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Abstract

Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health
concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the
relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions
of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a
model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied
to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and
alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses
suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment
would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity).
These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical
changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP
intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with
DEP cytotoxicity in HAECs.
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Introduction

Diesel exhaust particle (DEP) exposure-related urban air pollution

contributes to morbidity and mortality through an increase in the

incidence of cancer and other health problems [1–3]. DEPs are

directly emitted from diesel-powered engines and serve as a major

source of traffic-related air pollution, and it is mainly composed of a

carbonaceous core, upon which organic compounds, nitrate and

many other compounds are adsorbed [4]. Previous reports indicated

that DEPs can not only invade either the upper or lower respiratory

tracts and the alveolar region depending on the particle size (larger or

smaller than 2.5 mm) [4], but also result in severe impairments in

physiological function of the cardiovascular system [5–7]. However, it

remains controversial concerning how DEPs are transported to

interact with endothelium. A popular view believes that a fraction of

DEPs (e.g. less than 100 nm in size) could penetrate deeply into the

respiratory track after intratracheal inhalation and translocate from

the lungs into the circulation, which could lead directly to interact

with the endothelium [6,8]. While it generally accepted that DEPs

can potentially induce dysfunction in cardiovascular system, it is not

yet clear if DEPs are capable of inducing biophysical alterations of

vascular cells, especially vascular endothelial cells (VECs), at the single

cell level. Therefore, it is of interest to evaluate these interactions,

which can help further elucidate the mechanisms underlying the

ability of DEPs to functionally impair endothelial cells. Atomic force

microscopy (AFM), a powerful force (nN/pN)-sensitive technique,

had been successfully applied in single cell studies. This technology

can provide information on cell topography, membrane nanostruc-

tures and mechanics (e.g. adhesion force, elasticity) of mammalian

cells [9–11] at a nanoscale resolution under physiological or near-

physiological conditions [9,12]. Therefore, AFM should allow

researchers to better understand biophysical responses of mammalian

cells in the presence of DEPs-related air pollution and etiopathology.

Previous applications of AFM in endothelial cell studies include cell

mechanical measurements [13–15], recognition imaging of surface

receptors [16–18], and also cell topographical features [19], showed

the feasibility and utility of AFM to qualitatively and quantitatively

detect cell structures, mechanics and functions of living endothelial

cells [20]. In the present work, to bring new insights into the toxic

effects of DEPs on VECs and eventually into DEP-related

dysfunction of the cardiovascular system, AFM, fluorescence

microscopy, and flow cytometry were applied to analyze the toxic

effects of DEPs on human aortic endothelial cells (HAECs) at single

cell level.

Materials and Methods

HAEC culturing
In our experiments, Human Aortic Endothelial Cells (HAECs;

Cascade Biologics, USA) were selected as a cell model for our
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research. The cells were cultured in complete media consisting of

culture medium 199 (M199) supplemented with 20% FBS, 5% low

serum growth supplement (LSGS), ,20 ng/ml endothelial growth

factor (EGF), and 1% penicillin–streptomycin (all from Invitro-

gen). Cells were incubated in a humid environment at 37uC and

5% CO2. Upon 80–90% confluency, the cells were either passaged

or used for cell viability tests; for AFM related experiments,

HAECs were used when confluency reached ,50%. In the

present study, cells used were within 3,5 generations of the initial

passage.

Diesel exhaust particles
Diesel exhaust particles (DEPs) were generously provided by Dr.

M. Ian Gilmour of the National Health and Environmental Effects

Research Laboratory, U.S. Environmental Protection Agency

(Research Triangle Park, NC). According to our primary

evaluation, DEP size ranges from approximately tens of nanome-

ters to as large as 2 mm in M199 culture medium (Information S1).

Even though DEPs are generally hydrophobic in nature, we found

that they are relatively easily suspended in complete cell growth

medium (M199) using a vortex-shaking method followed by

sonication for 30 min at room temperature. The stock solution of

DEP suspension was added directly into culture medium to

produce appropriate working concentrations. To evaluate effects

of DEPs (as a function of concentration and treatment time) on

cells, three working concentrations of DEPs were used: 10 mg/ml

(which is approximately to be 3.12 mg/cm2), 50 mg/ml, and

100 mg/ml; and four exposure times were studied: 4, 8, 24, and

48 hours. We empirically determined that to induce visible

alterations for AFM observations or measurements and fluores-

cence imaging during short-term exposure required a minimum

concentration of 10 mg/ml DEPs, even though this concentration

may be higher than that commonly found in long-term

environmental exposures.

Cell viability assessment
To test cytotoxicity of DEPs, the HAEC viability was analyzed

using LIVE/DEAD Viability/Cytotoxicity Assay Kit (Invitrogen)

according to the manufacturer’s instruction. Briefly, (1) HAECs

cultured in culture flask were harvested and then suspended in

fresh growth media, and 2 mL of cell suspension was seeded into

poly-D-lysine coated glass-bottom dishes (MatTek Cop. USA) and

further cultured for 3 days, following by DEP treatment; (2) cells

were then washed two times with serum-free essential media

(M199) prior to addition of fluorescent reagents; (3) 200 ml of

mixed solution of 2 mM Calcein AM and 4 mM ethidium

homodimer-1 (EthD-1) (both from Invitrogen) was added directly

to cells, and incubated cells for 30 mins at room temperature; (4)

fluorescent images were acquired using a fluorescence microscope

with DP30BW CCD camera (Olympus IX71) to analyze the

relative proportion of live/dead cells. Here, a 106 objective was

used to observe fluorescence. Calcein AM is well retained within

living cells producing green fluorescence; however, EthD-1 enters

cells with damaged membrane and binds to nucleic acids, thereby

producing a red fluorescence in dead or membrane-damaged cells.

Therefore, the live/dead cells were differentiated visually.

Measurements of cell surface ultrastructures and cell
mechanics

To perform the AFM experiments, cells were seeded on poly-D-

lysine-coated Petri dishes (MatTek) at a density of 16105 cells per

2 mL of media and then cultured for 4 days. Cells treated with or

without DEPs were then measured by AFM.

For AFM measurements, two approaches of sample preparation

were adopted to measure cell mechanics or perform cell imaging.

1) The in situ approach was used to measure the mechanical

properties such as adhesion force and Young’s modulus; that is,

cells grown on poly-D-lysine-coated Petri dishes were directly

transferred onto AFM scanner stage for measurements after cells

were washed two times with fresh culture medium (without any

additional pretreatment), and measurements were conducted in

whole culture medium (M199) at room temperature; the acquired

data thus reflected the physiological status of the observed living

cells. 2) To visualize topography and membrane nanostructures,

the cells were pretreated by fixing with 1% glutaraldehyde plus 1%

paraformaldehyde dissolved in 16 Ca2+/Mg2+-free phosphate

buffered saline for 5 min; followed by gentle rinsing using PBS.

The Petri dish containing the cells immersed in PBS was then

transferred onto the AFM scanner stage for imaging. While the

observed results only reflected the quasi-physiological state of cells,

the image resolution and quality were vastly improved.

The contact mode Picoplus AFM controlled by software

PicoScan 5.3 (Agilent Technologies, USA) was used to perform

measurements in PBS (0.01 M, pH 7.4) or directly in cell culture

medium. During AFM imaging, height and deflection mode

images were acquired simultaneously. Because the deflection mode

image usually can provide greater fine structure details than height

mode images, especially for larger mammalian cells, the deflection

mode image was used throughout these studies; however,

experimental analyses like cell surface roughness were conducted

based on height mode images. The spring constant of the

cantilever used in the experiments was 0.06 N/m (Vecco). The

length of tip with pyramid shape is ,3 mm, and the curvature

radius of the Si3N4 tip is approximately 10 nm. Also, the

approach/retract velocity applied throughout the experiments of

deflection (nm) vs. distance (nm) curve acquirement was 6 mm/s.

The values for the adhesion force (the detachment force between

bare AFM tip and cell surface in the process of AFM cantilever

retracting, which reflects alteration of cell membrane adhesion

behavior/property or denaturation of membrane surface adhesion

molecules) were extracted from force curves via the Scanning

Probe Image Processor (SPIP) software (Image Metrology, Den-

mark). By applying the AFM tip to the cell surface, the elasticity

modulus of cells can be evaluated based on the slope of compliance

portion of the deflection-distance curves. To analyze alterations in

cell elasticity, Young’s modulus was calculated according to the

formula [9,21]:

Ecell~
4:F(DZ)

:(1{g2
cell)

3:Dz2:tan h
ð1Þ

Where, Ecell, cellular Young’s modulus; F, loading force; gcell,

Poisson ratio (assuming 0.5); Dz, indentation; h is the tip half

opening angle that equals to 36u.
With this formula, we calculated the Young’s modulus based on

hundreds of deflection-distance curves acquired for each group.

Furthermore, to assess statistically significant differences in

biophysical properties including adhesion force and cellular

elasticity between control group and experimental groups, the

data were reported as mean6SE (standard error of the mean), and

the statistical difference was analyzed by a Student’s t-test or one-

way ANOVA. The data used to graph histogram or maps were

measured from the entire cell body, and the histograms were

drawn using OriginPro 7.5 (OriginLab Corp., USA). The

mapping of adhesion force or cellular spring constant was graphed

with a 256 color map created by Matlab program version R2009a

Biophysics of Cytotoxicity
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(MathWorks, Inc.) according to previously described methods

[9,22].

Cell staining for observation using coupled atomic force/
fluorescence microscope

The coupled atomic force/fluorescence (AF/FL) microscope

system consisted of PicoPlus AFM and inverted fluorescence

microscope (Olympus IX71) with a specially designed stage

(Agilent Technologies). The imaging conditions/parameters for

AFM are similar to those mentioned above; for fluorescence

microscope, 606 or 1006 oil immersed objective lens (OIL) was

used to acquire bright-field and fluorescence images.

To perform AF/FL imaging, cell suspensions of HAECs were

seeded into poly-D-lysine-coated glass-bottom Petri dishes and

further cultured in the medium for 4 days, then followed by DEP

treatments at three concentrations and four exposure times. Cell

samples were stained with fluorescent phallotoxin and DAPI

dihydrochloride by referring to the Invitrogen protocols. For

staining, cells were washed twice PBS, fixed in 3.7% formaldehyde

solution in PBS for 10 min at room temperature (RT); treated with

0.1% Triton X-100 in PBS for 3 min at RT; incubated with 1%

BSA for 60 min at RT, followed by incubation with 200 ml of

fluorescent phallotoxin (working concentration of 160 nM) for

30 min at RT in the dark; then incubated with 200 ml of DAPI

(300 nM) for 5 min at RT in the dark; and finally, the stained cell

samples were immersed in PBS and stored at 4uC refrigerator

before use. Cells samples were washed twice using PBS between

each of steps. Prepared cell samples were then observed by the

coupled AF/FL microscope in PBS.

Flow cytometry
Flow cytometry measurement was performed with BD FAC-

SAria II (BD Biosciences, San Jose, CA), and data analysis was

conducted by FACSDiva version 6.1.3 (BD Biosciences). After

several attempts, we found that higher concentrations such as

50 mg/ml or 100 mg/ml of DEP-treated cells were not suitable for

flow cytometry analysis because of the interference of DEPs and

significant decreases in cell number. Therefore, only 10 mg/ml of

DEPs was used for subsequent flow cytometry assessments.

Plasma membrane potential. The dye bis-(1,3-Dibarbituric

acid)-trimethine oxanol (DiBAC4(3)) (Enzo Life Sciences, Ex/Em:

493/516 nm) was applied to detect the alterations in plasma

membrane potential of HAECs in the absence and presence of

10 mg/ml DEPs. DiBAC4(3) serves as an indicator for the changes

in membrane potential. An increase in fluorescence intensity

indicates depolarization of cells, while a decrease in fluorescence

intensity is indicative of cell hyperpolarization. The harvested

DEP-treated cells were incubated in 5 mM dye-PBS solution in

37uC incubator with 5% CO2 for 30 min. Then, stained cells were

tested using flow cytometry immediately without washing.

Results

Effects of DEPs on cell viability
To assess cytotoxicity of DEPs, cell viability was evaluated first

using fluorescence microscopy, and representative results are

shown in Figure 1 and Information S2. Fluorescence images in

rows 1–3 show three groups of cell samples treated by different

concentrations of DEPs, 10 mg/ml, 50 mg/ml, and 100 mg/ml,

respectively. The four DEP-cell exposure time points (4, 8, 24,

48 hours) for each group are arranged as columns (1–4),

respectively. As mentioned in ‘‘Materials and Methods’’ section,

green fluorescence is indicative of living cells, whereas red

fluorescence shows dead or membrane-damaged cells. Fluores-

cence images indicate that 10 mg/ml of DEP treatment did not

exert significantly effects on cell viability even after 48 hours of

exposure (row 1 of Fig. 1), and there are only very a few dead or

damaged cells (red color) for all four time points, however,

increasing DEP concentration lead to a visible reduction in cell

viability (rows 2 and 3 of Fig. 1). For example, for 50 mg/ml of

DEP treatment, results showed that the percentage of dead or

membrane-damaged cells clearly elevated for all four time points

compared with the 10 mg/ml group, and that the majority of cells

were dead or membrane-damaged after treating for 48 hours. For

higher concentrations of DEPs (100 mg/ml), it was found that red

fluorescence is predominant for all four time points, suggesting

that the majority of cells were already dead or membrane-

damaged even at the first 4 hours of exposure. These fluorescence

images together revealed that DEPs impaired cell viability in a

dosage- and a time-dependent manner.

DEPs-induced ultrastructural changes
To achieve visualization of topographical and membrane

nanostructures of HAECs in the context of DEP treatment,

AFM was applied to perform imaging in PBS solution. Cell

samples were treated with different concentrations (0, 10, 50, and

100 mg/ml) of DEPs for various exposure time including 4, 8, 24,

and 48 hours, and the results are shown in Figures 2, 3 and

Information S3. Here, only deflection mode images were used to

display AFM observations, because this mode can more readily

reveal fine structural details than the height mode. Figure 2 shows

representative images of HAECs treated without (column 1) or

with three concentrations of DEPs for 4 hours (columns 2–4), and

Figure 3 exhibits results of cells treated with 10 mg/ml DEPs for 4

different exposure time. Images of untreated cells exhibit apparent

lamellipodia around cells with height of 40,700 nm, and

ultrastructural images clearly reveal linearly aligned cytoskeletons,

which are interconnected to each other by filamentous structures,

yielding a mesh-like array. When DEP concentrations were

increased from 10 mg/ml to 100 mg/ml, membrane ultrastructures

were altered visibly (Fig. 2); for example, cytoskeletal structures

that are easily seen for untreated cells and 10 mg/ml DEPs treated

cells became progressively degraded and more and more obscure

(Figs. 2, 3; Information S3). Together these results suggested that

DEP-induced cell damage appeared in a dosage-dependent

manner. Further, AFM images also suggested that cell membrane

damage appeared in a time-dependent manner. For example, for

the 10 mg/ml DEP-treated cell group (Fig. 3), when treatment

time increased from 4 hours to 48 hours, cytoskeletal structures

became gradually degraded. Additionally, there are many

punctate particles, which were readily seen for all DEPs treated

groups (representatively pointed by green arrows), adhered to the

cell membrane surface. These particles appear to be the DEPs

according to further observations of AF/FL microscope (Informa-

tion S4) and bright-field images of fluorescence microscopy

(Information S5).

Evaluation of cell mechanics of DEPs treated HAECs
After observing ultrastructural changes in the cell membrane,

especially the cytoskeletal changes, it was of interest to investigate

the biomechanical properties of HAECs in the absence and

presence of DEPs, which would offer new insights into assessments

of DEP cytotoxicity. Therefore, AFM was used to quantify

mechanical changes (including membrane adhesion force and cell

elasticity) of HAECs in culture medium, and results measured on

single cells are shown in Figure 4 and Information S3. The maps

of adhesion force (Fad, nN) and Young’s modulus (E, kPa)

exhibited heterogeneous distribution of adhesion behavior and

Biophysics of Cytotoxicity
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Figure 1. Representative fluorescence images of cell viability evaluation. HAECs cells were exposed to DEPs with three different
concentrations: 10 mg/ml (row 1), 50 mg/ml (row 2), 100 mg/ml (row 3), and four treatment durations: 4 hours (column 1), 8 hours (column 2),
24 hours (column 3), and 48 hours (column 4), respectively. Cells are stained with Invitrogen LIVE/DEAD Viability/Cytotoxicity Assay Kit. Green
fluorescence presents live cells, whereas red fluorescence shows dead or membrane-damaged cells. All images were obtained with 106 lens. These
fluorescence images together revealed that DEPs impaired cell viability in a dosage- and a time-dependent manner. And the corresponding bright-
field picture of each fluorescent image is shown as Information S5, from which DEPs can be clearly seen.
doi:10.1371/journal.pone.0036885.g001

Figure 2. Representative AFM deflection mode images of fixed HAECs obtained in PBS. Column 1, images of untreated cells (0 mg/ml
group); columns 2–4, images of cells treated with different concentrations of DEPs for 4 hours. Row I, image of single cells, whose scanning size is
marked on respective image; rows II and III, images of membrane surface ultrastructures, whose scanning size is 10 mm610 mm. Particles
(representatively shown by green arrows) on cells are DEPs. This group of images indicated that when DEP concentration increased from 0 mg/ml to
100 mg/ml, cytoskeletal structures became gradually degraded, suggesting that cell membrane damage appeared in a dosage-dependent manner.
And poor resolution of ultra-structures of 100 mg/ml DEP treated cells is mainly resulted from influences of the large amount of DEPs on membrane
surface.
doi:10.1371/journal.pone.0036885.g002

Biophysics of Cytotoxicity
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elasticity over the whole cell body, for example, the region of cell

nucleus possesses a lower elasticity comparing to region of

cytoplasm, and this feature commonly appeared in the Young’s

modulus maps of all experimental groups (Fig. 4; Information S3).

Furthermore, a statistical analysis of alterations of adhesion

force (F) and cell elasticity (Young’s modulus, E) obtained from

multiple cells was conducted, and their respective histograms are

shown in Figure 5. Both histograms of adhesion force and Young’s

modulus clearly indicated significant decreases occurred after cells

were treated with DEPs. However, both of these two parameters

did not show consistent dosage- or time- dependent alteration

tendency.

Cytoskeleton visualizations using coupled AF/FL
microscope

To further detect potential alterations of cytoskeletal structures

of HAECs treated with three concentrations of DEPs for different

exposure times, a coupled atomic force/fluorescence (AF/FL)

microscope was applied to simultaneously perform fluorescence

and topography imaging, as shown in Figures 6, 7 and

Information S4. For untreated cells, cellular cytoskeletal structures

arranged in parallel can be readily seen from the fluorescence and

topography images (column 1 of Fig. 6).

Furthermore, images obtained by the AF/FL microscope

visualized that cellular cytoskeletons were impaired by DEPs in

a dosage- and a time-dependent manner (Figs. 6, 7; Information

S4). For example, for 10 mg/ml DEPs treated cells (Fig. 7),

observations show that fluorescence intensity slightly decreased

although cytoskeletal structures can be seen after 48 hours of

treatment. However, when concentrations of DEPs were elevated

to 50 mg/ml or 100 mg/ml, green fluorescence intensity (depicting

cytoskeleton contents) dimmed more rapidly, which is dependent

on both exposure time and DEP concentration, suggesting that a

higher dosage of DEPs leads to gradual down-regulation of

cytoskeleton components. Additionally, after long-term treatment

(e.g. 24 or 48 hours) of high concentration of DEPs, cell shape and

cell architecture especially lamellipodia became obviously con-

tracted (Information S4), and cell shape was hardly recognizeable

in the fluorescence images.

Plasma membrane potential analysis
To detect effects of DEP exposure on cell membrane function,

alterations of plasma membrane potential (PMP) of HAECs in the

absence and presence of DEPs were also evaluated by flow

cytometry, and results are shown in Figure 8. Figure 8A exhibits

representative graphs of fluorescence intensity of untreated cells

(0 hours) and DEP-treated cells (4,48 hours), and Figure 8B

shows histograms of statistical analyses based on three independent

experiments, showing significant time-dependence decreases in

PMP after treating with DEPs (p,0.01), which suggested

dysfunction or damage of the plasma membrane.

Discussion

Cytotoxicity of diesel exhaust particles (DEPs) evokes increasing

concerns with adverse effects on human health, especially on the

cardiovascular system. Previous approaches to study cytotoxicity

associated with DEP exposure were based mainly on traditional

molecular biology, cytotoxicity or pathology methods. However,

none of these traditional methods provides any information of cell

biophysical properties, including cell membrane nanostructures,

membrane integrity, and cell biomechanics; notably lacking

Figure 3. Representative AFM deflection mode images of HAECs treated with 10 mg/ml DEPs for different time (cells were fixed
prior to observe in PBS). Column 1 shows images of cells treated with DEPs for 4 hours; column 2, 8 hours; column 3, 24 hours; column 4,
48 hours. Row 1 shows deflection mode images of single cells; rows 2 and 3 show images of membrane surface ultrastructures. Particles on cells
representatively indicated by green arrows are DEP. Scanning size of row 1 is marked on respective image; and that of row 2 and row 3
(ultrastructures): 10 mm610 mm. This group of images indicated that when treatment time increased from 4 hours to 48 hours, cell membrane
damage appeared in a time-dependent manner.
doi:10.1371/journal.pone.0036885.g003
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analyses of these properties at the single cell level. Thus,

investigations of such biophysical information using nanotechnol-

ogies will further elucidate DEP-induced cytotoxicity at the single

cell level. Inspired by this motivation, in the present work, atomic

force microscopy was utilized to detect biophysical and biochem-

ical changes at the single cell level for our model cell (human aortic

endothelial cells, HAECs) in the absence and presence of DEPs;

and a coupled microscope system by combining atomic force

microscopy and fluorescence microscopy (AF/FL) was used to

visualize possible re-arrangement and even destruction of cyto-

skeletal elements induced by DEPs.

Fluorescence results suggested that high concentration and long-

term exposure of DEPs could destroy cell bodies itself while

inducing cell death or cell membrane damage, and that DEP-

induced cell death or membrane damage appeared in a dosage-

dependent and a time-dependent manner. For example, AFM

observations (Fig. 3) indicated that 10 mg/ml DEPs did not

obviously change cellular pseudopodia and lamellipodia within

24 hours, whereas, retraction of lamellipodia occurred after

48 hours of treatment, showing that long-term treatment of low

DEP concentration could still induce cell topography alteration.

These adverse changes became much more severe after cells were

treated with higher concentrations of DEPs ($50 mg/ml).

Additionally, alterations of membrane nanostructures revealed

that DEP treatment-induced changes of cellular architecture also

appeared in a dosage-dependent and time-dependent manner.

Such findings implied that cell membrane function would be

altered because function depends on structures, and this relation-

ship was supported by experiments using flow cytometer. These

results together suggested that VECs are sensitive to DEP

intervention, that cytotoxicity of DEPs was externalized as damage

of cell architectures like membrane nanostructures, and that AF/

Figure 4. Maps of cell mechanics including adhesion force (Fad, nN) and Young’s modulus (E, kPa) of live HAECs, which were
measured on single cells in culture medium. These maps are only to exhibit heterogeneous property in cell mechanics and do not reflect
alteration tendency of Fad or E because of individuality of cell-cell. Column 1, untreated (0 mg/ml) cells; columns 2–4, images of cells treated with
different concentrations of DEPs for 4 hours. Row 1 shows AFM deflection mode images; rows 2 and 3 are their corresponding maps of adhesion
force and Young’s modulus. The color bars showing at the right of maps display the value scale of Fad and E. The scanning size of AFM images is
marked on each image of row 1.
doi:10.1371/journal.pone.0036885.g004

Figure 5. Statistical analysis of adhesion force (Fad, nN) and Young’s Modulus (E, kPa) of live HAECs. Decreases of adhesion force
implicates depression of cell membrane adhesion behavior in the presence of DEP, and down-regulation of Young’s modulus suggests cells become
softer in the context of cytoskeleton losing induced by DEP treatment. The data of histograms were obtained from multiple cells (Ncell = 12 for each
group, and 26 datum points on each cell). Error bar: standard error (SE). (*, P,0.01).
doi:10.1371/journal.pone.0036885.g005

Biophysics of Cytotoxicity
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FL system could be a promising method for detecting such

changes.

Studies suggested that cell mechanics could be a promising

‘‘biomarker’’ for cell phenotypic events associated with changes in

cell architecture like topography and membrane nanostructures

[9,10,23,24]. Cell mechanics such as elasticity and stiffness play

important roles in the regulation of cell structures and functions at

the molecular and cellular level [25,26]. Therefore, investigations

of the effects of DEPs on cell mechanics of HAECs at the single-

cell/subcellular level could expand understanding the develop-

ment of cardiovascular disorders associated with particulate matter

related urban air pollution. In this work, mechanical maps

measured on single endothelial cells revealed that region of cell

nucleus possesses a lower elasticity comparing with cytoplasm,

indicating heterogeneity in adhesion behavior and elasticity over

the whole cell surface (Fig. 4; Information S3). Mechanical

heterogeneity is very likely a common feature of cells, which could

be supported by our previous works on breast cancer cells [9], lung

cancer cells (data not published), bacterial cells [22], and reports

from other investigators [14,27]. Furthermore, statistical analyses

of cell mechanics acquired from multiple cells indicated that both

adhesion force and cell elasticity were significantly, though non-

linearly, down regulated after treating with DEPs, implying

cytoarchitectural changes occurred. Decreases in membrane

surface adhesion force suggested depression of membrane surface

adhesion behavior/property that would implicate denaturation of

membrane surface adhesion molecules, whereas, down regulation

of cell elasticity was mainly due to decreases in cytoskeleton

components (e.g. disaggregation of F-actin), as evidenced by

fluorescence results (Figs. 6, 7; Information S5 and S6). Even

though previous studies suggested that exposure to particle matters

could up-regulate expression of adhesion molecules in human

umbilical vein endothelial cells [28,29], our characterizations of

membrane adhesion behaviors of single cells implied that increases

of adhesion molecules and decreases of adhesion force could co-

occur in the context of DEPs because of possible denaturation of

these molecules caused by DEPs. Furthermore, non-linear changes

in these two parameters might arise from complex compositions

and non-uniform solubility of DEPs in culture medium, and

miscellaneous influences of DEPs on cell mechanics, such as

adverse effects on cellular architectures [30,31], or even inverse

effects to promote endothelial growth [2].

It is known that cell elasticity mainly originates from the

cytoskeleton, especially F-actin. Since DEP treatment induced

decreases in cell elasticity, it is meaningful to explore how

cytoskeleton organization was altered by DEP intervention.

Changes in cell topography and cytoskeleton (Figs. 6, 7;

Information S4), obtained using a combined AF/FL setup,

revealed that down-regulation in cytoskeletal components (seen

as decreases in green fluorescent intensity) appeared in a time- and

dosage-dependent manner, indicating a gradual destruction of

cytoskeleton organization. Our results presented here are in

accordance with a reported observation that cytotoxicity of high

concentrations of DEPs is largely due to cytoskeletal dysfunctions

[31]. AF/FL analyses clearly revealed that DEP exposure induced

disaggregation of the cytoskeleton by the way of actin breakage or

degradation, which could eventually result in cell death and

detachment from substrate [30]. It is interesting to note here that

data from 1000 mg/ml DEP-treated cells were also collected

(Information S2, S3, S4). Though concentrations in this range are

well in excess of those found environmental exposure, showing

such a high concentration of DEP could result in cell death and

Figure 6. Representative observations of fixed HAECs using the coupled AF/FL microscope in PBS. Column 1 shows images of untreated
(0 mg/ml) group; columns 2–4 are images of cells treated with different concentrations of DEPs for 4 hours. Row 1 shows bright-field images, row 2 is
fluorescence images, and row 3 exhibits AFM images of the same cells. Optical images were obtained by the 606OIL (or 1006OIL for 10 mg/ml
group); scanning size of AFM images is marked on the respective images. The black dots representatively pointing by green arrows are DEPs attached
on cell membrane.
doi:10.1371/journal.pone.0036885.g006
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changes of membrane surface structures and cytoskeleton even

4 hours of exposure; and results also indicated that DEP treatment

could gradually impair structure of cell nucleus and eventually

result in destruction (Information S4).

Since DEPs could impair cell viability, change cell topography

and membrane nanostructures, and induce cytoskeletal reorgani-

zations or destructions, investigation of cell membrane functions

can expand our understanding of cytotoxicity of DEPs. Evaluation

of plasma membrane potential (PMP) using flow cytometry (Fig. 8)

showed a significant decrease in fluorescent intensity as a function

of DEP-cell interaction time at the dosage of 10 mg/ml. The dye

BiBAC4(3) can enter depolarized cells, and more depolarization in

cells will result in more influx of the dye which in turn elevates

fluorescence intensity. On the other hand, decreasing in fluores-

cence intensity of cells caused by extrusion of dye suggests

increasing hyperpolarization is occurring [32,33]. Depolarization

Figure 7. Representative images of DEP (10 mg/ml) -treated HAECs (fixed cells) in PBS obtained by the coupled AF/FL microscope.
The panel arrangement is similar to Figure 6. Optical images were obtained using a 1006 oil objective. The exposure time of DEPs is marked on
respective optical images. It is seen that fluorescence intensity slightly decreased, although cytoskeletal structures can be seen after 48 hours of
treatment. Interestingly, cellular mitosis was still progressing and a dividing cell nucleus can be seen (column 4), implying this low dosage did not
completely inhibit cell activities, which coincided with assessment of cell viability. Additionally, DEPs attached on cell membrane surface are seen for
all four experimental groups, as indicated by green arrows.
doi:10.1371/journal.pone.0036885.g007

Figure 8. Changes of plasma membrane potential of live HAECs treated with or without 10 mg/ml DEPs assayed by flow cytometry.
(a) Representative graphs show that DEP exposure induced a significant decrease in fluorescence intensity of DiBAC4(3). (b) Histograms of changes in
fluorescence intensity. Fluorescence intensity of experimental groups is presented as a percentage of control (0 hour) (that of control group was
normalized as 1). Results represent the means of three separate experiments, and error bars represent the standard error of the mean. All
experimental groups significantly differs from control group (*p,0.01).
doi:10.1371/journal.pone.0036885.g008
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is due to change in transmembrane potential or voltage, which is

often caused by efflux of cations or influx of anions through their

respective channels [33,34]. When the membrane is compromised

(due to toxic DEP), the ability to maintain more negative resting

potentials become impaired and the membrane potential is

reduced (i.e. more positive or depolarized). Measurements

suggested that at low concentration of DEPs (10 mg/ml) could

denature membrane structures or conformations and thus

interfered or inhibited efflux or influx of ion currents. It was

shown that hyperpolarization of endothelial cells occurs in the

process of vasodilation and cell relaxation [35], and such processes

would probably lead to down regulation of cell stiffness. This was

consistent with our cellular characterizations using AFM and

fluorescence in the present study (e.g. decreases of Young’s

modulus and cytoskeleton components). Previous work showed

that depolarization could induce decreases in stiffness of endothe-

lial cells [7], whereas, our measurements revealed that hyperpo-

larization of endothelial cells could be concurrent with down-

regulation of cell stiffness. Additionally, DEP-induced membrane

electrophysiological dysfunction might be partially ascribed to

ROS generation in the context of DEP-cell interaction according

to our primary results (Information S6). Though ROS serves as an

electron transporter, high chemical reactivity of ROS can also play

adverse roles in cells, such as inducing dysfunction of membrane

molecules and cell structures from RNA and DNA to proteins and

lipids [36–38], and even endothelial cell injuries [39].

Our work presented here attempted to elucidate cytotoxic

effects of DEPs on VECs via detection of changes in cell behavior

and structures. Future work would focus on effects of particular

size and chemical compositions on biophysical phenotypes of

endothelial cells. By detecting such changes in cell phenotype

using nanotechnologies, it could provide access to new knowledge

of DEP-induced toxicity for VECs, facilitate better understanding

of the biological relevance between changes of biophysical

properties and pathological development at the single VEC level

in the context of DEPs related urban air-pollution challenging,

and eventually help our understanding of DEP-related cardiovas-

cular disorders/diseases.

In the present work, we attempted to evaluate cytotoxicity

effects of DEPs on human aortic endothelial cells (HAECs) at

single-cell level by analyzing changes of cell topography,

membrane nanostructures, cytoskeleton organizations, biome-

chanics, and alterations of plasma membrane potential (PMP).

Fluorescence results evidently revealed that effects of DEP

intervention on cell viability appeared in a time- and a dosage-

dependent manner. The same alteration tendency of membrane

nanostructures and cytoskeleton organizations induced by DEPs

was further revealed by AFM and AF/FL. Analyses from flow

cytometry indicated that DEP treatment could significantly induce

hyperpolarization of endothelial cells that might partially originate

from adverse effects of ROS generation. These results implicated

that DEP intervention could decrease cell elasticity by down-

regulating cytoskeleton components and induce vasodilation. Our

findings suggested DEP exposure would trigger important

biochemical and biophysical changes that are closely interrelated

with pathological developments of cardiovascular disorders or

diseases. Our results also provided additional insight into the

cytotoxicity of DEPs in HAECs and could facilitate shedding light

on mechanisms underlying the development of cardiovascular

disorders or diseases associated with DEP-related urban air

pollution.
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