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Abstract

APPLICATIONS OF CUBICAL ARRAYS IN THE

STUDY OF FINITE SEMIFIELDS

Kelly Casimir Aman, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Minerva Cordero

It is well known that any finite semifield, 𝑆, can be viewed as an 𝑛-dimensional

vector space over a finite field or prime order, 𝔽𝑝, and that the multiplication in 𝑆

defines and can be defined by an 𝑛×𝑛×𝑛 cubical array of scalars, 𝐴. For any element

𝑎 ∈ 𝑆, the matrix, 𝐿𝑎, corresponding to left multiplication by 𝑎 can be determined

from 𝐴. In this paper we show that there exists a unique monic polynomial of minimal

degree, 𝑓 ∈ 𝔽𝑝[𝑥], such that 𝑓(𝑎) = 0, and which divides the minimal polynomial of

𝐿𝑎. Furthermore, we show that some properties of 𝑓 in 𝔽𝑝[𝑥] correspond to properties

of 𝑎 in 𝑆. These results, in turn, help optimize a method we introduce which uses 𝐴

to determine the automorphism group of 𝑆. We show that under certain conditions

𝐴 can be inflated to define a new semifield, 𝑆[𝑚], over the field 𝔽𝑝𝑚 , and that inflation

preserves isotopism and isomorphism between inflated semifields. Finally, we apply

our results to the 16-element semifields, and give algebraic constructions for each of

these semifields for which no construction currently exists.
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Chapter 1

Introduction

Finite semifields satisfy all of the axioms for finite fields except that their mul-

tiplication is not assumed to be associative or commutative. In this paper we study

the algebraic properties of finite semifields through the use of cubical arrays. One

motivation for semifield research is its applications to the theory of finite geometry,

particularly finite translation planes. However, we take an algebraic approach to the

work presented here. Nevertheless, we include a brief description of the geometric

motivations for the concepts of isotopism and the dual of a semifield.

Chapters 2 and 3 provide background information for our results. They are

based on the work of Donald Knuth in [11]. In chapter 2, we provide the formal defi-

nition of a finite semifield, and prove that any finite semifield, 𝑆, is an 𝑛-dimensional

vector space over a prime order finite field, 𝔽𝑝. Furthermore, we show that left or

right multiplication by each element in 𝑆 has a corresponding linear transformation.

We also describe the relationship between finite semifields and finite projective planes,

and introduce the geometrically and algebraically important concept of an isotopism

between two semifields. In chapter 3, we show that the multiplication in a semifield

defines an 𝑛 × 𝑛 × 𝑛 array of scalars known as a cubical array, 𝐴, and show the nec-

essary conditions for a cubical array to define a semifield. We will call such cubical

arrays Knuth cubes. We show how, for any 𝑎 ∈ 𝑆, the matrix corresponding to left

multiplication by 𝑎, 𝐿𝑎 can be determined from 𝐴, and show how cubical arrays of

isotopic semifields are related.

The remainder of this work is devoted to the results of our research. In chapter
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4, we investigate the action of polynomials on elements of finite semifields. Due to the

fact that semifield multiplication is nonassociative, we adopt the convention of using

two exponential notations to refer to repeated left or right multiplication. Doing so

allows us to prove that there exists a unique left minimal polynomial, 𝑓 ∈ 𝔽𝑝[𝑥] such

that, when the exponents of 𝑓 are used for left multiplication, 𝑓(𝑎) = 0, and proves a

number of results regarding the relationship between 𝑎, 𝑓 , and 𝐿𝑎. Analogous results

hold if right multiplication is used in place of left multiplication.

In chapter 5, we describe a subgroup, 𝐶(𝑛, 𝑝), of 𝐺𝐿(𝑛, 𝑝), and show how

𝐶(𝑛, 𝑝) can be used to generate the set of all Knuth cubes which define 𝑆, 𝐾(𝑆).

We show necessary and sufficient conditions for matrices in 𝐶(𝑛, 𝑝) to correspond to

automorphisms of 𝑆. This allows the automorphism group of 𝑆 to be determined by

testing each matrix in 𝐶(𝑛, 𝑝), and we use the results of chapter 4 to greatly reduce

the number of matrices which need to be tested.

In chapter 6, we outline a number of classical algebraic constructions for finite

semifields and describes a Knuth cube generated by each construction. Using these

results, it is possible to look at the Knuth cubes in 𝐾(𝑆) and see if any is of the

proper form for each construction. This provides a method by which cubical arrays

can be used to identify whether a particular construction will generate a particular

semifield. The primary use of these results is in chapter 8 to identify which of the

16-element semifields can be generated by existing constructions.

The results in chapter 7 were inspired by the work of chapter 6, and follow

directly from the results in chapters 2 and 3. We provide necessary and sufficient

conditions under which 𝐴 can define a semifield over 𝔽𝑝𝑚 , denoted 𝑆[𝑚]. We then

prove that if 𝑆[𝑚] exists, then 𝑆 and 𝑆′ are isotopic semifields if and only if 𝑆[𝑚] and

𝑆′
[𝑚] are isotopic semifields.

In chapter 8, we applyin our results to the 16-element semifields. Currently al-
2



gebraic constructions exist for representatives of the three isotopism classes for these

semifields, and we show how the known Knuth cubes can be used to provide algebraic

constructions for each of the twenty-four isomorphism classes of these semifields. We

conclude with a list of representative for each isomorphism class of the 16-element

semifields, and for each representative we provide a Knuth cube, an algebraic con-

struction, a list of automorphisms defined with respect to the algebraic construction,

and a list of the elements contained in the most commonly studied semifield subsets.

3



Chapter 2

Semifields and Their Planes

The term semifield, and the definition which follows, were first introduced by

Knuth in [11]. Even now, although the term has been widely adopted, these systems

are sometimes referred to as “nonassociative division rings” or “distributive quasi-

fields”. In this chapter we will define what semifields are, describe their general form,

and look at the geometries which inspired them. All of the results and proofs in this

chapter are taken from [11], and are included here for the sake of completeness. Some

of the notation has been altered to help avoid ambiguity and to suit the needs of the

results in the later chapters. The proofs have been slightly altered as well to be more

rigorous.

2.1 Semifield Basics

Definition 2.1. A finite semifield is a finite set, 𝑆, together with two binary operations,

denoted + and ∗, which satisfies the following axioms, for all 𝑎, 𝑏, 𝑐 ∈ 𝑆:

1. (𝑆, +) forms a group, with identity element 0.

2. If 𝑎 ∗ 𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0.

3. 𝑎 ∗ (𝑏 + 𝑐) = 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐 and (𝑎 + 𝑏) ∗ 𝑐 = 𝑎 ∗ 𝑐 + 𝑏 ∗ 𝑐.

4. There exists 𝑒 ∈ 𝑆 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎.

In the following work we will use the term semifield to refer to a finite semifield,

and, unless otherwise noted, all other sets and systems mentioned will be assumed

finite. Notice that any finite field will satisfy this definition, and thus every finite

field is a semifield. The key difference is that semifield multiplication is not assumed
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to be associative or commutative. By Wedderburn’s theorem, associativity will imply

commutativity, but the converse is not true. As noted in [7], there exist commutative

semifields which are not associative, so the converse is not true.

Many of the results in this work could therefore be applied to the study of finite

fields, although there is little need since finite fields are already well understood.

Because of this, we will sometimes include examples of results applied to fields in

addition to semifields to highlight differences between the systems. And, when it is

necessary to emphasize that a semifield is not a field, we will refer to it as a proper

semifield. In other words, in a proper semifield 𝑆, there exist 𝑎, 𝑏, 𝑐 ∈ 𝑆 such that

𝑎 ∗ (𝑏 ∗ 𝑐) ≠ (𝑎 ∗ 𝑏) ∗ 𝑐.

Associative multiplication is such a common and fundamental assumption in

mathematics that the effects of its absence are not always obvious. For example,

exponential notation for multiplication is not well defined for powers greater than 2.

The term 𝑥2 is unambiguous and stands for 𝑥 ∗ 𝑥, but 𝑥3 could mean 𝑥 ∗ (𝑥2) or

(𝑥2) ∗ 𝑥. A similar issue arises with the idea of multiplicative inverses. Consider the

following well known lemma.

Lemma 2.2 (Knuth, [11]). Let 𝑆 be a semifield, and let 𝑎, 𝑏 ∈ 𝑆 be nonzero. Then

there exist unique 𝑥 and 𝑦 in 𝑆 such that 𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏.

Proof. Let 𝑆 = {0, 𝑐1, 𝑐2, ..., 𝑐𝑞}, and consider the set {𝑎 ∗ 𝑐1, 𝑎 ∗ 𝑐2, ..., 𝑎 ∗ 𝑐𝑞}. Since

𝑆 can have no zero divisors, 𝑎𝑐𝑖 ≠ 0 for all 𝑖. Suppose there exist 𝑖, 𝑗 such that

𝑎 ∗ 𝑐𝑖 = 𝑎 ∗ 𝑐𝑗. Then 𝑎 ∗ (𝑐𝑖 − 𝑐𝑗) = 0, and 𝑐𝑖 = 𝑐𝑗. Thus each 𝑎 ∗ 𝑐𝑖 must be distinct,

and there must exist a unique 𝑖 such that 𝑎𝑐𝑖 = 𝑏, thus 𝑥 = 𝑐𝑖. A similar proof shows

that there exists a unique 𝑦 such that 𝑦 ∗ 𝑎 = 𝑏.

Consider a nonzero element 𝑎 ∈ 𝑆. This lemma shows that there exist 𝑥, 𝑦 ∈ 𝑆

such that 𝑎 ∗ 𝑥 = 𝑒 and 𝑦 ∗ 𝑎 = 𝑒. For this reason a finite semifield, like a finite field,
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will have no nontrivial ideals. There are still subsets of 𝑆 which are of particular

interest.

Definition 2.3. Let 𝑆 be a finite semifield. Then the left nucleus, middle nucleus, and

right nucleus are the subsets 𝑁𝑙, 𝑁𝑚, and 𝑁𝑟 of 𝑆 defined by

(2.1)

(2.2)

(2.3)

𝑁𝑙 = {𝑎 ∈ 𝑆|𝑎 ∗ (𝑥 ∗ 𝑦) = (𝑎 ∗ 𝑥) ∗ 𝑦 ∀𝑥, 𝑦 ∈ 𝑆}

𝑁𝑚= {𝑎 ∈ 𝑆|𝑥 ∗ (𝑎 ∗ 𝑦) = (𝑥 ∗ 𝑎) ∗ 𝑦 ∀𝑥, 𝑦 ∈ 𝑆}

𝑁𝑟 = {𝑎 ∈ 𝑆|𝑥 ∗ (𝑦 ∗ 𝑎) = (𝑥 ∗ 𝑦) ∗ 𝑎 ∀𝑥, 𝑦 ∈ 𝑆}

The nucleus, 𝑁 , of 𝑆 is the intersection of 𝑁𝑙, 𝑁𝑚, and 𝑁𝑟.

The left, middle, and right nucleus of a semifield are sometimes referred to

collectively as the nuclei of 𝑆. This terminology is still not entirely standard, and

some authors may use the term nucleus to refer to 𝑁𝑙 when it is the only nucleus

being considered.

Definition 2.4. Let 𝑆 be a semifield. The center of 𝑆, denoted 𝑍, is the subset of 𝑆

defined by

(2.4) 𝑍 = {𝑥 ∈ 𝑆|𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 ∀𝑦 ∈ 𝑆}

It is worth noting that 𝑁𝑙, 𝑁𝑚, 𝑁𝑟, and 𝑁 are all isomorphic to finite fields, by

Wedderburn’s theorem. Furthermore, 𝑍 ∩ 𝑁 is also isomorphic to a finite field, and

is sometimes referred to as the associative center of 𝑆. But 𝑍 may not be isomorphic

to a finite field, and there exist cases where 𝑍 = 𝑆 and 𝑆 is a proper semifield.

2.2 Semifields as Vector Spaces

Another useful consequence of Lemma 2.2 is that 𝑎∗0 = 0∗𝑎 = 0 for all 𝑎 ∈ 𝑆,

since 𝑎 ∗ 𝑏 = 0 implies that 𝑎 or 𝑏 is zero. This, coupled with the fact that any

semifield is a group under addition, yields the following useful result.
6



Lemma 2.5 (Knuth, [11]). Let 𝑆 be a semifield. Then the following are true:

1. The group (𝑆, +) is Abelian.

2. (𝑆, +) has characteristic 𝑝, where 𝑝 is a prime.

3. 𝑆 is an 𝑛-dimensional vector space over the finite field of order 𝑝, 𝔽𝑝.

4. |𝑆| = 𝑝𝑛 for a prime 𝑝 and positive integer 𝑛.

Proof. Let 𝑎, 𝑏 ∈ 𝑆 and let 𝑒 denote the multiplicative identity of 𝑆. By distributivity,

we have

(𝑎 ∗ 𝑒 + 𝑎 ∗ 𝑒) + (𝑏 ∗ 𝑒 + 𝑏 ∗ 𝑒) = (𝑎 + 𝑏) ∗ (𝑒 + 𝑒) = (𝑎 ∗ 𝑒 + 𝑏 ∗ 𝑒) + (𝑎 ∗ 𝑒 + 𝑏 ∗ 𝑒)

Since (𝑆, +) is a group, we then have

(𝑎 ∗ 𝑒 + 𝑎 ∗ 𝑒) + (𝑏 ∗ 𝑒 + 𝑏 ∗ 𝑒) = (𝑎 ∗ 𝑒 + 𝑏 ∗ 𝑒) + (𝑎 ∗ 𝑒 + 𝑏 ∗ 𝑒)

= (𝑎 + 𝑎) + (𝑏 + 𝑏) = (𝑎 + 𝑏) + (𝑎 + 𝑏)

= 𝑎 + (𝑎 + 𝑏) + 𝑏 = 𝑎 + (𝑏 + 𝑎) + 𝑏

= 𝑎 + 𝑏 = 𝑏 + 𝑎

Thus (𝑆, +) is Abelian. Now let 𝑎 ≠ 0. For any 𝑘 ∈ ℤ+, let (𝑘𝑎) denote 𝑎 added

to itself 𝑘 times. Let 𝑝 denote the smallest integer such that (𝑝𝑎) = 0 and suppose

there exist 𝑚, 𝑛 ∈ ℤ+ such that 𝑛𝑚 = 𝑝. This gives us

(𝑚𝑎) ∗ (𝑛𝑎) = (𝑚(𝑛(𝑎 ∗ 𝑎))) = ((𝑚𝑛)(𝑎 ∗ 𝑎)) = ((𝑚𝑛)𝑎) ∗ 𝑎 = (𝑝𝑎) ∗ 𝑎 = 0 ∗ 𝑎 = 0

Then (𝑚𝑎) = 0 or (𝑛𝑎) = 0, which implies 𝑚 = 𝑝 or 𝑛 = 𝑝. Thus 𝑝 is prime. Now

let 𝑎, 𝑏 ∈ 𝑆 and let 𝑝1 and 𝑝2 denote the additive orders of 𝑎 and 𝑏 respectively, and

let 𝑥 denote the multiplicative order of (𝑎 + 𝑏). From the previous argument, 𝑥 must

be prime, but since 𝑝1 and 𝑝2 must both divide 𝑥, the only way this can be true is

if 𝑝1 = 𝑝2 = 𝑥. Thus all elements of 𝑆 have the same additive order. Thus 𝑆 must

be a vector space over the finite field of 𝑝 elements, 𝔽𝑝, with scalar multiplication
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referring to repeated addition. Thus we have |𝑆| = 𝑝𝑛, where 𝑛 is the dimension of

𝑆 over 𝔽𝑝.

Definition 2.6. Let 𝑆 be a semifield where |𝑆| = 𝑝𝑛. Then the order of 𝑆 is 𝑝𝑛.

When discussing the number of elements in a semifield we will sometimes specify

that 𝑆 has 𝑝𝑛 elements, is a 𝑝𝑛-element semifield, or has order 𝑝𝑛. Since finite fields

and vectors over finite fields are also used throughout this work, we will use the

notation 𝔽𝑛
𝑝 to denote the set of 𝑛-dimensional vectors over 𝔽𝑝, and 𝔽𝑝𝑛 to denote

the finite field of 𝑝𝑛 elements.

The fact that semifields are vector spaces provides some useful properties. If

𝑆 and 𝑆′ are semifields of order 𝑝𝑛, then (𝑆, +) and (𝑆′, +) are both isomorphic to

(𝔽𝑛
𝑝 , +). Consider elements 𝑎, 𝑏 ∈ 𝑆. Because multiplication is distributive, there

exist linear transformations 𝐿𝑎 and 𝑅𝑏 such that

(2.5) 𝑎 ∗ 𝑏 = 𝐿𝑎(𝑏) = 𝑅𝑏(𝑎)

By Lemma 2.2, these transformations must be bijective. This is a very useful property,

since it allows us to view multiplication in terms of linear transformations. For

instance, if 𝑅𝑏(𝑎) = 𝑎 ∗ 𝑏, then there exists 𝑅−1
𝑏 such that 𝑅−1

𝑏 (𝑎 ∗ 𝑏) = 𝑎. Some care

should be taken when working with these functions though. Consider the differences

between the following:
𝑅2

𝑏(𝑎) = (𝑎 ∗ 𝑏) ∗ 𝑏

𝑅𝑏2(𝑎) = 𝑎 ∗ (𝑏 ∗ 𝑏)
The first function is 𝑅𝑏(𝑅𝑏(𝑎)) which is distinct from 𝑅𝑏2(𝑎), and clearly these two

functions are distinct.

Finally, we can let 1 denote the multiplicative identity of 𝑆 without fear of

ambiguity. Let 𝑖, 𝑗 ∈ 𝔽𝑝. Then (𝑖𝑗)𝑒 = (𝑖𝑒)(𝑗𝑒) and (𝑖 + 𝑗)𝑒 = 𝑖𝑒 + 𝑗𝑒. Thus there is

a subfield of 𝑆 isomorphic to 𝔽𝑝, and the multiplicative identity of 𝑆 is isomorphic to
8



the multiplicative identity of 𝔽𝑝. We will continue to let 𝑒 denote the multiplicative

identity of 𝑆 for now to keep the notation as clear as possible, but we will switch to

1 in later chapters when it is more convenient.

2.3 Examples

As previously mentioned, every finite field is also a semifield. The following

result gives a necessary condition for a semifield to be proper.

Lemma 2.7 (Knuth, [11]). If 𝑆 is a proper semifield of order 𝑝𝑛, then 𝑛 ≥ 3.

Proof. If |𝑆| = 𝑝, then 𝑆 must be isomorphic to 𝔽𝑝. If |𝑆| = 𝑝2, then 𝑆 is two-

dimensional over 𝔽𝑝, and has a basis of the form {𝑒, 𝑥}. The multiplication in 𝑆 is

therefore determined by 𝑥 ∗ 𝑥 = 𝑎𝑥 + 𝑏𝑒 for 𝑎, 𝑏 ∈ 𝔽𝑝. Now consider 𝑥2 − 𝑎𝑥 − 𝑏𝑒 =

0. This cannot be factored, otherwise 𝑆 would contain zero divisors. Thus it is

irreducible and 𝑆 ≅ 𝔽𝑝2 .

Knuth also proves in section 6.1 of [11] that if |𝑆| = 8, then 𝑆 ≅ 𝔽8. Thus

the smallest proper semifields are of order 16. Throughout this work we will use the

following three 16-element semifields for examples.

Each of these examples has elements of the form 𝑎 + 𝜆𝑏, where 𝑎, 𝑏 ∈ 𝔽4 and

𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}. Addition is defined in the usual way, with (𝑎 + 𝜆𝑏) +

(𝑐 + 𝜆𝑑) = (𝑎 + 𝑐) + 𝜆(𝑏 + 𝑑), so the only distinguishing feature of these semifields is

how multiplication is defined. The names “system V” and “system W” were used by

Knuth in [11] as a means of identifying these constructions throughout his work, and

9



we will do the same here.

(2.6)

(2.7)

(2.8)

𝔽16 (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏𝑑𝜔) + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑)

System W (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏2𝑑𝜔) + 𝜆(𝑏𝑐 + 𝑎2𝑑)

System V (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏2𝑑) + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑2)

Notice that the multiplication in both system V and system W is very similar to

that in 𝔽16, yet has been modified in a way which makes it nonassociative. Also,

each of these three semifields can be viewed as a right vector space over 𝔽4, or as a

vector space over 𝔽2. A valid basis over 𝔽2 for all three of these semifields would be

{1, 𝜔, 𝜆, 𝜆𝜔}, and, by distributivity, the multiplication in each semifield is determined

by the products of the elements of this basis. This is the motivation behind the results

in chapter 3.

2.4 Finite Projective Planes

An important application of semifields is in the study of finite projective planes,

and a large portion of the existing research on semifields relates to this application.

Although the later results in this work were inspired by a purely algebraic motivation,

the results in this section will provide a useful tool for classifying semifields.

Definition 2.8. A finite semifield plane is a finite set, 𝜋, whose elements are called

points, together with a collection of subsets, called lines, which is said to be coordi-

natized by a semifield, 𝑆, if the points and lines of 𝜋 can be expressed in the following

way, for 𝑎, 𝑏 ∈ 𝑆:

points =

⎧{{
⎨{{⎩

(1, 𝑎, 𝑏)

(0, 1, 𝑎)

(0, 0, 1)

lines =

⎧{{
⎨{{⎩

[1, 𝑎, 𝑏]

[0, 1, 𝑎]

[0, 0, 1]
10



where a point (𝑥1, 𝑥2, 𝑥3) is contained in a line [𝑦1, 𝑦2, 𝑦3] if and only if

(2.9) 𝑦1𝑥3 = 𝑥2 ∗ 𝑦2 + 𝑥1𝑦3

The values 0 and 1 used in the definition will be treated as scalar multiples

of the semifield elements. The general term for the relationship between the points

and lines in a plane is incidence, and we will refer to equation 2.9 as the incidence

equation.

This notation for points and lines is not standard either; Knuth used it in [11]

and it is based on a notation used by Albert in [3]. While it does not provide an

intuitive view of the geometry of a semifield plane, it does give all of the points a

similar form, and provides a simple means of testing whether a point is on a line via

equation 2.9.

A finite semifield plane is a special case of the more general definition of a finite

projective plane. We include this definition in order to better illustrate the geometric

nature of the semifield planes.

Definition 2.9. A finite projective plane is a finite set, 𝜋, whose elements are called

points, together with a collection of subsets, called lines, which satisfy the following

axioms:

1. Two distinct points are contained in one and only one line.

2. The intersection of two distinct lines contains one and only one point.

3. There exist four points, no three of which are contained in the same line.

Standard geometric terms are commonly used when discussing projective planes. If

a point is contained on a line it is said to lie on that line, and the line is said to pass

through the point.

A more standard approach to coordinatizing projective planes using the more

general ternary rings can be found in the early chapters of “Affine Planes with Tran-
11



sitive Collineation Groups” by Kallaher (see [9]). It can be proven that a semifield

plane satisfies the axioms for a projective plane, and it is easily seen by the definition

that a semifield plane contains 𝑞2 + 𝑞 + 1 points and 𝑞2 + 𝑞 + 1 lines, where 𝑞 is the

order of the semifield. This property is true for finite projective planes as well, where

𝑞 is the number of elements in the ternary ring used to coordinatize the plane.

The following notation will become useful when discussing projective planes.

Given points (𝑎1, 𝑎2, 𝑎3) and (𝑏1, 𝑏2, 𝑏3), the line passing through them will be de-

noted (𝑎1, 𝑎2, 𝑎3) ∶ (𝑏1, 𝑏2, 𝑏3). Given lines [𝑦1, 𝑦2, 𝑦3] and [𝑧1, 𝑧2, 𝑧3], the point where

they intersect will be denoted [𝑦1, 𝑦2, 𝑦3] ∩ [𝑧1, 𝑧2, 𝑧3]. Using the incidence equation,

we can then derive the following definitions for the points and lines of a plane:

(2.10)

[0, 0, 1] = (0, 1, 0) ∶ (0, 0, 1) (0, 0, 1) = [0, 1, 0] ∩ [0, 0, 1]

[0, 1, 𝑎] = (0, 0, 1) ∶ (1, −𝑎, 𝑏) (0, 1, 𝑎) = [0, 0, 1] ∩ [1, 𝑎, 𝑏]

[1, 𝑎, 𝑏] = (0, 1, 𝑎) ∶ (1, 0, 𝑏) (1, 𝑎, 𝑏) = [0, 1, −𝑎] ∩ [1, 0, 𝑏]

Some definitions, such as [0, 1, 𝑎] = (0, 0, 1) ∶ (1, −𝑎, 𝑏) may seem ambiguous. Through

two distinct points there exists a unique line, so how could [0, 1, 𝑎] stay constant for

any choice of 𝑏? The incidence equation verifies this, but a more intuitive answer

is that [0, 1, 𝑎] corresponds to the equation 𝑥 = −𝑎, which is a vertical line. Thus

[0, 1, 𝑎] = (0, 0, 1) ∶ (1, −𝑎, 𝑏) for any choice of 𝑏.

2.5 Isotopism

In this section we discuss isotopisms, which can be thought of as a generalization

of the concept of isomorphisms. Unlike isomorphisms, isotopisms do not preserve any

of the multiplicative properties of a semifield except for nonassociativity. Thus is

is possible to have commutative semifields isotopic to noncommutative semifields,
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and to even have semifields isotopic to systems which do not posses a multiplicative

identity.

Definition 2.10. Let 𝑆 and 𝑆′ be semifields of order 𝑝𝑛, with multiplication ∗ and ⋆

respectively. Then 𝑆 is said to be isotopic to 𝑆′ if there exist nonsingular 𝔽𝑝-linear

transformations, 𝐹 , 𝐺, and 𝐻, from 𝑆 to 𝑆′ such that, for all 𝑎, 𝑏 ∈ 𝑆,

(2.11) 𝐻(𝑎 ∗ 𝑏) = 𝐹(𝑎) ⋆ 𝐺(𝑏)

The ordered set {𝐹 , 𝐺, 𝐻} is said to be an isotopism from 𝑆 to 𝑆′.

There are a number of important things to note regarding this definition. First,

we could have used a more general definition of isotopism using ternary rings which

assumes the functions are bijective but does not assume linearity, and many of the

following results could be proven in the more general case. In particular, Theorem

2.13 can be proven without assuming linearity (see Theorem 3.2.3 in [11]), but shows

that linearity is sufficient for finding all semifields isotopic to a given semifield. Thus

nothing is lost by assuming linearity, and it will make the following results more

straightforward.

Second, if 𝐹 = 𝐺 = 𝐻, then an isotopism is an isomorphism. Also, if 𝑆 and 𝑆′

are isotopic, with isotopism {𝐹 , 𝐺, 𝐻} from 𝑆 to 𝑆′, then there is also an isotopism

{𝐹 −1, 𝐺−1, 𝐻−1} from 𝑆′ to 𝑆. In some cases is is more convenient to define the

isotopism going from 𝑆′ to 𝑆, so it is worth noting that this notion is well defined.

Finally, if there are semifields 𝑆, 𝑆1, and 𝑆2 such that 𝑆 is isotopic to 𝑆1, with

isotopism {𝐹1, 𝐺1, 𝐻1}, and 𝑆1 is isotopic to 𝑆2, with isotopism {𝐹2, 𝐺2, 𝐻2}, then

𝑆 is isotopic to 𝑆2 by the isotopism {𝐹2 ∘ 𝐹1, 𝐺2 ∘ 𝐺1, 𝐻2 ∘ 𝐻1}.

Lemma 2.11 (Knuth, [11]). Let {𝐹 , 𝐺, 𝐻} be an isotopism from (𝑆, +, ∗) to

(𝑆′, +, ⋆). Then

(2.12) 𝐻 = 𝑅 ∘ 𝐹 = 𝐿 ∘ 𝐺
13



where 𝐿, 𝑅 ∶ 𝑆′ ↦ 𝑆 are defined by 𝐿(𝑥) = 𝐹(𝑒) ⋆ 𝑥, 𝑅(𝑥) = 𝑥 ⋆ 𝐺(𝑒) and 𝑒 is the

multiplicative identity of 𝑆.

Proof. Let 𝑎 ∈ 𝑆. By the definition of isotopism we have

𝐻(𝑎 ∗ 𝑒) = 𝐹(𝑎) ⋆ 𝐺(𝑒)

= 𝐻(𝑎) = 𝑅(𝐹(𝑎))

𝐻(𝑒 ∗ 𝑎) = 𝐹(𝑒) ⋆ 𝐺(𝑎)

= 𝐻(𝑎) = 𝐿(𝐺(𝑎))

Theorem 2.12 (Knuth, [11]). Let 𝑆 be a semifield of order 𝑝𝑛. Then the number of

nonisomorphic semifields which are isotopic to 𝑆 is at most (𝑝𝑛 − 1)2.

Proof. Let (𝑆1, +, ⋆1) and (𝑆2, +, ⋆2) be semifields isotopic to a semifield 𝑆, and let

{𝐹1, 𝐺1, 𝐻1} and {𝐹2, 𝐺2, 𝐻2} be isotopisms from 𝑆1 to 𝑆 and 𝑆2 to 𝑆 respectively.

Let 𝑒1 and 𝑒2 denote the multiplicative identity elements of 𝑆1 and 𝑆2 respectively.

We will show that if 𝐹1(𝑒1) = 𝐹2(𝑒2) = 𝑦 and 𝐺1(𝑒1) = 𝐺2(𝑒2) = 𝑧, then 𝑆1 is

isomorphic to 𝑆2. From there, since there are at most (𝑝𝑛 − 1) possible choices for 𝑦

and 𝑧, there can be at most (𝑝𝑛 − 1)2 nonisomorphic semifields isotopic to 𝑆.

Suppose 𝐹1(𝑒1) = 𝐹2(𝑒2) = 𝑦 and 𝐺1(𝑒1) = 𝐺2(𝑒2) = 𝑧, and let 𝐿𝑦 and 𝑅𝑧 be

the linear transformations for left and right multiplication by 𝑦 and 𝑧 respectively.

Then we have 𝐿𝑦(𝑥) = 𝑦∗𝑥 = 𝐹1(𝑒1)∗𝑥 = 𝐹2(𝑒𝑥)∗𝑥 and 𝑅𝑧(𝑥) = 𝑥∗𝑧 = 𝑥∗𝐺1(𝑒1) =

𝑥 ∗ 𝐺2(𝑒2), and by Lemma 2.11 we get:

𝐻1 = 𝑅𝑧 ∘ 𝐹1 = 𝐿𝑦 ∘ 𝐺1

𝐻2 = 𝑅𝑧 ∘ 𝐹2 = 𝐿𝑦 ∘ 𝐺2
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Notice that (𝑅𝑧 ∘ 𝐹2)−1 = 𝐹 −1
2 ∘ 𝑅−1

𝑧 , and thus (𝑅𝑧 ∘ 𝐹2)−1 ∘ (𝑅𝑧 ∘ 𝐹1) = 𝐹 −1
2 ∘ 𝐹1.

By equivalence, we can then say

𝐻−1
2 ∘ 𝐻1 = 𝐺−1

2 ∘ 𝐺1 = 𝐹 −1
2 ∘ 𝐹1 = 𝜙

Note that since 𝜙 is a composition of nonsingular linear transformations, it will be

bijective and preserve addition. To show it is an isomorphism from 𝑆1 to 𝑆2 we

only need to show that it preserves multiplication. By definition, 𝐻2(𝜙(𝑎) ⋆2 𝜙(𝑏)) =

𝐹2(𝜙(𝑎)) ∗ 𝐺2(𝜙(𝑏)). By applying 𝐻−1
2 to both sides of this equation we get the

desired results:

𝜙(𝑎) ⋆2 𝜙(𝑏) = 𝐻−1
2 (𝐹2(𝜙(𝑎)) ∗ 𝐺2(𝜙(𝑏)))

= 𝐻−1
2 (𝐹1(𝑎) ∗ 𝐺1(𝑏))

= 𝐻−1
2 (𝐻1(𝑎 ⋆1 𝑏))

= 𝜙(𝑎 ⋆1 𝑏)

In general, (𝑝𝑛 − 1)2 is an upper bound which is rarely attained. In the case

where 𝑆 is a finite field, we will later prove that there are no semifields isotopic to 𝑆

which are not isomorphic to it. In regards to the examples previously given, System V

is isotopic to 17 other nonisomorphic semifields, while System W is isotopic to 4 other

nonisotopic semifields. The following result gives a specific means of constructing each

of the (𝑝𝑛 − 1)2 semifields isotopic to a given semifield.

Theorem 2.13 (Knuth, [11]). Let 𝑆 be a semifield, 𝑦, 𝑧 ∈ 𝑆 be nonzero, and 𝐿𝑦, 𝑅𝑧

be the linear transformations for left and right multiplication by 𝑦 and 𝑧 respectively.
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Let 𝐹 = 𝑅−1
𝑧 and 𝐺 = 𝐿−1

𝑦 , and let 𝑆′ be the additive group of 𝑆 with multiplication

⋆ defined by

𝑎 ⋆ 𝑏 = 𝐹(𝑎) ∗ 𝐺(𝑏)

Then 𝑆′ is a semifield isotopic to 𝑆 with multiplicative identity 𝑦 ∗ 𝑧. Furthermore,

every semifield isotopic to 𝑆 can be constructed in this way (up to isomorphism).

Proof. We will start by showing that 𝑆′ satisfies the axioms of a semifield. The first

axiom holds, since 𝑆′ was defined to be the additive group of 𝑆 with multiplication ⋆.

To show 𝑆′ has no zero divisors, suppose there exist 𝑎, 𝑏 ∈ 𝑆′ such that 𝑎⋆𝑏 = 0. Then

𝐹(𝑎) ∗ 𝐺(𝑏) = 0, which implies 𝐹(𝑎) = 0 or 𝐺(𝑏) = 0. Without loss of generality,

suppose 𝐹(𝑎) = 0. Then 𝑅−1
𝑧 (𝑎) = 0, which is only possible if 𝑎 = 0. Thus 𝑆′ has

no zero divisors. To show that 𝑆′ is left distributive, consider

𝑎 ⋆ (𝑏 + 𝑐) = 𝐹(𝑎) ∗ (𝐺(𝑏) + 𝐺(𝑐)) = 𝐹(𝑎) ∗ 𝐺(𝑏) + 𝐹(𝑎) ∗ 𝐺(𝑐) = 𝑎 ⋆ 𝑏 + 𝑎 ⋆ 𝑐

A similar argument shows that 𝑆′ is right distributive. The final axiom to test is

whether 𝑆′ has a multiplicative identity, and we will now show that it will be 𝑦 ∗ 𝑧.

First we show it is a right identity:

𝑎 ⋆ (𝑦 ∗ 𝑧) = 𝐹(𝑎) ∗ 𝐺(𝑦 ∗ 𝑧) = 𝑅−1
𝑧 (𝑎) ∗ 𝐿−1

𝑦 (𝑦 ∗ 𝑧) = 𝑅−1
𝑧 (𝑎) ∗ 𝑧

= 𝑅𝑧(𝑅−1
𝑧 (𝑎)) = 𝑎

Similarly, we show it is a left identity:

(𝑦 ∗ 𝑧) ∗ 𝑎 = 𝐹(𝑦 ∗ 𝑧) ∗ 𝐺(𝑎) = 𝑅−1
𝑧 (𝑦 ∗ 𝑧) ∗ 𝐿−1

𝑦 (𝑎) = 𝑦 ∗ 𝐿−1
𝑦 (𝑎)

= 𝐿𝑦(𝐿−1
𝑦 (𝑎)) = 𝑎

Thus, (𝑆′, +, ⋆) is a semifield isotopic to 𝑆 with isotopism {𝐹 , 𝐺, 𝐼} from 𝑆′ to 𝑆,

where 𝐼 is the identity map.

To show that every semifield isotopic to 𝑆 can be defined in this way, we will use

a result from the proof of the previous theorem. Let (𝑆1, +, ⋆1) be a semifield isotopic
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to 𝑆, with isotopism {𝐹1, 𝐺1, 𝐻1} from 𝑆1 to 𝑆. Let 𝑒1 be the multiplicative identity

of 𝑆1, and 𝐹1(𝑒1) = 𝑦 and 𝐺1(𝑒1) = 𝑧. Now consider the semifield 𝑆2 constructed

from 𝑆 via the isotopism {𝐹2, 𝐺2, 𝐻2} from 𝑆2 to 𝑆, where 𝐹2 = 𝑅−1
𝑧 , 𝐺2 = 𝐿−1

𝑦

and 𝐻2 is the identity map. Then the multiplicative identity, 𝑒2, of 𝑆2 is equal to

𝑦 ∗ 𝑧, and we have 𝐹2(𝑦 ∗ 𝑧) = 𝑦, 𝐺2(𝑦 ∗ 𝑧) = 𝑧. Thus we have 𝐹1(𝑒1) = 𝐹2(𝑒2) and

𝐺1(𝑒1) = 𝐺2(𝑒2), and as shown in the proof of the previous theorem, 𝑆1 is isomorphic

to 𝑆2 via the isomorphism 𝜙 = 𝐹 −1
2 ∘ 𝐹1 = 𝐺−1

2 ∘ 𝐺1.

This theorem provides a very useful tool when looking at the isotopisms of

semifields. As mentioned at the start of this section, applying an isotopism to a

semifield could yield a system lacking a multiplicative identity! But, if the isotopism

consists of 𝐹 = 𝑅−1
𝑧 and 𝐺 = 𝐿−1

𝑦 , then the resulting system will be a semifield.

2.6 The Geometric Significance of Isotopisms

This section elaborates on the relationship between semifields and projective

planes. In particular, we investigate the relationship between isomorphic projective

planes and isotopic semifields.

Definition 2.14. Two projective planes, 𝜋 and 𝜋′ are said to be isomorphic if there

exists a bijection 𝜙 ∶ 𝜋 → 𝜋′ which preserves incidence, i.e. if point (𝑥1, 𝑥2, 𝑥3) lies

on line [𝑦1, 𝑦2, 𝑦3] in 𝜋, then 𝜙(𝑥1, 𝑥2, 𝑥3) lies on 𝜙[𝑦1, 𝑦2, 𝑦3]. An automorphism of a

projective plane is called a collineation.

Lemma 2.15 (Knuth, [11]). Let 𝜋 and 𝜋′ be isomorphic semifield planes with isomor-

phism 𝜙 such that

𝜙(1, 0, 0) = (1, 0, 0) , 𝜙(0, 1, 0) = (0, 1, 0) , 𝜙(0, 0, 1) = (0, 0, 1)

Then the semifields which coordinatize 𝜋 and 𝜋′ are isotopic.
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Proof. We use equation 2.10 to help define the points and lines of 𝜋. By hypothesis

we have

𝜙[0, 0, 1] = 𝜙(0, 1, 0) ∶ 𝜙(0, 0, 1) = (0, 1, 0) ∶ (0, 0, 1) = [0, 0, 1]

Note that 𝜙(0, 1, 𝑎) lies on 𝜙[0, 0, 1] and thus must lie on [0, 0, 1]. Since [0, 0, 1]

passes through (0, 1, 𝑎) and 𝜙(0, 1, 𝑎), there must exist a linear transformation 𝐺

such that 𝜙(0, 1, 𝑎) = (0, 1, 𝐺(𝑎)). This linear transformation will be the same 𝐺 as

in the isotopism {𝐹 , 𝐺, 𝐻}, and in a similar way we will define 𝐹 and 𝐻. From the

hypothesis we have

𝜙[0, 1, 0] = 𝜙(0, 0, 1) ∶ 𝜙(0, 1, 0) = (0, 0, 1) ∶ (0, 1, 0) = [0, 1, 0]

and

𝜙[1, 0, 0] = 𝜙(0, 1, 0) ∶ 𝜙(1, 0, 0) = (0, 1, 0) ∶ (1, 0, 0) = [1, 0, 0]

Thus there must exist linear transformations 𝐹 and 𝐻 such that 𝜙(1, 𝑎, 0) = (1, 𝐹(𝑎), 0)

and 𝜙(1, 0, 𝑏) = (1, 0, 𝐻(𝑏)). We can then see that, in general

𝜙[0, 1, 𝑎] = 𝜙(0, 0, 1) ∶ 𝜙(1, −𝑎, 0) = (0, 0, 1) ∶ (1, −𝐹(𝑎), 𝑏) = [0, 1, 𝐹 (𝑎)]

𝜙[1, 𝑎, 𝑏] = 𝜙(0, 1, 𝑎) ∶ 𝜙(1, 0, 𝑏) = (0, 1, 𝐺(𝑎)) ∶ (1, 0, 𝐻(𝑏)) = [1, 𝐺(𝑎), 𝐻(𝑏)]

𝜙(1, 𝑎, 𝑏) = 𝜙[0, 1, −𝑎] ∩ 𝜙[0, 1, 𝑏] = [0, 1, 𝐹 (−𝑎)] ∩ [0, 1, 𝐻(𝑏)] = (1, 𝐹(𝑎), 𝐻(𝑏))

We can now show that the incidence relation is preserved. Recall that (𝑥1, 𝑥2, 𝑥3) lies

on [𝑦1, 𝑦2, 𝑦3] if and only if 𝑦1𝑥3 = 𝑥2 ∗ 𝑦2 + 𝑥1𝑦3. We also know that 𝜙(𝑥1, 𝑥2, 𝑥3)

lies on 𝜙[𝑦1, 𝑦2, 𝑦3], so we have the following relation, where the symbol “⇔” stands

for “if and only if”:

𝑦1𝑥3 = 𝑥2 ∗ 𝑦2 + 𝑥1𝑦3 ⇔ 𝑦1𝐻(𝑥3) = 𝐹(𝑥2) ∗ 𝐺(𝑦2) + 𝑥1𝐻(𝑦3)
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Without loss of generality, we can let 𝑥1 = 𝑦1 = 1, as the cases where they equal zero

will be similar. Then, by linearity, we get the following

𝑥3 = 𝑥2 ∗ 𝑦2 + 𝑦3 ⇔ 𝐻(𝑥3) = 𝐹(𝑥2) ∗ 𝐺(𝑦2) + 𝐻(𝑦3)

⇔ 𝑥3 − 𝑦3 = 𝑥2 ∗ 𝑦2 ⇔ 𝐻(𝑥3 − 𝑦3) = 𝐹(𝑥2) ∗ 𝐺(𝑦2)

By substitution we have 𝐻(𝑥2 ∗ 𝑦2) = 𝐹(𝑥2) ∗ 𝐺(𝑦2), and thus {𝐹 , 𝐺, 𝐻} is an

isotopism.

Theorem 2.16 (Knuth, [11]). Let {𝐹 , 𝐺, 𝐻} be an isotopism from a semifield 𝑆 to

a semifield 𝑆′, and let 𝜋 and 𝜋′ be the semifield planes coordinatized by 𝑆 and 𝑆′

respectively. Then 𝜋 and 𝜋′ are isomorphic.

Proof. We define 𝜙 ∶ 𝜋 → 𝜋′ using the relationships in the previous theorem, i.e.

𝜙[0, 0, 1] = [0, 0, 1] 𝜙(0, 0, 1) = (0, 0, 1)

𝜙[0, 1, 𝑎] = [0, 1, 𝐹 (𝑎)] 𝜙(0, 1, 𝑎) = (0, 1, 𝐺(𝑎))

𝜙[1, 𝑎, 𝑏] = [1, 𝐺(𝑎), 𝐻(𝑏)] 𝜙(1, 𝑎, 𝑏) = (1, 𝐹(𝑎), 𝐻(𝑏))

From the previous lemma we know that 𝜙(1, 𝑥2, 𝑥3) ∈ 𝜙[1, 𝑦2, 𝑦3], but now we need

to consider the cases where 𝑥1 = 0 or 𝑦1 = 0:

(0, 𝑥2, 𝑥3) ∈ [1, 𝑦2, 𝑦3] ⇔ 𝑥3 = 𝑥2 ∗ 𝑦2 ⇔ 𝑥2 = 1, 𝑦2 = 𝑥3

⇔ 𝐺(𝑦2) = 𝐺(𝑥2) ⇔ 𝜙(0, 𝑥2, 𝑥3) ∈ 𝜙[1, 𝑦2, 𝑦3]

(1, 𝑥2, 𝑥3) ∈ [0, 𝑦2, 𝑦3] ⇔ −𝑦3 = 𝑥2 ∗ 𝑦2 ⇔ 𝑦2 = 1, 𝑥2 = −𝑦3

⇔ 𝐹(𝑥2) = −𝐹(𝑦3) ⇔ 𝜙(1, 𝑥2, 𝑥3) ∈ 𝜙[0, 𝑦2, 𝑦3]

(0, 𝑥2, 𝑥3) ∈ [0, 𝑦2, 𝑦3] ⇔ 𝑥2 = 0 or 𝑦2 = 0

⇔ 𝜙(0, 𝑥2, 𝑥3) ∈ 𝜙[0, 𝑦2, 𝑦3]
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This theorem is sufficient to show that isotopic semifields coordinatize isomor-

phic projective planes, which is sufficient to show the geometric motivations for study-

ing semifields. The converse is also true, as shown by Albert in [3], but the proof

requires developing more geometric tools, and is beyond the scope of this work.

2.7 Autotopisms and Automorphisms

An autotopism of a semifield 𝑆 is an isotopism, {𝐹 , 𝐺, 𝐻}, between 𝑆 and

itself, i.e. 𝐻(𝑎 ∗ 𝑏) = 𝐹(𝑎) ∗ 𝐺(𝑏). The set of all autotopisms of 𝑆 will clearly form

a group under composition, which we will denote At(𝑆). Furthermore, if 𝑆 and 𝑆′

are isotopic, then |At(𝑆)| = |At(𝑆′)|, since each autotopism of 𝑆′ is determined by

applying the isotopism from 𝑆 to 𝑆′ to the autotopisms of 𝑆.

In the case where 𝐹 = 𝐺 = 𝐻, the autotopism is clearly an automorphism, and

if we let Aut(𝑆) denote the automorphism group of 𝑆, then Aut(𝑆) ⊂ At(𝑆).

Lemma 2.17 (Knuth, [11]). Let 𝜋 be a semifield plane coordinatized by a semifield 𝑆.

Then all semifields isotopic to 𝑆 coordinatize 𝜋, and the collineations of 𝜋 which fix

(0, 0, 1), (0, 1, 0), and (1, 0, 0) form a group isomorphic to the autotopism group of 𝑆.

Proof. This follows directly from Lemma 2.15 and Theorem 2.16.

This leads to an interesting result which has both algebraic and geometric sig-

nificance.

Theorem 2.18 (Knuth, [11]). Let 𝑆 be a semifield of order 𝑝𝑛. Then

(2.13) (𝑝𝑛 − 1)2 = ∑
𝑆′

|At(𝑆)|
|Aut(𝑆′)|

where 𝑆′ ranges over all nonisomorphic semifields isotopic to 𝑆.

Proof. Let 𝑦 and 𝑧 range over the nonzero elements of 𝑆 and let 𝑆′ be one of the (𝑝𝑛−

1)2 semifields isotopic to 𝑆 determined by a choice of 𝑦 and 𝑧 as described in Theorem
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2.13. We will show that there are |At(𝑆)|/|Aut(𝑆′)| such isotopes isomorphic to 𝑆′,

which will prove the theorem.

Let 𝑆′ be isomorphic and isotopic to 𝑆, with isotopism {𝑅−1
𝑧 , 𝐿−1

𝑦 , 𝐼} from 𝑆′

to 𝑆, where 𝐼 is the identity map, and isomorphism 𝜙 ∶ 𝑆′ → 𝑆. Then 𝜙 is an

automorphism of 𝑆, and {𝜙 ∘ 𝑅𝑧, 𝜙 ∘ 𝐿𝑦, 𝜙} is an autotopism of 𝑆. Every autotopism

of 𝑆 will have this form and will be determined (up to isomorphism) by 𝑦 and 𝑧.

Suppose 𝑟 choices of 𝑦 and 𝑧 yield isomorphic semifields. Then |At(𝑆)| = 𝑟|Aut(𝑆)|.

For any semifield 𝑆′ which is isotopic to 𝑆 but not isomorphic to 𝑆, we will

similarly have |At(𝑆′)| = 𝑟|Aut(𝑆′)|. Since |At(𝑆′)| = |At(𝑆)|, we have |At(𝑆)| =

𝑟|Aut(𝑆′)|. In each case, 𝑟 is the number of isotopes of 𝑆 isomorphic to a particular

isotope 𝑆′, and thus the sum of all such 𝑟 must equal (𝑝𝑛 −1)2. This gives the desired

result.
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Chapter 3

Cubical Arrays

In chapter 2, we showed that any semifield 𝑆 is an 𝑛-dimensional vector space

over a finite field 𝔽𝑝. Let {𝑥1, 𝑥2, ..., 𝑥𝑛} be a basis of 𝑆. Then there is a 𝑛 × 𝑛 × 𝑛

set of scalars 𝐴 = {𝐴𝑖𝑗𝑘}, defined by

(3.1) 𝑥𝑖 ∗ 𝑥𝑗 =
𝑛

∑
𝑘=1

𝐴𝑖𝑗𝑘𝑥𝑘

This set, 𝐴, is an example of a cubical array, and in this chapter we will provide a

formal definition for cubical arrays and show how vectors and matrices can act upon

them. We will then provide a number of results regarding the relationship between

cubical arrays and finite semifields. All of the results and proofs in this chapter are

taken from [11] and are included here for the sake of completeness. Some of the

notation has been changed to reflect modern conventions and to avoid ambiguity. We

have taken a more focused approach to these results than was taken in [11], so many

of the proofs in this section have been modified from what appears in [11].

3.1 Cubical Array Basics

Definition 3.1. A cubical array, 𝐴 =, of dimension 𝑛 over a finite field, 𝔽𝑞, is an

𝑛 × 𝑛 × 𝑛 ordered set of elements of 𝔽𝑞. The (𝑖, 𝑗, 𝐾)-th entry of 𝐴 is denoted 𝐴𝑖𝑗𝑘

where 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛.

We will use a notation similar to 𝐴𝑖𝑗𝑘 for vectors and matrices. Given a vector

𝑣, we will let 𝑣𝑖 denote the 𝑖-th entry of 𝑣, and given a matrix 𝑀 , we will let 𝑀 𝑖𝑗

denote the (𝑖, 𝑗)-th entry of 𝑀 . When working with cubical arrays it is often useful
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to construct matrices from their entries. Given a cubical array 𝐴, we defined the

following matrices by fixing an index of 𝐴:

(3.2)

(3.3)

(3.4)

𝐴𝑖∗∗ = 𝑀 ⇔ 𝐴𝑖𝑗𝑘 = 𝑀 𝑗𝑘

𝐴∗𝑗∗ = 𝑀 ⇔ 𝐴𝑖𝑗𝑘 = 𝑀 𝑖𝑘

𝐴∗∗𝑘 = 𝑀 ⇔ 𝐴𝑖𝑗𝑘 = 𝑀 𝑖𝑗

Knuth defines a similar notation in [11] which uses superscripts in place of subscripts.

It is important to note that our notation differs slightly though, with 𝐴𝑖∗∗ = 𝐴𝑖∗∗

and 𝐴∗∗𝑘 = 𝐴∗∗𝑘, but 𝐴∗𝑗∗ = (𝐴∗𝑗∗)𝑇 , where (𝐴∗𝑗∗)𝑇 ) is the transpose of 𝐴∗𝑗∗. We

will sometimes wish to construct vectors from the rows and columns of matrices, so

we use a similar notation for that as well.

(3.5)

(3.6)

𝑀𝑖∗ = 𝑣 ⇔ 𝑀 𝑖𝑗 = 𝑣𝑗

𝑀∗𝑗 = 𝑣 ⇔ 𝑀 𝑖𝑗 = 𝑣𝑖

Note then that by fixing two of the indices of 𝐴, we get a vector. Thus 𝐴 can be

thought of as a three-dimensional array, a set of 𝑛 square 𝑛 × 𝑛 matrices, or an 𝑛 × 𝑛

matrix whose entries are 𝑛-dimensional vectors. This notation also eliminates the

need for distinguishing between row and column vectors. For the purposes of this

work, all vectors will be assumed to be row vectors, and thus we will have matrices

act on vectors by right multiplication, i.e. 𝑣𝑀 . Finally, we will also define the product

of a vector and a cubical as follows:

(3.7) 𝑣𝐴 =
𝑛

∑
𝑖=1

𝑣𝑖𝐴𝑖∗∗

Definition 3.2. A cubical array, 𝐴, is said to be nonsingular over a field, 𝔽𝑞, if, for all

nonzero 𝑣 ∈ 𝔽𝑛
𝑞 , the matrix

𝑀 =
𝑛

∑
𝑖=1

𝑣𝐴𝑖∗∗

is nonsingular.
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Definition 3.3. A cubical array, 𝐴, is said to be in standard form if 𝐴1∗∗ = 𝐴∗1∗ = 𝐼 ,

where 𝐼 is the 𝑛 × 𝑛 identity matrix over 𝔽𝑞.

These two definitions will prove to be of immense value in the following theorem.

Consider a semifield, 𝑆, of order 𝑝𝑛, let 𝒳 = {𝑥1, ..., 𝑥𝑛} be a basis of 𝑆 over 𝔽𝑝, and

let 𝑎, 𝑏 ∈ 𝑆. Assuming we know some method for constructing 𝑆, such as those given

in equations 2.6, 2.7, and 2.8, we then have two ways of viewing 𝑎 and 𝑏: the forms

described by the construction and the coordinate vectors with respect to 𝒳. Since

it will often be necessary to consider both views, we will use 𝑎 and 𝑏 to denote the

vector forms of 𝑎 and 𝑏 respectively. If 𝐴 is the cubical array defined by 3.1, we say

𝐴 is the cubical array corresponding to 𝑆 generated by 𝒳. Let 𝑐 = 𝑎 ∗ 𝑏. Then, by

the distributive property of semifields, we have

𝑐 = 𝑎 ∗ 𝑏 = (
𝑛

∑
𝑖=1

𝑎𝑖𝑥𝑖) ∗ (
𝑛

∑
𝑗=1

𝑏𝑗𝑥𝑗) =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑏𝑗𝑥𝑖 ∗ 𝑥𝑗 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝑎𝑖𝑏𝑗𝐴𝑖𝑗𝑘𝑥𝑘

Thus the multiplication in 𝑆 is completely determined by 𝐴. It is also worth noting

that addition in 𝑆 corresponds to standard vector addition in 𝔽𝑛
𝑝 , where 0 corresponds

to the zero vector. We can now prove the following result, which gives necessary and

sufficient conditions for a cubical array to define a semifield.

Theorem 3.4 (Knuth, [11]). Let 𝑆 be a semifield of order 𝑝𝑛, and let 𝒳 = {𝑥1, ..., 𝑥𝑛}

be a basis for 𝑆 over 𝔽𝑝. Then the cubical array 𝐴 corresponding to 𝑆 generated

by 𝒳 will be nonsingular, and will be in standard form if and only if 𝑥1 is the

multiplicative identity. Conversely, if 𝐴 is a nonsingular cubical array in standard

form, then equation 3.1 defines an 𝑛-dimensional semifield over 𝔽𝑝 using a formal

basis {𝑥1, ..., 𝑥𝑛}, where 𝑥1 will be the multiplicative identity.

Proof. First, let 𝐴 be a cubical array corresponding to 𝑆 generated by 𝒳, and let

𝑣, 𝑤 ∈ 𝔽𝑛
𝑝 be nonzero. Let 𝑀 = 𝑣𝐴. Then 𝑀 is nonsingular if and only if 𝑤𝑀 is
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nonzero. There exist nonzero elements 𝑣, 𝑤 ∈ 𝑆 corresponding to these vectors. Since

𝑆 has no zero divisors, 𝑢 = 𝑣 ∗ 𝑤 is nonzero. Then 𝑤𝑀 is nonzero by the following:

𝑢 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑣𝑖𝑤𝑗𝐴𝑖𝑗∗ =
𝑛

∑
𝑗=1

𝑤𝑗 (
𝑛

∑
𝑖=1

𝑣𝑖𝐴𝑖𝑗∗) =
𝑛

∑
𝑗=1

𝑤𝑗𝑀 𝑗∗ = 𝑤𝑀

Therefore 𝐴 is nonsingular. Notice in the previous argument that 𝑣 ∗ 𝑤 = 𝑤𝑀 . Let

𝑒 be the multiplicative identity of 𝑆, and let 𝐹 = ∑𝑛
𝑖=1 𝑒𝑖𝐴𝑖∗∗. Then 𝑒 ∗ 𝑤 = 𝑤𝐹 ,

but since 𝑒 ∗ 𝑤 = 𝑤, 𝑒 ∗ 𝑤 = 𝑤, and 𝐹 must be the identity matrix. In a similar way,

consider the following:

𝑤 ∗ 𝑒 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑤𝑖𝑒𝑗𝐴𝑖𝑗∗ =
𝑛

∑
𝑖=1

𝑤𝑖 (
𝑛

∑
𝑗=1

𝑒𝑗𝐴𝑖𝑗∗) =
𝑛

∑
𝑖=1

𝑤𝑖𝐺𝑖∗ = 𝑤𝐺

In this case, 𝑤 ∗ 𝑒 = 𝑤𝐺 = 𝑤 so 𝐺 must be the identity matrix as well. If 𝑒 = 𝑥1,

then 𝑒1 = 1, and 𝑒𝑖 = 0 for 𝑖 > 1. Plugging this into the definitions of 𝐹 and 𝐺 we

have
𝐹 = ∑𝑛

𝑖=1 𝑒𝑖𝐴𝑖∗∗ = 𝐴1∗∗ = 𝐼

𝐺 = ∑𝑛
𝑗=1 𝑒𝑗𝐴𝑖𝑗∗ = 𝐴∗1∗ = 𝐼

Thus 𝐴 is in standard form. This also shows that the converse is true as well, since

the nonsingularity of a cubical array will ensure that no zero divisors exist, and being

in standard form ensures the existence of a multiplicative identity.

Corollary 3.5 (Knuth, [11]). Let 𝑆 be a semifield of order 𝑝𝑛, 𝒳 = {𝑥1, ..., 𝑥𝑛} be a

basis of 𝑆 over 𝔽𝑝, and 𝐴 be the cubical array corresponding to 𝑆 generated by 𝒳.

Let 𝑎, 𝑏 ∈ 𝑆. Then the linear transformations 𝐿𝑎 and 𝑅𝑏 have matrix representations

with respect to 𝒳, 𝐿 and 𝑅, defined by

(3.8) 𝐿 =
𝑛

∑
𝑖=1

𝑎𝑖𝐴𝑖∗∗ = 𝑎𝐴 𝑅 =
𝑛

∑
𝑗=1

𝑏𝑗𝐴∗𝑗∗ = 𝑏𝐴𝑇

Notice that we have introduced a new piece of notation in this corollary: the

transpose of 𝐴. To clarify its meaning, and the fact that 𝑏𝐴𝑇 will still yield a non-

singular matrix, we have the following.
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Definition 3.6. Let 𝐴 be a cubical array. The cubical array 𝐵 defined by 𝐵𝑖𝑗𝑘 = 𝐴𝑗𝑖𝑘

is called the transpose of 𝐴 and is denoted 𝐴𝑇 .

Lemma 3.7 (Knuth, [11]). Let 𝐴 be a cubical array. Then 𝐴𝑇 is nonsingular and in

standard form if and only if 𝐴 is nonsingular and in standard form.

Proof. If 𝐴 is nonsingular and in standard form, it defines a semifield, 𝑆, as previously

discussed. Let 𝐵 = 𝐴𝑇 and let 𝑣 ∈ 𝔽𝑛
𝑝 be nonzero. Then there exists a nonzero

𝑣 ∈ 𝑆 corresponding to 𝑣, which has a linear transformation 𝑅𝑣 with matrix form

𝑅. Since 𝑅𝑣 is a linear transformation, 𝑅 is nonsingular, and thus ∑𝑛
𝑗=1 𝑣𝑗𝐴∗𝑗∗ is

nonsingular. By definition, 𝐴∗𝑗∗ = 𝐵𝑗∗∗, and we have ∑𝑛
𝑗=1 𝑣𝑗𝐵𝑗∗∗ is nonsingular,

thus 𝐵 is nonsingular. Further, 𝐼 = 𝐴1∗∗ = 𝐵∗1∗ and 𝐼 = 𝐴∗1∗ = 𝐵1∗∗, so 𝐵 is in

standard form.

The transpose of a cubical array has further significance. Let 𝜋 be a semifield

plane coordinatized by 𝑆. It is well-known that the dual of 𝜋 is coordinatized by a

semifield, 𝑆′, which is anti-isomorphic to 𝑆. This yields the following definition.

Definition 3.8. Let (𝑆, +, ∗) be a semifield. A semifield (𝑆′, +, ⋆) is said to be the

dual of 𝑆 if there exists a nonsingular linear transformation 𝜙 ∶ 𝑆 ↦ 𝑆′ such that

𝜙(𝑎 ∗ 𝑏) = 𝜙(𝑏) ⋆ 𝜙(𝑎).

Lemma 3.9 (Knuth, [11]). Let 𝐴 be a cubical array corresponding to a semifield

𝑆 generated by a basis 𝒳 = {𝑥1, ..., 𝑥𝑛}, and let 𝑆′ be the dual of 𝑆, with anti-

isomorphism 𝜙 ∶ 𝑆 ↦ 𝑆′. Then 𝐴𝑇 is the cubical array corresponding to 𝑆′ generated

by 𝜙(𝒳) = {𝜙(𝑥1), ..., 𝜙(𝑥𝑛)}.

Proof. Applying 𝜙 to equation 3.1 gives us

𝜙(𝑥𝑖 ∗ 𝑥𝑗) = 𝜙 (∑
𝑘=1

𝐴𝑖𝑗𝑘𝑥𝑘) = ∑
𝑘=1

𝐴𝑖𝑗𝑘𝜙(𝑥𝑘) = 𝜙(𝑥𝑗) ⋆ 𝜙(𝑥𝑖)
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Let 𝐵 = 𝐴𝑇 . Then we have

𝜙(𝑥𝑗) ⋆ 𝜙(𝑥𝑖) = ∑
𝑘=1

𝐴𝑖𝑗𝑘𝜙(𝑥𝑘) ⇔ 𝜙(𝑥𝑖) ⋆ 𝜙(𝑥𝑗) = ∑
𝑘=1

𝐵𝑖𝑗𝑘𝜙(𝑥𝑘)

As noted at the beginning of this chapter, these results are all slightly specialized

cases of results that Knuth proved in [11]. In honor of his work and the integral role

that Theorem 3.4 will play in the following work, we give the following definition.

Definition 3.10. If 𝐴 is a nonsingular cubical array in standard form, then 𝐴 will be

called a Knuth cube. If 𝑆 is a semifield of order 𝑝𝑛 we will let 𝐾(𝑆) denote the set of

all 𝑛 × 𝑛 × 𝑛 Knuth cubes over 𝔽𝑝 which define 𝑆.

Note that, since 𝑛 and 𝑝 are finite, then there are only a finite number of

𝑛 × 𝑛 × 𝑛 cubical arrays over 𝔽𝑝, and thus 𝐾(𝑆) must be finite as well. We will

further elaborate on this in future chapters, and eventually provide the size of 𝐾(𝑆).

3.2 Examples

Recall from section 2.3 that the three examples of 16-element semifields all had

elements of the form 𝑎 + 𝜆𝑏 where 𝑎, 𝑏 ∈ 𝔽4 with the convention 𝔽4 = {0, 1, 𝜔, 𝜔2 =

1 + 𝜔}. The multiplication in the three semifields was defined by

𝔽16 (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏𝑑𝜔) + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑)

System W (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏2𝑑𝜔) + 𝜆(𝑏𝑐 + 𝑎2𝑑)

System V (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏2𝑑) + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑2)

All of these semifields are 4-dimensional vector spaces over 𝔽2, and a suitable basis

for Knuth cubes for all three of these semifields is 𝒳 = {1, 𝜔, 𝜆, 𝜆𝜔}. Since the

cubical arrays are three-dimensional, we will express them as matrices whose entries
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are vectors, i.e. 𝑀 𝑖𝑗 = 𝐴𝑖𝑗∗, and we will write the vectors as strings of digits. Then

the cubical array generated by 𝒳 for each semifield is:

𝔽16 𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0001 0011

0010 0001 0110 1101

0001 0011 1101 1011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

System W 𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 0100 1100

0001 0011 1000 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

System V 𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0111

0001 0011 1111 1001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This is how Knuth presented cubical arrays in [11], and this representation has a

number of benefits. First, consider the matrices contained in 𝑊 . In order to construct

𝑊2∗∗, we look at the vectors which make up the second row of 𝑊 . These vectors will

form the rows of 𝑊2∗∗, and we have

𝑊2∗∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

1 1 0 0

0 0 1 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Finding 𝑊∗2∗ is also straightforward, as the rows of 𝑊∗2∗ will be the vectors which

make up the second column of 𝑊 :

𝑊∗2∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

1 1 0 0

0 0 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

To find 𝑊∗∗𝑘, we build a matrix whose (𝑖, 𝑗)-th entry is the 𝑘-th entry of 𝑊𝑖𝑗∗. For

instance, 𝑊∗∗2 is obtained from the second entry in each vector in 𝑊 :

𝑊∗∗2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0

1 1 0 0

0 0 1 1

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This representation also makes the transpose of a cubical array more intuitive, as

the matrix form of 𝑊 𝑇 will be the transpose of the matrix form of 𝑊 . Notice that

𝐹 = 𝐹 𝑇 , which corresponds to the fact that 𝔽16 is commutative.

3.3 The Triple Product

So far we have only defined the product of a vector and a cubical array. In [11],

Knuth devotes a great deal of work to defining a general class of products between

arrays of arbitrary dimension, and the vector and cubical array product is a special

case of this. For our purposes there is only one other case of Knuth’s products which

we will need.
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Definition 3.11. Let 𝐴 be an 𝑛 × 𝑛 × 𝑛 cubical array over 𝔽𝑞, and let 𝐹 , 𝐺, and 𝐻

be 𝑛 × 𝑛 matrices over 𝔽𝑞. Then the triple product of [𝐹 , 𝐺, 𝐻] and 𝐴 is the cubical

array 𝐵 defined by

𝐵𝑖𝑗𝑘 =
𝑛

∑
𝑟=1

𝑛
∑
𝑠=1

𝑛
∑
𝑡=1

𝐹 𝑖𝑟𝐺𝑗𝑠𝐻𝑘𝑡𝐴𝑟𝑠𝑡

and is denoted 𝐵 = [𝐹 , 𝐺, 𝐻] × 𝐴

Lemma 3.12 (Knuth, [11]). Let 𝐴 be a cubical array of dimension 𝑛 over 𝔽𝑞, and let

𝐵, 𝐶, 𝐷, 𝐹 , 𝐺, and 𝐻 be 𝑛 × 𝑛 matrices over 𝔽𝑞. Then the following equation is

true:

(3.9) [𝐵, 𝐶, 𝐷] × ([𝐹 , 𝐺, 𝐻] × 𝐴) = [𝐵𝐹, 𝐶𝐺, 𝐷𝐻] × 𝐴

Proof. The proof is straightforward, based on the definition of the triple product

and matrix multiplication. First, recall that (𝐵𝐹)𝑥𝑦 = ∑𝑛
𝑧=1 𝐵𝑥𝑧𝐹 𝑧𝑦. Let 𝐵 =

[𝐹 , 𝐺, 𝐻] × 𝐴 and 𝐶 = [𝐵, 𝐶, 𝐷] × 𝐵. Then

𝐶𝑖𝑗𝑘 =
𝑛

∑
𝑟=1

𝑛
∑
𝑠=1

𝑛
∑
𝑡=1

𝐵𝑖𝑟𝐶𝑗𝑠𝐷𝑘𝑡𝐵𝑟𝑠𝑡

=
𝑛

∑
𝑟=1

𝑛
∑
𝑠=1

𝑛
∑
𝑡=1

𝐵𝑖𝑟𝐶𝑗𝑠𝐷𝑘𝑡 (
𝑛

∑
𝑥=1

𝑛
∑
𝑦=1

𝑛
∑
𝑧=1

𝐹 𝑟𝑥𝐺𝑠𝑦𝐻𝑡𝑧𝐴𝑥𝑦𝑧)

=
𝑛

∑
𝑟=1

𝑛
∑
𝑠=1

𝑛
∑
𝑡=1

𝑛
∑
𝑥=1

𝑛
∑
𝑦=1

𝑛
∑
𝑧=1

𝐵𝑖𝑟𝐹 𝑟𝑥𝐶𝑗𝑠𝐺𝑠𝑦𝐷𝑘𝑡𝐻𝑡𝑧𝐴𝑥𝑦𝑧

=
𝑛

∑
𝑥=1

𝑛
∑
𝑦=1

𝑛
∑
𝑧=1

(𝐵𝐹)𝑖𝑥(𝐶𝐺)𝑗𝑦(𝐷𝐻)𝑘𝑧𝐴𝑥𝑦𝑧

= [𝐵𝐹, 𝐶𝐺, 𝐷𝐻] × 𝐴
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Lemma 3.13 (Knuth, [11]). Let 𝐴 be a cubical array of dimension 𝑛 over 𝔽𝑞, let 𝐹 ,

𝐺, and 𝐻 be 𝑛 × 𝑛 matrices over 𝔽𝑞, and let 𝐵 = [𝐹 , 𝐺, 𝐻] × 𝐴. Then the following

formulas are true

(3.10)

(3.11)

(3.12)

𝐵𝑖∗∗ = 𝐺 (
𝑛

∑
𝑟=1

𝐹𝑖𝑟𝐴𝑟∗∗) 𝐻𝑇

𝐵∗𝑗∗ = 𝐹 (
𝑛

∑
𝑠=1

𝐺𝑗𝑠𝐴∗𝑠∗) 𝐻𝑇

𝐵∗∗𝑘 = 𝐹 (
𝑛

∑
𝑡=1

𝐻𝑘𝑡𝐴∗∗𝑡) 𝐺𝑇

Proof. These formulas are also a direct consequence of the definition of the triple

product and matrix multiplication. For example, to derive the first equation we start

with

𝐵𝑖𝑗𝑘 =
𝑛

∑
𝑟=1

𝑛
∑
𝑠=1

𝑛
∑
𝑡=1

𝐹 𝑖𝑟𝐺𝑗𝑠𝐻𝑘𝑡𝐴𝑟𝑠𝑡 ⇔ 𝐵𝑖∗∗ =
𝑛

∑
𝑟=1

𝐹 𝑖𝑟 (
𝑛

∑
𝑠=1

𝑛
∑
𝑡=1

𝐺∗𝑠𝐴𝑟𝑠𝑡𝐻∗𝑡)

For any particular 𝑟 we will let 𝑀 = 𝐴𝑟∗∗, and note that 𝐺𝑠∗𝐻∗𝑡 = (𝐺𝐻)𝑠𝑡. Now

consider (𝐺𝑀)𝐻𝑇 . By the definition of matrix multiplication we have

(𝐺𝑀)𝑥𝑦 =
𝑛

∑
𝑠=1

𝐺𝑥𝑠𝑀𝑠𝑦

Then

((𝐺𝑀)𝐻𝑇 )𝑥𝑦 =
𝑛

∑
𝑡=1

(𝐺𝑀)𝑥𝑡𝐻
𝑇
𝑡𝑦 =

𝑛
∑
𝑡=1

𝑛
∑
𝑠=1

𝐺𝑥𝑠𝑀𝑠𝑡𝐻𝑦𝑡

And thus

((𝐺𝑀)𝐻𝑇 ) =
𝑛

∑
𝑡=1

𝑛
∑
𝑠=1

𝐺∗𝑠𝑀𝑠𝑡𝐻∗𝑡

Recall that 𝑀 = 𝐴𝑟∗∗, so 𝑀𝑠𝑡 = 𝐴𝑟𝑠𝑡, which gives the desired result, by substitution:

𝐵𝑖∗∗ =
𝑛

∑
𝑟=1

𝐹 𝑖𝑟 (
𝑛

∑
𝑠=1

𝑛
∑
𝑡=1

𝐺∗𝑠𝐴𝑟𝑠𝑡𝐻∗𝑡) =
𝑛

∑
𝑟=1

𝐹 𝑖𝑟(𝐺𝐴𝑟∗∗𝐻
𝑡) = 𝐺 (

𝑛
∑
𝑟=1

𝐹𝑖𝑟𝐴𝑟∗∗) 𝐻𝑇

The other formulas can be derived in a similar way.
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Throughout this work we will use nonsingular 𝑛 × 𝑛 matrices over 𝔽𝑝, and the

following definition provides a useful shorthand for such matrices.

Definition 3.14. The group 𝐺𝐿(𝑛, 𝑞) is the set of all 𝑛 × 𝑛 invertible matrices with

entries in 𝔽𝑞 together with standard matrix multiplication.

Theorem 3.15 (Knuth, [11]). Let 𝐴 be a nonsingular cubical array of dimension 𝑛

over 𝔽𝑞, and let 𝐹, 𝐺, 𝐻 ∈ 𝐺𝐿(𝑛, 𝑞). Then 𝐵 = [𝐹 , 𝐺, 𝐻] × 𝐴 is also nonsingular.

Proof. Let 𝑣 ∈ 𝔽𝑛
𝑞 be nonzero. We need to show that 𝑣𝐵 is nonsingular. By equation

3.10, we have

𝑣𝐵 =
𝑛

∑
𝑖=1

𝑣𝑖𝐵𝑖∗∗ =
𝑛

∑
𝑖=1

𝑣𝑖 (𝐺 (
𝑛

∑
𝑟=1

𝐹𝑖𝑟𝐴𝑟∗∗) 𝐻𝑇 ) = 𝐺 (
𝑛

∑
𝑖=1

𝑛
∑
𝑟=1

𝑣𝑖𝐹 𝑖𝑟𝐴𝑟∗∗) 𝐻𝑇

Since both 𝐺 and 𝐻 are nonsingular, the only way 𝑣𝐵 is singular is if ∑𝑛
𝑖=1 ∑𝑛

𝑟=1 𝑣𝑖𝐹 𝑖𝑟𝐴𝑟∗∗

is singular. Note that 𝑣𝐹 = ∑𝑛
𝑖=1 𝑣𝑖𝐹 𝑖∗, so if 𝑤 = 𝑣𝐹 , then 𝑤𝑟 = ∑𝑛

𝑖=1 𝑣𝑖𝐹 𝑖𝑟. Since

𝐹 is nonsingular and 𝑣 is nonzero, 𝑤 is nonzero. Since 𝐴 is nonsingular, 𝑤𝐴 is

nonsingular, and thus 𝐵 is nonsingular since
𝑛

∑
𝑖=1

𝑛
∑
𝑟=1

𝑣𝑖𝐹 𝑖𝑟𝐴𝑟∗∗ =
𝑛

∑
𝑟=1

𝑤𝑟𝐴𝑟∗∗

3.4 Isotopism

In this section we present a few crucial theorems which show how the cubical

arrays of isotopic semifields are related.

Theorem 3.16 (Knuth, [11]). Let 𝑆 and 𝑆′ be isotopic semifields of order 𝑝𝑛 with

isotopism {𝐹 , 𝐺, 𝐻} from 𝑆′ to 𝑆. Let 𝐴 be a cubical array corresponding to 𝑆

generated by a basis 𝒳 = {𝑥1, ..., 𝑥𝑛}. Let 𝐹, 𝐺, 𝐻 ∈ 𝐺𝐿(𝑛, 𝑝) be the matrix forms

of 𝐹 , 𝐺, and 𝐻 with respect to 𝒳. Then 𝐵 = [𝐹 , 𝐺, 𝐻−𝑇 ] × 𝐴 is a cubical array

corresponding to 𝐵 generated by 𝒳.
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Proof. Note that 𝐹 , 𝐺, and 𝐻 are defined by the following:

𝐹(𝑥𝑖) =
𝑛

∑
𝑟=1

𝐹 𝑖𝑟𝑥𝑟 𝐺(𝑥𝑗) =
𝑛

∑
𝑠=1

𝐺𝑠𝑗𝑥𝑠 𝐻(𝑥𝑘) =
𝑛

∑
𝑡=1

𝐻𝑘𝑡𝑥𝑡

Let ⋆ denote the multiplication in 𝑆′, and let 𝐵 be the cubical array corresponding

to 𝑆′ generated by 𝒳, i.e.

𝑥𝑖 ⋆ 𝑥𝑗 =
𝑛

∑
𝑘=1

𝐵𝑖𝑗𝑘𝑥𝑘

By the definition of isotopism, we also have

𝐻(𝑥𝑖 ⋆ 𝑥𝑗) = 𝐹(𝑥𝑖) ∗ 𝐺(𝑥𝑗)

Then we have

𝑥𝑖 ⋆ 𝑥𝑗 = 𝐻−1(𝐹(𝑥𝑖) ∗ 𝐺(𝑥𝑗))

= 𝐻−1 ((∑𝑛
𝑟=1 𝐹 𝑖𝑟𝑥𝑟) ∗ (∑𝑛

𝑠=1 𝐺𝑗𝑠𝑥𝑠))

= 𝐻−1 (∑𝑛
𝑟=1 ∑𝑛

𝑠=1 𝐹 𝑖𝑟𝐺𝑗𝑠𝑥𝑟 ∗ 𝑥𝑠)

= 𝐻−1 (∑𝑛
𝑟=1 ∑𝑛

𝑠=1 ∑𝑛
𝑡=1 𝐹 𝑖𝑟𝐺𝑗𝑠𝐴𝑟𝑠𝑡𝑥𝑡)

= ∑𝑛
𝑟=1 ∑𝑛

𝑠=1 ∑𝑛
𝑡=1 ∑𝑛

𝑘=1 𝐹 𝑖𝑟𝐺𝑗𝑠𝐻−1
𝑡𝑘 𝐴𝑟𝑠𝑡𝑥𝑘

Then 𝐵 = [𝐹 , 𝐺, 𝐻−𝑇 ] × 𝐴.

Lemma 3.17 (Knuth, [11]). Let 𝑆 be a semifield of order 𝑝𝑛 and let 𝒳 = {𝑥1, ..., 𝑥𝑛}

and 𝒴 = {𝑦1, ..., 𝑦𝑛} be bases of 𝑆 over 𝔽𝑝. Let 𝐴 and 𝐵 be the cubical arrays

generated by 𝒳 and 𝒴 respectively, and let 𝐶 be the change of basis matrix from 𝒳

to 𝒴. Then

𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴
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Proof. Note that 𝐶 satisfies the following equations

𝑦𝑖 =
𝑛

∑
𝑗=1

𝐶𝑖𝑗𝑥𝑗 𝑥𝑖 =
𝑛

∑
𝑗=1

𝐶−1
𝑖𝑗 𝑦𝑗

From this we have

𝑦𝑖 ∗ 𝑦𝑗 = (∑𝑛
𝑟=1 𝐶𝑖𝑟𝑥𝑟) ∗ (∑𝑛

𝑠=1 𝐶𝑗𝑠𝑥𝑠)

= ∑𝑛
𝑟=1 ∑𝑛

𝑠=1 𝐶𝑖𝑟𝐶𝑗𝑠𝑥𝑟 ∗ 𝑥𝑠

= ∑𝑛
𝑟=1 ∑𝑛

𝑠=1 ∑𝑛
𝑡=1 𝐶𝑖𝑟𝐶𝑗𝑠𝐴𝑟𝑠𝑡𝑥𝑡

= ∑𝑛
𝑟=1 ∑𝑛

𝑠=1 ∑𝑛
𝑡=1 ∑𝑛

𝑘=1 𝐶𝑖𝑟𝐶𝑗𝑠𝐴𝑟𝑠𝑡𝐶
−1
𝑡𝑘 𝑦𝑘

= ∑𝑛
𝑘=1 𝐵𝑖𝑗𝑘𝑦𝑘

where, by definition of the triple product, 𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴.

We now have the means to construct a Knuth cube for any isotope of a semifield.

Theorem 3.18 (Knuth, [11]). Let 𝑆 and 𝑆′ be isotopic semifields, and let 𝐴 ∈ 𝐾(𝑆).

Then there exists 𝐵 ∈ 𝐾(𝑆′) such that

(3.13) 𝐵 = [𝐶𝑅−1, 𝐶𝐿−1, 𝐶−𝑇 ] × 𝐴

where 𝑅, 𝐿, and 𝐶 are the matrices corresponding to 𝑅𝑧, 𝐿𝑦, and 𝐿𝑦∗𝑧 respectively

for some nonzero 𝑦, 𝑧 ∈ 𝑆.

Proof. This is a direct consequence of a number of previous theorems. By Theorem

2.13 there exist nonzero 𝑦, 𝑧 ∈ 𝑆 such that {𝑅−1
𝑧 , 𝐿−1

𝑦 , 𝐼} is an isotopism between

𝑆 and 𝑆′. Let 𝒳 = {𝑥1, ..., 𝑥𝑛} be the basis which generates 𝐴, and let 𝑅, 𝐿,

and 𝐼 be the matrices corresponding to 𝑅𝑧, 𝐿𝑦 and 𝐼 with respect to 𝒳. Then
34



𝐷 = [𝑅−1, 𝐿−1, 𝐼−𝑇 ] × 𝐴 will be a cubical array corresponding to 𝑆′ by Theorem

3.16. Note that 𝐷 may not be in standard form, so we need to apply a change of

basis from 𝒳 to an ordered basis whose first element is the multiplicative identity

of 𝑆′. By Theorem 2.13, the multiplicative identity of 𝑆′ is 𝑦 ∗ 𝑧, so the matrix

corresponding to 𝐿𝑦∗𝑧 would be a suitable choice. Let 𝐶 be the matrix corresponding

to 𝐿𝑦∗𝑧 with respect to 𝒳. Since 𝐴 is in standard form, 𝑥1 is the multiplicative

identity of 𝑆. Let 𝒴 = {𝑦1, ..., 𝑦𝑛} be defined by

𝑦𝑖 =
𝑛

∑
𝑗=1

𝐶𝑖𝑗𝑥𝑗

Since 𝐿𝑦∗𝑧(𝑥1) = 𝑦 ∗ 𝑧, 𝐶1∗ is the vector corresponding to 𝑦 ∗ 𝑧 with respect to 𝒳,

which in turn is equal to 𝑦1. Now let 𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐷 will be a nonsingular

cubical array in standard form corresponding to 𝑆′. Then 𝐵 ∈ 𝐾(𝑆′) and

𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × ([𝑅−1, 𝐿−1, 𝐼−𝑇 ] × 𝐴) = [𝐶𝑅−1, 𝐶𝐿−1, 𝐶−𝑇 ] × 𝐴
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Chapter 4

The Relationship Between 𝑆 and 𝔽𝑝[𝑥]

There does not yet exist a strong theory regarding polynomials and semifields,

and the use of polynomials in the study of semifields has been limited to the minimal

and characteristic polynomials of the matrices for left and right multiplication by

semifield elements. Albert, [3], was probably the first to utilize the minimal poly-

nomials of these matrices, which he used to prove the existence of a cyclic basis for

semifields of order 16 and 32. Oehmke, [14], used both the minimal and characteristic

polynomials to prove commutativity of a specific class of semifields. More recently,

two independent proofs of the following result were presented by Rúa, Cambarro, and

Ranilla in [18], and Gow and Sheekey in [6].

Theorem. Let 𝑆 be a semifield, 𝑎 ∈ 𝑆, and 𝐿 be the matrix associated with left multi-

plication by 𝑎. Then 𝑎 is a left primitive element of 𝑆 if and only if the characteristic

polynomial of 𝐿 is primitive.

The work in this chapter is an attempt to build a foundation for the study

of the relationship between elements of a finite semifield and the polynomial ring

over an appropriate finite field. The overall structure and motivation for this work

comes from Chapter 3 of Finite fields and their applications [12], which discusses the

properties of polynomials over finite fields. And, as a direct consequence of these

investigations, we provide a new proof for the previously mentioned theorem.
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4.1 Exponents, Primitive Elements, and Cyclic Bases

As we mentioned in chapter 2, standard exponential notation is not well defined

for semifield elements due to the nonassociativity of multiplication. A common way

of addressing this issue is to define two new exponential notations which refer to

repeated multiplication on the left or right. For example, if 𝑎 ∈ 𝑆, we use the

following inductive definition.

(4.1)

(4.2)

𝑎(1 = 𝑎𝑎(𝑖+1 = 𝑎 ∗ 𝑎(𝑖

𝑎1) = 𝑎𝑎𝑖+1) = 𝑎𝑖) ∗ 𝑎

Due to the fact that semifields are both left and right distributive, it is common

practice to present results using only the left or right multiplication. We will do the

same, and focus entirely on left multiplication. The primary reason for choosing left

multiplication instead of right is simply because, if 𝐴 ∈ 𝐾(𝑆) and 𝑎 is the vector form

of 𝑎 with respect to 𝐴, then the matrix for left multiplication by 𝑎 is 𝑎𝐴. From this

point on, all of the definitions and results presented will be based on left multiplication

by an element. We will continue to use the term left in order to emphasize this choice

and the fact that similar results would hold if right multiplication were used.

Definition 4.1. Let 𝑆 be a semifield of order 𝑝𝑛. An element 𝑎 ∈ 𝑆 is said to be left

primitive if, for all nonzero 𝑏 ∈ 𝑆, there exists 1 ≤ 𝑖 ≤ 𝑝𝑛 − 1 such that 𝑎(𝑖 = 𝑏.

It is well known that finite fields contain primitive elements, but finite semifields

are a different matter altogether. First, note that we have defined left primitive

elements, and similarly we could define right primitive elements. As will be illustrated

in chapter 8, the left and right primitive elements of a semifield can be different.

Wene conjectured in [22] that every semifield contained a right primitive element,

but a counterexample was provided by Rúa, [17], of a semifield which was neither

left nor right primitive. Thus we cannot assume a semifield contains left primitive
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elements, but the existence of left primitive elements in semifields is common enough

to warrant study.

Definition 4.2. Let 𝑆 be a semifield of order 𝑝𝑛. Let 𝑎 ∈ 𝑆 be nonzero, and let ℒ𝑎

be the set of left powers of 𝑎 from 0 to 𝑛 − 1, i.e.

(4.3) ℒ𝑎 = {1, 𝑎(1, ..., 𝑎(𝑛−1}

If ℒ𝑎 is a basis of 𝑆 over 𝔽𝑝, then ℒ𝑎 is called the left cyclic basis generated by 𝑎.

Currently, there is no proof that such a basis exists for every semifield, but

there has not yet been a semifield found which does not possess such a basis. Oehmke

provides a possible partial proof that such a basis exists in [14], by showing that, for

a semifield, 𝑆, of order 𝑝𝑛 the indeterminate vector 𝑥 = (𝑥1, ..., 𝑥𝑛) generates a right

cyclic basis of the algebra 𝑆 ⊗ 𝔽𝑝[𝑥1, ..., 𝑥𝑛]. Thus, the matrix 𝑀 whose 𝑖-th row is

the (𝑖 + 1)-st right power of 𝑥 is nonsingular, and if we substitute 𝑣 ∈ 𝔽𝑛
𝑝 for 𝑥 in

𝑀 , then we will get a matrix whose rows correspond to the vector form of the first

𝑛 − 1 right powers of some element of 𝑆. Note that, if there exists a 𝑣 for which 𝑀

remains nonsingular, then that would prove the existence of a right cyclic basis for

𝑆. By taking the determinant of 𝑀 , we get a polynomial 𝑓(𝑥1, ..., 𝑥𝑛), which may

not be homogeneous, and we would need to show that there exists 𝑣 ∈ 𝔽𝑛
𝑝 such that

𝑓(𝑣) ≠ 0.

4.2 Left Order and Minimal Polynomial

We begin by defining properties of semifield elements analogous to those of

elements of finite fields. It is useful to consider the matrices for left multiplication

by semifield elements, so we will introduce a new notation which works well with our

existing vector notation. Consider a semifield 𝑆 of order 𝑝𝑛 and 𝐴 ∈ 𝐾(𝑆) defined

by a basis 𝒜 = {1, 𝑥2, ..., 𝑥𝑛}. For any 𝑎 ∈ 𝑆, 𝑎 is the vector corresponding to 𝑎
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with respect to 𝒜, and we will let 𝐿𝑎 denote the matrix for left multiplication by 𝑎

with respect to 𝒜. Note that 1 is the first vector of the standard basis, (1, 0, 0, ..., 0),

which is commonly denoted 𝑒1. Then we also have 𝑎𝐴 = 𝐿𝑎 and

𝑎 = 𝑎 ∗ 1 = 𝑎 ∗ 1 = 1𝐿𝑎 = 𝑒1𝐿𝑎

We can now begin investigating the left multiplicative properties of semifield elements.

Lemma 4.3. For any 𝑎 ∈ 𝑆, there exists an integer 𝑘 ≤ 𝑝𝑛 − 1 such that 𝑎(𝑘 = 1.

Proof. Consider the set (𝑎) = {𝑎(𝑖; 𝑖 ∈ ℤ+} of all positive left powers of 𝑎. As noted

lemma 2.2, for any 𝑎(𝑖, there exists 𝑏𝑖 such that 𝑏𝑖𝑎(𝑖 = 𝑎. There are, at most, 𝑝𝑛 − 1

distinct 𝑏𝑖. If this is the case, then for some 𝑖 we have 𝑎𝑎(𝑖 = 𝑎, in which case 𝑎(𝑖 = 1.

If there are fewer than 𝑝𝑛 − 1 distinct 𝑏𝑖, then there exists 𝑗 < 𝑖 < 𝑝𝑛 − 1 such that

𝑏𝑖𝑎(𝑖 = 𝑏𝑖𝑎(𝑗, which gives 𝑏𝑖(𝑎(𝑖−𝑎(𝑗) = 0, which forces 𝑎(𝑖−𝑎(𝑗 = 0 and 𝑎(𝑖−𝑗 = 1.

Definition 4.4. For 𝑎 ∈ 𝑆, the smallest integer 𝑘 such that 𝑎(𝑘 = 1 is called the left

order of 𝑎 and denoted ord𝑙(𝑎).

Lemma 4.5. Let 𝑎 ∈ 𝑆. Then there is a positive integer 𝑘 ≤ 𝑝𝑛 − 1 such that 𝐿𝑘
𝑎 = 𝐼 ,

where 𝐼 is the identity matrix.

Proof. Let 𝑓(𝑥) be the characteristic polynomial of 𝐿𝑎, i.e. 𝑓(𝑥) = |𝐿𝑎 − 𝑥𝐼|. Since

𝐿𝑎 is nonsingular, we have deg(𝑓) = 𝑛. Note that, by the Cayley-Hamilton theorem,

𝑓(𝐿𝑎) = 0 and 𝑓(0) ≠ 0. By lemma 3.1 in [12], there exists a positive integer

𝑘 ≤ 𝑝𝑛 − 1 such that 𝑓(𝑥)|(𝑥𝑘 − 1). Thus 𝐿𝑘
𝑎 − 𝐼 = 0, and 𝐿𝑘

𝑎 = 𝐼 .

Definition 4.6. The smallest integer 𝑘 such that 𝐿𝑘
𝑎 = 𝐼 is called the order of 𝐿𝑎, and

denoted ord(𝐿𝑎).

Lemma 4.7. Let 𝑎 ∈ 𝑆. Then ord𝑙(𝑎)|ord(𝐿𝑎).

Proof. Let ord𝑙(𝑎) = 𝑘. Then we have the following

𝑎(𝑘 = 1 = 𝑒1𝐿𝑘
𝑎 = 𝑒1
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So the first row of 𝐿𝑘
𝑎 is 𝑒1. Now consider 𝑎(𝑘+1 = 𝑒1𝐿𝑘+1

𝑎 = 𝑎. In other words, the

first row of 𝐿𝑘+1
𝑎 is 𝑎. In general, the first row of 𝐿𝑘+𝑖

𝑎 will be 𝑎(𝑖. Thus, the first row

of 𝐿𝑗
𝑎 is 𝑒1 if and only if 𝑗 is a multiple of 𝑘. And so ord𝑙(𝑎)|ord(𝐿𝑎).

Notice that, in the case of finite fields, these results are trivial. If 𝑎 ∈ 𝔽𝑝𝑛 , then

ord𝑙(𝑎) = ord(𝑎), and if ord(𝑎) = 𝑘, then (𝐿𝑎)𝑘 = 𝐿𝑎𝑘 = 𝐼 . Thus ord(𝑎) = ord(𝐿𝑎).

These lemmas provide a strong foundation regarding the exponential properties

of the elements of semifields. Given a polynomial 𝑓 ∈ 𝔽𝑝[𝑥] and 𝑎 ∈ 𝑆, we define

𝑓(𝑎) in the natural way. More explicitly, for 𝑐𝑖 ∈ 𝔽𝑝, we have

(4.4) 𝑓(𝑥) = 𝑐0 +
𝑗

∑
𝑖=1

𝑐𝑖𝑥𝑖 ⇒ 𝑓(𝑎) = 𝑐0(1) +
𝑗

∑
𝑖=1

𝑐𝑖𝑎(𝑖

The nonassociative multiplication in 𝑆 causes some trouble when evaluating

polynomials, since polynomial multiplication assumes the indeterminate is self-associative.

Some polynomials can be factored into a product of lesser degree polynomials, and

this could cause 𝑓(𝑎) to not be well defined. For example, consider the polynomial

𝑓(𝑥) = 𝑥4+𝑥2+1 in 𝔽2[𝑥], and the element 𝜆 in system W. Recall that multiplication

in system W is defined by

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏2𝑑𝜔) + 𝜆(𝑏𝑐 + 𝑎2𝑑)

So 𝜆2 = 𝜔, 𝜆(3 = 𝜆𝜔, and 𝜆(4 = 1 + 𝜔. Then 𝑓(𝜆) = (1 + 𝜔) + 𝜔 + 1 = 0. But

𝑓(𝑥) = (𝑥2 + 𝑥 + 1)2, and

(𝜆2 + 𝜆 + 1)2 = (1 + 𝜔 + 𝜆)2 = 𝜔 + 𝜔 + 𝜆(1 + 𝜔 + 𝜔) = 𝜆

Thus, it is worth emphasizing that when a polynomial is evaluated at a semifield

element, it is evaluated in its fully expanded form as written in equation 4.4. We can

now define when a semifield element is a root of a polynomial, and begin looking at

the relationship between polynomials and semifield elements.
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Definition 4.8. Let 𝑓 ∈ 𝔽𝑝[𝑥], 𝑎 ∈ 𝑆, and 𝑓(𝑎) be defined by equation 4.4. If 𝑓(𝑎) = 0,

then 𝑎 is called a left root of 𝑓 .

Lemma 4.9. Let 𝑎 ∈ 𝑆 and 𝑓, 𝑔, ℎ ∈ 𝔽𝑞[𝑥] such that 𝑓 + 𝑔 = ℎ. Then 𝑓(𝑎) + 𝑔(𝑎) =

ℎ(𝑎).

Proof. Let 𝑑 be the degree of ℎ. Then, there exist 𝑏𝑖, 𝑐𝑖 ∈ 𝔽𝑝, such that

𝑓(𝑥) =
𝑑

∑
𝑖=0

𝑏𝑖𝑥𝑖 𝑔(𝑥) =
𝑑

∑
𝑖=0

𝑐𝑖𝑥𝑖 ℎ(𝑥) =
𝑛

∑
𝑖=0

(𝑏𝑖 + 𝑐𝑖)𝑥𝑖

Since 𝑆 is distributive, we have

𝑓(𝑎) + 𝑔(𝑎) = (
𝑑

∑
𝑖=0

𝑏𝑖𝑎(𝑖) + (
𝑑

∑
𝑖=0

𝑐𝑖𝑎(𝑖) =
𝑑

∑
𝑖=0

(𝑏𝑖 + 𝑐𝑖)𝑎(𝑖 = ℎ(𝑎)

Lemma 4.10. Let 𝑎 ∈ 𝑆 and 𝑓, 𝑔, ℎ ∈ 𝔽𝑝[𝑥] such that 𝑓𝑔 = ℎ and 𝑎 is a left root of 𝑓

or 𝑔. Then 𝑎 is a left root of ℎ.

Proof. This proof is not as simple as at may at first appear. As already mentioned

we must look at the final form of ℎ and show that 𝑎 is a left root of that form. First,

let 𝑓 and 𝑔 have the following forms:

𝑓(𝑥) =
𝑗

∑
𝑖=0

𝑏𝑖𝑥𝑖 𝑔(𝑥) =
𝑘

∑
𝑖=0

𝑐𝑖𝑥𝑖

Without loss of generality, suppose 𝑎 is a left root of 𝑓 . Note that ℎ(𝑥) = ∑𝑘
𝑖=0 𝑐𝑖𝑥𝑖𝑓(𝑥),

and, by the previous lemma, 𝑎 is a left root of ℎ if and only if 𝑎 is a left root of the

expanded form of 𝑐𝑖𝑥𝑖𝑓(𝑥) for all 𝑖. Now consider

𝑓𝑖(𝑥) = 𝑐𝑖𝑥𝑖𝑓(𝑥) = 𝑐𝑖𝑏0𝑥𝑖 + 𝑐𝑖𝑏1𝑥𝑖+1 + ⋯ + 𝑐𝑖𝑏𝑗𝑥𝑖+𝑗
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By un-distributing multiples of 𝑎 we obtain the desired result:

𝑓𝑖(𝑎) = 𝑐𝑖𝑏0𝑎(𝑖 + 𝑐𝑖𝑏1𝑎(𝑖+1 + ⋯ + 𝑐𝑖𝑏𝑗𝑎(𝑖+𝑗

= 𝑐𝑖𝑎(𝑏0𝑎(𝑖−1 + 𝑏1𝑎(𝑖 + ⋯ + 𝑏𝑗𝑎(𝑖+𝑗−1)

⋮

= 𝑐𝑖𝑎(𝑎(⋯ 𝑎(𝑏0 + 𝑏1𝑎 + ⋯ + 𝑏𝑗𝑎(𝑗) ⋯)

= 𝑐𝑖𝑎(𝑎(⋯ 𝑎(0) ⋯)

= 0

Thus 𝑓𝑖(𝑎) = 0 for all 𝑖 and ℎ(𝑎) = 0.

Lemma 4.11. Let 𝑎 ∈ 𝑆. Then there exists a unique monic polynomial of minimal

degree 𝑓 ∈ 𝔽𝑝[𝑥] such that 𝑎 is a left root of 𝑓 .

Proof. Since there exists 𝑘 ≤ 𝑝𝑛 − 1 with 𝑎(𝑘 = 1, 𝑎 is a left root of 𝑥𝑘 − 1. Thus 𝑎 is

a left root of a monic polynomial in 𝔽𝑝[𝑥]. Let 𝑛 be the lowest degree of polynomial

in 𝔽𝑝[𝑥] for which 𝑎 is a left root. Suppose 𝑓 and 𝑔 are monic polynomials of degree

𝑛 with 𝑎 as a left root, with

𝑓(𝑥) = 𝑥𝑛 +
𝑛−1
∑
𝑖=0

𝑏𝑖𝑥𝑖 𝑔(𝑥) = 𝑥𝑛 +
𝑛−1
∑
𝑖=0

𝑐𝑖𝑥𝑖

Since 𝑓(𝑎) = 𝑔(𝑎) = 0, we have the following:

𝑎(𝑛 + ∑𝑛−1
𝑖=0 𝑏𝑖𝑎(𝑖 = 𝑎(𝑛 + ∑𝑛−1

𝑖=0 𝑐𝑖𝑎(𝑖

⇒ ∑𝑛−1
𝑖=0 𝑏𝑖𝑎(𝑖 = ∑𝑛−1

𝑖=0 𝑐𝑖𝑎(𝑖

⇒ ∑𝑛−1
𝑖=0 (𝑏𝑖 − 𝑐𝑖)𝑎(𝑖 = 0

Let ℎ(𝑥) = ∑𝑛−1
𝑖=0 (𝑏𝑖 − 𝑐𝑖)𝑥𝑖. Note that, since ℎ has degree less than 𝑛, 𝑎 cannot be

a left root of ℎ unless ℎ(𝑥) = 0. Thus 𝑏𝑖 = 𝑐𝑖 for all 𝑖.
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Definition 4.12. Let 𝑎 ∈ 𝑆. The unique monic polynomial of minimal degree in 𝔽𝑝[𝑥]

for which 𝑎 is a left root will be called the left minimal polynomial of 𝑎.

As mentioned in chapter 2, if 𝑆 is a semifield of order 𝑝𝑛, then 𝑆 contains a

subfield isomorphic to 𝔽𝑝 consisting of scalar multiples of the multiplicative identity.

It is sometimes useful to identify the elements of 𝑆 which are not in this subfield, and

we will refer to such elements as being nonscalar. The following lemma and corollary

present some useful properties of the left minimal polynomial of a nonscalar semifield

element.

Lemma 4.13. Let 𝑎 ∈ 𝑆 be nonscalar, and let 𝑓 ∈ 𝔽𝑝[𝑥] be a monic polynomial for

which 𝑎 is a left root. If there exist polynomials 𝑔, ℎ ∈ 𝔽𝑝[𝑥] such that 𝑓 = 𝑔ℎ and

ℎ(𝑥) = 𝑥 − 𝑐, then 𝑎 is a left root of 𝑔.

Proof. Note that 𝑔 can be written as 𝑔(𝑥) = ∑𝑛−1
𝑖=0 𝑏𝑖𝑥𝑖, with 𝑏𝑛−1 = 1. Then, 𝑓 has

the form

𝑓(𝑥) =
𝑛−1
∑
𝑖=0

𝑏𝑖𝑥𝑖(𝑥 − 𝑐) = (
𝑛

∑
𝑖=0

𝑏𝑖𝑥𝑖+1) + (
𝑛−1
∑
𝑖=0

(−𝑐)𝑏𝑖𝑥𝑖)

Since 𝑎 is a left root of 𝑓 , we then have

𝑓(𝑎) = (
𝑛

∑
𝑖=0

𝑏𝑖𝑎(𝑖+1) + (
𝑛−1
∑
𝑖=0

(−𝑐)𝑏𝑖𝑎(𝑖) = (𝑎 − 𝑐) (
𝑛−1
∑
𝑖=0

𝑏𝑖𝑎(𝑖−1) = 0

Note that 𝑎 − 𝑐 ≠ 0 so 𝑔(𝑎) = 0, and 𝑎 is a left root of 𝑔.

Corollary 4.14. Let 𝑎 ∈ 𝑆 be nonscalar, and let 𝑓 ∈ 𝔽𝑝[𝑥] be the left minimal

polynomial of 𝑎. Then 𝑓 has no linear factors, 𝑓(𝑐) ≠ 0 for all 𝑐 ∈ 𝔽𝑝, and deg(𝑓) <

ord(𝑓). Consequently, 𝑓 is either irreducible or the product of irreducible polynomials

of at least second degree.
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4.3 Determining the Left Minimal Polynomial

The left minimal polynomial of a semifield element can be determined using

a method similar to the one used in [12] to find the minimal polynomial of a finite

field element. Let 𝑆 be a semifield of order 𝑝𝑛, 𝑎 ∈ 𝑆, and let 𝑓 be the left minimal

polynomial of 𝑎. Clearly deg 𝑓 ≤ 𝑛, otherwise 𝑆 would contain a set of more than 𝑛

linearly independent elements. Then 𝑓 has the following form, for 𝑐𝑖 ∈ 𝔽𝑝, assuming

some trivial 𝑐𝑖,

𝑓(𝑥) = 𝑐𝑛𝑥𝑛 + ⋯ + 𝑐1𝑥 + 𝑐0

Then 𝑎 is a left root of 𝑓 if and only if
𝑛

∑
𝑖=0

𝑐𝑖𝑎(𝑖 = 0

Let 𝑀 be the (𝑛 + 1) × 𝑛 matrix whose 𝑖-th row is 𝑎(𝑖−1. Let 𝑟 be the rank of 𝑀 .

Then, if 𝑐 = (𝑐0, 𝑐1, ..., 𝑐𝑛), 𝑓(𝑎) = 𝑐𝑀 . By the Rank-Nullity theorem, if the rank of

𝑀 is 𝑟 and dimension of the set of solutions is 𝑠, then 𝑠 = 𝑛+1−𝑟. Since 1 ≤ 𝑟 ≤ 𝑛,

1 ≤ 𝑠 ≤ 𝑛. Thus, if 𝑠 coordinates of 𝑐 are prescribed, the other coordinates are

uniquely determined. If 𝑠 = 1, set 𝑐𝑛 = 1. If 𝑠 > 1, set 𝑐𝑛 = 𝑐𝑛−1 = ⋯ = 𝑐𝑛−𝑠+1 = 0,

and 𝑐𝑛−𝑠 = 1. This remaining values of 𝑐𝑖 will define 𝑓 , and the degree of 𝑓 will be 𝑟.

For example, consider the element 𝜆 in system W. We will look at the vector

coordinates of the powers of 𝜆 with respect to the basis {1, 𝜔, 𝜆, 𝜆𝜔}. As we’ve

previously mentioned, 𝜆2 = 𝜔, 𝜆(3 = 𝜆𝜔, and 𝜆(4 = 1+𝜔. Then, 𝑀 has the following

form:

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Then we have 𝑟 = 4 and 𝑠 = 1. Let 𝑐 = (𝑐0, 𝑐1, 𝑐2, 𝑐3, 1), and set 𝑐𝑀 = 0. This gives

(𝑐0 + 1, 𝑐2 + 1, 𝑐1, 𝑐3) = (0, 0, 0, 0), which gives 𝑐0 = 𝑐2 = 1 and 𝑐1 = 𝑐3 = 0. Thus,

the left minimal polynomial for 𝜆 is 𝑓(𝑥) = 𝑥4 + 𝑥2 + 1.

4.4 Consequences of the Left Minimal Polynomial

The existence of the left minimal polynomial has many applications. As previ-

ously mentioned, if 𝑎 is a left root of a polynomial 𝑓 , then 𝑎 may not be a left root of

any factor of 𝑓 . The following lemma shows how the left minimal polynomial helps

address this issue.

Lemma 4.15. Let 𝑎 ∈ 𝑆 and let 𝑓, 𝑔 ∈ 𝔽𝑝[𝑥] with 𝑓 the left minimal polynomial of 𝑎.

Then 𝑓|𝑔 if and only if 𝑎 is a left root of 𝑔.

Proof. If 𝑓|𝑔, then, by lemma 4.10, 𝑔(𝑎) = 0. Suppose 𝑎 is a left root of 𝑔. If

deg(𝑓) = deg(𝑔), then 𝑔 is a scalar multiple of 𝑓 and thus 𝑎 is clearly a left root

of 𝑔. Suppose deg(𝑓) < deg(𝑔). By the division algorithm, there exist ℎ, 𝑟 ∈ 𝔽𝑝[𝑥]

such that 𝑔 = ℎ𝑓 + 𝑟, with deg(𝑟) < deg(𝑓). Let 𝑞 = ℎ𝑓 . By lemmas 4.9 and 4.10,

𝑞(𝑎) = 0, 𝑔(𝑎) = 𝑞(𝑎) + 𝑟(𝑎), and we have 0 = 𝑟(𝑎). But deg(𝑟) < deg(𝑓) and 𝑓 is

the minimal polynomial of 𝑎, so 𝑟(𝑥) = 0. Thus 𝑓|𝑔.

Since 𝐿𝑎 ∈ 𝐺𝐿(𝑛, 𝑝), it is well known that there exists a minimal polynomial

for 𝐿𝑎 which must divide its characteristic polynomial. And since 𝑓(𝑎) = 𝑒1𝑓(𝐿𝑎),

𝑎 will be a left root of both the minimal and characteristic polynomials of 𝐿𝑎. The

following lemma provides a sufficient condition for the minimal polynomials of 𝑎 and

𝐿𝑎 to be equal.

Lemma 4.16. Let 𝑎 ∈ 𝑆. Let 𝑓 be the minimal polynomial of 𝑎 and let 𝑔 be the

minimal polynomial of 𝐿𝑎. Then 𝑓|𝑔, and 𝑓 = 𝑔 if and only if ord𝑙(𝑎) = ord(𝐿𝑎).
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Proof. As mentioned, 𝑔(𝑎) = 0, so, by lemma 4.15, 𝑓|𝑔. Thus there exists ℎ ∈ 𝔽𝑝[𝑥]

such that 𝑔 = ℎ𝑓 . Since 𝑔(𝐿𝑎) = 0, either 𝑓(𝐿𝑎) = 0 or ℎ(𝐿𝑎) = 0. Note that the

degrees of 𝑓 and ℎ must be less than or equal to the degree of 𝑔, but that 𝑔 is the

minimal polynomial of 𝐿𝑎. Thus 𝑓 or ℎ must be trivial. Since 𝑓 is not trivial, ℎ must

be, and we have 𝑓 = 𝑔. Conversely, if 𝑓 = 𝑔, then clearly ord𝑙(𝑎) = ord(𝐿𝑎).

Note that an element 𝑎 ∈ 𝑆 will define a cyclic basis if and only if its left

minimal polynomial has degree 𝑛. This yields the following.

Corollary 4.17. Let 𝑎 ∈ 𝑆, and let 𝐿𝑎 be the matrix for left multiplication by 𝑎 with

respect to some basis. If the characteristic polynomial of 𝐿𝑎 is irreducible, then 𝑎

defines a cyclic basis.

Recall that, for 𝑓 ∈ 𝔽𝑝[𝑥], the order of 𝑓 , denoted ord(𝑓), is the smallest

integer 𝑘 such that 𝑓|(𝑥𝑘 − 1). For 𝑎 ∈ 𝑆, if 𝑓 is the left minimal polynomial of 𝑎,

and 𝑘 = ord𝑙(𝑎), then by definition 𝑎(𝑘 = 1, 𝑎 is a left root of 𝑥𝑘 − 1, and we have

𝑓|(𝑥𝑘 − 1). This yields the following important result.

Theorem 4.18. Let 𝑎 ∈ 𝑆 and let 𝑓 be the left minimal polynomial of 𝑎. Then

ord𝑙(𝑎) = ord(𝑓).

This rather straightforward result allows us to study the algebraic properties of

a semifield element by studying its left minimal polynomial. The following theorem

summarizes a number of results that follow directly from the previous theorem and

results from [12] regarding the order of a polynomial.

Theorem 4.19. Let 𝑎 ∈ 𝑆, let 𝑓 be the left minimal polynomial of 𝑎, and let ord𝑙(𝑎) =

𝑘. Then the following are true:

1. If 𝑓 is irreducible and deg(𝑓) = 𝑛, then 𝑘|(𝑝𝑛 − 1).

2. Let 𝑐 be a positive integer. Then 𝑓|(𝑥𝑐 − 1) if and only if 𝑘|𝑐.
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3. If 𝑓 = 𝑔𝑏 where 𝑏 is a positive integer and 𝑔 ∈ 𝔽𝑝[𝑥] is irreducible with 𝑔(0) ≠ 0

and ord(𝑔) = 𝑐. Then 𝑘 = 𝑐𝑝𝑡, where 𝑡 is the smallest integer such that 𝑝𝑡 ≥ 𝑏.

4. If 𝑔1, ..., 𝑔𝑛 ∈ 𝔽𝑝[𝑥] are pairwise relatively prime, and 𝑓 = 𝑔1 ⋯ 𝑔𝑛, then 𝑘 =

lcm(ord(𝑔1), ..., ord(𝑔𝑛)).

5. If 𝑓 = 𝑏𝑓𝑐1
1 ⋯ 𝑓𝑐𝑛𝑛 , where 𝑏 ∈ 𝔽𝑝, 𝑐1, ..., 𝑐𝑛 are positive integers, and 𝑓1, ..., 𝑓𝑛 ∈

𝔽𝑝[𝑥] are distinct monic irreducible polynomials, then 𝑘 = 𝑑𝑝𝑡 where 𝑑 =

lcm(ord(𝑓1), ..., ord(𝑓𝑛)), 𝑡 is the smallest positive integer greater than or equal

to max(𝑐1, ..., 𝑐𝑛).

6. 𝑓 is a primitive polynomial of degree 𝑛 over 𝔽𝑝 if and only if 𝑘 = 𝑝𝑛 − 1.

This theorem provides some useful tools for studying semifield elements. For

example, if the left minimal polynomial of 𝑎 is irreducible, then 𝑎(𝑝𝑛 = 𝑎. In the case

of a finite field this is always true, but in a semifield, the order of an element may not

divide 𝑝𝑛 − 1.

We conclude by proving the result from the beginning of this chapter, which

follows almost directly from the previous results.

Corollary 4.20. Let 𝑎 ∈ 𝑆 and let 𝑓 be the left minimal polynomial of 𝑎. Then 𝑎 is

left primitive if and only if 𝑓 is a left primitive polynomial of degree 𝑛 over 𝔽𝑝.

Theorem 4.21. An element 𝑎 ∈ 𝑆 is left primitive if and only if the characteristic

polynomial of 𝐿𝑎 is primitive.

Proof. Let 𝑓 be the left minimal polynomial of 𝑎 and 𝑔 the characteristic polynomial

of 𝐿𝑎. First, suppose 𝑎 is left primitive. Then 𝑓 is primitive, which implies that 𝑓

is irreducible and deg(𝑓) = 𝑛. Also, 𝑓 must divide the minimal polynomial of 𝐿𝑎,

which must divide 𝑔, so 𝑓|𝑔. Since 𝐿𝑎 is an 𝑛 × 𝑛 matrix, deg(𝑔) = 𝑛 as well, so

𝑓 = 𝑔. Thus the characteristic polynomial of 𝐿𝑎 is primitive. Now, suppose 𝑔 is
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primitive. Then 𝑔 is irreducible and 𝑓 must divide 𝑔. Thus 𝑓 = 𝑔 and 𝑓 is a primitive

polynomial of degree 𝑛 over 𝔽𝑝. Thus 𝑎 is left primitive.
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Chapter 5

Determining Aut(𝑆)

Presently, all of the results regarding the automorphism groups of semifields

have been found for very specific cases. Wene ([23], [24]) has determined the au-

tomorphism groups of semifields following particular constructions. Al-ali, [1], has

determined the automorphism group of semifields of order 𝑞4 which admit ℤ2 × ℤ2

as an automorphism group which acts freely on the semifield, where 𝑞 > 3 is a prime

power. The main results in this chapter provide a tool which can be used to determine

the automorphism group of any semifield using a brute-force approach.

5.1 Investigating 𝐾(𝑆)

Theorem 3.4 states that any Knuth cube of dimension 𝑛 over 𝔽𝑝 can define a

semifield using a formal basis, 𝒳 = {𝑥1, ..., 𝑥𝑚}. Note that the coordinate vector

for 𝑥𝑖 with respect to 𝒳 will be 𝑒𝑖, the 𝑖-th standard basis vector. For this reason,

rather than using a Knuth cube to define a semifield over a formal basis, it is more

convenient to simply define a semifield product on 𝔽𝑛
𝑝 by using the Knuth cube to

define the products of the elements of the standard basis.

Definition 5.1. Let 𝑆 be a semifield of order 𝑝𝑛, 𝐴 ∈ 𝐾(𝑆), and let {𝑒1, ..., 𝑒𝑛} denote

the standard basis of 𝔽𝑛
𝑝 . Then ∗𝐴 denotes the semifield product on 𝔽𝑛

𝑝 defined by

(5.1) 𝑒𝑖 ∗𝐴 𝑒𝑗 =
𝑛

∑
𝑘=1

𝐴𝑖𝑗𝑘𝑒𝑘

In this case, 𝑆 = (𝔽𝑛
𝑝 , +, ∗𝐴), where + denotes standard vector addition, and

𝑒1 is the multiplicative identity. Note that, viewing 𝑆 in this way, any other cube

in 𝐾(𝑆) must be defined by an ordered basis of 𝔽𝑛
𝑝 , 𝒴 = {𝑦1 = 𝑒1, 𝑦2, ..., 𝑦𝑛}. The
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change of basis matrix, 𝐶, from the standard basis to 𝒴 will have the form 𝐶1∗ = 𝑦𝑖.

This leads us to the following results.

Lemma 5.2. Let 𝐶(𝑛, 𝑝) denote the set of all 𝑋 ∈ 𝐺𝐿(𝑛, 𝑝) whose first row is 𝑒1.

Then 𝐶(𝑛, 𝑝) is a subgroup of 𝐺𝐿(𝑛, 𝑝).

Proof. Clearly the identity matrix, 𝐼 , is in 𝐶(𝑛, 𝑝). Let 𝑋, 𝑌 ∈ 𝐶(𝑛, 𝑝). Since 𝑌 ∈

𝐺𝐿(𝑛, 𝑝), 𝑌 −1 exists, and 𝑌 𝑌 −1 = 𝐼 . By assumption 𝑌 1∗ = 𝑒1, so 𝑒1𝑌 −1 = 𝐼1∗ = 𝑒1,

and thus 𝑌 −1
1∗ = 𝑒1, and 𝑌 −1 ∈ 𝐶(𝑛, 𝑝). If 𝑍 = 𝑋𝑌 −1, then 𝑍 ∈ 𝐶(𝑛, 𝑝) by the

following

𝑍1∗ = 𝑋1∗𝑌
−1 = 𝑒1𝑌 −1 = 𝑒1

Theorem 5.3. Let 𝑆 be a semifield of order 𝑝𝑛, 𝐴 ∈ 𝐾(𝑆), and 𝐶 ∈ 𝐶(𝑛, 𝑝). Then

[𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴 defines a group action of 𝐶(𝑛, 𝑝) on 𝐾(𝑆).

Proof. By Lemma 3.17 we know that 𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴 defines 𝑆. We now show

that 𝐵 is in standard form. From equation 3.10, , we have

𝐵1∗∗ = 𝐶 (
𝑛

∑
𝑖=1

𝐶1𝑖𝐴𝑖∗∗) 𝐶−1 = 𝐶𝐼𝐶−1

Similarly, by equation 3.11,

𝐵∗1∗ = 𝐶 (
𝑛

∑
𝑗=1

𝐶1𝑗𝐴∗𝑗∗) 𝐶−1 = 𝐶𝐼𝐶−1 = 𝐼

Thus 𝐵 is in standard form, and we have 𝐵 ∈ 𝐾(𝑆). Finally, for 𝐶, 𝐷 ∈ 𝐶(𝑛, 𝑝), we

need

[𝐶, 𝐶, 𝐶−𝑇 ] × ([𝐷, 𝐷, 𝐷−𝑇 ] × 𝐴) = [𝐶𝐷, 𝐶𝐷, (𝐶𝐷)−𝑇 ] × 𝐴

Note that 𝐶−𝑇 𝐷−𝑇 = (𝐷−1𝐶−1)𝑇 = (𝐶𝐷)−𝑇 . Then this is true by Theorem 3.12.
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Consider the results of this theorem in terms of building semifields from 𝔽𝑛
𝑝 .

Let 𝒜 and ℬ be distinct bases of 𝑆 over 𝔽𝑝, and 𝐴, 𝐵 ∈ 𝐾(𝑆) the Knuth cubes

defined by 𝒜 and ℬ respectively. Let ∗𝐴 and ∗𝐵 denote the multiplication defined

by 𝐴 and 𝐵 acting on the standard basis. Then, there is a linear transformation 𝐶

corresponding to the matrix 𝐶 ∈ 𝐶(𝑛, 𝑝) satisfying 𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴, such that

∀𝑎, 𝑏 ∈ 𝑆,

𝐶(𝑎 ∗𝐴 𝑏) = 𝐶(𝑎) ∗𝐵 𝐶(𝑏)

And we have 𝐶 ∶ (𝔽𝑛
𝑝 , +, ∗𝐴) ↦ (𝔽𝑛

𝑝 , +, ∗𝐵) is an isomorphism. Note that (𝔽𝑛
𝑝 , +, ∗𝐴) =

(𝔽𝑛
𝑝 , +, ∗𝐵) if and only if 𝐴 = 𝐵. Thus we have proven the following result.

Theorem 5.4. Let 𝑆 be a semifield of order 𝑝𝑛, 𝐴 ∈ 𝐾(𝑆), and 𝑆 = (𝔽𝑛
𝑝 , +, ∗𝐴). Then

𝐶 ∈ 𝐶(𝑛, 𝑝) is an automorphism of 𝑆 if and only if 𝐴 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴.

In practice, suppose we have a semifield 𝑆 of order 𝑝𝑛. We first generate a

Knuth cube 𝐴 for 𝑆, and give 𝑆 the form (𝔽𝑛
𝑝 , +, ∗𝐴). Then, Aut(𝑆) is the subgroup

of 𝐶(𝑛, 𝑝) which fixes 𝐴, i.e. the stabilizer of 𝐴. This fact allows us to determine the

size of 𝐾(𝑆).

Lemma 5.5. |𝐶(𝑛, 𝑝)| = ∏𝑛−1
𝑖=1 (𝑝𝑛 − 𝑝𝑖).

Proof. This is a straightforward result due to the fact that, if 𝐶 ∈ 𝐶(𝑛, 𝑝), then

𝐶1∗ = 𝑒1 and the remaining rows must be linearly independent.

Corollary 5.6.

|𝐾(𝑆)| = |𝐶(𝑛, 𝑝)|
|Aut(S)| =

∏𝑛−1
𝑖=1 (𝑝𝑛 − 𝑝𝑖)
|Aut(𝑆)|

Proof. As noted in Lemma 5.5, each matrix in 𝐶(𝑛, 𝑝) corresponds to one of the

possible bases which define a Knuth cube for 𝑆. Let 𝒜 be a basis which defines

𝐴 ∈ 𝐾(𝑆). Then, for each 𝜙 ∈ Aut(𝑆), 𝜙(𝒜) is a distinct basis which also defines

𝐴.
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5.2 Utilizing Properties of Automorphisms

Clearly 𝐶(𝑛, 𝑝) can be quite large, and, even with computer assistance, a brute

force approach to determining Aut(𝑆) from 𝐶(𝑛, 𝑝) could take an impractically long

time. The work in this section aims to address this problem by significantly reducing

the number of matrices which need to be tested. Recall that, for 𝑧 ∈ 𝑆, the notation

𝑧(𝑖 refers to repeated left multiplication.

Lemma 5.7. Let 𝑆 be a semifield of order 𝑝𝑛, 𝑧 ∈ 𝑆, and 𝜙 ∈ Aut(𝑆). Then 𝜙(𝑧(𝑖) =

𝜙(𝑧)(𝑖. Also, if ℒ𝑧 is a basis of 𝑆, then so is ℒ𝜙(𝑥).

Proof. By definition of the left powers of 𝑧 and of automorphisms, we have

𝜙(𝑧(𝑖) = 𝜙(𝑧 ∗ 𝑧(𝑖−1) = 𝜙(𝑧) ∗ 𝜙(𝑧(𝑖−1) = 𝜙(𝑧) ∗ (𝜙(𝑧) ∗ ⋯ ∗ (𝜙(𝑧) ∗ 𝜙(𝑧)) ⋯) = 𝜙(𝑧)(𝑖

Corollary 5.8. Let 𝑧 ∈ 𝑆, 𝜙 ∈ Aut(𝑆). Then the following are true.

1. If 𝑓 is the left minimal polynomial of 𝑧, then 𝑓 is the left minimal polynomial

of 𝜙(𝑧).

2. If 𝑧 is left primitive, then 𝜙(𝑧) is left primitive.

3. If ℒ𝑧 is a basis of 𝑆, then ℒ𝜙(𝑧) is also a basis of 𝑆.

This corollary provides a means by which we can reduce the number of matrices

which need to be tested. Consider a semifield, 𝑆, of order 𝑝𝑛 and 𝐴 ∈ 𝐾(𝑆). First,

determine the characteristic polynomial, 𝑓𝑧, of 𝑧𝐴 for all nonzero 𝑧 ∈ 𝑆. Make

a list, 𝒫, of all 𝑧 for which 𝑓𝑧 is primitive, and a list, ℐ, of all 𝑧 for which 𝑓𝑧 is

irreducible. Note that, as mentioned in chapter 4, there is no guarantee that 𝒫 or ℐ

will actually contain any elements, but the empirical evidence suggests that ℐ should

not be empty. Suppose 𝒫 is not empty. Then pick a particular 𝑧 ∈ 𝒫 with left

minimal polynomial 𝑓 and make a new list 𝒫′ of all 𝑦 ∈ 𝒫 which also have 𝑓 as their
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left minimal polynomial. Let 𝐶 be defined by 𝐶𝑖∗ = 𝑧(𝑖−1, and construct the cubical

array 𝐵 = [𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴. At this point 𝐵 is the cubical array for 𝑆 generated by

ℒ𝑧. For all 𝑦 ∈ 𝒫′, 𝑦𝐶 will be the vector for 𝑦 with respect to ℒ𝑧. Thus, for each

𝑦 ∈ 𝒫′, let 𝐷 be the matrix defined by 𝐷𝑖∗ = (𝑦(𝑖−1𝐶)𝑖∗. Then, determine which

𝐷 satisfy 𝐵 = [𝐷, 𝐷, 𝐷−𝑇 ] × 𝐵. These matrices will be the automorphisms of 𝑆

with respect to ℒ𝑧. If 𝒫 is empty, then a similar approach using ℐ will yield similar

results. If both 𝒫 and ℐ are empty, then some other means of reducing the number

of matrices to test must be found.

We provide an application of this method in section 5.4. For now, note that it

should reduce the number of matrices to check from |𝐶(𝑛, 𝑝)| to 𝑝𝑛 − 𝑝. The only

case where this may not work is if the semifield in question does not have a cyclic

basis.

5.3 Automorphisms of System V

System V is an interesting example because it has 6 automorphisms, which is

more than any other 16-element semifield, including 𝔽16. Recall that the elements

in system V have the form 𝑎 + 𝜆𝑏, where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}.

Addition is defined in the standard way, and multiplication is defined by

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑2)

Then 𝒜 = {1, 𝜔, 𝜆, 𝜆𝜔} is a basis for system V over 𝔽2 which generates the following

Knuth cube:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0111

0001 0011 1111 1001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Since |𝐶(4, 2)| = 1, 344, it is a simple matter to find all 𝐶 in 𝐶(4, 2) such that

[𝐶, 𝐶, 𝐶−𝑇 ] × 𝐴 = 𝐴. By computation, the following matrices were found:

1.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

4.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

1 1 0 0

0 0 1 0

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

5.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

1 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

6.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

1 1 0 0

0 0 1 1

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If we view system V as (𝔽4
2, +, ∗𝐴), then each of these matrices is actually an automor-

phism. Additionally, we can use these matrices to find more algebraically significant

definitions of the automorphisms. We will let 𝜙𝑖 denote the automorphism corre-

sponding to the 𝑖-th matrix listed above. Recall that the rows of these matrices

are the vectors of the images of the basis elements under the automorphisms. For

example, the second matrix gives the following information about 𝜙2:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⇒

𝜙2(1) = 1

𝜙2(𝜔) = 𝜔

𝜙2(𝜆) = 𝜆𝜔

𝜙2(𝜆𝜔) = 𝜆 + 𝜆𝜔

Since 𝜆+𝜆𝜔 = 𝜆(1+𝜔) = 𝜆𝜔2, we can see that 𝜙2 is defined as 𝜙2(𝑎+𝜆𝑏) = 𝑎+𝜆(𝑏𝜔).

In a similar fashion, all of the automorphisms of system V can be found:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏 𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔) 𝜙3(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔2)

𝜙4(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2) 𝜙5(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2𝜔) 𝜙6(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2𝜔2)
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5.4 Automorphisms of Sandler’s Construction of order 332

This is a specific case of a general construction discovered by Sandler, [20]. In

this case, 𝑆 consists of elements of the form 𝑎0 + 𝜆𝑎1 + 𝜆2𝑎2, where 𝑎𝑖 ∈ 𝔽27, with

addition defined in the standard way and multiplication defined by

(𝜆(𝑖𝑥) ∗ (𝜆(𝑗𝑦) = 𝜆(𝑖+𝑗𝑥3𝑗𝑦

𝜆(3 = 𝜔

𝜆(4 = 𝜆𝜔

where 𝜔 is a primitive element of 𝔽27 satisfying 𝜔3 + 2𝜔 + 1 = 0. This semifield will

be 9 dimensional over 𝔽3, and an obvious choice of basis would be

𝒜 = {1, 𝜔, 𝜔2, 𝜆, 𝜆𝜔, 𝜆𝜔2, 𝜆2, 𝜆2𝜔, 𝜆2𝜔2}

We will let 𝐴 denote the Knuth cube defined by this basis. Note that |𝐶(9, 3)| ≈

1.3 × 1034, so testing each 𝐶 ∈ 𝐶(9, 3) would be unfeasible even with the aid of a

computer. On the other hand |𝑆| = 19, 683, so we can use the results from section 5.2

to find the automorphisms of 𝑆. First we determine whether 𝑆 has any left primitive

elements. To do this we check the matrix for left multiplication by each element of

𝑆 with respect to ℬ and find its characteristic polynomial. By Theorem 4.21 such

a polynomial will be primitive of degree 9 over 𝔽3. Let 𝑅 be the set of all 𝑧 ∈ 𝑆

for which the characteristic polynomial of the matrix for left multiplication by 𝑧 is

𝑥9 + 2𝑥6 + 𝑥2 + 2𝑥 + 1. By computation, |𝑅| = 39, and one of the elements in

𝑅 is 2𝜔2 + 𝜆. Let 𝑃 be the matrix whose 𝑖-th row is the vector corresponding to

(2𝜔2 + 𝜆)(𝑖−1, and let 𝐵 = [𝑃 , 𝑃 , 𝑃 −𝑇 ] × 𝐴. Note that 𝐵 is generated by ℒ(2𝜔2+𝜆),

and any other basis which generates 𝐵 must equal ℒ𝑧 for some 𝑧 ∈ 𝑅. Thus, to

find 𝑄 such that 𝐵 = [𝑄, 𝑄, 𝑄−𝑇 ] × 𝐵, we need only consider matrices where 𝑖-th

row is the vector corresponding to the 𝑖-th term of ℒ𝑧 with respect to ℒ(2𝜔2+𝜆).
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By computation, 13 such matrices were found; hence there are 13 automorphisms.

For each such 𝑄, we can determine the automorphism with respect to 𝒜 by looking

at 𝑃 −1𝑄𝑃 . Since |Aut(𝑆)| = 13, we know Aut(𝑆) ≅ ℤ13, and we thus only need

to determine one non-trivial automorphism to generate the group. We make the

following choice for 𝑃 −1𝑄𝑃 :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 1 2 0 0 0 0

0 0 0 0 0 0 0 2 1

0 0 0 0 0 0 2 1 2

0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let 𝑧 ∈ 𝑆 have the form 𝑧0 + 𝜆𝑧1 + 𝜆2𝑧2. Then the automorphisms of 𝑆 will clearly

preserve 𝑧0 and act on 𝜆𝑧1 and 𝜆2𝑧2 independently. Consider 𝜙(𝜆𝑧1), with 𝑧1 =

𝑏0 + 𝑏1𝜔 + 𝑏2𝜔2 where 𝑏𝑖 ∈ 𝔽3. The center block of the matrix then tells us 𝜙(𝜆𝑧1) =

𝜆(𝑏2 + (2𝑏0 + 2𝑏2)𝜔 + 2𝑏1𝜔2. Note that

2𝜔(𝑏0 + 𝑏1𝜔 + 𝑏2𝜔2) = 2𝑏0𝜔 + 2𝑏1𝜔2 + 2𝑏2𝜔3

= 2𝑏0𝜔 + 2𝑏1𝜔2 + 2𝑏2(2 + 𝜔)

= 𝑏2 + (2𝑏0 + 2𝑏2)𝜔 + 2𝑏1𝜔2

Thus 𝜙(𝜆𝑧1) = 𝜆(2𝑧1𝜔). Similarly, 𝜙(𝜆2𝑧2) = 𝜆2(2𝑧2𝜔 + 𝑧2𝜔2). Since 𝜔 is primitive,

we can define these mappings as powers of 𝜔 to get

𝜙(𝑧0 + 𝜆𝑧1 + 𝜆2𝑧2) = 𝑧0 + 𝜆(𝑧1𝜔14) + 𝜆2(𝑧2𝜔4)
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As previously noted, this automorphism generates the automorphism group, and

therefore any automorphism of this semifield will have the form

𝜙𝑖(𝑧0 + 𝜆𝑧1 + 𝜆2𝑧2) = 𝑧0 + 𝜆(𝑧1𝜔14𝑖) + 𝜆2(𝑧2𝜔4𝑖)

for some positive integer 1 ≤ 𝑖 ≤ 13, with the identity automorphism corresponding

to 𝑖 = 13.
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Chapter 6

Constructions and Enumerations

In this chapter we address the enumeration and construction of semifields. We

will start by discussing the orders for which all semifields have been found (enumer-

ated), and then give a brief description of the classical algebraic constructions. The

methods used to enumerate semifields are all equivalent to determining Knuth cubes

for all such semifields, but this yields little information about the algebraic struc-

ture of those semifields. For this reason, when we discuss the algebraic constructions

we will also investigate what form a Knuth cube corresponding to each construction

would have. Knowing this we can then determine which constructions corresponds to

a semifield with a given set of Knuth cubes.

6.1 Early Enumeration - Kleinfeld and Walker

As mentioned in chapter 2, the smallest proper semifields are of order 16. It is

only fitting then that these were the first semifields to be completely determined. In

1960, Kleinfeld, [10], determined all 16-element Veblen-Wedderburn systems, which

satisfy all of the semifield axioms except for left distributivity, i.e. 𝑎 ∗ (𝑏 + 𝑐) was

not assumed to equal 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐. The lack of zero divisors causes the multiplication

table for the nonzero elements of a Veblen-Wedderburn system to be a Latin square.

Kleinfeld used this fact and some linear algebra to show that the entire multiplica-

tion table could be determined once a small number of entries were determined. He

then used a computer to generate and sort all of the possible multiplication tables for
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Veblen-Wedderburn systems. Since semifields are a special case of these systems, this

list includes all of the 16-element semifields as well. There are 24 such semifields, up

to isomorphism, in three isotopism classes. The first class consists only of 𝔽16. The

second consists of system W and 4 other semifields. The third consists of system V

and 17 other semifields.

Shortly after this, in 1963, Walker, [21], determined all of the 32-element semi-

fields. In [3], Albert proved that any 32-element semifield is isotopic to a 32-element

semifield which has a right cyclic basis ℬ = {1, 𝑏, 𝑏2, 𝑏2 ∗𝑏, (𝑏2 ∗𝑏)∗𝑏}, where (𝑏2 ∗𝑏)∗𝑏

was either equal to 𝑏2+1 or 𝑏+1. Walker noted that the multiplication in the semifield

is entirely determined by the products of the elements of ℬ, so he used a computer

to determine all of the possible products of the basis elements. Note that this is

essentially equivalent to finding all of the cubical arrays determined by such a basis.

Walker then computed all of the possible isotopes of these semifields using a result

similar to Theorem 2.13. Walker discovered that there were 6 isotopism classes for

the 32 element semifields, and provided a representative from each class.

6.2 Recent Enumerations by Rúa, Combarro, and Ranilla

For about 45 years after Walker’s work no further enumerations were attempted,

which is likely due to a lack of computing power. The semifields of order 27 could

likely have been computed, but there was no need due to Menichetti, [13], proving

that all semifields of dimension 3 are Albert twisted fields (see section 6.12).

By Theorem 3.4, every semifield of order 𝑝𝑛 is defined by an 𝑛-dimensional

Knuth cube over 𝔽𝑝. Suppose we wanted to enumerate the semifields of order 64. We

would consider all cubical arrays, 𝐴, of dimension 6 over 𝔽2 which are in standard

form. Then 𝐴1∗∗ = 𝐴∗1∗ = 𝐼 , and 𝐴𝑖𝑗∗ ≠ (0, 0, 0, 0, 0, 0) otherwise 𝐴 would not be

nonsingular. Thus, for 1 < 𝑖, 𝑗 ≤ 6, 𝐴𝑖𝑗∗ has 26 − 1 = 63 possible values. This results
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in 6325 ≈ 9.6 × 1044 possible choices for 𝐴 which would each then need to be tested

for nonsingularity. This would be a straightforward method which would take far

too long to be practical. And, as the dimension of the semifields increases, so too

does the number of cubical arrays which would need to be tested. For the 81-element

semifields only 809 ≈ 1.3 × 1017 would need to be tested, while for the 243-element

semifields, 24216 ≈ 1.3 × 1038 would need to be tested.

Thus the developments in enumerating semifields based on cubical arrays are

based on finding ways to reduce the number which need to be tested. Results such as

that used by Walker can help quite a bit, as simply knowing that only two possible

cyclic bases exist reduces the number of cubical arrays from 3116 to 3111. This number

can be further reduced by building the cubical arrays to be nonsingular. Though it

may seem like it would be slower, it is actually far quicker to make successive choices

of 𝐴𝑖𝑗∗ by removing linear combinations of previous choices. For example, in a 4-

dimensional cubical array, if 𝐴22∗ = (0, 1, 1, 0), then 𝐴2𝑗∗ and 𝐴𝑖2∗ cannot equal any

scalar multiple (0, 1, 1, 0). Similarly, 𝐴42∗ cannot be a linear combination of 𝐴12∗,

𝐴22∗ and 𝐴32∗.

This is essentially the approach taken by Rúa, Combarro, and Ranilla in [18],

which enumerates all of the 64 element semifields and was published in 2009. Since

then, they have continued to refine their search algorithm to enumerate the semifields

of order 35 and 74 in [19] and [4] respectively. It is interesting to note that the problem

has shifted more towards the realm of computer science, as the major advancement

in [4] was in a more efficient implementation of their search algorithm which allowed

for parallel processing.
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6.3 Reverse Decimal Matrix Notation

In this section we introduce a useful notation for discussing the properties of

Knuth cubes. For a cubical array, 𝐴, of dimension 𝑛 over 𝔽𝑝, we will construct a

matrix, 𝐴, where 𝐴𝑖𝑗 is a number representing the vector 𝐴𝑖𝑗∗. To ensure that this

notation is well-defined, we will use a variant of changing from base 𝑝 to base 10.

First, let us identify the standard basis vectors of 𝔽𝑛
𝑝 as follows: 𝑝0 = ̂1 = 𝑒1,

̂𝑝 = 𝑒2, ⋯, 𝑝𝑛−1 = 𝑒𝑛. Then, define the sums of vectors (modulo 𝑝) as

(6.1)
𝑛

∑
𝑘=1

𝑎𝑘𝑝𝑘−1 =
𝑛

∑
𝑘=1

𝑎𝑘𝑒𝑘 =
̂𝑛

∑
𝑘=1

𝑎𝑘𝑝𝑘−1

Thus, given a vector 𝑣 ∈ 𝔽𝑛
𝑝 , we treat the coordinates of 𝑣 as the reversed digits of

a number in base 𝑝. By reversing these digits and converting the number to base

10, we get the reverse decimal form of 𝑣.For example, in 𝔽4
2, the basis vectors are

̂1 = (1, 0, 0, 0), ̂2 = (0, 1, 0, 0), ̂4 = (0, 0, 1, 0) and ̂8 = (0, 0, 0, 1). Addition is modulo

2, so ̂2 + ̂2 = 0. To find the reverse decimal form of the vector (0, 1, 1, 1) we would

consider the base 10 value of the binary number 1110, which is 14, so the reverse

decimal form of (0, 1, 0, 1) is 1̂4. Alternatively, we could use the definition of the

standard basis and equation 6.1 to get

(0, 1, 1, 1) = 𝑒2 + 𝑒3 + 𝑒4 = ̂2 + ̂4 + ̂8 = 1̂4

Next, we apply this to a cubical array by converting the vectors 𝐴𝑖𝑗∗. That is,

given a cubical array 𝐴, we define the matrix 𝐴 as

(6.2) 𝐴𝑖𝑗 =
𝑛

∑
𝑘=1

𝑝𝑘−1𝐴𝑖𝑗𝑘

We will call 𝐴 the reverse decimal matrix of 𝐴, and denote their relationship by

𝐴 ∼ 𝐴. Similarly, if ̂𝑣 is the reverse decimal form of 𝑣, then we will write 𝑣 ∼ ̂𝑣. The

hat notation is used in this section to emphasize that the digits used are representing
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vectors and not numbers. The hat is not necessary once the notation is understood,

and for this reason the results in the following sections will not have it.

This notation has many benefits. First, it is easier to present than a cubical

array, but can easily be converted into a cubical array using (6.2). Second, the

matrices for left and right multiplication by various basis elements can be computed.

To find the matrix 𝑅 for right multiplication by 𝑒𝑗, consider the column 𝐴∗𝑗. Then

for each 𝐴𝑖𝑗 in that column, and each 𝑣 associated with it by 6.1, 𝑅𝑖∗ = 𝑣. Similarly,

to find the matrix 𝐿 for left multiplication by 𝑒𝑖, consider the row 𝐴𝑖∗. Then, for

each 𝐴𝑖𝑗 in that row, and each 𝑣 corresponding to it, 𝐿𝑗∗ = 𝑣.

A third benefit of the reverse decimal matrix is that it can easily be used as

a multiplication table for the basis elements of 𝑆. Given basis elements 𝑝𝑎, 𝑝𝑏, with

0 ≤ 𝑎, 𝑏 < 𝑛, the product 𝑝𝑎 ⋅ 𝑝𝑏 is 𝐴(𝑎−1),(𝑏−1). Since the first row and column of 𝐴

represent multiplication by the identity element, to find 𝑝𝑎 ⋅ 𝑝𝑏 one simply finds the

intersection of the row starting with 𝑝𝑎 and the column starting with 𝑝𝑏. Finally,

the following result regarding cubical arrays becomes far simpler when it is used with

reverse decimal matrices.

Theorem 6.1. A semifield, 𝑆, of dimension 𝑛 over 𝔽𝑝 has a subsemifield, 𝑆′, of di-

mension 𝑚 over 𝔽𝑝 if and only if there exists 𝐴 ∈ 𝐾(𝑆) such that the cubical array

𝐴′ consisting of the first 𝑚 × 𝑚 × 𝑚 entries of 𝐴 is nonsingular, and 𝐴𝑖𝑗𝑘 = 0 for all

𝑖, 𝑗 ≤ 𝑚, 𝑘 > 𝑚.

Proof. First suppose 𝑆 has a subsemifield 𝑆′ of dimension 𝑚. Then there exists a

basis {1 = 𝑥1, 𝑥2, ..., 𝑥𝑚} of 𝑆′ over 𝔽𝑝 which generates a Knuth cube 𝐴′. Further, 𝑆
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must have a basis of the form {1, 𝑥2, ..., 𝑥𝑚, 𝑦𝑚+1, ..., 𝑦𝑛−1} which generates a Knuth

cube 𝐴 ∈ 𝐾(𝑆). Then we have

𝑥𝑖 ∗ 𝑥𝑗 =
𝑛

∑
𝑘=1

𝐴𝑖𝑗𝑘𝑥𝑘 =
𝑚

∑
𝑘=1

𝐴′
𝑖𝑗𝑘𝑥𝑘 +

𝑛
∑

𝑘=𝑚+1
𝐴𝑖𝑗𝑘𝑥𝑘 =

𝑚
∑
𝑘=1

𝐴′
𝑖𝑗𝑘

Thus 𝐴𝑖𝑗𝑘 = 0 when 𝑖, 𝑗 ≤ 𝑚 and 𝑘 > 𝑚.

Now suppose the converse is true, that there exists 𝐴 ∈ 𝐾(𝑆) such that the

cubical array 𝐴′ consisting of the first 𝑚 × 𝑚 × 𝑚 entries of 𝐴 is nonsingular, and

𝐴𝑖𝑗𝑘 = 0 for all 𝑖, 𝑗 ≤ 𝑚, 𝑘 > 𝑚. Note that 𝐴′ will clearly be in standard form as

well. Thus, if {1 = 𝑥1, 𝑥2, ..., 𝑥𝑚} is the basis which generates 𝐴′, then it is also the

basis of a semifield of dimension 𝑚 over 𝔽𝑝, where multiplication is defined by

𝑥𝑖 ∗ 𝑥𝑗 =
𝑛

∑
𝑘=1

𝐴′
𝑖𝑗𝑘𝑥𝑘

Corollary 6.2. A semifield, 𝑆, of dimension 𝑛 over 𝔽𝑝 has a subsemifield, 𝑆′, of

dimension 𝑚 over 𝔽𝑝 if and only if there exists a reverse decimal matrix 𝐴 for 𝑆

where 𝐴𝑖𝑗 < 𝑝𝑚 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚
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6.4 Examples

To further illustrate the use of the reverse decimal matrix, consider the reverse

decimal matrices associated with the Knuth cubes already given for 𝔽16, system V,

and system W.

𝔽16 𝐹 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 8 12

4 8 6 11

8 12 11 13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

System W 𝑊 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 2 12 4

4 8 2 3

8 12 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

System V 𝑉 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 12 4

4 8 5 14

8 12 15 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This notation makes a few things very clear. Notice that the matrix for 𝔽16 is sym-

metric, which is due to the commutativity of its multiplication. Also notice that the

upper left 2 × 2 entries of these matrices are all less than 4. This means that each

of these semifields contains a subsemifield of dimension 2 over 𝔽2. Since there are

no proper 4-element semifields, this means that each of these subsemifields is isomor-

phic to 𝔽4. The reason for this is due to the fact that in all three of these semifields

(𝑎+𝜆0)∗(𝑐+𝜆0) = 𝑎𝑐, and 𝑎, 𝑐 ∈ 𝔽4. Furthermore, the fact that the second columns
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of these matrices are all equal is due to the fact that (0 + 𝜆𝑏) ∗ (𝑐 + 𝜆0) = 𝜆(𝑏𝑐) in

all three of these semifields.

6.5 Knuth Cubes and Constructions

Suppose we have a Knuth cube 𝐴 of dimension 𝑛 over 𝔽𝑝, and suppose we

have a semifield 𝑆 of order 𝑝𝑛 generated by some algebraic construction. Then 𝐴

will correspond to 𝑆 if and only if 𝐴 ∈ 𝐾(𝑆). Thus, we construct a Knuth cube 𝐵

for 𝑆, and, using 𝐶(𝑛, 𝑝) or the results from section 5.2, we can generate 𝐾(𝑆) and

see if 𝐴 is in 𝐾(𝑆). Alternatively, we could use 𝐴 to construct a semifield 𝑆′ and

investigate all of the cubes in 𝐾(𝑆′) to see if any of them correspond to a cube for a

given construction.

The key to constructing a Knuth cube for a semifield 𝑆 generated by a given

construction is the determination of an appropriate basis to generate the cube. Since

𝐾(𝑆) will contain the Knuth cubes generated by all appropriate bases, we can choose

a basis of the most convenient form. For some constructions, such as those used

for system V and system W, there is an obvious choice of basis. But there are

constructions where it is not clear what a valid basis would be. Thus, most of the

work in the following sections is devoted to determining an appropriate basis for

a construction. Once a basis is found, general products of the basis elements are

determined, and the general form of a reverse decimal matrix generated by this basis

is given.

6.6 Albert Binary Semifields

According to Wene, [25], this construction came from an investigation by Albert

of the Knuth binary semifields described in the following section. We introduce it
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first due to it’s straightforward construction.

Consider the vector space 𝑈 = 𝔽𝑛
2 , for an odd 𝑛 ≥ 3. Let 𝑈 = 𝑉 + 𝜔𝔽2, with

1 ∈ 𝑉 . In other words, if 𝑈 has a basis {𝑥1, ..., 𝑥𝑛} and 𝜔 = 𝑥𝑖, then 𝑉 is the span

of {𝑥1, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑛}. Then we construct a semifield 𝑆 = (𝑈, +, ∗) where, for

𝑎, 𝑏 ∈ 𝑉 ,
𝑎 ∗ 𝑏 = 𝑎𝑏

𝑎 ∗ 𝜔 = 𝜔 ∗ 𝑎 = 𝑎𝜔 + 𝑎2 + 𝑎

𝜔 ∗ 𝜔 = 𝜔2 + 1
Due to the many possible choices of 𝜔, it is not clear what form a basis for an Albert

binary semifield would have. However, in the case where 𝑛 = 2𝑘 +1, we will be able to

determine such a basis. Wene, [25], proved that 𝜔 is a defining element of 𝔽𝑛
2 over 𝔽2,

i.e. 𝑈 = 𝔽2[𝜔], and that if 𝜎 is an automorphism of 𝔽𝑛
2 , then 𝜎(𝑈) = 𝜎(𝑉 ) + 𝜎(𝜔)𝔽2

will define an isomorphic semifield. This leads to the following lemma.

Lemma 6.3. Let 𝑆 be an Albert binary semifield of order 2𝑛, where 𝑛 = 2𝑘+1 for some

𝑘. Then 𝑆 is isomorphic to an Albert binary semifield with a basis {1, 𝛼, 𝛼2, ..., 𝛼𝑛−1 =

𝜔}, where 𝛼 is a defining element of 𝔽𝑛
2 over 𝔽2, .

Proof. Let 𝛼 be a defining element of 𝔽𝑛
2 . By assumption, 𝛼𝑛−1 = 𝛼2𝑘 , and clearly

𝑘 < 𝑛 − 1. Thus 𝛼𝑛−1 is a conjugate of 𝛼. By Theorem 2.21 in [12], there is an

automorphism which maps 𝛼 to 𝛼2𝑘 . Thus, 𝑆 is isomorphic to a semifield with a

basis {1, 𝛼, ..., 𝛼𝑛−1 = 𝜔}.

By Theorem 3.33 in [12], if 𝑚(𝑥) = 𝑥𝑛 + ∑𝑛−1
𝑖=0 𝑎𝑖𝑥𝑖 is the minimal polynomial

of 𝛼, then it is also the minimal polynomial of 𝛼2𝑘 , and it is irreducible. Thus the

number of possible Albert binary semifields of order 22𝑘+1 is less than or equal to the

number of irreducible polynomials of order 2𝑘 + 1 over 𝔽2.

Now consider the reverse decimal matrices 𝐴 for an Albert binary semifield with
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basis {1, 𝛼, ..., 𝛼𝑛−1 = 𝜔}, and 𝐵 for 𝔽𝑛
2 with basis {1, 𝛼, ..., 𝛼𝑛−1}. Then 𝐴𝑖𝑗 = 𝐵𝑖𝑗

for 1 ≤ 𝑖, 𝑗 < 𝑛, since these entries correspond to multiplication in the field.

To determine whether a given (2𝑘 + 1) × (2𝑘 + 1) reverse decimal matrix 𝐵

defines an Albert binary semifield, check that the first 2𝑘 ×2𝑘 entries match a reverse

decimal matrix 𝐴 for 𝔽2𝑘+1
2 . Then, consider 𝑎 = 𝐴3,2𝑘 , and 𝑎 ∈ 𝔽2𝑘+1

2 such that

𝑎 ∼ 𝑎. Then, the minimal polynomial of 𝛼 over 𝔽2 will be

𝑚(𝑥) = 𝑥2𝑘+1 + 𝑎2𝑘𝑥2𝑘 + ⋯ + 𝑎1𝑥 + 𝑎0

This can then be used to determine whether the last column of 𝐵 satisfies the structure

of an Albert binary semifield.

6.7 Knuth Binary Semifields

This construction was introduced by Knuth in [11], and is called “binary” due

to the fact that the semifields resulting from this construction are vector spaces over

𝔽2.

Let {1, 𝛼, ..., 𝛼𝑛−1} be a basis for 𝔽𝑚𝑛
2 over 𝔽𝑚

2 , where 𝑛 is odd and 𝑛𝑚 > 3.

Let 𝑓 ∶ 𝔽𝑚𝑛
2 ↦ 𝔽𝑚

2 be a linear function defined by 𝑓(𝛼𝑛−1) = 1 and 𝑓(𝛼𝑖) = 0 for

0 ≤ 𝑖 ≤ 𝑛 − 2. Then, define two products ∘ and ∗ on 𝔽𝑚𝑛
2

𝑎 ∘ 𝑏 = 𝑎𝑏 + (𝑓(𝑎)𝑏 + 𝑓(𝑏)𝑎)2

𝑎 ∘ 𝑏 = (1 ∘ 𝑎) ∗ (1 ∘ 𝑏)
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Then (𝔽𝑚𝑛
2 , +, ∘) is a presemifield (it has no multiplicative identity) and (𝔽𝑛𝑚

2 , +, ∗)

is a semifield.

To find a basis, we start with the case where 𝑚 = 1. This gives us

1 ∘ 1 = 1

1 ∘ 𝛼𝑖 = 𝛼𝑖 0 ≤ 𝑖 ≤ 𝑛 − 2

1 ∘ 𝛼𝑛−1 = 𝛼𝑛−1 + 1

𝛼𝑖 ∘ 𝛼𝑗 = 𝛼𝑖+𝑗 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2

𝛼𝑖 ∘ 𝛼𝑛−1 = 𝛼𝑖+𝑛−1 + 𝛼2𝑖 0 ≤ 𝑖 ≤ 𝑛 − 2

𝛼𝑛−1 ∘ 𝛼𝑛−1 = 𝛼2𝑛−2

1 ∘ (𝛼𝑛−1 + 1) = 𝛼𝑛−1

This defines the following products, for 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2

1 ∗ 1 = (1 ∘ 1) ∗ (1 ∘ 1) = 1

1 ∗ 𝛼𝑖 = (1 ∘ 1) ∗ (1 ∘ 𝛼𝑖) = 𝛼𝑖

1 ∗ 𝛼𝑛−1 = (1 ∘ 1) ∗ (1 ∘ (𝛼𝑛−1 + 1)) = 𝛼𝑛−1

𝛼𝑖 ∗ 𝛼𝑗 = (1 ∘ 𝛼𝑖) ∗ (1 ∘ 𝛼𝑗) = 𝛼𝑖+𝑗

𝛼𝑖 ∗ 𝛼𝑛−1 = (1 ∘ 𝛼𝑖) ∗ (1 ∘ (𝛼𝑛−1 + 1)) = 𝛼𝑖(𝛼𝑛−1 + 𝛼𝑖 + 1)

𝛼𝑛−1 ∗ 𝛼𝑛−1 = (1 ∘ (𝛼𝑛−1 + 1)) ∗ (1 ∘ (𝛼𝑛−1 + 1)) = 𝛼2𝑛−2 + 1
More simply

1 ∗ 1 = 1

1 ∗ 𝛼𝑖 = 𝛼𝑖

1 ∗ 𝛼𝑛−1 = 𝛼𝑛−1

𝛼𝑖 ∗ 𝛼𝑗 = 𝛼𝑖+𝑗

𝛼𝑖 ∗ 𝛼𝑛−1 = 𝛼𝑖𝛼𝑛−1 + (𝛼𝑖)2 + 𝛼𝑖

𝛼𝑛−1 ∗ 𝛼𝑛−1 = (𝛼𝑛−1)2 + 1
This is exactly the case of an Albert binary semifield with 𝜔 = 𝛼𝑛−1. Now suppose

𝑚 > 1. Let {1, 𝛽, ..., 𝛽𝑚−1} be a basis for 𝔽𝑚
2 . Then 𝑓(𝛽𝑖𝛼𝑛−1) = 𝛽𝑖. This causes
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some slight changes to the multiplication, giving the more general results, for 0 ≤

𝑘 ≤ 𝑚 − 1

𝛽𝑏 ∗ 𝛽𝑘 = 𝛽𝑏+𝑘

𝛽𝑏 ∗ 𝛽𝑘𝛼𝑖 = 𝛽𝑏+𝑘𝛼𝑖

𝛽𝑏 ∗ 𝛽𝑘𝛼𝑛−1 = 𝛽𝑏+𝑘𝛼𝑛−1

𝛽𝑏𝛼𝑖 ∗ 𝛽𝑘𝛼𝑗 = 𝛽𝑏+𝑘𝛼𝑖+𝑗

𝛽𝑏𝛼𝑖 ∗ 𝛽𝑘𝛼𝑛−1 = (𝛽𝑏+𝑘𝛼𝑖)𝛼𝑛−1 + (𝛽𝑏+𝑘𝛼𝑖)2 + 𝛽𝑏+𝑘𝛼𝑖

𝛽𝑏𝛼𝑛−1 ∗ 𝛽𝑘𝛼𝑛−1 = 𝛽𝑏+𝑘(𝛼𝑛−1)2 + 𝛽𝑏+𝑘

This is similar to the case of the Albert binary semifields where 𝜔 = 𝛼𝑛−1. In this

case, there is a basis of the form

{1, 𝛽, ..., 𝛽𝑚−1, 𝛼, ..., 𝛽𝑚−1𝛼, ..., 𝛼𝑛−1, ..., 𝛽𝑚−1𝛼𝑚−1}

If 𝐵 is the reverse decimal matrix for 𝑆 generated by this basis, then there is a reverse

decimal matrix 𝐴 for 𝔽𝑚𝑛
2 such that 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚(𝑛 − 1). To find

𝐵𝑖𝑗 where 𝑖, 𝑗 > 𝑚(𝑛 − 1), we need to determine the value of 𝛼𝑛. This can be done

using the fact that the reverse decimal form of 𝛼𝑛 is located in the 𝑚(𝑛 − 1) + 1

column and 𝑚 + 1 row. Once that is determined, the remaining entries of 𝐵 can be

checked.

6.8 Sandler’s Construction

A Sandler semifield, 𝑆, has 𝑝𝑛𝑚2 elements, where 𝑚 > 1, of the form

𝑎0 + 𝜆𝑎1 + 𝜆2𝑎2 + ⋯ + 𝜆𝑚−1𝑎𝑚−1; 𝑎𝑖 ∈ 𝔽𝑛𝑚
𝑝

Multiplication is defined by

(𝜆(𝑖𝑥)(𝜆(𝑗𝑦) = 𝜆(𝑖+𝑗𝑥(𝑝𝑛)𝑗𝑦

𝜆(𝑚 = 𝛿
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where 𝛿 is a root of an irreducible polynomial of degree 𝑚 over 𝔽𝑛
𝑝 , and the exponential

notation refers to repeated left multiplication. Let 𝔽𝑛𝑚
𝑝 = 𝔽𝑝[𝛼] for some 𝛼. We can

now construct a reverse decimal matrix, 𝐵 for 𝑆 in a straightforward manner. First,

we choose a basis of the form

{1, 𝛼, ..., 𝛼𝑛𝑚−1, 𝜆, 𝜆𝛼, ..., 𝜆𝛼𝑛𝑚−1, ..., 𝜆(𝑚−1, 𝜆(𝑚−1𝛼, ..., 𝜆(𝑚−1𝛼𝑛𝑚−1}

Then 𝐵 will have a block structure corresponding to which power of 𝜆 is multiplied

by the basis of 𝔽𝑛𝑚
𝑝 . The notation 𝐵[𝑥,𝑦] will denote the 𝑛𝑚 × 𝑛𝑚 submatrix whose

upper-left corner is 𝐵𝑥𝑚+1,𝑦𝑚+1. Here’s a graphic to help visualize 𝐵

1 𝜆 ⋯ 𝜆(𝑚−1

1

𝜆

⋮

𝜆(𝑚−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Then 𝐵[1,1] will be the reverse decimal matrix for 𝔽𝑛𝑚
𝑝 generated by the basis {1, 𝛼, ..., 𝛼𝑛𝑚−1}.

Similarly, the entries in 𝐵[𝑖,1] will equal the entries of 𝐵[1,1] times 𝜆(𝑖 ∼ 𝑝(𝑖+1)𝑛𝑚. The

rest of 𝐵 is less straightforward and depends on the powers of 𝛼.

To tell if a particular 𝑛𝑚2 × 𝑛𝑚2 reverse decimal matrix corresponds to a San-

dler semifield, first determine whether 𝐵[1,1] corresponds to a reverse decimal matrix

for 𝔽𝑛𝑚
𝑝 , and then check whether 𝐵[𝑖,1] will equal the entries of 𝐵[1,1] times 𝑝(𝑖+1)𝑚.

From there, determine which basis generated 𝐵[1,1] and then check the remaining

blocks of 𝐵.

6.9 Petit’s Construction

This construction was introduced by Petit, [15], [16], and is based on factor

rings of skew polynomial rings over finite fields. We do not give a formal definition
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of these rings or their properties, but instead simply provide sufficient information to

derive the construction.

Let 𝔽𝑝𝑛[𝑋; 𝜎] denote the skew polynomial ring over 𝔽𝑝𝑛 , and 𝜎 is an automor-

phism of 𝔽𝑝𝑛 , i.e. 𝑎𝜎 = 𝑎𝑝𝑖 for some 𝑖. Multiplication is defined as usual on the

left, but 𝑋𝑎 = 𝑎𝑝𝑖𝑋. Wene, [25], cites theorems that show that 𝔽𝑝𝑛[𝑋; 𝜎] has a

division algorithm, and thus can be factored by ideals. Let 𝑀(𝑋) ∈ 𝔽𝑝𝑛[𝑋, 𝜎] be

an irreducible polynomial of degree 𝑚, and let 𝐹𝑀 = 𝔽𝑝𝑛[𝑋; 𝜎]/𝑀(𝑋). Addition

is defined on 𝐹𝑀 as normal, but multiplication is defined by 𝐴(𝑋) ∗ 𝐵(𝑋) = 𝑅(𝑋)

where 𝐴(𝑋)𝐵(𝑋) = 𝑄(𝑋)𝑀(𝑋)+𝑅(𝑋) in 𝔽𝑝𝑛[𝑋; 𝜎]. Then (𝐹𝑀 , +, ∗) is a semifield

of order 𝑝𝑛𝑚 .

Note that {1, 𝑋, ..., 𝑋𝑚−1} forms a basis of 𝐹𝑀 over 𝔽𝑝𝑛 , and if 𝑛 > 1, and

{1, 𝛼, ..., 𝛼𝑛−1} is a basis of 𝐹 , then a basis for 𝑆 over 𝐹 would be

{1, 𝛼, ..., 𝛼𝑛−1, 𝑋, ..., 𝛼𝑛−1𝑋, ..., 𝑋𝑚−1, ..., 𝛼𝑛−1𝑋𝑚−1}

Let 𝐵 be a reverse decimal matrix for 𝑆 with respect to this basis. Then there is a

reverse decimal matrix 𝐴 for 𝔽𝑝𝑛𝑚 such that 𝐵𝑖∗ = 𝐴𝑖∗ for 1 ≤ 𝑖 ≤ 𝑚 − 1. From

there, it should be easy to determine if there exists a fixed 𝜎 such that 𝑋 ⋅ 𝑎 = 𝑎𝜎𝑋.

6.10 Dickson’s Even-Dimensional Semifields

The study of finite semifields began with the work of Dickson in the early 1900s.

This particular construction was introduced in [5].

Let 𝑝 be odd, 𝑛 > 1, and let 𝑓 ∈ 𝔽𝑝𝑚 be a nonsquare element. Then, the

Dickson semifield 𝑆 is a two dimension vector space over 𝔽𝑝𝑛 with basis {1, 𝜆}, and

multiplication defined by

(𝑎 + 𝜆𝑏)(𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑓(𝑏𝑑)𝜃) + 𝜆(𝑎𝑑 + 𝑏𝑐)
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where 𝜃 is an automorphism of 𝔽𝑝𝑛 , i.e. 𝑥𝜃 = 𝑥𝑝𝑟 for some 1 ≤ 𝑟 < 𝑛.

Let {1, 𝛼, ..., 𝛼𝑛−1} be a basis of 𝔽𝑛
𝑝 . Then 𝑆 has a basis of the form {1, ..., 𝛼𝑛−1, 𝜆, ..., 𝜆𝛼𝑛−1},

and its corresponding reverse decimal matrix will have the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝑝 ⋯ 𝑝𝑛−1 𝑝𝑛 ⋯ 𝑝2𝑛−1

𝑝

⋮

𝑝𝑛−1

𝑝𝑛

⋮

𝑝2𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We will let 𝐴[𝑥,𝑦] denote the 𝑛×𝑛 submatrix of 𝐴 whose upper left corner is located at

𝐴(𝑛𝑥,𝑛𝑦). Then 𝐴[1,1] corresponds to a reverse decimal matrix for 𝔽𝑛
𝑝 , 𝐴[2,1] = 𝐴[1,2] =

𝑝𝑛𝐴[1,1]. The entries in 𝐴[2,2] require a bit more work. First, note that 𝐴𝑛𝑛 ∼ 𝜆2 = 𝑓 ,

and 𝐴(𝑛,𝑛+1) = 𝐴(𝑛+1,𝑛) ∼ 𝑓(𝛼)𝜃. Thus, it is possible to determine what 𝑓 and 𝜃

must be, which can then be used to determine whether this is a Dickson semifield.

6.11 Quadratic Over a Weak Nucleus

This construction was given by Knuth in [11], and both system V and system

W are special cases of this construction. A weak nucleus is a subset 𝑁 of a semifield 𝑆

such that, for 𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎∗(𝑏∗𝑐) = (𝑎∗𝑏)∗𝑐 is true whenever any two of the elements

is in 𝑁 . Knuth constructs 𝑆 as a two-dimensional vector space over a finite field 𝔽𝑝𝑛 ,

and assumes that 𝔽𝑝𝑛 will be a weak nucleus of 𝑆. The elements of 𝑆 have the form

(𝑎 + 𝜆𝑏), for 𝑎, 𝑏 ∈ 𝔽𝑝𝑛 . Knuth proves that this forces (0 + 𝜆𝑏) ∗ (𝑐 + 𝜆0) = 𝜆(𝑏𝑐),
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and (𝑎 + 𝜆0) ∗ (0 + 𝜆𝑑) = 𝜆(𝑎𝜎𝑑) where 𝜎 is an automorphism of 𝔽𝑝𝑛 , i.e. 𝑎𝜎 = 𝑎𝑝𝑖

for 1 ≤ 𝑖 ≤ 𝑛. From here we have the general product

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝜆(𝑏𝑐 + 𝑎𝜎𝑑) + (𝜆𝑏) ∗ (𝜆𝑑)

Knuth then considers the results for when 𝑝 ≠ 2 or 𝑝 = 2, but we will only present the

results of this investigation here. In both cases, 𝑆 will be a two dimensional vector

space over 𝔽𝑝𝑛 , so, if {1, 𝑥, ..., 𝑥𝑛−1} is a basis of 𝔽𝑝𝑛 , then {1, ..., 𝑥𝑛−1, 𝜆, ..., 𝜆𝑥𝑛−1}

will be a basis for 𝑆, such that 𝜆2 ∉ 𝔽𝑝𝑛 . Let 𝐴 be the reverse decimal matrix for this

basis, and let 𝐴[𝑥,𝑦] denote the 𝑛 × 𝑛 submatrix whose upper left order is at 𝐴(𝑛𝑥,𝑛𝑦).

Then 𝐴[1,1] will be a reverse decimal matrix for 𝔽𝑝𝑛 .

In the first case, suppose 𝑝 ≠ 2, 𝛼, 𝛽, 𝜎 ∈ Aut(𝔽𝑝𝑛 not all trivial, 𝑓 ∈ 𝔽𝑝𝑛

nonsquare, multiplication in 𝑆 is defined by

(𝑎 + 𝜆𝑏)(𝑐 + 𝜆𝑑) = (𝑎𝑐 + 𝑏𝛼𝑑𝛽𝑓) + 𝜆(𝑎𝜎𝑑 + 𝑏𝑐)

Then 𝐴[2,1] = 𝑝𝑛𝐴[1,1]. To determine 𝜎, note that 𝐴(2,𝑛+1) ∼ (𝑥)(𝜆) = 𝜆(𝑥𝜎), and 𝜎

will determine all of 𝐴[1,2]. For 𝐴[2,2], note the following

𝐴(𝑛+1,𝑛+1) ∼ 𝜆2 = 𝑓

𝐴(𝑛+1,𝑛+2) ∼ 𝜆(𝜆𝑥) = 𝑥𝛽𝑓

𝐴(𝑛+2,𝑛+1) ∼ (𝜆𝑥)𝜆 = 𝑥𝛼𝐹

These can be used to determine 𝑓 , 𝛼, and 𝜎, and then verify the rest of 𝐴.

Now suppose 𝑝 = 2. Let 𝜎 ∈ Aut(𝔽𝑝𝑛) be nontrivial, 𝜏 = 𝜎−1, and let 𝑓, 𝑔 ∈ 𝔽𝑝𝑛

such that

𝑦𝜎+1 + 𝑔𝑦 − 𝑓 ≠ 0; for all 𝑦 ∈ 𝔽𝑝𝑛
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Then the multiplication (𝑎 + 𝜆𝑏)(𝑐 + 𝜆𝑑) has one of four forms

(1) (𝑎𝑐 + 𝑏𝜎𝑑𝜏2𝑓) + 𝜆(𝑏𝑐 + 𝑎𝜎𝑑 + 𝑏𝜎𝑑𝜏𝑔)

(2) (𝑎𝑐 + 𝑏𝜎𝑑𝑓) + 𝜆(𝑏𝑐 + 𝑎𝜎𝑑 + 𝑏𝜎𝑑𝑔)

(3) (𝑎𝑐 + 𝑏𝜏𝑑𝜏2𝑓) + 𝜆(𝑏𝑐 + 𝑎𝜎𝑑 + 𝑏𝑑𝜏𝑔)

(4) (𝑎𝑐 + 𝑏𝜏𝑑𝑓) + 𝜆(𝑏𝑐 + 𝑎𝜎𝑑 + 𝑏𝑑𝑔)

Rather than look at each of these four separately, We will describe the general method

for determination. The entries in 𝐴[2,1] correspond to products of the form (𝜆𝑏)(𝑐) =

𝜆(𝑏𝑐), so 𝐴[2,1] = 𝑝𝑛𝐴[2,1]. The entries in 𝐴[1,2] correspond to products of the form

(𝑎)(𝜆𝑑) = 𝜆(𝑎𝜎𝑑). In particular, 𝐴(2,𝑛+1) ∼ (𝑥)(𝜆) = 𝜆(𝑥𝜎). From this it is possible

to determine 𝜎 and 𝜏 , and consequently all of 𝐴[1,2]. Determining which of the four

types the semifield has depends on 𝐴[2,2]. Let 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ {1, 𝜎, 𝜏, 𝜏2}. Then the

following can be used to determine 𝑓, 𝛼𝑖, 𝛽𝑖:

𝐴(𝑛+1,𝑛+1) ∼ (𝜆)(𝜆) = 𝑓 + 𝜆𝑔

𝐴(𝑛+1,𝑛+2) ∼ (𝜆)(𝜆𝑥) = 𝑥𝛽1𝑓 + 𝜆(𝑥𝛽2𝑔)

𝐴(𝑛+2,𝑛+1) ∼ (𝜆𝑥)(𝜆) = 𝑥𝛼1𝑓 + 𝜆(𝑥𝛼2𝑔)

6.12 Albert’s Twisted Fields

This construction was introduced by Albert in [2], and gets its name due to the

fact that it defines a new product on the elements of a finite field by “twisting” the

existing finite field product.

Let 𝑛 > 2 and 𝜎, 𝜃 ∈ Aut(𝔽𝑝𝑛 . Let 𝐹𝜎 and 𝐹𝜃 denote the subfields of 𝔽𝑝𝑛 which

are fixed by 𝜎 and 𝜃, and let 𝐹 = 𝐹𝜎 ∩ 𝐹𝜃. Let 𝑐 ∈ 𝐹 such that

𝑐 ≠ 𝑥𝑦
𝑥𝜃𝑦𝜎

for any nonzero 𝑥, 𝑦 ∈ 𝐹 . Define linear transformations 𝐿 and 𝑅 over 𝐹 by

𝐿(𝑥) = 𝑥 − 𝑐𝑥𝜃 𝑅(𝑦) = 𝑦 − 𝑐𝑦𝜎
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The Albert twisted semifield, 𝑆 is constructed from 𝐹 with standard addition and

multiplication ∗ defined by

𝐿(𝑥) ∗ 𝑅(𝑦) = 𝑥𝑦 − 𝑐𝑥𝜃𝑦𝜎

The complexity of this construction makes it difficult to determine what form a Knuth

cube would have if generated by this construction. There is one specific case where

it is actually somewhat straightforward. Menichetti, [13], proved that every semifield

of dimension 3 over a finite field will be an Albert twisted field, and determined a set

of structure constants which would correspond to such a semifield. Since the Knuth

cubes are equivalent to the set of structure constants, we can easily adapt his results.

If 𝑆 is three dimensional over a field, then it will have a Knuth cube whose

reverse decimal matrix has the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝑝 ⋯ 𝑝𝑘−1 𝑝𝑘 ⋯ 𝑝2𝑘−1 𝑝2𝑘 ⋯ 𝑝3𝑘−1

𝑝

⋮

𝑝𝑘−1

𝑝𝑘

⋮

𝑝2𝑘−1

𝑝2𝑘

⋮

𝑝3𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where 𝐴[1,1] is a reverse decimal matrix for 𝐺𝐹(𝑝)𝑘, 𝐴[1,𝑖] = 𝐴[𝑖,1] = 𝑝(𝑖−1)𝑘𝐴[1,1] for

𝑖 = 2, 3, and 𝐴[2,2] = 𝑝2𝑘𝐴[1,1].

75



Chapter 7

Extending a Subfield of a Semifield

As mentioned in chapter 6, cubical arrays have been used to find all of the semi-

fields of orders 24, 25, 26, 34, 35, and 74. Also, a number of the known constructions

yield block reverse decimal matrices where many of the blocks are related to a reverse

decimal matrix for a finite field. This helped inspire the results in this chapter, which

provide a method for constructing new semifields by using the Knuth cubes of known

semifields over 𝔽𝑝 to define new semifields over extensions of 𝔽𝑝.

7.1 Cubical Arrays Over Extension of 𝔽𝑝

The crux of these results is based on the natural embedding of a finite field

into any of its extension fields. Because of this, we will use the following notation:

for 𝑀 ∈ 𝐺𝐿(𝑛, 𝑝), [𝑀]𝑝𝑚 will denote the matrix in 𝐺𝐿(𝑛, 𝑝𝑚) whose entries are the

natural embedding of the entries of 𝑀 into 𝔽𝑝𝑚 .

Lemma 7.1. Let 𝑀 ∈ 𝐺𝐿(𝑛, 𝑝). Then [𝑀]𝑝𝑚 ∈ 𝐺𝐿(𝑛, 𝑝𝑚).

Proof. Because 𝑀 is invertible, det(𝑀) ≠ 0. Let 𝜎 denote the natural embedding of

𝔽𝑝 into 𝔽𝑝𝑚 . Note that 𝜎 is an injective homomorphism, thus det(𝑀) = det([𝑀]𝑝𝑚),

and thus [𝑀]𝑝𝑚 is nonsingular.

We will use a similar notation for cubical arrays, with [𝐴]𝑝𝑚 signifying that

we wish to view the entries of 𝐴 as elements of 𝔽𝑝𝑚 in the natural way. Unlike

with matrices, nonsingularity of cubical arrays is not necessarily preserved under this

embedding.

In the proof of Theorem 3.4, we showed how the properties of a cubical array
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translated to the algebra which it defined. If the cubical array is in standard form,

then the resulting construction will have a multiplicative identity. If the cubical array

is nonsingular, then the resulting construction will have no zero divisors. These facts

inspire the following result.

Lemma 7.2. Let 𝑆 be a semifield of order 𝑝𝑛 and 𝐴 ∈ 𝐾(𝑆). Then [𝐴]𝑝𝑚 defines an

𝑛-dimensional semifield over 𝔽𝑝𝑚 , if and only if [𝐴]𝑝𝑛 is nonsingular over 𝔽𝑝𝑚 .

Proof. Let 𝐼 denote the 𝑛 × 𝑛 identity matrix. By definition, 𝐴1∗∗ = 𝐴∗1∗ = 𝐼 , so

[𝐴1∗∗]𝑝𝑛 = [𝐴∗1∗]𝑝𝑛 = 𝐼 as well. Thus [𝐴]𝑝𝑚 is in standard form, and [𝐴]𝑝𝑚 will define

a semifield over 𝔽𝑝𝑚 if and only if it is nonsingular.

Let 𝑆[𝑚] denote the system defined by 𝐴 over 𝔽𝑝𝑚 . By the Lemma above, 𝑆[𝑚]

is a semifield if and only if [𝐴]𝑝𝑚 is nonsingular. If 𝑆[𝑚] is a semifield, then there

exists an 𝑛𝑚 × 𝑛𝑚 × 𝑛𝑚 cubical array for 𝑆[𝑚] over 𝔽𝑝. In particular, suppose 𝐴 is

defined by a basis {1, 𝛼2, ..., 𝛼𝑛}, and let ℬ = {1, 𝛽2, ..., 𝛽𝑚} be a basis for 𝔽𝑝𝑚 over

𝔽𝑝. If [𝐴]𝑝𝑚 is nonsingular, then the cubical array 𝐵 defined by the basis

{1, 𝛽2, ..., 𝛽𝑚, 𝛼2, 𝛼2𝛽2, ..., 𝛼2𝛽𝑚, ..., 𝛼𝑛, 𝛼𝑛𝛽2, ..., 𝛼𝑛𝛽𝑚}

will also be nonsingular, and we say that 𝐵 is the inflation of 𝐴 by ℬ. Similarly, we

will say 𝑆[𝑚] is the 𝑚-inflation of 𝑆.

Inflation does more than simply allow a cubical array to define multiple semi-

fields. It also provides a nesting structure to semifields over the same prime subfield,

as is demonstrated by the following results.

Theorem 7.3. Let 𝑆 and 𝑆′ be isotopic semifields of order 𝑝𝑛. Then 𝑆[𝑚] is a semifield

if and only if 𝑆′
[𝑚] is a semifield. Further, if 𝑆[𝑚] is a semifield, it is isotopic to 𝑆′

[𝑚].
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Proof. Let 𝐴 ∈ 𝐾(𝑆), 𝐵 ∈ 𝐾(𝑆′). By Theorem 3.16, there exist 𝐹, 𝐺, 𝐻 ∈ 𝐺𝐿(𝑛, 𝑝)

such that 𝐵 = [𝐹 , 𝐺, 𝐻−𝑇 ] × 𝐴 and

𝐵𝑖∗∗ =
𝑛

∑
𝑗=1

𝐹 𝑖𝑗𝐺𝐴𝑖∗∗𝐻
𝑇 = 𝐺 (

𝑛
∑
𝑗=1

𝐹 𝑖𝑗𝐴𝑖∗∗) 𝐻𝑇

Let 𝑣 ∈ 𝔽𝑛
𝑝𝑚 and 𝑤 = 𝑣[𝐹 ]𝑝𝑛 . Then, using the equation above and embedding into

𝔽𝑝𝑚 , we get

∑𝑛
𝑖=1 𝑣𝑖[𝐵𝑖∗∗]𝑝𝑚 = [𝐺]𝑝𝑚 (

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑣𝑖[𝐹 𝑖𝑗]𝑝𝑚 [𝐴𝑗∗∗]𝑝𝑚) [𝐻𝑇 ]𝑝𝑚

= [𝐺]𝑝𝑚 (
𝑛

∑
𝑗=1

𝑤𝑗[𝐴𝑗∗∗]𝑝𝑚) [𝐻𝑇 ]𝑝𝑚

By Lemma 7.1, [𝐺]𝑝𝑚 and [𝐻𝑇 ]𝑝𝑚 are nonsingular. Thus ∑𝑛
𝑖=1 𝑣𝑖[𝐵𝑖∗∗]𝑝𝑚 is singular

if and only if ∑𝑛
𝑗=1 𝑤𝑗[𝐴𝑗∗∗]𝑝𝑚 is singular, which implies 𝑆[𝑚] is a semifield if and only

if 𝑆′
[𝑚] is a semifield. And if 𝑆[𝑚] is a semifield, it is isotopic to 𝑆′

[𝑚] with isotopism

{[𝐹 ]𝑝𝑚 , [𝐺]𝑝𝑚 , [𝐻]𝑝𝑚}.

Corollary 7.4. Let 𝑆 and 𝑆′ be isomorphic semifields of order 𝑝𝑛. Then 𝑆[𝑚] is

a semifield if and only if 𝑆′
[𝑚] is a semifield. Further, if 𝑆[𝑚] is a semifield, it is

isomorphic to 𝑆′
[𝑚].

Now we address the obvious question of how to determine if [𝐴]𝑝𝑚 is nonsingu-

lar. By definition, the only method to determine whether [𝐴]𝑝𝑚 is nonsingular is to

check ∑𝑛
𝑖=1 𝑣𝑖𝐴𝑖∗∗ for all 𝑣 ∈ 𝔽𝑛

𝑝𝑚 . Consider the following, equivalent, method. Let

𝑥 = (𝑥1, ..., 𝑥𝑛) be a vector of indeterminates, and define 𝑓 ∈ 𝔽𝑝[𝑥1, ..., 𝑥𝑛] by

𝑓(𝑥1, ..., 𝑥𝑛) = det(𝑥𝐴) = det (
𝑛

∑
𝑖=1

𝑥𝑖𝐴𝑖∗∗)

We will call 𝑓 the inflation polynomial of 𝐴. Then [𝐴]𝑝𝑚 is nonsingular if and only

if 𝑓 contains no nontrivial zeroes in 𝔽𝑛
𝑝𝑚 . Note that 𝑓 is a homogeneous polynomial
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of degree 𝑛 in 𝑛 unknowns. While this does not make it easier to show that [𝐴]𝑚 is

nonsingular, the inflation polynomial can make it much easier to show that [𝐴]𝑚 is

singular for some given 𝑚.

7.2 Determining Valid Extension Fields

We will use the 16-element semifields to illustrate these results. As we men-

tioned in chapter 2, there are three isotopism classes for these semifields. Class 1

consists of 𝔽16, class 2 contains the semifields isotopic to system W, and class 3 con-

tains the semifields isotopic to system V. Consider the following Knuth cubes, 𝐴 and

𝐵 which correspond to semifields in classes 2 and 3 respectively.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 00010 0001

0100 1100 0001 0011

0010 0011 1010 1101

0001 0010 0101 1011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 1110

0010 0001 0100 1100

0001 0011 1000 0111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let 𝑥 = (𝑎, 𝑏, 𝑐, 𝑑) be a vector of indeterminates. Then we get the following matrices,

whose determinants will give us the inflation polynomials.

𝑥𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 + 𝑏 𝑐 + 𝑑 𝑐

𝑐 𝑑 𝑎 + 𝑐 𝑏 + 𝑑

𝑐 + 𝑑 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑥𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 + 𝑏 𝑑 𝑐 + 𝑑

𝑑 𝑐 𝑎 + 𝑏 𝑏

𝑏 + 𝑐 𝑏 + 𝑐 + 𝑑 𝑏 + 𝑑 𝑎 + 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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It turns out that these matrices have the same determinant, so we have the following

inflation polynomial for both 𝐴 and 𝐵:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎4 + 𝑎3𝑑 + 𝑎2𝑏2 + 𝑎2𝑏𝑐 + 𝑎2𝑏𝑑 + 𝑎2𝑐2 + 𝑎2𝑐𝑑 + 𝑎2𝑑2 + 𝑎𝑏2𝑐 + 𝑎𝑏2𝑑

+𝑎𝑏𝑐2 + 𝑎𝑏𝑐𝑑 + 𝑎𝑏𝑑2 + 𝑎𝑐2𝑑 + 𝑎𝑐𝑑2 + 𝑎𝑑3 + 𝑏4 + 𝑏3𝑐 + 𝑏2𝑐2

+𝑏2𝑐𝑑 + 𝑏2𝑑2 + 𝑏𝑐3 + 𝑏𝑐2𝑑 + 𝑏𝑐𝑑2 + 𝑐4 + 𝑐2𝑑2 + 𝑑4

Without loss of generality, let 𝑆 denote the semifield defined by 𝐴. We can find

some 𝑚 for which 𝑆[𝑚] is not a semifield by setting all but one of the inputs equal to

elements of 𝔽2:

𝑓(𝑥, 1, 1, 1) = 𝑥4 + 𝑥3 + 1

𝑓(𝑥, 1, 1, 0) = 𝑥4 + 𝑥2 + 1 = (𝑥2 + 𝑥 + 1)2

The first polynomial is a primitive polynomial of 𝔽16, and thus has a root in 𝔽16,

implying that 𝑆[4] is not a semifield. The second polynomial is the square of the

primitive polynomial of 𝔽4 and thus 𝑆[2] is not a semifield. In fact, the second poly-

nomial also implies that 𝑆[4] is not a semifield, since 𝔽4 is isomorphic to a subfield of

𝔽16. This can be generalized into the following lemma.

Lemma 7.5. Let 𝑆 be a semifield of order 𝑝𝑛. If 𝑆[𝑚] is not a semifield and 𝑚|𝑟, then

𝑆[𝑟] is not a semifield.

Proof. 𝑆[𝑟] is not a semifield if for some 𝐴 ∈ 𝐾(𝑆) and 𝑣 ∈ 𝔽𝑛
𝑝𝑟 , ∑𝑛

𝑖=1 𝑣𝑖𝐴𝑖∗∗ is

singular. Since 𝑆[𝑚] is not a semifield, there exists 𝑤 ∈ 𝔽𝑛
𝑝𝑚 such that ∑𝑛

𝑖=1 𝑤𝑖𝐴𝑖∗∗

is singular. Since 𝑚|𝑟, 𝔽𝑝𝑚 is isomorphic to a subfield of 𝔽𝑝𝑟 , and [𝑤]𝑝𝑟 ∈ 𝔽𝑛
𝑝𝑟 . Thus

𝑆[𝑟] is not a semifield.

Corollary 7.6. If 𝑎 ∈ 𝔽𝑝𝑚 is a root of the characteristic polynomial of 𝐿𝑧 for some

𝑧 ∈ 𝑆, then 𝑆[𝑚] is not a semifield.

Corollary 7.7. If 𝑎 ∈ 𝔽𝑝𝑚 is a root of the left minimal polynomial of any element of

𝑆, then 𝑆[𝑚] is not a semifield.
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Returning to the 16-element semifields, we now know that 𝑆[2𝑘] is not a semifield

for all 𝑘 ∈ ℤ+. By direct computation, 𝑓 was found to have no nontrivial zeroes in

𝔽4
8, 𝔽4

32, or 𝔽4
128. Thus 𝑆[3], 𝑆[5], and 𝑆[7] are all semifields. Furthermore, we know

there exist at least three isotopism classes for semifields of order 212, 220, and 228.

A key problem that remains is a general method for determining which extension

fields will not contain roots of the inflation polynomial. Based on Lemma 7.5, as well

as the properties of finite fields, the following conjecture may be the case.

Conjecture 7.8. Let 𝑆 be a semifield of order 𝑞𝑛, where 𝑞 is the order of the largest

subfield of 𝑆 over which 𝑆 can be viewed as a vector space. Then 𝑆[𝑚] is a semifield

if and only if 𝑚 and 𝑛 are relatively prime.

7.3 Results of Extension

The results in this chapter have focused on extending the prime subfield of a

semifield, since every finite semifield can be viewed as a vector space over its prime

subfield. But, through inflation, we have shown that there exist semifields which can

be viewed as vector spaces over extensions of their prime subfield. All of the results

presented in chapters 4 and 5 have been proven viewing 𝑆 as a vector space over its

prime subfield, but it is worth mentioning that similar results will hold if a different

view of 𝑆 is taken. To illustrate this, we will let 𝑆 be the semifield of order 212 defined

by [𝐴]8 in the previous section. Then 𝑆 can either be viewed as a 12-dimensional

vector space over 𝔽2 or a 4-dimensional vector space over 𝔽8.

First we consider the properties of left minimal polynomials of elements of 𝑆. If

𝑧 ∈ 𝑆 is left primitive, then, as we’ve defined it, the left minimal polynomial of 𝑧 will

be a primitive polynomial of degree 12 in 𝔽2[𝑥]. But, if we consider the characteristic

polynomial of 𝑧[𝐴]8, where 𝑧 is the vector form of 𝑧 over 𝔽8, then this polynomial

will be a primitive degree 4 polynomial in 𝔽8[𝑥].
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If 𝑝𝑛 = 𝑞𝑚, where 𝑞 is some power of 𝑝, we could have proven the theorems in

chapter 4 in terms of 𝔽𝑚
𝑞 instead of 𝔽𝑛

𝑝 , but it is more convenient to consider 𝑆 as

a vector space over the prime subfield. The results in chapter 5 could similarly be

changed, looking at 𝐶(𝑚, 𝑞) in place of 𝐶(𝑛, 𝑝). If this is the case, then |𝐶(𝑚, 𝑞)|

will be less than |𝐶(𝑛, 𝑝)|, but will likely still be too large to test.
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Chapter 8

Determining Constructions of the Semifields of Order 16

In this chapter we will derive algebraic constructions for each of the 16-element

semifields (up to isomorphism). As mentioned in chapter 6, the 16-element semifields

were first enumerated by Kleinfeld in [10]. In his work, Kleinfeld essentially provided

a Knuth cube for each isomorphism class of these semifields. We start by verifying

these results, and in the process develop a database of Knuth cubes for the 16-element

semifields. From there we determine which of the 16-element semifields correspond to

known constructions in chapter 6. We then investigate the remaining semifields for

which there is no known construction and develop a construction for each based on

its Knuth cubes. We conclude with a full list of the 16-element semifields along with

all of the information which can be determined for each based on the results from

chapters 4 and 5.

8.1 Verifying Kleinfeld’s Results

We verified Kleinfeld’s results using a desktop PC and Wolfram Mathematica

by determining all nonsingular Knuth cubes of dimension 4 over 𝔽2 using the following

method.

As Kleinfeld proved in Theorem 3 of [10], given any 16 element semifield 𝑆,

there exists 𝑎 ∈ 𝑆 such that {1, 𝑎, 𝑎2, 𝑎(𝑎2)} forms a basis for 𝑆 over 𝔽2. The reverse
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decimal matrix of a Knuth cube generated by this basis will then have the following

form:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 4 8 𝑏1

4 𝑏2 𝑏3 𝑏4

8 𝑏5 𝑏6 𝑏7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The unknowns, 𝑏𝑖, 1 ≤ 𝑖 ≤ 7, can each have values ranging from 1 to 15, subject to

the fact that no value can correspond to a vector which is a linear combination of

the vectors corresponding to the other values in that row or column. For example, 𝑏1

must be odd, since any even value between 1 and 15 would be a linear combination

of the vectors corresponding to 2, 4, and 8. We had Mathematica construct reverse

decimal matrices of this form by trying all of the possible values in 𝐴 starting with

the choice of 𝑏1, then 𝑏2, 𝑏5, 𝑏3, 𝑏4, 𝑏6, and finally 𝑏7. Once 𝐴 was completed, the

cubical array 𝐴 corresponding to 𝐴 was constructed and tested for nonsingularity. If

𝐴 was nonsingular, it was added to a list, ℒ.

Once all of the possible matrices had been constructed and their cubical arrays

tested, we then needed to sort out the isomorphism and isotopism classes. For each

𝐴 ∈ ℒ we construct a list ℒ𝐴 of Knuth cubes generated by left cyclic bases generated

by elements of the semifield 𝑆 defined by 𝐴. Each of these cubes will also be in ℒ,

so we remove them from ℒ to save time. We continue in this way until we have 24

lists of cubical arrays corresponding to the 24 isomorphism classes of the 16-element

semifields. Then, using the results from Theorem 3.18, we construct Knuth cubes for

all of the semifields isotopic to a Knuth cube from each isomorphism class. We then

sort these into the three isotopism classes. Finally, we use 𝐶(4, 2) to generate all of

the distinct Knuth cubes for each isomorphism class.

For each isomorphism class we assign a pair of numbers {𝑡, 𝑚}, where 𝑡 refers to

84



which isotopism class the semifield is included in, and 𝑚 refers to which isomorphism

class it is within that isotopism class. In the database, {𝑡, 𝑚} is a list of up to 1344

reverse decimal matrices corresponding to the Knuth cubes for that isomorphism

class. The choices of 𝑡 and 𝑚 are arbitrary and merely used as a convenient way of

referencing the semifields as we investigate then. The following list identifies each

isomorphism class in our database, DB, with the designation given by Kleinfeld, KD,

with the exception of 𝔽16, which he did not include. System V is in {3, 71}, and

system W is in {2, 5}.

DB KD DB KD DB KD DB KD

{1, 1} 𝔽16 {3, 1} V(5) {3, 8} V(7) {3, 74} V(4)

{2, 1} T(24) {3, 2} V(9) {3, 9} V(18) {3, 75} V(8)

{2, 5} T(45) {3, 4} V(1) {3, 11} V(11) {3, 85} V(15)

{2, 6} T(50) {3, 5} V(3) {3, 70} V(10) {3, 88} V(2)

{2, 13} T(25) {3, 6} V(12) {3, 71} V(13) {3, 89} V(14)

{2, 15} T(35) {3, 7} V(17) {3, 73} V(16) {3, 90} V(6)

8.2 Eliminating Known Constructions

Using the results from chapter 6 we look at all of the semifields which can be

generated using these known constructions. Rather than looking at each isomorphism

class individually and determining whether it corresponds to a known construction,

we instead simply construct the Knuth cubes for all possible constructions and find

their locations in the database. First, note that many of the constructions do not

allow for a 16-element case. There are clearly no Albert binary or Knuth binary

semifields of order 16. There are also no proper Albert twisted fields of order 16,

but this is not easily seen and would require a considerable amount of work to show.

Instead we simply note that this is a consequence of proposition 10.14 in [8].
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By building all of the possible Knuth cubes for the other constructions we

find that the following semifields are defined by the noted constructions, with QWN

referring to the semifields which are quadratic over a weak nucleus.

Database Constructions

{2, 1} QWN

{2, 6} QWN

{2, 13} Petit, QWN

{2, 15} System W, Petit, QWN

{3, 70} QWN

{3, 71} System V, QWN

This leaves 17 isomorphism classes for which there is no known construction. Giving

a detailed description of the derivation of constructions for each of the 17 unknown

semifields would be quite lengthy. For that reason we will limit the work presented

here to a few noteworthy examples, and exclude the others that are derived in similar

ways. The full results will be listed in section 8.6.

8.3 Determining Constructions Part 1: Quadratic Over 𝔽4

If the elements of a semifield of order 16 can be viewed as a two-dimensional

left or right vector space over 𝔽4, then we will say such a semifield is left or right

quadratic over 𝔽4. Let 𝑆 be a semifield which is right quadratic over 𝔽4, and let 𝑆𝐷

be its dual. Note that 𝑆𝐷 would be left quadratic over 𝔽4, and, once a construction

is found for 𝑆, it will be a simple matter to find 𝑆𝐷 in the database and define its

product through the use of an anti-isomorphism. For this reason we will focus only

on semifields which are right vector spaces over 𝔽4 in this section and the next.

Suppose a 16-element semifield was right quadratic over 𝔽4 = {0, 1, 𝜔, 𝜔2 =
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1 + 𝜔} and had a basis {1, 𝜔, 𝜆, 𝜆𝜔} over 𝔽2, where (0 + 𝜆𝑏) ∗ (𝑐 + 𝜆0) = 𝜆(𝑏𝑐). Then

a reverse decimal matrix corresponding to this basis would have the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3

4 8

8 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The unknown semifields corresponding to {2, 5}, {3, 1}, {3, 2}, and {3, 85} have re-

verse decimal matrices of this form. We will focus on {2, 5}. There are 12 such

matrices in {2, 5}:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 9 14

4 8 5 10

8 12 15 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 9 14

4 8 5 10

8 12 14 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 11 13

4 8 9 14

8 12 7 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 11 13

4 8 10 15

8 12 7 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 10 15

4 8 13 6

8 12 11 13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 10 15

4 8 15 5

8 12 9 14

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 9 15

4 8 5 11

8 12 15 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 9 15

4 8 5 10

8 12 14 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 11 14

4 8 3 9

8 12 5 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 11 14

4 8 2 9

8 12 5 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 10 13

4 8 3 14

8 12 6 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 10 13

4 8 2 15

8 12 7 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Let 𝐴 be the cubical array corresponding to the first of these matrices:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 9 14

4 8 5 10

8 12 15 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∼ 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 1001 0111

0010 0001 1010 0101

0001 0011 1111 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

To determine the result of (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) we use the properties of cubical arrays

mentioned in chapter 3. Let 𝑢 = ⟨𝑎1, 𝑎2, 𝑏1, 𝑏2⟩ and 𝑣 = ⟨𝑐1, 𝑐2, 𝑑1, 𝑑2⟩ be the vector

forms of (𝑎+𝜆𝑏) and (𝑐+𝜆𝑑) over 𝔽2. Also note that, for example, that 𝑎 = 𝑎1 +𝑎2𝜔.

Let 𝑤 = 𝑣(𝑢𝐴), which means 𝑤 is the3 vector form of (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑). We get the

following result:

𝑤 = ⟨ 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1 ,

𝑎2𝑐1 + 𝑎1𝑐2 + 𝑎2𝑐2 + 𝑏2𝑑1 + 𝑎2𝑑2 + 𝑏1𝑑2 ,

𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1 + 𝑎2𝑑2 + 𝑏2𝑑2 ,

𝑏2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑎1𝑑2 + 𝑎2𝑑2 + 𝑏1𝑑2 ⟩
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Note that the first two coordinates of 𝑤 are the coefficients of 1 and 𝜔 respectively.

Thus we take 𝑤1 + 𝜔𝑤2 to find the first part of the product:

(1) 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1

+𝜔(𝑎2𝑐1 + 𝑎1𝑐2 + 𝑎2𝑐2 + 𝑏2𝑑1 + 𝑎2𝑑2 + 𝑏1𝑑2)

(2) = 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1 + 𝑎2𝑐1𝜔 + 𝑎1𝑐2𝜔 + 𝑎2𝑐2𝜔

+𝑏2𝑑1𝜔 + 𝑎2𝑑2𝜔 + 𝑏1𝑑2𝜔

(3) = (𝑎1𝑐1 + 𝑎2𝑐2 + 𝑎2𝑐1𝜔 + 𝑎1𝑐2𝜔 + 𝑎2𝑐2𝜔) + (𝑎2𝑑1 + 𝑎2𝑑2𝜔)

+(𝑏2𝑑2 + 𝑏1𝑑2𝜔 + 𝑏1𝑑1 + 𝑏2𝑑1 + 𝑏2𝑑1𝜔)

(4) = (𝑐1(𝑎1 + 𝑎2𝜔) + 𝑎1𝑐2𝜔 + 𝑎2𝑐2𝜔2) + (𝑎2(𝑑1 + 𝑑2𝜔))

+(𝑏2𝑑2 + 𝑏1(𝑑1 + 𝑑2𝜔) + 𝑏2𝑑1𝜔2)

(5) = (𝑐1(𝑎1 + 𝑎2𝜔) + (𝑐2𝜔)(𝑎1 + 𝑎2𝜔)) + (𝑎 + 𝑎2)𝑑

+(𝑏2𝑑2 + 𝑏1(𝑑1 + 𝑑2𝜔) + 𝑏2𝑑1𝜔2 + 𝑏2𝑑2𝜔 + 𝑏2𝑑2𝜔)

(6) = ((𝑐1 + 𝑐2𝜔)(𝑎1 + 𝑎2𝜔)) + (𝑎 + 𝑎2)𝑑

+(𝑏1(𝑑1 + 𝑑2𝜔) + 𝑏2𝑑1 + 𝑏2𝑑1𝜔 + 𝑏2𝑑2𝜔2 + 𝑏2𝑑2𝜔)

(7) = 𝑎𝑐 + (𝑎 + 𝑎2)𝑑 + (𝑏1(𝑑1 + 𝑑2𝜔) + (𝑏2𝜔)(𝑑1 + 𝑑2𝜔) + 𝑏2(𝑑1 + 𝑑2𝜔))

(8) = 𝑎𝑐 + (𝑎 + 𝑎2)𝑑 + ((𝑏1 + 𝑏2𝜔)(𝑑1 + 𝑑2𝜔) + 𝑏2(𝑑1 + 𝑑2𝜔))

(9) = 𝑎𝑐 + (𝑎 + 𝑎2)𝑑 + 𝑏𝑑 + (𝑏 + 𝑏2)𝑑

(10) = 𝑎𝑐 + (𝑎 + 𝑎2)𝑑 + 𝑏2𝑑
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On line 4 we have 𝑎2 isolated from 𝑎. The fact that 𝑎2 = 𝑎 + 𝑎2 comes from the trace

function acting on 𝑎. We now determine the second part of the product by looking

at 𝑤3 + 𝜔𝑤4, which we will multiply on the left by 𝜆 when we are finished.

(1) 𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1 + 𝑎2𝑑2 + 𝑏2𝑑2

+𝜔(𝑏2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑎1𝑑2 + 𝑎2𝑑2 + 𝑏1𝑑2)

(2) = 𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑏1𝑑1 + 𝑏2𝑑1 + 𝑎2𝑑2 + 𝑏2𝑑2

+𝑏2𝑐1𝜔 + 𝑏1𝑐2𝜔 + 𝑏2𝑐2𝜔 + 𝑎2𝑑1𝜔 + 𝑏2𝑑1𝜔 + 𝑎1𝑑2𝜔 + 𝑎2𝑑2𝜔 + 𝑏1𝑑2𝜔

(3) = (𝑏1𝑐1 + 𝑏2𝑐2 + 𝑏2𝑐1𝜔 + 𝑏1𝑐2𝜔 + 𝑏2𝑐2𝜔)

+(𝑎1𝑑1 + 𝑎2𝑑2 + 𝑎2𝑑1𝜔 + 𝑎1𝑑2𝜔 + 𝑎2𝑑2𝜔)

+(𝑏1𝑑1 + 𝑏2𝑑1 + 𝑏2𝑑2 + 𝑏2𝑑1𝜔 + 𝑏1𝑑2𝜔)

(4) = 𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑

This gives the final result, where 𝑇 ∶ 𝔽4 ↦ 𝔽2 is the standard trace function 𝑇 (𝑥) =

𝑥 + 𝑥2:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑑 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑)
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Notice that this is very similar to the QWN construction, with the only difference

being the term 𝑇 (𝑎)𝑑. This is the result from looking at only the first matrix, and it

would be prudent to list products defined by the other matrices:

(2) 𝑎𝑐 + 𝑇 (𝑎)𝑑 + 𝑏𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑)

(3) 𝑎𝑐 + 𝑇 (𝑎)𝑑𝜔2 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔)

(4) 𝑎𝑐 + 𝑇 (𝑎)𝑑𝜔2 + 𝑏𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔)

(5) 𝑎𝑐 + 𝑇 (𝑎)𝑑𝜔 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔2)

(6) 𝑎𝑐 + 𝑇 (𝑎)𝑑𝜔 + 𝑏𝑑𝜔2 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔2)

(7) 𝑎𝑐 + 𝑇 (𝑎)𝑑2 + 𝑏2𝑑2 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑 + 𝑇 (𝑏)𝑇 (𝑑))

(8) 𝑎𝑐 + 𝑇 (𝑎)𝑑2 + 𝑏𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑 + 𝑇 (𝑏)𝑇 (𝑑))

(9) 𝑎𝑐 + 𝑇 (𝑎)𝑑2𝜔2 + 𝑏𝑑𝜔2 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑇 (𝑏)𝑅(𝑑) + 𝑅(𝑏)𝑇 (𝑑)𝜔)

(10) 𝑎𝑐 + 𝑇 (𝑎)𝑑2𝜔2 + 𝑏2𝑑2𝜔 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑇 (𝑏)𝑅(𝑑) + 𝑅(𝑏)𝑇 (𝑑)𝜔)

(11) 𝑎𝑐 + 𝑇 (𝑎)𝑑2𝜔 + 𝑏2𝑑2𝜔2 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔 + 𝑅(𝑏)𝑅(𝑑)𝜔)

(12) 𝑎𝑐 + 𝑇 (𝑎)𝑑2𝜔 + 𝑏𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑𝜔 + 𝑅(𝑏)𝑅(𝑑)𝜔)

where 𝑅(𝑎) = 𝑎1 + 𝑎2 + 𝑎1𝑎2. The initial choice is still one of the simplest represen-

tations (due to the lack of 𝑅 or products including 𝜔), so that is the one which is

listed in section 8.6. For now we will also note that {3, 1}, {3, 2}, and {3, 85} yield

formulas similar to (7) or (8) on the list.

In fact, {3, 1} will be useful to illustrate another approach to deriving construc-

tions. First, note that the product formula for {3, 1} is

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑇 (𝑑)𝜔2 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑇 (𝑏)𝑇 (𝑑)𝜔2)

Let 𝐴 be the cubical array which yielded this product. The transpose of 𝐴 corresponds

to a reverse decimal matrix located in {3, 74} meaning that these two semifields are

91



duals of each other. Thus we simply swap 𝑎 with 𝑐 and 𝑏 with 𝑑 in the product

formula for {3, 1} to get the product for {3, 74}. This gives

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔2 + 𝑏𝑑2𝜔 + 𝜆(𝑎𝑑 + 𝑏𝑐2 + 𝑇 (𝑏)𝑇 (𝑑)𝜔2)

This also means that the assumption (𝜆𝑏) ∗ 𝑐 = 𝜆(𝑏𝑐) will not be true for {3, 74},

and, instead 𝑏 ∗ (𝜆𝑐) = 𝜆(𝑏𝑐). Rather than describe the multiplication in this way,

we will instead use the basis {1, 𝜔, 𝑋, 𝜔𝑋} since this behavior is similar to Petit’s

construction. This changes the product in {3, 74} to

(𝑎 + 𝑏𝑋) ∗ (𝑐 + 𝑑𝑋) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔2 + 𝑏𝑑2𝜔 + (𝑎𝑑 + 𝑏𝑐2 + 𝑇 (𝑏)𝑇 (𝑑)𝜔2)𝑋

This is how this semifield is described in section 8.6. And using this method, we can

find {3, 73} and {3, 75}, which are the duals of {3, 85} and {3, 2} respectively.

8.4 Determining Constructions Part 2: Almost Quadratic Over 𝔽4

We will say a semifield of order 16 is almost right quadratic over 𝔽4 if it a

basis of the form {1, 𝜔, 𝜆, 𝜆𝜔} where 𝜆 ∗ 𝜔 = 𝜆𝜔, but (𝜆𝜔) ∗ 𝜔 ≠ 𝜆(𝜔2). The

semifields corresponding to {3, 7}, {3, 9}, {3, 11}, {3, 88}, and {3, 89} are all almost

right quadratic over 𝔽4 are are the dual of such a semifield.

We will only show the derivation for {3, 7} here. First, we choose the cubical

array 𝐴 corresponding to the following reverse decimal matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 4 8

2 3 14 4

4 8 6 3

8 13 9 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∼ 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0111 0010

0010 0001 0110 1100

0001 1011 1001 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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We let 𝑢 and 𝑣 be the vector forms of (𝑎 + 𝜆𝑏) and (𝑐 + 𝜆𝑑) over 𝔽2, and 𝑤 = 𝑣(𝑢𝐴).

This gives

𝑤 = ⟨ 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑏2𝑑1 + 𝑏1𝑑2 ,

𝑎2𝑐1 + 𝑎1𝑐2 + 𝑎2𝑐2 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑏1𝑑2 + 𝑏2𝑑2 ,

𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑎2𝑑2 ,

𝑏2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑎1𝑑2 ⟩

Then the first part of the product is 𝑤1 + 𝜔𝑤2:

(1) 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑏2𝑑1 + 𝑏1𝑑2

+𝜔(𝑎2𝑐1 + 𝑎1𝑐2 + 𝑎2𝑐2 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑏1𝑑2 + 𝑏2𝑑2)

(2) = 𝑎1𝑐1 + 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑏2𝑑1 + 𝑏1𝑑2

+(𝑎2𝑐1𝜔 + 𝑎1𝑐2𝜔 + 𝑎2𝑐2𝜔 + 𝑎2𝑑1𝜔 + 𝑏1𝑑1𝜔 + 𝑏1𝑑2𝜔 + 𝑏2𝑑2𝜔)

(3) = (𝑎1𝑐1 + 𝑎2𝑐2 + 𝑎2𝑐1𝜔 + 𝑎1𝑐2𝜔 + 𝑎2𝑐2𝜔) + (𝑏2𝑐2) + (𝑎2𝑑1𝜔)

+(𝑏2𝑑1 + 𝑏1𝑑2 + 𝑏1𝑑1𝜔 + 𝑏1𝑑2𝜔 + 𝑏2𝑑2𝜔)

(4) = 𝑎𝑐 + (𝑏2𝑐2) + (𝑎2𝑑1𝜔) + 𝑏2𝑑𝜔

(5) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐) + 𝑇 (𝑎)𝑅(𝑑)𝜔 + 𝑏2𝑑𝜔
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where 𝑅(𝑎1 + 𝜔𝑎2) = 𝑎1. There is no standard function for 𝑅 like there was for 𝑇 ,

so we will leave it as is. Then we compute 𝑤3 + 𝜔𝑤4:

(1) 𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑎2𝑑2

+𝜔(𝑏2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑1 + 𝑏2𝑑1 + 𝑎1𝑑2)

(2) = 𝑏1𝑐1 + 𝑏2𝑐2 + 𝑎1𝑑1 + 𝑎2𝑑1 + 𝑏1𝑑1 + 𝑎2𝑑2

+(𝑏2𝑐1𝜔 + 𝑏1𝑐2𝜔 + 𝑏2𝑐2𝜔 + 𝑎2𝑑1𝜔 + 𝑏2𝑑1𝜔 + 𝑎1𝑑2𝜔)

(3) = (𝑏1𝑐1 + 𝑏2𝑐2 + 𝑏2𝑐1𝜔 + 𝑏1𝑐2𝜔 + 𝑏2𝑐2𝜔)

+(𝑎1𝑑1 + 𝑎2𝑑1 + 𝑎2𝑑2 + 𝑎2𝑑1𝜔 + 𝑎1𝑑2𝜔) + (𝑏1𝑑1 + 𝑏2𝑑1𝜔)

(4) = 𝑏𝑐 + 𝑎2𝑑 + 𝑅(𝑑)𝑏

And we get the following product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐) + 𝑇 (𝑎)𝑅(𝑑)𝜔 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑅(𝑑)𝑏)

This method, and the use of duals, yields similar formulas for {3, 9}, {3, 11}, {3, 88},

and {3, 89}.

8.5 Determining Constructions Part 3: Not Quadratic Over 𝔽4

All of the semifields mentioned thus far have contained a subfield isomorphic

to 𝔽4. The remaining unknown semifields, {3, 4}, {3, 5}, {3, 6}, {3, 8} and {3, 90} do

not posses this feature, and thus will not be quadratic or almost quadratic over 𝔽4.

Rather than giving a product formula for such semifields, we will instead attempt

to find a basis of the form {1, 𝑎, 𝑏, 𝑐} for these semifields over 𝔽2 which will posses

similar properties in each of these semifields. By investigation, all of these semifields
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have such a basis where 𝑎2 = 𝑏, 𝑏2 = 𝑐, and 𝑐2 is some linear combination of 1, 𝑎,

and 𝑏. In section 8.6, for each of these semifields we provide a multiplication table of

the nontrivial basis elements in place of a product formula.

8.6 A Catalog Of The 16-Element Semifields

In this section we provide as much pertinent information as possible for each

of the finite semifields of order 16. Each semifield, 𝑆, is given an entry in a similar

format. First we list any names which have been given for 𝑆. Beneath the name, we

provide a Knuth cube, 𝐴, which was used to define the other results in the entry. To

the right of 𝐴 we list the database numbers for 𝑆, “DB”, the designation for 𝑆 given by

Kleinfeld, “KD”, the database numbers for the dual of 𝑆, “Dual DB”, the designation

for the dual of 𝑆 given by Kleinfeld, “Dual KD”. Below the Knuth cube, we list which

known constructions yield 𝑆, “Construction:”, we describe what form the elements

may have, “Elements”, and below that provide a product formula or multiplication

table. This is followed by the left, middle, and right nuclei, the center, and the left

and right primitive elements of 𝑆 with respect to the given construction, denoted 𝑁𝑙,

𝑁𝑚, 𝑁𝑟, 𝑍, 𝑃𝑙 and 𝑃𝑟 respectively. This is followed by the lists of with respect to

this construction, denoted 𝑃𝑙 and 𝑃𝑟 respectively. Finally, the automorphisms of 𝑆

are listed, denoted 𝜙𝑖 unless there is only the trivial automorphism.

For each semifield which can be constructed using a known construction, we

list the necessary information for that construction to be used. In the case where

multiple variations of the same construction can be used, e.g. choices of 𝑓 qand 𝑔

in the QWN construction, we only provide one possible set of values. And in the

case where multiple constructions yield the same semifield (up to isomorphism), the
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construction used to define the product is presented last.

The results of chapters 4 and 5 were used to determine the primitive elements

and automorphisms of each semifield. The center and nuclei of each semifield were

determined by direct computation with the aid of a computer.
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Description of the Semifields of Order 16

Name: 𝐺𝐹(16), 𝔽16

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0001 0011

0010 0001 0110 1101

0001 0011 1101 1011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {1, 1}

Dual DB: {1, 1}

KD: None

Dual KD: None

Construction: The field 𝔽4[𝜆], where 𝜆 is a root of 𝑥2 + 𝑥 + 𝜔.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏𝑑)

𝑁𝑙 = 𝔽16

𝑁𝑚 = 𝔽16

𝑁𝑟 = 𝔽16

𝑍 = 𝔽16

𝑃𝑙 = {𝑎 + 𝜆|𝑎 ∈ 𝔽4} ∪ {1 + 𝜆𝜔, 𝜔 + 𝜆𝜔, 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝑎 + 𝜆|𝑎 ∈ 𝔽4} ∪ {1 + 𝜆𝜔, 𝜔 + 𝜆𝜔, 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = (𝑎 + 𝜆𝑏)2

𝜙3(𝑎 + 𝜆𝑏) = (𝑎 + 𝜆𝑏)4

𝜙4(𝑎 + 𝜆𝑏) = (𝑎 + 𝜆𝑏)8
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0101

0001 0011 1101 1011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {2, 1}

Dual DB: {2, 1}

KD: T(24)

Dual KD: T(24)

Construction: QWN: case 2, type 4, 𝑓 = 𝑔 = 1.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏𝑑)

𝑁𝑙 = {0, 1, 𝜔, 𝜔2}

𝑁𝑚 = {0, 1, 𝜆, 𝜆2}

𝑁𝑟 = {0, 1, 𝜔, 𝜔2}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆𝜔, 𝜆2(𝜔), 𝜔2 + 𝜆, 𝜆2(𝜔2)}

𝑃𝑟 = {1 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔2 + 𝜆, 𝜔 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 1001 0111

0010 0001 1010 0101

0001 0101 1111 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {2, 5}

Dual DB: {2, 5}

KD: T(45)

Dual KD: T(45)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑑 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑏2𝑑),

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1, 𝜔 + 𝜆, 𝜔2 + 𝜆}

𝑁𝑚 = {0, 1, 𝜆, 𝜆2}

𝑁𝑟 = {0, 1, 𝜔, 𝜔2}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

𝑃𝑟 = {1 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆2(𝑏)

𝜙3(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)

𝜙4(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆2(𝑏2)
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0101

0001 0011 1111 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {2, 6}

Dual DB: {2, 13}

KD: T(50)

Dual KD: T(25)

Construction: QWN: case 2, type 2, 𝑓 = 𝑔 = 1.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑)

𝑁𝑙 = {0, 1, 𝜆, 𝜆2}

𝑁𝑚 = {0, 1, 𝜔, 𝜔2}

𝑁𝑟 = {0, 1, 𝜔, 𝜔2}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆2(𝜔), 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜆2(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0111

0001 0011 1101 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {2, 13}

Dual DB: {2, 6}

KD: T(25)

Dual KD: T(50)

Construction: Petit: 𝑀(𝑋) = 𝑋2 + 𝑋 + 1.

QWN: case 2, type 3, 𝑓 = 𝑔 = 1.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏𝑑2)

𝑁𝑙 = {0, 1, 𝜔, 𝜔2}

𝑁𝑚 = {0, 1, 𝜔, 𝜔2}

𝑁𝑟 = {0, 1, 𝜆, 𝜆2}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆2(𝜔), 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜆2(𝜔2)}

𝑃𝑟 = {1 + 𝜆𝜔, 𝜆2(𝜔), 1 + 𝜆(𝜔2), 𝜆2(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)
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Description of the Semifields of Order 16

Name: System W

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 0100 1100

0001 0011 1000 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {2, 15}

Dual DB: {2, 15}

KD: T(35)

Dual KD: T(35)

Construction: Petit: 𝑀(𝑋) = 𝑋2 + 𝜔.

QWN: case 2, any type, 𝑓 = 𝜔, 𝑔 = 0.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑)

𝑁𝑙 = {0, 1, 𝜔, 𝜔2}

𝑁𝑚 = {0, 1, 𝜔, 𝜔2}

𝑁𝑟 = {0, 1, 𝜔, 𝜔2}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔)

𝜙3(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔2)
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 1110

0010 0001 0100 1100

0001 0011 1000 0111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 1}

Dual DB: {3, 74}

KD: V(5)

Dual KD: V(4)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑇 (𝑑)𝜔2 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑇 (𝑏)𝑇 (𝑑)𝜔2),

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆𝜔, 1 + 𝜆𝜔, 𝜆(𝜔2), 1 + 𝜆(𝜔2)}

Automorphisms:

𝜙(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0110

0010 0001 0100 1111

0001 0011 1000 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 2}

Dual DB: {3, 75}

KD: V(9)

Dual KD: V(8)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑇 (𝑑)𝜔 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑅(𝑏)𝑇 (𝑑)𝜔2),

where 𝑇 (𝑎) = 𝑎 + 𝑎2, 𝑅(𝑎) = 𝑎 + 𝑇 (𝑎)𝜔;

equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2, 𝑅(𝑎) = 𝑎1.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆, 𝜔 + 𝜆, 1 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆𝜔, 1 + 𝜆𝜔, 𝜆(𝜔2), 1 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝑏2𝜔 + 𝜆(𝑏2𝜔2)

104



Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 0010 0101 1000

0010 1111 0001 0100

0001 0101 1111 0110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 4}

Dual DB: {3, 90}

KD: V(1)

Dual KD: V(6)

Construction:

Elements: (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽2

Product: Let 𝑧 = 1 + 𝑖 + 𝑗 + 𝑘. The products of 𝑖, 𝑗, and 𝑘 are:

∗ 𝑖 𝑗 𝑘

𝑖 𝑗 𝑖 + 𝑘 1

𝑗 𝑧 𝑘 𝑖

𝑘 𝑖 + 𝑘 𝑧 𝑖 + 𝑗

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝑗, 𝑖 + 𝑗, 𝑗 + 𝑘, 𝑖 + 𝑗 + 𝑘}

𝑃𝑟 = {𝑖, 1 + 𝑖, 𝑘, 1 + 𝑘, 𝑗 + 𝑘, 1 + 𝑗 + 𝑘}

Automorphisms:

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 0010 1001 1110

0010 1111 0001 0100

0001 0011 0100 1100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 5}

Dual DB: {3, 8}

KD: V(3)

Dual KD: V(7)

Construction:

Elements: (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽2

Product: Let 𝑧 = 1 + 𝑖 + 𝑗 + 𝑘. The products of 𝑖, 𝑗, and 𝑘 are:

∗ 𝑖 𝑗 𝑘

𝑖 𝑗 1 + 𝑘 1 + 𝑖 + 𝑗

𝑗 𝑧 𝑘 𝑖

𝑘 𝑗 + 𝑘 𝑖 1 + 𝑖

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝑗, 𝑖 + 𝑗, 1 + 𝑗 + 𝑘, 1 + 𝑖 + 𝑗 + 𝑘}

𝑃𝑟 = {𝑘, 𝑖 + 𝑘, 𝑗 + 𝑘, 1 + 𝑖 + 𝑗 + 𝑘}

Automorphisms:

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 0010 1001 0101

0010 0101 0001 1111

0001 1000 1101 0110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 6}

Dual DB: {3, 6}

KD: V(12)

Dual KD: V(12)

Construction:

Elements: (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽2

Product: Let 𝑧 = 1 + 𝑖 + 𝑗 + 𝑘. The products of 𝑖, 𝑗, and 𝑘 are:

∗ 𝑖 𝑗 𝑘

𝑖 𝑗 1 + 𝑘 𝑖 + 𝑘

𝑗 𝑖 + 𝑘 𝑘 𝑧

𝑘 1 1 + 𝑖 + 𝑘 𝑖 + 𝑗

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝑖, 1 + 𝑖 + 𝑗, 𝑖 + 𝑘, 𝑖 + 𝑗 + 𝑘}

𝑃𝑟 = {1 + 𝑗, 1 + 𝑖 + 𝑗, 1 + 𝑗 + 𝑘, 𝑖 + 𝑗 + 𝑘}

Automorphisms:

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0111 0010

0010 0001 0110 1100

0001 1011 1001 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 7}

Dual DB: {3, 7}

KD: V(17)

Dual KD: V(17)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐) + 𝑇 (𝑎)𝑅(𝑑)𝜔 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑅(𝑑)𝑏),

where 𝑇 (𝑎) = 𝑎 + 𝑎2, 𝑅(𝑎) = 𝑎 + 𝑇 (𝑎)𝜔;

equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2, 𝑅(𝑎) = 𝑎1.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆, 𝜔2 + 𝜆, 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜆, 𝜔2 + 𝜆, 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

Automorphisms:

𝜙(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 0010 1111 0011

0010 1001 0001 0100

0001 1110 0100 1100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 8}

Dual DB: {3, 5}

KD: V(7)

Dual KD: V(3)

Construction:

Elements: (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽2

Product: Let 𝑧 = 1 + 𝑖 + 𝑗 + 𝑘. The products of 𝑖, 𝑗, and 𝑘 are:

∗ 𝑖 𝑗 𝑘

𝑖 𝑗 𝑧 𝑗 + 𝑘

𝑗 1 + 𝑘 𝑘 𝑖

𝑘 1 + 𝑖 + 𝑗 𝑖 1 + 𝑖

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝑘, 𝑖 + 𝑘, 𝑗 + 𝑘, 1 + 𝑖 + 𝑗 + 𝑘}

𝑃𝑟 = {1 + 𝑗, 𝑖 + 𝑗, 1 + 𝑗 + 𝑘, 1 + 𝑖 + 𝑗 + 𝑘}

Automorphisms:

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 1011 1110

0010 0001 1010 1101

0001 1011 1111 0110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 9}

Dual DB: {3, 9}

KD: V(18)

Dual KD: V(18)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐) + 𝑇 (𝑎)𝑑2 + 𝑏2𝑑2 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑),

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {1 + 𝜆𝜔, 𝜔 + 𝜆𝜔, 1 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜆𝜔, 𝜔 + 𝜆𝜔, 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100

0010

0001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 11}

Dual DB: {3, 89}

KD: V(11)

Dual KD: V(14)

Construction:

Elements: (𝑎 + 𝑏𝑋) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝑏𝑋) ∗ (𝑐 + 𝑑𝑋) = 𝑎𝑐 + 𝑇 (𝑎)𝑇 (𝑑)𝜔2 + 𝑇 (𝑐)𝑏𝜔 + 𝑏𝑑2𝜔 + (𝑏𝑐 + 𝑎𝑑 + 𝑇 (𝑏)𝑇 (𝑑)𝜔)𝑋,

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1, 𝜔 + 𝜔𝑋, 𝜔2 + 𝜔𝑋}

𝑃𝑙 = {𝑋, 𝜔2 + 𝑋, (𝜔2)𝑋, 𝜔 + (𝜔2)𝑋}

𝑃𝑟 = {𝜔𝑋, 1 + 𝜔𝑋, (𝜔2)𝑋, 1 + (𝜔2)𝑋, 𝜔 + (𝜔2𝑋), 𝜔2 + (𝜔2)𝑋}

Automorphisms:

𝜙1(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝑋

𝜙2(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝜔2 + 𝑏𝑋

𝜙3(𝑎 + 𝜆𝑏) =

𝜙4(𝑎 + 𝜆𝑏) =
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1001 0110

0001 0011 1110 1011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 70}

Dual DB: {3, 70}

KD: V(10)

Dual KD: V(10)

Construction: QWN: case 2, type 1, 𝑓 = 1, 𝑔 = 𝜔.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑2𝜔)

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔)

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔2)
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Name: System V

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0011 0010

0010 0001 1010 0111

0001 0011 1111 1001

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 71}

Dual DB: {3, 71}

KD: V(13)

Dual KD: V(13)

Construction: QWN: case 2, type 1, 𝑓 = 𝑔 = 1.

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product: (𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏2𝑑2)

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆2(𝜔), 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜆2(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆2(𝜔), 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜆2(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔)

𝜙3(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆(𝑏𝜔2)

𝜙4(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)

𝜙5(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2𝜔)

𝜙6(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2𝜔2)
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0001 0011

0010 1011 1010 1101

0001 1110 0111 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 73}

Dual DB: {3, 85}

KD: V(16)

Dual KD: V(15)

Construction:

Elements: (𝑎 + 𝑏𝑋) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝑏𝑋) ∗ (𝑐 + 𝑑𝑋) = 𝑎𝑐 + 𝑇 (𝑐)𝑏2 + 𝑏𝑑2 + (𝑎𝑑 + 𝑏𝑐2 + 𝑏2𝑑)𝑋

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝑋, 𝜔2 + 𝑋, 𝜔𝑋, 1 + 𝜔𝑋, (𝜔2)𝑋, 1 + (𝜔2)𝑋}

𝑃𝑟 = {𝜔 + 𝑋, 𝜔2 + 𝑋, 𝜔 + 𝜔𝑋, 𝜔2 + 𝜔𝑋, 𝜔 + (𝜔2)𝑋, 𝜔2 + (𝜔2)𝑋}

Automorphisms:

𝜙1(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝑋

𝜙2(𝑎 + 𝑏𝑋) = 𝑎2 + (𝑏2)𝑋
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0001 0011

0010 0011 0100 1000

0001 1110 1100 0111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 74}

Dual DB: {3, 1}

KD: V(4)

Dual KD: V(5)

Construction:

Elements: (𝑎 + 𝑏𝑋) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝑏𝑋) ∗ (𝑐 + 𝑑𝑋) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔2 + 𝑏𝑑2𝜔 + (𝑎𝑑 + 𝑏𝑐2 + 𝑇 (𝑏)𝑇 (𝑑)𝜔2)𝑋

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝑋, 𝜔2 + 𝑋, 𝜔𝑋, 1 + 𝜔𝑋, (𝜔2)𝑋, 1 + (𝜔2)𝑋}

𝑃𝑟 = {1 + 𝜔𝑋, 𝜔2 + 𝜔𝑋, 1 + (𝜔2)𝑋, 𝜔 + (𝜔2)𝑋}

Automorphisms:

𝜙(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝑋
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0001 0011

0010 0011 0100 1000

0001 0110 1111 0100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 75}

Dual DB: {3, 2}

KD: V(8)

Dual KD: V(9)

Construction:

Elements: (𝑎 + 𝑏𝑋) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝑏𝑋) ∗ (𝑐 + 𝑑𝑋) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔 + 𝑏𝑑2𝜔 + (𝑎𝑑 + 𝑏𝑐2 + 𝑇 (𝑏)𝑅(𝑑)𝜔2)𝑋

where 𝑇 (𝑎) = 𝑎 + 𝑎2, 𝑅(𝑎) = 𝑎 + 𝑇 (𝑎)𝜔;

equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2, 𝑅(𝑎) = 𝑎1.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝑋, 𝜔2 + 𝑋, 𝜔𝑋, 1 + 𝜔𝑋, (𝜔2)𝑋, 1 + (𝜔2)𝑋}

𝑃𝑟 = {1 + 𝑋, 𝜔 + 𝑋, 1 + (𝜔2)𝑋, 𝜔2 + (𝜔2)𝑋}

Automorphisms:

𝜙1(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝑋

𝜙2(𝑎 + 𝑏𝑋) = 𝑎2 + 𝑏2𝜔 + (𝑏2𝜔2)𝑋
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 1011 1110

0010 0001 1010 0111

0001 0011 1101 1010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 85}

Dual DB: {3, 73}

KD: V(15)

Dual KD: V(16)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑎)𝑑2 + 𝑏2𝑑 + 𝜆(𝑏𝑐 + 𝑎2𝑑 + 𝑏𝑑2),

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜔 + 𝜆, 𝜔2 + 𝜆, 𝜆𝜔, 1 + 𝜆𝜔, 𝜆(𝜔2), 1 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎2 + 𝜆(𝑏2)
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Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 1101 1011

0010 0001 1100 1000

0001 1111 0111 1100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 88}

Dual DB: {3, 88}

KD: V(2)

Dual KD: V(2)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔2 + 𝑇 (𝑎)𝑑𝜔2 + 𝑏2𝑑𝜔2 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑇 (𝑏)𝑅(𝑑)𝜔2),

where 𝑇 (𝑎) = 𝑎 + 𝑎2, 𝑅(𝑎) = 𝑎 + 𝑇 (𝑎)𝜔;

equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2, 𝑅(𝑎) = 𝑎1.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝜆𝜔, 1 + 𝜆𝜔, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜆(𝜔2), 1 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜆𝜔, 1 + 𝜆𝜔, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔, 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝑏𝜔 + 𝜆𝑏
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 1100 0101 1111

0010 0001 0100 1100

0001 1111 1000 0101

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 89}

Dual DB: {3, 11}

KD: V(14)

Dual KD: V(11)

Construction:

Elements: (𝑎 + 𝜆𝑏) where 𝑎, 𝑏 ∈ 𝔽4, and 𝔽4 = {0, 1, 𝜔, 𝜔2 = 1 + 𝜔}

Product:

(𝑎 + 𝜆𝑏) ∗ (𝑐 + 𝜆𝑑) = 𝑎𝑐 + 𝑇 (𝑏)𝑇 (𝑐)𝜔2 + 𝑇 (𝑎)𝑑𝜔 + 𝑏2𝑑𝜔 + 𝜆(𝑏𝑐 + 𝑎𝑑 + 𝑇 (𝑏)𝑇 (𝑑)𝜔),

where 𝑇 (𝑎) = 𝑎 + 𝑎2; equivalently, if 𝑎 = 𝑎1 + 𝑎2𝜔, 𝑇 (𝑎) = 𝑎2.

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1, 𝜔 + 𝜆𝜔, 𝜔2 + 𝜆𝜔}

𝑃𝑙 = {𝜆𝜔, 1 + 𝜆𝜔, 𝜆(𝜔2), 1 + 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2), 𝜔2 + 𝜆(𝜔2)}

𝑃𝑟 = {𝜆, 𝜔2 + 𝜆, 𝜆(𝜔2), 𝜔 + 𝜆(𝜔2)}

Automorphisms:

𝜙1(𝑎 + 𝜆𝑏) = 𝑎 + 𝜆𝑏

𝜙2(𝑎 + 𝜆𝑏) = 𝑎 + 𝑏𝜔2 + 𝜆𝑏
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Description of the Semifields of Order 16

Name:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1000 0100 0010 0001

0100 0010 1111 0101

0010 0101 0001 1111

0001 1000 0100 0110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

DB: {3, 90}

Dual DB: {3, 4}

KD: V(6)

Dual KD: V(1)

Construction:

Elements: (𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽2

Product: Let 𝑧 = 1 + 𝑖 + 𝑗 + 𝑘. The products of 𝑖, 𝑗, and 𝑘 are:

∗ 𝑖 𝑗 𝑘

𝑖 𝑗 𝑧 𝑖 + 𝑘

𝑗 𝑖 + 𝑘 𝑘 𝑧

𝑘 1 𝑖 𝑖 + 𝑗

𝑁𝑙 = {0, 1}

𝑁𝑚 = {0, 1}

𝑁𝑟 = {0, 1}

𝑍 = {0, 1}

𝑃𝑙 = {𝑖, 1 + 𝑖, 𝑘, 1 + 𝑘, 𝑗 + 𝑘, 1 + 𝑗 + 𝑘}

𝑃𝑟 = {1 + 𝑗, 𝑖 + 𝑗, 𝑗 + 𝑘, 𝑖 + 𝑗 + 𝑘}

Automorphisms:

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘
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