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Abstract 

DEVELOPMENT OF TRANS-RECTAL ULTRASOUND (TRUS)  

COUPLED DIFFUSE OPTICAL TOMOGRAPHY (DOT)  

FOR PROSTATE CANCER IMAGING 

 

Venkaiah Chowdary Kavuri, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Hanli Liu 

Prostate cancer is one of the leading causes among cancer deaths in men in the 

United States. A minimally invasive real time searching tool for cancer need to be 

developed, which can enhance the odds of cancer detection; Current diagnostic 

techniques such as Trans-rectal ultrasound (TRUS) suffers from low sensitivity and 

specificity. The goal of the dissertation is to develop a Trans-Rectal Ultrasound (TRUS) 

coupled Diffuse Optical Tomography (DOT) probe that can detect and image prostate 

cancer. To accomplish the task, an optical clip-on probe has been designed that can 

incorporate the existing ultrasound probe and can pass through the rectum. Next, a multi- 

step reconstruction technique has been developed by combining the piecewise cluster 

reconstruction and hard prior reconstruction methods. Optical properties of ex-vivo 

prostate specimens also have been measured. Finally, Clip-on optical probe is tested by 

utilizing prostate cancer animal models.  

The clip-on probe has been successfully tested using computer simulations and 

laboratory phantoms. In experiments, a hidden absorber without prior location information 

was reconstructed with a recovery rate of 100% in its location and 83% in its optical 

property. The result from ex-vivo specimen study indicates cancer tissues carry different 
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optical signatures from the benign tissues. Change in light scattering from benign to 

cancer tissues is more noticeable or prevailing than that in absorption. Animal study 

successfully validated the functioning of the clip-on probe by reconstructing the images 

during gas stimulus. 
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Chapter 1  

Introduction 

The rationale for this thesis is to advance the technological capability of near 

infrared spectral tomography, for prostate cancer imaging. Prostate cancer (PCaa) is one 

of the leading causes among cancer deaths in men in the United States. American 

Cancer Society predicts that, about 233,000 new cases of PCaa will be diagnosed and 

about 29,480 men will die of PCaa in the year of 2014 [1].  The above numbers imply that 

about 1 in 7 men will be diagnosed with PCaa during his lifetime. PCaa occurs mainly in 

older men. About six cases in ten are diagnosed in men aged 65 or older, and it is 

uncommon before age 40. The median age at the time of diagnosis is around 66. The 

roles of race and family history are significant as well. African American men are 61% 

more potential to grow PCaa compared with Caucasian men and are nearly 2.5 times as 

likely to die from the disease. Therefore, it is essential to develop robust clinical methods 

to find cancer in early phases so that treatment can be planned. Advanced prostate 

imaging techniques play a very important role in the process of early cancer detection 

and diagnosis. The following section briefly discusses the anatomy of the prostate and 

current prominent PCaa diagnostic techniques, to allow the interpretation of imaging 

PCaa in the appropriate setting.  

The prostate is a gland of the male reproductive system. It is located in front of 

the rectum and just below the bladder (the organ that stores urine) and produces a fluid 

that forms part of the semen. The prostate surrounds the urethra as it goes out the 

bladder and merges with the ductus deferens. The seminal vesicles, two little glands that 

secrete about 60% of the substances that make up semen are located above the 

prostate. The size of the prostate is about the size of a walnut or lemon, and has roughly 

conical shape. Anatomical landmarks of prostate consist of a base, an apex, an anterior, 
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a posterior and two lateral surfaces (see Figure 1.1). The base is directed upward near 

the inferior surface of the bladder. The greater part of this surface is directly continuous 

with the bladder wall. 

Prostate was also divided majorly into three zones Peripheral Zone (PZ), Central 

zone (CZ), and Transition Zone (TZ). Peripheral Zone (PZ) covers the dorsal, lateral, and 

apical parts of the prostate. Transition Zone (TZ) consists of two lobes, located anteriorly 

between the proximal urethra and the lateral parts of the PZ. Central Zone (CZ) is cone-

shaped with its base located at the bladder neck and the tip at the verumontanum (a 

landmark located near the entrance of the seminal vesicles). 

Previous studies show that most cancer lesions (about 68%) occur in the 

peripheral zone of the gland, fewer occur in the transition zone (24%) and very less in 

number (8%) arise in the central zone [2-5]. It is also shown that most benign prostate 

hyperplasia (BPH) lesions develop in the transition zone. The inflammations that appear 

in the transition zone are associated with BPH nodules and atrophy, and the latter is 

often present in and around the BPH nodules. Acute inflammation can be salient in both 

Figure  Anatomy of human prostate Figure 1-1 Anatomy of prostate 
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the peripheral and transition zones, but is rather variable. The inflammation in the 

peripheral zone occurs in association with atrophy in most cases. Although cancer might 

involve the central zone, small cancer lesions are nearly never found here in isolation, 

strongly suggesting that prostatic intraepithelial neoplasia (PIN) lesions do not readily 

progress to cancer in this zone. Both modest and large cancers in the peripheral zone 

are often set up in association with high-grade PIN, whereas cancer in the transition zone 

tends to be of lower class and  less often associated with high-grade PIN. The diverse 

patterns of prostate atrophy, some of which frequently merge directly with PIN and at 

times with small cancer lesions, are also much more dominant in the peripheral zone, 

with fewer occurring in the transition zone and very few occurring in the central zone.  

 

 

Figure 1-2: Zonal anatomy of prostate 
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Table 1-1 Summarizing the anatomical location of prostate zones and the fraction of each zone in the total volume of gland and 

percentage of cancer prevalence in that zone 

Zone Anatomical Location Fraction of total 
volume of gland 

Percentage of cancer prevalence 

Peripheral 
Zone (PZ) 

The sub-capsular portion of the 
posterior aspect of the prostate gland 
that surrounds the distal urethra. 

Constitutes up to 
70% of the normal 
prostate gland  

70% of PCas originate from this 
portion of gland 

Central Zone 
(CZ) 

This zone surrounds the ejaculatory 
ducts 

Constitutes 
approximately 
25% of the normal 
prostate gland 

Central zone tumors account for more 
than 25% of all PCas. 

Transition 
Zone (TZ) 

The transition zone surrounds the 
proximal urethra and is the region of 
the prostate gland which grows 
throughout life and is responsible 

Constitutes for 
5% of the prostate 
volume 

This zone is very rarely associated 
with cancer. 
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1.1 Prostate Cancer Screening 

Current PCa screening techniques include serum prostate-specific antigen 

(PSA), digital rectal examination (DRE) and a combination of these two tests. PSA is a 

substance produced almost exclusively by certain types of cells located within the 

prostate gland. The role of PSA is to liquefy the semen following ejaculation. Most of the 

PSA produced by the prostate gland is carried out of the body in semen, but a very small 

amount escapes into the blood stream, so PSA is normally found in low amounts 

(nanograms per milliliter or ng/mL) in the blood [6]. PSA levels in the blood are increased 

due to disruption of the prostate’s cellular architecture. This can occur in due to different 

prostate diseases, including PCa. Therefore, elevations in PSA may indicate the 

presence of any kind of prostate disease. The most common cause of PSA elevation 

includes benign prostatic hyperplasia [7] (BPH = enlargement of the prostate, secondary 

to a noncancerous proliferation of prostate gland cells) and prostatitis  (inflammation of 

the prostate). Other factors, which elevate PSA levels, include ejaculation, prostate 

examination, urinary retention or catheter placement, and prostate biopsy. PSA levels 

less than 4 ng/mL are usually considered "normal," levels over 10 ng/mL are usually 

considered “high," and results between 4 and 10 ng/mL are usually considered 

"intermediate." 

DRE exam is performed to detect abnormalities that can be felt (palpated) from 

within the rectum [8]. The physician inserts a lubricated, gloved finger into the rectum and 

examines the prostate for any irregularities in size, shape, and texture. Usually, an 

urologist helps to distinguish between PCa and non-cancerous conditions by performing 

DRE. 

Among those exams mentioned above, Prostate specific antigen (PSA) test turns 

on the alert of PCa very early; The traditional cutoff for an abnormal PSA level in the 
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major screening studies has been 4.0 ng/mL [9-11]. In a pooled analysis made by 

American cancer society [12], the estimated sensitivity of a PSA cutoff of 4.0ng/mL was 

21 percent for detecting any PCa and 51 percent for detecting high-grade cancers 

(Gleason ≥8). Using a cutoff of 3.0 ng/mL increased these sensitivities to 32 and 68 

percent, respectively. The estimated specificity was 91 percent for a PSA cutoff of 

4.0 ng/mL and 85 percent for a 3.0 ng/mL cutoff.  PSA has poorer discriminating ability in 

men with symptomatic benign prostatic hyperplasia [13]. A meta-analysis of DRE 

estimated a sensitivity for detecting PCa of 59 percent and a specificity of 94 percent 

[14]. The prostate specific antigen (PSA) and digital rectal examination (DRE) can be 

considered as complementary, and their combined use can increase the overall rate of 

cancer detection. As an example, a multicenter screening study of 6630 men reported a 

detection rate of 3.2 percent for DRE, 4.6 percent for PSA, and 5.8 percent for the two 

methods combined [15]. PSA detected significantly more of the cancers than digital 

examination (82 versus 55 percent). Overall, 45 percent of the cancers were detected 

only by PSA, while just 18 percent were detected solely by digital examination. 

With abnormal screening results, the gold standard for PCa diagnosis is a TRUS 

guided needle biopsy, which involves resection of prostate tissue with the guidance of an 

ultrasound probe.  In TRUS-guided biopsy, a biopsy needle loaded on a automatic biopsy 

device is commonly used to procure multiple prostate biopsy specimens. The tissue 

samples have to be taken throughout the prostate at minimum of six sites as a systematic 

yet random approach. The current standard of prostate biopsy routinely uses 10 to 12 

cores of tissue obtained throughout the prostate for the initial assessment. The collected 

samples will be sent to the pathological examination where the Gleason Score will be 

given to the sample. A cancer grade (Gleason Score) is to determine the degree how the 

tumor cells look different from normal cells. It should be noted that the majority of 



 

7 
     

biopsies are found to be negative, and in men with persistent suspicion of PCa after 

several negative biopsies, repeated biopsy and more extensive protocols (>12 cores) up 

to saturation biopsy (24 cores) represent a necessary diagnostic procedure. 

1.2 Prostate Imaging Techniques  

Several imaging techniques have been applied to prostate imaging. Among 

them: Ultrasonography, Magnetic Resonance Imaging (MRI), and Positron Emission 

Tomography (PET) are the main imaging techniques in clinical applications or in the 

research [16]. 

Ultrasound imaging (US) is one of the most widely used diagnostic modalities in 

medicine and uses sounds above the highest audible frequency of 20 KHz is ultrasound. 

US imaging probe consists of piezoelectric transducer, which is used to generate pulses 

of high frequency (2 to 10 MHz) and to detect the returning echo signals. Echoes are 

produced at the boundaries of different tissues where a change in acoustic impedance 

occurs. The time between the transmission of a pulse and the arrival of an echo is used 

to estimate the depth to a reflecting tissue surface located below the transducer. The US 

images reveal the positions of tissue boundaries within the body. The piezoelectric 

transducer serves as a transmitter and a receiver, where electrical and acoustic signals 

are converted back and forth by a phenomenon known as peizo-electric effect. US 

technology is capable of imaging muscle and soft tissue. It has no known long-term side 

effects and rarely causes any discomfort to the patient. Equipment is widely available, 

including portable scanners. US imaging is inexpensive compared to MRI or PET. 

Magnetic Resonance Imaging (MRI) uses the phenomena of Nuclear Magnetic 

Resonance (NMR) to allow us to measure the properties of proton (water) within the 

body. NMR occurs when certain atomic nuclei are placed in a magnetic field and excited 

by radio waves of a particular frequency. The absorbed energy will be re-emitted 
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(resonance) after the source is switched off. In order to produce a 3D image, resonance 

signal must be encoded for each dimension. The encoding in the axial direction is 

accomplished by adding a gradient magnetic field, which results in the linear change of 

Larmor frequency to in the axial direction. Thus, an axial slice is selected. The 2D spatial 

reconstruction in each axial slice is accomplished by spatially varying the frequency (in x-

direction) and phase (in y-direction) of the magnetic field gradient.  The principle 

advantage of MRI is its ability to take high spatial resolution 2D or 3D images of the body. 

The spatial resolution of MRI depends on the desired imaging time.  For fast image 

acquisition, resolution of 2 to 3mm can be obtained and for slow acquisition, resolutions 

of 400um can be obtained. Nevertheless, of resolution, MRI is a truly non-invasive tool 

that has proven safe over millions of examinations. On the other hand, MRI scanners are 

expensive instruments in order to purchase or to maintain. MRI is also a relatively slow 

technique; a high-resolution image requires longer scanning time.  Combined T2 and 

DWI MRI has been used to detect PCa (Gleason score ≥ 6 and diameter > 4 mm) within 

the peripheral zone  [17]. Endo rectal MRI coil also has been developed but it has lower 

sensitivity. [18] 

Positron emission tomography (PET) is a nuclear-based non-invasive imaging 

method to obtain biochemical and molecular information from the body. Since the 

technology is nuclear based radioactive compounds (positron emitters) are needed to be 

injected into the human body. Several forms of radioactive compounds can be injected, 

such as (1) gas (for investigating hemodynamics or oxygen metabolism) (2) ligands, 

(fluorine-18 labeled 2-fluoro-2-deoxy-D-glucose for investigating glucose metabolism) 

and (3) radio labeled receptor agonist or antagonist to investigate specific receptor 

function. The physical phenomenon of PET is known as “annihilation”. Briefly, in an 

unstable nuclide, under the influence of other nucleons the proton is converted into a 
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neutron, a positron and a neutrino. This results in the ejection of the positron and the 

neutrino from the nucleus. The ejected positron carries kinetic energy depending on the 

binding energy in the nucleus and loses it while traveling in the surrounding media. The 

collision between the positron and an electron (in the surrounding media) is called 

annihilation. Due to annihilation, the masses of the two particles have completely turned 

into energy. The energy is divided equally between the two photons (each of 511 keV), 

travelling in the opposite directions. This released photon pair hit the scintillation crystals 

connected with coincidence logic. PCas has been imaged with PET with different types of 

radionuclides. [19,20]  

Considering the advantages of imaging speed, system expense and availability 

of radio nuclides, TRUS remains the first modality of choice for imaging the prostate. On 

the other hand, greyscale ultrasound has an accuracy of only 50–60% with a positive 

predictive value as low as 6% for the detection of PCa. Its accuracy for local staging is 

also relatively poor. 60–70% of cancers are echopoor, but only 17–57% of echopoor foci 

are malignant. 30–40% of cancers are isoechoic and a small percentage is echogenic. 

Out of all  sonographically visible cancers 30% appear as a focal nodule, whereas a focal 

lesion is accompanied by an infiltrative component in 50% and an infiltrative pattern 

predominates in approximately 20% [21]. Since there are no significant biological 

differences noted between isoechoic and hypoechoic PCas, TRUS does not reliably 

differentiate neoplastic from benign tumors. Improving the cancer detection rate using 

TRUS-guided biopsy requires TRUS imaging be augmented or aided with a potentially 

pathognomonic indicator of PCa development that can be detected non-invasively. 

Near infrared light, with wavelengths between 600-1000 nm is harmless for 

imaging thick soft tissue. The main advantage of NIR imaging is providing functional 

properties of the tissue, which can be used to diagnose the tissue. Light absorption and 
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light scattering are the physical phenomena responsible for providing the functional 

information about the tissue. Diffuse optical tomography (DOT) is a non-invasive imaging 

modality which uses near infrared (NIR) light and provide functional images about the 

tissue. Since cancer has more vasculature than the surrounding tissue, hemoglobin-

based absorption in tumors provides optical contrast in DOT. When imaged at multiple 

wavelengths, DOT is capable of measuring chromophores concentrations, such as Oxy-

hemoglobin, deoxy-hemoglobin, and water, ICG etc. Usage of DOT for breast cancer 

detection and diagnosis has been extensively studied for nearly 20 years. For PCa, 

previous ex-vivo studies reported a vasculature gradient in malignant versus benign 

tissue. Several recent studies have shown promise of trans-rectal DOT as a possible 

imaging tool for PCa detection and diagnosis.  

1.3 Rationale of This Thesis 

The strength of diffuse optical tomography is providing functional information 

about tumors and weakness is lack of proving anatomical images. NIR based DOT 

imaging suffers from having a relatively poor spatial resolution, about 1cm. Because 

many immature tumors are small, DOT may not be able to identify them when being used 

clinically as a stand-alone approach. Moreover, PCa measurements are endoscopic the 

weakness of DOT makes the measurements blind folded. We cannot identify the exact 

anatomical location from where the image has been recorded. In order to overcome the 

problem, an optical clip-on type attachment for existing ultrasound transducer need to be 

developed. The advantage of the clip-on type attachment is two folded. First, the 

combination with ultrasound imaging system renders accurate and real-time anatomic 

information to correlate NIR optical system. Second, the available prior information will be 

inducted into the reconstruction algorithm to make it more robust. Although inducing hard 

prior information improves accuracy of reconstructed DOT images, it relies highly on the 
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ability of TRUS to locate the PCa lesion. Given that TRUS has low PCa detection 

accuracy and that each region is assumed homogeneous, the reconstructed DOT images 

of PCa could be erroneous.  Overall, this thesis focuses on (1) development of hybrid 

reconstructive technique by combining or modifying existing reconstruction techniques. 

(2) Development of TRUS compatible optical clip-on probe. (3) Measuring optical 

properties benign and cancer tissues in ex-vivo prostate specimen. (4) Validation of clip-

on probe by utilizing PCa animal models. 

1.4 Organization of This Thesis 

Chapter 1 is a brief introduction of the PCa and commonly used PCa imaging 

and diagnostic methods. In Chapter 2, a review of the NIR diffuse optical tomography 

describes the optical imaging reconstruction algorithm in detail. In chapter 3, a combined 

approach of depth compensation algorithm (DCA) with L1 regularization (DCA-L1) to 

improve the spatial resolution and depth localization of DOT is explored;  Hierarchical 

clustering method (HCM) has been developed to improve the accuracy of image 

reconstruction with limited prior information has been explored in chapter 4.  Chapter 5 

discusses about development of portable diffuse optical imaging system and designing 

the optical clip-on probe for an existing TRUS transducer.  In Chapter 6, optical 

properties of PCa and benign tissues in ex-vivo specimens measured using a frequency 

domain system. Chapter 7 discusses about testing the clip-on probe by using animal 

models. Chapters 8 conclude the thesis and provide directions for future work. 
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Chapter 2  

Methods in Diffuse Optical Tomography 

2.1 Introduction 

When light propagates in biological media, it will interact with the tissue 

constituents. The two fundamental interactions are elastic scattering and absorption, 

which are responsible for determining the photon distribution within the medium. These 

theoretical properties define how the light propagates through the tissue. Absorption 

depends on the presence of endogenous or exogenous chromophores within the 

medium, whereas scattering (elastic) depends on microscopic discontinuities in the 

refractive index of the tissue. When a tissue is irradiated, a stream of discrete photons 

will enter into the tissue. The photons will propagate in their initial direction until they 

strike a scatter, which changes its trajectory and continue to propagate in the tissue until 

it is eventually remitted across a boundary or get absorbed by an absorber. The metrics 

for absorption and scattering are the absorption coefficient (probability per unit length of 

photon being absorbed completely) and scattering coefficient (probability per unit length 

for an elastic scattering event) respectively. In this chapter, fundamentals of diffuse 

optical tomography will be discussed. 

 

 2.2 Optical Absorption  

Optical absorption is a process in which the energy of a photon is taken up by the 

electrons of an atom. Thus, the electromagnetic energy is transformed into internal 

energy of the absorber such as thermal energy. The fundamental transitions in a 

molecule are electronic and vibrational transitions. Electronic transition allows electrons 

to move freely up and down the different energy levels (or quantum states). In vibrational 

transition, the nuclei of the atoms within a molecule vibrate resonantly with wavelengths 

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Electrons
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Internal_energy
http://en.wikipedia.org/wiki/Internal_energy
http://en.wikipedia.org/wiki/Thermal_energy
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in the infrared spectrum. For an optically absorbing medium, the relation between the 

attenuation of light power I and the optical path-length L is given by the following equation 

 
a L

o

I
e

I


  2.1 

Where I is the light intensity after passing through the medium and I0 is the 

incident light intensity, L (mm) is the optical path length, and µa is the absorption 

coefficient (mm-1). Optical absorption is related to the concentration C of those absorbing 

chromophores in the medium, which can be expressed as 
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Equation 2.1 becomes 
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  2.3 

Where 
i

 the extinction coefficient (mm-1/Mol) with respective to different wavelength   

and 
i

c  is the concentration of the species in the medium (Mol).  

 

2.3 Optical Scattering 

Tissues are composed of cells where the intracellular organelles and 

extracellular structures form a complex matrix that macroscopically govern the anatomy 

of the organs. Evidently there exist numerous of different tissue types each with its own 

composition of constituents. For example, connective tissues hold collagen and elastin 

proteins whereas muscular tissues made up of myosin and actin. Irrespective of what 

tissue type, the origin of scattering is due to the variation of refractive index within the 

medium. In addition, the size of the tissue components will affect the scattering.  This fact 
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has rendered the use of scattering-based diagnostic methods to probe morphological 

changes in the tissue.  

 
' b

s
a 


  2.4 

In the theoretical analysis of scattering properties, the tissue components are 

considered as spherically shaped particles. The electromagnetic wave propagation is 

then modeled within the framework of Mie theory. The scattering from one sphere can 

then be described by the radiation caused by a dipole induced through the interaction 

with the incident electromagneticfield. Mie theory can very well describe the scattering 

pattern from a limited number of spheres but the complexity of biological tissues make it 

impractical to adopt in real applications. Then two physical quantities are defined; the 

scattering coefficient and the anisotropy factor
cos( )g 

, where    is the scattering 

angle. 
g

 holds the information about what direction, on average, the light is scattered. 

The composition of tissue renders an anisotropy factor approaching unity meaning that a 

biological medium is forward scattering. In highly scattering tissues, the two quantities are 

combined into the reduced scattering coefficient ( 

'

s


 ).  

 '
(1 )

s s
g  
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2.4 Problems in Diffuse Optical Tomography 

 

Figure 2-1: Figures illustrating forward and inverse problems in diffuse optical 

tomography 

Diffuse optical tomography (DOT) mainly involves solving two problems, which 

are illustrated in Fig. 2-1. If μa and μ's represent the absorption and reduced scattering 

coefficients of tissue, then the forward problem involves generating the boundary data 

(y), for a given set of optical properties (μa and μ's) within the tissue, using a model for 

light transport in tissue. The solving inverse problem involves reconstructing the optical 

properties (μa and μs) given the boundary data (y). Unlike many imaging modalities, such 

as X-ray Computed Tomography (CT), the inverse problem is ill-posed due to dominance 

of light scattering in the tissue over the absorption. Moreover, the inversion problem can 

be seriously under-determined, so solving the inverse problem can involve 

computationally expensive algorithms.  

 
2.4.1 Forward Problem in Diffuse Optical Tomography 

As the electromagnetic wave propagation described by Maxwell’s equations, the 

fundamental forward model for photon transport through diffuse media is the radiative 

transport equation (RTE). The transport theory is a heuristic approach and directly deals 

with the transport of energy through a medium. The transport theory considers only the 

particle nature of light so properties such as Coherence, polarization, interference and 
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non-linearity effects are neglected. Refractive index, absorption coefficient, scattering 

coefficient and anisotropy factor are assumed time-invariant but space variant. The 

derived model is stationary in nature. In a medium, photons are either scattered 

elastically by particles of the medium or absorbed. Next, fundamental quantities such as  

Photon distribution, Radiance, Fluence rate and photon flux is explained. 

Photon distribution 
3

ˆ( , , )[1 / ]N r s t m sr  is the number of photons per unit volume 

at a position r, propagating in direction ŝ  within a solid angle d   at a specific time t . 

Radiance 
2

ˆ( , , ) [ / ]L r s t h cN W m sr   is the power per steradian and per unit 

area where h is Planck's constant, is the frequency of the light and c is the speed of light 

in the medium. 

Fluence rate 
2

4

ˆ( , ) ( , , ) [ / ]r t L r s t dw W m sr



    is the power per unit area at 

a given time at a certain position. It is related to the photon density ([
3

[1 / m ]  ]) through 

 ( , ) (r, t)r t h c     

Figure 2-2: Processes in radiative transport equation 



 

17 
     

            Photon flux 
2

4

ˆ ˆ( , ) ( , , ) [ / ]r t L r s t sdw W m



   is a vector quantity. 

RTE is an energy balance equation that can be calculated by considering a small 

volume V with boundary S and an outward pointing unit normal n̂  . Let N be the photon 

distribution as defined previously. According to the energy conservation principle, 

considered in a direction ŝ , the net change must be equal the difference between the 

inward and outward travelling photons. Within the volume, photons are lost and gained 

through the processes depicted in Fig. 2.2. 

 

The net change of the photon distribution is given by 

 
..

V

N

t


 


  

2.6 

Photon gain 

 

4

) )

ˆ ˆ( , ) ...
s

V V

i ii

qdV c p s s Nd dV



       
2.7 

Here (i) is Photon gain due to sources inside the volume where q is 

3
ˆ( , , ) [1 / ]q r s t sm m sr is the number of photons emitted per unit volume, time and 

steradian. 

(ii) is photon gain due to scattering from a propagation direction ŝ   to the 

direction ŝ where 
s

 is ( ) [1 / ]
s

r m m  is the scattering coefficient.  

Photon loss 
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) ) )

ˆ ˆ
s a

s V V

iii iv v

cNsnds c NdV c NdV       
2.8 

Photon loss due to photons crossing the boundary. Here Gauss' theorem has 

been utilized so that the surface integral can be transferred to a volume integral 

according to 

 ˆ ˆ ˆ

s V

cN snds c N sdV       
2.9 

Photon loss due to scattering is photon gain due to absorption from a 

propagation direction where 
a

 is ( ) [1 / ]
a

r m m  is the absorption coefficient. 

'

4

ˆ1 ( , , )
ˆ ˆ ˆ. ( , , ) ( ) ( , , ) ...

ˆ ˆ ˆ ˆ................................. ( , , ) ( , ) ( , , )

a s

L r s t
L r s t s L r s t

c t

L r s t p s s S r s t



 


    



 2.10 

The scattering phase function 
'
ˆ ˆ(s , s)p  describes the probability for scattering in 

any direction. It is a function of the angle between the incoming propagation direction ˆ( )s   

and the scattered propagation direction
'
ˆ( )s . Hence 

'
ˆ ˆ(s , s) ( )p p  where    is the 

scattering angle. The simplest choice of ( )p   is the isotropic phase function, i.e 

 
1

( )
4

p 


  2.11 

Photons affected by a scattering phase function of the form in Equation (2.11) will 

have equal probability to scatter in any direction. Biological tissues are forward scattering. 

Hence the scattering phase function should adopt another form. There exist several 

alternatives but the most commonly applied is the Heyney-Greenstein phase function 
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2
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2.12 

 

In Equation (2.12) the scattering anisotropy factor is defined through

cos( )g 
, meaning the average of the cosine of the scattering angle. Solving the 

RTE implies finding the radiance in every location as well as every direction of an 

arbitrary object. Due to limited computational power, RTE should be simplified. 

The standard method for simplifying the radiative transport equation is to expand 

radiance, source term and phase function into an infinite series of spherical harmonics. 

Then infinite series will the coupled into Equation (2.10) resulting infinite set of coupled 

equations. In the first order (P1) approximation, spherical harmonics are truncated at the 

first degree, resulting in the following equation, 

 
1 1

ˆ( , , ) ( , ) ( , )
4 4

L r s t r t F r t s
 

     2.13 

The first term on the RHS in Equation (2.13) is isotropic and the second term is 

linearly anisotropic. Utilizing P1 approximation implies that light does not have any 

directionality and considered as diffused light. Inserting equation 2.13 in RTE results in 

the following coupled equations, 

 0

1
a

F q
c t
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In the above equation 
'

(1 )
s s

g    and by assuming (i) only isotropic sources 

exist (implies 
1

q =0) and (ii) Temporal change in the flux is negligible 0
F

t





results in 

'

s a
   

 '

1

3( )
a s

F D
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Substituting the equation 2.16 into equation 2.15 results in to the diffusion equation 

 

 
         0

,1
, , ,

a

r t
D r r t r r t q r t

c t





     



 

2.17 

By performing the Fourier transform in time ( i
t







) of this equation 2.17 , the 

frequency domain diffusion equation is obtained, 

          0

1
, , , ,

a
i r t D r t r r t q r t

c
        2.18 

Rearranging the terms in the above equation results in 

          0
, , ,

a

i
D r r t r t r q r t

c




 
      

 
 2.19 

The above equations can be solved using (1) Analytical methods (2) Monte-carlo 

methods or (3) Numerical methods. 

Analytical Methods:  Equations 2.18 and 2.19 can be solved analytically using 

Green’s function approach. A Green’s function is the solution when the source is treated 

as spatial and temporal delta-function. The solutions for extended sources can be derived 

by convolution of these Green’s functions with the source distributions and are easy to 

compute. The main problem with this method is that the solutions only exist for simple 
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homogeneous geometries or for media that include a single spherical perturbation. In 

some cases like layered slab media, these solutions were derived for time-domain DE. 

Monte-Carlo Methods: The Monte-Carlo (MC) simulation is one of the stochastic 

methods used for modeling transport of photons through tissue, such as random walk or 

Markov-chain models. Practically the photons are treated as photon packages with an 

initial weight. When launched into the scattering medium the propagation direction is 

sampled from a distribution given by the scattering phase function. The photon is then 

moved a step with length. After the move, the weight is decreased by a fraction whereas 

the leftover is logged as absorption. This process continues until the photon escapes a 

boundary or the weight is too small. When the latter occurs either the photon package is 

terminated or it is given a certain probability to survive. If the photon survives, the weight 

is increased and the propagation continues. A large number, usually 6-10 millions, of 

photons are required to extract statistically meaningful average quantities such as 

amplitude and phase in the frequency-domain case. The main advantage of using MC in 

the forward model is that it is equivalent to solving the RTE. The drawback of these 

approaches is that they involve more computational time than Analytical or Numerical 

methods. 

Numerical Methods: The Finite Element Method (FEM) is extensively applied to 

various engineering problems such as fluid mechanics, structural mechanics and electro-

magnetism.  The methods covered under these techniques include the Finite Difference 

Method (FDM), finite volume method (FVM), Finite Element Method (FEM), and boundary 

element method (BEM). Among these FEM is the most popular choice for solving the 

forward problem in complex cases, like prostate, with irregular boundaries. Classically, 

FEM has been the popular methods to solve the DOT forward problem. Finite element 

method is a numerical method to solve partial differential equation characterized by 
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boundary conditions for complex geometries. The geometrical domain is discretized 

using sub-domain elements (e.g. triangular elements for 2D geometries). The unknown 

variable is represented as coefficients in a shape function basis representation. Now, 

linear matrix equations in these unknown coefficients are obtained using variational or 

weighted residual schemes. In weighted residual Galerkin scheme, the weight functions 

are shape functions themselves. Matrices have been formed for each individual element 

and are assembled to construct the global system matrix, which is solved by conjugate 

gradient method. (In this work, open source software has been used to solve FEM) The 

diffusion equation and boundary condition is described as 

  ( ) ( ) ( r) ( ) s( )
a

r r r r       2.20 

 

 ˆ( ) 2 A ( ) ( ) a 4 ( )
n s

r r r r        2.21 

After application of the Galerkin approach, the resulting equation can be written in matrix 

form as, 

 ( ( ) C( ) )
a

F q B        2.22 

Where, 
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    2.27 

 

2.4.2 Inverse Problem in Diffuse Optical Tomography 

The DOT inverse problem involves reconstructing the optical properties from the 

boundary data (Figure 2-1). The inverse problem in DOT is solved by minimizing an 

objective function (Ω) over the range of optical properties (μ) in the least squares (LS) 

sense.  LS minimization has the effect of reducing high frequency noise, leading to 

smooth images of optical properties. The next subsection extensively discusses these 

minimization techniques, giving the mathematical framework. 

The objective function for the DOT problem can be defined by the following cost function 

 
2

|| ( ) ||F  y μ  2.28 

where y is the experimental data and F(μ) is the modeled data.  F represents a 

function/governing equation which defines the propagation of light in the tissue. For 

convenience, we also define     

 ( )F  y μ  2.29 

 Writing equation 2.29 in matrix notation 

 ( ))( ( ))
T

F F y (μ y μ  2.30 

Transpose respects addition or subtraction 

 
2 2

( ) ( ) ( ))
T T

y F F F   (μ y y μ  2.31 
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The second and third terms of the above equation are equal (a 1X1 matrix and 

always symmetric) and can be replaced with 2 ( )
T

yF   so the equation above 

becomes 

 
2 2

2 ( ) ( ))  
T

y yF F    2.32 

The above equation is minimized by setting the first order derivative equal to 

zero. 

 
) ( )

( 2 2 ( ) ) 0    

T T
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 2.33 
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2 ( ( )) 0
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F (μ
y μ  

2.34 

 ( ( )) 0
T

F J y μ  2.35 

Making a substitution from equation 2.29 in 2.35  gives 0  
T
 J                              2.36 

Next, Imagine a sequence of approximations to μ represented by μi, then using a 

Taylor series on F(μi) and expanding around μi−1 gives(For convenience) 

 
' ''

1 1

1
( ) ( ) ( ) ) ) .....

2

T
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F F F F

 
      

0 0
μ μ μ μ (μ μ (μ μ  

2.3

7 

Ignoring higher-order terms and linearizing Eq. (2.37) 

 1 1
( ) ( ) ( )

i i i i
F F

 
  μ μ J μ μ  2.38 

Equation (2.29) can be written in iterative form as 

 ( )
i i

F  y μ  2.39 

Substituting (2.38) in (2.39) 

 1 1
( ) ( ))

i i i i
F

 
   y μ J μ μ  2.40 

Multiplying 
T

J on both sides              
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1 1
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T T
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   J J y μ J μ μ  2.41 

From equation 2.36  0  
T
 J  so Equation 2.41becomes  

 
1 1

0 ( ( ) ( ))
T
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Making substitution             

 
1

T T

i i
 


 J J J  2.44 

Typically 
T

J J  is ill conditioned, a diagonal term is added to stabilize the iteration.  

 
1

( )
T T

i i
  


  J J J I  2.45 

where 
i

   is the update for the parameter in the i
th
 step. In practice,   monotonically 

decreases with iterations (always > 0). It is important to note that 
T

J J  is always 

symmetric, since
T T T T T T

(J J) = J (J ) = J J .  
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It is also important to realize that in frequency domain reconstruction, for simultaneous 

reconstruction of D and μa,  Jacobian takes the form of Eq. 2.46 [22]. In CW, case 

Jacobian takes the form of Eq. 2.47 
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 2.47 

The initial guess (
0

 ) should be close to the actual solution. Even though 
T

J J  is not 

positive definite (numerically, it is almost singular) in DOT due to the ill-conditioned 

nature of the problem, the LM approach has been used successfully in a number of 

instances.  

2.4.3 Inclusion of Spatial-Priors in the Inverse Problem 

 Because of the interest in using spatial information derived from conventional 

imaging modalities in the DOT inverse problem, a number of methods have been 

presented in the literature. This multimodality optical imaging, for example, combining 

MRI with NIR, can provide high-resolution functional images, especially, for breast cancer 

imaging. These multimodal image reconstruction techniques were initially proposed by 

Schweiger et al  [23]and used in to improve the quantitative outcome of reconstructed 

images. Li et al  [24] used an X-ray tomosynthesis volume to segment the breast into 

different sub-regions and used different regularization parameters depending on the size 

of the sub-regions.. Pogue and Paulsen  [25], Brooksby et al [26], Yalavarthy et al  [27] 

have extended these approaches for the use of anatomical prior information in which, 

depending on the connectivity and size of the sub-region, the regularization term was 
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scaled.  Xu et al [28]. studied the combined TRUS and DOT approach for imaging PCa 

using the anatomical information from ultrasound to reduce the number of unknowns in 

the DOT image reconstruction. Overall, the LS minimization schemes using spatial priors 

can be broadly classified into two approaches. (1) Soft-Priors (2) Hard-Priors. The 

following two subsections will discuss these two approaches. 

Soft priors approach mainly uses Tikhonov minimization scheme, in which the L-matrix 

encodes spatial information. Since soft priors approach is out of scope of this thesis, I am 

not discussing about the technique. The mathematical details can be found in [29]. 

Reduction of parameter space to the number of regions segmented from a high 

resolution imaging modality is known as hard-priors [30]. The estimation optical 

properties (D and μa) in this procedure are performed through LM minimization. The 

update equation in this case is given by Eq. 2.16, with Jacobian (J) having dimension of 

(2*NM) x (2*NR) instead of (2*NM) x (2*NN). In here, NM, NN and NR represent the 

number of measurements, number of FEM nodes, and number of regions, respectively. 

The multiplication factor 2 in the dimensions results from the treatment of amplitude and 

phase separately for the frequency-domain signal, and the estimated parameters being D 

and μa. The main advantages of this method are: The problem is well-determined, which 

also implies J
T
 J is positive definite and computationally efficient. The limitations include: 

The effect of error or uncertainty in the spatial priors may be amplified by the Technique. 

The DOT problem may still be ill-posed (and ill-conditioned) after the constraints  are 

added. 

2.4.4 Stopping Criterion 

The importance of the stopping criterion in an iterative procedure is very high. In 

any non- linear least-squares based algorithm, experimental data (y) are matched with 

modeled data (G (μ)) iteratively within the limit approaching a preset value, which is 
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based on the expected noise level in y. Another approach is to base the stopping criterion 

on the first-order condition, which in the limit ensures that the problem has reached the 

global minima. The iterative procedure is stopped when the L2-norm of the data-model 

misfit (δ) does not improve by more than a certain percentage (in this work, from 20% to 

2%). Most usually, the stopping criterion based on the L2-norm of the data-model misfit 

(δ) is used mainly due to the computational cost required in finding the L2-norm of first 

order condition. 

2.5 Conclusion 

In this chapter, basics of diffuse optical tomography have been extensively 

discussed. Diffuse optical tomography (DOT) mainly involves solving forward and inverse 

problems.  The forward problem involves generating the boundary data, for a given set of 

optical properties within the tissue, using a model for light transport in tissue. The solving 

inverse problem involves reconstructing the optical properties given the boundary data. In 

next two chapters, modification of jacobian matrices will be discussed. 
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Chapter 3  

Enhancing Resolution of DOT with Sparse Regularization and Depth Compensation 

3.1 Introduction 

In this study, a combined approach of depth compensation algorithm DCA with 

L1 regularization (DCA-L1) to improve the spatial resolution and depth localization of 

DOT has been explored. In the combined approach, the reconstructed images are 

obtained by using L1 regularization technique after modifying the Jacobian or sensitivity 

matrix by DCA. Specifically, to validate the proposed the DCA-L1 approach, I conducted 

laboratory phantom experiments using (1) a fiber-based, multichannel DOT system and 

(2) a camera-based DOT imaging system. Then, a comparison of the reconstructed DOT 

images using DCA-L1 and DCA with L2 regularization (DCA-L2), has been made by 

using the following metrics. (1) Volume ratio and (2) contrast to noise ratio (CNR). After 

the validation with the phantom experiments, the usefulness of the DCA-L1 method has 

been further demonstrated by using experimental results taken from a human brain 

measurement under a finger-tapping protocol. By the end of this chapter, it is concluded 

that DCA combined with L1 regularization outperforms L2 regularization for DOT image 

reconstruction.  

3.2 Methods 

3.2.1 Depth compensation method (DCA) 

The number of photons decreases dramatically with the increase in propagation 

depth, leading to the measurement sensitivity in deep tissue significantly lower than that 

in superficial tissue. The lower measurement sensitivity for deeper layers results in poor 

depth resolution and biases reconstructed images towards the superficial layers. In order 

to overcome this problem, weighted matrix M  [31] was introduced and calculated, 

providing a pseudo-exponential increase in magnitude with depth, to compensate the 
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sensitivity of A in deeper layers. Unlike other spatially variant regularization (SVR) 

methods  [26] which modify the penalty term of regularization, the weighted matrix M is 

introduced to directly compensate the sensitivity matrix A. Specifically, the weight matrix 

M is formed as:   
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3.1 

 

Where  i
M A to  L

M A represents the maximum singular values for measurement 

sensitivities within the particular layer i, which is decomposed from the forward matrix A;  

is an adjustable power and varies between 0 and 3. From the equation 3.1, it is clear that 

the maximum singular values are arranged inversely with respect to the matrix A, namely, 

by the order from the bottom to surface, providing the maximum counterbalance for the 

deepest layer and vice versa. According to the previous studies, =1.2-1.6 [32] is 

considered to be appropriate for high-quality DOT images to recover embedded objects 

in deep tissue. In this study, I used a medium  value of 1.3.  The adjusted sensitivity 

matrix A
#
 is defined as A

#
=AM; the modified inverse problem is given by 

 
#

.y A x  3.2 

 

3.2.2 Combination of DCA with L2 Regularization 

Similar to conventional matrix A, A
# 
is also under-determined and ill-posed, 

because the number of measurements are usually much fewer than the number of voxels 
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to be reconstructed, as given in Equation 3.3 . Regularization techniques are often 

needed to stabilize the inversion of Equation 3.3. In addition, to overcome the ill-posed 

inverse problem.  

       In general, regularization techniques involve an addition of a second term 

that can be adjusted to minimize image artifacts from experimental noise by controlling a 

regularization parameter at the cost of reducing image spatial resolution. In DOT, the 

conventional form of regularization used is the L2 norm. Specifically, to solve Eq. (3.3), 

L2 least squares formulation for DOT can be given as: 

 
2 2#

22
min ,A x y x   3.3 

where  >0 is the regularization parameter and 
2

2  
denotes L2 norm. Eq. (3.3),  has an 

analytical solution, which can be solved directly or iteratively  [33,34] as given by
   

    
1 1

# # # # # #

max
,

T T
T T

x A A A I y A A A S I y 
 

     3.4 

where I is the identity matrix, Smax is the maximum eigenvalue of 
# #

T

A A , and α is 

usually set in the range of 10
-3

 to 10
-1

 to suppress the measurement noise and stabilize 

the solution. While L2 norm regularization is an effective means of achieving stable 

solutions for the inverse problem and increasing predictive performance, it doesn’t 

promote sparse, sharp-edge solutions.  

 

3.2.3 Combination of DCA with L1 Regularization 

On the other hand, L1 regularization promotes sparse solutions and has been 

reported for its uses [35,36]. As mentioned earlier, L1 regularization has also been 

studied for DOT, showing improvements in spatial resolution for sharper-edge images. 

The objective function of L1-regularized least squares is given by: 
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2

#

12
min ,A x y x   3.5 

where 
1  

denotes L1 norm. In general, Eq. (3.5) does not have any analytical solution; 

the quality of the regularized solution depends on the choice of the regularization 

parameter, which was often selected manually. Also, the quality of reconstructed images 

depends on the user’s judgment. Several automatic methods, such as L-curve method, 

generalized cross validation method, and Morozov disperency principle, all were reported 

in [37,38] for this particular task. In this work, I do not intend to develop any new 

methodology for L1 regularization. Instead, I applied the already developed knowledge 

and methodology of L1 regularization to DOT image reconstruction. Specifically, I utilized 

the same approach as that reported by ref.  [39]
 
to solve the objective function with L1 

regularization. While the details can be found in  [39], I explain the basis of L1 

regularization and how I executed it briefly as follows.  

 

Figure 3-1: A schematic illustration of how different regularization terms lead to sparse 

and non-sparse solutions (A) L1 regularization corresponds to the diamond shaped ball 

centered on the origin. (B) L2 regularization corresponds to the spherical ball centered on 

the origin. 
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Figure 3-1 provides a geometric intuition of why L1 and L2 regularization lead to 

sparse and non-sparse solutions, respectively. The solution of L1 or L2 regularized least 

squares is the intersection of the regularization geometry and a hyper-plane. Figure 3-1 

shows the L1 regularization corresponds to the diamond shaped ball centered at the 

origin. As regularization parameter λ increases, the L1 ball grows and the solution is the 

point when it hits the hyper-plane. Given the geometry of L1 ball, the solution is more 

likely to be sparse. Figure 3B shows the L2 regularized logistic regression, where the 

geometry of the L2 ball is a sphere, therefore leading to a non-sparse solution. We can 

apply same intuition in DOT by considering x1 and x2 as two variable in the vector x of 

Eq. (3.2). 

In Equation 3.5, A# is the modified sensitivity matrix or Jacobian after 

incorporating DCA into the objective function, y is the measurement matrix with 

dimension of NM×1, and λ is the regularization parameter. Eq. (3.5) doesn’t have an 

analytical solution, but can be transformed into a convex quadratic form, which can be 

solved by standard convex optimization methods, such as interior point methods [39], as 

given below: 

 

2
#

2
1

m in ;

    ,  1, 2,

n

i

i

i i i

A x y u

subject to - u x u i n




 

  


 3.6 

where the new variable
n

u R  provides constraints on x. Next, adding 

logarithmic barrier penalties results in: 

http://journal.frontiersin.org/Journal/10.3389/fpsyg.2013.00161/full#F3
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2

#
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log log .

n n n

i i i i i

i i i

t A x y t u u x u x
  

         3.7 

As t varies from 0 to ∞, Eq. (10) converges to an optimal point.  Eq. (10) reaches 

the optimal point by utilizing Newton’s steps, NSNewton, and searching directions by pre-

conjugate gradient (PCaG) method [23]. Both the number of iterations in PCaG, NIPCaG, 

and NTNewton have a significant impact on the reconstructed images.   

 

3.2.3 Implementation of Combined DCA with L1 Regularization 

Given all the needed mathematical information, our steps to implement the 

combined DCA-L1 algorithm are described below:  

(a) Generate A matrix from PMI (Photon Migration Imaging) toolbox  [40]; 

(b) Modify A matrix to generate the combined matrix of A#=AM according 

toDCA. 

(c) For image reconstruction using L2 regularization, I utilized PMI toolbox  [40]; 

(d) For image reconstruction using L1 regularization, I utilized L1-LS toolbox [41]. 

(e)  

      For step 4, with some modification, the L1-LS function can be expressed as 

x= l1_ls (A#, y, , NIPCaG, NSNewton), where x is a vector of NV×1 to cover the 3D 

image volume, y is again the measurement vector containing the observed data,   is the 

regularization parameter, NPCaG are the number of iterations in prec-conjugate gradient 

method PCaG, NSNewton is no of steps in newton’s minimization. 

The reason I chose utilizing L1-LS toolbox was that it has been developed, tested, and 

supported by its publication  [39], as well as it has the capability to handle a large set of 

3D data and to have a fast computational speed.  In practice, I had to address how to 

determine critical empirical parameters during the regularization process: they were (1) 
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the regularization parameter,  (2) the value of gamma, , for the weight matrix M, (3) the 

number of iterations in PCaG, NIPCaG, and (4) Newton’s steps, NSNewton. The optimal 

selection of these four parameters determined the final quality of reconstructed DOT 

images. Based on literature,  values of 0.1-0.01 were usually chosen, depending on 

experimental noise levels. Based on our own studies  [31,31,32],   values between 1.2-

1.6 were appropriate in order to accurately recover embedded objects in deep tissue. The 

key issue in DCA-L1 algorithm was how to choose NIPCaG and NSNewton. In this study, 

I finally selected NIPCaG and NSNewton to be 60 and 15, based on trial and error. The 

ranges used to choose appropriate values of NIPCaG and NSNewton in the trials were 

set 20-100 and 10-20, with an increment of 10 and 1, respectively. Specifically, the 

volume ratio (VR) between the reconstructed and actual objects was calculated for 

several trails. A large VR served as a good performance criterion since VR was ideally 

expected to be close to “1”. In this way, the selected values of NIPCaG=60 and 

NSNewton=15 provided us with an optimal VR in our current study. Note that while 

running the trials to determine optimal values for NIPCaG and NSNewton, values of λ 

and  has been fixed to be to be 0.01 and 1.3, respectively.  

3.3 Experiments  

I utilized laboratory tissue phantoms in order to assess the performance of both 

DCA-L1 and DCA-L2 regularizations. An optical fiber-based and a CCD-camera-based 

imager imaged two absorbers embedded inside the tissue phantom. Volumetric image 

reconstruction was performed using both regularizations. Finally, the reconstructed 

images were compared and quantified on the basis of VR  [42,43] and Contrast to Noise 

Ratio (CNR) [42,44]. 
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3.3.1 Fiber-Based DOT Imager 

The laboratory experiment was performed by utilizing a 32-channel, continuous-

wave DOT imager [45] (DYNOT, NIRx Medical Technologies). The system delivers and 

collects two wavelengths of Laser at 760 nm and 830 nm, sequentially from each optical 

fiber. For the study, 25 bifurcated optodes were utilized and arranged as a square array 

of 5x5 (with a separation of 1.4 cm in both x and y direction), which was placed on the 

surface of the phantom (see Fig. 3-2). The data was selected from the first to sixth 

nearest S-D pairs (188 measurements) and used for image reconstruction. Our DOT 

measurement results were wavelength independent since the embedded objects were 

made with a low concentration of diluted black ink with a flat absorption spectrum. Thus, I 

utilized the data taken only from 830 nm for image reconstruction.  

 

Figure 3-2: Experimental setup showing the locations of absorbers, bifurcated source-

detector configuration and slices used for image reconstruction. 
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A liquid tissue-mimicking phantom was prepared by filling a container of 

dimensions of 15x10x10 cm
3
 with 1% Intralipid solution. This solution served as the 

homogeneous background medium with an absorption coefficient (µa) of 0.08 cm
−1

 and 

reduced scattering coefficient ( ) of 8.8 cm
−1

. Two spherical absorbers (µa = 0.3 cm
-1

) 

of 1-cm diameter were placed at 3-cm depth around the center of optode array from the 

surface of container and separated by 3 cm, as shown in Fig. 3-2(a). 

Volumetric image reconstruction was performed with the dimensions of x = -4 cm 

to 4 cm, y = -4 cm to 4 cm, and z = 0 to -5 cm. The voxel size of the reconstructed 

images was set to be 0.1x0.1x0.1 cm
3
. After reconstruction, the resultant images were 

sliced along both lateral cross section and depth cross section separately to show the 

locations of the absorbers. The dotted lines in Fig. 3.2(a) outline the slices of both lateral 

(XY plane at Z=-3) and vertical cross section (XZ plane). All reconstructed images were 

normalized between 0 and 1 for comparison.  

 

3.3.2 Camera-Based DOT Imager 

Using a fiber-based DOT system has several advantages, such as being 

compatible with different geometry and shape of a measured organ as well as having low 

noise because of direct contact of fibers on the tissue surface. However, a limited surface 

area on small animals is often a constraint to place many fiber optodes, and thus restricts 

the spatial resolution of reconstructed images. In recent years, CCD cameras have been 

commonly used as multichannel detectors since they can serve as a detector array with 

possible thousands of virtual detectors and cover a wide field of view (FOV). Moreover, a 

CCD-camera-based DOT system is simpler and more portable with lower cost, as 

compared to a fiber-based, multichannel, DOT system.  

'

s
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      Our CCD-camera-based DOT system consisted of an optical multiplexor 

(Avantes Inc. Multiplexor Channels 1x16) to deliver light at multiple locations and a 12-bit 

CCD camera (SamBa Q34 with Navitar Zoom 7000 lens) to serve as the detector. The 

field-of-view (FOV) of the camera was set to be 1311 mm2. A broadband white light 

source (Illumination Technologies, Inc. Model 3900, quartz-tungsten halogen lamp) was 

connected to the multiplexor. Eight source fibers coming out from the multiplexor were 

arranged on the phantom surface (as shown in Fig. 3.3) to deliver the optical signals; the 

CCD camera placed above the phantom surface captured the diffuse reflectance signals. 

The total FOV was divided into 143 (13 columns 11 rows) virtual detectors, while each 

virtual detector had 3838 pixels. Total 8 (sources) x143 (virtual detectors) 

measurements were grouped and used to perform DOT image reconstructions.  

 

Figure 3-3: (a) Experimental setup; (b) light sources and CCD-camera configuration 

used. 

Similar to the fiber-based DOT experiment, an intralipid solution was used to 

create the liquid tissue phantom with background optical properties of a =0.1 cm
-1

 and 

=10 cm
-1

. Two spherical absorbers of 8-mm in diameter were embedded at a depth of '

s
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2 cm below the liquid surface and separated by 2.5 cm; the two absorbers had a 3:1 

contrast ratio in absorption between the absorbers and background.     

     The volumetric images were reconstructed with dimension of x = -2 to 2 cm, y 

= -2 to 2 cm, and z = 0 to -3 cm. The voxel size of the reconstructed images was 

0.1x0.1x0.1 cm
3
, being the same as that in the fiber-based imaging case. Then, I sliced 

reconstructed images along lateral cross section (XY-plane at Z=-2mm) and depth cross 

section (XZ plane) to show the locations of the reconstructed absorbers. Reconstructed 

images were normalized between 0 and 1 for comparison. 

 

 3.3.3 Measurement Metrics 

The reconstruction performances using both L1 and L2 regularizations were 

quantified by two measurement metrics: (1) VR  and (2) CNR. Specifically, VR is the ratio 

of the reconstructed volume of absorber to the true volume of absorber. The volume of 

the reconstructed absorber was defined as the total volume of the voxels whose 

reconstructed µa values are above 50% of the maximum µa in the reconstructed image.  

      CNR indicates whether the reconstructed object can be clearly distinguished 

from the background. To calculate CNR, two regions, which are the volume of interest 

(VOI) and volume of background (VOB), were derived from the reconstructed image. VOI 

was defined by the location and size of the actual reconstructed object. VOB was defined 

by the remaining volume of the image. The CNR can be calculated by: 

 1
2 2 2
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3.8 

where wVOI and wVOB are the weight factor of the VOI and VOB relative to the 

entire volume (i.e., VOI or VOB divided by the entire volume), μVOI and μVOB are the 

mean values of µa in the object and background volumes in a 3D reconstructed image, 
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and σVOI and σVOB are the standard deviations of the two regions. In general, a high-

quality reconstructed image possesses a VR value close to 1 and a high CNR value. 

 

3.4 Results 

3.4.1 Results from Tissue Phantom experiments 

The reconstructed DOT images from the fiber-based measurement are shown in 

Fig. 3-5. Figures 3-5 (a) and 3-5 (b) show the results using DCA-L1, along the vertical 

cross section (XZ plane at Y=0) and lateral cross section (XY plane at Z=-3 cm), 

respectively. Figures 3-5 (c) and 3-5 (d) show the results using DCA-L2, along the same 

vertical (XZ plane at Y=0) and lateral cross section (XY plane at Z=-3 cm), respectively. 

Figures 3-5 (a) and 3-5 (b) clearly reveal that L1-regularization makes the reconstructed 

absorbers well matched with the real absorbers in size and location. On the other hand, 

Figs. 3-5 (c) and 3-5 (d) clearly depict that the reconstructed images with L2-

regularization are more blurry and diffused, as compared with the images obtained using 

DCA-L1. These two figures also exhibit that the size of the reconstructed absorbers are 

larger than their expected sizes (1cm diameter).  
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Figure 3-4 Reconstructed images of two objects placed symmetrically around the center 

of X-Y plane and at Z= -3 cm (See Fig. 1 for geometry details). (a) and (b) were obtained 

with DCA-L1 and plotted in X-Z and X-Y plane, respectively; (c) and (d) were obtained 

with DCA-L2 and also plotted in X-Z and X-Y plane, respectively; (e) and (f) were 

obtained with L1 only and also plotted in X-Z and X-Y plane, respectively. The dashed 

circles in each panel indicate the true size and location of the absorbers to be 

reconstructed. The reconstructed images are normalized between 0 and 1. 

 

For comparison, we also reconstructed volumetric DOT images using L1 

regularization without DCA, as shown in Figs. 3-5(e) and 3-5(f). These two figures 

noticeably illustrate that L1 regularization alone does not compensate the severe 

attenuation of measurement sensitivity with increased depth while it does greatly reduce 

blurry effects on the lateral plane (i.e., XY plane) of the image. This set of results are 
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expected since L1-regularization promotes sparsity enhanced image reconstruction, but 

does not specifically regularize or counterbalance the noise level along depth. 

 

 

Figure 3-5: Reconstructed images of two objects placed symmetrically around the center 

of X-Y plane and at Z= -2 cm (see Fig. 2 for the measurement geometry setup). (a) and 

(b) were obtained with DCA-L1 regularization, in X-Z and X-Y plane, respectively; (c) and 

(d) were obtained with DCA-L2 regularization and also plotted in X-Z and X-Y plane, 

respectively. The dashed circles in each panel indicate the true size and location of the 

absorbers to be reconstructed. The reconstructed images are normalized between 0 and 

1. 

The data collected by the CCD-camera-based imager was also analyzed to form 

DOT images, as shown in Fig. 3-6. Figures 3-6(a) and 3-6(b) were obtained using DCA-

L2, while Figs. 3-6(c) and 3-6(d) were reconstructed with DCA-L1. It is clearly seen that 

the two reconstructed absorbers in Figs. 3-6(a) and 3-6(b) are completely separate, while 

the reconstructed absorbers by L2 regularization [Figs. 3-6(c) and 3-6(d)] are more blurry 
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and diffused. Moreover, the vertical cross-section plot in Fig. 3-6(c) illustrates that the two 

reconstructed objects generated by L2 regularization are more distorted in their shape 

and also pulled toward the center. This can be explained by the fact that the number of 

overlapping sets of measurements is relatively higher at the center than at periphery 

regions. Namely, the measurement sensitivities at the center are relatively higher. 

However, Fig. 3-6(a) depicts better shapes and locations of the reconstructed absorbers 

with respect to the true objects (dashed circles in the figure). Note that the artifacts seen 

in Fig. 3-6(c) near the superficial layers (from -0.5 cm to -1 cm) are significantly reduced 

in Fig. 3-6( (a). 

In addition, Table 1 lists VRs and CNRs between the two reconstructed 

absorbers with respect to the actual ones. Those ratios were calculated for both DCA-L1 

and DCA-L2 methods and for each of the fiber-based and camera-based DOT imaging 

systems. In case of the fiber-based imager, it is clearly seen that the VRs of the two 

absorbers resulting from DCA-L2 are very high, 8-12 times bigger than “1”, indicating that 

the reconstructed absorbers are 8-10 times larger in their volume than the actual 

absorbers. On the contrary, DCA-L1 gives rise to the VRs of both absorbers to be close 

to 1 (i.e., 0.86 and 1.25). Moreover, DCA-L1 leads to a CNR to be 2-3 times better than 

DCA-L2. In case of camera-based DOT measurement, DCA-L1 still provides 2 times 

better in VRs and CNRs, as compared to DCA-L2 regularization.  

 

Table 3-1: comparison of DCA-L1 versus DCA-L2 algorithm 

 L1-regulariztion L2-regulariztion 

 Fiber-based camera-based Fiber-based camera-based 

VR(absorber1, absorber2) (1.25, 0.86) (3.68, 1.63) (12.03, 8.5) (7.14, 5.71) 

CNR 14.45 10.86 5.99 5.74 
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Overall, the results taken from tissue phantom studies with both fiber-based and 

camera-based DOT systems confirm that DCA-L1 surely outperforms DCA-L2, improving 

greatly the spatial resolution and depth localization in volumetric DOT. Next, we wish to 

demonstrate the usefulness of DCA-L1 using actual human brain measurement data, as 

an example. 

 

3.5 Applications of DCA-L1 Method for Human Brain in-vivo Measurements 

The phantom study provided us with an accurate and quantitative means to 

compare the performance between DCA-L1 and DCA-L2 and to validate that DCA-L1 

outperforms DCA-L2. Then, I wished to demonstrate improved quality of DOT images by 

DCA-L1 using actual functional brain imaging data taken from human in vivo 

measurements, as an example. Specifically, I chose to image the motor cortex with our 

DOT while having the human subject perform a motor task (i.e., finger-tapping task) as a 

brain stimulation protocol. The reason to choose the motor task for assessing DOT was 

that this protocol has been studied intensively with either single-channel or multichannel 

near infrared spectroscopy (NIRS) by many research groups over the last decade. 

According to ref. [46], there were more than 180 papers published in this area. Thus, 

temporal and spatial patterns of DOT images in response to finger tapping tasks are well 

known and adequately published. Such knowledge could help us determine and verify 

whether our reconstructed DOT images were accurate with improved spatial resolution.  

      In the actual human measurements, I followed the protocol which was 

previously reported in  [47] for the human brain measurements. Briefly, the subject was 

instructed to simultaneously tap four fingers (except thumb) up and down without moving 

the wrist and arm. For reliability, the subject watched a video clip of finger tapping at a 

frequency of ~1.5 Hz while being asked to follow the same rhythm. Specifically, an epoch 
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of 15 seconds of tapping and 25 seconds of rest was repeated 10 times in each session. 

A 30-second, pre-session baseline and a 20-second, post-session baseline were also 

recorded. Before a formal session, the subject was instructed to perform a practice 

session.  The experimental protocol has been approved by the Institution Review board 

of the University of Texas at Arlington and the University of Texas Southwestern Medical 

Center at Dallas.  

     For data acquisition from the sensorimotor cortex, a multichannel, continuous-wave 

NIRS system (CW-5, Techen Inc., Milford, MA) [48] was used. As shown in Fig. 3, eight 

sources and sixteen detectors were used for a bilateral imaging scan. The sources were 

designed to emit light at 690 nm and at 830 nm, since two wavelengths were required to 

calculate changes in concentrations of oxy- and deoxy- hemoglobin (ΔHbO and ΔHbR) 

[49,50]. The source and detector optodes were arranged in such a way that they covered 

an area of ~8×5.2 cm2 on each lateral side of the subject’s head and provided a total of 

28 nearest S-D channels at a nearest S-D distance of 3.0 cm, as marked in Fig. 3(b). 

It has been reported that a high-density probe array used in DOT would greatly improve 

DOT spatial resolution [51]. In the meantime, our recent study using laboratory phantom 

measurements has revealed that the quality of reconstructed DOT images depends on 

the measurement density asymptotically, having an optimal point for measurement 

density beyond which more overlapping measurements would not significantly improve 

the quality of reconstructed images  [42]. Based on the conclusion from ref.  [42] , we 

decided to utilize the probe geometry shown in Figure 3-6 since it would provide us with a 

moderate spatial resolution while the setup time to place the probe array on the subject’s 

head with good optical contacts was reasonable (about 10-15 minutes).  
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Figure 3-6 (a) placement of optodes on the subject’s head;  (b) S-D (Source-detector) 

configuration showing optode separations. 

 
      The actual data acquisition rate was at 100 Hz, which was later down-

sampled to 10 Hz for data processing and image reconstruction. The data was high-pass 

and low-pass filtered at 0.01 Hz and 0.3 Hz, respectively, to remove the baseline drift and 

interference due to arterial pulsations. Changes in optical density were calculated as a 

function of time at each wavelength. Then, the data from each S-D channel was block-

averaged across time. Consequently, the block-averaged time profiles were further 

temporally averaged within the stimulation (i.e., finger tapping) period for each S-D 

channel, all of which served as inputs of yi for Eq. (5). Reconstructed hemodynamic 

images of motor activation were obtained after following the steps given in Section 2.2 

(more specifically in Section 2.2.4). The sensitivity matrix, A, was generated assuming a 

(background) = 0.1 cm
-1

 and (background) = 10 cm
-1

 for both wavelengths.  In the 

process of DOT image reconstruction, volumetric imaging space of 20.32 (5.844 cm
3
 

was created with a voxel size of 0.2x0.2x0.1 mm
3
. The constructed images were sliced at 

'

s
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2.5-cm depth along the lateral cross section (i.e., in XY plane at Z=-2.5 cm) in order to 

compare the performance of L1 and L2 regularizations. 

 

Figure 3-7: 2D slices (2.5 cm below the scalp surface) of reconstructed human brain 

images induced by finger tapping tasks. It shows a localized area with (a) an increase in 

oxy-hemoglobin concentration and (b) a decrease in deoxy-hemoglobin concentration 

when DCA-L1 is applied. In contrast, a larger or more diffused region is observed with (c) 

an increase in oxy-hemoglobin and (d) a decrease in deoxy-hemoglobin concentration 

when DCA-L2 is utilized for image reconstruction. 

 

The original study was reported in ref.[35] having a total number of 8 human 

control subjects measured. The corresponding data across all controls were analyzed to 

conclude the study. A data set was randomly selected as a representative from the 8 

human subjects data which was the part of original study [47] and performed 2D DOT 

images using both DCA-L1 and DCA-L2, as follows. 

As expected, the subject had brain activation on the right side of the brain due to 

the left hand finger tapping (contra-lateral activation). Four panels in Fig. 3-7 show 2D 
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slices from the reconstructed volumetric images at 2.5 cm depth from the scalp surface 

(i.e., XY plane at Z=-2.5 cm). The images were normalized between -1 and 1 for 

comparison. Figures 3-7(a) and 3-7(b) present the reconstructed ΔHbO and ΔHbR 

images obtained using L1 regularization; Figs. 3-7(c) and 3-7(d) show the reconstructed 

ΔHbO and ΔHbR images obtained using L2 regularization. In comparison, Figs. 3-7(a) 

and 3-7(b) show much sharper and more localized reconstructed images with L1 

regularization, as compared to the blurred L2-dervied images in Figs. 3-7(c) and 3-7(d). 

These figures clearly demonstrate that L1 regularization can be valuably applied to 

functional human brain studies, and can greatly improve the spatial resolution of in vivo 

human brain images.  

    

3.6 Application to Prostate Imaging  

From the previous sections, it is evident that DCA-L1 is promising technique to 

improve the resolution of DOT images. It should be noted that DCA-L1 algorithm has be 

designed to improve the image reconstruction in the context of dynamic DOT or 

perturbation DOT.  While applying L1-DCA towards PCa imaging two specific questions 

needs to be answered. (1) How to create perturbation in PCa. (2) PCa imaging should be 

performed via rectum and the space is limited to incorporate large number of sources and 

detectors. The geometries utilized in the previous sections (5X5 sources and detectors) 

are targeted towards brain imaging. Will L1-DCA work for sparse source detector 

geometries? First question is still exploratory in PCa imaging and has been successfully 

applied towards breast cancer and arthritis.  In breast cancer, a perturbation has been 

created via gas challenge [C.M. Carpenter 2010]. When subjects are breathe oxygen, air 

and carbogen the response of the tumor is different between the gases and it creates 

contrast for imaging. To answer second question I also performed six simulations with 
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prostate geometry (8X2 sources and detectors). A simulated absorber is placed in six 

locations as shown in figure 3.8. The optical properties of the absorber are set to 0.01 

cm-1 for the background and 0.02 cm-1 for the absorber. The metrics form previous 

sections i.e. VR and Z error (difference between reconstructed Z(depth) location and 

target Z location) are utilized to measure the quality of reconstructed images. The results 

are tabulated as shown in table below. 

 

Figure 3-8 (a) Simulation setup and probe geometry utilized to check the feasibility of L1-

DCA in PCa imaging. (b) Dotted circles indicate the six locations of absorber used for 

testing. 

Table 3-2: Volume ratios and position error at six simulated locations   

 Volume ratio (VR) Position error 

Location 2cm depth 3cm depth 2cm depth 3cm depth 

Right 0.69 1.23 2mm 3mm 

Left 0.7 1.2 2mm 3mm 

Center 0.883 0.9961 2mm 2mm 
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From the table, the range of volume ratio (VR) across six simulations performed 

is 0.69-0.991. While volume ratio is slightly off when the absorber is on the side, overall 

volume ratio is close to 1.  Z error is approximately 2mm in most of the simulations that is 

common in DOT reconstruction.  From the simulations we can say that L1-DCA can be 

applied for PCa imaging when provided a way to create perturbation.  

 

3.7 Discussion  

In this study, I combined two previously published techniques, (1) DCA and (2) 

L1-regularization, for enhancing or improving the quality of reconstructed DOT images. 

Investigations on these two methods have been individually reported [35,36]: the DCA 

method compensates the loss of measurement sensitivity in depth and has been used 

with L2 regularization for volumetric DOT imaging. Such a combination, however, still 

cannot greatly improve the diffuse nature of DOT with over-smoothed image edges [see 

Figs. 3.5(c) and 3.5(d)]. On the other hand, L1 regularization has the ability to provide 

sharper reconstructed images and to reduce the blurry effect on the images. However, L1 

regularization alone doesn’t compensate for the severe attenuation of measurement 

sensitivity with increased depth, as demonstrated in Figs. 3.5(e) and 3.5(f). 

The key idea of this study is to make good use of both DCA and L1-regularization 

jointly to yield high-quality reconstructed images with improved depth localization and 

spatial resolution. I tested and validated the combined approach using laboratory tissue 

phantoms, with two typical scenarios of DOT, namely, a fiber-based and camera-based 

imaging system. The phantom studies yielded conclusive results based on two 

measurement metrics of VR and CNR. The VRs from both imaging systems indicate 

clearly that DCA-L1 algorithm outperforms DCA-L2 algorithm, at least 2-3 times better for 
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volumetric DOT imaging. Furthermore, CNR from L1 regularization is 2 times larger than 

that from L2 regularization.  

Throughout the study, I have also observed that the reconstructed images with 

the fiber-based DOT system appear to be less noisy and more accurate than the images 

obtained with the camera-based system. This can be mainly attributed to the bifurcated 

optode geometry used in the fiber-based system.  If non-bifurcated fibers were used, both 

imaging systems would generate similar quality of DOT images regardless of the 

locations of absorbers [28, 38]. Furthermore, as shown in Figs. 1 and 2, the two 

absorbers were placed symmetrically on both sides of the volumetric space (not in the 

center) [43]. 

The usefulness of the DCA-L1 approach has been also examined using actual 

functional brain imaging data taken from human in vivo measurements. With DCA-L1, the 

reconstructed human brain images from a randomly selected human subject show 

significant improvement in depth localization and spatial resolution of the imaged 

activation region/volume in the brain. Specifically, reconstructed ΔHbO and ΔHbR 

changes derived from DCA-L1 are more localized and concentrated in the specific or 

expected region (see Figs. 3.6(a) and 3.6(b)), as compared to those resulting from DCA-

L2 method. In contrast, the blurry effect of L2 regularization is clearly seen in 

reconstructed images [see Figs. 3.6(c) and 3.6(d)].  

It is well accepted by the biomedical optics community that functional brain 

images derived from multi-channel NIRS or DOT suffer from low-spatial resolution, as 

compared to fMRI, due to the scattering nature of light when it interacts with tissue. 

Without setting up a high cut-off threshold in ΔHbO or ΔHbR amplitude, the cortical 

activation regions imaged by DOT are usually bigger and less localized than those given 

by fMRI  [52]unless a high-density DOT is utilized. In the latter case, the reconstructed 
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DOT images may have comparable spatial resolutions with respect to fMRI. According to 

ref., the motor cortex often exhibits prompt hemodynamic responses (i.e., ΔHbO) in the 

hemisphere contralateral to the performing limb. Consistently, we did observe 

contralateral activation in this study, which was approximately located near the motor 

cortical strip. While we did not have a quantitative measure to determine the width of 

motor strip in the current study, we estimated that the size of motor activation should be 

smaller than 2-3 cm across the motor strip (i.e., along the x-axis). This estimation was 

based on a recent, similar study that was performed over several human subjects using 

the same DOT system as used in this study, but with a high-density probe array [53]. The 

data in ref.  [53] allowed us to deduce that the activation size near the motor cortex 

evoked by a simple finger-tapping task was about ~2x2 cm. The reconstructed images in 

Fig. 6 clearly illustrate that DCA-L1 leads to the reconstructed brain activation size more 

localized and accurate than DCA-L2, with respect to the expected activation region. Note 

that in this human brain study, the optimized empirical parameters (i.e., NIPCaG and 

NSNewton) were derived from our phantom results. For quantitative or rigorous validation of 

DCA-L1, in future a joint fMRI-DOT study in order to make volumetric DOT possible for 

human brain imaging.  

 

3.8 Conclusion 

In conclusion, based on tissue-phantom studies, we have validated that the 

combination of DCA with L1-regularization can offer significant improvement in depth 

localization and spatial resolution for DOT images. We have further demonstrated the 

applicability and usefulness of this method using in vivo measurements of functional 

human brain imaging. In general, this DCA-L1 approach can be extended to other 

applications of DOT, such as breast and PCa detection, and can be further explored to 
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improve quantification of tumor optical properties because of more localized targets 

identified.  
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Chapter 4  

Hierarchical Clustering Method to Image Prostate Cancer Using Diffuse Optical 

Tomography 

4.1 Introduction 

In order to have trans-rectal DOT be able to provide excellent reconstructed 

images for PCa detection, obstacles has to be acknowledged in order to find appropriate 

solutions. One main obstacle is closely associated to the location of measurements: the 

human rectum, where we have a limited space (leading to a limited number of optodes to 

be implemented) and only reflectance geometry of DOT can be utilized. Given the nature 

of light scattering in tissues, DOT suffers from poor spatial resolution. Measurements with 

reflectance geometry face a harder challenge to achieve an excellent spatial resolution 

than those by transmission geometry. One way to improve the spatial resolution is to 

couple DOT with other imaging techniques, such as MRI and ultrasound. In particular, a 

combined TRUS and DOT probe for imaging PCa has been studied previously, utilizing 

the anatomical information from ultrasound to reduce the number of unknowns in the 

DOT image reconstruction. As shown in ref [28], each anatomical region was considered 

to be homogenous; uniform optical properties were reconstructed in each respective 

region. While the combined TRUS-DOT method improves accuracy of reconstructed 

DOT images, it relies highly on the ability of TRUS to locate the PCa lesion. Given the 

fact that TRUS has a low accuracy to detect PCa and that each region is assumed 

homogenous, the reconstructed DOT images of PCa could be erroneous.  

In order to limit the dependency of DOT image reconstruction on TRUS 

sensitivity, a hybrid reconstruction technique has been developed by combining a 

piecewise cluster reconstruction approach with hard prior anatomy of prostate available 

from TRUS. The proposed  method utilizes a hierarchical scheme of clustering where  a 
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cluster can be defined as a group of nodes/voxels within a predefined volume. By utilizing 

hierarchical clustering, a region of interest (ROI, i.e., the prostate) can be transformed 

into a partially heterogeneous medium, within which we can search and further 

reconstruct potential cancer lesions. The inverse problem of DOT is solved in multiple 

steps by changing cluster sizes within the image domain. Multi-step reconstruction in 

DOT has been reported earlier [54] for breast cancer detection based on a frequency-

domain study. It is understood according to reference  [54] that the size and location of 

the absorber were partially or roughly estimated in the first step of reconstruction; more 

steps were utilized to further improve the quality of reconstructed images. In the TRUS-

DOT scenario, however, a rough reconstruction in the first step is futile to effectively 

detect PCa due to the multi-layer tissue compositions, reflectance measurement 

geometry, limitation in the number of measurements, and particularly the inability of 

ultrasound to identify PCa lesion or lesions. Thus, to improve the effectiveness and 

accuracy of PCa imaging, piecewise division of the image domain in DOT has been 

considered, assuming that the domain consists of disjoint sub domains with different 

optical properties.  

Specifically, in this work, the piecewise division of the image domain for a human 

prostate is performed in the inverse calculation.  By doing so, combination of the 

piecewise division with hard-prior anatomic information for DOT image reconstruction is 

possible.  Specifically, in this chapter, a detailed procedures of our proposed method and 

its validation is presented by showing its performance with the following computer 

simulations: 1) one anomaly at a depth of 1 cm to 3 cm below the measurement surface, 

2) two anomalies at 1 cm and at 2 cm, respectively, 3) variable background absorption 

from 0.005 to 0.015 mm-1), 4) variable noise percentage from 0% to 3%. 
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4.2 Methods 

In hierarchical clustering method (HCM), the reduction of a parameter space is 

realized by segmenting the medium or region of interest (ROI) into several geometric 

units or clusters. Each of the geometric clusters was assumed to be homogeneous and 

had the same optical property. In this way, the medium or image domain could be 

partially heterogeneous since the domain may contain several geometric clusters. During 

the DOT image reconstruction process, a value of µa from each cluster was updated 

using Eq 2.45. Since the size of each cluster was user-defined, the smallest could be a 

single FEM mesh node and the largest be the entire domain region, similar to that used in 

the regular reconstruction method without any spatial prior. Specifically, the nodes in the 

mesh were tagged and separated into clusters, as indicated by c1, c2…cj with respect to 

each cluster. The Jacobian matrix in eq. (5) was then modified to be J* and given by  [30] 

 *J JC  4.1 

where matrix C had the size of NN×NC (number of nodes × number of clusters). The 

elements of matrix C were given as follows: 

 

1

( , )

0

if i c
j

C i j

else

  
  

  

 4.2 

where i marks the number of nodes and j labels the number of clusters. By the end of 

each iteration, the solution vector of δµa was mapped back to each node using eq.  

 
*

( )C
a a

   4.3 

 

where δµa* is the vector with optical properties in respective geometric clusters solved 

from Eq. (4.3).  The function of matrix C is to transform the initial image domain into a 

new image domain where the inverse procedure is performed with cluster-based 
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geometric structures. It is a mediator or operator that converts the regular geometry to 

and from cluster-based geometry for the reconstructed object. So, technically no 

inversion or transpose of C is directly involved. 

Initially, two ROIs were considered for reconstruction, such as background and 

an anomaly; the background mesh was geometrically segmented in a heterogeneous 

fashion. For multiple ROIs, we hierarchically implemented the proposed method by 

segmenting the region which was more prone to cancer, while utilizing available prior 

information. Specifically, the proposed method is implemented in four steps, as shown in 

Fig. 4.1. To image PCa through trans-rectal DOT imaging, four types of tissues were 

examined: rectum wall, peri-prostate tissue, prostate and tumor. Each of these tissues 

may have their own optical properties. When being imaged without any prior anatomic 

information, different types of tissues are highly likely to be mixed among one another 

because their optical contrasts are relatively subtle and difficult to distinctly separate 

them. Thus, our HCM is critical for us to achieve an improved spatial resolution for 

prostate imaging.  
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Figure 4-1: Steps or a flow chart showing HCM 
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Figure 4-2 Geometrical illustration of clustering 

 

 In Step 1, reconstruction was performed  based on prostate anatomic images 

offered by TRUS and the assumption of a homogeneous prostate. With such prior spatial 

information, the reconstructed µa values in both background and prostate regions (as two 

ROIs) should be reasonably accurate with respect to the actual values, assuming that the 
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sizes of prostate tumors are much smaller than the size of the prostate. Then, the 

reconstructed µa values in available ROIs would serve as the initial guess in Step 2 and 

Step 3. 

Step 2 of HCM was dedicated to finding the probable locations of anomalies (i.e., 

prostate tumors). To achieve this, prostate region has been geometrically divided into 

several clusters, so the prostate tissue became a heterogeneous medium. However, 

without prior knowledge of suspicious locations, dividing the prostate into several clusters 

or elements may result in a mixing of suspicious tissue with normal prostate tissue and 

vice versa. In order to prevent mixing, hierarchical approach is used to cluster the 

prostate volume with different unit volume sizes iteratively, to minimize the mixing effect 

of cancer and normal tissues within a cluster. 

Specifically, the initial volume of a cluster was considered to be 1x1x1 cm3 in 

each of the x, y and z dimensions. Then, we varied the volume of the cluster by 

increasing the length of the cluster in each dimension iteratively. For example, an 

increase in length of 0.5 cm in only x direction gave rise to a unit volume of 1.5 x 1 x 1 

cm3, followed by the same length increase in only y or only z direction. In this way,  8 

different unit volumes can be generated in three x, y, z directions, by increasing the linear 

length in only one dimension (x, y, z), or in two dimensions (xy, yz, xz), or in three 

dimensions (xyz) and the initial size. The procedure is given as follows: (1) reconstruct an 

initial µa image with a starting base unit size (i.e., 1x1x1 cm3), (2) save the reconstructed 

image, and go back and change the unit volume size (e.g., 1.5x1x1 cm3 or 1.5x1.5x1 

cm3 or 1.5x1.5x1.5 cm3) and reconstruct the image again (Step 2 in Fig.1). To be more 

comprehensive, base unit volume size has been increased 1x1x1 cm3 to 1.5x1.5x1.5 

cm3, for the latter of which the same length interval (0.5 cm) is applied to increase the 

base unit (e.g., 2x1.5x1.5 cm3, 2x2x1.5 cm3, or 2x2x2 cm3). In this way, another set of 8 
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reconstructed images can be generated with varied base unit volumes, resulting in an 

overall 15 (i=15) images (resulting from 15 combinations) by the end of Step 2. (3) all of 

the reconstructed µa images is averaged to obtain the final image. (4) Next, we search 

for suspicious clusters that have high µa values with respect to the background, as an 

indication of cancer. The location of suspicious clusters was selected using full width half 

maximum (FWHM) of the updated µa values within the prostate region. If no suspicious 

cluster is identified, we conclude that the prostate has a low probability of having cancer.  

In Step 3, if some suspicious clusters in Step 2 are seen, we then group all the 

non-suspicious clusters as one new single cluster and subdivide the suspicious clusters 

into further smaller clusters. Now, the initial unit volume size used within the suspicious 

regions in Step 3 is set to be 0.5 x 0.5 x 0.5 cm3. The procedure explained in Step 2 is 

repeated here with a length variation of 0.25 cm in any one of three dimensions. Similar 

to Step 2, the final reconstructed image of Step 3 is an average of the 8 images (j=8) 

obtained by varying the unit volume in 8 different fashions. FWHM of the µa values is still 

used to localize suspicious regions for further inspection with an improved spatial 

resolution. 

In steps 2 and 3, a region-specific regularization parameter has been utilized to 

favor the reconstruction in the prostate region, using a hierarchical approach. The 

underlying rationale of this approach was previously reported in ref.  [54] that the 

regularization parameter controls the level of optical property updates at each iteration. A 

larger regularization parameter gives rise to a subtle update, while a smaller 

regularization parameter offers a steeper update with a broader solution range. In our 

case, a smaller regularization value applied to the prostate region allows us to focus only 

on the prostate and to accurately update the reconstructed optical properties of the 

prostate. Finally, in Step 4, reconstruction process has been repeated using the 
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suspicious regions identified in Step 3 as a hard prior or as given cancer regions, with a 

uniform initial guess as used in Step 1. 

In principle, selections of regularization parameters and stopping criterion play a 

key role in any iteration-based reconstruction techniques. In HCM, regularization 

parameters and the stopping criteria are selected empirically. For Step 1, the 

regularization parameter was 10 and the stopping criterion was when the change in 

projection error was less than 2% of that in the previous iteration. For Step 2, the 

regularization parameter was 0.1 and the stopping criterion was when the change in 

projection error is less than 20% of the previous iteration. The reason for this criterion at 

Step 2 was that the value of the regularization parameter was small so that the noise 

began to dominate the reconstructed images. For Step 3, regularization parameter was 

further decreased the to 0.001 while keeping the same stopping criterion as that in Step 

2. 

4.3. Simulation and Experiment Results 

 
4.3.1 Trans-rectal DOT Image Reconstruction by HCM with Limited Prior Information 

To validate HCM, a simulated TRUS-DOT probe was used, having 16 co-located 

or bifurcated optodes that could serve as both sources and detectors [see Fig. 4.3(a)]. 

Computer simulations have been performed by considering a FEM mesh, which was 

anatomically similar to a TRUS image of a human prostate [see Fig. 4.3(b)].  It consisted 

of four ROIs, such as prostate (sky blue region), peri-prostate tissue (blue region), rectum 

wall (green) and prostatic tumor (anomaly) [see Fig. 4.3(c)]. The mesh used in this study 

was an unstructured tetrahedral mesh with 28,174 nodes and 156,191 elements. The 

thickness of the rectum wall was set to be 5 mm and a curvature radius of 50 mm. The 

following optical property (i.e., absorption coefficient) distributions were used: 0.01 mm-1 
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for rectum wall, 0.002 mm-1 for surrounding tissue, 0.006 mm-1 for prostate, and 0.02 

mm-1 for anomaly [28].  An anomaly has been created at 1-cm depth from the rectum 

wall to test HCM. The CW mode was utilized in the simulations; 1% random noise was 

added to the data to mimic the instrument noise.  

 

Figure 4-3: (a) Probe geometry used in this study; each optode is bifurcated to serve as a 

source and detector. (b) Mesh (elements not highlighted) has been rotated and sliced 

vertically into two halves to show the simulation geometry. (c) A slice from the mesh cut 

along the longitudinal direction, showing simulated rectum wall (green), surrounding 

tissue (blue), prostate (sky blue).An anomaly has been created at 1-cm depth from the 

rectum wall. (d) Image reconstruction in progress, showing clusters within the prostate 

region. 

Simulated DOT data was computed using the diffusion forward model with FEM; 

NIRFAST  [22] was used to perform the forward calculation. The procedure explained in 

chapter 2 and section 2 of current chapter was used to reconstruct images from all 
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simulated data. Specifically, Step-1 reconstruction was done using an initial guess of 

µa=0.01 mm-1 to recover the optical property of the rectum wall, prostate, and 

surrounding tissue.  Then the reconstructed data from Step 1 served as the initial guess 

for Steps 2 and 3.  Next, the prostate region was divided into several clusters [see figure 

2(d)], which had tissue volumes of 1.00 to 8 cm3. As noted earlier, the final image 

obtained after Step 2 was an average over 16 independent reconstructions. In Step 3, the 

suspicious region identified (using FWHM) in Step 2 was further divided into smaller 

clusters (0.125 – 0.42 cm3 in volume). The final image of Step 3 was an average over 8 

image reconstructions.  FWHM was again used to find the suspicious regions, which 

were treated as individual regions and entered as the hard prior conditions for finer 

reconstruction in Step 4. 

 

Figure 4-4: reconstructed µa values in mm-1 using different reconstruction steps for (a) 

an anomaly located within a simulated prostate. The dotted circles indicate the real 

locations of the anomaly. Reconstructed images (b) after Step 1 of HCM, (c) after Step 2 

of HCM, (d) after Step 3 of HCM, (e) after Step 4 of HCM. (f) Reconstructed image for the 

same case using a known hard prior for the inclusion. 
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Panels in Fig.4.4 provide overall steps involved in HCM to perform DOT image 

reconstructions. As shown in Fig. 4.4 (a), an anomaly was embedded at 1-cm depth from 

the surface of the rectum.  Figure 4.4 (b) demonstrates the result after Step 1, showing 

that the reconstructed image is biased with the known priori information of the prostate, 

peri-prostate tissue and rectum wall. As seen in Fig. 4.4 (c), Step 2 of HCM is able to 

determine a probable location of the anomaly inside the prostate, without prior anatomical 

information. Figures 4.4 (d) and 4.4 (e) shows the results from Steps 3 and 4 of HCM and 

clearly depict the location of the simulated tumor. After Step 3, while the optical 

properties in the anomaly region are not completely uniform, absorber can be located 

accurately inside the prostate. Finally by Step 4, the reconstructed µa value of the 

anomaly has been improved. For comparison, Fig. 4.4 (f) illustrates a recovered µa 

image using the given spatial prior information on the anomaly location. Moreover, Table 

1 shows that HCM resulted in a recovery rate of 95% for the embedded target, without 

using any spatial prior information. 

 

Table 4-1 Comparison of reconstructed µa values by HCM  

with and without prior anatomical information 

Tissue type µa (mm
-1

) 

without prior information (%) with prior information (%) 

Peri-prostate 0.002   (100) 0.002   (100) 

Rectum wall 0.01    (100) 0.01    (100) 

Prostate 0.006   (100) 0.006   (100) 

Anomaly 0.019   (95) 0.02    (100) 
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4.3.2 Investigation of HCM on Depth Sensitivity 

In order to test depth sensitivity of HCM, an anomaly was created at depths of 1 

cm, 2 cm and 3 cm from the surface of the rectum wall. Reconstructed images from all 

three locations were compared as shown in Fig. 4.5. The doted circles in Fig. 4.5 indicate 

the actual location of the targeted anomaly. Figures 4.5(a) and 4.5(b) are the 

reconstructed images after Step 4 using HCM with anomaly placed at 1-cm and 2-cm 

depths, respectively; Figure 4.5(c) is the reconstructed image after Step 2 using HCM 

with anamoly placed at 3-cm depth. The algorithm was stopped after Step 2 in this case 

because of its inability to find any absorbers. Figure 4.5(c) demonstrates that HCM is 

incapable of recovering the anomaly at a 3-cm depth because of the severe decrease in 

measurement sensitivity with increasing depth, the number of optodes used, and the 

absorption coefficient of the prostate.  

 

Figure 4-5: (a) shows the two anomalies separated by 2 cm and created at a depth of 2 

cm; (b) shows the two anomalies separated by 4 cm and located at depths of 1 cm and 2 

cm. Dotted circles show the actual locations of the anomalies. 

 
For quantitative comparison, Table 2 lists the actual and recovered optical 

property and their recovery percentage rate for the reconstructed absorber at the three 

respective depths. This simulation-based summary table implies that HCM has the ability 

to reconstruct an absorbing-anomaly within a human prostate at a depth of 2 cm with a 

possible recovery rate of 95%, if 2x8 bifurcated optodes are used. Whether the detection 
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sensitivity may go deeper than 2 cm in practice remains to be seen since it also depends 

highly on the number of optodes, the power of light sources, and the type of detectors 

used for the measurement.    

 

Table 4-2 comparison of reconstructed µa  value of the target at different depths using 

HCM 

Depth Target (mm
-1

) Reconstructed (mm
-1

) % recovered of µa 

1cm 0.02 0.019 95 

2cm 0.02 0.019 95 

3cm 0.02 --- --- 

 

4.3.3 Trans-rectal DOT Image Reconstruction by HCM with Two Absorbers 

The capability of differentiating two absorbers by HCM is important in PCa 

imaging because of the existence of multifocal cancer regions. Moreover, the results from 

Section 3.2 indicate that HCM is not able to detect an anomaly at a depth of 3 cm. So 

within the depth limit, I investigated whether HCM is able to reconstruct two absorbers in 

this sub-section. For this purpose, simulations has been performed with cases. In Case 1, 

two anomalies of 1-cm diameter were created at the depth of 2 cm from the surface.  
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Figure 4-6: (a) shows the two anomalies separated by 2 cm and created at a depth of 2 

cm; (b) shows the two anomalies separated by 4 cm and located at depths of 1 cm and 2 

cm. Dotted circles show the actual locations of the anomalies. 

The two anomalies were separated by 2 cm, as shown by dotted circles in Fig. 4-

6(a). This test was useful in understanding the minimum separation between two 

absorbers that is required to recover them as two separable absorbers in reconstructed 

images. This test also allowed us to estimate the recovery of off-centered absorbers. This 

estimation is important because the sensitivity of DOT is often higher in the center of the 

image domain due to the number of overlapping measurements. In Case 2, the 

absorbers were created at the depths of 1 cm and 2 cm, respectively, as drawn by dotted 

circles in Fig. 4-6(b). The separation between the two absorbers was increased to 4 cm. 

Figures 4-6(a) and 4-6(b) also show the reconstructed images after Step 4 using HCM, 

demonstrating that the locations of the anomalies were successfully recovered. 

 

4.3.4 Investigation of HCM on Effects of Different Background (Prostate Region) Contrast 

Further investigation of HCM on variation of background absorption in the 

prostate region is helpful for us to understand and estimate effects of the background 

optical properties on the reconstructed DOT images. As explained in Section 2, in Step 2 

of HCM, the overall area of the anomaly was identified by selecting the full width at half 
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maxima (FWHM) of the recovered optical properties. If the recovered optical properties 

were not much higher than that of the background, no probable anomaly would be 

identified, similar to the case shown Fig. 4-7(c). So, the background absorption or 

contrast plays an important role in achieving high-quality DOT images of PCa. To 

estimate effects of the background optical properties,a total of 11 simulations were 

performed, as listed and shown in Fig. 6, by varying the optical properties or µa values of 

the prostate (i.e., background tissue) from 0.005 to 0.015 mm-1. 

 

Figure 4-7 Comparison of absorption coefficients between the recovered anomaly and 

the prostate background after Step 2. 

 

The absorption coefficients for the surrounding tissue and the rectum wall were 

fixed; the anomaly contrast was set to be 3 times of the background (0.015 to 0.045 mm-

1) in all the simulations. The reconstructed results are plotted by comparing the 

recovered optical properties to the background in Fig. 4.7, which shows the recovered 

contrast from the background after Step 2 using HCM. We also calculated a recovery rate 
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(RR) based on the recovered absorption (RA) versus expected absorption (EA), as 

expressed by RR = (RA/EA)*100. Specifically, our calculations gave rise to an averaged 

RR of 40% over all 11 simulations. This 40% recovery rate of the expected contrast 

indicates that variations in background optical properties would still allow us to locate the 

probable location of an anomaly in Step 2 as long as the absorption contrast between the 

anomaly and background is 3 times. 

The reason why we stopped at stage 2 was that this stage was very crucial for 

the success of our algorithm. If we succeeded to obtain an enough contrast in absorption 

with respect to the background in this step, we would be able to identify the region of 

interest for possible cancer lesions. Further steps would allow us to refine the size, 

location, and optical properties to achieve final reconstructed images with high quality. If 

our algorithm failed to recover a reasonable amount of contrast in Step 2, then the 

algorithm would fail to give rise to correct results. Indeed, this is the major difference 

between our approach and that by refs.  [28,55]  

4.3.5 Investigation of HCM on Effects of Different Noise Levels  

To further understand and support HCM, we performed another simulation with 

an anomaly placed at 2 cm below the surface of rectum wall; the reconstructed images 

by HCM were generated while varying the noise levels at 1, 2 and 3% of measured 

signals. For comparison, we also reconstructed an image, as shown in Fig. 4.8(a), 

without any anomaly and with 1% noise added to the simulated data. Specifically, Fig. 

4.8(a) was obtained after all the clusters were updated, illustrating a uniform distribution 

within the prostate region.  
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Figure 4-8: (a) shows the reconstructed image with 1% noise added to the data and 

without any anomalies. (b), (c), and (d) show the reconstructed image with 1%, 2%, 3% 

noise level, respectively. 

 

On the other hand, Figures 4.8(b), 4.8(c), and 4.8(d) are the reconstructed 

images after Step 2 with 1%, 2% and 3% noise levels added to the data, respectively. 

From this set of figures, it is evident that HCM is robust if the noise level remains up to 

1%. Figure 4.8(c) is slightly corrupted due to the 2% noise while Fig. 4.8(d) is heavily 

corrupted due to 3% noise. 

4.4 Discussion 

4.4.1 Investigation and Confirmation of HCM by Simulations  

In this work, we have investigated the feasibility of TRUS-guided DOT imaging of 

human PCa through computer simulations and laboratory phantom experiments. While a 

trans-rectal DOT-only probe can possibly image cancer lesions within a human prostate 



 

72 
     

without ultrasound guidance, reconstructed DOT images suffer from lack of anatomical 

landmarks and poor spatial resolution, as well as a possible mixing of optical contrasts 

among the prostate gland, its surrounding tissues, and cancer lesions. In general, the 

spatial resolution of DOT imaging can be improved by increasing the number of optode 

channels; however, this is not a viable solution in our case because of the limited space 

available on a trans-rectal probe.  Unlike previous work reported by references [28,55], 

which required anatomic images of PCa, we proposed and investigated a DOT-based 

HCM to image PCa by utilizing anatomic images of the prostate, not the images of PCa. 

This is because the former images can be readily available by clinical TRUS facility, 

which has very low sensitivity to provide PCa images. 

While the combined TRUS-DOT method can improve accuracy of reconstructed 

DOT images, the problem is not completely solved since TRUS-DOT highly relies on the 

ability of TRUS to locate the PCa lesion. Given the fact that TRUS has low signature for 

PCa and that each region is assumed to be homogenous, the reconstructed DOT images 

could be erroneous. Thus, we further targeted the problem by (1) utilizing the available 

prior information on the locations of prostate, peri-prostate tissue and rectum wall and 

then (2) dividing the probable location of a prostate tumor or tumors into several clusters.  

This latter step made the prostate partially heterogeneous. The dimensions of the 

clusters were iteratively changed to limit the mixing of normal tissue with cancerous 

tissue and vice versa. Our HCM approach was implemented in four steps: The location of 

the absorber was identified in Steps 2 and 3 and the optical properties reconstructed in 

Step 4. The figures shown in Section 4.3.1 demonstrate excellent reconstruction results 

when HCM was used. Table 1 also reports that the recovered optical properties of the 

target and surrounding tissues were matched well with the expected values. Furthermore, 

the reconstructed images shown in Section 4.3.2 reveal the depth sensitivity of HCM: due 



 

73 
     

to the exponential decay of measurement sensitivity with depth, our method is limited to 

reconstruct an anomaly located not deeper than 3 cm in depth. 

Moreover, Section 4.3.3 illustrates the ability of HCM to recover up to two 

anomalies located inside the prostate. The optical properties were overestimated when 

the two absorbers were sited at different depths. This overestimation resulted from the 

fact that the measurement sensitivity is biased toward more superficial nodes than those 

of deeper nodes. In Section 4.3.4, HCM has been investigated with 11 simulation-based 

cases on the effects of background absorption of the prostate tissue. The results indicate 

that a recovery rate of 40% for the target contrast could be achieved in all cases after 

Step 2 in HCM. Achieving a good contrast in a suspicious ROI after Step 2 is very crucial 

for the success of our algorithm.  With a well localized target contrast after Step 2, further 

steps would allow us to refine the size, location, and optical properties to achieve final 

reconstructed images with high quality. Last, Section 4.3.5 shows that noise can have a 

significant impact on the image quality, while Section 3.6 confirms the performance of 

HCM by performing an actual experiment with a liquid tissue phantom. We demonstrated 

that a hidden absorber without prior location information was reconstructed with a 

recovery rate of 100% in its location and 83% in its optical property. Overall, the results 

indicate that both location and absorption contrast of the embedded absorber could be 

well reconstructed to meet the expected values when HCM was utilized. 

 

4.4.2 Potential Usefulness of HCM for PCa Detection and Diagnosis 

While the current development of HCM is not yet tested in the clinical settings by 

human prostate specimen measurements, it can be readily available for clinical 

investigations since the results from both computer simulations and laboratory 

experiments are supportive for HCM. The feasibility of implementing a TRUS-coupled 
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DOT probe has been demonstrated by ref. [28].  By combining such a TRUS-DOT optical 

probe with HCM, we may be able to develop a portable, diagnostic imaging device for 

early screening and diagnosis of PCa. Further testing with human prostate 

measurements and optimal refinements are the next steps in order to make this 

technology clinically useful in detection and diagnosis of PCa.  

 

4.4.3 Limitation of the Method and Future Work 

While the reported results for HCM are promising for improved detection of PCa, 

few weaknesses have to be recognized in order to either improve them in the near future 

or understand the limitation of the method. First, although HCM recovered well the 

absorption properties of imaged targets with a recovering rate of 95% in simulated results 

and of 83% in experimental results, excellent recovery in the target’s shape was not 

much achieved. This may be partially due to the fact that the reconstructed images were 

defined by the FWHM in Steps 2 and 3 of HCM. Also, the inability to recover the target’s 

shape resulted from the reflectance geometry of the probe setup (see Fig. 2) and the 

limited number of channels available for the measurements. It is known that a reduced 

number of source-detector channels would reduce image sensitivity and spatial resolution 

of DOT. The method proposed by references  [56,57] could afford better results in 

recovering the shape of an anomaly when using circular or cylindrical probe geometries. 

This is because such geometries allow light to penetrate or pass through more tissue 

volumes under study, as compared to reflection geometries. Thus, while HCM approach 

is simpler to implement than that given by [56],it is not able to recover the imaged object’s 

shape, partially due to the limited space (i.e., a human rectum) available to accommodate 

a fixed number of light sources/detectors, which are set in reflectance geometry for data 
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acquisition. Under the same argument, it is expected that the best spatial resolution of 

DOT-derived PCa images reconstructed by HCM would be in an order of 5-8 mm.     

Second, in Section 4.2.1 it was stated the assumption of this study that variation 

in light scattering across the prostate and its surrounding tissues is minimal. This 

assumption was made because CW-based DOT measurements cannot provide enough 

independent data quantities to uniquely solve both light scattering and absorption 

coefficients of the imaged objects. With this assumption, it is possible to focus on DOT 

reconstruction of absorption coefficients of simulated PCa, using both simulation and 

experimental data, to implement and validate HCM. I acknowledge that the assumption of 

constant light scattering across the human prostate tissues may not be accurate, 

resulting in two negative impacts on our conclusion. (1) There exist variations in light 

scattering within the prostate tissue, which may create a large noise level to diminish the 

optical contrast between cancerous and normal prostate tissues. (2) PCa may result in 

light scattering changes, which may indeed be useful as an optical contrast for DOT but 

is ignored in the current HCM approach.  In order to know whether or not these two 

negative impacts exist to HCM, it is necessary to perform human prostate specimen ex 

vivo and in vivo measurements with histology analysis confirmation, which is our next 

step in our research plan. Our expectation is that variations in light scattering within the 

prostate tissue are not large enough to diminish the optical contrast between cancerous 

and normal prostate tissues, based on previous reports on both breast cancer [58] and 

PCa studies [28,59]. If the variations in light scattering does affect DOT reconstruction 

results, we plan to modify Step 1 of HCM by utilizing a global algorithm to find both 

absorption and scattering from CW data.  Further development to solve this problem will 

be reported elsewhere for our future work. 
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It is worthwhile to point out that if PCa does give rise to light scattering changes, 

they may help enhance the optical contrast for DOT as long as cancer tissues yield an 

increase in light scattering with respect to the normal prostate tissues, which seems to be 

the case according to the limited reports  [60-62].  The rationale of increases in light 

scattering within PCa tissues is that cancer cells have enlarged nucleuses with a higher 

and irregular cell density, both of which result in a significant increase in light scattering.  

As mentioned in Section 2.1, CW-based DOT are sensitive only to

     
'

eff a s
r r r   

  ; an increase in  due to PCa is mathematically equivalent to an 

increase in optical contrast for reconstructed DOT images, and thus our HCM will still 

function well or even better with an increase in contrast.  

This chapter explored HCM method, which improves the image reconstruction in 

the absence of prior information on cancer location in PCa imaging with diffuse optical 

tomography. We believe that our hierarchical clustering method able to produce good 

results for experimental data is a significant step towards future investigation on the 

feasibility of the method for clinical applications. HCM will be particularly useful for the 

cases where prior location information of cancer is not clearly available, including PCa 

and others. 
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Chapter 5  

Development of Optical Clip-On Rectal Probe for Existing TRUS Transducer 

5.1 Introduction 

The strength of diffuse optical tomography is providing functional information 

about tumors and weakness is lack of proving anatomical images. Since PCa 

measurements are endoscopic, the weakness of DOT makes the measurements blind 

folded. We cannot identify the exact anatomical location from where the image has been 

recorded. In order to overcome the problem, an optical clip-on type attachment for 

existing ultrasound transducer need to be developed. The advantage of the clip-on type 

attachment is two folded. First, the combination with ultrasound imaging system renders 

accurate and real-time anatomic information to correlate NIR optical system. Second, the 

available prior information will be inducted into the reconstruction algorithm to make it 

more robust. The difficulties in designing TRUS compatible optical probe are, (a) the axial 

dimension of the probe is restricted within 20~30mm (diameter). (b) It is required to 

deploy many optodes in a very limited space. On the other hand several researchers also 

developed transrectal probes for PCa imaging based on various technologies such as 

photoacoustics  [63] DOT [55] and rectal MRI [64]. 

 In my research work I, explored two types of TRUS coupled optical probe 

designs.  In design 1, photodiodes were placed directly on the side of the TRUS probe to 

minimize the coupling loss. The rationale of this design is to minimize coupling loss and 

making the system economically viable. In design 2, 3d printing technology has been 

utilized. To be more specific probe has been designed to be compatible with a specific 

commercially available TRUS probe. Both designs have been tested with phantoms. In 

next sections I will discuss about two deigns in more details. 
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5.2 Design 1 

Design 1 utilizes two optode arrays consisting of 8 source fibers and 8 photodiodes were 

placed on one side surface of the container in such a dimension that both source-to-

source and detector-to-detector intervals were 1 cm between center to center and the 

distance between the source array and detector array was 2 cm. A broadband-pulsed 

laser source (SC-450, Fianium Inc., Eugene, Oregon) with a maximal output power of 40 

mW (as measured at the tip of an  

 

Figure 5-1 Instrumentation and probe setup utilized for laboratory phantom experiment. 

Eight sources and detectors were used for light delivery and detection. BS: beam splitter; 

PD: photodiode. 

optical fiber) was utilized as the illumination source. Several photodiodes (OPT 

101, Burr-Brown Corp., Tucson, Arizona) were implemented for diffuse light detection. 

Although our laser had a repetition rate of 20 MHz, due to the limited response speed of 

the photodiodes, we still considered our system as a CW system. As shown in Fig. 5-1, 

the laser output from the source was collimated and fed through a filter wheel where a 
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desired wavelength of 780 nm was selected. In order to calibrate light fluctuations from 

the laser source, a beam splitter (BS) was utilized, and a small portion of the beam was 

fed into another photodiode (PD) for further calibration. The larger portion of the light was 

coupled into another optical fiber and fed into a multiplexor. The multiplexor, as controlled 

by a computer, was connected to 8 silica optical fibers of 600 µm in diameter for light 

illuminations in sequence to 8 locations on an optode probe.  

`

 

Figure 5-2 Flow chart depicting various stages of detection electronics utilized in 

proposed instrumentation. 

For the detection electronics (see Fig. 5-2), the detected light was collected and 

converted to electrical signals by the photodiodes, an analog low pass filter (LPF) was 

employed to filter out unwanted higher frequencies. Next, the electrical signals were 

amplified using an operational amplifier in the inverting mode. The operational amplifier’s 

gain was controlled by changing the resistance of a feedback resistor. A digital 

potentiometer was utilized such that the gain was controlled from the computer. Then, the 

electrical signal was further fed into a buffer amplifier which itself was an operational 

amplifier in a non-inverting mode with unity gain. Finally, we utilized a National 

Instruments DAQ card with 16-bit resolution to convert analog signals into a digital format 

and stored in the computer. The entire instrument control and data collection, including 



 

80 
     

light source switching, multiplexer sequencing, electrical gain selection, and data 

acquisition, were computer-driven using Labview software. 

 

Figure 5-3 Pictures of the developed instrument 

5.2.1 Validation 

Although we demonstrated our HCM using a multilayered model in computer simulations, 

we utilized a single-layer phantom for experimental demonstration. We preferred a single-

layer phantom because it could serve the need or confirm HCM with a relatively simple 

tissue phantom. Using a single-layered phantom with an absorber embedded inside, we 
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skipped Step 1 in HCM and directly started the reconstruction from 

 

Figure 5-4 (a) Experimental setup used in this study. The probe was placed on one side 

of the tank to avoid contact with the intralipid solution. An absorber was placed 1.5 cm 

from the probe side of the tank. (b) Photograph showing the experimental setup. (c) 

Photograph showing the photodiode array. 

Step 2. The reason for skipping Step 1 was that it involved inducing the prior 

information; for this particular case, we did not use any prior information. The phantom 

setup is depicted in Fig. 5-3(a) with a photograph of the actual setup shown in Fig. 5-3 

(b). A homogeneous liquid tissue-mimicking phantom was prepared by filling a 15x10x10 

cm3 container with 1% intralipid solution [see Fig. 5-3(b)]. An appropriate amount of India 

ink was added to the solution to make the absorption coefficient of the solution to be 0.01 

mm-1. This solution served as a homogeneous background medium with an approximate 

μs’ value of 1 mm−1 and μa value of 0.01 mm−1. A spherical 1-cm-diameter absorber 

with μa = 0.03 mm−1 was made and placed within the phantom solution and 1.5 cm from 

the source-detector array surface. The lateral dimension of the photodiode array from 
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end to end was ~ 8 cm, as illustrated in Fig. 5-3(c), with an active detection area of 

0.23×0.23 cm2. 

 

Figure 5-5 reconstructed µa values in mm-1 using (a) regular DOT iterative 

reconstruction and HCM after (b) step 2, (c) step 3, and (d) step 4. The dashed circles 

indicate the actual location of the 1-cm absorber with a depth of 1.5 cm below the 

measurement surface. 

 
Panels in Fig. 5-4 provide overall comparisons among the reconstructed images 

that were obtained using the experimental setup given in Figs. 5-1 to 5-3. Figure 5-4(a) 

demonstrates the result obtained from the regular iterative DOT reconstruction technique. 

While this figure shows relatively good reconstruction in both location and size for the 

embedded absorber, we see very poor recovery in absorption contrast for the 

reconstructed object: the reconstructed value of μa was 0.012 mm-1 while the expected 

value was 0.03 mm-1. As seen in Fig. 5-4(b), Step 2 of HCM is able to determine the 

probable location of the absorber; Figs. 5-4(c) and 5-4(d) show the gradual improvement 

in the contrast recovery. By the end, both location and absorption contrast of the 
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embedded absorber were reconstructed much better to meet the expected values. 

Moreover, Table 3 shows that HCM resulted in a recovery rate of 83% for the embedded 

target, without using any spatial prior information. Moreover, Table 3 shows that HCM 

resulted in a recovery rate of 83% for the embedded target, without using any spatial 

prior information.  

 

Table 5-1 comparison of reconstructed µa  value between regular DOT reconstruction 
and HCM for experimental data. 

 

 

5.3 Design 2 

In design 1 the probe is handcrafted and, the process was time-consuming and it 

is too far away from real word application. Due to anatomical location of the prostate, the 

probe design should strictly follow the diameter requirements. Moreover, the probe 

should be fabricated with respective to the existing TRUS probe. Today several TRUS 

probes are commercially available and their usage depends up on the doctors training. In 

order to test DOT technology on human subjects proposed design should be scalable. In 

order to address the above problems 3d printing technology was utilized. In design 2, 

commercially available DOT system has been used to image anomalies.  

 
Target 
(mm-1) 

Recovered 
(mm-1) 

Recovery 
Percentage 

DOT reconstruction 0.03 0.0115 38.3% 

HCM 0.03 0.025 83.3% 
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Figure 5-6 Drawing shows the insertion of TRUS probe into clip-on optical probe 

 

Figure 5-5 shows the fitting mechanism with the existing probe. Figure 5-6 shows 

three generations of probes developed. In generation-1, plastic pipe has been cut and 

drilled to hold the optical fibers. In generation-2 3d-probes has been designed using 

software (Solidworks) and printed using 3d printer. Four designs have been considered 

and two-part design has been finalized in generation-2 due to the ease of placing optical 

fibers. In generation-3 the two parts has been attached with silicone.  . The advantage of 

silicone is it can create a rubber mould for TRUS probe inside the optical clip-on.   

 

Figure 5-7 pictures showing various generations of the optical Clip-on probes developed  
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5.3.1 Validation of Clip-On Probe  

In order to test the designed probe solid phantoms has been fabricated. 

Rationale for fabricating solid phantoms are (1) They can be used of system calibration 

before the experiment (2) can be used repeatedly during the optimization of probe 

geometry and validating algorithms (3) They are long lasting and can be transported 

easily. For fabrication the protocol below has been followed.  

Volume of both silicone and silicone catalyst was measured and set to be in 10:1 

ratio. Large Titanium oxide particles are mixed with silicone catalyst and sonicated for 40 

mins. Occasionally steel spatula was used to mix the catalyst. Next, india ink was mixed 

with silicone thoroughly with the help of blender. Silicone catalyst was mixed with the 

silicone thoroughly again with the blender. This process mixes lot of air with the silicone 

and it needs to be degassed. Silicone with air bubbles was poured into 3X large container 

and placed into a vacuum chamber.  In vacuum, while air is getting out, the silicone 

expands (the reason for 3X large container) and compresses after some time. Silicone 

was degassed for is 30 mins. Next, the solidifying silicone was poured into a mould and 

was allowed to cure for 24 hrs. Pieces of 1X1X1 cm3 were cut from the solid phantoms 

and utilized as absorbers for the experiments.To validate proposed algorithms and 

developed clip-on probe, six experimental data sets has been considered. Specifically 

two experiments have been performed and in each experiment, three datasets have been 

recorded. The overall goals of the experiment are (1) to validate HCM method with clip-

on probe, (2) to check the reconstructions with the prostate related absorption and 

scattering coefficients, (3) to prove that the reconstructed image is related to the 

embedded inclusion and not from an artifact/noise. To achieve the above goal an 

absorbing/scattering inclusion fixed at a location and the clip-on probe was translated 

horizontally. The expected results are the images showing the movement of the inclusion. 
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Figure 5-8: Experimental setup showing the horizontal translation of the probe across the 

absorber (located at center of the plastic container). Pictures were taken after the 

experiment. 

For both experiments, a homogeneous liquid tissue-mimicking phantom was 

prepared by filling a container with Intralipid solution. A cubical inclusion with dimensions 

of 1X1X1 cm has been placed at 1.5-cm depth from the surface of intralipid with the help 

of a string (less than 1mm diameter). The clip-on optical probe was placed on the surface 

of the intralipid by holding it with a test tube clamp. The other side of the test tube clamp 

was connected to a linear translational stage. See Figure 5-8: Experimental setup 

showing the horizontal translation of the probe across the absorber (located at center of 

the plastic container). Pictures were taken after the experiment.. The initial location of the 

probe was adjusted such that one side of the source-detectors sees the inclusion (Left 

position with respective to the inclusion). Next, the probe has been translated to the 

center position (both sides of sources and detectors see the inclusion). Next, the probe 

has been translated to the right position. Finally the probe was placed on the calibrating 
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phantom to collect the reference data. Experiment 1 was designed to simulate a change 

in scattering and experiment 2 was designed simulate a change in absorption. In 

experiment 1, the background absorption was set to 0.0047 mm-1 and scattering was set 

to 0.51 mm-1.  The absorption of inclusion is 0.0046 mm-1 and scattering is 1.05 mm-1.  

In experiment 2, the background absorption was set to 0.005 mm-1 and scattering was 

set to 0.69 mm-1.  The absorption of inclusion is 0.01 mm-1 and scattering is 0.69 mm-1. 

These values are within the limits of PCa measurements from previous study.  

 

 

Figure 5-9 Raw data from a channel showing the changes in the data while translation of the clip-

on probe 

 In the reconstruction, the probe's location was fixed so there should be 

movement in the reconstructed location. Figures 4.22 and 4.23 clearly show the 

horizontal moving absorber.  The locations of the absorber were also recovered 

accurately. The above experiment proves that the proposed reconstruction 

methodologies can reconstruct images with low contrast. On the other hand the 
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experiment also proves that the designed clip-on probe can be useful to image PCa. The 

results so far are qualitative more quantitative analysis will be done. 

 
Figure 5-10 Panels (a) (b) and(c) shows the reconstructed images which depicts the 

translation of the absorber (scattering contrast).  Dotted rectangles shows the target 

locations 

 

 
Figure 5-11 Panels (a) (b) and(c) shows the reconstructed images which depicts the 

translation of the absorber (absorption contrast).  Dotted rectangles shows the target 

locations 
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5.4 Conclusion 

In this chapter, two types of TRUS coupled optical probe designs were explored.  

In design 1, photodiodes were placed directly on the side of the TRUS probe. In design 2, 

3d printing technology has been utilized to create a clip-on optical probe compatible with 

existing clinical TRUS facility.  Both the designs were tested successfully by utilizing 

laboratory phantoms. However, two major issues have to be discussed when using a clip-

on optical probe. (1) Probe contact: Measurements in DOT are very sensitive to optical 

contact between the optodes and tissues. It is very critical to ensure sufficient contact or 

good optical coupling. However, in transrectal measurements, it is impossible to learn 

such information because of anatomical location.  (2) Calibration: Calibration in DOT is 

also very sensitive to bend losses in the optical fiber.  
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Chapter 6  

Measurement of Bulk Optical Properties of Ex-vivo Prostate Tissues 

6.1 Introduction 

Prostate cancer (PCaa) is one of the leading causes among cancer deaths in 

men in the United States. Despite many advances in the diagnostic techniques, 

fundamental questions about how to differentiate the aggressive PCaa from localized 

PCaa still exists. Statistics indicate that the lifetime risk of PCaa for men in the United 

States is as high as 15.33%, but only 2.71% of men will die of it [65]. An autopsy study 

with 249 cases found that 64% of men in their seventh decade of life had undiagnosed 

invasive PCa and died of other causes [66]. Current treatment options for localized PCa 

such as radical prostatectomy and external radiation therapy (XRD) are effective in curing 

patients, but they carry significant risks. A 5-year outcome study indicates that, 79.3% 

patients suffered from erectile dysfunction due to radical prostatectomy 63.5% due to 

XRD. Incontinency rates about 15% in radical prostatectomy and 4% in external beam 

radiotherapy patients. Bowel urgency and painful hemorrhoids were more common in the 

external beam radiotherapy group than in the radical prostatectomy group. On the other 

hand, radiation therapy is associated with acute proctitis and cystitis at the rates of 20% 

and 30% respectively [67]. There are dilemmas associated with the diagnosis and 

prognosis of PCaa which has lead to the over diagnosis and over treatment of the 

disease.  

Prediction tools for PCaa have been developed to assist in the accurate 

diagnosis and treatment of the disease, and address a wide variety outcomes; e.g. the 

Partin tables [68,69], Partin nomogram [70], Kattan and Stephenson nomograms [71] 

and, CAPRA score [72]. The Partin table uses clinical stage based on digital rectal exam 

(DRE), Gleason score (GS) of the prostate needle biopsy, and serum prostate specific 
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antigen (PSA) to predict stage  [73,74]. These specimens subject to sampling error since 

they are obtained from  blind random biopsies of the prostate. Imaging modalities are 

also used to determine PCaa stage and aggressiveness; however, these also have 

several limitations regarding sensitivity and cost of the procedure. Positron emission 

tomography has low sensitivity and is unable to detect differences between benign and 

malignant tissue. Novel methods, such as multiparametric MRI, have demonstrated the 

potential for improved detection of high grade cancer and risk stratification in newly 

detected PCas, but confirmatory biopsies are still required. Other imaging modalities 

such as ultrasound and computed tomography also lack sensitivity and specificity. 

Further, these modalities often require the use of intravenous contrast to improve 

detection rates. 

Because of the currently employed imperfect tools, many men undergo 

unnecessary treatment for a disease that would not have caused their deaths. Studies 

estimate that, in order to prevent one PCa-specific death, 100 men with low-risk PCa 

need to be treated [75,76]. Another study indicates that, 42% of men diagnosed with PCa 

by prostate specific antigen (PSA) testing will be over-diagnosed [77]. Over-diagnosis 

results in increased health care costs and unnecessary morbidity from treatment-related 

complications. Patients with life expectancy of less than 10 years may die of other causes 

before experiencing any benefit from screening but are still exposed to potential harms 

from the screening test itself, a resulting diagnostic work up, or unnecessary treatments.  

An improved method to detect PCa and risk-stratify those with PCa prior to definitive 

therapy may reduce the over-treatment rate, while maintaining or improving mortality. 

Investigation of PCa by DOT has been very limited. Thus far, in-vivo optical 

properties of prostate have been reported by ( [60-62,78-80]), and ex-vivo specimen were 

investigated by  [81-83]. Specifically  [80] investigated PCa with interstisial trans-pernial 
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method to collect eff


 using CW diffuse optical technique.  [61,62,78,79] performed 

same methods(interstitial trans-pernial method using CW light) on recurrent PCa(RPCa) 

and utilized  differential evolution algorithm developed by  [84] to recover both absorption 

and scattering of RPCa. Svensoon et al.  [60] utilized time domain technique to record 

absorption and scattering of PCa using interstitial trans-pernial method. In ex-vivo 

prostate measurements  [81,82] examined normal prostates using CW light. Prostates 

were collected from cadaver donors who died from non urological cause. Sharma et. al  

[83] examined PCa and benign tissues using auto-fluorescence lifetime spectroscopy 

(AFLS) and light reflectance spectroscopy (LRS). AFLS used excitation at 447 nm with 

four emission wavelengths (532, 562, 632, and 684 nm), where their lifetimes and 

weights were analyzed using a double exponent model. LRS was measured between 500 

and 840 nm and analyzed by a quantitative model to determine hemoglobin 

concentrations and light scattering. The optical signatures of prostate and PCa are 

scattered, often measured though invasive approaches.  

Our hope or hypothesis for this study is that DOT has the ability to image PCa 

and to differentiate aggressive cancer from slow growing cancer in order to help clinicians 

make necessary treatment decisions. diffuse optical tomography has a weakness of not 

being able to provide anatomical images or locations for the measured organs or 

specimens. Since PCa measurements  are  endoscopic,  the  weakness of  DOT  makes  

the  measurements  blind  folded. This implies that we cannot identify the exact 

anatomical locations of the measurement sites and reconstructed images. In order to 

overcome this problem, an optical attachment that can be clipped on an existing TRUS 

probe needs to be developed. In this study, we measured optical signatures of both 

benign versus PCa tissues from ex vivo human prostate specimens right after 

prostatectomy in order to determine the feasibility of DOT as a possible imaging tool. 
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6.2 Experimental Methods 

We investigated the feasibility of using DOT to measure the differences between 

benign and cancerous tissues by utilizing frequency domain (FD) machine. Specifically 

ISS oximeter (OxiplexTS, ISS Medical, Champaign, IL) with four channels (Four sources 

and  

 

one detector) has been utilized. Although ISS oximeter, designed to measure 

and determine the absolute values of HbO, HbR, and HbT in tissues, a single wavelength 

(i.e 811nm) has been utilized in this study. Reduced scattering coefficient and absorption 

coefficient are recorded in the measurements. 

Fig. 6-1 (a) shows the source-detector geometry of the customized probe holder 

made for the measurements. The nearest distance between the source and detector pair 

detector is 0.5 cm and the farthest is 1.4 cm. In Fig. 1a, the large blue dot represents the 

detection fiber bundle, while the other 4 red dots correspond to the detection fibers. The 

6-1: (a) Source detector geometry used; (b) showing the actual probe used for the 

measurement; (c) explaining the measurement procedure 
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custom probe holder was designed (in Solidworks®) based upon the size of the prostate 

(Fig. 6-1 (b)) and printed using a 3d printer (Makerbot®). Measurements were performed 

at two areas of the prostate, i.e., on (1) prostate capsule and (2) intra prostate tissue. 

Within the above two areas, the two regions were measured; they are (i) near and (ii) far 

away from a highly suspicious cancer region. The FD-NIRS data were collected on the 

capsule first (see Fig. 6-1(c)) before the prostate was bivalve, followed by another set of 

measurements directly on top of the suspicious region after cutting it open. Then, the 

measured tissue samples were removed from the gland (inked with appropriate colors), 

and sent to the histology lab for histology confirmation.  Initially, with 811nm wavelength 

scattering of prostate tissues was measured. Later, encouraged by the differences in 

scattering between benign and cancerous tissues, absorption was also measured. 

Finally, we also expanded the study by adding one more wavelength (785 nm).  

Fifteen prostate specimens were measured and five measurements were taken 

at each site by rotating the probe by ~30 degrees to cover or average the local region 

yielding 300 data points (75 of each tissue type). After pathological analysis, cancer 

locations of three specimens were turned out to be benign tissue. Therefore, in our 

analysis, we considered them as benign tissues, although the measurements were made 

at suspicious cancer locations. The acquired data are analyzed in two ways (1) By 

considering each data point independent (2) and by averaging the five measurements, 

which were taken at each site by rotating the probe by ~30 degrees and considering it as 

one data point. Both types of analysis were statistically analyzed and the details of the 

analysis were discussed in the next section. 
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6.3 Statistical Analysis: 

Both scattering and absorption data were analyzed with one-way ANOVA and 

post-analysis with Tukey’s multiple comparison test. Tukey's test is essentially a t-test, 

except that it corrects for error rate with respect to the experiment (when there 

are multiple comparisons being made, the probability of making a type I error increases).  

To further check the validity of the estimators, residual analysis was performed in 

order to check ANOVA assumptions. Specifically the following assumptions were 

checked.  

(1) Check for outliers: Outliers in the data has been checked by two ways (1) 

identifying the outliers by visualizing the data, i.e. plotting the data (Tissue type vs 

residuals) (2) By statistical test such as bonfferoni outlier test. In bonferroni outlier test, 

studentized deleted residuals (SAS RSTUDENT) are calculated by 
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 then it is concluded as outlier.  

(2) Check for normality: Normally distributed errors have been checked by 

plotting Q-Q plot and calculating the sample correlation ̂  between the residuals and 

their normal scores. Next cutoff ( , n)c   has been taken from Neter et al. (1996). If 

( , n)c  then it is considered as a violation of normality. 

(3) Check for constant variance: Anova assumes that the error variables have 

similar variances for each factor. To check for constant variables two tests modified 

levene test has been performed.  
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In modified Levene test, initially sample median
i

y  was calculated. Next absolute 

differences 
it

d  are calculated by 
it it i it i

d y y e e    . After calculating 
it

d one-way 

ANOVA will be used to test the differences in 
it

d observations. The following hypothesis 

will be tested.  Ho: Variance is constant. HA: Variance is not constant.  Decision rule: if F 

value from ANOVA > α=0.05 fail to reject Ho which means variance is constant. 

(4) Check for serially correlated errors: To check serially correlated errors data 

will be plotted across measurement order and jaggedness will be examined. If the data 

exhibits random jaggedness there are no serially correlated errors and vice versa. 

 

6.4 Results 

A total of 16 patients were enrolled for this part of study (12 patients for 

absorption). Mean (standard deviation) patient age was 60.7 (6.0) years.  After the 

measurements, pathological analysis was performed to confirm the cancer and benign 

regions. One out of 15 samples was excluded because the sample has necrotic tissue. 

After data collection, we sorted the data into cancer and benign according to the 

pathological analysis. For example, if the measurement from cancer locations turns out to 

be benign then we treated that sample as benign. Table 1 shows the final number of 

samples after sorting into four tissue types. 

 

Table 6-1 Table showing number of measurements made per tissue type  

Tissue 

Type 

Scattering Absorption 

Cancer on capsule 11 9 

Benign on Capsule 18 14 

Cancer in Parenchyma 14 12 

Benign in Parenchyma 16 12 
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Figure 6-2 shows the calculated scattering coefficients from the ex vivo human 

prostate measurements performed on intra- and extra-capsule tissues in two areas (i) 

near and (ii) far away from a highly suspicious  cancer region. It is evident that the 

pathology-confirmed cancer has higher scattering and absorption values in both areas 

than those of benign tissue. Moreover, the measured optical properties of PCa taken 

from intra- and extra-capsule tissues are very consistent. The mean reduced scattering 

for cancer on capsule is 7.52±1.26 cm-1 and on parenchyma is 7.73±1.51 cm-1. The 

benign tissue on the capsule has reduced scattering about 5.37±1.27 cm-1 and  

parenchymal benign tissues has about 5.40 ± 0.9 cm-1. The p-values from ANOVA 

(<0.001) indicate that there is a significant difference in each optical property between 

cancer and normal tissues. We also did Tukey’s pairwise comparisons (violet bars in 

figure) and statistically conclude the following: (1) we are 95% confident that the optical 

coefficients of cancer on the capsule are different from those of benign tissues on and 

within the capsule of the human prostate. (2) We also are 95% confident that the optical 

coefficients of PCa within the capsule are different from those of benign tissues on and 

within the prostate glands. 

 



 

98 
     

 

Figure 6-2 Bar plot showing the optical scattering of four prostate tissues. Error bars 

represents standard deviation of the mean. * represents significant differences with 

Tukey’s pairwire comparisons 

 

Fig. 6-3 shows the absorption results from the actual measurements were 

performed on intra- and extra-capsule tissues in two areas (i) near and (ii) far away from 

a highly suspicious region. It is evident that the cancer has slightly higher absorption in 

both areas than that of benign tissue. Moreover, the measurements from intra- and extra-

capsule tissues are similar. The mean absorption coefficient for cancer on capsule is 

0.125±0.02 cm-1 and on parenchyma is 0.13±0.027 cm-1. The benign tissue on the 

capsule has reduced scattering about 0.109±0.026 cm-1 and  parenchymal benign 

tissues has about 0.094 ± 0.011cm-1. The p-values from ANOVA (<0.001) indicate that 

there is a significant difference in each optical property between 
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Figure 6-3 Bar plot showing the optical absorption of four prostate tissues. Error bars 

represents standard deviation of the mean. * represents significant differences with 

Tukey’s pairwire comparisons 

 
To check assumptions of ANOVA outliers in the data has been checked with 

Bonferroni outlier test.  Figure 6-4 (a) shows modulus of studentized deleted residuals of 

scattering data vs scattering in four tissue types measured. From the figure it is clear that 

all       values < threshold value 3.505. (Threshold=
1,

2
n v

n

t 
 

= t295-4-1 0.05/2*295). It indicates 

that statistically there are no outliers in the data. Similarly,  Fig.Figure 6-4(b) shows 

studentized deleted residuals of scattering data vs scattering in four tissue types 

measured.  From the figure it is clear that all       values < threshold value 3.51. 

(threshold=
1,

2
n v

n

t 
 

= t235-4-1,0.05/2*235). It indicates that statistically there are no outliers in 

the data. Threshold has been generated from SAS statement ”t=tinv(1-alpha,df)” 
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Figure 6-4 Plots (a) and (b) showing studentized deleted t residuals and cutoff values for 

scattering and absorption.  

 
Figure 6-5 (a) and (b) shows normal probability plots of both scattering and 

absorption. X axis indicates the normal scores and y axis indicates the corresponding 

residuals. Next, sample correlation (Perason correlation coefficient) ̂  between the 
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residuals and their normal scores. The cut off c(α,n) = c(0.01,59) for scattering is 0.971. 

From the figure ̂ > c this indicates that scattering data is normally distributed.   Similarly, 

the cut off value for absorption is c (α,n) = c(0.01,47)  is 0.963. From the figure ̂ > c this 

indicates that scattering data is normally distributed.    

 

Figure 6-5 Panels (a) and (b) showing the normal probability plots of both scattering and 

absorption respectively and person correlation coefficient respectively 
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The F value from ANOVA for modified levene test is 0.1536 for scattering data 

and 0.81 for absorption data. For both scattering and absorption F value > α=0.05. So the 

null hypothesis is rejected which means variance is constant. Therefore, from Modified 

Levene test, it is clear that the scattering and absorption data has constant variance. 

Figures 6-6 and 6-7 depicts the plotted residuals vs. measurement order for 

scattering and absorption respectively. From Figure 6-6, it is clear that the data has 

random jaggedness except in prostate benign case. There are slight trends in 

parenchymal benign case, but overall we can say that there is no serial correlation. From 

Figure 6-7 slight downward trend appear in the beginning of measurements parenchymal 

benign case, later there is jaggedness. Overall the data has random jaggedness. 

The statistical analysis above indicates that all model assumptions were 

satisfied. Since normality and constant variance is satisfied we do not need 

transformation of the response variables (scattering and absorption) and the data has 

constant variance with normally distributed errors then weighted least squares is not 

applicable in this case. 
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Figure 6-6 Residuals Vs Measurements order 

 

 
Figure 6-7 Residuals Vs Measurements order 
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6.5 Discussion  

As specified in previous chapters the long-term goal is to develop a combined 

NIR and TRUS probe, which can be used to detect and risk-stratify PCa prior to definitive 

therapy. With combined NIR and TRUS, the information from TRUS can be utilized as 

prior in DOT reconstruction. While the combined TRUS-NIR method improves accuracy 

of reconstructed DOT images, it highly relies on the ability of TRUS to locate the PCa 

lesion. The above problem has been solved by creating hierarchical clustering method, 

which improves the image reconstruction in the absence of prior information about cancer 

in PCa imaging using DOT. This Chapter explored PCa imaging using DOT by measuring 

optical signatures of both benign versus PCa tissues from ex vivo human prostate 

specimens. In this section, I compared the optical properties from our study with 

previously published optical properties of prostate. In the next paragraph, morphological 

reasons behind increase of scattering and absorption in cancer tissues will be discussed. 

Origin of scattering and absorption signals has been well understood and 

described in the literature of biomedical optics. Micrometer-sized organelles such as 

vesicles, mitochondria, and nuclei are responsible for the origin of scattering signal. The 

increased scattering coefficient in cancerous tissues indicates larger cell sizes and higher 

densities (cancer cells are poorly differentiated).  In our study, frequency domain data 

collected form ex-vivo prostate specimen shows a consistent scattering and absorption 

differences between benign and cancerous human prostate tissue. Before explaining the 

specific reason for increase in scattering, the basic morphology of prostate tissues will be 

explained.  

The normal prostate is composed of glands and fibromuscular stroma(see Figure 

6-8(a) and (b)).  The epithelial cells of the glands are organized as acini(cluster of cells 

resembles berry) that secrete into the luminal space that converges upon a duct and into  
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Figure 6-8 Figure showing pathological slides obtained from biopsy samples. (a) Benign 

prostate glands (b) Benign prostate glands with stroma (c) PIN (d)Adenocarcinoma (e) 

Benign prostatic hyperplasia (f) Prostattitis 

 
the urethra. Within the prostatic epithelium, there are at least three distinct cell 

types that can be distinguished by their morphological characteristics, functional 

significance, and relevance for carcinogenesis [85]. The predominant cell type is the 

secretory luminal cell, which produces prostatic secretions. The second major epithelial 

cell type corresponds to the basal cells, which are found between the luminal cells and 

the underlying basement membrane, and which form a continuous layer in the human 

prostate, but not in the mouse prostate. Finally, the third prostatic epithelial cell type is 
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the neuroendocrine cell, a minor population of uncertain embryological origin, which is 

believed to provide paracrine signals that support the growth of luminal cells. 

Fibromuscular stroma is situated on the opposite side of the basal cells. Stroma is 

composed of fibroblasts, smooth muscle cells, and an extracellular matrix rich in collagen 

fibers that intervenes between the secretory acini. The fibromuscular stroma between the 

glands accounts for about half of the volume of the prostate.  

Scattering changes in PCa tissues majorly comes from four conditions in the 

prostate. (a) Prostatic intraepithelial neoplasia(PIN) (b)Adenocarcinoma (c) Benign 

prostatic hyperplasia (d) Prostatitis. From histopathological studies of PCa tissues it is 

believed that PIN represent the primary precursor of human PCa [86]. A microscopic 

image of PIN depicts a collection of irregular luminal cells and they are confined to 

prostate acinus or duct (see Figure 6-8(c)). The architecture of the glands and ducts 

remains normal. In PCa, the abnormal cells spread beyond the boundaries of the acinus 

and form clusters without basal cells. Nuclei of PCa cells are enlarged round and have a 

single prominent nucleolus. In both PIN and PCa (adenocarcinoma) luminial cells will 

abnormally multiply and leads to increased scattering.  

However, from the Figure 6-8(e) and (f) BPH and Prostattitis also has increased 

number of cells than normal tissues. Benign enlargement of the prostate (BPH) consists 

of hyperplastic growth of the epithelium and fibromuscular tissue of the transition zone 

and periurethral area(around urethra where ejaculatory ducts enter prostate) [87,88]. 

Stromal changes are increased smooth muscle, lymphocytes and ducts (not associated 

with infectious process of Prostattitis in most cases), reduced elastic tissue. Prostatitis is 

swelling and inflammation of the prostate gland. In Prostattitis the glands ans stroma are 

filled with neutrophils explaining the presence of neutrophils on urine microscopic 

examination. Scattering also changes with BPH and Prostattitis and in principle it is 
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difficult to separate scattering change is due to cancer, BPH, or Prostattitis. However, in 

TRUS-NIR scenario the probing depth is approximately two centimeters. BPH occurs in 

transition zone that is in deeper location for NIR measurements to reach.  

Absorption in NIR region is related to chromophore concentrations, such as HbO 

and Hb. Studies such as indicates that there is immunohistolocal evidence that micro 

vessel density were associated increased long-term risk for death from PCa. However, 

the absorption of cancer tissue measured from ex vivo specimens is not expected to be 

representative because of lack of blood supply and of natural vascular environment.  

 In addition, the results from this work have been compared with scattering and 

absorption values from literature (see table 6-2). When comparing our results to 

previously published data, two important facts must be noted. First, differences such as 

patient groups (e.g., untreated or recurrent PCa) measurement type (ex-vivo and in-vivo) 

must be taken into account. The prostate physiology changes drastically upon radiation 

therapy. Ex-vivo studies measures the prostate after isolation from blood circulation. So 

the measured absorption coefficient from ex-vivo studies is not reliable as in-vivo studies.  

 Secondly, CW instrumentation and global minimization techniques are utilized to 

calculate absorption and scattering. Evolution-strategy (ES) algorithm and genetic 

algorithms (GAs) borrow from ideas in biological evolution theory to find global minima of 

objective functions. On the other hand Marcov-chain Monte-carlo methods such as 

Simulated Annealing algorithm can also be used to separate absorption and scattering 

from CW data. However, the noise in the measurements has significant impact on the 

calculated absorption and scattering values. 

From the table it is clear that the optical signatures of prostate and PCa are 

scattered, often measured though an invasive approach. From  the table, data from 

Svensson et al  [60] is similar with the current study because the data was recorded 
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using time domain system. As explained in chapter 2, time domain and frequency domain 

systems can separate absorption and scattering values. However, absorption values are 

showing higher differences because of the ex-vivo study. 
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Table 6-2: Comparison of optical properties of prostate and various wavelengths in literature 

Study Year wavelength technology Measurement 
type 

Cancer 
type 

N µa µs’ µeff 

Pantelides 
et al. 

1990 633 steady state 
data 

Ex-vivo normal 
whole 

prostates 

3 0.7±0.2 8.6±0.5 4.3±0.5 

Whitehurst 
et al. 

1994 633 steady state 
data 

In-vivo untreated 
BPH and 

PCa 

11   3.6±0.2 

Lee et al. 1995 665 steady state 
data 

In-vivo untreated 
BPH and 

PCa 

11   3.9±0.5 

Lee et al. 1995 630 steady state 
data 

In-vivo untreated 
BPH and 

PCa 

11   3.2±0.5 

Lee et al. 1999 660 steady state 
data 

In-vivo untreated 
PCa 

7   3.5±0.7 

Svensson 
et al. 

2007 660 time-resolved 
data 

In-vivo untreated 
PCa 

9 0.5±0.1 8.7±1.9 3.6±0.8 

Weersink et 
al. 

2005 762 steady state 
data 

In-vivo recurrent 
PCa 

22 0.4±0.2 3.4±1.6 2.0±0.6 

Zhu et al. 2005 732 steady state 
data 

In-vivo recurrent 
PCa 

13 0.4±0.2 11.8±8.2 3.3±0.5 

Svensson 
et al. 

2007 786 time-resolved 
data 

In-vivo untreated 
PCa 

9 0.4±0.1 7.1±1.6 2.9±0.7 

This study 2014 811 Frequency 
domain data 

Ex vivo untreated 
PCa 

15  7.73  

Svensson 
et al. 

2007 916 time-resolved 
data 

In-vivo untreated 
PCa 

9 0.6±0.1 7.7±1.8 3.8±0.8 

Essenpreis 
et al. 

1992 1064 Integrating 
sphere 

Ex-vivo normal 
whole 

prostates 

 1.5±0.2 6.4  
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6.6 Conclusion 

In this study, we measured the bulk optical properties of benign and PCa tissues from 

human ex vivo specimens. It is clear that the cancer tissues carry different optical 

signatures from the benign tissues. It is important to learn that a change in light scattering 

from benign to cancer tissues is more noticeable or prevailing than that in absorption. 

This change is attributed to higher cell densities in glandular space and stroma of 

prostate.   Light absorption, on the other hand, remains to be further tested, as a valid 

optical signature of PCa for DOT, by performing in vivo human prostate measurements. 

Therefore, light scattering seems to be a robust and promising biomarker for DOT to 

image if we wish to use DOT for high-grade PCa detection.  
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Chapter 7  

Imaging hemodynamics of prostate cancer during gas stimulus 

7.1 Introduction 

In previous chapters, TRUS coupled NIR probe has been designed developed 

and tested using computer simulations and laboratory phantoms. The optical contrast 

from ex-vivo prostate tissues was also examined in chapter 6. Several previous studies 

from breast cancer indicated that  absorption and light-scattering properties of tumors 

may be different from those of surrounding tissues, the optical contrast between tumor 

and surrounding tissue is about 2–3-fold at most in absorption, and much less in light 

scattering.  From chapter 6, tumors has 2.5-4 cm-1 higher scattering than normal tissues. 

The absorption of cancer tissue measured from ex vivo specimens is not expected to be 

representative because of lack of blood supply and of natural vascular environment. Low 

contrast form tumors could be a potential drawback in NIR imaging when used for 

absolute value reconstructions. An alternative contrast mechanism has to be explored in 

order to minimize the potential drawbacks of NIR imaging.  

Tumor vasculature is known to lack proper vasomotor function because of the 

deficiency in smooth muscle cells lining the endothelial cells. Thus, tumors are expected 

to respond differently to changes in the local environment than in normal tissue. The local 

response of the tumors can be initiated by modulating the tissue oxygenation by 

changing inhaled gas oxygen percentage.  Additionally, the contrast induced by gas 

modulation may also have the potential to identify tissues that are less susceptible to 

therapy. Hypoxic cells in vitro and in animal tumors in vivo are documented to be three 

times more resistant to radiation-induced killing compared with aerobic cell. Therefore, 

evaluation of tumor oxygenation distributions can be useful indentifying various stages of 
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tumor growth and efficacy of therapeutic interventions allowing physicians to identify 

those patients who would benefit from such interventions. 

In NIR breast imaging, Carpenter et al. [89]  investigated and concluded that gas 

stimulus consisting of alternating oxygen/carbogen induced the largest and most robust 

hemodynamic response in healthy breast parenchyma relative to the changes that 

occurred during the breathing of room air. Gas stimulus caused increases in total 

hemoglobin and oxygen saturation during the carbogen phase of gas inhalation, and 

decreases during the oxygen phase. In prostate cancer imaging, validated that hypoxia is 

related to tumor growth rate and degree of differentiation. During gas intervention 

Dunning prostate R3327 rat tumor sublines exhibited higher oxygen tension in small 

tumors than large tumors.   

In this chapter, gas modulation was used on the animal models to validate the 

clip-on probe developed in previous chapters. Additionally, differences between 

hemodynamics of muscle and prostate were tumors also recorded. 

 

7.2 Experimental Methods 

7.2.1 Animal preparation 

For validating HCM method, six adult male Copenhagen rats with AT1 prostate 

rat tumors (on thigh) were utilized. Once the tumor diameter reaches approximately 1 cm, 

the experiments were planned. The tumor area and the muscle area of the rats are 

shaved by applying Nair. Next, rats were anesthetized with isoflurane in air through a 

mask placed over the mouth and nose.  A warm water blanket maintained the body 

temperature of the rats.  Two matching phantoms (for both sides) was made by filling 

plastic bags with intralipid and sealing the bag with vacuum sealer. The plastic bag has a 

width of ~1cm. Next, the intralipid bag was placed on the tumor of the rat maintain 
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contact with be thigh of the rat. The designed clip-on probe will be placed on the intralipid 

bag. 

 

 

Figure 7-1 (a) Picture showing locations of two probes on rat thighs the two probes have 

been utilized to record the hemodynamic changes of the tumor and normal muscle. (b) 

Picture showing the width of the intralipid bag  

 

 

 

Figure 7-2 Picture showing rats breathing protocol 
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Specifically, the rat was monitored for 300 seconds (5 mins) while breathing air 

and the gas was changed into 100% oxygen for another 300 seconds. After 100% 

oxygen the gas was changed back to air and monitored for 300s. The following protocol 

was followed for the measurements. 

 

7.2.2 Instrumentation 

The laboratory experiment was performed by utilizing a 32-channel, continuous-

wave DOT imager [45] (DYNOT, NIRx Medical Technologies). The system delivers and 

collects two wavelengths of Laser at 760 nm and 830 nm, sequentially from each optical 

fiber. For the study, 24 bifurcated optodes were utilized and divided into two groups for 

measuring both cancer and muscle tissues. The first group has 18 optodes (9 sources 

and 9 detectors) connected to the clip-on rectal probe. The second group is a linear array 

with six sources and six detectors arranged alternatively separated by a distance of 0.5 

cm. The data was selected from the first to fifth nearest S-D pairs and used for image 

reconstruction.  

 

7.2.3 Image Reconstruction 

Optical images are reconstructed every 30 Sec starting from gas challenge. 

Nineteen images are reconstructed (9 during Oxygen phase and 10 during air phase). 

The data were calibrated with the first time point in a given stimulus series in order to 

reduce experimental noise from changes in fiber coupling, fiber attenuation, and other 

systematic errors. The calibrated data at the nth time point  
n

C B


was calculated 

according to the following equation 
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C B M M C
        7.1 

Where 
n

M
  is the measured data 

1

M
 and 

1

c
 are the measured and calculated 

data for the first frame. This routine is similar to phantom calibration from the previous 

chapters except that the calibrating phantom data has been replaced by the data from the 

first frame. Movies were created displaying HbO and Hb dynamics during the gas 

challenge. Later, 830 nm wavelength data from best three rats is selected to reconstruct 

images with HCM. 

 

7.3 Results 

 
Figure 7-3 Changes in oxy-hemoglobin in cancer and normal tissues  

during gas challenge. Changes from all channels all rats have been potted 
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Figure 7-4  Changes in oxy-hemoglobin in cancer and normal tissues  

during gas challenge 

From Figs 7-3 and 7-4 it is clear that Oxy and deoxyhemoglobins are going in opposite 

directions. Howerver with these plots we are not able to fully distinguish between cancer 

and normal muscle. 
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Figure 7-5  Bar plot showing the magnitude of changes in Oxy-hemoglobin  

during gas challenge between cancer and normal tissues 

 

 

 

Figure 7-6  Bar plot showing the magnitude of changes in reduced Oxy-hemoglobin 

during gas challenge between cancer and normal tissues 
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From Fig. 7-5 and 7-6 it is clear that the cancer has higher changes in both Oxy and 

deoxy hemoglobin during gas stimulation. However, one rat the changes are in opposite 

directions. The change across all rats is not uniform. 

 

Image reconstructions: 

 

 

Figure 7-7 (a) (b) and (c) showing the image reconstructions from rats 1,2 and 3 using 

HCM 
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Figs 7-7(a),7-7(b) and 7-7(c) shows the image reconstruction using the HCM; 

The dotted lines depict the approximate location of the probe and the dotted circle 

indicates the approximate size of the tumor. The tumor locations are not in the center 

because of the placement of the probe on the phantom bag. Since phantom bag has 

water and the surface is uneven due to the tumor, the probe usually slips away from the 

center of the tumor.   

7.4 Discussion and Conclusion 

This study demonstrated that a gas stimulus consisting of alternating air∕oxygen 

induced the robust hemodynamic response prostate cancer tissue (AT1 tumor) relative to 

the changes that occurred in muscle tissue. This stimulus caused increases in Oxy-

hemoglobin during the oxygen phase of gas inhalation, and decreases during the air 

phase. For de-Oxy hemoglobin the changes are opposite with respective to Oxy 

hemoglobin. On the other hand, Clip-on optical probe has been validated using animal 

models. The clip on probe is able to reconstruct tumors approximately 1cm deep from the 

surface. 
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Chapter 8 Concluding Remarks 

8.1 Conclusion 

In summary, the TRUS coupled trans-rectal NIR imaging probe was designed 

and fabricated.  Specifically, two types of TRUS coupled optical probe designs were 

explored.  In design 1, photodiodes were placed directly on the side of the TRUS probe. 

In design 2, 3d printing technology has been utilized to create a clip-on optical probe 

compatible with existing clinical TRUS facility.  

For image reconstruction HCM method has been proposed, which improves the 

image reconstruction in the absence of prior information on cancer location in prostate 

cancer imaging with diffuse optical tomography. HCM works by (1) Utilizing the available 

prior information on the locations of prostate, peri-prostate tissue and rectum wall and 

then (2) dividing the probable location of a prostate tumor or tumors into several clusters.  

This latter step made the prostate partially heterogeneous. The dimensions of the 

clusters were iteratively changed to limit the mixing of normal tissue with cancerous 

tissue and vice versa. Combination of DCA with L1-regularization (DCA-L1) has also 

been proposed for perturbation based (dynamic) DOT, which can offer significant 

improvement in depth localization and spatial resolution for DOT images. In DCA-L1, the 

reconstructed images are obtained by using L1 regularization technique after modifying 

the Jacobian or sensitivity matrix by DCA. 

Bulk optical properties of benign and prostate cancer tissues from human ex vivo 

specimens. Based on Fig. 3 and further statistical analyses, it is clear that the cancer 

tissues carry different optical signatures from the benign tissues. It is important to learn 

that a change in light scattering from benign to cancer tissues is more noticeable or 

prevailing than that in absorption. 
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8.2 Contributions of This Work 

The most important contribution of this work is to design, develop and test TRUS 

coupled optical probe. Optical imaging probe works as complimentary technology for 

existing NIR probe. Utilizing 3d printing technology in optical probe design is an important 

direction towards future in-vivo clinical studies.  Measurement of bulk optical properties of 

ex-vivo benign and prostate cancer tissues demonstrated that the cancer tissues carry 

different optical signatures from the benign tissues. 

The work in this thesis was focused on both instrumentation and experimental 

demonstration. The contribution of this work involved multiple areas such as hardware 

development, system integration, imaging reconstruction and data calibration. The 

instrumentation part includes the optics related tools designing and assembling, source 

coupling setup, programming of the system control by Labview and developing the codes 

for data calibration and imaging reconstruction. The experimental demonstration covers 

all the tests designed to quantify the system performance and validate the potential on 

the clinical application. 

 

8.3 Limitations and Future Scope 

In DCA-L1 method, the optimized empirical parameters (i.e., NIPCaG and 

NSNewton) were derived from phantom experiments. For quantitative or rigorous 

validation of DCA-L1, in future a joint fMRI-DOT study in order to make volumetric DOT 

possible for human brain imaging. DCA+L1+L2 can also be used to compensate over 

shrinkage of image by L1 method.  

HCM method assumed that variation in light scattering across the prostate and 

its surrounding tissues is minimal. This assumption was made because CW-based DOT 

measurements cannot provide enough independent data quantities to uniquely solve both 
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light scattering and absorption coefficients of the imaged objects. With this assumption, it 

is possible to focus on DOT reconstruction of absorption coefficients of simulated 

prostate cancer, using both simulation and experimental data, to implement and validate 

HCM. I acknowledge that the assumption of constant light scattering across the human 

prostate tissues may not be accurate, resulting in two negative impacts the conclusion of 

HCM. One alternative is to take advantage of Simulated annealing (SA) method and 

reconstruct scattering and absorption before step 1. I recommend using frequency 

domain system, which can separate both absorption and scattering in future. 

 

 

 
Figure 8-1: Simulated future probe design showing space for rectangular fibers, self 

calibrating phantom attached to the probe (red) and 3axis gyroscope(yellow)  
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Although I successfully designed and tested TRUS coupled optical probe real 

time (clinical imaging) issues were not considered in the design. They are (1) Probe 

contact: Measurements in DOT are very sensitive to optical contact between the optodes 

and tissues. It is very critical to ensure sufficient contact or good optical coupling. 

However, in transrectal measurements, it is impossible to learn such information because 

of anatomical location.  (2) Calibration: Calibration in DOT is also very sensitive to bend 

losses in the optical fiber. Current challenge is to limit the diameter of the fiber and obtain 

good SNR. Optical probe needs to be calibrated before each use. During the 

measurement the probe will be rotated in the rectum so the bending of the optical fibers 

will change which leads to light loss. (3) Co registration with ultrasound images: 3d 

anatomical information of prostate will be obtained by stitching 2d ultrasound images 

taken at different angles. However, alignment of the 2d slices is the key issue to form 3d 

image from 2d slices. (4) SNR: Achieving good SNR with least possible probe diameter. 

 

Figure 8-2 Simulated probe design showing the arrangement of dummy detector for self 

calibrating probe 



 

124 
     

Touch sensing optode can be used to solve probe contact issue. Capacitive 

touch sensor should be incorporated into the probe. Gyroscopic sensor will be attached 

to the probe so that picth, yaw and roll information of each slice will be recorded. Using 

the information(pitch, yaw and roll) from gyroscopic sensor slices will be realigned. 
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