 Results

We first evaluated the performance of IMLARF and ISLARF on synthetic sim-
ulation data as compared to the state of the art, and then explored the inferred
networks with real gene microarray data for psychiatric disorders. The synthetic,
non-linear expression data is from DREAMS3 In Silico Network challenge in which
the data is created with the subnetworks of well-known reference networks for Yeast.
To assess the edge weight matrix W elicited by proposed methods, first the matrix

is converted to an edge list sorted by the confidence levels (weight), then the top
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k confidence level edges are selected to measure the accuracy criteria, such as true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). The
receiver operating characteristic (ROC) curves as a parametric curve were traced over
different £ = 1,...,n(n — 1) to examine the tradeoff between the true positive rate
(TPR) and false positive rate (FPR). The criteria to represent the performance are
defined as following;:

e TPR=TP/(TP+FN)

e FPR=FP/(FP+TN)

e AUROC: the area under ROC curve.
We compared our method to each standalone method without integrations and also
other well known the state of the art methods. The abbreviations of algorithms are
listed below:

e MI: edge is scored by mutual information

e 7S: relative variation from wild type is measured by z-score.

e LARF: lasso based random featuring and sampling.

e IMLARF: integration of MI and LARF

e ISLARF: integration of ZS and LARF

e ZDR: top rank in DREAM 3 [54]

e GENIE3: top rank in DREAM 4 [55]

e TIGRESS: top rank in DREAM 5 [52]

3.3.1 Evaluation on the DREAM3 Benchmarks

3.3.1.1 Materials

The data for DREAMS3 In Silico Network challenge consists of three differently

sized networks, (10, 50, and 100 genes), and there are five gold-standard networks for
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Figure 3.3: (A) The result of LARF with only random sampling (B) The result of
LARF with only random featuring. (C) True network of 10-gene Yeastl in DREAM3

A

Figure 3.4: (A) Mean and (B) standard deviation of AUROC with different parame-
ters and 10 iterations of experiments for 50-gene Yeast1 network.
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each size (total of 15 networks). The five networks are named Ecolil, Ecoli2, Yeast1,
Yeast2, and Yeast3. From each true network, three different data types (knockdown,
knockout perturbations, and time series data) are provided, and the knockdown and
knockout data includes a single wild type sample. In our experiments, only knockout

data is used and 10-gene, 50-gene, 100-gene of Yeastl networks are mainly tested.

3.3.1.2 Random sampling vs Random featuring

To evaluate how much more effectively LARF selects true edges than random
sampling, we compared them with 10-gene Yeastl network in Figure 3.3. Figure
3.3(a) is the result of LARF with only random sampling (a=1, r=0.5) and 3b is
with only random featuring (a=0.5, r=1). The normalized edge score is the average
of 10 experiments and yellow colored cells indicate true edges. In Figure 3.3(a),
though G2’s true regulator is G1, G2<—G3 is relatively higher than G2<-G1 probably
because of indirect regulation from G3 to G2 through G1. In Figure 3.3(b), G2+-Gl1
is correctly estimated as true edge by random featuring. Similarly two true edges
(G4<-G1 and G5+G1) are inferred with the highest weight in random featuring but
random sampling gives only 0.79 and 0.91 to two true edges (G4+-G1 and G5+Gl1)
due to another true edges (G4+-G6 and G5+G3) have strong direct regulation (1
and 0.99).

3.3.1.3 Setting Parameters

Before we compare our methods to other methods, we explored the optimal
parameters that give the best results. As described in Figure 3.4, the mean and
standard deviation of AUROC are measured after LARF are 10 times performed over
different parameters, a and r, for 50-gene Yeastl network. The range of parameter

is 0.2~1 due to too small number of feature and sample in 10-gene network data.
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Table 3.1: AUROC of standalone and integrative methods. In the case of LARF-
based methods, mean and deviation are measured after each method is performed 10
times for Yeast1l network of DREAM3. The integration of more than two methods is
simply done by entry-wise product of edge score matrix. In TIGRESS-TF, the list of
TF is provided as TIGRESS is designed for DREAMS5 challenge data in which TF is
given. Asterisk(*)-marked methods require knockout data.

Method 10-gene 50-gene 100-gene
GENIE3 0.9175 0.8427 0.8631
TIGRESS 0.7044 4+ 0.0056  0.8179 £+ 0.0025  0.7690 £ 0.0023
TIGRESS-TF 0.8154 4+ 0.0037  0.9006 £+ 0.0010  0.8777 £ 0.0009
MI 0.9312 0.8329 0.8586

LARF 0.9250 £+ 0.0154  0.8489 + 0.0038 0.8610 £ 0.0039
IMLARF 0.9425 + 0.0047 0.8487 4+ 0.0032  0.8701 +£ 0.0012
ZDR* 0.8975 0.9223 0.8876

7S* 0.9725 0.9204 0.8870

ZS*+MI 0.9775 0.8931 0.8925

ISLARF* 0.9892 + 0.0021 0.9301 £ 0.0049 0.9065 +£ 0.0029

The best result (0.8501£0.0049) is recorded with a=0.4 and r=1 for 50-gene Yeastl
data. This indicates that the random sampling rate does not necessarily need to be
applied to avoid overfitting once random featuring is applied. In addition, the figure
also shows that the AUROC can be decreased with high standard deviation if both
parameters are too small. If the sample size is small (N=10), the deviation is quite
high in low a and r though AUROC is high. As the best result for 10-gene and
100-gene Yeastl data, 0.92540.0125 and 0.8611£0.0046 were achieved with a=0.5,
r=1 and a=0.4, r=1 respectively. It also shows random sampling could not make
an improvement in both small and large sample sizes. Therefore we applied fixed

parameters a=0.5, r=1 to all data sets in the experiments.
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Figure 3.5: ROC of the methods (A) without and (B) with gene deletion information
in 10-gene network

3.3.1.4 Effect of integration and performance comparisons

Table 3.1 presents the performance of integrative approaches compared to a
single method. The integration of MI and LARF outperforms standalone MI and
LARF except 50-gene. Similarly the performance of ISLARF is better than other
integration such as ZS+MI and standalone ZS. If knockout data is not available,
IMLAREF will be the best method as ZS is not applicable. Since ZDR is based on
knockout data, the result shows that ZDR is quite better than other methods such
as IMLARF except in a small size network. In Figure 3.5, the AUROC for proposed
methods and the state of the art methods with 10-gene Yeastl data are plotted after
only a single experiment. Overall results show that ISLARF is the best method if

knockout data is available, otherwise IMLARF is superior to other methods.

3.3.2 Inference of GRN for Psychiatric Disorders
In this section, the proposed method is applied to real gene expression data
for psychiatric disorders. Through the experiments, we evaluate how the method

constructs the network and explore what potential biomarkers of Psychiatric disor-
36



ders are in the inferred networks. Psychiatric disorders data that are provided from
the Stanley Medical Research Institute (SMRI) consist of gene expression data of
25833 genes and 131 samples (43 controls and 88 cases) including bipolar disorder,
schizophrenia, major depression as three major psychiatric diseases.

To select genes possibly associated with psychiatric disorders, two statistical
tests, t-test and z-test [58], are performed. In Figure 3.6(a), all genes are plotted by
using p-value of t-test for y-axis and z-test value for x-axis, and the plot shows that
two tests shows similar results in linear patterns. From these two tests, we selected
1407 genes as cut-off values are set to —log19(0.01) and £2.326 for t-test (y-axis)
and z-test (x-axis). To find a module of genes that may interact to each other in
Psychiatric disorders, we initially built a correlation matrix whose element of ith row
and jth column is absolute value of correlation between expressions of ¢th and jth
genes, and then clustering is performed to the estimated correlation matrix as shown
in Figure 3.6(b). Based on the result of clustering, we manually set 8 groups of genes
(yellow squares).

To analyze the relationship between clusters, first, IMLARF was applied to all
1407 genes with setting 0 to 0.2. Figure 3.7 shows only the two largest components
of the inferred network where node color indicates a cluster number after small com-
ponents of the network are removed from the figure. The result is consistent with the
correlation matrix in Figure 3.6(b) showing the features as follows: (i) cluster 3, 6, and
8 in the network strongly and exclusively interact to each other, (ii) cluster 2, 4, and
5 are complicatedly interacting together, (iii) cluster 7 is widespread over the whole
network. To observe the strong regulation of the network, we inferred network with
all the genes again after setting 6 to 0.4. As a result, we displayed the second largest
component in the inferred network in Figure 3.8(a). Most nodes of the network are

genes of cluster 3 implying that cluster 3 is most exclusively and strongly interact-
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Figure 3.6: (A) t-test and z-test (B) clustered correlation matrix and 8 clusters (yellow
squares)

ing within the cluster. It is noted that 7 genes, DAO [59], PRDX6 [60], KCNN3
[61], TCF7L2 [62], RFX4 [63], FYN [64], and B3GAT2 [65] (yellow-colored nodes)
, relevant to psychiatric disorders are involved and interestingly these genes except
B3GAT?2 constitute a connected subgraph. Blue-colored nodes indicate the genes that
have more than two connection to yellow nodes supposing that these genes are likely
to be susceptible to psychiatric disorders (In this chapter we call yellow and blue gene
reference gene and susceptible gene respectively. We define a gene as a reference gene
if a gene appears with a psychiatric disease in the title of related literatures). There
are 4 genes, SOX9, HEPH, AQP1, and SDC3 as susceptible genes, and it was already
reported that SDC3 has a weak association with schizophrenia in related GWAS [66].
Figure 3.8(b) is the inferred network for cluster 7, and a total of 8 genes known as psy-
chiatric disorder-related genes in related literatures are found as following: TEF[67],
NR1D1[68], KIF13A[69], ADCYAP1R1[70], MDGA1[71], GNAZ[72], CNR1[73], and
DCLK1[74]. Additionally we defined 5 genes, ZBTB20, MAP7, ZBTB16, ANK2, and

MRAP?2, as susceptible genes, and surprisingly ZBTB20[75], MAP7[76], ZBTB16[77],
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Figure 3.7: Large components of network inferred with 1407 genes

ANK2[78] was also reported as schizophrenia disorder-associated genes in SNP and
CNV-based studies. So we imply that it is worth to investigate the genes that have
only an edge to reference gene as candidate genes associated with psychiatric disorder.
In addition, reference genes in the network tend to interact with each other directly
or indirectly though susceptible genes but they are not widely spread implying they
may work together or may be co-regulated by another unknown biomarker.

The network inference result for the combination of cluster 4 and 5 is shown
in Figure 3.8(c) consisting of two components. There are 10 reference genes such

as DLGA[79]], MIF[80], SLC6A5[81], GAD1[82], GAD2[83], GOT2[84], RGSI[85],
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Figure 3.8: Inferred gene regulatory networks for (A) Cluster 3 (B) Cluster 7 (C)
Cluster 4 and 5. Yellow-colored nodes indicate the genes known as Psychiatric disor-
der genes in the literatures. Blue-colored nodes are the genes that are connected to
more than two yellow genes.

HDAC9[86], CDH7[87], and BDNF[88], and 3 susceptible genes such as PRMTS,
KIT, and ELAVL2. It is noted that ELAVL2 has connections to three reference

nodes and was reported as schizophrenia-related gene in recent GWAS [89].

3.4 Discussion

The difference between ZS and z-score of [54] is in whether the absolute value
of variation D; is taken before z-scoring or original value of D; is used. In our
method, we simply calculate the z-score to measure how many deviations the observed
variation is above or below while the absolute value of variation |Dj| is used for z-
score. Since we want to know how much the variation of a gene is higher than another

target gene after knockout of the source gene, the use of D; rather than |D;| is more
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reasonable and it is not guaranteed to select high-variant genes if absolute value of D;
is used. Since random featuring and random sampling are performed in iterations of
lasso, the computational time is significantly increased especially in finding optimal
parameters. In implementation, the stepsize, therefore, should be set to a reasonably
small value, and parallel processing (i.e. parfor in matlab) can reduce the processing
time in practice (In our case, eight local cores are used). As a future work, we can
integrate TF information additionally in the inference so that we can get more reliable
results, and then also apply our method to DREAMS5 challenge data for comparison
to TIGRESS that utilizes TF information.

3.5 Conclusion

We presented two integrative approaches for gene regulatory network inference
combining two different algorithms. First, IMLARF that we proposed is based on
the integration of MI and LARF, which is a novel regression-based random featuring,
to overcome the limitation of random sampling and MI. Secondly, ISLARF is the
combination of LARF and ZS that is based on the z-score of variation of expression
after the candidate regulator is knocked out. Both integrative methods outperform
the standalone methods and the selected state ofthe art techniques on DREAMS3
challenge data. In application to inference of the gene regulation associated with
psychiatric disorders, we applied IMLARF to gene expression data and inferred the
interactions between genes reported known as psychiatric disorder-associated genes

and susceptible genes defined by inferred networks.
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CHAPTER 4
Inference of Gene Regulatory Networks by Integrating SNP and Gene Expression

4.1 Introduction

In the previous chapter, we introduced new methods to construct biological
networks with only a single type of biological data. In this chapter, a new network
inference method is proposed considering the integration of two different data types
that have regulatory relationships. In order to understand more accurate causal re-
lationships between a complex disease and genetic variations, we need to consider
how the genotypic perturbations affect expression phenotypes that are potentially
associated with a target disease. In other words, it is more crucial to look at the
overall mechanisms considering a series of three factors, which include genetic vari-
ations, altering gene regulations, and caused diseases rather than partial mappings
between them. Therefore it is important to evaluate how genetic perturbations affect
genes on regulatory networks that are associated with a target disease phenotype. In
practice, when biological networks are inferred with high throughput data, we have
to consider not only the relationships among genes but also how genetic factors such
as Single Nucleotide Polymorphism (SNP) and Copy Number Variation (CNV) can
affect genes in Gene Regulatory Network (GRN). Over the last decade, research for
mapping genotype to expression phenotype or disease phenotype such as expression
Quantitative Trait Loci (eQTL) study and Genome Wide Association Study have
been actively performed [90]. However, we are now required to do a network-based
analysis with genotype data and gene expression because it is more effective in dis-

covering underlying biological process from genotype to phenotype. In doing so, the

42



analysis of SNP-Gene Regulatory Networks (SGRN) will provide more definite rela-
tionships of genotypic causes and phenotypic effects so that it will facilitate prognosis
and drug designs for therapies.

In this chapter we propose a SGRN inference method. In order to identify
regulatory interactions among genes, quite a number of network inference methods
have been developed by using gene expression data such as gene microarray. Those
methods can be generally classified into different theoretical categories: Boolean net-
works [41, 91], Mutual Information [43, 92], Bayesian networks (BN) [42, 93], and
Regression [44, 94]. As each method has its own advantages and limitations under
different assumptions and network models such as acyclic or cyclic network and di-
rected or undirected network, there should be trade-offs in inferences given a different
target network structure and applications [46]. For example, the MI-based approach
is very simple and fast so that it can build a large scale network (e.g. genome wide
scale) but it cannot estimate direction of edges. It produces worse performance than
other approaches in detecting linear cascading structures [46]. The BN-based infer-
ence is limited to imply only acyclic network with high computational cost while the
regression-based approach supports both directed and cyclic network, which are as-
sumed in SGRN. In addition to directed network model, it should be considered that
SGRN is different from conventional GRN inference. In SGRN inference, a gene can
be regulated by SNPs as well as other genes, but SNPs are assumed not be regulated
by other SNPs. That is, a SNP cannot be a child node in the network.

Recently, a number of approaches have been suggested to infer SGRNs inte-
grating genetic variation and gene expression data. Kim et al. [95] considered genetic
perturbations, gene expression, disease phenotypes together to find the causal genes
to a disease. The electric circuit approach and heuristic search were used to infer

SGRN where causal genes are mapped to SNP in the preliminary step before network
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inference. Keurentjes et al. [96] built a snp-gene network associated with a particular
phenotype, but this method also performed eQTL mapping (SNP-gene) to define the
candidate regulator genes before genetic network construction. In addition, Kim and
Xing [97] used lasso regression considering the case that a SNP is weakly associated
with highly-correlated multiple traits rather than a single trait. Chen et al. [98] fo-
cused on identifying which pathway among those already known pathways was more
likely to be affected by changes of genotype and gene expression rather than inferring
a new pathway. The related works we especially noted are the methods that are
based on Structural Equation Modeling (SEM) [99, 100, 101, 102]. SEM allows us to
not only incorporate eQTL information to gene expression in a single model but also
identify eQTL simultaneously. However, Logsdon and Mezey [101] assumed that ev-
ery gene has at least one eQTL, and eQTL mapping was performed by preprocessing
but not in a network inference step . Cai et al. [102] introduced sparsity-aware max-
imum likelihood (SML), which can be potentially extended for eQTL identification.
However, SNP-gene pairs were still given in evaluations and implementations of the
SML algorithm.

In this chapter, we proposed a novel method to infer SGRN where both eQTL
identification as well as SGRN inference are performed simultaneously given a set of
gene expression and genotype data without assuming eQTLs are known. The pro-
posed method is based on SEM and multiple steps of edge filtering such as elastic net
regression, and iterative adaptive lasso. Basically SEM is a regression-based model
which is likely to select as many variables causing an overfitting, so the sparsity is
enforced by lasso (I3-regularized least square estimation) considering the sparsity of
biological network. Initial weights of edges are estimated by ridge regression [103]
and elastic net regression [104], and then the second step is to identify final eQTLs

from candidate SNPs selected in the first steps. In the last step, the final network is
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constructed by iterative adaptive lasso. The first two steps are to fix SNPs before se-
lecting genes. In the third step, edges are selected by iteratively giving more penalties
to the edge whose weight is relatively low until network structure is converged.

To evaluate the method, we explore the performance with a simulated data set
that is generated from random networks with different number of samples, nodes,
and expected number of edges per node. The result shows that the method can
achieve a high detection rate of true edges with low false discovery rate without eQTL
information. In addition, to explore the performance in real expression phenotype and
SNP data, the method was applied to the psychiatric disorder data. After genes and
SNPs were selected from related GWAS, it was tested how the method identify true

positive edges between genes and SNPs without eQTL information.

4.2 Method
4.2.1 Problem Definitions

We define the problem and notations here. Let Y € RMs*N denote the ma-
trix of gene expression levels of M, genes and N samples where a row vector y; =
{¥i1, .-, yin } is observed expression levels of ith gene. X is M,x N matrix to denote
genotypes of individuals where z;; € {1,2,3} represents the number of minor alleles
of 1th SNP of jth sample as an element of matrix X supposing that the number of
minor alleles should be zero, one, or two in real data. So, x;; represents a relative
quantity of minor alleles of samples. As a gene can be regulated by other genes and

genetic variations (SNPs), we define SEM as

yi =bY +£X + p; + &, (4.1)

MgxMg.
RMg 9,

where b, denotes ith row vector of square matrix Be& f; denotes ith row

vector of square matrix FeRMo*Ms: ;. is a model bias; and ¢; is a residual modeled
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as zero-mean Gaussian with a variance o2. As we assume there is no self-regulation
(self-loop edge), b; = 0,Vi = 1,..., M, where b; denotes ith element of b;. The
parameters of b; and f; decide the network structure defining the weight of regulation
from every possible genes and SNPs to a target gene ¢. For example, if there is no
regulation relationship (directed edge) from jth gene to ith gene, b;; is set to zero.
Similarly f;; has non-zero value as a weight of regulation from jth SNP to ith gene
if 7th SNP is identified as an eQTL for ith gene. It is assumed that each gene has at
least one eQTL but it is unknown which SNP among a given set of SNPs is an eQTL
for a target gene. Our goal in this model is to find B and F' that best fit to observed
gene expression and genotype data. To make the problem simpler, we remove p; from
(4.1) by applying mean centering for row vectors y, and x; to have zero mean. The
goal is to find b; and f; that minimize a residual €;, so (4.1) can be expressed in a
least square minimization problem as:

argmin||y; — b;Y — £;X||3 (4.2)
However, regression tends to select as many genes and SNPs as possible to explain the
expression level of target gene 7. To avoid the over-fitting, sparse regression methods

such as ridge regression, elastic net, and lasso are used.

4.2.2 The algorithm

The method we propose is based on [i-regularized linear regression known as
lasso [105] that yields a sparsity of variable selection. The algorithm consists of 3
steps, (i) elastic net, (ii) lasso, and (iii) iterative adaptive lasso. The first two steps
are to decide F' where SNPs are selected but their coefficients can be changed in third

step. Then, B is finalized by iterative adaptive lasso in the last step.
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4.2.2.1 Ridge regression (Step 1-1)

In ridge regression, the coefficient values of irrelevant SNPs and genes to a
target gene shrink to zero (but not exactly zero) while those of eQTLs and regulator

genes of a target gene tend to be higher. Ridge regression of (4.2) is defined as

argminly; — bY — £X[34 ] [byl 3+ A1 (4.3)

Given penalty weights, A\; and Ay, the optimal b; and f; can be obtained by closed

form solution given by
f, = (y; — bY)XT(XXT 4 \I) 7Y, (4.4)
b, = (y, - £X)YT(YYT + \I)~L (4.5)
Replacing (5) for b; in (4) yields
f, = y,S1(XS1 + Ao ), (4.6)

where

S =X —yr'(yyr+ nD)tyxT (4.7)

After calculating f; first in (4.6), and then (4.5) can be solved. In this manner,
matrices B and F' are estimated by computing each b; and f;, ¢ = 1, ..., M. Parameter
A1 and A\ that decide the degree of sparsity of B and F' are determined by K-fold

cross-validation. K is set to 5 in our experiments.

4.2.2.2 Elastic net (Step 1-2)

Note that zero weighted coefficient cannot be recovered back to non-zero in

adaptive lasso of step 3. Therefore, in order to carefully remain only SNPs that are
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more likely to be true eQTLs in f;, we give [;-norm penalty to only f; but not b; using
elastic net defined as

argmin|[y; — biY — £.X[[34+ by |3+ Ao |fi] |4 (4.8)
As the objective function is convex, which guarantees a convergence, f;; can be opti-
mized by using coordinate descent iteration given parameters, A\; and As. To find the

optimal f;, the derivative of (4.8) with respect to f;; is considered as follows:

fXX] -y Xj + Y X + N0y,

fillx (4.9)

Since the derivative of (8) with respect to b; is same as (4.5), b; in (4.9) is substituted

with (5), and then (4.9) is simplified to

(Fi—i) X(—) = ¥i)S2 + fijx;52 — Aoy,

£ill1, (4.10)

where

Sy =Y YY"+ MY = D)x], (4.11)

fi—; indicates row vector f; whose jth element is removed, X(_;) denotes matrix
X whose jth row is removed, and x; is jth row vector of X. After defining C; =
(fi— ) X(—j) —¥;)S2 and a; = x;55 in (4.10), the update rule in the coordinate descent

algorithm is written as

(

(—Cj — )\2)/@]‘ if Cj < —/\2,

Jii =140 if C; < |\, (4.12)

(—Cj+)\2)/aj if Cj > Ag.

\

Algorithm 2 describes the procedures to solve (4.8) in step 1-2. If f;; is non-zero, jth
SNP is a candidate eQTL for ith gene.
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4.2.2.3 Lasso (Step 2)

In order to finalize a SNP (a single non-zero f;; of f;) for each gene i, we apply

Lasso to combined matrix of Y and X as follows:
ly; — i Z|[3+A] by |y (4.13)

where

Z' =Yy, XEpn) (4.14)

k;* denotes indices of low vectors where f;; = 0,5 € k;*. So, X(_j,) is a matrix X
whose k;" rows are removed. If the number of rows of X(_j.«) is greater than pre-
defined heuristic number Ny (i.e. 5 in our experiments), only top Ny highest f;; of
absolute values of f; but not all non-zero f;; are selected for X(_j.-). In step 2, we
iteratively estimate h;, decreasing A\ from a high value that lets h; have a zero vector.
Regardless of elements of h; for Y_;, we note only which element of h; for X _j,~
has a non-zero value first assuming that the corresponding candidate SNP to h;; is
more likely to regulate a target gene ¢ if h;; for a row vector of X(_,+) has non-zero

value earlier than other elements of h; during A decreases.

4.2.2.4 Adaptive Lasso (subroutine of step 3)

Adaptive lasso is defined as

argf?inHyz' —byY — £:X |5+ [bs 1w+ [fil | s (4.15)
b;.f; ¢
where
N N
15l | 1= Y b3 - wlyl, [IEill} = > iy wlil. (4.16)
i j

In (4.16), penalty weights, vector w® and w?, are defined as

wfj = (I;ij>_avwzfj - (fij>_ﬂ7vj - {17 "'7Mg} (417>
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Algorithm 2 Optimization for elastic net in step 1-2

1: procedure ELasTic(Y, X, A, Ao, 4, £) > A; and )\, are optimal parameters

estimated by cross validation

2: while err > ¢ do

3. bod — b, 214 — f,

4: for j <+ 1, M, do

5: Update f;; via (12)

6: end for

7 Update b; via (5)

8: err = [[b{" — byl [+ [ — £ |2

9: end while
10: return b; and f;

11: end procedure

where Z)ij and ﬁ»j are estimated in step 2 that yields a sparsity to f; but not b;. Zero
coefficient of f; in step 2 is not considered as an eQTL for gene 7. So, zero fij yields
Z€ro wlfj in (4.17), and then if w,f; is zero, f;; will never have non-zero value in adaptive
lasso of step 3 (4.16). The parameter « and § decide how much previous estimation
such as l;ij or fij is reflected to next estimation of b;; or f;;. Therefore, f;; that has
smaller penalty weight wzfj is more likely to have non-zero value. In addition, we
consider a special case that o and 3 is set to zero supposing that (i) we do not give a
penalty weight to b;; or f;; by setting wfj or wfj to 1 if l;ij or fij is non-zero and (ii) we
do not estimate elements of b; or f; by setting wfj or wzfj to infinity if l;ij or fij is zero.

The solution is similar to step 2 in which either b; or f; is optimized by coordinate

50



Algorithm 3 Optimization for adaptive lasso as a subroutine of step 3

1: procedure ADAPTIVE LASSO(Y,X,;\l,;\g,i,a,ﬁ,lsi,ﬂ) > A; and )y are optimal
parameters preliminary estimated by cross validation

2: Compute w? and w/ (wh; = (6ij)_a,wfj = (fij)_ﬂ)

3: while err > ¢ do

4 bod = b, 214 = f,

5: for j + 1,M, do

6: Update b;; via (19)
7: end for

8: for j < 1, M, do

9: Update f;; via (20)
10: end for

11: err = |[by — by o+ | — £[],
12: end while

13: return b; and f;

14: end procedure

descent algorithm but it is applied to solve both b; and f; in step 3. Derivative of

4.15) with respect to b;; yields
iy

biYy]T — yiy;p + fiXy;fF + A0,

bi||1,w§’

= biyy;y; + (b )Yy — vi + EX)y] + X0, [[bil]1 e
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where b;_;) indicates row vector b; whose jth element is removed, and Y(_;y denotes
matrix Y whose jth row is removed. After setting C’Jl? = (b Y(—j) —y; + fZ-X)y;-F

and ag’. = yjy;fp7 the update rule for b;; is as follows:

(

(—CY —whi-Ay)/ab if CF < -wij-Ay,

J J

\h@+%h%ﬁﬁ@>%m.

We can also estimate f;; in similar way. After define ij = (fp X —yi +biY)x]
and aj-c = ijf, the update rule for f;; is given as
(

(—Cf —wl-do)jal if CT < -wl N,

fii =40 if C7 < Jwl; Mo,

|(=C] +wido)fa] i Cf > wliha.

When b; and f; are updated, updated single element b;; or f;; immediately affect to
updating the next elements. In addition, updating order of elements can be changed
since convex objective function is converged in any order of elements to update.

Algorithm 3 shows the optimization procedure of adaptive lasso.

4.2.2.5 Tterative Adaptive Lasso (Step 3)

Even if b; and f; are estimated in step 1 and 2, there should be still many false
positive edges yet. The primary goal of step 1 and 2 is to carefully get rid of only
edges that are more unlikely to be true positive edges. So, instead of simply applying
adaptive lasso, we developed iterative adaptive lasso to improve the performance of
naive adaptive lasso. The motivation of iterative adaptive lasso is that the coefficient
value of the variable considerably depends on the value of o and 8 which are fixed

to 1 and 0.5 in [101, 102] respectively. In iterative adaptive lasso, adaptive lasso is
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Algorithm 4 Iterative Adaptive Lasso in step 3

1: procedure ITERATIVE ADAPTIVE LASSO(Y , X B F) > Ne(B) denote the
number of non-zero elements in B and F

2. [BR FR| = Ridge(Y, X, AR, F) in (3)

3: a=1 =1

4: for i < 1, M, do

5: [b;, f;] = AdaptiveLasso(Y, X, A\; = 0.001, A, = 0, 4, a, 3, b, £7) in (15)
6: end for

7: while N.(B) are decreased by increased o do

8: while N.(B) are decreased do

9: for i <~ 1,M, do

10: [b;, f;] = AdaptiveLasso(Y, X, M, A =0, i, o, 8, by, f;) in (15)
11: end for

12: end while

13: a=aoa+1

14: end while
15: return B and F

16: end procedure

iteratively applied incrementally changing v and S until there is no more change in
the total number of selected edges of B and F' so that more coefficients of irrelevant
variables can be shrunk to zero.

Algorithm 4 presents a detailed procedure of iterative adaptive lasso. B and
F' estimated in step 2 are used as arguments. On line 2, B and F are initialized by
Ridge regression. A is a vector of optimal parameters of \; for B¥ in (3) but there

is no penalty to F® (AR = 0). For F® we estimate only non-zero elements of F' that
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(a) M=10, E,=1 (b) M=10, E,=3 (c) M=30, E,=1

Figure 4.1: Example of simulated networks with different parameter settings. M and
E, indicate the number of genes and expected number of edges per node respectively.

is estimated in step 2. Again, B and F' are initialized by adaptive lasso in order that
elements of B are updated by weights of Bf. In this initialization, b;; that has a
small value can shrink to zero. Based on updated B and F', A; (a vector of A for B
on line 9) is estimated again by cross validation of adaptive lasso before line 6 starts.
Initially the second while loop updates B until no change in Ne(B). Once the second
while loop is terminated, « is increased, and then the second loop is performed again.
If the second while loop is terminated without any change of Ne(B), the first while

loop is terminated.

4.3 Results
4.3.1 Simulation Studies

To evaluate the proposed method, we first perform simulations based on ran-
domly generated acyclic networks. The simulation settings are similar to [101, 102].
M denotes the number of genes and SNPs and is set to 10, 20, and 30. M xN ma-
trix B is initialized to zero matrix where N is a sample size, then elements of B are
randomly selected as directed edges. The selected b;; has random coefficient value
uniformly distributed over 0.5~1 or -0.5~-1. Since we consider a single eQTL per

gene (Es=1), a single element (f;;) is selected from each row vector (f;). So, F'is a
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diagonal matrix. x;; is randomly set as 1, 2, or 3 with the probabilities 0.25, 0.5, and
0.25, respectively. Y is generated by calculating Y = (I — B)"'(FX + E) where Ej; is
generated from Gaussian distribution with zero mean and variance 0.01. The number
of samples for each network size is N=100, 200, 300, 400, 500. The number of edges
per gene on average is set to Fy=1, 2, and 3. Given data Y and X, performances of
predicting B and F' are evaluated by comparing true network and inferred network.
Figure 4.1 displays the examples of networks, where SNP nodes are excluded.
For the evaluation, true positive (TP), false positive (FP), true negative (TN), and
false negative (FN) edges are counted to measure the accuracy criteria such as True
Positive Rate (TPR) and False Discovery Rate (FDR) that are defined as
e TPR=TP/(TP+FN)
e FDR=FP/(TP+FP)
In order to evaluate our method, IAL is compared to SML [102]. As SML infers only
B with known non-zero element indices of F', we consider two versions of IAL, TAL
without eQTL information and IAL with eQTL information where step 1 and 2 are
skipped and only step 3 is performed with non-zero element index of f;. SML is tested
by using the code the author implemented in [102]. The abbreviations of algorithms
to compare in Figure 4.2 and Table 3.1 are listed below:
e SML: Sparsity-aware Maximum Likelihood algorithm with eQTL information
[102]
o [AL1: TAL with eQTL information
e TAL2: TAL without eQTL information
Ten replicate simulations are performed and each simulation has a different
topology. The results of the different settings (M and E,) are displayed in Figure
4.2. Tt is shown that TAL1 is superior to SML in all data sets regardless of sample size.

We also note that TPR of TAL2 is higher than 0.9 and FDR is less than 0.1 on average
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Figure 4.2: True positive rate and false discovery rate under different numbers of
edges and nodes.

in any sample size. It validates that the proposed IAL works very effectively when
eQTL is known. In addition, the performance of IAL1 is consistent in different sample
sizes while the performance of SML tends to be decreased with small sample size and
complicate network (£,=3). In network inference, it is known that the performance
of inference is very sensitive to the network size and density. In the inference of densely
connected and large networks, the computational cost will exponentially increase and
the FDR may increase because there are more possible variables that may explain
a target node better than true regulators. TAL1 performed consistently in all three
different network size while the performance of SML is affected by the network size

in dense networks (E,=3). However, IAL2 shows consistent TPRs and FDRs in all
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Table 4.1: TPR and FDR of SML, IAL1, and TAL2

N M TPR FDR
SML  TAL1 TAL2 SML TAL1 TAL2
100 10 0.9888 1.0000 0.9742 0.0860 O 0.0104
20 0.9980 1.0000 0.9448 0.0503 O 0.0292
30 0.9951 1.0000 0.8936 0.0364 0 0.0754
500 10 0.9967 1.0000 1.0000 0.0704 0O 0
20 0.9850 1.0000 0.9436 0.0400 O 0.0369
30 1.0000 1.0000 0.9128 0.0016 O 0.0562

Expected number of edges per node is E;=2 and 10 replicates of random network
are used. N and M indicate the number of samples and genes respectively.

three different network sizes when the network density is normal (E,=1) while TPR
of IAL2 in Figure 4.1(g) and (k) is lower than (c) and also FDR increases in Table 3.1
when the network size increases in more dense networks (E,=2). The result shows
that the performance is better in sparse networks (E,=1) than dense networks (£,=3)
because a complicate structure is more likely to cause false positive edges because of
indirect regulations. For example, TPRs in Figure 4.1(a), (e), and (i) are much better
than (c), (g), and (k). Similarly FDR is quite increased with £,=3 in Figure 4.1(d),
(h), and (1) compared to the case of £, =1 in Figure 4.1(b), (f), and (j).

Overall results imply that the proposed TAL1 works perfectly with known F' in
any network size and density. It means that the performance of TAL2 is significantly
affected by false positive inference of F' in step 1 and 2 because of unknown F'. More
precisely b; without sparsity in step 2 is more likely to have false positive non-zero
elements even though a number of candidate elements of b, are filtered in step 1.
Therefore the selection of non-zero element of b; in IAL2 is the most critical part

since IAL1 is able to correctly infer B only if F' is given as eQTL information.
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Figure 4.3: The inferred SGRN with 14 pairs of gene and SNP selected from [1, 2, 3]

4.3.2 Experiments with Psychiatric Disorder Data

In this section, the proposed method is applied to real gene expression and
genotype data for psychiatric disorder. In the application to real data, we explore
the performance of GRN inferences and eQTL identifications through the inferred
networks. As far as we know, the proposed method is the first solution to provide
both GRN inference and eQTL identification. Thus, the performance comparison
with other methods was not performed. The psychiatric disorder data consists of
gene expression data of 25833 genes and 852963 SNPs for 131 samples, which were
measured from human brain. Since we focus on the network inference but not gene
selection, the network construction is performed with a pre-defined set of genes and
SNPs that are selected by preliminary test of multiple sets of genes and eQTLs based
on related GWAS for psychiatric disorders. The result of SGRN inference is displayed
in Figure 4.3 where two yellow colored genes, EGFR and CACNAI1C, are selected

from [2, 3] and the rest of two pairs are from [1]. In applying TAL2 to the data, the
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weights of o and § are set to 0.5 instead of 1. Otherwise, N.(f;) tend to be zero.
The reason for this is that gene variables are more correlated their eQTLs because
generally eQTLs are independently selected to other genes. In Figure 4.3, SNP and
gene are distinguished by node shape, and a red edge indicates a correct edge from
eQTL to corresponding gene. A blue edge represents false positive eQTL mapping.
For eQTL identification, one false positive edge appears and thirteen true positive

edges are detected (TPR=0.9286, FDR=0.0714).

4.4 Discussion

The most difficult part in network inference is to identify directions of edges.
In the adjacency matrix B, both B;; and Bj; could have a high coefficient value. In
this case, regression-based methods tend to show better performance than MI-based
methods because candidate edges are evaluated together in regression-based methods
but each edge is independently evaluated to other edges in MI-based methods. Despite
of the advantage, the regression-based method needs to be integrated with other
methods that can provide a different information of structure. Another issue to
improve in TAL is the computational cost to estimate two different As per each row.
Intuitively, a searched optimal A per each row of B and F' should provide a better
result but it causes a high computation cost. Lastly, we also assumed that a gene has
at least a single eQTL given a set of genes and SNPs, but multiple eQTL should be
considered and a gene may not have any eQTL in practice. Thus, the multiple eQTL

of a gene is a future work in SGRN inference.
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4.5 Conclusion

In this chapter, we proposed a novel network inference method that provides
both eQTL identification and network construction of both genes and SNPs. In order
to understand gene regulatory mechanisms for a target disease phenotype, the regu-
latory network inference needs to consider effect of genetic variation and expression
phenotype together but not only gene expression data. To achieve the high qual-
ity of reliable inference with better TPR and FDR, three different regression skills
are integrated. Ridge regression and elastic net are used to remove more likely false
positive edges and select eQTL as preliminary steps, and then the finial network
is estimated by iterative adaptive lasso removing more false positive edges between
genes. Through the experiments with synthetic data, it was demonstrated that IAL1
outperforms SML in SGRN inference and also IAL2 performs eQTL identification ef-
fectively. The method was also applied to psychiatric disorder data. Using the genes
and eQTLs selected from GWAS of psychiatric disorder, we explored the ability of
eQTL identification through inferred SGRN.
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CHAPTER 5

Learning Structure of Bayesian Network Classifier and Application to Personalized

Medicine and Biomarker Identification for Lung Cancer

5.1 Introduction
While the proposed methods were to integrate the methods or data in previous
chapters, we discover biomarkers based on integration of multiple networks, which

are inferred for the application, Personalized Medicine (PM) in this chpater.

5.1.1 Personalized Medicine

The goal of PM is to provide a medicine that is customized to individual pa-
tients considering biological features of the patients [106]. In this chapter, our goal is
to predict drug sensitivity levels of cancer patients in order to provide an optimal drug
to the patients avoiding a waste of time with ineffective treatments. It is assumed
that different drug sensitivity of cancer patients are derived from different biomolec-
ular characteristics of the patient’s cancer. In other words, proteomic profiling can
provide important pathophysiologic cues regarding responses to chemotherapies since
medicinal effect is closely relevant to signal transduction pathways of a cancer [107].
For biological profiling of patients, quantitative patterns of protein expression are
measured by using a protein microarray.

To quantitatively measure the expression level of proteins, Reverse Phase Pro-
tein Array (RPPA) is used in conjunction with the quantum dots (Qdot) nano-
technology. RPPA was originally introduced by Liotta [108] and is designed for

quantitative measurement of protein expression. In RPPA, sample lysates are im-
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mobilized in series of dilutions to generate dilution curves with only small amount
(nanoliter) of the sample. After primary and secondary antibodies are probed, signal
is detected by Qdot assays. Qdot is a nano-metal fluorophore that provides more
bright and enhanced linear signal. In addition, RPPA is able to measure posttrans-
lational modifications for more accurate pathophysiologic information in a signaling
pathway [109].

Figure 5.1 describes the framework of PM. In the first step, a classifier is trained
by RPPA and drug sensitivity data where proteins are considered as attributes and a
drug is as class label. In the second step, RPPA of a patient’s sample is tested by the
trained classifier, then in the last step, the classifier predicts high or low as a drug
sensitivity of the given test sample. Based on the result of the predictions for multiple
drugs, a set of drugs that are more likely to have low sensitivity is recommended. For
the classification, we employed Bayesian Network Classifier (BNC) that consists of
two components, (i) parameters and (ii) network structure. Since the networks of
BNC represents the dependency of proteins, these multiple networks of BNCs for
multiple drugs also provide important information of relationships between proteins
in order to identify the biomarkers of a target cancer from the multiple networks.
In the following subsection, we present the background of BNC and propose a new

method to build an improved BNC in the prediction.

5.1.2 Bayesian Network Classifier

BNC is one of the most popular models for classification algorithms. The basic
model of BNC is Naive Bayes classifier (NB) [110], which is based on a simple form
of Bayes theorem and relatively competitive to state-of-the-art classifiers such as

Support Vector Machine (SVM) [111] and k-nearest neighbors (kNN) [112] in the
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Figure 5.1: The framework of personalized medicine

performance comparison [113]. These attractive potentials of NB have been noted
and BNC has been constantly improved by researchers.

NB is based on the assumption that all attributes (attribute, variable, and node
are interchangeably used in this chapter) are conditionally independent to each other
given a class label. To more intuitively understand the conditional independence
between attributes, NB is represented as a Bayesian Network in Figure 5.3 where
child nodes are conditionally independent to each other given a class node. However,
the assumption is impractical in real applications [114, 115], where some attributes
are more likely to be related to each other. Therefore, it is important to consider the
dependencies between attributes and these additional information could be utilized to
improve classification accuracy. In other words, NB can be enhanced by augmenting
edges which are shown as dotted arrows in Figure 5.4. Section 5.2.4 presents how NB
is modified by these additional edges in detail.

Basically building a BNC consists of three steps, (i) learning a structure of
Bayesian Network (the process to define edges is referred to as learning structure of

BNC), (ii) estimating parameters (i.e. conditional probability tables), and then (iii)
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predicting the class label that maximizes the posterior probability of Bayes’ theorem
given a test instance as described in Section 5.2.2.

During past years, many methods for learning parameters have been suggested,
and they assumed that discriminative parameters can lead to better prediction ac-
curacy than the Maximum Likelihood (ML)-based parameter estimation [116, 117,
118, 119]. However, it is worth to note that Pernkopf’s experimental analysis [120]
implies that the discriminative parameter may not be effective if the discriminative
structure is already sufficient to classify. Although it is true that the discriminative
parameter learning is crucial in BNC research, we focus on only learning structure in
this chapter.

As an pioneering work in the BNC studies, Friedman et al. [121] showed that
an unrestricted Bayesian network (Fig. 2), which is constructed by conventional
learning Bayesian network method [122], is not discriminative in their experiments.
It was also demonstrated that additional edges between attribute nodes in NB can
be a more discriminative structure. Since the added edges forms a tree structure as
assumed, the network structure they proposed is called Tree Augmented Naive Bayes
(TAN). The algorithm to build a TAN structure is based on Maximum Spanning
Tree (MST) that maximizes likelihood of Bayes theorem. In classification, however,
a higher likelihood does not guarantee a lower error. Instead, Conditional Likelihood
(CL) of the class labels given the features can be used to build more discriminative
structure for a lower error [123]. In other words, the structure that maximizes CL
is more likely to be discriminative than likelihood. Nevertheless, CL has been only
approximately or heuristically estimated by researchers as it has been known that
there is no known closed form that is decomposable into each variable. Grossman
et al. [124] suggested the method in which greedy algorithm is employed to search

the structure that maximizes CL. Although the experiments results confirm that
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CL-based structure is more likely to reduce error in prediction than likelihood, the
heuristic searching and scoring algorithm are computationally too expensive to be
applied to a large number of samples and attributes. Carvalho et al. [125] proposed
the score criteria for the approximation of CL and it was empirically proved by the
experimental results that ClL-based discriminative structure learning of BNC could
outperform state-of-the-art classifiers.

In this chapter, we introduce a learning structure method based on Conditional
Mutual Information (CMI). As our main contribution, it is proved that CL can be
decomposable when the structure is TAN. The decomposed criteria is expressed by
CMI. In our work, CMI we propose is referred to as Discriminative CMI (DCMI) in
order to distinguish it from Friedman’s CMI, which is derived from the decomposed
likelihood but not CL. In addition, DCMI-based TAN structure is improved by re-
moving edges. It means that the final structure could be a partial 1-tree but not
TAN structure. In order to demonstrate the superior performance of the proposed
methods to state-of-the-art methods, we performed the experiments with twenty five
different well-known benchmark data sets. The results confirms that DCMI-based

method achieves significant improvements on classification accuracy.

5.2 Preliminaries
5.2.1 Bayesian Network

Bayesian network is Directed Acyclic Graph (DAG) that encodes the joint prob-
ability distribution over a set of random variables X = {Xj,..., X;,;} where n is the
number of variables. In this chapter we assume all variables are discrete or discretized
as a preprocessing. Bayesian network is defined by a pair B = (G, ©). The first com-

ponent G is a network structure where nodes and directed edges represent variables
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and dependencies between variables respectively. In a given structure G, a set of
parent variables of X; is denoted by Ily,, and X; has an element zy € {1, ..., T4, }
where x;;, is the kth state of the variable X; and r; is the number of possible states of
X;. The second component O is a set of parameters for local conditional probability
distributions representing the probability of a state of the variable X; given states of

the variable’s parents Ily,. Parameters are defined as

where 7;; € {m1, ..., My, } is the jth parent configuration (the states of parents) of Ily,
and ¢; is the number of possible parent configuration given Ilx, (¢; = Ilx, criy 71)-
The structure of Bayesian network defines a joint probability distribution over X

given by the product of local distributions as following:

n

Py(X1, ... Xp) = [[ P(XilTLy,). (5.2)

i=1
More precisely the local conditional distributions in the left-hand side pertaining
the joint distribution encodes the network structure. These local conditional inde-
pendences can be defined as that each variable is conditionally independent of its
non-descendants given the state of its parents. For example, X; is conditionally in-
dependent of its non-descendants given its parents IIy, in G. These property of
Bayesian Network reduce the number of parameter and the computational cost of

posterior probabilities.

5.2.2 Bayesian Network Classifier
BNC is a probabilistic classifier based on Bayes’ theorem and Bayesian Net-

works. A set of random variables is defined as X = {Xj, ..., X,,, C'} where C is a class
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Figure 5.2: Example of unrestricted Bayesian networks. The solid edges indicate the
edges between the class node and the Markov Blanket of the class node. Only the
Markov Blanket of the class node provides the information about the class node in
Bayesian Network Classifier.

variable. The goal of BNC is to predict ¢ (¢ € C) that maximizes Pg(c|z), ..., 2})

given a test instance (7, ...,z%). Thus, BNC is defined as

Pp(C, X1,...,X,)

argmax Pg(C|Xy,...,X,) = argmax 5.3
%ec 5(C1X ) %ec Pp(X1,...,X,) (5:3)
Since Pg(Xi,...,X,) is independent to the decision of class C', the normalization

constant Pg(X7,...,X,) can be canceled from (5.3) in the classifier. Then, BNC can

be redefined as
argmax Pg(C| X7, ..., X,) = argmax Pg(C, X1,..., X,,). (5.4)
c c
Using the joint probability (5.2) of Bayesian Network, we can re-express (5.4) as

n

arg max Ps(C|Te) [ | Ps(XilMx,). (5.5)

=1
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5.2.3 Generative Model vs Discriminative Model
Let us consider a Bayesian network structure in Figure 5.2. In order to predict
the class node C' given the values of other nodes, we can define the BNC equation

(5.5) as following:

12
arg max P(C|II¢) [ [ P(Xi[Ix,) (5.6)
C

i=1

=argmax P(C| Xy, X5)-P(X1)-P(X5)-P(X3)-
c

P(X4| Xy, X2)-P(X5|Xa, X3)-P(Xg| X4)-
P(X7]X5)-P(X5| X6, C)-P(Xo|C, X7)-P(X10| Xs)-

P(X11]|Xs, Xo)-P(X12]|Xo). (5.7)

Since the local conditional distributions that do not include C are constant, we can

cancel all those local distributions from the classifier (5.6) as given by
arg max P(C| Xy, X;5)-P(Xs| X6, C)-P(Xy|C, X7). (5.8)
c

In this case, the classifier uses only the Markov blanket of C' because discarded vari-
ables are irrelevant to C'. It means that the performance of BNC depends on the
structure of BN. However, the most of algorithms for learning BN structure is to
build a network, which is referred to as the generative model for the representation of
a given data but not the discriminative model for classifications. In fact, Friedman
[121] verified these limitations of generative model with the empirical results where
unrestricted Bayesian network structures as a generative model cannot provide an
effective structure for BNC in 25 data set from UCI Machine Learning repository
[126].
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Figure 5.3: The network structure of the Naive Bayes Classifier

5.2.4 Naive Bayes Classifier and Tree Augmented Naive Bayes

In order to overcome the limitation of the unrestricted structure-based BNC
(Figure 5.1), alternatively Naive Bayes Classifier (NBC) [110] has been applied in the
variety of applications. NBC provides the competitive performance to the state of
the art in classifications. NBC is a special case of BNCs assuming all variables are
conditionally independent to each other variable given C'. NBC has a simple Bayesian
network structure shown in Figure 5.3 as a restricted structure where all variables

have information for C. Based on the structure, BNC (5.5) can be re-written as

argmax P(C|X1, ..., X,) = argmax P(C) [ [ P(X;|C). (5.9)

c c ,
=1

However, this conditional independence assumption is quite unreasonable since there
could be correlations between variables (attributes) in real world applications.  Friedman
et al. [121] suggested Tree Augmented Naive Bayes (TAN) where extra edges between
variables are added to the structure of NBC. More precisely the augmented edges be-
tween variables are restricted to a tree structure in TAN. For example, the structure
with dotted edges in Figure 5.4 is supposed to be a tree in TAN. Each variable has at

most two parents nodes (i.e. class variable as a default parent and one other variable).

Only class variable has no parent node. To build the maximum likelihood TAN struc-
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Figure 5.4: Example of TAN structure. The dotted edges compose a tree structure.

ture, the first step is to construct a Maximum weighted Spanning Tree (MST) where
the weight of each undirected edge between two variables, X; and X; (X;, X,;€X), is
computed by Conditional Mutual Information (CMI), I(X;; X;|C). The second step
is to decide the direction of MST by setting the orientation of all edges to be out-
ward from a root, and then add a class variable to the tree and add edges from class
variable to all variables. It is summarized how CMI-based MST provides maximum
likelihood TAN structure as following.

The goal of maximum likelihood TAN is to find the TAN structure that max-
imizes likelihood of the structure given data. The likelihood function (L) and its

logarithm (LL) are given by
L(B|D) = HP (e HP XTI, ¢, (5.10)

L(B|D) = ZlogP (c +ZZlogP (X!, ¢ (5.11)

where N is the number of instance. Since the first term of the right hand side

n (5.10) is constant with respect to II;, the goal is to find II; that maximizes
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SV S log P(XYTTE, C*) given i. Therefore, the objective function can be redefined

)

as
N n

arg max log P(XHITE, C* 5.12

8 Xt:;g(llz) (5.12)

= argmax N > P(X;,1I;, C)log P(X;|IL;, C) (5.13)

= arg maX—NZ H(X;|1L;, C) (5.14)

= argmax — N H(X;)+ N 1(X;; 10, O). 5.15

gama =N 3 HX) 4 N DTG 1,) (5.15)

Since the first term of the right hand side in (5.14) and N is constant with respect to

I1;, we can restate (5.14) as following:

arg max (X1, C 5.16
gmax 3111 C) (5.16)
arg max = ZI(Xi; C) + I(X; 1L|C) (5.17)
1, -
X argmax 1(X;; 1| C 5.18
a3 (X1 (5.13)
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5.3 Methods
5.3.1 Discriminative Structure Learning

5.3.1.1 Conditional Log-Likelihood Score Function

Our goal is to build a Bayesian network that maximizes CL by augmenting
edges to the structure of NBC. We assume that edges augmented in NBC compose a

tree structure like TAN. CL is reformed to a entropy equation as follows:

N
CL=]]P(xt, .. ) (5.19)
t=1
N
CLL = log P(c'|z},...,a%) (5.20)
t=1
=N-) P(C,Xy,...,X,)log P(C|X,, ..., X,,)
C,.X
= —N-H(C|Xy,...,X,) (5.21)

where H is entropy.
Proposition 1. Given the order of nodes, conditional log-likelihood for Bayesian

network classifier can be decomposed into each node as follows:
—H(X;|C, X1, .., X)) + H(XG| X1, -, X0) (5.22)

Given a TAN structure we can define the topological order of node in which node X;
can have parent node X; only if ¢ is earlier than j in the order (X; < X;). Now using

following conditional entropy rule given by
H(X|Z) - H(X|Y,Z) = H(Y|Z) — H(Y|X, Z). (5.23)
CLL (5.20) can be re-expressed as

—H(X|C, Xa, ., X)) + H(X| Xo, ..., X))
— H(C|Xa, ..., X,)
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where constant NV is cancelled. Note that the third term is same form as H(C| Xy, ..., X,).

Similarly we can expand —H(C| X, ..., X,) to

—H(X5|C, X5,...,X,) + H(X:|C, X3, ..., X,)

— H(C|X3,...,X,).
Therefore we can iteratively decompose CLL into each node in the order:

— H(C|X1,...,X,) (5.24)
- — H(Xl‘C,XQ, “e ;Xn) + H(XllXQ, . 7Xn)

— H(X,|C, X3, ..., X)) + H(X| X3, ..., X,)

— H(X,1|C, X,) + H(X,—1|X5)

— H(C|X,) (5.25)

In Bayesian network, the node X,, of the last term is not decomposed since at least
one node does not have parent. Now we can generalize (5.23) with two entropy terms

for each node as follows.
SOIHGIX ) — H(XG|C, X )] — H(C|X,) (5.26)

Before we discuss more about learning TAN structure for BNC using (5.25),
consider CLL of NB structure first.

Lemma 1. conditional log-likelihood for NB is equivalent to

ST H(X,[C) — H(X,)] — H(CIX,) (5.27)

i
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The first term of (5.24) can be re-expressed in

— ) \1,...,
2 P C X o i 6 P[P >2%)
P(C)
— ) \1,...,
D P(X:, 0. X log s
C.X
— — H(X,|0) (5.29)

where Xi and X\ is conditionally independent given C' in (5.27). Similarly, The

second term of (5.24) can be given by

, P(X\L|C)P(O)
- ) \1,...,3
ZP<X“X )logzc; P(X;, X\l-i|CYP(C)

,,,,,

1. P(C)
S %: P(X;, X\ )log%: P(X;, C)
1,....% 1
_ EX: P(X;, X\ e
o (5.30)

As a result, it is reasonable that the attributes that have a lower entropy given C'

contribute more in classification of NB. In TAN structure we have to consider the
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topological order of node in (5.23). (5.24) is re-written with the parent of node 7 as

follows.

n—1
Z[H(XAH“ X\l """ i’Hi) — ]?()(AC’7 Hi’ X\l ..... i,HZ—)]

i

—H(C|X,) (5.31)

Theorem 1. If the structure of BN is limited to TAN, CLL can be decomposed as

follows.
n—1
> I(X, C[IL) — H(C|X,) (5.32)

Recall TAN structure is supposed to have the node order and a node can have only
a single parent node, and then we show the first term of (5.30) can be re-defined as

following:

— H(X,|C,T0;, X b1y

0 P(Ca Hi? X\l ..... iIIi)
gP(XZ, C’ H’i’ X\l ..... l,HZ)

C,X
1

= P(X;,C, X\ : .
Z ( 707 ) OgP(XZ|C, H,“X\l 77777 Z,Hi) (5 33)
C,X

1

— P(X, X\t 34
Z ( Z’C’ )lOgP(XZ‘C, Hz) (5 3 )
X

= — H(X;|C,1L,) (5.35)
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where X\b-#1li i5 canceled from (5.32) by using Markov blanket rule. Similarly the

first term of (5.30) is re-expressed as

H(X,|II;, X\t (5.36)
1
_ P(X X\l ..... % .
Z ( (2] )logP(XZ|HZ’ X\ ..... i H’L) (5 37)
X
= P(X;, X\1)log ! (5.38)
" P(X;|1L,)
X
= H(X|1L,). (5.39)
Therefore (5.24) of TAN structure is give by
n—1
Z[_H(Xi|07 IL) + H(X;|1L)] — H(C|X,) (5.40)
n—1
= I(X;,C[IL;) — H(C|X,,). (5.41)

Therefore, the decomposed score function to construct a TAN structure that

maximizes CLL is defined as

n—1

argmax » _ I(X;, C|T;) — H(C|X,,). (5.42)

10,

I(X;; C|II;) changes depending on candidate parent node X;. In order to con-
struct TAN (selection of edges), first we define adjacency matrix W where each el-
ement is defined as w;; = I(X;;C|X;) and represents a score of edge, X; + Xj.
However, we noted that I(X;; C|II;) tends to be higher than I(X;; C|IL;) if I(X;;C)
is higher than I(X;; C'). In this case, w;p, is more likely to be selected than w;r; even
if II; decreases I(X;; C|II;) and II; increases I(X;; C|II;). So, each row of W, W;, is
subtracted by I(X;;C) (i.e. w;; = I(X;; C|IL;) — 1(X;; C), which is equivalent to a
decomposed of (5.41) - (5.26)). Interestingly I(X;; C|II;) — I(X;; C) is equivalent to

interaction information that represents how much II; can increase 1(X;;C). In other
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words, if I(X;; C|II;) — I(X;; C) is negative, II; is not helpful to make BNC more
discriminative supposing that X; is good enough to explain C'. As matrix W is now
symmetric (I(X;; C1X;) —I1(X;;C) = 1(X;; C|X;) — 1(X;; C)), we modify the scoring
criterion more to give a preference to an edge between w;; and w;;. To this end, we
let X; has an edge X; < X; if I(X;; C) is higher than I(X;;C'). Otherwise, X; has
an edge X; < X;. Thus, the final DCMI is defined by

—I(X;; C|X)) (5.44)

Basically DCMI is based on maximizing CLL but X; < X is more likely to be selected
if X; do not have enough information about C' but X; has. Once W is calculated, a
directed tree is constructed by using simple order-based method (OLDT) as defined

in Algorithm 5.

Algorithm 5 Order-based Learning Directed Tree

1: procedure OLDT (W) > W is a matrix weighted by DCMI
2: Initialize A = n X n zero matrix > A is an adjacency matrix
30 14, ] = MaATieX jeX,itj Wij

4: aij = 1, S = {Z,j}

5: fort <+ 3,n—1do

6: 6] = MaTiex\s jes Wij
7: a; =1,5=5SU{i}
8: end for

9: return A

10: end procedure
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In order to additionally improve the DCMI-based learning structure, we remove
edges that may enhance the performance except the edges between attributes and

class label using Classification Rate (CR) [120, 127] defined as

N
1
CR=+ > I(BNC(af,....al),d) (5.45)
t=1
where N is the number of instances and z}, ..., x! is the t-th instance in training data.
BNC(x,...,x, — 1) returns an estimated ¢ as a result of prediction. ¢ is the correct

class label. I(¢,c) is an indicator function that returns 1 if ¢ = ¢. After building the
DCMI-based structure, an edge that increases CR is iteratively removed until there is
no more edges to remove for better CR. CR-based Removing Edge algorithm (CRE)

is described in Algorithm 6.

Algorithm 6 CR-based Removing Edge algorithm
procedure CRE(A)

2: while CR(A) increases do

i,j = maxm,aiﬁo CR(AQU:O)

4: if CR(A) < CR(Aq4,;—0) then
A= Auyeo
6: end if
end while
8: return A

end procedure
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Table 5.1: Data sets used in the experiments

Dataset Attribute Class Train Test
1 Australian 14 2 690 CV-5
2 Breast 10 2 683 CV-5
3 Chess 36 2 2130 1066
4 Cleve 13 2 206 CV-5
5 Corral 6 2 128 CV-5
6 Crx 15 2 653 CV-5
7 Diabetes 8 2 768 CV-5
8 Flare 10 2 1066 CV-5
9 German 20 2 1000 CV-5
10 Glass 9 7 214 CV-5
11 Glass2 9 2 163 CV-5
12 Heart 13 2 270 CV-5
13 Hepatitis 19 2 80  CV-5
14 Iris 4 3 150 CV-5
15 Letter 16 26 15000 5000
16 Lymphography 18 4 148  CV-5
17 Mofn-3-7-10 10 2 300 1024
18 Pima 8 2 768 CV-5
19 Satimage 36 6 4435 2000
20 Segment 19 7 1540 770
21  Shuttle-small 9 7 3866 1934
22 Soybean-large 35 19 562 CV-5
23 Vehicle 18 4 846  CV-5
24 Vote 16 2 435 CV-5
25 Waveform-21 21 3 300 4700

5.4 Results

5.4.1 DCMI with UCI Benchmark Data

We evaluated the classification performance of DCMI comparing to other BNC
criteria and state-of-the-art classifiers. We performed our evaluation on 23 UCI bench-
mark data sets [126] and two synthetic data sets (Corral and Monfn-3-7-10) that most
of the related works have used [121, 128]. The description of the data sets is presented

in Table 5.2. Since it is assumed that variables are discrete, all continuous-valued at-
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tributes were discretized by using the supervised entropy-based method [129] and
instances with missing values were removed from the data sets. For parameter es-
timation, Ordinary Frequency Estimation (OFE), which is equivalent to ML-based
estimation, is used, and zero probabilities of the conditional probability tables are
Holdout test and 5-fold cross validation are

replaced with a small value 0.00001.

performed for large and small size data sets respectively.

Table 5.2: Accuracy of Bayesian network classifieirs

Dataset NB CMI CR
1 Australian 86.60+0.24 80.724+0.90 83.0940.97
2 Breast 97.67+0.09 96.584+0.34 97.26+0.34
3 Chess 87.31£0.82 92.464+1.21 95.754+0.80
4 Cleve 83.154+0.80 80.4941.46 81.2041.30
5 Corral 86.2441.52 98.484+1.02 92.344+2.66
6 Crx 86.234+0.34 81.034+0.88 82.524+0.96
7 Diabetes 78.34+0.35 78.07£0.53 77.2940.78
8 Flare 79.10£0.25 81.59+£0.42 81.29+0.41
9 German 76.17£0.60 73.34£0.96 74.46+0.85
10 Glass 77.34£1.32 77.89+1.52 78.9541.58
11 Glass2 88.544+1.12 87.474+1.46 86.714+2.05
12 Heart 83.244+0.60 78.78+1.38 81.67+1.17
13 Hepatitis 94.3840.95 90.004+2.15 95.8141.02
14 Iris 95.034+0.46 94.734+1.22 95.13%+1.23
15 Letter 74.64+£0.51 87.21£0.44 87.69£0.71
16 Lymphography 80.35+1.53 79.86+2.15 78.94+2.43
17 Mofn-3-7-10  89.70£1.13 92.3541.51 93.2741.67
18 Pima 78.16£0.54 78.18+£0.48 77.33+1.02
19 Satimage 82.80+0.70 87.164+0.72 88.3840.42
20 Segment 93.554+0.89 94.714+0.90 95.5940.93
21 Shuttle-small  92.56+0.83 94.76+0.43 94.72+0.45
22 Soybean-large 93.474+0.51 90.11+£1.11 90.9440.60
23 Vehicle 67.484+0.80 76.574+0.74 75.054+1.37
24 vote 90.214£0.40 92.614+0.80 93.914+0.60
25 Waveform-21  80.454+0.75 72.19+0.80 74.73+0.88
Average 84.91 85.49 86.16

80



Table 5.3: Accuracy of Bayesian network classifieirs

Dataset SVM DCMI DCMI+CR
1 Australian 84.72+0.45 86.404+0.43 86.77+0.47
2 Breast 97.77+£0.12  96.354+0.39 96.32+0.35
3 Chess 95.54+0.81 93.864+0.64 94.46+0.69
4 Cleve 82.00£1.02 80.1941.19 80.28+1.26
5 Corral 86.83£2.17 98.04+1.17 98.55+1.12
6 Crx 84.61£0.72 86.214+0.49 86.42+0.56
7 Diabetes 77.13+0.62  77.49+0.67 77.82+0.71
8 Flare 80.93+0.31 80.5740.39 80.59+0.51
9 German 76.10£0.65  75.37£0.64 75.294+0.56
10 Glass 69.28+£1.36  79.09+1.79 79.44+1.24
11 Glass2 81.29+1.12 88.33%+1.37 88.02%+1.57
12 Heart 84.50+£0.62 80.70+1.44 80.61+1.41
13 Hepatitis 88.504+2.32 92.2542.24 92.25+2.24
14 Iris 96.274+0.55 94.83+1.08 94.70+0.93
15 Letter 97.28+£0.23 85.4440.46 85.60+£0.46
16 Lymphography 79.44+2.02 77.67£1.88 77.53+2.03
17 Mofn-3-7-10  100.0040.00 93.18+1.41 93.514+1.50
18 Pima 77.754£0.41  77.68+0.80 77.924+0.71
19 Satimage 75.93+0.86 86.04+0.60 86.13+0.57
20 Segment 95.71£0.83  95.474+0.59 95.57+0.69
21 Shuttle-small ~ 94.1240.56 94.484+0.45 94.44+0.45
22 Soybean-large  87.13£0.95 93.474+0.51 93.51+£0.51
23 Vehicle 75.19+41.00 75.31£0.74 75.3940.72
24 vote 95.97+£0.48  95.434+0.45 95.33+0.59
25  Waveform-21  62.78+6.56 76.41+£1.51 76.45+1.47

Average 85.07 86.41 86.52

The abbreviations and brief descriptions for compared methods are as follows:
e NB: naive Bayes Classifier
e CMI: W in OLDT is calculated by CMI, I(X¢;IL|C) [121]
e CR: In for loop of OLDT, W is iteratively re-calculated by CR [116] where

w;; indicates how much CR can increases when w;; is augmented as a new edge

81



e SVM: Support vector machine with radial basis function kernel and gamma
0.07.

e DCMI: OLDT where W is calculated by DCMI.

e DCMI+CR: After TAN+DCMI, some edges are removed by CRE algorithm.

Table 5.4: Comparison of classifiers using the one-sided paired t-test

CMI CR SVM DCMI DCMI+CR
NB <0.01 9 <0.01{ 0.31451 <0.01 <0.01 f
CMI <0.01 f§ 0.0497 <= <0.01 q <0.01 f
CR <0.01 < 0.0114 9 <0.01 ¢
SVM <0.01 9 <0.01 9
DCMI <0.01 f

The test for each data set was performed 20 times and same train and test data
were used in all methods. The accuracy of classification on average with standard
deviation are arranged in Table 5.1. In overall results, DCMI is better than other
methods on average and the result also shows that removing edges can improve DCMI.
Not surprisingly NB had the worst performance. In some data set, NB results in the
best accuracies implying attributes of the data may be independent to each other.
Table 5.3 shows the results of one-sided paired t-test with significance level 0.05 where
the number is p-value, direction of arrow indicates better method, and double arrow
means statistical significance at level p <0.05. Overall results of t-test shows that

DCMI and DCMI+CR significantly outperforms other methods.
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Table 5.5: 55 antibodies of selected proteins

pSre(Y527) p53  pGSK3 pmTOR  GSK3
pIRS1(Y1179) p38 pp38 CyclinD3  NQOI1
pIRS1(Y896) pl6 pJNK pPTEN CDK4
pIGF1R(Y1158-1162) Src  RAF1 pRAF1 Bcl2
pIGF1R(Y1162-1163) p27 ppH3 Hsp27 IKBa
pEGFR(Y1173) p21 sClu IGF1R MDM?2
E-Cadherin AKT pBcl2 pNFkBp65 pERK
pSrc(Y416) JNK  pAKT  Vimentin PTEN
CyclinB1 Rb pMDM2 NFkBp65 IRS1
b-Catenin ERK  Stat3 b-Actin EGFR
gH2AX pRb  pIKBa pStat3 mTOR

5.4.2 DCMI with Lung Cancer Data

5.4.2.1 Personalized Medicine

In order to biologically profile lung cancers, RPPA is used to measure protein
expression levels of 75 cell lines with 55 antibodies (Table 5.4). For drug sensitivity
test, 23 durgs were used with different set of cell lines.  On average, 43 cell lines are
used for a single drug. As a preprocessing, the drug sensitivities were discretized into 2
states (High or Low) by K-means clustering algorithm and protein expression level of
RPPA is discretized by minimum entropy based discretization method [129]. Instead
of all 55 antibodies, proteins were pre-selected by using DCMI network. To build
DCMI network, we first calculated DCMI of all possible edges between attributes
and select only edges that have a high value like top 1%. Then, only attributes that
are not isolated in the DCMI network were selected. To evaluate the performance, the
prediction accuracy was measured by using leave-one-out estimation due to limited
number of instances.

The results, given in Table 5.5, show the classification accuracies for each

drug. The best and worst accuracy of DCMI is 96.08% in Paclitaxel/Carboplatin
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Table 5.6: Accuracy of Bayesian network classifieirs

Drug Name NB CR SVM DCMI

1 8-aminoadenosine 86.67 86.67 91.11  88.89
2 8-Cl-adenosine 91.11 95.56 95.56  93.33
3 Carboplatin 82.22 82.22 82.22 84.44
4 Chloroquine 88.64 90.91 9091 9545
5 Cisplatin 88.37 86.05 83.82  88.37
6 Cyclopamine 77.78 80.00 T7.78  82.22
7 Diazonamide 78.05 70.73 82.93  75.61
8 Docetaxel 92.68 95.12 95.12 90.24
9 Doxorubicin 73.91 76.09 54.35 80.43
10 Erlotinib 97.67 97.67 90.70  90.70
11 Etoposide 88.37 88.37 88.37  88.37
12 Gefitinib 95.00 95.00 87.50  95.00
13 Gemcitabine 88.64 90.91 84.09 90.91
14  Gemcitabine/Cisplatin  80.95 80.95 85.71  90.48
15 Irinotecan 77.50 75.00 72.50  72.50
16 Paclitaxel 87.23 87.23 82.98 87.23
17 Paclitaxel/Carboplatin  96.08 96.08 90.20  96.08
18 Peloruside A 85.71 88.10 95.24 90.48
19 Pemetrexed 86.36 86.36 90.91  84.09
20 Pemetrexed/Cisplatin ~ 83.33 83.33 76.19  83.33
21 Smac Mimetic 94.87 94.87 100.00 89.74
22 Sorafenib 95.74 89.36 89.36  89.36
23 Vinorelbine 88.37 86.05 88.37  90.70
Average 87.19 87.07 85.90 87.74

and 72.50% in Irinotecan respectively. On average, DCMI outperformed other meth-

ods with 87.74% accuracy.

5.4.2.2 Biomarker Indentification

In order to discover the biomarkers of lung cancer, we integrate the network
structures of DCMI classifiers for all drugs into a single network. It is assumed
that lung cancer-associated nodes and edges are more likely to be involved in the

integrated network. To this end, all instances are used to estimate parameters as
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training data given a drug. Figure 5.6 displays a integrated network where all edges
and nodes of networks for 23 classifiers are included except class nodes. We note four
interconnected proteins, NF-kB, Stat3, beta-Catenin, and IkBa as biomarkers for lung
cancer. From Figure 5.6, it is implied that four proteins are conditionally dependent
with many other proteins given drugs. In other words, if the selected proteins are
associated with effect of drugs, they could be more related to the biological process
of lung cancer. To make the integrated network simpler, we displayed the edges that
are used by more than 2 classifiers in Figure 5.5. Still there are four biomarkers we
note and specially b-catenin is centered by being connected to most of other proteins.

A number of literatures support that NF-kB are related to lung cancer. Basi-
cally NF-kB is a transcription factor that is involved variety of biological process such
as regulation of immune response and inflammation. Along with known functions,
NF-B is constitutively active in most cancers being reported that NF-kB could have
a major role in oncogenesis [130, 131]. Especially it was reported that activation
of NF-kB mediates apoptosis by inducing some members of the anti-apoptotic Bcl-2
family [132].

Stat3 is signal transducer and activator of transcription that is emerged as
potential therapeutic target for cancers [133] since persistent activation of Stat has
been reported in a number of cancers [134]. Especially it has been demonstrated that
constitutive Stat3 DNA-binding activity are in multiple non-small cell lung cancer
cell lines [135]. In Figure 5.6, we also note that Stat3 is connected to CDK4 whose
expression level was significantly higher in lung cancer tissues than normal tissues
[136].

Many studies reported that activation of the Wnt/-catenin signaling pathway
plays an important role in lung cancer [137, 138] Especially B-catenin has attracted

as effective drug target for lung cancer as it has been shown that reduced B-catenin
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treated non-small-cell lung cancer well [139, 140] and also recently it was reported
that tumor metastatsis can be led by Wnt/-catenin signaling [141]. It has reported
that silencing of IBa can activate NF-B that is a potential key mediator of many

cancer types including EGFR-mutant lung cancer [142, 143].

NF-kBp65

pBcl2 |- b-Cateni

pIGF1R 1163)
NF-kBp§5 pE /3)

Figure 5.5: The integrated network of Bayesian network classifier for 23 drugs



5.5 Conclusion

We propose a new decomposable criterion for discriminative learning structure.
The new criterion, DCMI, is based on maximizing CLL under the assumption of TAN
structure. As mutual information-based criterion we proposed is decomposable, learn-
ing a discriminative tree structure can be performed in linear time. The performance
of DCMI is compared with state-of-the-art methods on 25 benchmarking data sets.
DCMI and DCMI with CR performed better than NB, LL-scored TAN, CR-scored
TAN, and SVM with RBF kernel. The significant performance was statistically as-
sessed by t-test. In the application to classification for personalized medicine, it was
demonstrated that DCMI with pre-selected proteins effectively predicted the drug
sensitivities so that optimal drugs could be recommended to lung cancer cancer pa-
tients. In addition, we explored that the network structure of classifier can provide
important information of dependencies of proteins given drugs in order to discover
biomarkers of lung cancer. Our future work include that extending DCMI to dis-
criminative parameters and applying DCMI to feature selection for BNC with more

antibodies and samples.
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Figure 5.6: The integrated network of Bayesian network classifier for 23 drugs
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