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Abstract

A NEW MULTISCALE APPROACH FOR DYNAMIC MODELING AND

SIMULATION OF MICRO-NANO BIOMOLECULAR SYSTEMS

CHARACTERIZED BY A LOW REYNOLDS NUMBER

MAHDI HAGHSHENAS-JARYANI, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Alan P. Bowling

In this dissertation, a new multiscale computational framework was developed

in order to model and simulate motility of micro-nano-sized objects in fluid environ-

ments, characterized with a low Reynolds number. Especially, it has been used for

studying the dynamic behavior of biomolecular systems such as motor proteins inside

cells.

Long simulation run time is one of the most important issues in modeling of

cellular and biomolecular systems at the nanoscale due to the multiple time and

length scales involved in the dynamics of these systems. These multiscale features

are caused by either structure-structure (e.g. flexibility in biological structure or con-

tact) or structure-fluid interactions (e.g. biological structure and surrounding fluid

environment) which appear as disproportionality between physical parameters in-

volved in their dynamics. In order to address this issue, the mostly used models,

based on the famous overdamped Langevin equation, omit inertial properties in the

equations of motion; that leads to a first order model which is inconsistent with the

v



Newton’s second law. However, a new dynamic multiscale approach was proposed

that uses the concept of the method of multiple scales (MMS) and brings all terms

of the equations of motion into proportion with each other that helps to retain the

inertia terms. This holds consistency of the model with the governing physical laws,

Newton’s second law, and experimental observations. In addition, numerical integra-

tion’s step-size can be increased from commonly used sub-femto seconds to sub-milli

seconds. Therefore, simulation run time is reduced significantly in compared with

other approaches.

The proposed approach was examined in different cases including the dynam-

ics of small objects (microbeads) in an optical trapping process, and locomotion of

motor proteins likes myosin V and kinesin-1 in cells. The experimental observations,

obtained from the study of trapped small beads in optical tweezers, verify the new

multiscale model and show the proposed model can correctly predict the physical

characteristics at the nanoscale. In addition, the simulation run-time using the pro-

posed multiscale models was significantly reduced in compared with the original and

the first order models. Then, the multiscale model was used for modeling and simu-

lation of motor proteins. The simulation results obtained by the proposed multiscale

model show a dynamic behavior of myosin V and kinesin which is more consistent

with experimental observations in compared with other overdamped models.

In this dissertation, a new online constraint embedding method was invoked

in order to facilitate numerical simulation of motor proteins mechanical model, as a

multibody system, with on-fly constraints including, 1) holonomic constraints due to

use of Euler parameters for describing configuration of proteins and 2) non-holonomic

constraints because of contact-impact between proteins and the substrates.
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Chapter 1

Introduction

1.1 Multiscale Analysis at the Micro-Nano Scales

This dissertation presents a new multiscale approach for modeling, analysis,

and simulation of physical and biological phenomena at the micro-nano scale [1–10].

Development of nanotechnology during the recent decades led to a new challenge for

invention of nanosystems with the capabilities of sensing, controlling, and actuat-

ing. In addition, based on recent progress in diverse scientific fields such as molec-

ular biology, biophysics, and nanofabrication, the idea of using biological machines

for building hybrid nanoscale organic/inorganic devices has been considered [11–14].

One of the interesting biological phenomena at small scales, which has been studied

extensively in this work, is the locomotion and functionality of special proteins in-

side cells called motor proteins. Processive motor proteins such as myosin, kinesin

and dynein are nanoscale proteins that “walk” unidirectionally along the cytoskele-

tons (actins and microtubules), similar to a biped, transporting intracellular cargoes

around the cell, participating in cell division, cell migration, and muscles contrac-

tion [15]. Their locomotion are fueled by conversion of chemical energy of Adenosine

triphosphate (ATP)-hydrolysis into mechanical work. Experimental and theoretical

studies have shown interesting characteristics of these biological machines, including

robustness, parallel working, nanoscale size, high energy efficiency and their poten-

tially cheap applications [11]. Therefore, several applications of motor proteins in

nanotechnology, such as transportation, sorting, self-assembly, and detection, have

been suggested [11–14, 16–33].
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Despite several experimental studies on motor proteins using different single-

molecule techniques with high temporal and spatial resolutions [34–37], these exper-

imental measurements and observations can not visualize the detailed motion and

dynamic behaviors of motor proteins [38]. Theoretical models have been developed

to cover the gap of experimental studies in this field [1–6, 8, 9, 39–44]. Theoretical

modeling and computer-aided simulation of biological systems are essential for un-

derstanding and prediction of all processes in living organisms and designing new

technologies in biomedical fields. Most of interested biological phenomena take place

in different length and time scales ranging from atomistic (nm,ns) to macroscopic

(mm,ms) [5,6,8–10]. Multiscale features of physical and biological phenomena caused

by: 1) different structural length scales of these phenomena and 2) external interac-

tions of these systems with environment. Thus, several computational and analytical

multiscale approaches have been developed for modeling and simulation of biological

and bionic systems [45–47]. Widely used methods are based on molecular dynamics

(MD) which model these systems in atomistic resolution [48, 49]. However, consid-

ering all atoms reactions and sub-femto seconds integration step size make these

methods non-efficient in time and computational cost. Also, simulation time rarely

can be beyond microseconds while most of biological phenomena occur in millisec-

onds [45]. In addition, many important biological and bionic systems are too large to

be simulated using MD. Therefore, hybrid molecular and continuum modeling meth-

ods, which span sub-nanoscopic to macroscopic time and length scales, have been

developed over the past two decades. However, concurrent methods such as MAAD

(Macroscopic, Atomistic, Ab initio Dynamics) [50], CGMD (Coarse-Grained Molec-

ular Dynamics) [51,52], QC (Quasi-Continuum) [53], and Bridging Domain [54], just

consider effect of multiscale characteristics caused by connections between different

length scales for modeling internal interactions, strain and stress, of structures.
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Still, the disproportionality between inertial and viscous forces, yields a multiple

time scale model. Thus, development of an approach, that can handle coupling

of phenomena from atomistic to macroscopic temporal/spatial domains, is still a

fundamental challenge [45,46,48,55]. In order to address this issue, several approaches

isolate the dynamics of the larger time scales, resulting in a model that retains only low

frequency modes, [56], uses only low order perturbations [57–59], or omits the mass-

acceleration terms altogether [41, 42, 60]. In particular, omitting the mass yields a

reduced order model, described by the well-known over damped Langevin and Fokker-

Planck equations. Table 1.1 shows the list of references that use the massless and the

proposed massive models for describing locomotion of motor proteins.

Table 1.1. Massless and Massive Mechanical Models.

model equation references

[39, 41–43,61–83]
massless 0 = (F− βẋ) [40, 44, 60, 84–109]

[47, 110–128]
massive mẍ = a2 (F− βẋ) [1–10]

This work presents a new multiscale dynamic modeling approach that considers

external interactions, structure-structure (contact and impact) or fluid-structure (vis-

cosity), between molecular motors and surrounding environment at different scales,

in contrast to other approaches that do not [47, 55]. These interactions occur during

a number of biological phenomena including viral infections, immune response, cell

membrane ingress and egress, and hormone and chemical signaling. The new concept

is based on the trade off between the order of magnitude of external active forces,

such as viscous forces, with the relevance of mass properties at different length scales.

Particularly, small viscous forces at nanoscale leads to retaining mass in the equations
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of motion describing motion at the nanoscale [1–10]. However, widely-used models

ignore the mass properties of motor proteins and just consider force-velocity relation-

ship [41, 42, 95, 120]. The proposed approach brings all terms of equations of motion

in proportion with each other that helps to increase time step size of numerical inte-

gration from commonly used sub-femto seconds to sub-milli seconds. Simulation run

time will be order of magnitude less than ones based on the other approaches.

One of the key aspect of this work is that many of the insights discussed above

apply to the particle model developed in chapter 2. The theory presented there

applies to sole nanoscale particles and predicts the nanoviscosity experimentally ex-

amined for nano-sized particles in [129, 130]. Others have noticed a transition zone

for particles in low Reynolds number flow between the micro and nano scale where

the idea of a continuum fluid breaks down and the more discrete forces associated

with Brownian motion become more prominent [131, 132], although not dominant.

This is also predicted by the second order particle model proposed in section 2.3.

Although the focus of this dissertation is on mechanical modeling of the macro-

molecular motors, there is a general benefit in understanding the multiscale dynamics

of molecular and nanoscale systems and the proposed theory can also be applied to

analysis of the dynamics of nano-sized particles in varied applications. Many of the

features present in the proposed model exist in other molecular systems. The reduc-

tion in run time using the new model allows theoretical exploration of a large number

of biological phenomena. These include the interactions between different types of

molecules including ligands, receptors, hormones, antibodies, enzymes, viruses, neu-

rotransmitters and other molecular structures. Beyond cellular simulation, there

are several medical devices which involve multiscale phenomena in a fluid environ-

ment, including lab-on-a-chip applications. Some of these devices include functional-

ized nanopores lined with ligands and other protein receptors that bind with other
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molecules whose function can be simulated and investigated using the new model.

The proposed approach has a broad set of possible applications that make its study

worthwhile.

1.2 Microbead in Optical Tweezers

However the motor proteins models were intended to examine the proposed

multiscale approach for modeling motion of small scale systems in fluid environments

characterized by a low Reynolds number but because of the difficulties involved in

obtaining the experimental evidences, a simpler case-study, motion of micro-nano

beads under influence of optical tweezers, has been considered for validation of the

new theory [7,10]. Optical tweezers (OTs) use radiation pressure from a focused laser

beam to manipulate microscopic objects as small as atoms [133]. This technique has

been used for about 40 years in the physical sciences to study behaviors and physical

properties of micron and submicron size particles [134]. Free-space as well as fiber-

optic versions [135, 136] of OTs have been used in the biological sciences to cause

nanometer-range displacements of, and to apply picoNewton-range forces to objects

ranging from 10nm to over 100µm. Optical forces have been used to measure the

mechanical properties of DNA, cell membranes, whole cells [137], and microtubules;

and much research has been conducted on motor proteins such as kinesin, dynein,

myosin, and RNA polymerase using optical forces [138–146]. Therefore, the selection

of this case-study for validation of the proposed approach is reasonable.

Most works in this field have studied the behavior of microbeads around the

focal line of the optical trap to determine important properties including, the radial

and axial trap strengths, spring constants, and force profiles [147]. However, the

physical interaction of particles with their environment and its effect on their dynamic

behavior during this trapping process at different length scales, micro and nano, have

5



not been adequately studied. This issue leads to inaccurate inferences about the

dynamic behavior of particles, living cells, and proteins at the micro and nanoscales

[1–3,5,6,8–10]. For example, overdamped behavior was observed for micrometer sized

objects, and was extrapolated to predict that even smaller particles would behave

similarly [148].

Novel experimental studies have been carried out by our collaborator, Prof.

Samarendra Mohanty and his group, on a series of beads at different length scales

using OTs [7, 10]. The results show an interesting transition from overdamped to

underdamped motion of particles at the micro and submicron scales. These uncon-

ventional results call into question the widely accepted notion of overdamped motion

of small particles in fluids characterized by a low Reynolds number and imply the rel-

evance of inertial effects at the submicron scale. In other words, the mass properties

should be retained in the equations of motion.

The observed underdamped behavior is confirmed using a planar dynamic model

of a microsphere, under the influence of a Gaussian-beam OT. The beads’ motions

from an initial position to the trap’s focal line are simulated. A multiscale modeling

approach [1,2,5,6,8–10], based on a concept from the method of multiple scales [57],

is used to generate a model that closely reproduces experimental observations of the

microsphere’s motion. Herein a ray-optics approach is used for modeling the optical

forces of laser beams.

1.3 Theoretical Modeling of Motor Proteins

After verification of the approach using micro-nano beads in optical trapping

process, now it can be implemented in the dynamic modeling of other similar scale

systems like motor proteins. Motor proteins have been modeled in different ways

in terms of their chemical kinetics, mechanics, and mechanochemical interactions.
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Chemical kinetic models describe motor proteins as a set of chemical states that

correspond to different positions along the filament upon which they walk [92, 120].

These models are stochastic and discrete and ignore the structural and mechanical

aspects of motor proteins.

The combination of mechanics with the kinetics of ATP hydrolysis has been

used to model motor proteins in mechanochemical models [43, 95, 119]. In contrast

to the pure chemical kinetics, in mechanochemical models each chemical state is

associated with a particular strain energy in the neck domains considered as elastic

lever-arms [95, 119] or semiflexible partitioned rigid bodies [43]. These models allow

simulation of the simultaneous effects of chemical reactions and strain energy on the

protein’s stepping.

This work considers a purely mechanical model of the motor protein which omits

chemical kinetics. These models have several variations including atomistic, particle,

molecular, and rigid body models. The most common modeling approach represents

the protein using a small number of particles, oftentimes 2 or 4 [41,60,149] or a large

network of particles, referred to as an elastic network model (ENM) [43,44,47,95,103].

The former cannot model all inter-particle interactions, while the latter addresses

this issue by modeling all particles at atomistic level. However, ENM has three main

disadvantages: 1) huge computational efforts to determine all internal forces between

particles, 2) spatial and temporal limitations of simulation, and 3) not desired for

contact and impact analysis. Many analytic methods have been developed which

focus on reducing molecular system’s degrees-of-freedom by grouping particles into

rigid bodies, called coarse-graining. These models have been invoked to explore more

complex, multiparticle interactions between the protein and the substrate upon which

they walk [1–3, 38, 43, 51, 55, 56, 150–152], including contact and impact.
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This research presents a 3D, coarse-grained, motor protein model which is an

extension of the 2D model studied in [1,2]. Most of 3D coarse-grained models of motor

proteins consider spatial position of rigid bodies in an elastic-network; however, 3D

rotational properties of them are omitted or replaced by a simple rotation [38, 43,

153]. The proposed model is unique because it retains the mass properties usually

omitted in most models. Comparisons between the 2D model in [2] and the 3D

one examined here show significant differences in the effect of the random forces

associated with Brownian motion on the movement of the protein. Brownian motion

is less pronounced in the 3D model.

The proposed model uses Euler parameters to describe 3D rotations. Other 3D

Euler parameter models have been proposed based on quaternion algebra in [154–156].

The proposed modeling and simulation approach does not depend on quaternion al-

gebra, but uses a constraint-based algorithm to eliminate the extraneous coordinates.

This is a new approach to simulating models involving Euler parameters that easily

allows the inclusion of other conditions such as contact and impact, non-penetration

constraints.

1.4 Flexibility in Motor Proteins

In the next step, the original idea introduced in [1–5] was extended into a

new mechanical model for investigating flexibility in molecular motors, especially

in myosin V. Experimental studies on myosin V have shown that its neck domain

can be considered as three pairs of tandem elements called IQ motifs which can

bend at junctures between them [157, 158]. This fact, the flexibility of myosin V,

has been considered in few theoretical works such as [43, 95, 119]. Craig and Henke

[43] have used three semi-flexible segments with ability of bending and stretching

for modeling flexibility in neck domain. The neck domain of myosin V has been
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modeled as six stretchable segments with only bending between the whole neck and

the head [95]. Vilfan [119] has modeled the neck of myosin V as an elastic lever

beam (cylindrical rod). He shows that the stretching stiffness (kL = 230pN/nm)

is so larger than the equivalent bending stiffness (kb = 0.25pN/nm); therefore, the

longitudinal extensibility is negligible. Notice that all of the mentioned theoretical

works have used overdamped Langevin equation that omits the inertial properties

of the myosin V’s model. The persistence length, lp of myosin V’s neck domain

varies over a wide range (100nm ≤ lp ≤ 400nm) in literatures [43]. This means

the elastic stiffness (k ∼ 2lpkBT/L where kB, T , and L are Boltzmann constant,

temperature, and the length of each neck’s segment, respectively) is in the range

of (4 × 1013ag.nm2/(ms2.rad) ≤ k ≤ 4 × 1014ag.nm2/(ms2.rad)) which is orders of

magnitude larger than the viscous damping coefficient (β = 108ag/ms) and mass of

myosin V (mtot = 0.48ag). Thus, adding flexible elements to the mechanical model of

molecular motors, myosin V, creates an extra disproportionality between terms in the

equations of motion which cannot be handled by the original multiscale approach.

This dissertation proposes a modification to the original multiscale dynamic

modeling approach that addresses this issue. The approach was initially examined by

using a planar model of myosin V [6]. Then, in order to obtain more realistic behavior

of myosin V, a 3D finite segment model was developed [8, 9]. The deformable neck

domain is modeled by three rigid bodies connected by flexible spherical joints (i.e.

spherical joints and torsional springs) together, rather than a single rigid body used

in the previous works [1–5]. The modified multiscale approach has an extra scaling

factor, in compared with the original approach, that brings all generalized active

forces, with different orders of magnitude, into proportion with inertial terms. Thus,

the speed of simulation of flexible myosin V will be increased drastically. The resulting
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motion predicted by the model of myosin V is more realistic in compared with other

models.

1.5 Numerical Simulation

After developing and verifying the proposed multiscale approach, now it is the

time to implement the theoretical approach in a numerical simulation in order to

model the locomotion and dynamic behaviors of motor proteins. Herein, the equations

of motion, represented as a second order differential equation, was expressed as a

system of first order differential equations in order to integrate them. Nominally at

each time step, the derivative of generalized coordinates and speeds are calculated and

used to increment the current coordinates yielding the new coordinates for the next

time step. This calculation must be modified here to enforce the constraints involved

in the dynamic modeling of proteins. The constraints are including holonomic and no-

holonomic due the use of Euler parameters and non-penetration-docking condition,

respectively.

This dissertation presents a new computational strategy for handling holonomic

and non-holonomic constraints involved in the dynamics of three dimensional (3D)

rigid multibody systems. This work focuses on holonomic constraints due to use

of Euler parameters and non-holonomic constraints because of contact and impact.

Despite the fact that quaternions were introduced by Hamilton over a 100 years ago,

they have just been practically used during the last three decades [154, 156, 159–

163]. Quaternions have been used in spatial kinematic analysis, rigid body dynamics

[154, 156], robot trajectory planning, control of aircraft and space craft [159, 161],

and recently describing the configuration of molecules, protein structures, and bio-

polymers [160]. Euler parameters are used to model the orientation of bodies in order

to eliminate singularities in the description of orientation. In addition, a frictionless
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contact and impact are considered during simulation of multibody systems that leads

to on the fly non-holonomic constraints.

However, it is difficult to address the normality constraint of Euler parameters

during numerical integration. This issue has been addressed in several ways, where

the most frequently used techniques are the method of Lagrange multipliers [154,156,

162, 164, 165], projecting constraints [166], and symbolic constraint embedding [164,

165, 167, 168]. The first two methods are based on simultaneous solving equations of

motion and algebraic constraints equations as differential algebraic equations (DAEs).

The DAE solvers have issues with drifting and stabilization [169, 170]. Therefore, an

extra procedure, such as renormalization, is required for correcting the quaternions

after integration [169–171].

Here, a numerical and online constraint embedding method is used to address

these issues by reducing equations of motion to a minimal form [164, 165, 167] us-

ing constraints. Thus, the constraints are implicitly satisfied during the numerical

integration, in contrast to the other approaches which do this explicitly. The con-

straint embedding procedure is based on the coordinate partitioning method which

has been originally introduced by Wehage and Huag [164]. The success of this method

depends on the choice of independent coordinates. Undesirable choice may lead to ill-

conditioned matrices or singularities [165,169,170]. This issue has been addressed by

partitioning coordinates into dependent and independent groups using the singular

value decomposition (SVD) [169, 170, 172, 173], LU factorization [173], QR decom-

position [169, 170, 174], and a projective criterion introduced by Blajer [165, 175].

Although using SVD, LU factorization and QR decomposition leads to the best con-

ditioned dynamic equations but they are computationally inefficient [165]. The pro-

jective criterion has less computational cost and provides optimal partitioning that

reduces the constraint violation [165, 175]. Based on the projective method [165],
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coordinates which have larger projection along the tangent direction are chosen as

the independent coordinates. However, the implementation of the method requires

the inverse of the original (not reduced) mass matrix and the mass matrix obtained

using Euler parameters is not invertible.

The proposed approach has a smaller computational cost than the SVD and the

other decompositions, and does not require the mass matrix inverse. Here a partition-

ing of the generalized speeds is carried out in order to provide a nonsingular square

submatrix of the constraint Jacobian matrix which relates the dependent speeds.

This is a necessary condition for reduction of the equations of motion [165, 169, 170].

Three algorithms are explored to determine which creates the least error in the mo-

tion predicted by the simulation. The best of these can facilitate the use of the

constraint embedding approach to address the extraneous coordinates in the Euler

parameters in a dynamically consistent manner. Moreover, the splitting procedure

for the non-holonomic constraints will be done by using the qr decompositionmethod.

This method assures nonsingular partitioning of generalized coordinates, and conse-

quently the contact Jacobian, into the dependent and independent groups in order to

enforce non-holonomic constraints. The effectiveness of the proposed numerical con-

straint embedding and the different selection algorithms are examined on dynamic

simulation of a 3D double pendulum with ball-and-socket joints. The results show

ability of the proposed strategy to handle drifting and singularity issues involved in

other approaches.

1.6 Overview

In chapter 2, a new multiscale particle dynamics is developed in order to model

and simulate dynamic behavior of small objects (e.g. micro and nano sized beads)

moving in an fluid environment often characterized by a low Reynolds number. The
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proposed approach, in contrast to the well-known overdapmed Langevin model, pro-

vides new insights into physical characteristics of motion of particles at the nanoscale

such as the relevance of inertia, underdapmed behaviors, and reduction of frictional

forces. In addition, the simulation run-time is reduced significantly in compared with

the conventional, and overdamped models. The model and simulation results are

verified by experimental observations.

In chapter 3, the proposed multiscale approach is extended into a rigid multi-

body dynamic model for modeling and simulation of biomolecular systems, especially,

locomotion and functionality of motor proteins inside cells. A new 3D coarse-grained

mechanical model of myosin V, a type of motor proteins, is developed in order to show

the differences in the dynamic behaviors predicted by the second order, massive, and

first order, massless, models.

In chapter 4, the effect of flexibility involved in biological structure of motor

proteins is studied. Adding flexibility into the dynamic model of these proteins cre-

ates an extra disproportionality which cannot be handled by the original multiscale

approach, developed in chapters 2 and 3; therefore, a new multiscale approach is

developed in order to address this issue; that brings generalized active forces with

different orders of magnitude into the same order as generalized inertia forces. This

helps to use larger integration step size which improves the speed of simulation.

In chapter 5, numerical simulation of the developed multiscale particle and

rigid multibody models is discussed. A new online constraint embedding technique

is developed in order to address holonomic and non-holonomic constraints involved

in the dynamic modeling of motor proteins. The holonomic constraints are related

to the use of Euler parameters for describing rotation of multibody systems. The

non-holonomic constraints are due to contact and impact between the motor proteins
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and cytoskeletons. The proposed technique requires low computational efforts and

addresses the drifting and stabilizing issues involved in other approaches.
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Chapter 2

New Multiscale Approach for Single Body Model

2.1 Introduction

This chapter introduces a new multiscale approach using particle dynamics

for modeling physical phenomena at small scales commonly characterized by a low

Reynolds number. The multiscale particle dynamics was presented for motion of a

small size particle in a fluid environment without any flexible term in the equations

of motion. However the developed multiscale particle approach can be applied to a

particle model of motor proteins [1–5], approximated by a few particles, but because

of difficulties in acquisition of experimental data for motor proteins, the new theory

was implemented for a planar model of microbead under influence of optical tweezers

(OTs) [7, 10]. The results were obtained for three different sizes of beads 500nm,

990nm, and 1950nm. Then, the proposed approach were validated by comparison of

theoretical results with the experimental observations [10].

OTs’ simulations can be found on the Internet, such as [176] (a Java applet

used for teaching purposes), [177] (a simple animation of a trapped bead), and [178]

(an illustration of a DNA stretching experiment in the Rayleigh regime), and a few

theoretical works such as [145]. These simulations model the system using a first-

order differential equation, the overdamped Langevin equations, which ignore the

mass and acceleration terms thereby implying overdamped motion. However, some

issues arise when the mass is omitted concerning the violation of Newton’s second

law [1–10]. In this work, a multiscale modeling approach, following that derived
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Figure 2.1. Overall model setup: (a) coordinates, points, and frames, (b) forces and
moments on the bead. .

in [1–10], yields a second order model that retains the mass properties and thus can

predict the experimentally observed underdamped motions.

2.2 Dynamic Model of Microbead

The simulations are based on a simple dynamic model of a planar bead in

a fluid environment. The model was developed using Newton’s Second Law and

Euler’s equations for rigid body dynamics. Figure 2.1a shows the general setup for

the simulation model. The inertial reference point, No, is defined as the center of the

objective lens. The inertial reference frame, defined by the unit vectors N̂1 and N̂2,

is composed of a right-handed, orthogonal set of axes. The virtual point F′ indicates
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the true point of convergence of the laser beam. The focal line is located at point

(0, f), with respect to the inertial reference frame:

f =
ngRobj

NA
(2.1)

where ng, Robj , and NA are the index of refraction of glass, the radius of objective lens,

and the numerical aperture of objective lens, respectively. The microparticle is defined

as a body, S, with a center of mass, So, and a body-attached frame, frame S. The

generalized coordinates and speeds are defined as q = {q1, q2, q3}, and q̇ = {q̇1, q̇2, q̇3},

respectively. The dashed red (gray) line in Fig. 2.1 shows a sample of the laser beam,

originating at distance ρ from No, that intersects the bead.

The translational motion is defined by

∑
F = m ẍ = m




q̈1

q̈2


 (2.2)

where m is the total mass of the system, the vector ẍ is the translational acceleration

of the mass center, and the coordinates q1 and q2 are defined in Fig. 2.1a. The

translational active forces are:

∑
F = Fg + Fdrag + Fbuoy + Flaser + FBrownian (2.3)

where Fg, Fdrag, Fbuoy, Flaser, and FBrownian are gravity, viscous drag, buoyancy,

optical, and random thermal forces, respectively. These forces are depicted in Fig.

2.1b and discussed in sections A.2 and A.3.

Euler’s equation describes rotational motion as,

∑
M = I33 q̈3 (2.4)
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where I33 is the moment of inertia of the bead about the N̂3 = N̂1×N̂2 direction, and

q̈3 is the angular acceleration of the bead corresponding to the q3 coordinate shown

in Fig. 2.1a. The sum of moments acting on the bead is defined as

∑
M = Tlaser + Tdrag + TBrownian (2.5)

where Tlaser, Tdrag based on [179], and TBrownian are beam, viscous drag, and ran-

dom thermal moments, respectively. These moments are depicted in Fig. 2.1b and

explicitly defined in section A.3.

The combined system model can be expressed as



m 0 0

0 m 0

0 0 I33







q̈1

q̈2

q̈3




= A q̈ =



∑

F

∑
M


 (2.6)

where A is the mass matrix. The terms on the left-hand-side of (2.6) depend on mass

and thus are referred to as generalized inertia forces. The forces on the right-hand-side

of (2.6), are called generalized active forces.

2.3 Multiscale Particle Dynamics

A key issue with the physical model of small objects like micro-nano beads,

presented in (2.6), is that a very small body moves through a fluid environment

yielding a situation which is characterized by a small Reynolds number, (e.g. 10−9 ≤

Re ≤ 10−4 for a 500nm diameter bead), depending on the velocity. This number

describes the relative importance of inertia versus drag forces. A small Reynolds

number should indicate that the inertia forces have minimal impact on the bead’s

motion. This implies that the inertia forces can be omitted from the model, as several

simulations have done [177]. However, recent work has suggested that this approach

may violate Newton’s second law, and offers an alternative modeling approach that
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retains the inertia forces [1–10]. Herein it will be shown that this new model closely

predicts the bead’s behavior.

In order to investigate this model it is necessary to examine the relationship

between the generalized inertia forces and viscous drag forces and moments:

mẍ = F − βv ẋ (2.7)

I33q̈3 = M − βω q̇3 (2.8)

where F and M contain all forces and moments other than those related to viscous

drag. The inertia properties for the 500nm bead used herein are m = 0.0687pg and

I33 = 0.00173× 10−6pg ·mm2. In order to determine the viscous drag properties it is

necessary to consider the characteristics of the fluid.

This can be accomplished using the Knudsen number, Kn, which indicates

whether the fluid must be considered as a continuum, or as discrete, individual

molecules. It is the ratio of the fluid mean free path and the characteristic length

of system. For the 500nm bead in water, the mean free path is, λmfp = 0.3nm,

and therefore Kn = 0.0006. Since the Knudsen number is less than 0.001 the fluid

is considered as a continuum. Thus, it should be reasonable to use Stoke’s Law to

calculate drag coefficients. However, because the bead is small, it is unclear how

its surface interacts with the surrounding fluid to create drag. This is referred to

as the no-slip boundary condition, which indicates whether the fluid sticks to the

bead’s surface creating larger drag forces, or slipping occurs between the fluid and

the bead, creating less drag. This phenomena has been verified experimentally and

theoretically [180]. This condition can be checked by calculating a slip correction fac-

tor [180], here Cc = 1/(1 + 2.52Kn) = 0.99995, that multiplies the drag coefficients;

this correction is negligible and thus is not used.
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Based on these arguments the translational drag coefficient in (2.7) is obtained

using Stokes’ Law as βv = 4.722× 103pg/ms. The rotational drag coefficient in (2.8)

is obtained from an analysis of rotational diffusion [179] yielding βω = 8πµmr
3
S =

3.935× 10−4pg ·mm2/ms where µm is the viscosity of the fluid medium and rS is the

radius of the bead. Dividing through (2.7) and (2.8) by the drag coefficients yields

(1.46× 10−5ms) ẍ =
m

βv

ẍ =
F

βv

− ẋ (2.9)

(0.44× 10−5ms) q̈3 =
I33
βω

q̈3 =
M

βω

− q̇3 (2.10)

The disproportionality between the mass and the viscous drag coefficients, O(10−5),

creates large accelerations that require a small time step, yielding a long numerical

integration time.

In order to reduce the run time, it has been suggested that the small coefficient

of the acceleration terms in (2.9) and (2.10) implies that these terms can be omitted,

yielding a first order model. A second approach uses the multiscale analysis, discussed

in [1–10], that begins by determining a characteristically small number from the model

in (2.9) and (2.10), m/βv ≈ 1.46× 10−5 ms. Using this in (2.7) and (2.8) yields,

0 = ε (1ms)ẍ−
F

βv

+ ẋ = ε¨̄x−
F

βv

+ ẋ

0 = ε (0.3ms)q̈3 −
M

βω

+ q̇3 = ε ¨̄q3 −
M

βω

+ q̇3 (2.11)

such that ε = 1.46 × 10−5 is unitless. The small parameter ε is used to decompose

time into different scales: Ti = εit. This yields





ẋ =
dx

dt
= ε0

∂x

∂T0
+ ε1

∂x

∂T1
+ ε2

∂x

∂T2
+ · · ·

q̇3 =
dq3
dt

= ε0
∂q3
∂T0

+ ε1
∂q3
∂T1

+ ε2
∂q3
∂T2

+ · · ·

(2.12)
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¨̄x =
d2x̄

dt2
=

∞∑

i=0

∞∑

j=0

εiεj
∂2x̄

∂Ti∂Tj

¨̄q3 =
d2q̄3
dt2

=
∞∑

i=0

∞∑

j=0

εiεj
∂2q̄3

∂Ti∂Tj

(2.13)

When (2.12) and (2.13) are substituted into (2.11), and the terms are arranged in

order of increasing power of ε, (2.11) becomes:

0 = ε0
(
−

F

βv

+
∂x

∂T0

)
+ ε1

(
∂2x̄

∂T 2
0

+
∂x

∂T1

)
+ · · ·

0 = ε0
(
−
M

βω

+
∂q3
∂T0

)
+ ε1

(
∂2q̄3
∂T 2

0

+
∂q3
∂T1

)
+ · · · (2.14)

The difference between ε0 = 1 and ε1 = 1.46× 10−5 is fairly large, so it is likely that

the generalized active forces in (2.11) must cancel to some extent in order for the

sum in (2.14) to equal zero. From a multibody dynamics standpoint, if a system of

forces cancel then they produce no motion and can be omitted from the equations of

motion. The effort here is to remove these canceled forces from the model.

Here this is accomplished by decomposing the generalized active forces into

large and small parts,

−
F

βv

+
∂x

∂T0
= (a1 + a2)

(
−

F

βv

+
∂x

∂T0

)

−
M

βω

+
∂q3
∂T0

= (a1 + a2)

(
−
M

βω

+
∂q3
∂T0

)
(2.15)

where a1 + a2 = 1 and a1 ≫ a2. Substituting (2.15) back into (2.14) yields

0 = a1

(
−

F

βv

+
∂x

∂T0

)
+ a2

(
−

F

βv

+
∂x

∂T0

)
+ ε1

(
∂2x̄

∂T 2
0

+
∂x

∂T1

)
+ · · ·

0 = a1

(
−
M

βω

+
∂q3
∂T0

)
+ a2

(
−
M

βω

+
∂q3
∂T0

)
+ ε1

(
∂2q̄3
∂T 2

0

+
∂q3
∂T1

)
+ · · · (2.16)

21



Here it is assumed that the large forces, defined as,

Γ =




ΓF

ΓM


 =




a1

(
−

F

βv

+
∂x

∂T0

)

a1

(
−
M

βω

+
∂q3
∂T0

)




(2.17)

cancel to the extent that they can be removed from (2.16), yielding a second order

model of the form

0 = a2

(
−

F

βv

+
∂x

∂T0

)
+ ε1

(
∂2x̄

∂T 2
0

+
∂x

∂T1

)
+ · · ·

= mẍ + a2 βv ẋ− a2 F

0 = a2

(
−
M

βω

+
∂q3
∂T0

)
+ ε1

(
∂2q̄3
∂T 2

0

+
∂q3
∂T1

)
+ · · ·

= I33q̈3 + a2 βω q̇3 − a2 M (2.18)

assuming
dx

dt
=

∂x

∂T0

and
dq3
dt

=
∂q3
∂T0

.

The scaling factor a2 is determined by matching the characteristics of the sim-

ulation with the experimental observations in section 2.4.1; typically a2 ≥ ǫ. Since

all of the terms in (2.18) will be in proportion, they can be numerically integrated in

drastically less time. The results are used to check whether the forces in F sufficiently

cancel, which provides a measure of the quality of (2.18) as a model of the system’s

dynamics. This check should produce O(Γi) ≤ O(a2) so that one may conclude that

the forces in Γ do not create significant motions beyond those produced by the a2

scaled forces.

2.3.1 Simulation Results

In order to investigate the proposed approach, the different models for the

500nm bead were coded in the C programming language and numerically integrated

using a high speed computer, a DELL PowerEdge 2900 III Server with two quad-core,
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2.33 GHz processors, running the Ubuntu (Linux) operating system, using an adap-

tive Runge-Kutta 45 algorithm. Numerical integration of the Newton-Euler model in

(2.7) and (2.8) yields the overdamped motion shown in Fig. 2.2, which took approx-

imately 73hrs, in order to obtain 100ms of simulation time; (at 40ms the laser is

turned on.) In order to obtain any results it was necessary to reduce the tolerance of

the simulation, AbsTol=10−6, and RelTol=10−5. The lengthy run time stems from

a reduction in the time step by the adaptive integrator in order to obtain the re-

quested accuracy. Investigation of the step size reductions showed that the numerical

integrator was proceeding with a picosecond step size.
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Figure 2.2. Simulation data for q1 coordinate of microparticle using the Newton-Euler
model (CPUtime ≈ 73hrs, AbsTol=10−6, RelTol=10−5, ∆t = 0.001ms) .

The first order model can be represented by (2.17) which yields the results

shown in Fig. 2.3. The simulation run time is reduced to 45mins, with an increased
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Figure 2.3. Simulation data for q1 coordinate of microparticle using the first order
model (CPUtime ≈ 45mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms) .
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Figure 2.4. Simulation data for q1 using the multiscale model (CPUtime=21mins,
AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms) .
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Figure 2.5. Overlap of simulation data for q1 using the Newton-Euler model and the
multiscale model .

tolerance AbsTol=10−8, and RelTol=10−7. Finally, the multiscale model in (4.13) is

numerically integrated yielding the results in Fig. 2.4. The simulation run time is

reduced to 21mins using the same tolerance. A comparison of the results from the

Newton-Euler approach and the multiscale approach are shown in Fig. 2.5.

The key thing to notice is the oscillations that appear in Fig. 2.4, when the

bead reaches the focal line, that are absent from the simulation of the Newton Euler

model in Fig. 2.2 and the first order model in Fig. 2.3. In addition, there is a

significant reduction in the simulation run time of the multiscale model in compared

with the original and the first order models, as presented in Table 2.2. The bulk of the

simulation is spent resolving the situation when the bead reaches the focal line because

of the alternating forces that occur as it overshoots the focal line. The experimental
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Table 2.1. Physical Parameters Used in Simulation

Bead Diameter (nm)

Definition Units 1950 990 500

m Mass pg 4.08 0.533 0.0687
I33 Moment of inertia pg ·mm2 1.5378 × 10−6 5.2223 × 10−8 1.73 × 10−9

Kn Knudsen number - 1.54 × 10−4 3× 10−4 6× 10−4

Cc Stokes drag slip
correction factor

- 0.99997 0.9992 0.99995

βv Translational
drag coefficient

pg
ms

1.84 × 104 9.349 × 103 4.722 × 103

βω Rotational drag
coefficient

pg·mm2

ms
2.33 × 10−2 3.054 × 10−3 3.935 × 10−4

a2 Scaling factor - 8× 10−3 2× 10−4 1.5× 10−5

Table 2.2. Comparison of Simulation Run-Time of Different Simulation Methods

Bead Diameter (nm)

Quantity 1950 990 500

Simulation time (ms) 140 140 140

Simulation run time (min) 4320 45 21

data in section 2.4.1 imply that the multiscale model represents the actual physical

behavior of the 500nm bead observed under the microscope.

2.4 Experimental Verification

In order to verify the proposed multiscale approach, the bead’s motion is in-

vestigated using an OTs experiment for the three different sizes of bead. These

experiments observed the oscillations predicted by the multiscale model. The set up

for these experiments is discussed in appendix A.
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Figure 2.6. Experimental data for the motion of 1950nm microparticle in the hori-
zontal direction. The data was captured at 2134 frames per second using OTs with
149mW power. The result is generated by Bryan Black in department of physics.
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Figure 2.7. Experimental data for the motion of 990nmmicroparticle in the horizontal
direction. The data was captured at 5132 frames per second using OTs with 156mW
power. The result is generated by Bryan Black in department of physics .
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Figure 2.8. Experimental data for the motion of 500nmmicroparticle in the horizontal
direction. The data was captured at 3214 frames per second using OTs with 156mW
power. The result is generated by Bryan Black in department of physics .

2.4.1 Experimental Results

In order to examine the effect of size in the dynamic behavior of objects in

a trapping process, three beads with different diameters, 500nm, 990nm, 1950nm

were used. Three experiments were carried out for each bead size for the reported

laser/optical parameters, yielding a total of nine experiments. This investigation

begins by considering the largest diameter bead, 1950nm, in Fig. 2.6. The circles

mark the experimental results which show the overdamped behavior of microbead in

response to the laser and viscous friction forces. This behavior has been observed for

micrometer sized objects and was extrapolated to predict that even smaller particles

would exhibit overdamped behavior [148].

The underdamped behavior, oscillations, begin to show for the 990nm diameter

bead in Fig. 2.7. The bead overshoots the focal line and oscillates a small amount

28



before settling. The smallest bead 500nm bead, discussed in section 2.3, shows a

much larger overshoot of the focal line with larger oscillations in Fig. 2.8. These

observations are corroborated using a new approach to multiscale modeling discussed

in section 2.3.

2.4.2 Comparison of Experimental and Simulation Results

The results obtained from the experimental and theoretical studies on three

different sizes of microbeads are compared in Figs. 2.9 through 2.13. The largest

bead, 1950nm, displays the overdamped behavior predicted by the first order model.

The simulation data shows that the multiscale model can predict this overdamped

behavior with an appropriate choice of the scaling factor; the data for each of the

simulations in Figs. 2.9 through 2.13 is given in Table 2.1. Figures 2.10, 2.12,and

2.14 show the transient motion of 1950nm, 990nm, and 500nm beads from the initial

to the final positions, the trap point, in a 2D plane.

This overdamped behavior becomes underdamped in the experimental results

of the smaller beads. The 990nm bead overshoots the focal line and oscillates a

small amount before settling. The simulation result, solid line, shows that tuning of

the scaling parameter, a2, allows the multiscale model to predict the small oscilla-

tions that cannot be predicted by the first order model. The smallest bead 500nm

bead, discussed in section 2.3, shows a much larger overshoot of the focal line with

larger oscillations; see Fig. 2.13. The successively smaller beads show the increasingly

more oscillatory behavior predicted by the proposed multiscale model. Note that re-

cent ray-optics simulations of non-spherical, micro-sized objects predict underdamped

behavior of a cubic object [181].

Thus, there is a general agreement between the experimental and computa-

tional results, which proves the presence of a transition in the dynamic behavior of
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Figure 2.9. Comparison of experimental data (open circles) and simulation
data (line) for q1 coordinate of 1950nm microparticle using the multiscale model
(CPUtime=13mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms). The experimen-
tal result is generated by Bryan Black in department of physics.

objects under a trapping process at different length scales. However, the simulation

results, especially for the 990nm and 1950nm, show a deviation from corresponding

experimental results, mostly in the transition from the initial position to the focus

line. Possible reasons for these differences are:

1. Uncertainties in the physical parameters used for the computational modeling;

for example, the actual diameter of the microbeads may vary.

2. Approximations of the initial velocity of the microbead, required for the simu-

lation, from the observed position data, may contain some error.

3. A three-dimensional bead model may more accurately capture the physical phe-

nomena than the planar model used here.
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Figure 2.10. A few snapshots of the simulation result for the transient motion of
1950nm bead from the initial to final position. The time interval of the snapshots is
0.4ms. (CPUtime=13mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms) .

4. Discretization of the laser beam into only 15 laser rays may introduce some

error; however, this approximation is more accurate when the bead is near the

focal line.

5. The force produced by the laser on the 500nm bead may be better modeled

using Mie scattering theories, rather than the ray-optics approach.

6. The scaling factor, introduced in the section 2.3 for the simulation, may need

finer tuning.

7. General numerical integration errors.
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Figure 2.11. Comparison of experimental data (open circles) and simulation
data (line) for q1 coordinate of 990nm microparticle using the multiscale model
(CPUtime=2.5mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms). The experimen-
tal result is generated by Bryan Black in department of physics .

Still, this simple model does capture the key aspect of oscillatory behavior which was

sought.

2.4.3 Check Order of the First Term

The quality of the estimate provided by the multiscale model can be assessed

by checking the assumption of small first terms in the relations of (2.17). This is done

by calculating (2.17) during simulation. The simulation results in Figs. 2.15a and

2.15b for the 1950nm bead show that the order of the first term, both translational

and rotational terms, is small, as expected to be on the order of the scaling value of

a2 = 8× 10−3.

A similar conclusion can be drawn for the simulation of the translational coor-

dinates of 990nm bead in Fig. 2.16a; however, the rotational term is not small, as
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Figure 2.12. A few snapshots of the simulation result for the transient motion of
990nm bead from the initial to final position. The time interval of the snapshots is
0.5ms. (CPUtime=2.5mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms) .

illustrated in Fig. 2.16b. The scaling factor for this case is a2 = 2×10−4. Some further

investigation is necessary to explain this discrepancy. Similar results are obtained for

the 500nm bead, Fig. 2.17, with a scaling factor of a2 = 1.5× 10−5.

These checks indicate that some refinement of the method for choosing the

scaling factor is necessary. Still, it is interesting that the multiscale model can come

quite close to predicting the behavior of these beads in the horizontal, q1, direction,

and it also still interesting that the behavior predicted by the multiscale model can

be observed experimentally.

Experimental results in the vertical direction are not examined in detail here

because of time-scale disagreements between simulation and experiments, though
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Figure 2.13. Comparison of experimental data (open circles) and simulation
data (line) for q1 coordinate of 500nm microparticle using the multiscale model
(CPUtime=21mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms). The experimental
result is generated by Bryan Black in department of physics .

spatial agreement is acceptable. One possible reason for this is that with decreasing

particle size, the mathematical treatment of light-particle interactions using ray optics

becomes less accurate. Interactions on the scale of the 500nm particles may be better

treated with Mie scattering theories, but are significantly more complex. Secondly,

the method used to track these fluorescent particles in the horizontal direction cannot

be used for the vertical measurements. Work is underway on new methods which will

more accurately track the particle’s vertical position. Simulation data for the vertical

and rotational directions are discussed in appendix A.

2.5 Conclusions

Another key aspect of this work is that many of the insights discussed above

apply to the particle model developed in section 2.3. The theory presented there

34



−5 0 5
1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Distance from Objective Lens Center (μm)

D
is

ta
n

ce
 f

ro
m

 O
b

je
ct

iv
e 

L
en

s 
S

u
rf

a
ce

 (
μ

m
) 

Initial position

Final position

Figure 2.14. A few snapshots of the simulation result for the transient motion of
500nm bead from the initial to final position. The time interval of the snapshots is
2.4ms. (CPUtime=21mins, AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms) .

applies to sole nanoscale particles and predicts the nanoviscosity experimentally ex-

amined for nano-sized particles in [129, 130]. Others have noticed a transition zone

for particles in low Reynolds number flow between the micro and nano scale where

the idea of a continuum fluid breaks down and the more discrete forces associated

with Brownian motion become more prominent [131, 132], although not dominant.

This is also predicted by the second order particle model proposed in section 2.3.

Thus, although the focus of this article is on the behavior of a multibody system,

the proposed theory can also be applied to analysis of the dynamics of nano-sized

particles in varied applications.
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Figure 2.15. Checking the assumption of force and moment cancellation for 1950nm.
(a) The first term of forces (corresponding to the translational coordinates) in the
asymptotic expansion, and (b) the first term of moment in the asymptotic expansion,
(2.14).

This work focuses on the behavior of the beads as they approach the trap.

It is equally interesting to study the dynamics of the particle after it is trapped as
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Figure 2.16. Checking the assumption of force and moment cancellation for 990nm.
(a) The first term of forces (corresponding to the translational coordinates) in the
asymptotic expansion, and (b) the first term of moment in the asymptotic expansion,
(2.14).

most of the prior work discussed in section 1.2 have done. The retention of mass

properties in the model used herein suggests a power spectrum of the trapped beads
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Figure 2.17. Checking the assumption of force and moment cancellation for 500nm.
(a) The first term of forces (corresponding to the translational coordinates) in the
asymptotic expansion, and (b) the first term of moment in the asymptotic expansion,
(2.14).

that will deviate from the Lorentzian profile predicted by the overdamped Langevin

equations [182].
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Chapter 3

New Multiscale Approach for Articulated Multi Rigid Body Model

3.1 Introduction

This chapter presents the extension of the proposed multiscale particle dynam-

ics, introduced in chapter 2, into a multiscale rigid multibody dynamics. The mul-

tiscale multibody approach was implemented into mechanical modeling of biological

structure of motor proteins, illustrated in Fig. 3.1, represented by a three dimensional

(3D) articulated multi rigid bodies, shown in Fig. 3.2. This is a coarse-grained model

generated by grouping atoms into rigid bodies that leads to eliminate unnecessary

high frequency and small amplitude vibrational motions in atomistic levels. This

is rational due to this fact that the interested biological phenomena, motor proteins

walking process, occur with larger conformations and in longer time scales in compare

to atomistic level motions.

The first (massless) and second (massive) order models were examined in order

to sufficiently illustrate the differences in behavior predicted by both models. Model

parameters are chosen in a manner to be close to the reality and there is an effort

to match the experimentally observed pattern and speed of locomotion with ones

obtained by simulation. In addition, the difference between the dynamic behaviors of

the proposed 3D mechanical model with the two dimensional (2D) model developed

in [1, 2] are highlighted.
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Figure 3.1. A picture of biological structure of myosin V [1, 2].

3.2 Multiscale Rigid Multibody Dynamics

Rigid body models are based on particle models, but include a larger number

of particles. Thus the behavior predicted by the particle model in section 2.3 can

also be valid for the rigid body model. The particle models are combined using

Lagrange’s equation, Kane’s method, D’Alemberts principle, or any other techniques.

Many rigid multibody techniques have been introduced, to address the computational

issues involved in conventional molecular dynamic simulation methods, which focus

on reducing the molecular system’s degrees-of-freedom (DOF) by grouping particles

into either beads (bead based coarse-graining) [183] or rigid bodies [150,184–189](rigid

body based coarse graining). Although in the bead based techniques, group of atoms

are modeled as a rigid spheres, no inertia terms are considered in the equations of

motion. In rigid body based models, the inertia terms related to the mass distribution,

the Coriolis, and centripetal terms are retained in order to remain true to the original
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molecular dynamic model [186]. Here, a coarse-grained 3D mechanical model is used,

having the features shown in Fig. 3.2, which is not drawn to scale.
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Figure 3.2. Schematic representation of myosin V. The schematic shows the different
rigid bodies in the model. The 3D model is shown as a planar sketch for the sake of
simplicity. Note the difference between the point ‘B1’, defining an actin binding site,
and the vector B1. PB1R is the position vector from point ‘B1’ to point ‘R’ .

The mechanical model is comprised of ball-and-socket connected rigid bodies

in Fig. 3.2. The connections between the tail, necks, and heads are at points ‘R’,

‘S’, and ‘P’ in Fig. 3.2. Euler parameters are used to model the orientation of bodies

in order to eliminate singularities in their mathematical description [5, 6, 190, 191].

They are shown as sets of 4-tuple generalized coordinates, i.e. {q4, q5, q6, q7} in Fig.

3.2. The load and tail are modeled as a single rigid body which is prohibited from

rotating about point ‘R’.

The objectives of this dissertation can be sufficiently met using a simplified

model of the necks. They are modeled as single rigid bodies, ‘A’ and ‘B’, in order to
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eliminate the complexity of the model. Experimental studies of the necks’ stiffness

have shown that the stretching stiffness (kL = 230pN/nm) is much larger than the

equivalent bending stiffness (kb = 0.25pN/nm); therefore, the longitudinal extensibil-

ity in neck domain will be neglected [119,192,193]. However, the flexibility, bending,

of the neck domain will be considered in chapter 4. The heads’ shape is approximated

by ellipsoids, bodies ‘C’ and ‘D’, because they simplify determination of the contact

points and forces. The binding sites on each head and the actin filament are indicated

in Fig. 3.2. The mass centers of each body are represented by the small half-filled

circles. The vectors N1, N2 and N3 in Fig. 3.2 define the inertial reference frame.

All other reference frames are attached to the different bodies.

The multibody mechanical model has the form

M(q) q̈ + C(q̇,q) =
∑

Γ(q̇,q) (3.1)

C(q̇,q) =
dM(q)

dt
q̇ −

∂

∂q

(
q̇TM(q) q̇

)
(3.2)

where q = [q1 · · ·q19]
T contains the generalized coordinates in Fig. 3.2, and q̇ and

q̈ are its time derivatives of generalized speeds and accelerations. The term M(q) ∈

R
19×19 is the mass matrix. The forces on the left of (3.1) are referred to as generalized

inertia forces since they depend on mass.

The forces on the right of (3.1) are referred to as generalized active forces defined

as

∑
Γ = Γcontact + Γfriction + Γcharge + Γconform + ΓBrown (3.3)

Γfriction = −β D(q) q̇ (3.4)

where β is the viscous damping coefficient and D ∈ R
19×19 is a function of q which

transforms friction forces and moments applied at the mass center of each body into

generalized active forces. The vectors Γcharge, Γcontact, Γconform, and ΓBrown contain
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forces related to Coulomb point charges, contact and impact, conformational changes,

and Brownian motion. These forces are discussed in detail in section 3.2.1.

The unit of mass, the attogram (ag) is chosen so that the mass values are on

the order 100, and the length and time units, the nanometer (nm) and millisecond

(ms), are chosen for similar reasons. These masses and inertias are contained in the

mass matrix M(q) in (3.1) which is symmetric, positive definite and non-diagonal.

3.2.1 Forces

3.2.1.1 Viscous Friction

Each body has a force and moment applied at and about its mass center to

approximate the viscous friction of the fluid through which the motor protein moves,

as shown in Fig. 3.3.
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Figure 3.3. Viscous friction forces acting on myosin V .

In order to truly assess the effects of viscous friction on a rigid body, one should

consider drag which depends on its shape and orientation, but here a simple coefficient

of viscous friction is used.

43



Each body has a force and moment applied at and about its mass center to

approximate the viscous friction of the fluid through which the motor protein moves,

as shown in Fig. 3.3. For example, the friction force and moment on body ‘A’ are

fAo
= −β2 vAo

and mA = −β2 L̄2
A ωA (3.5)

where fio and mi are the force and moment acting on body i while vio and ωi are the

translational and rotational inertial velocities associated with body i. The term L̄i is

a characteristic length for rotational friction; the value used is half the length of the

body. The values of these coefficients are listed in Table B.1. The friction forces for

each body comprise Γfriction.

3.2.1.2 Conformational Changes and External Forces

Several forces contribute to protein locomotion, including the conformational

changes due to ATP hydrolysis. Regardless of their source and application, their

resultant can be transformed into equivalent forces at the protein’s joints. At this

point in the development of the multibody model, it is not critical to model all of the

forces contributing to protein locomotion in detail. The equivalent forces provide a

simple means for generating stepping which allow examination of contact and impact

between the heads and substrate.

The viscous friction, binding charge, contact, and random forces are excluded

from the equivalent forces because they are modeled explicitly. The equivalent forces

are modeled as three moments, one acts between the necks, and two act between the

heads and necks, see Fig. 3.4. They are loosely associated with the neck linker force

and power strokes at each head; however, they may have several sources beyond ATP

hydrolysis. These equivalent forces comprise Γconform in (3.1).
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Figure 3.4. Forces emulating conformational changes and external forces .

A combination of constant neck linker [194,195] and power stroke forces is used

here to produce locomotion. This is done so that the same forces can be applied to

the massless and massive models. The motors are activated when both heads have

docked, only one power stroke is active at any given time. Both forces are deactivated

when the stepping head’s binding site is 5nm from the actin binding site. Allowing

the actin binding site to pull the head in to bind and dock, yields a more robust

control, as opposed to steering the head all the way in. In addition, the power stroke

is deactivated when the angle between a head and its neck is 90◦ assuming this is the

maximum travel of the power stroke. The neck linker force is deactivated if the angle

between the necks is greater than 75◦. The motors apply a constant torque when

activated. The equivalent moments acting on the proteins to achieve the step are

listed in Table 3.1. These moments are separated into large and small components

as,

Γconform = GT




ΥR

ΥS

ΥP




= GT Υ (3.6)

where Υi is the moment associated with point ‘i’ and GT transforms the moments

into generalized active forces.
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Table 3.1. Equivalent Joint Moments

Moment Small Force Large Force

ΥR ±107ag·nm2

ms2
±107× 108 ag·nm

2

ms2

ΥP ,ΥS 53ag·nm2

ms2
53× 108 ag·nm

2

ms2

ΥR ±107× 10−9
pN ·pm ±10.7pN ·pm

ΥP ,ΥS 53× 10−9
pN ·pm 5.3pN ·pm

Motors ΥP and ΥS are never used simultaneously.

3.2.1.3 Binding Charges

In the literature, there are charge potentials proposed which attempt to model

the repulsion required to keep the head from penetrating the actin filament. Since the

repulsion forces are addressed using contact forces, herein the binding potential only

models the attraction between the binding sites using a simple Coulomb-like charge

model. The attractive forces resulting from these charges are shown in Fig. 3.5.

The interaction of the motor protein with the actin filament involves docking of

the heads at the binding sites [196,197]. Here, this docking is assumed to completely

immobilize the bound head and only occurs when the point binding sites on a head

and the actin filament closely align. Modeling the head as an ellipse ensures that the

head must achieve a particular configuration before docking is allowable, as would

occur for the actual protein.

When a head docks, it is assumed that the charges involved sum and are neu-

tralized; the charges at the docking site do not affect the undocked head. This is

accomplished by setting the charges involved equal to zero. These charges remain

zero until the head detaches, after which only the charge on the binding site is set

back to its original value.
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Figure 3.5. Binding charges on myosin V .

After detaching, the head must recharge at some point during its motion in

order to achieve the step. The head charge is switched back on when its binding site

has passed mid step and is 2/3 of the way to the targeted binding site on the actin

filament. The head needs to be closer to the new binding site than to the old since

the binding charges are a function of distance. If not, the head will be pulled back to

the original binding site.

The position vectors from the heads’ mass centers to their binding sites are

expressed as

PCoCE
= L6 C1 + L7 C2 (3.7)

PDoDE
= L8 D1 + L9 D2 . (3.8)

The force on a head’s binding site, ‘CE’ due to site ‘B1’ for example, is

FCEB1
= fCEB1

PCEB1

‖PCEB1
‖
. (3.9)
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There are a number of charge potentials investigated in the literature for defining

the attractive force fCEB1
. These include ratchet potentials [195] and Coulomb-like

potentials [41]. A Coulomb-like charge potential [41], is used here:

V (r) =
CCE

CB1
ek(a−r)

4πǫ0ǫr(1 + ka) (r + ko)
(3.10)

where ǫ0, ǫr, k, and a are the permittivity of free space, relative electric permittivity,

inverse of the Debye length, and excluded volume radius; the values for these constants

are given in Table B.1. The term r is the distance between the binding sites and ko

is a penetration depth used to keep the potential from becoming infinite. The terms

CCE
and CB1

are the charges on the binding sites of head ‘C’ and ‘B1’ on the actin

fiber; these values are given in Table B.1. The absolute value of this potential as a

function of radial distance is illustrated in Fig. 3.6.

The force can be found as

fCEB1
= −

dV (r)

dr
=

CCE
CB1

ek(a−r)

4πǫ0ǫr(1 + ka)

k(r + ko) + 1

(r + ko)2
(3.11)

where r = ‖PCEB1
‖ is the distance between the head and actin binding sites at points

‘CE’ and ‘B1’ in Fig. 3.2. Similar forces can be defined between the other binding

sites. These charge forces comprise Γcharge in (3.1) and are separated into small and

large components,

Γcharge = Q fcharge (3.12)

where the matrix Q transforms the charges into generalized active forces. The force

fCEB1
generated by the charge potential as a function of radial distance is illustrated

in Fig. 3.6.

These charges are electrostatic and only depend on the relative positions of the

binding sites. They are conservative forces whose values are always known. Thus it
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Figure 3.6. Absolute value of the charge potential and the associated force .

is necessary to ensure that their computed values and the decomposed values match

up. This is accomplished by defining fij

fcharge = [ fCEB1
fCEB2

· · · fDEB5
fDEB6

]T (3.13)

where fCEB1
is determined from (3.11).

3.2.1.4 Contact Forces

Here it is assumed that contact between the heads and the actin filament occurs

in a localized region which can be approximated as point contact. Modeling the heads

as ellipsoids aligns with this assumption. In this work the heads and actin are assumed

to be frictionless, for the sake of simplicity, thus the horizontal forces illustrated in Fig.

3.7 do not represent tangential friction. They are used to enforce an immobilization

of the head when it docks.

As stated, the heads are modeled as ellipsoids:

x2
C

r2head1
+

y2C
r2head2

+
z2C

r2head3
= 1 (3.14)
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Figure 3.7. Contact forces on myosin V. .

where the position vector between point ‘Co’ and any point ‘CC’ on the surface of the

head is expressed as

PCoCC
= xC C1 + yC C2 + zC C3 (3.15)

and likewise for head ‘D’. Table .1 gives the values of rhead1 , rhead2 and rhead3 assuming

both heads are identical.

The contact forces are shown in Fig. 3.7 and defined as

Γcontact = JT
p Fcontact = JT

p




fCC

mC

fDC

mD

fR




(3.16)

vp =




vCC

vDC

vR



= Jp q̇ (3.17)
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where vp contains the inertial velocities of the contact points, ‘CC’ and ‘DC’, as well

as that of point ‘R’. Although all possible contacts are shown in (3.17), only the ones

actually contact/impact are selected using the impact Jacobian, Jp.

The contact forces are calculated as

Fcontact = −
(
JpA

−1JT
p

)
−1
(
J̇pq̇+ JpA

−1 (ΓfccB − b)
)

(3.18)

ΓfccB = Γfriction + Γcharge + Γconform + ΓBrown . (3.19)

Since Fcontact depends on the other forces, its large portion is found by substituting

the other large forces into (3.18) and solving.

3.2.1.5 Brownian Motion

Random forces and moments in the model, representing Brownian motion, are

implemented as Gaussian white noise. They act at and about the mass center of each

body, as shown in Fig. 3.8.

N
eck

Head

T
ail

fLOADo

fCo

fDo

fBo
fAo

mA

mC

mD

mB

mLOAD

Figure 3.8. Brownian motion for myosin V. .
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The random forces and moments shown in Fig. 3.8 representing Brownian

motion, are defined, for example, as

fCo = Co1(t) N1 + Co2(t) N2 + Co3(t) N3

mC = L̄C Co1(t) N1 + L̄C Co2(t) N2 + L̄C Co3(t) N3

(3.20)

where L̄C is a characteristic length of body ‘C’. Similar forces act on the other bodies.

The Coi(t) represent forces produced by randomly fluctuating thermal noise. Each

component of the random force and moment is treated independently as a normally

distributed random variable [195]. They have the following expectations, E[·], or

weighted average values,

E [ Coi(t) ] = 〈 Coi(t) 〉 = 0 = µ (3.21)

and are governed by a fluctuation-dissipation relation expressed as

E [ Coi(t1) Coj(t2) ] = 2 β kB T δ(t1 − t2)δi,j (3.22)

where kB and T are the Boltzmann constant and absolute temperature [195, 198].

The relation in (3.22) implies that there is no time dependency between the random

process over time; the random sequence of forces does not repeat regularly.

In addition, (3.21) and (3.22) imply

E[C2
oi(t)] = 2 β kB T = Var(Coi(t)) = σ2 (3.23)

which is the variance of Coi. Thus the Coi can be generated using the Matlab function

normrnd(µ, σ, . . .) which generates random variables with a normal distribution.

The collection of random forces comprise ΓBrown. These randomly fluctuating

discontinuous functions slow numerical integration so each random variable is held

constant during a single integration step; the random variable is updated at the
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beginning of each step. Thus the value of each random variable is known before the

integration step, and the decomposed value of the random force must equal it. This

is accomplished by defining

ΓBrown = Rnd rnd = Rnd




Co1

Co2

Co3

...




(3.24)

where Rnd transforms the random forces into generalized active forces. An example

of the random forces used is given in Fig. 3.9.
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Figure 3.9. Random forces acting on head ‘C’ in Fig. 3.15. .

3.2.2 The First Order Model

Dividing (3.1) by the viscous damping coefficient yields an equivalent to (4.2),

0 =
M(q) q̈ + C(q̇,q)

β
=

ΓcccB

β
− D q̇ (3.25)
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where ΓcccB includes all generalized active forces in (3.4) except the friction force.

Since all particles in the first order model (4.2) are massless, combining them into

rigid body model yields a first order model where velocity is directly proportional to

force,

q̇ = D−1 ΓcccB

β
(3.26)

matrix D is a function of the generalized coordinates which transforms viscous friction

forces and moments applied at the mass center of each body into generalized active

forces. It is a real symmetric matrix which may be positive definite or semi-positive

definite (partially damped) [199], therefore it is not invertible all the time. However,

invertibilty issue have never been experienced during the integration of the first order

model in (3.26). The first order model has a highest derivative of smaller order than

the original model in (3.1), referred to as reduction of order, which yields a singular

perturbation problem [57].

3.2.3 The Second Order Model

Herein, the multiscale rigid multibody approach will be derived based on the

proposed multiscale particle dynamics, introduced in section 2.3, that leads to a

second order rigid multibody model. First, (3.1) is rewritten as below

mtot M̄(q) q̈ + mtot C̄(q̇,q) + β D(q) q̇ = ΓcccB (3.27)

where mtot is the total mass of protein extracted from M(q) and C(q̇,q) as the

characteristic parameter of inertia. ΓcccB was defined in section 3.2.2. Now, dividing

both sides of (3.27) by β yields

mtot

β
M̄(q) q̈ +

mtot

β
C̄(q̇,q) + D(q) q̇ =

ΓcccB

β
(3.28)
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By defining ε =
mtot

β
and using this in (3.28) given

ε M̄(q) q̈ + ε C̄(q̇,q) + D(q) q̇ =
ΓcccB

β
(3.29)

Based on the MMS [57], for the details of MMS refer to appendix E, the Small

parameter ε is used in order to decompose the first and second derivatives of the

generalized coordinates into different timescales Ti = εi t as follow




q̇ =
dq

dt
=

∞∑

i=0

ǫi
∂q

∂Ti

q̈ =
d2q

dt2
=

∞∑

i=0

∞∑

j=0

ǫiǫj
∂2q

∂Ti∂Tj

(3.30)

Substituting (3.30) into (3.29) and arranging the terms in the order of increasing

power of ε gives

0 = ε0
(
ΓcccB

β
− D(q)

∂q

∂T0

)
+ ε1

(
M̄(q)

∂2q

∂T 2
0

+ C̄00 + · · ·

)
+ · · · (3.31)

where

C̄00 =
∂M̄ (q)

∂T0

∂q

∂T0
−

(
∂qT

∂T0
M̄(q)

∂q

∂T0

)

C̄ij = εiεj
(
∂M̄(q)

∂Ti

∂q

∂Tj

−
∂

∂q

(
∂qT

∂Ti

M̄(q)
∂q

∂Tj

))
(3.32)

Now the first term is split into small and large parts by using scaling factors a1 and

a2 as below

0 = a1

(
ΓcccB

β
− D(q)

∂q

∂T0

)
+ a2

(
ΓcccB

β
− D(q)

∂q

∂T0

)
+

ε1
(
M̄(q)

∂2q

∂T 2
0

+ C̄00 + · · ·

)
+ · · · (3.33)

where a1 + a2 = 1 and a1 ≫ a2. The same discussion, presented in 2.3, is invoked

here in order to remove the large part of the active forces involved in the first term

of (3.33),

0 = a1

(
ΓcccB

β
− D(q)

∂q

∂T0

)
(3.34)

55



yielding

0 = a2

(
ΓcccB

β
− D(q)

∂q

∂T0

)
+ ε1

(
M̄(q)

∂2q

∂T 2
0

+ C̄00 + · · ·

)
+ · · ·

= a2
ΓcccB

β
− ε M̄(q) q̈ − ε C̄(q̇,q) − a2 D(q) q̇ (3.35)

By rearranging (3.35), similar to (2.18), the rigid body model with scaled generalized

active forces has the form,

M(q) q̈ + C(q̇,q) = a2 ΓcccB + a2 Γfriction (3.36)

The parameter a2 is chosen empirically to match experimentally observed motions,

but should be small to avoid the original proportionality problem. The rigid multi-

body model should admit under damped motion and predicts reduced viscosity similar

to (2.18).

3.3 Results

Here the behaviors of the first and second order models, referred to as the

massless and massive models, in section 3.2 are compared in simulation for three dif-

ferent cases: (1) the docking process, (2) deterministic stepping, and (3) Brownian

stepping. Matlab’s ode45.m, an adaptive ODE solver, was used to perform the nu-

merical integration of (3.26) and (3.36). Contact and impact are handled using the

new numerical constraint embedding method developed [190,191]. The details of the

constraint embedding will be discussed in chapter 5.

56



3.3.1 Checking The Order of the First Term

The equivalence of the first term of the asymptotic expansion, (2.14), in the

rigid body model was examined during stepping which has the form,

1

β




F

τ


 =

1

β
ΓcccB − D

∂q

∂T0
(3.37)

where F ∈ R
3×1 and τ ∈ R

12×1 are forces and moments, respectively.

Figures 3.10a and 3.10b show that the forces and torques related to the first

term are of O(10−10) and O(10−16) which are of the expected small order. Therefore

the process followed in (2.15)-(2.18) produced the assumed cancellation.

The first order model assumes the first term equals zero and the velocity is

found to satisfy that assumption, (3.25). The proposed approach assumes that the

first term is not zero but very small, but this is a difficult assumption to impose on the

model. This is accomplished by scaling down the generalized active forces so that they

are small, and then using these small forces in the equations of motion. This allows

retention of the mass properties; in other words, the second term in the asymptotic

expansion corresponding to (2.14), which includes the second order term, must be

retained. The simulation results show that the order of the coefficient of the second

term, ǫ1 = 4.8 × 10−9 is comparable with the order of first term, 10−10nm/ms and

10−16nm2/ms corresponding to forces and moments, respectively, which means that

the velocities satisfy the proposed assumption; the electrostatic and random forces

are on the order of 100pN .

3.3.2 Docking

Figure 3.11 investigates the oscillatory behavior predicted by the massive model

during docking, which were observed in [200–203]. Sosa et al. in [200] have shown that

there is a mobility state (rocking) in head domains of kinesin during docking which is
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Figure 3.10. Checking the assumption of force cancellation. The small first term in
the asymptotic expansion, (2.14) and (3.37), during stepping is small but not equal
to zero as assumed: (a) three translational, and (b) twelve rotational terms. Note
that in section (b) the rotational terms overlap each other.

induced by ADP-bound and it is not related to thermal motion. In addition, evidence
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for the oscillatory behavior is present in the actomyosin system that leads to the

suggestion of a common occurrence in chemomechanical cycle of motor proteins [200].

These simulations were started with the same initial conditions. Brownian

motion is not included in these simulations, because of they extensive disturbance

they produce in the massless model. The scaling factor, a2, in (3.36) is adjusted

to obtain the experimentally observed velocity of 1nm/ms for the load point, point

Loado in Fig. 3.2, while, all other parameters of the two models are identical.

Docking occurs when the head’s binding site falls within a 0.005nm cube which

sits atop and is centered on the actin binding site. This small docking zone is used so

that the head must achieve a particular configuration in order to dock. This mimics

the actual docking of the protein which must align itself with the docking site to make

a physical connection. In Fig. 3.11, the head is represented by only two lines, with

the binding site at the tip, and the 3D motion is projected onto a plane in order to

clearly show the oscillations.

At the beginning of the simulation, both heads are undocked but near the

binding sites on the actin filament, facilitating docking. However, the heads of the

massive protein oscillate, while those of the massless one do not, as shown in Fig.

3.11.

A key difference between the massive and massless models is the addition of

second order behaviors, such as critically and under damped, which allow for oscilla-

tions during docking. The massless cannot predict oscillations and only allows over

damped behavior. This has been a widely accepted idea based on experimental data

collected for micro-sized objects in many scenarios, even attached as the load to a

motor protein [34, 36, 37, 204–206]. However, some experiments visualize the motion

of the heads directly and they have observed oscillatory behavior that cannot be

predicted by the massless model [200–203]. The proposed massive model predicts
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Figure 3.11. (a) Massive myosin V oscillating at the docking site versus, (b) Massless
myosin V docks without oscillation.

oscillatory behavior during docking as shown in Fig. 3.11. It has been suggested that

these oscillations are simply back and forth movements caused only by the diffusive

motion of heads; however, near the docking site the electrostatic forces dominate and
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produce these oscillations much like the behavior of a spring-mass system with low

damping.

In biology, a lock-and-key model has been introduced to describe the physical

connection between enzymes (motor protein’s head domains) and receptors (the bind-

ing sites on the cytoskeletal filament). The back and forth movements, or oscillations,

of the heads around the binding site help it to dock easily into the receptor. Interac-

tions between the protein head’s domains and the substrate at the atomic level can

be interpreted as contact and impact at the molecular, nanoscale level. Therefore,

contact and impact are involved in processivity of motor proteins, which use walking

as their mechanism of locomotion; in fact, this work has shown that processivity is

not possible without docking of the heads. Most contact models are governed by

mass. Thus, the retention of the mass properties in the massive model allows the

application of classical contact and impact analysis to the study of motor protein

locomotion and docking. This cannot be accomplished using the massless model.

3.3.3 Deterministic Stepping

It is widely accepted that motor protein locomotion is composed of equally

important random and deterministic aspects, and Figs. 3.12 and 3.13 examine only

the deterministic part. After docking in Fig. 3.11, the proteins begin to step along

the actin filament, as shown in Figs. 3.12 and 3.13, fueled by ATP hydrolysis. Here,

the binding charge and conformational forces are activated and deactivated during

each step to mimic the effect of the reactions involved in ATP hydrolysis.

As illustrated in Fig. 3.12, the trailing head of the massive protein detaches from

the actin filament and moves in a hand-over-hand fashion toward the target binding

site. In contrast, the massless protein remains in contact with the actin filament until

midstep and then detaches, as shown in Fig. 3.13. As in Fig. 3.11a, the head of the
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Figure 3.12. 3D massive myosin V single step. Because of more redundancy, the
trailing head detach from actin filament faster than the 2D case (CPUtime = 30mins,
AbsTol=10−5, RelTol=10−6, ∆t = 0.001ms, vavg = 1.62nm/ms) .
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Figure 3.13. 3D massless myosin V single step. It shows same behavior as the
2D mechanical model, ( CPUtime = 65mins, AbsTol=10−5, RelTol=10−6, ∆t =
0.001ms, vavg = 1.45nm/ms) .

62



massive protein oscillates while docking. However, the massless protein has difficulty

docking. These observations also hold true for the 2D massless and massive protein

models examined in [1, 2].

Here the deterministic aspect of protein locomotion is examined in order to

determine whether random or deterministic behavior is dominant in motor protein

locomotion.

Recent experimental studies of processive motor proteins using more precise

single molecule techniques have shown that they walk in a hand-over-hand fashion

[34, 36, 37, 204, 207]. This is in contrast to the inchworm mechanism which had been

initially suggested for locomotion of these proteins. The proposed second order model

correctly replicates the observed hand-over-hand walking style, Fig. 3.12, while the

locomotion of the first order model is similar to the inchworm, Fig. 3.13.

In addition, the massless model has difficulty docking. The issue here is that

over damped behavior predicts that the head will approach the docking site in manner

such that the distance between them decreases at an exponentially decreasing rate.

This is typical of over damped systems in that they may never actually converge to

the desired position, or dock. This behavior fits the classic definition of over damped

behavior which is caused by the omission of the inertial properties in the first order

model. The similarities and differences between the behavior predicted by the two

models are the same as in the two-dimensional case discussed in [1,2] which provides

additional discussion of these phenomena.

The proposed second order model brings all the active forces into proportion

with the mass-acceleration terms so the integration step size was increased from

femto second to micro second. The proposed approach provides this opportunity to

increase the simulated time to the same order of biological phenomena time scale

millisecond-second along with the decrease in the simulation run time from several
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months using atomistic models to hours. The reduction in run time using the new

model allows theoretical exploration of a large number of biological phenomena. These

include the interactions between different types of molecules including ligands, recep-

tors, hormones, antibodies, enzymes, viruses, neurotransmitters and other molecular

structures.

3.3.4 Random Stepping

Here the combination of random and deterministic behaviors is examined in

Figs. 3.14 and 3.15 for a single step. Locomotion of nanoscale particles, such as

motor proteins, is affected by the random forces associated with Brownian motion.

In this work, random forces are modeled as Gaussian white noise and kept constant

during a single time step. All forces used in the deterministic stepping are active

during the simulation of random stepping.

Figures 3.14 and 3.15 show the Brownian motion of the massive and massless

proteins. Both proteins display diffusion of the heads out in every direction, as has

been experimentally observed [193,208]. However, the random forces associated with

Brownian motion have less of an effect on the massive protein in contrast to the large

effect they have on the massless model. This allows the massive protein to complete

a step and dock while the massless protein does not. This implies that random forces

do not assist the massless protein in docking.

The results show a significant difference between the behavior predicted by the

3D massless and massive protein models. In several aspects, the massive model shows

behavior that is more realistic. This is discussed further in the following sections.

Brownian motion plays important role in locomotion of particles at the nanoscale.

Because of this, some works have suggested a pure diffusive motion to describe pro-

cessivity of motor proteins, referred to as Brownian motors. These ideas are based
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on the massless model and suggest that diffusion should cause greater movement of

the protein than the deterministic motion suggests [209]. This is shown to be true

for the massless model in Fig. 3.15 where the random forces nearly overwhelm the

deterministic ones and cause large diffusive motions. In Fig. 3.15 random forces have

such a large effect that they prevent the heads from reaching the docking site.

However, experiments show that motor proteins move slower than is predicted

by the dominant diffusion driving the massless model [209]. In contrast, the massive

model predicts a reduced effect of random forces yielding a motion that is nearer to

the deterministic motion examined in Fig. 3.12. The widely-accepted assumption

is that motor protein locomotion is a combination of random and deterministic be-

havior. The mass properties attenuate the effect of Brownian motion, allowing for

random-deterministic locomotion which facilitates stepping and docking, as shown in

Fig. 3.14. Brownian motion decreases the average velocity of the both massless and

massive models, compared with the deterministic cases. In addition, adding random

forces to the model increases the simulation run time, but still less than that obtained

from atomistic methods or molecular dynamic simulations.

The new 3D mechanical model was developed as an extension of the 2D model

discussed in previous works [1, 2]. Despite general agreement between the resulting

motion of the 2D, [2], and 3D models, there are some differences between them. First,

the random motion of the 3D massive protein is less perturbed than the 2D model.

This is because the energy of Brownian motion is distributed in three dimensions

rather than two. Second, in contrast to the 2D model, the trailing head of the

random 3D massless protein does not approach toward the target binding site on

the actin filament. The reason is that the 3D massless model can move in three

dimensional space, one extra direction than the 2D model, making it less likely to

reach the binding site. In addition, this work also showed that a 3D model can
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predict significantly different behavior than a more simplified 2D model, especially

with respect to Brownian motion. The 3D model is closer to reality than the 2D, so

it is reasonable to assume that Brownian motion may not have that significant of an

impact on processivity.

3.4 Conclusions

A key result of this work showed that the conclusions drawn from a multiscale

analysis of particle dynamics, introduced in chapter 2, can be applied to a more com-

plex rigid body model. The technique used to develop the multiscale rigid body model

was based on a simpler analysis of particle dynamics and displayed behavior predicted

by the particle model. This is highly advantageous because of the complexity of the

3D rigid body model. The next step involves consideration of flexibility and chemical

kinetics to this model in order to obtain an even more realistic simulation of motor

protein dynamics. The ultimate goal of this work is to facilitate the development of

biological simulations that allow theoretical investigations of biological phenomena in

a reasonable amount of time.
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Chapter 4

New Multiscale Approach for Flexible Model

4.1 Introduction

This chapter presents an extension of the proposed multiscale approach, pre-

sented in chapters 2 and 3, for the case that an extra term, which represents flexibility

such as spring force, is added into the equations of motion. In this case, there is

an additional term with the orders of magnitude larger than other terms; thus, the

original multiscale approach was modified in order to handle this extra disproportion-

ality [6, 8, 9]. The later proposed multiscale approach will be first introduced using

particle dynamics similar to chapter 2.

However the rigid model is adequate for predicting the overall dynamic behavior

of motor proteins locomotion but experimental studies has shown the evidence of

flexibility in the biological structure of these super molecules especially in the neck

domain. Therefore, in a further step a finite segment multibody model, articulated

rigid multibodies connected with flexible elements like spring, was developed in order

to investigate the effect of the flexibility along side presenting more realistic behavior

of these proteins. Adding flexibility into the mechanical model of motor proteins

causes an extra disproportionality between terms involved in the equations of motion

that needs a special treatment based on the theory derived in section 4.2. The finite

segment model was developed and tested in both 3D and 2D versions as same as the

rigid model in order to highlight the differences.
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4.2 Multiscale Particle Dynamics with Flexible Element

Motor proteins are often modeled using a small number of particles connected

with flexible elements like spring [196]. Therefore, in this section the proposed multi-

scale approach in section 2.3 was extended into a new form which considers flexibility

in the dynamic modeling of particles. Especially, when the order of stiffness constant,

corresponding to the flexible elements in the mechanical model, is many orders of

magnitude larger than the order of other terms, an extra disproportionation occurs

in the equations of motion that requires a special treatment to be addressed. Herein,

a modification was invoked in order to address this issue. Applying Newton’s second

law to a representative particle yields,

m ẍ + β ẋ + k x = Fs + Fl (4.1)

where ẍ and ẋ are vectors of acceleration and velocity, m = 0.48 ag = 0.48× 10−18gr

is the total mass of myosin V, β ≈ 108ag/ms is the coefficient of viscous friction

for water, and k = 1014ag.nm2/(ms2.rad) is spring constant equivalent to elastic

stiffness at the neck domains. Fs ≈ O(β) and Fl ≈ O(k) are vectors of small and

large external forces, respectively. The small forces are including Brownian motion,

and charge forces while the conformation force belongs to the large force category.

Notice that units were chosen so that characteristic quantities would be in the order

of O(100).

Dividing both sides of (4.1) by stiffness coefficient (spring constant), k, yields,

m

k
ẍ +

β

k
ẋ + x =

Fs

k
+

Fl

k
(4.2)

The disproportionate size of the mass, the viscous friction and the spring constant

produces a small coefficient in (4.2) when it is divided by the mass, yielding large

accelerations that are difficult to numerically integrate. Reducing the time unit/scale

69



to picoseconds, 1ps = 10−12s, yields a coefficient of O(100) that is easier to integrate.

However, it will take a long run time, possibly a few days, to observe phenomena

occurring at larger time scales. This disproportionality can be solved by omitting the

small term, solving for the velocity as ẋ = −kx/β +Fs/β +Fl/β, and integrating to

find x(t) [41,42]. This massless and first order model is the basis for the well-known

Langevin [44, 107, 121] and Fokker-Planck equations [117, 127].

Alternately, techniques from the method of multiple scales (MMS) can be used

to eliminate only the large forces that create large accelerations [6, 8, 9]. The MMS

allows an investigation of the model’s behavior at different time scales. This process

begins by determining two characteristically small numbers, β/k = 1× 10−6 ms and

m/β = 4.8× 10−9 ms from the model in (4.2).

0 = ǫ2 ǫ1 (1ms)2 ẍ + ǫ1 (1ms) ẋ + x −
Fs

k
−

Fl

k

= ǫ2 ǫ1 ¨̄x + ǫ1 ˙̄x + x −
Fs

k
−

Fl

k
(4.3)

where ǫ1 = 1× 10−6 and ǫ2 = 4.8× 10−9. Now, by defining a new variable u,

u =
β

k
ẋ −

Fs

k
= ǫ1

(
˙̄x −

Fs

β

)

u̇ =
β

k
ẍ −

Ḟs

k
= ǫ1

(
¨̄x −

Ḟs

β

)
(4.4)

Equation (4.3) can be split in two first order differential equations as follow,





0 = ǫ1

(
˙̄x −

Fs

β

)
− u

0 = ǫ2 u̇ + ǫ2ǫ1
Ḟs

β
+ u + x −

Fl

k

(4.5)
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The small parameters ǫ1 and ǫ2 are used to decompose the time variable into different

scales, Ti = ǫi1t and τi = ǫi2t, respectively, yielding:





˙̄x =
dx̄

dt
= ǫ01

∂x̄

∂T0

+ ǫ11
∂x̄

∂T1

+ ǫ21
∂x̄

∂T2

+ · · ·

u̇ =
du

dt
= ǫ02

∂u

∂τ0
+ ǫ12

∂u

∂τ1
+ ǫ22

∂u

∂τ2
+ · · ·

(4.6)

Substituting (4.6) into (4.5), and arranging in order of increasing power of ǫ1 and ǫ2

yields,





0 = ǫ01 (−u) + ǫ11

(
∂x̄

∂T0
−

Fs

β

)
+ ǫ21

(
∂x̄

∂T1

)
+ · · ·

0 = ǫ02

(
u+ x−

Fl

k

)
+ ǫ12

(
∂u

∂τ0
+

ǫ1
β

∂Fs

∂τ0

)
+ ǫ22

(
∂u

∂τ1

)
+ · · ·

(4.7)

The difference between ǫ01 = 1 and ǫ11 = 1× 10−6, also ǫ02 = 1 and ǫ12 = 4.8× 10−9 are

large, so it is likely that the large terms (active forces) in (4.1) must cancel to some

extent for the sum in (4.7) to equal zero. This is accomplished by decomposing the

ǫ01 and ǫ02 terms, into large and small parts using scaling factors a1, a2, b1 and b2,





−u = (a1 + a2) (−u)

u+ x−
Fl

k
= (b1 + b2)

(
u+ x−

Fl

k

) (4.8)

where a1+a2 = 1, b1+b2 = 1 and a1 ≫ a2, b1 ≫ b2. Substituting (4.8) back into (4.7)

yields





0 = (a1 + a2) (−u) + ǫ11

(
∂x̄

∂T0

−
Fs

β

)
+ ǫ21

(
∂x̄

∂T1

)
+ · · ·

0 = (b1 + b2)

(
u+ x−

Fl

k

)
+ ǫ12

(
∂u

∂τ0
+

ǫ1
β

∂Fs

∂τ0

)
+ ǫ22

(
∂u

∂τ1

)
+ · · ·

(4.9)
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Herein, it is assumed that the large terms, scaled by a1 and b1, cancel to the extend

that the large forces can be removed from (4.9), yielding a set of equations of the

form

0 = a2 (−u) + ǫ11

(
∂x̄

∂T0
−

Fs

β

)
+ ǫ21

(
∂x̄

∂T1

)
+ · · ·

= −a2 u+
β

k
ẋ −

Fs

k
(4.10)

0 = b2

(
u+ x−

Fl

k

)
+ ǫ12

(
∂u

∂τ0
+

ǫ1
a2 β

∂Fs

∂τ0

)
+ ǫ22

(
∂u

∂τ1

)
+ · · ·

= b2

(
u+ x−

Fl

k

)
+

m

β

(
u̇ +

Ḟs

a2 k

)
(4.11)

assuming
dx

dt
=

∂x

∂T0
,
du

dt
=

∂u

∂τ0
, and

dFs

dt
=

∂Fs

∂τ0
. Notice that the second term

in (4.11) is modified in order to be consistent with (4.10). In addition, the scaling

in (4.10) and (4.11) preserves the relative magnitudes between the constituent forces

and brings them into proportion with the mass.

Now, it is desired to bring back (4.10) and (4.11) into the original form. In order

to do that, it is required to replace u and u̇ in (4.11) by (4.10) and it’s derivative,

respectively; that leads to elimination of Ḟs

a2 k
.

m

β

(
β

a2 k
ẍ

)
+ b2

(
β

a2 k
ẋ−

Fs

a2 k
+ x−

Fl

k

)
= 0 (4.12)

Multiplying (4.12) by a2k yields a second order model,

mẍ + b2 βẋ + a2b2 kx = b2 Fs + a2b2 Fl (4.13)

where a2 and b2 are found by matching the speed or other characteristics of the

predicted and experimentally observed motions. Since all of the terms in (4.13) are

in proportion, it can be numerically integrated in a reasonable time.

72



In addition to the computational advantage of the scaling technique, the pro-

posed approach provides new physical insights into better understanding of physi-

cal and biological phenomena happened at the micro and nanoscale. First, under-

damped behaviors of molecular motors witnessed in [200]. This requires the retention

of inertial effect at the small length scales which is predicted correctly by keeping

mass-acceleration term in (4.13). Second, a significant reduction in viscosity at the

nanoscale was experimentally measured by Gapinski and Szymanski [129, 130]. This

fact is reproduced theoretically in the proposed multiscale approach, corresponding

to the scaled friction force in (4.13). Finally, based on the different scaled forces in the

modified equations of motion, (4.13), we suggest that the regulation of external forces,

applied to molecular motors, happens at different scales. For example, large forces,

such as conformational and elastic forces, are mostly regulated together while small

forces like charge, random and viscous friction forces are mostly canceled by each

other. However the general active forces are in different orders of magnitude but one

may conclude that these forces do not create significant motor protein’s locomotion

beyond those produced by the a2 and b2 scaled forces.

The second order model in (4.13) is consistence with the original one in [1–5].

It can be proved just by assuming the order of stiffness is equal to the viscous friction

force that leads to the scaling factor a2 be equal one; then (4.13) perfectly matches

with the original model [1–5].

4.3 Multiscale Finite Segment Multibody Dynamics

In this section, the effect of flexibility in neck domain of motor proteins, es-

pecially myosin V, is considered. Therefore, a 3D mechanical coarse-grained model

of myosin V, shown in Fig. 4.1, is developed. The mechanical model is comprised

of rigid bodies corresponding to two heads, two necks, a tail and a load, which is
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illustrated in Fig. 4.2a. The load and tail are modeled as a single rigid body without

much detail because this would only complicate the model. The deformable necks are

modeled as three rigid bodies, bodies ’A’, ’C’, ’E’ for one of the necks and bodies ’B’,

’D’, ’G’ for another neck, connected through spherical joints. At each joint, there is

a torsional spring which attaches the two adjacent bodies, as illustrated in Fig. 4.2b,

and add flexibility to the neck domains. These torsional springs act around the axis

of rotations, shown in Fig. 4.2b, and imply resistance forces due to relative rotation

of adjacent bodies. The heads are approximated by ellipsoids, bodies ’H’ and ’K’,

to ensure that the head must reach a particular orientation in order to dock with

the actin filament as occurs in reality. All bodies are connected by spherical joints,

centered at points R, P1, P2, P3, S1, S2 and S3. The actin filament is modeled as a

cylinder which is shown as a line in Fig. 4.2. The binding sites, ’B1’, ’B2’, and etc.,

are equally spaced along the actin filaments at 36nm intervals.
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Figure 4.1. 3D structure of myosin V in ribbon presentation obtained from RCSB
protein data bank (PDB ID: 2dfs) [210]. Myosin V’s neck domain comprises of tandem
elements called IQ motifs, drawn schematically as dash ellipses. It can be considered
as three pairs, shown as solid ellipses, which can bending at junctures between them.
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Similar to the 3D mechanical model in section 3.2, Euler parameters, which

are shown as sets of 4-tuple generalized coordinates e.g. {q4, q5, q6, q7} in Fig. 4.2a,

are used to model the orientation of bodies in order to eliminate singularities in the

description. Here a new computational strategy, developed in [5,190,191], is employed

to address the extraneous coordinates involved in dynamics of the multibody model

due to use of Euler parameters.

Now, the idea developed in section 4.2 can be extended to a multiscale multi-

body model. The equations of motion for finite segment model is developed using

Kane’s method and has the following form




M(q) q̈ + C(q̇,q) + D(q) q̇ + K(q) q = Γs + Γl

Hq̇ = 0

(4.14)

where q contains the generalized coordinates, and q̇ and q̈ are its time derivatives of

generalized velocity and acceleration. The term M(q) is the mass matrix. C(q̇,q) is

the non-linear inertial terms including Coriolis and centrifugal terms. D(q) and K(q)

are drag coefficient and non-linear elastic stiffness matrices, respectively. The forces

on the right of (4.14), Γs ≈ O(β) and Γl ≈ O(k), are small and large generalized

active forces, respectively, defined as

Γs = Γcharge + Γcontact + ΓBrownian

Γl = Γconform (4.15)

The terms on the right hand side of (4.15) contain forces related to Coulomb point

charges, contact and impact, conformational changes, and Brownian motion defined

in section 3.2.1. H is the holonomic constraint matrix and 0 is a column vector of

0. In the numerical integration of (4.14), the constraint part of it will be embedded,

online during simulation, into the main part in order to reduced (4.14) and eliminate

extra generalized coordinates. Therefore, for the sake of simplicity the constraint
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Figure 4.2. a) A schematic representation of myosin V with flexible neck, (not drawn
to scale). The schematic shows the different rigid bodies in the model. b) A mechan-
ical model of myosin V’s neck (not drawn to scale). The flexibility of neck domain
is modeled by rigid bodies assembled through spherical joints (black solid circle) and
torsional springs (spiral shape objects). Adjacent links (bodies) have a relative mo-
tion around the axes of rotation (dashed arrow). The 3D model is shown as a planar
sketch for the sake of simplicity.
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equation in (4.14) will not be shown anymore in the following. The forces acting on

this model are defined in detail in section 3.2.1.

By factoring the characteristic parameters including the total mass of myosin V

(m), the viscous damping coefficient of surrounding fluid (β) and stiffness coefficient

(spring constant) of neck domains (k) from the mass, drag, and stiffness matrices

in (4.14), respectively, it can be converted to the similar form as (4.1),

mM̄(q) q̈+mC̄(q̇,q) + βD̄(q) q̇+ kK̄(q) q = Γs + Γl (4.16)

Using the same concept developed in section 4.2 for particle dynamics, (4.16) can be

written as below,

ǫ1ǫ2M̄(q) q̈+ ǫ1ǫ2C̄(q̇,q) + ǫ1D̄(q) q̇+ K̄(q) q =
Γs

k
+

Γl

k
(4.17)

Now, decomposing (4.17) in to a set of first order differential equations yields,





u = ǫ1

(
q̇ − D̄−1Γs

β

)

ǫ2M̄(q)u̇+ ǫ2C̄(u,q) + D̄(q)u+ K̄q = −ǫ1ǫ2M̄(q)D̄−1 Γ̇s

β
+

Γl

k

(4.18)

Then the small parameters ε1 and ε2 are used to decompose (4.18) into different scales

using (4.6),





0 = −ǫ01u+ ǫ11

(
∂q

∂T0

− D̄−1Γs

β

)
+ ǫ21

(
∂q

∂T1

)
+ · · ·

0 = ǫ02

(
D̄(q)u+ K̄q−

Γl

k

)
+ ǫ12

(
M̄(q)

∂u

∂τ0
+ C̄0 +

ǫ1
β
M̄(q)D̄−1∂Γs

∂τ0

)
+ · · ·

(4.19)

where

C̄0 =
∂M̄(q)

∂τ0
u −

∂

∂q

(
uTM̄(q)u

)

C̄i = ǫi2

(
∂M̄ (q)

∂τi
u −

∂

∂q

(
uT M̄(q)u

))
(4.20)
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Modification of (4.19) based on (4.8) to (4.11) yields

0 = a2(−u) + ǫ11

(
∂q

∂T0

− D̄−1Γs

β

)
+ ǫ21

(
∂q

∂T1

)
+ · · ·

= −a2u+
β

k
q̇− D̄−1Γs

k
(4.21)

0 = b2

(
D̄(q) u+ K̄q−

Γl

k

)
+ ǫ2

(
M̄(q)

∂u

∂τ0
+ C̄0 +

ǫ1
β
M̄(q)D̄−1∂Γs

∂τ0

)
+ · · ·

= b2

(
D̄(q) u+ K̄q−

Γl

k

)
+

m

β

(
M̄(q)u̇+ C̄(u,q) + M̄(q)D̄−1 Γ̇s

a2k

)
(4.22)

By combining (4.21) and (4.22), the multiscale equations of motion for a finite segment

multibody model has the following form,

M(q)q̈ +C(q̇,q) + b2D(q)q̇+ a2b2K(q) = b2Γs + a2b2Γl (4.23)

where the scaling of the generalized active forces in the rigid body model depends

on the order of forces. For example, the scaling factor of the viscous friction force

is indicated by the scale factor b2, while it is a2b2 for spring force and the other

generalized active forces which are larger than the friction force.

4.4 Results

The proposed multiscale approach was examined in order to show the effective-

ness of the modification applied to the original approach for handling flexibility in

dynamic modeling and simulation of myosin V’s locomotion. Therefore, a 3D finite

segment model of myosin V, with parameters given in [9], is used to illustrate the

proposed model as shown in Fig. 4.2. The model has 27 DOF described in terms of

35 generalized coordinates q = [q1 · · ·q35]
T . Based on this, the sizes of matrices in

(4.14) are M(q) ∈ R
35×35, C(q) ∈ R

35×1, D(q) ∈ R
35×35, K ∈ R

35×35, H ∈ R
8×35,

and 0 ∈ R
8×1. The extra generalized coordinates, related to use of Euler parameters
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for describing rotation of the spherical joints, are reduced by embedding of the holo-

nomic constraint, in (4.14), based on the new strategy developed in [190, 191]. The

details of the reduction procedure can be found in chapter 5. MATLAB’s ode45.m,

an adaptive numerical integrator, was used to perform the numerical integration of

the equations of motion presented in (4.23).

There are two important physical characteristics, involved in motor proteins

locomotion at the nanoscale, that correct prediction of them would be interested

in order to compare the ability of the proposed approach with the others. The

first being the significant reduction of viscosity at the nanoscale which has been

observed in [129,130]. The second being underdamped behaviors, specifically the os-

cillation of heads during docking to actin, which has been experimentally witnessed

in [200]. The former characteristic is obviously predicted by the proposed model as

the scaling factor reduces the effect of viscosity in the equations of motion. The

latter characteristic could be expected by the proposed model because of retaining

inertial terms in the equations of motion; that leads to a second order model which

can show underdamped behaviors. However, the mostly used model, established by

other approaches [41, 42, 95, 120], is based on a large viscous coefficient, result in

an overdamped locomotion, which is inconsistent with the experimental observations

mentioned above.

The oscillatory behavior in head domains of myosin V is examined during a

docking process by using the modified mechanical model. Docking occurs when the

head’s binding site (points HE and KE in Fig. 4.2) falls within a 0.005nm cube box

(see Fig. 4.2) which sits atop and is centered on the actin binding site. This small

docking zone is used so that the head must achieve a particular configuration in order

to dock. This mimics the actual docking of the protein which must align itself with

the docking site to make a physical connection. The position of binding site (points
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HE and KE) on the heads H and K are plotted in Fig. 4.3a and b, respectively.

The results show the expected oscillation in the heads during docking which is in

agreement with the results obtained by the original model without flexibility in [5].
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Figure 4.3. Oscillation of heads of the flexible mechanical model of myosin v during
docking. At t = 0.08ms the head H docks to the binding site on the substrate (point
B1 in Fig. 4.2); therefore, its position is fixed after that time (a) position of the
binding site (point HE) on the head h (see Fig. 4.2), (b) position of the binding site
(point KE) on the head K (see Fig. 4.2).

Notice that the shape of these trajectories could be changed by altering the

initial conditions. In this particular case, the head H docks at t = 0.08ms, then no

more oscillation is witnessed. While, the elapsing time for the head K, to dock into

the substrate, is almost two times of the head H, t = 0.17ms. Comparison of this
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result with the time of oscillation obtained by the original model in [3,5] reveals that

the flexibility of the neck domains increases oscillation of the head domains.

The overall behavior of myosin V during a single step is shown in Fig. 4.4.

The random forces associated with the thermal motion at the nanoscale is ignored

in this case. Experimental studies have shown that the stepping process is induced

by the hydrolysis of ATP that leads to neutralize the charge and dissociation of the

trailing head from the substrate. Then, the conformational change, referred to as the

“power stroke”, happens in myosin V that makes the trailing head goes forward to

the specific binding site at 72 nm distance far from the current location (from point

B1 to B3 in Fig. 4.2). After the trailing head passes the leading head, it is assumed

that the power stroke ends, the trailing head regains its charge, and is pulled forward

to the next binding site, where it attempts to dock. The 3D mechanical model with

flexible necks shows the same overall behaviors as the rigid model [1–5], illustrated in

Fig. 4.4. As expected, the most important difference is the bending that happens in

the neck domains during stepping which was ignored in the previous rigid model [1–5].

In comparison with the results obtained by the 2D finite segment model in

[6, 8, 9], illustrated in Fig. 4.5, the 3D model, as shown in Fig. 4.4a, shows two dif-

ferent behaviors which are: 1) bending in the leading neck before the detachment of

the trailing head from actin filament, as shown in Fig. 4.6, 2) the trailing head moves

upper than the load in a part of its path. These behaviors have been experimentally

observed in [211] using an electron microscopy which captured the processive move-

ment of a single myosin V along actin filament. Therefore, the 3D model predicts the

detailed behaviors of myosin V more accurate than the 2D model. The differences

can be explained by this fact that the 2D model movement was confined to a plane

so it could not have enough DOF to correctly show all configurations involved in the

locomotion of myosin V.
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Figure 4.4. Deterministic single step locomotion of 3D mechanical model of flexible
myosin V (a) 2D view (b) 3D view. The numbers show the sequence of myosin v’s
snapshots. The neck’s segments are shown by three different colors (red, blue, and
green). The blue and green circles on the heads are location of the binding site and
the candidate contact point, respectively.

Brownian motion plays important role in locomotion of particles at the nanoscale.

To examine the effect of the thermal motion on locomotion of myosin V, random forces
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 10 nm

Figure 4.5. Deterministic single step locomotion of 2D mechanical model of flexible
myosin V [6, 8, 9].

 10 nm

Initial Configuration

Pre-Stroke Configuration

Figure 4.6. Initial and pre-stroke configurations of myosin V obtained by 3D model.
The neck domains are straight at initial condition but they will bend in respond to
the conformational forces. This perfectly matches with the experimental observation
in [211].

are added to the model. They are modeled as Gaussian white noise and kept constant

during a single time step. All forces used in the deterministic stepping are active dur-

ing the simulation of random stepping. Figure 4.7 shows snapshots of the random

motion of myosin V during a single step.
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 10 nm

Figure 4.7. Random single step locomotion of 2D mechanical model of flexible myosin
V. The black path shows the complete trajectory of the binding site (blue circle) on
the trailing head during a single step.

The detailed motion of the binding site on the trailing head is shown as the

black path in Fig. 4.7. The model predicts a reduced effect of random forces yielding

a motion that is nearer to the deterministic motion examined in Fig. 4.5. It can be ex-

plained by this fact that the mass properties attenuate the effect of Brownian motion,

allowing for random-deterministic locomotion which facilitates stepping and docking,

as shown in Fig. 4.7. Indeed, this is in agreement with the widely-accepted assump-

tion that motor protein locomotion is a combination of random and deterministic

behaviors.

4.5 Conclusions

This dissertation proposes a multiscale approach for dynamic modeling and

simulation of flexibility in myosin V. The proposed approach imposes a modification

to the original multiscale dynamic modeling approach, developed in section 3.2 [1–5],

in order to address the issue of adding flexibility to the mechanical model of molecular

motors. The key result of the original approach was that the generalized active
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forces can be scaled to bring them into proportion with the inertial terms; that

leads to retention of the mass properties in contract to the widely used approaches

which neglect them [41, 43]. In addition, the original approach correctly predicts the

physical characteristics, the reduction in viscosity [129, 130] and the underdamped

behavior [200], involved in dynamics of molecular motors at the nanoscale.

The current work adds an extra scaling factor to the original approach that helps

to bring all generalized active forces with different orders of magnitude into proportion

with inertial terms. The proposed approach was examined once using a simplified

2D finite segment model of myosin V in [6]. Herein, a 3D finite segment model

is developed in order to accurately predict the movement of myosin V. There is a

general agreement between the results obtained by both the original and the modified

approaches. However, the flexibility of the neck domains increases the oscillation of

the head domains during docking in compared with the rigid model. In addition, the

neck connected to the trailing of the flexible model deforms during stepping which was

ignored in the rigid model. Moreover, the 3D finite segment model shows two extra

behaviors in compared with the 2D finite segment model which are the bending in

the leading neck and the upper load movement of the trailing head. These behaviors

have been experimentally witnessed in [211]. The unique advantage of the original

approach, the reduction in the simulation run time, is still remained in the modified

one even with adding flexibility to the model.
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Chapter 5

Numerical Simulation

5.1 Introduction

Coarse-grained mechanical models have been developed in order to improve

limitations involved in proteins model based on the classical molecular dynamics in-

cluding, the huge computational efforts and simulation in limited time and space.

The coarse graining process carried out by imposing configuration (holonomic) and

motion (non-holonomic) constraints to the molecular dynamics of mechanical mod-

els, explicitly or implicitly, in order to eliminate degrees-of-freedom (DOF) [55]. Most

of three dimensional (3D) coarse-grained models of motor proteins consider spatial

position of rigid bodies in an elastic network model (ENM); however, 3D rotational

properties of them are omitted or replaced by a simple rotation [38, 43, 153]. How-

ever, description of the kinematics and dynamics of a multibody systems in terms of

the joint space’s coordinates (rotational), instead of the spatial space’s coordinates

(positional), helps to reduce the number of required generalized coordinates.

In recent years, quaternions have been quite narrowly used to describe the

configuration (i.e. position and orientation) of molecules, protein structures, and bio-

polymers [212–217]. However, quaternion-based descriptions can handle several orien-

tation problems arise in molecular modeling [212], but the satisfaction of the normality

constraint between quaternions creates difficulty during integration and simulation of

dynamics of molecular models. In other words, using quaternions for describing the

orientation of rigid bodies in a mechanical multibody system leads to an extra set of

constraints in addition to other ones imposed to it. To avoid constraints treatment,
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kinematics and dynamics of multibody systems have been developed based on the

quaternions algebra that converts equations of motion from the regular 3D Cartesian

space to the four dimensional (4D) quaternion space [154–156, 159–161, 218–223]. In

many cases, the combination of positional and rotational generalized coordinates are

required for describing kinematics of a dynamic system, therefore, the dual quater-

nions [162,163,224,225], which includes 8 parameters with two constraints, was intro-

duced to describe simultaneously the position and orientation of a rigid body. Mod-

eling a super molecule, such as motor proteins, with too many degrees-of-freedom

(DOF) and on the fly constraints by using quaternions or dual quaternions alge-

bra leads to a complicated system of equations. Therefore, effective analytical and

numerical techniques are required to address modeling and simulation of dynamic

multibody systems subjected to different constraints. The most frequently used ap-

proaches are the method of Lagrange multiplier [162], the projecting constraints [166],

and the symbolic constraint embedding [167, 168]. The two first methods are based

on simultaneous solving equations of motion and constraints equations as a differ-

ential algebraic equations (DAEs). Drifting and stabilization issues involved in the

DAE solvers. However, the constraints embedding method addresses these issues by

reducing equations of motion into a minimal form of ordinary differential equations

(ODEs) [167].

This chapter presents a new numerical technique for handling constraints in-

volved in dynamic modeling of mechanical model of processive motor proteins using

rigid multibody dynamics. The proposed model is an extension of the two dimen-

sional (2D) mechanical model [2] into a 3D one, to reach more realistic results match

with experimental data. This new model uses ball-and-socket joints between different

portions of the protein’s mechanical model to allow 3D rotation. Euler parameters, a

unit quaternions, are used to model the orientation of bodies in order to eliminate sin-
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gularities in the description. Other 3D Euler parameters models have been proposed

based on quaternion algebra in [154–156]. The new mechanical model involves holo-

nomic and on the fly non-holonomic constraints due to the extraneous coordinates

in the Euler parameters and impact-contact with the substrate, respectively. The

proposed computational strategy is addressed simulation of the multibody system

with these changing constraints. The proposed modeling and simulation approach

does not depend on quaternion algebra, but uses a numerical constraint-based al-

gorithm to eliminate the extraneous coordinates. In order to accomplish this, the

minimal form of equations of motion is obtained for a general multibody system us-

ing a numerical constraint embedding methods. The constraint-embedded form of

the widely-accepted overdamped [39,40,43,44,62,67,71,76,77,83–86,90,92,95,96,99,

100, 103, 104, 109, 110, 119, 120, 122–125] and the proposed underdamped [1–4, 6, 8, 9]

models are derived in appendix C. This is a new approach to simulating models

involving Euler parameters that easily allows the inclusion of other conditions such

as contact and impact, non-penetration constraints.

The overall process of simulation of a 3D mechanical model of motor proteins

with changing constraints, as shown in Fig. 5.1, is presented in this section. Here it

is assumed that the equations of motion, in (3.1), have been expressed as a system of

first order differential equations in order to integrate them. This can be accomplished

using a simple transformation such as

q̇ = p q̈ = ṗ (5.1)

such that

ẋ(t) =




q̇(t)

ṗ(t)


 =




p(t)

M−1 (
∑

Γ−C)


 . (5.2)
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Nominally, at each time step ẋ(t) is calculated and used to increment x(t) yielding

x(t + ∆t). The calculation of ẋ(t) is modified here to enforce the constraints. The

normality condition of Euler parameters creates a holonomic constraint which must

be always satisfied during simulation, while the non-penetration condition, as a non-

holonomic constraint, should be considered at the contact event. The holonomic and

non-holonomic constraints will be introduced in sections 5.2 and 5.3, respectively.

Herein, the idea is to enforce the constraints to be satisfied implicitly in the

reduced form of equations of motion. This means that the differential form of the

constraints, which relates the dependent and independent generalized speeds and

accelerations, are included in the differential equations that present the dynamics of

motor proteins. Numerical integration of the constrained dynamic model satisfies

the differential form of the constraints spontaneously that leads to fulfillment of the

algebraic form indirectly. Matlab’s ode45, an adaptive numerical integrator, was used

to perform the numerical integration of minimal form of equations of motion.

The procedure of the proposed algorithm, as shown in Fig. 5.1, includes two

internal numerical constraints embedding steps. The first step belongs to addressing

extraneous coordinates due to using Euler parameters. After the first reduction, the

status of contact between protein’s heads and the substrate is checked. Matlab’s

ode45 function features an event function that was used to find the times when the

head(s) came into contact with the actin filament. If any contact was detected by the

event function, the simulation is stopped, then the second step of numerical reduction

related to the appropriate non-penetration constraints is applied, and the simulation

is restarted at the same time and position/orientation using the new velocities. Oth-

erwise, the modified generalized speeds by the holonomic constraints directly are fed

to dynamic equations. This numerical reduction helps to decrease the complications

involved in the symbolic constraints embedding of huge molecular models.
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      Contact ?
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Figure 5.1. The process of simulation for the dynamic modeling of motor protein .

For the sake of simplicity, a 3D double pendulum was used, as a case-study, in

order to show the effectiveness of the proposed technique. The numerical technique

was tested in two different conditions, the first being implementation of the online

constraint embedding of holonomic constraints for the free rotation of the double

pendulum. The second being the extension of the numerical technique for the case of

rotation with possibility of contact-impact as non-holonomic constraints.
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Figure 5.2. 3D double pendulum with ball-and-socket joints. The identical links are
considered as a cylinder with length L, radius r, mass m, and moment of inertia
{Ixx, Iyy, Izz} .

5.2 Holonomic Constraints

The 3D pendulum in Fig. 5.2 can be used to illustrate the use of Euler parame-

ters. The rotation of each frictionless, ball-and-socket joint is described using 4-tuples

of coordinates, {q1, q2, q3, q4} and {q5, q6, q7, q8}, which represent two sets of Euler pa-

rameters, even though the pendulum only has 6 DOF. The normality constraint, and

its derivative, for the first set are,

q21 + q22 + q23 + q24 = 1 q̇1 q1 + q̇2 q2 + q̇3 q3 + q̇4 q4 = 0 (5.3)

In order to reduce the equations of motion, this constraint is used to eliminate the

generalized speed and acceleration associated with one of the Euler parameters. This

is accomplished by solving for it in terms of the others, for example consider the case

where q1 is selected as the dependent coordinate:

q̇1 = −
1

q1
(q̇2q2 + q̇3q3 + q̇4q4) (5.4)
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Extending (5.4) to all sets of 4-tuple generalized coordinates used in the model, the

desired form of the constraints is obtained;

q̇p = Cpm q̇m (5.5)

where m+p equals to the total number of generalized coordinates, Cpm ∈ R
p×m is the

matrix that relates independent and dependent generalized speeds. q̇p ∈ R
p×1 and

q̇m ∈ R
m×1 are vectors of dependent and independent generalized speeds, respectively,

obtained by decomposing q̇ using the permutation matrix P .



q̇m

q̇p


 = P T q̇ (5.6)

Differentiating (5.5), yields;

q̈p = Cpmq̈m + Ċpmq̇m (5.7)

where q̈p and q̈m are time derivatives of the dependent and independent generalized

speeds respectively, Ċpm is time derivative of the matrix in (5.5). However, if q1 → 0

this scheme will become singular and therefore so will Cpm. In order to avoid this

singularity problem, the dependent parameter must be chosen wisely. Because the

source of the singularity is known, a partitioning criterion can be developed that does

not require extensive computations or the mass matrix inverse. Here three methods,

discussed in the next section, are considered.

5.2.1 Selection Algorithm

Here three different approaches towards choosing a dependent parameter are

explored. The first method is based on selecting the parameter which has the max-

imum absolute value as shown in Fig. 5.3a. This prevents the denominator in (5.4)

from equaling zero, but the dependent coordinate constantly switches. This causes
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dynamic inconsistencies which are revealed by evaluating the work-energy theorem.

A second approach, shown in Fig. 5.3b, does not switch the dependent coordinate

unless the condition number of the mass matrix becomes unacceptably large, or the

denominator in (5.4) approaches zero.

The third approach uses an event function to find the times when the mass

matrix’s condition number exceeds a predetermined threshold, as shown in Fig. 5.4.

The event function then stops the numerical integration, the current dependent pa-

rameter is switched to the one with the largest absolute value, and the integration is

restarted.
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Figure 5.3. Overall process of selection of dependent parameter by (a) the first
method, (b) the second method.
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Figure 5.4. Overall process of selection of dependent parameter by the third method.

5.2.2 Error Analysis

The effect of switching on error propagation in a single time step of numerical

integration, based on the fourth order Runge-Kutta (RK4) algorithm, is examined

by using a simple analytical error analysis. A single time step is examined without

and with switching of the dependent parameter as shown in Tables 5.1 and 5.2,

respectively.

The Runge-Kutta family of ODE solvers is a popular and robust numerical

integration algorithm which evaluates q̇ at different stages and uses these values to

fit a polynomial curve to the exact solution over the range of one time step [171]. For

example, RK4 which is shown in (5.10), uses a weighted average of four values of the
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derivative in a time step to fit a fourth order polynomial which has the general form

for each qi, for {i = 1, 2, 3, 4}, of

qn+1 = qn +
1

6
(k1 + 2k2 + 2k3 + k4) tn+1 = tn + h (5.8)

k1 = h q̇n(tn, qn) k4 = h q̇n (tn + h, qn + k3) (5.9)

k2 = h q̇n
(
tn +

h
2
, qn +

k1
2

)
k3 = h q̇n

(
tn +

h
2
, qn +

k2
2

)
(5.10)

where qn = qi(tn), h is the time step, and {k1, k2, k3, k4} are changes in qi(tn) based

on the derivative at the initial, middle (two times), and final time interval points

(stages). Therefore, it is possible that switching occurs several times during a single

step. The error of the ith Euler parameter at the stage kj is expressed by ǫji. This

error propagates through the later stages as follows:

ǫj+1 ,i = εj+1,i + αj ǫji (5.11)

where εj+1,i is the error due to the current stage calculation, and αj is a positive

coefficient which is less than one under the assumption that the contribution of the

error from the previous step is reduced by a factor, see (5.10). The error of the

dependent parameter at each stage is determined by the error in the independent

parameters using (5.4). Table 5.1 is developed in order to show the propagation of

error in the non-switching case. In Table 5.1, the dependent parameter (i.e. the first

parameter) is fixed during the four stages; therefore, its error will be determined by

the independent parameter’s errors at each stage. This can be seen by examining the

total error for q1, the dependent coordinate, at the next time step, n+ 1, designated

as ξn+1,1:

ξn+1,1 = ξn,1 +
1

6
(ǫ11 + 2ǫ21 + 2ǫ31 + ǫ41) (5.12)
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Table 5.1. Error Propagation in One Step-size of Integration without Switching

k1 k2 k3 k4

q1
ǫ12 + ǫ13 + ǫ14

q1

ǫ22 + ǫ23 + ǫ24
q1

ǫ32 + ǫ33 + ǫ34
q1

ǫ42 + ǫ43 + ǫ44
q1

q2 ǫ12 ǫ22 = ε22 + α2ǫ12 ǫ32 = ε32 + α3ǫ22 ǫ42 = ε42 + α4ǫ32
q3 ǫ13 ǫ23 = ε23 + α2ǫ13 ǫ33 = ε33 + α3ǫ23 ǫ43 = ε43 + α4ǫ33
q4 ǫ14 ǫ24 = ε24 + α2ǫ14 ǫ34 = ε34 + α3ǫ24 ǫ44 = ε44 + α4ǫ34

using (5.8). Substituting the values for ǫji from Table 5.1 into (5.12) and eliminating

higher order terms yields

ξn+1,1 = ξn,1 +
1
6q1

((1 + 2α2)(ǫ12 + ǫ13 + ǫ14)+

2(1 + α3)(ε22 + ε23 + ε24) + (2 + α4)(ε32 + ε33 + ε34) + (ε42 + ε43 + ε44))

(5.13)

where the effect of the error from the independent coordinates enters through ǫ44, ǫ34,

etc.

However, calculating the total error for a dependent coordinate, such as q4,

using (5.8) yields

ξn+1,4 = ξn,4 +
1

6
((1 + 2α2)ǫ14 + 2(1 + α3)ε24 + (2 + α4)ε34 + ε44) (5.14)

which shows that the error in the independent parameter is not affected by the other

parameters in the non-switching case.

Now, consider a worst-case scenario, where switching occurs at every stage,

shown in Table 5.2. Every parameters’ error is affected by every other, in contrast to

non-switching case. Similar to (5.13) and (5.14), the total error at the end of a step

can be expressed as

ξn+1,1 = ξn,1 +
(1 + 2α2)(ǫ12 + ǫ13 + ǫ14)

6q1
+

2(1 + α3)ε21 + (2 + α4)ε31 + ε41
6

(5.15)

96



Table 5.2. Error Propagation in One Step-size of Integration with Switching

k1 k2 k3 k4

q1
(ǫ12 + ǫ13 + ǫ14)

q1
ǫ21 = ε21 + α2ǫ11 ǫ31 = ε31 + α3ǫ21 ǫ41 = ε41 + α4ǫ31

q2 ǫ12
(ǫ21 + ǫ23 + ǫ24)

q2
ǫ32 = ε32 + α3ǫ22 ǫ42 = ε42 + α4ǫ32

q3 ǫ13 ǫ23 = ε23 + α2ǫ13
(ǫ31 + ǫ32 + ǫ34)

q3
ǫ43 = ε43 + α4ǫ33

q4 ǫ14 ǫ24 = ε24 + α2ǫ14 ǫ34 = ε34 + α3ǫ24
(ǫ41 + ǫ42 + ǫ43)

q4

ξn+1,4 = ξn,4 +
1
6q4

(ε41 + ε42 + ε43 + ε34 + (1 + α4)(ε31 + ε32 + ε23)+

(1 + α3 + α4)(ε21 + ε24 + ǫ12) + (1 + α2 + α3 + α4)(ǫ13 + ǫ14))
(5.16)

However, Blajer in [165] suggests that the switching from one set of independent

coordinates to another does not propagate integration errors but the analytical er-

ror analysis of the two different cases, in (5.13)-(5.16), shows that switching in the

middle of one step-size increases the error of all parameters in compared with the non-

switching case. This implies that the selection algorithm should reduce the amount of

switching, especially in the middle of a time step, in order to produce more accurate

results. It will be shown that the third approach in Fig. 5.4 produces the least amount

of switching.

5.3 Non-Holonomic Constraints

Another type of constraint in the model is non-holonomic constraint related to

contact-impact which can be interpreted as a non-penetration condition. The normal

velocity of contact points must equal zero when the multibody systems contact to

obstacles in order to ensure that the systems does not penetrate the obstacle. The

97



velocity of contact points are related to the generalized speeds through the contact

Jacobian matrix,

ϑ =




vc

ωc


 = Jc q̇ (5.17)

where vc and ωc are linear velocity of contact points and angular velocity of its body,

and Jc is the contact Jacobian matrix. Now, (5.17) is used to find an appropriate

form of constraint equation, similar to (5.5), which relates the dependent generalized

speeds to the independent generalized speeds. First, the holonomic constraint is used

to eliminate the dependent generalized speeds associated to Euler parameters, so

PP T = I is multiplied at the right hand side of (5.17).

ϑ = Jc PP T q̇ = [ Jcm Jcp ]




q̇m

q̇p


 = Jcm q̇m + Jcp q̇p (5.18)

where Jcp ∈ R
s×p and Jcm ∈ R

s×m are determined by decomposition of the contact

Jacobian matrix using the permutation matrix P , s is the number of contact point’s

velocity components which are constrained. Substitute (5.5) into (5.18), yields.

ϑ = J̃c q̇m (5.19)

where,

J̃c = Jcm + JcpCpm

qr decomposition is used to split the reduced Jacobian matrix of (5.19) corresponding

to the dependent and independent generalized speeds as follow;

J̃cE = QR = Q [ Rs Rr ] =
[
J̃cs J̃cr

]
(5.20)
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where s + r = m, E ∈ R
m×m is the permutation matrix, Q ∈ R

s×s is an orthogonal

matrix, and R ∈ R
s×m is upper-triangular matrix that includes Rs ∈ R

s×s and

Rr ∈ R
s×r. The (5.19) is rewritten using the identity matrix EET

ϑ = J̃c (E ET ) q̇m =
[
J̃cs J̃cr

]



q̇s

q̇r


 = J̃cs q̇s + J̃cr q̇r (5.21)

The unknown post-impact velocity ϑ(t+ ǫ) in (5.21) is determined by using Newton’s

coefficient of restitution (COR) as follow;

ϑ(t+ ǫ) = −e ϑ(t) (5.22)

where ϑ(t) is pre-impact velocity and e is a positive number less than one, substituting

(5.22) into (5.21) yields

−e ϑ(t) = J̃cs q̇s(t+ ǫ) + J̃cr q̇r(t+ ǫ) (5.23)

Equation (5.23) just provides s equations, equal to the number of contact points,

while it is less than the number of unknowns, m = r + s. To address this, the

classical rigid body impact dynamics can be used to provide enough equations. A

definite integration of the equations of motion over a tiny period of time yields,

∫ t+ǫ

t

(Mmq̈m + Cm(q, q̇) + gm)dt =

∫ t+ǫ

t

(J̃T
c F + Γm)dt (5.24)

where only the impact forces survive

Mm(q̇m(t+ ǫ) − q̇m(t)) = J̃T
c p (5.25)

where p is impulse force, and by using the permutation matrix E, (5.25) is split up

to the dependent and independent parts.

Mrr(q̇r(t + ǫ)− q̇r(t)) +Mrs(q̇s(t+ ǫ)− q̇s(t)) = JT
cr p

Msr(q̇r(t+ ǫ)− q̇r(t)) +Mss(q̇s(t+ ǫ)− q̇s(t)) = JT
cs p (5.26)
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eliminating the p between the equations in ((5.26)) yields,

(Mrr + CT
sr Msr)q̇r(t + ǫ) + (Mrs + CT

sr Mss)q̇s(t+ ǫ) =

(Mrr + CT
sr Msr)q̇r(t) + (Mrs + CT

sr Mss)q̇s(t) (5.27)

where

Csr = −(J̃cs)
−1 J̃cr

By simultaneous solving (5.23) and (5.27), the unique solution of the post-impact

generalized speeds is obtained. If status after impact was contact, the equations of

motion should be reduced according to the non-holonomic constraints of contact that

satisfies the non-penetration condition. Thus, by vanishing the contact velocity in

(5.23), the dependent generalized speeds, q̇s, are obtained in terms of the independent

generalized speeds, q̇r;

q̇s = Csr q̇r (5.28)

where Asr is the same matrix as defined in (5.27). In addition, the time derivative of

the independent generalized speeds is obtained by differentiation of (5.28)

q̈s = Csr q̈r + Ċsr q̇r (5.29)

where

Ċsr = −(J̃cs)
−1 ( ˙̃JcsCsr +

˙̃
Jcr)

By this method, here is no need to impact or contact analysis, including determination

of contact forces, during contact events while the non-holonomic constraints are used.

5.4 Online Constraint Embedding in Dynamic Modeling and Simulation

The general form of equations of motion for multibody systems is given below,

M(q) q̈ + C(q̇,q)︸ ︷︷ ︸
generalized inertia forces

= Γ(q̇,q)︸ ︷︷ ︸
generalized active forces

(5.30)
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where q contains the generalized coordinates, and q̇ and q̈ are its time derivatives of

generalized velocity and acceleration. The term M(q) is the mass matrix. C(q̇,q) is

nonlinear terms including, centrifugal-Coriolis terms. Γ is the external forces acting

on the model including gravity, friction, contact forces.

The matrix, Cpm, from (5.5) can be used to combine the dependent and inde-

pendent parts of (5.30) to obtain the minimal form of the equations of motion [168],

F̃m − F̃∗

m = Fm − F∗

m + CT
pm (Fp − F∗

p) = 0 (5.31)

where F and F ∗ are generalized active forces and generalized inertia forces, respec-

tively.

The permutation matrix in (5.6), P , is invoked to decompose the (5.30) into

dependent and independent parts.

(P T M P ) (P T q̈) + P T C = P T Γ


Mmm Mmp

Mpm Mpp







q̈m

q̈p


+




Cm

Cp


 =




Γm

Γp


 (5.32)

converting matrix form of (5.32) into Kane’s format yields

Fm − F∗

m = Γm −Mmm q̈m −Mmp q̈p −Cm = 0

Fp − F∗

p = Γp −Mpm q̈m −Mpp q̈p −Cp = 0 (5.33)

Plug (5.33) into (5.31) gives

M̃m q̈m + C̃m = Γ̃m (5.34)

where

M̃m = Mmm +Mmp Cpm + CT
pmMpm + CT

pmMppCpm

C̃m = Cm + CT
pmCp + (Mmm Ċpm + CT

pmMpp Ċpm) q̇m

Γ̃m = Γm + CT
pmΓp
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Notice that the contact forces involved in Γ, in (5.30), are automatically eliminated

in Γ̃m.

5.5 Results

The proposed online constraint embedding method was examined on a 3D dou-

ble pendulum for two different cases including, free rotation of double pendulum, and

rotation with possible contact-impact which their results are presented respectively

in following.

5.5.1 Free Rotation

The overall process of simulating multibody systems with holonomic constraints

is shown in Fig. 5.5. The first step is the selection algorithm, section 5.2.1. Next a ma-

trix, that relates dependent to independent coordinates, is formed from the holonomic

normality constraint. This matrix is used in the constraint embedding, equation re-

duction, step. The reduction is performed numerically, rather than symbolically.

Numerical integration of the reduced dynamic model satisfies the differential form of

the constraints spontaneously and leads to fulfillment of the algebraic form indirectly.

Matlab’s ode45, an adaptive numerical integrator, is used to perform the numerical

integration of the minimal form of the equations of motion.

The values of parameters and initial conditions, which are used for simulation

of the 3D double pendulum, are given in Table 5.3. In order to verify the dynamic

model of the 3D double pendulum during the simulation, a check function for energy

consistency is defined based on the Work-Energy theorem in (5.35).

check1i = Ti − (T1 +W1→i) (5.35)
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Figure 5.5. The process of simulation for the case of free rotation (just holonomic
constraints).

Table 5.3. Parameters and Initial Conditions for Simulation of the 3D Double Pen-
dulum Model in Fig. 5.2

Quantity Value Comment

L 0.3 m For both links, A and B

r 0.05 m For both links, A and B
g 9.81 m

s2

m 1 kg For both links, A and B
{Ixx, Iyy, Izz} {0.0025, 0.0975, 0.0975} kg.m2 For both links, A and B
{q1, q2, q3, q4} {0.2732, 0.1815,−0.1543, 0.9320} satisfies (5.3)
{q5, q6, q7, q8} {−0.1379, 0.3589, 0.2550, 0.8872} satisfies (5.3)
{q̇1, q̇2, q̇3, q̇4} {0, 0, 0, 0} satisfies (5.3)
{q̇5, q̇6, q̇7, q̇8} {0, 0, 0, 0} satisfies (5.3)
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where T1 and Ti are the kinetic energy at the first and the ith step of integration,

W1→i is the work done by the generalized active forces (i.e. conservative and non-

conservative) during these steps. This check function should be constant if no errors

occur. Errors in the check function indicate that the amount of work done by gener-

alized active forces is not equal to the change in kinetic energy, as stipulated by the

work-energy theorem. This is a dynamic inconsistency generated here by switching

the dependent parameter.

The results of the check function are obtained using the three different algo-

rithms for four different time steps as shown in Fig. 5.6. The first method constantly

switches, as discussed in section 5.2.1, which leads to several jumps in the check func-

tion corresponding to times when switching occurred, as shown in Fig. 5.7a. Also,

the check function obtained by this algorithm is not stable against change of time

step and it shifts upwards and downwards.

The switching issue is addressed by retaining the dependent parameter until

the mass matrix condition number is less than a desired threshold (i.e. eliminating

extra switching) in the second method as illustrated in Fig. 5.7. However, the check

function’s behavior is very sensitive to the time step. For example, for either very

small or very large time steps, its check function’s behavior is very close to the first

algorithm, while for the intermediate time step, it is near to the third method. This

occurs because the second algorithm still has inappropriate switching during one step

of the integration.

Figure 5.6 shows that the third algorithm addresses this issue and it has the

best check function results among the proposed algorithms for all time steps. The

reduction of check function is caused by less switching and prevention of switching in a

single step of integration as predicted by the analytical error analysis in section 5.2.1.

In addition, increasing the time step, increases the check function value for all three
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Figure 5.6. Comparison between the check functions on energy consistency obtained
by the different algorithms with (a) 0.1ms, (b) 1ms, (c) 50ms, and (d) 100ms inte-
gration time step-size and abserr = 10−10 and relerr = 10−9.

methods. However, the results for the third algorithm stay at an acceptable level

for the different time steps whereas the other algorithms do not, which proves the

robustness of the third method.

In order to compare the numerical efficiency of the proposed algorithms, the

order of maximum error in energy consistency and the CPU-time of a simulation

run were obtained for four integration step sizes as shown in Tables 5.4 and 5.5,

respectively. A comparison of the results shows that the third method has the least
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error among the proposed algorithms while its CPU-time of simulation is almost

as same as the other methods. This means the third selection algorithm provides

more accuracy without increasing the computational cost in compared with the other

algorithms.

Table 5.4. Comparison of Order of Error in Energy Consistency of the Model Using
the Proposed Algorithms

Integration step size ∆t = 0.1ms ∆t = 1ms ∆t = 50ms ∆t = 100ms

First method (J) 10−11 10−8 10−7 10−7

Second method (J) 10−11 10−10 10−10 10−8

Third method (J) 10−13 10−11 10−10 10−10

Table 5.5. Comparison of Simulation CPU-time of the Model Using the Proposed
Algorithms.

Integration step size ∆t = 0.1ms ∆t = 1ms ∆t = 50ms ∆t = 100ms

First method (sec) 1114.2 115.9 14.5 13.5
Second method (sec) 1114.2 117.4 15.7 13.9
Third method (sec) 1121.1 117.4 15.9 14.0

The switching statuses of Euler parameters for the joints of the 3D pendulum

using the three different selection algorithms are illustrated in Fig. 5.7. These results

show that the third methods has the least switching among the selection algorithms.

This is illustrated more clearly in Fig. 5.7 which shows number of times the dependent

Euler parameter switched during the simulation. The solid and dashed arrows show

switching for the first and second joints, respectively. The si labels in Fig. 5.7 indicate

the chronological order of switching. The time at which s1, t(s1), occurs is less than

the time at which s2 occurs, t(s2), or t(s1) < t(s2) < t(s3) < .... < t(sn). The number
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of switches in the third method, 8 and 4 times, is almost half of those in the first, 14

and 6 times, and the second, 14 and 6 times, methods.
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Figure 5.7. Switching graphs corresponding to the switching status obtained by (a)
The first, (b) the second, and (c) the third algorithms. The solid and dashed arrows
are designated for the switching status of the first and second joints, respectively.

Figure 5.8a shows snapshots of the 3D double pendulum during its motion and

Fig. 5.8b shows that the pendulum’s total energy remains constant throughout the

simulation. Figure 5.9a and b show the trajectory of the Euler parameters for the

first and second joints for three seconds simulated time. The normality condition

is checked during the simulation for both joints and plotted as the solid black line
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Figure 5.8. 3D pendulum simulation. (a) Snapshots of the 3D double pendulum with
the path of the tip, (b) system energy.
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Figure 5.9. Euler parameters of (a) the first joint, (b) the second joint.

across both figures which indicates that the normality condition was satisfied during

the simulation. This indicates that the solution for the Euler parameters does not

drift, thus there is no need for renormalization.
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5.5.2 Rotation with Contact and Impact

The proposed method is examined in a case that the double pendulum may

contact the ground during the rotation. Therefore, the multibody system is imposed

to an on the fly constraint because of contact and impact. In this case, the reduction of

the equations of motion is done in two different steps during the numerical integration

as shown in Fig. 5.1. For the non-holonomic constraints, the selection of the dependent

generalized coordinates is taken place by using qr decomposition [167] and for the

holonomic constraint the best algorithm of selection, the third algorithm in section

5.5.1, is used. Figure 5.10 shows few snapshots of the behavior of 3D double pendulum

during the simulation with considering contact and impact. In this particular case,

the coefficient of restitution (COR) is chosen to be 0.8 and the pendulum rebounding

after impact until the kinetic energy approaches to zero.

The trajectory of Euler parameters in the first and second joints are shown in

Fig. 5.11a and b, respectively, while the normality condition is satisfied for the both

joints. It shows that the proposed numerical constraint embedding and the algorithm

of selection work well even in presence of contact and impact.

To show the consistency of energy during contact simulation, the total energy,

kinetic, and potential energy are illustrated in Fig. 5.12. It is obvious that the energy

is reduced after each impact according to the specified COR.

The switching status of Euler parameters due to the holonomic constraints is

shown in Fig. 5.13.

5.6 Conclusions

This chapter presented a new computational strategy to address different con-

straints involved in the dynamics of the new spatial rigid multibody model of motor
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Figure 5.10. Snapshots of the 3D double pendulum’s motion with contact shown in
(a) 2D view, and (b) 3D view.

proteins. The constraints are holonomic, due to Euler parameters which are used

to describe spatial rotation of bodies, and non-holonomic, because of contact-impact

non-penetration conditions. The strategy is based on the reduction of the equations

of motion into the minimal form using the numerical embedding of the holonomic

and non-holonomic constraints during simulation. However, the proposed method
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Figure 5.11. Trajectory of Euler parameters of (a) the first joint, (b) the second joint.

requires a procedure for selection of dependent parameters between Euler parame-

ters which can create a singularity in the formulation. This singularity is avoided by

switching the dependent parameter. Doing this as few times as possible maintains the

dynamic consistency of the simulation while satisfying the normality constraint on

the Euler parameters. In addition, calculation of post-impact velocities and contact

forces [1, 2] along with the complications of quaternion algebra [154–156] are elimi-
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Figure 5.13. Switching graphs corresponding to the switching status obtained by the
best algorithm of selection in presence of contact and impact.

nated. The effectiveness of the proposed simulation technique was tested on a 3D

double pendulum for two different cases, 1) free rotation (only holonomic constraint),

and 2) rotation with contact-impact (holonomic and non-holonomic constraints). The

obtained results show ability of the numerical technique for handling Euler parameter

constraint as well as contact-impact. the same procedure was invoked for numerical

simulation of motor proteins which results were presented in chapters 2, 3 and 4.
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Appendix A

Optical Tweezers: Experiment Setup and Theoretical Modeling
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In this appendix, we present the setup used for the experiment of dynamic

behavior of micro-nano sized bead in optical trapping process. In addition, the forces

acting on the model of micro bead are presented in details.

A.1 Experimental Setup

Green-fluorescent polystyrene microspheres (Polysciences Inc) were suspended

in distilled water and a small drop of this solution was placed on a coverslip. The

OTs and imaging platform is shown in Fig. A.1. A Ti: Sapphire laser (MaiTai HP,

Newport Spectra-Physics Inc.) beam operating in cw mode at 800nm was expanded

using a beam expander (BE) and guided toward the sample via folding mirrors and

into the rear port of an inverted optical microscope (Nikon Ti-U Eclipse). The laser

beam was coupled to a 100X microscope objective (MO) (NA: 1.3, or 1.4 in some

cases) through the back laser port as shown. For temporal modulation of the tweezers

beam (i.e. force), the initiation and exposure duration was controlled by an external

shutter (S, Uniblitz).

Samples were illuminated using a high pressure mercury lamp (Nikon) through

blue/green excitation-emission filter cube in order to achieve high contrast for parti-

cle tracking. A dichroic mirror (DM1) was mounted to reflect the laser beam to the

objective and to allow transmission of fluorescence excitation light (blue: BL). The

fluorescent microsphere was trapped in the diffraction limited spot, and the trapping

plane was matched with imaging plane by varying the divergence of the laser beam.

The power of the optical trapping beam at the sample plane was estimated by multi-

plying the transmission factor of the objective with the laser beam power measured

at the back aperture of the objective using a power meter (PM100D, Thorlabs Inc.).

Fine laser power control was managed by orienting the polarizer (P). Images were

collected with a reverse-cooled high speed digital camera (Hamamatsu C1140). The
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Figure A.1. Experimental setup: L1: Ti: sapphire Laser; BE: Beam Expander; S:
Shutter; P: Polarizer; WL: White light; BS: Beam Splitter; FL: Fluorescence Excita-
tion Mercury Lamp; ExF: Excitation Filter; EmF: Emission Filter; MO: Microscope
Objective; CL: Condenser Lens; DM 1& 2: Dichroic Mirror; M: Mirror [10] .

images were processed using ImageJ software. An IR cut-off filter (Em. F) was used

to prevent the back-scattered laser light from reaching the camera.

A.2 Forces

A.2.1 Brownian Motion

Random forces and moments in the model, representing Brownian motion, are

implemented as Gaussian white noise. They act at and about the mass center of the

bead, as shown in Fig. A.2. The random forces and moments shown in Fig. A.2

representing Brownian motion, are defined, for example, as

FBrownian = Co1(t) N̂1 + Co2(t) N̂2

TBrownian = L̄S Co3(t)

(A.1)

where L̄C is a characteristic length of body ‘S’. The Coi(t) represent forces produced

by randomly fluctuating thermal noise. Each component of the random force and
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moment is treated independently as a normally distributed random variable [195].

They have the following expectations, E[·], or weighted average values,

E [ Coi(t) ] = 〈 Coi(t) 〉 = 0 = µ (A.2)

and are governed by a fluctuation-dissipation relation expressed as

E [ Coi(t1) Coj(t2) ] = 2 β kB T δ(t1 − t2)δi,j (A.3)

where kB and T are the Boltzmann constant and absolute temperature [195, 198].

The relation in (A.3) implies that there is no time dependency between the random

process over time; the random sequence of forces does not repeat regularly.

In addition, (A.2) and (A.3) imply

E[C2
oi(t)] = 2 β kB T = Var(Coi(t)) = σ2 (A.4)

which is the variance of Coi. Thus the Coi can be generated using the Matlab function

normrnd(µ, σ, . . .) which generates random variables with a normal distribution.

S
o C

o1

C
o3

C
o2

Figure A.2. Brownian motion for microbead .

The collection of random forces comprise ΓBrown. These randomly fluctuating

discontinuous functions slow numerical integration so each random variable is held
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Figure A.3. Random forces acting on body ‘S’ in Fig. 2.1 for the 500nm Bead .

constant during a single integration step; the random variable is updated at the

beginning of each step. Thus the value of each random variable is known before the

integration step, and the decomposed value of the random force must equal it. This

is accomplished by defining

ΓBrown = Rnd rnd = Rnd




Co1

Co2

Co3

...




(A.5)

where Rnd transforms the random forces into generalized active forces. An example

of the random forces used is given in Fig. A.3.

A.2.2 Optical Force

A.2.2.1 Beam Model

There are three primary methods for modeling optical forces. In the Rayleigh

regime, the particle is approximated as a point dipole within an electromagnetic field.

This approach is useful when the particle radius is much less than the wavelength of
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the laser. In the Mie regime, where the bead’s size is comparable to the wavelength,

Mie scattering theory is used. Recent developments in computational techniques

based on Mie scattering theory provide a capability to extend this method to larger

particles up to 100µm diameter [226]. In the ray-optics regime, the laser beam is

discretized into a number of rays and geometrical optics is used to calculate the

forces exerted on the particle by each ray. This approach is useful for particles of

radius larger than the wavelength of laser light used. Herein a ray-optics approach is

used for the sake of simplicity.

In the ray-optics approach to modeling optical tweezers, the total light beam

is decomposed into individual rays, as shown in Fig. A.4, that each propagate in

straight lines in a medium of uniform refractive index [134]. Each ray is assigned

an appropriate intensity (Iray), direction (φray), and polarization state, and has the

characteristics of a plane wave of zero wavelength which can change directions when

it reflects, refracts, or changes polarization at dielectric interfaces according to the

Fresnel formulas presented in section A.2.2.2. Diffractive effects are neglected in this

regime [227].
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Figure A.4. Schematic showing ray-bead contact and ray radial origins .
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First, the origins of each of the sample rays need to be calculated. To do this,

the angle, φFS0
, between the central ray and N̂2, as shown in Fig. A.4, needs to be

found

φFS0
= arctan

q1

f́ − q2
(A.6)

where f́ is the distance between the virtual point F́ and the inertial frame point, No.

The origins of the tangential rays, ρt1 and ρt2 , can then be calculated. First, calculate

the angle, θ, between FSo and the lines connecting F́ to ρt1 and ρt2 as shown in Fig.

A.4.

sin θ =
rS√

q21 + (f́ − q2)2
(A.7)

cos θ =
√
1− sin2θ (A.8)

θ = arctan
sin θ

cos θ
(A.9)

ρt1 = f́ tan(γ) ρt2 = f́ tan(δ) (A.10)

where γ = φFS0
− θ and δ = φFS0

+ θ. Next, since fifteen rays are being sampled

(of the total number of rays impacting the bead at any given moment), define the

distance, span, between ρt1 and ρt2, and an interval, ∆ρ, between each ray origin, ρk:

ρk = ρt1 + (k − 1)∆ρ k = 1, · · · , 15 (A.11)

where

∆ρ =
span

14
span = |ρt2 − ρt1| (A.12)

Note that span, as defined above, will begin to approach infinity as S0 approaches a

certain distance, rS, from F́ . To counteract this, arbitrarily set

span = 2Robj (A.13)
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Figure A.5. Geometry of an incident ray giving rise to gradient and scattering force
contributions, Fgrad and Fscat. Here, θ denotes the angle of incidence, f denotes the
focal line, and O denotes the sphere’s center of mass .

Each ray origin will be treated as the x-coordinate (with respect to the inertial ref-

erence frame) of the point Pk(ρk, 0), which is defined as the point of exit of the ray

from the objective lens.

The simple ray-optics model of the optical tweezers used here for calculating

the optical forces on a sphere of diameter ≫ λ is illustrated in Fig. A.5, adapted

from [134]. The trap consists of an incident parallel beam of arbitrary mode structure

and polarization that enters a high numerical-aperture (NA) microscope objective

and is focused, ray-by-ray, to a focal line. Computation of the total force imparted

to the sphere consists of summing the contributions of each ray entering the aperture

at radius ρray with respect to the beam axis. The effect of neglecting the finite size of

the actual beam focus, which can approach the limit of λ/2nm [228], is negligible for

spheres much larger than λ. The point-focus description of the convergent beam, in

which the ray directions and momenta continue in straight lines through the focus,

gives the correct incident polarization and momentum for each ray. The rays then

reflect and refract at the surface of the sphere, giving rise to the optical forces.
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Figure A.6. Geometry for calculating the force imparted by a single incident ray. The
incident ray has power P and impacts the particle surface at an angle of incidence, θ.
Some of the ray is reflected off (of power PR), while the rest of the ray is infinitely
refracted at an angle denoted by r (with portions of the transmitted light passing out
of the particle at powers PT 2Rn) .

To illustrate the generation of optical forces, consider the force due to a single

ray of power P hitting a dielectric sphere at an angle of incidence, α, with incident

momentum per second nmP/c, as illustrated in Figs. A.5 and A.6. The total force

imparted onto the sphere by the ray is the sum of the contributions due to the reflected

ray of power PR and the infinite number of emergent refracted rays of successively

decreasing power PT 2, PT 2R, · · · , PT 2Rn, where the quantities R and T are the

Fresnel coefficients of reflection and transmission, respectively, of the sphere surface

at α. The net force acting through the sphere’s mass-center, S0, can be resolved into

Fscat and Fgrad components as given by Roosen et al. [229] and [230], for a summary

of derivation refer to section A.2.2.4

Fscat =
nmP

c
[ 1 +R cos 2α− a ] (A.14)
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where

a =
T 2 [cos(2α− 2β)−R cos(2α− π)]

1 +R2 − 2R cos(π − 2β)
(A.15)

and

Fgrad =
nmP

c
[ R sin 2α− b ] (A.16)

where

b =
T 2 [sin(2α− 2β)− R sin(2α− π)]

1 +R2 − 2R cos(π − 2β)
(A.17)

where α and β are the angle of incidence and refraction, respectively. These formulas

sum over all scattered rays, and are therefore exact. The forces are polarization-

dependent, since R and T are different for rays polarized perpendicular or parallel to

the plane of incidence.

In (A.14), the Fscat component, pointing in the direction of the incident ray, is

denoted as the scattering force component for this single ray as shown in Fig. A.5,

and acts in a direction parallel to the incident ray. Similarly, in (A.16), the Fgrad

component, pointing in a direction perpendicular to the ray in the direction of the

ray axis, is denoted as the gradient force component for the ray as illustrated in

Fig.A.5. The action of each ray’s gradient force is to pull to particle’s mass-center

onto the ray-axis. The net scattering and gradient forces of the whole beam are

defined as the vector sums of the scattering and gradient force contributions of each

individual ray within the beam. The result is that the particle will be puled toward

the rays of higher power.

A.2.2.2 Fresnel Coefficients

Before the Fresnel coefficients can be calculated, first calculate the angle of

incidence, αk, and the angle of refraction, βk, of each ray with the sphere.
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The angles of incidence are calculated using the definitions of the Dot Product

and the Cross Product

cosαk =
PCkPk

· n̂k

||rCkPk
||||n̂k||

(A.18)

sinαk =
PCkPk

× n̂k

||PCkPk
||||n̂k||

(A.19)

αk = arctan
sinαk

cosαk

(A.20)

The angles of refraction are calculated according to Snell’s Law and the Pythagorean

Theorem

sin βk =
nm sinαk

nS

(A.21)

cos βk = |

√
1− sin2 βk| (A.22)

βk = arctan
sin βk

cos βk

(A.23)

From here, calculate the Fresnel Reflection and Transmission Coefficients

Rk =
1

2

[[
nm cosαk − nS cos βk

nm cosαk + nS cos βk

]2
+

[
nm cos βk − nS cosαk

nm cos βk + nS cosαk

]2]
(A.24)

Tk = 1−Rk (A.25)

A.2.2.3 Force Frames

The force exerted by a single ray can be resolved into two components: the scat-

tering force, Fscat, which acts in the direction of the ray, and the gradient force, Fgrad,

which acts perpendicular to the direction of the ray, in the direction of increasing
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intensity. In order to accurately model these forces, first set up so-called ray-attached

frames-axes that correspond to the components of the ray.

First, calculate the angle each ray is taking (with respect to the line between

N0 and F ) using the general formula:

φk = arctan
ρk

f́
(A.26)

From these angles, formulate the general rotation matrices for each force frame:

Fk

N R =




cos φk − sin φk 0

sinφk cosφk 0

0 0 1




(A.27)

These rotation matrices will determine the relationship between the force components

in the ray-attached frames and the force components in the inertial reference frame.

A.2.2.4 Force Components

Start with the equation for the total force exerted by a single ray [134, 229]

Ftot,k =
nmPk

c

[
1 +Rke

2iαk − T 2
k d
]

(A.28)

where

d =
e2i(αk−βk)

1− Rkei(π−2βk)
(A.29)

In order to eliminate imaginary terms within the denominator, so that later compu-

tations are quicker, first rationalize the fraction in the T-term:

d =
ei(2αk−2βk)

1− Rkei(π−2βk)
·
1− Rke

−i(π−2βk)

1− Rke−i(π−2βk)
(A.30)

=
ei(2αk−2βk)

[
1−Rke

−i(π−2β)
]

[1− Rkei(2αk−2βk)] [1− Rke−i(2αk−2βk)]

=
ei(2αk−2βk) − Rke

[i(2αk−2βk)−i(π−2βk)]

1 +R2
k − Rk [ei(π−2βk) + e−i(π−2βk)]

=
ei2αk−2βk −Rke

i(2αk−π)

1 +R2
k − 2Rk cos (π − 2βk)

(A.31)
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Following [134, 229], the gradient force, Fgrad,k, is taken to be the imaginary

component of the total force, while the scattering force, Fscat,k, is taken to be the real

component. Using Euler’s Formula, Ftot,k can be resolved into (A.14) and (A.16).

Force vectors can be generated using the ray-attached frames generated earlier

Ftot,k = Fgrad,kN̂1 + Fscat,kN̂2 (A.32)

Each force will be applied to a corresponding contact point on the particle, Ck.

A.2.3 Other External Forces

The other forces accounted for are depicted in Fig. 2.1b. Weight, buoyancy,

and drag force are set as:

Fg = −mSg0 N̂2 (A.33)

FB = ρmg0Vp N̂2 (A.34)

FD = −βv
NVS0

(A.35)

where

βv = 6πµmrS

is obtained from Stokes’ Law.

A.3 Moments

There are three sources of torque in this system: the torque imparted by the

beam, the viscous drag, and Brownian forces.

The moments imparted onto the particle by each of the rays is set as

Mk = PS0Ck
× Ftot,k (A.36)

The viscous torque is obtained from

Tdrag = −βω q̇3 (A.37)
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where

βω = 8πµmr
3
S

Finally, Brownian moment is,

TBrownian = L̄S Co3(t) (A.38)

where L̄S is a characteristic length of body ’S’.

A.4 Physical Parameters

The physical parameters used for numerical simulation of microbead under in-

fluence of Optical tweezers are presented in Table A.1.

A.5 Vertical and Rotational Coordinate

The simulation of the 500nm bead yields data for all three coordinates, q1, q2,

and q3, which can be examined. Here the data for the vertical, q2, and rotational, q3,

coordinates are presented for the sake of completeness.
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Figure A.7. Simulation data for q2 the multiscale model 500nm (CPUtime=21mins,
AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms). .
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Table A.1. Definition of Quantities Used

Quantity Definition Units Value Used
f focal length mm 2

P0 laser beam power pg·mm2

ms3
156× 109

P1−15 ray powers pg·mm2

ms3
variable

I0 laser beam intensity pg

ms3
≈ 5.09× 1010

I1−15 ray intensities pg

ms3
variable

Re Reynolds number unitless variable
ρm density of fluid medium pg

mm3 0.9982071× 109

µm dynamic viscosity of fluid medium pg

(ms·mm)
1002× 103

φFS the angle of the line between
point F and S0

radians variable

ρ0 the radial origin of the central ray mm variable
ρ1−15 radial origins of ray1−15 mm variable
φ1−15 angle of refraction of rays ex-

iting objective
radians variable

θ angle between PFS0
and tan-

gential rays
radians variable

rS microparticle radius mm 0.0008
nS microparticle refraction index unitless 1.496
Robj radius of objective lens mm 2.6
NA numerical aperture of objective unitless 1.30
ng glass refraction index unitless 1.5
nm refraction index of medium unitless 1.330
c speed of light in a vacuum mm

ms
299792458

σ beam waist length at the objective lens mm 2.5
ω beam waist length at the focal point mm 3.5× 10−3

g0 standard acceleration due to gravity mm
ms2

9.80665× 10−3

α1−15 incident angle of ray1−15

with microparticle
radians variable

β1−15 refraction angle of ray1−15 radians variable
λ wavelength of laser mm 0.0008

1 N = 1kg·m

s2
= 1012 pg·mm

ms2
, 1 J = 1 kg·m2

s2
= 1015 pg·mm2

ms2
, 1 W = 1 kg·m2

s3
= 1012 pg·mm2

ms3

The data for the vertical directions, Fig. A.7, shows gradual movement toward

the focal point in the vertical direction. However, the key thing to notice is the

oscillations in the vertical direction when the bead reaches the focal line. In addition,

there is a offset between the vertical position that the bead settled and the focal point
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due to optical force cancellation which happens upper than the focal point [134].

Currently, work is underway to improve experimental bead tracking in the vertical

direction in order to obtain a truer comparison for the simulation.
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Figure A.8. Simulation data for q3 the multiscale model 500nm (CPUtime=21mins,
AbsTol=10−8, RelTol=10−7, ∆t = 0.001ms). .

The rotational coordinate, plotted in Fig. A.8, shows that there is little rotation

as the 500nm bead approaches the focal line. However, the oscillations at the focal line

impart some rotational velocity to the bead. After reaching the focal line, the bead

slowly spins thereby slowly increasing the q3 coordinate. There is no experimental

tracking of the bead’s rotation for comparison at this time.
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Appendix B

Motor Proteins: Model Parameters and Units

129



This appendix discusses in detail the elements of the proposed model and the

physical parameters of the mechanical model of myosin V in chapter 3.

B.1 Physical Parameters

The physical parameters used in the numerical simulation of motor proteins,

especially myosin V, are presented here.

B.2 Units

This appendix gives a brief summary of the units used in the simulation. The

unit basis consists of the attogram (ag), the nanometer (nm), the millisecond (ms),

and the radian (rad). With this choice the force unit becomes

1N = 1
kg ·m

s2
1021ag

kg

109nm

m

(s)2

(103ms)2
= 1024

ag · nm

ms2
(B.1)

and the unit of work becomes

1 J = 1
kg ·m2

s2
= 1033

ag · nm2

ms2
. (B.2)

These values are chosen so that the masses have a value near unity and to improve

the stability of the numerical integration.
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Table B.1. Physical Parameters of the Myosin V Mechanical Model

Quantity Definition Value Value Used Ref.

d1 see Fig. 3.2 0nm same [231, 232]

d2−6 see Fig. 3.2 36nm same [231, 232]

e the elementary or quantum charge 1.602× 10−19
C same [233]

CB1−6
charge on actin binding sites ‘Bi’, see
Fig. 3.2

−1e same [41]

CCE
, CDE

charge on the head binding sites, see
(3.10)

5e same [41]

L1 see Fig. 3.2 10nm same [192]

L2, L3 see Fig. 3.2 15nm same [95]

L4, L5 see Fig. 3.2 3nm same [95]

L6, L8 see Fig. 3.2 and (3.7) 2.12nm same

L7, L9 see Fig. 3.2 and (3.8) −1.77nm same

mA,mB mass of necks, bodies ‘A’ and ‘B’, see
Fig. 3.2

15kDa 15/NA × 1021ag [95]

mC ,mD mass of heads, bodies ‘C’ and ‘D’, see
Fig. 3.2

80kDa 80/NA × 1021ag [95]

mLOAD mass of load, see Fig. 3.2 100kDa 100/NA × 1021ag

β viscous damping coefficient, see (4.1) 10−7 pN·s
nm

108ag/ms [195]

a1 see (4.8) - 0.9999999

a2 see (4.8) - 1× 10−7

L̄A, L̄B neck characteristic length, bodies ‘A’
and ‘B’, see (3.5)

15nm same

L̄C , L̄D head characteristic length, bodies ‘C’
and ‘D’, see (3.5)

3nm same

rhead1
radial length of head, see (3.14) 3nm same [95]

rhead2
radial width of head, see (3.14) 2.5nm same [95]

rhead3
radial width of head, see (3.14) 2.5nm same [95]

(4πǫ0)
−1 ǫ0=permittivity of free space, see

(3.10)
9× 109 N·m2

C2
9× 1051 ag·nm3

ms2·C2
[233]

ǫr relative permittivity, see (3.10) 80 same [41]

k inverse of the Debye length, see
(3.10)

1

3.5nm same [41]

a excluded volume radius, see (3.10) 1nm same [41, 234]

ko charge offset, see (3.10) - 1nm

kB Boltzmann constant, see (A.5) 1.38× 10−23 J
K

1.38× 1010 ag·nm2

ms2·K
[233]

T Room temperature, see (A.5) 300K same

vavg average velocity of myosin V 1000nm/s 1nm
ms

[235]

NA Avogadro’s number 6.0221215× 1023 1

mole
same [192]

C (Coloumb), kDa (kiloDalton), nm (nanometer), pN (picoNewton), ag (attogram), ms
(millisecond), K (Kelvin), J (Joules)
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Appendix C

Constraint Embedding
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This appendix discusses a new numerical technique for handling on-fly con-

straints of a multibody system due to extra generalized coordinates and contact. The

reduction to a minimal set is accomplished using a constraint matrix. This reduction

is performed numerically during the simulation, rather than symbolically reducing the

model. Holonomic and nonholonomic constraints can be included in the constraint

matrix. The holonomic constraints represent the normality condition on the Euler

parameters. The non-holonomic constraints are related to sticking or sliding con-

tact or impact between the heads and the actin filament. This strategy reduces the

computational cost of the impact/contact analysis which leads to a faster simulation.

Finally, the general equations of motion are reduced into the minimal form for both

the first and second order models.

C.1 Holonomic Constraints

Euler parameters are used to model the orientation of bodies in order to elimi-

nate singularities in the description of orientation. Euler parameters can be referred

to as a unit quaternion containing four dependent parameters which must satisfy a

normality constraint. Considering {q4, q5, q6, q7} in Fig. 3.2, the normality constraint

has the form,

q24 + q25 + q26 + q27 = 1 (C.1)

Equation (C.1) is differentiated to obtain a linear constraint in terms of the generalized

speeds,

q̇4 q4 + q̇5 q5 + q̇6 q6 + q̇7 q7 = 0 (C.2)

and likewise for all sets of Euler parameters. The collection of these constraints can

be expressed as a matrix

0 = CH q̇ (C.3)
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C.2 Non-Holonomic Constraints

Nonholonomic constraints are used to represent sticking or sliding contact or

impact between the heads and the actin filament. The normal velocity of contact

points must equal zero when the heads contact to the actin filament in order to

ensure that the head does not penetrate the filament. It is assumed that the heads do

not rebound after an impact with the substrate. When the heads dock the tangential

velocity of the contact points and the angular velocity of the heads must equal zero.

The velocity of contact points are related to the generalized speeds through the

contact Jacobian matrix

ϑ =




vc

ωc


 = Jc q̇ (C.4)

where vc and ωc are the translational linear velocity of contact points and the angular

velocity of heads respectively, Jc is the the contact Jacobian matrix. Equation (C.4)

can be presented in matrix form similar to (C.3). When the velocity of contact points

are equal to zero

0 = CN q̇ (C.5)

C.3 Reduction

C.3.1 Reduced Second Order Model

There are different techniques for deriving the equations of motion for con-

strained multibody systems such as the method of Lagrange Multipliers, projecting

the unconstrained equations, and symbolic constraint-embedding. Formulating the

equations of motion using the constraint-embedding approach leads to a minimum

number of ordinary differential equations which are passed to an ODE solver. Also,

constraint embedding addresses issues related to drift and stabilization of DAE solvers

during numerical integration of the equations of motion formulated by the other tech-
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niques [167]. Here, constraint-embedding is used to reduce the equations of motion

in (3.1).

0 = C q̇ =




CH

CN


 q̇ (C.6)

qr decomposition is used to split the general constraint matrix of C.6 into portions

corresponding to dependent and independent generalized speeds:

C E = Q R = Q [ Rp Rm ] = [ Cp Cm ] (C.7)

where m + p = n, E ∈ R
n×n is the permutation matrix, Q ∈ R

p×p is an orthogo-

nal matrix, and R ∈ R
p×n is upper-triangular matrix that includes Rp ∈ R

p×p and

Rm ∈ R
p×m. Cp and Cm are constraint matrices corresponding to the dependent and

independent generalized speeds, respectively. Equation (C.6) is rewritten using the

identity matrix EET = I

0 = C(E ET ) q̇ = Cp q̇p + Cm q̇m (C.8)

Solving (C.8) for the dependent generalized speeds in terms of the independent gen-

eralized speeds yields

q̇p = Cpm q̇m = C−1
p Cm q̇m (C.9)

The dependent generalized accelerations are obtained by differentiation of (C.9) with

respect to time.

q̈p = Ċpm q̇m + Cpm q̈m (C.10)

The constraint matrix, Cpm, can be used to combine the dependent and independent

parts of (3.1) through (C.11), as suggested in [168], to get the minimal form of

equations of motion.

F̃m − F̃∗

m = Fm − F∗

m + CT
pm (Fp − F∗

p) = 0 (C.11)
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where F̃ and F̃ ∗ are the reduced generalized active forces and generalized inertia

forces, respectively.

The permutation matrix, E, is invoked to decompose (3.36) into dependent and

independent parts.

(ET M E) (ET q̈) + ET b = a2 ET Γ (C.12)

Equation (C.12) can be written in a matrix form




Mpp Mpm

Mmp Mmm







q̈p

q̈m


+




bp

bm


 = a2




Γp

Γm


 (C.13)

Separating (C.13) into the dependent and independent portions yields

0 = Fm − F∗

m = a2 Γm − Mmm q̈m − Mmp q̈p − bm

0 = Fp − F∗

p = a2 Γp − Mpm q̈m −Mpp q̈p − bp

(C.14)

Plugging (C.14) into (C.11) gives the equations of motion in minimal form

M̃m q̈m + b̃m = a2 Γ̃m (C.15)

where

M̃m = Mmm +Mmp Cpm + CT
pmMpm + CT

pmMpp Cpm (C.16)

b̃m = bm + CT
pm bp + (Mmm Ċpm + CT

pmMpp Ċpm) q̇m (C.17)

Γ̃m = Γm + CT
pm Γp (C.18)

C.3.2 Reduced First Order Model

Here the equations of motion for the first order model, (3.26), recalled in order

to show the procedure of reduction.

1

β
Γ̂−D q̇ = 0 (C.19)
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the permutation matrix P related to constraint is invoked to decompose (C.19)) into

the dependent and independent parts of it, yields

1

β
P T Γ̂− (P T DP ) (P T q̇) = 0

1

β




Γ̂m

Γ̂p


−




Dmm Dmp

Dpm Dpp







q̇m

q̇p


 = 0 (C.20)

From (C.20), the dependent and independent parts of generalized active forces corre-

sponding to the Kane’s method are obtained as

Fm =
1

β
Γ̂m −Dmm q̇m −Dmp q̇p = 0

Fp =
1

β
Γ̂p −Dpm q̇m −Dpp q̇p = 0 (C.21)

wherein, the generalized inertia forces are omitted for the first order model. Equation

(5.31) could be modified for the first order model by vanishing the inertial terms and

plug in the constraint matrix, Cpm,

F̃m = Fm + CT
pmFp = 0 (C.22)

substitute (C.21) into (C.22) gives

D̃m q̇m =
1

β
Γ̃m (C.23)

where

D̃m = Dmm +Dmp Cpm + CT
pmDpm + CT

pmDppCpm

Γ̃m = Γm + CT
pm Γp
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Appendix D

Kane’s Method
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This appendix discusses the derivation of equations of motion for a system of

rigid multibody using Kane’s method. Despite popularity of the classical methods

like Newton-Euler, Lagrange, and Hamilton, but they are not efficient for dynamic

modeling of complicated and large multibody systems. Therefore, computationally

efficient and computer-oriented methods like Kane has been developed in order to

address the drawbacks of the classical methods.

D.1 Partial Velocities

The key concept underlying Kane’s method is the use of partial velocities, in-

cluding linear (translational) and angular versions, described below in details. Lets

consider n time-varying translational and angular coordinates, qr(r = 1, · · · , n), called

generalized coordinates for describing configuration, positions and orientations, of

rigid bodies. Time derivatives of these generalized coordinates, called generalized

speeds can be formulated as below

ur =
n∑

s=1

Yrsq̇s + Zr (r = 1, · · · , n) (D.1)

where Yrs and Zr are functions of q1, q2, ..., qn, and time. Equations (D.1) are called

kinematical differential equations which must yield unique solutions for q̇1, q̇2, ..., q̇n

as a function of u1, u2, ..., un [168].

Now, linear and angular velocities of a multibody systems can be described by

these generalized speeds which has the form of





v =
n∑

s=1

vrur + vt

ω =

n∑

s=1

ωrur + ωt

(D.2)
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where ωr and vr are rth partial angular and linear velocities defined as





vr =

n∑

s=1

∂v

∂q̇s
Wsr (r = 1, · · · , n)

ωr =

n∑

s=1

∂ω

∂q̇s
Wsr

(D.3)

where Wsr is defined by the inversion of (D.1),

q̇s =
n∑

r=1

Wsrur +Xs (s = 1, · · · , n) (D.4)

Principally, partial angular velocities should be calculated only for those rigid bodies

subjected to torques or possessing inertia, while partial linear velocities are only

needed for those points subjected to external forces or possessing mass.

D.2 Generalized Forces

In this section, expressions of generalized forces that play an important role

in connection with dynamical equations of motion, namely, generalized active forces

and generalized inertia forces will be formed. Generalized active force come to play

whenever the particles of a system are subjected to the action of contact and/or

distance forces. The quantities are formed by dot product of partial linear and angular

velocities with forces, and torques, respectively. For a multibody system with p bodies

and n degrees-of-freedom described by u1, u2, ..., un, there are n generalized active

forces, F1, F2, ..., Fn defined

Fr =

p∑

i=1

(
vi
r ·Ri + ωi

r ·Ti

)
(r = 1, · · · , n) (D.5)

where vi
r and ωi

r are respectively partial liner velocity of the center of mass and partial

angular velocity of ith rigid body in the system. Ri and Ti are the resultant forces

and moments acting on and around the mass center of ith rigid body, respectively.
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Generalized inertia forces depend on both the motion and mass distribution of a

system. These forces are formed by dot product of partial linear and angular velocities

with mass-acceleration and the time derivative of angular momentum respectively as

follow,

F ∗

r =

p∑

i=1

(
vi
r ·miai + ωi

r · Ḣi

)
(r = 1, · · · , n) (D.6)

where mi is the mass, and ai is the acceleration of the mass center of ith rigid body

of the system. Ḣi is the time derivative of the angular moment of ith body about its

center of mass defined as

Ḣi = Iiω
i + ωi × Iiω

i (D.7)

where Ii is the moment of inertia of ith body around its center of mass.

D.3 Formulation of Equations of Motion

Finally, it can be shown [168] that the equations of motion for a multibody

system with n degrees-of-freedom is obtained by

Fr − F ∗

r = 0 (r = 1, · · · , n) (D.8)

This method is developed from Newton’s second law and Euler’s equation using the

Principle of Virtual Work and D’Alembert’s Principle. For more details refer to [168].
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Appendix E

Method of Multiple Scales
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This appendix discusses the method of multiple scales (MMS) using singular

perturbation [57].

E.1 Parameter Perturbation

Physical and engineering problems are usually represented by a differential equa-

tions L(f, x, t) = 0 subjected to boundary B(f, t) = 0 and/or initial I(f, x) = 0

conditions. Many of them involving a small parameter, ǫ, which in general cannot be

solved exactly in the form of f(x, t, ǫ). However, the solution can be written as an

asymptotic series in powers of ǫ as below

f(x, ǫ) = ǫ0f0(x) + ǫ1f1(x) + ǫ2f2(x) + · · · (E.1)

where fi is independent of ǫ and f0(x) is the solution of the problem for ǫ = 0. Now

in order to find fi(x), (E.1) is substituted into L(f, x, ǫ) = 0, expanded for small ǫ,

and then the coefficients of each power of ǫ are collected. Since these equations must

hold for all values of ǫ and sequences of power of ǫ are linearly independent; therefore,

each coefficients must be vanished.

E.1.1 Example

Let us consider a linear second order differential equation involving a small ǫ

d2u

dt2
+ ǫ

du

dt
+ u = 0 (E.2)

To determine an improved approximation to the solution of (E.2), a perturbation

expansion (straight forward expansion) is seek which has the form

u(t, ǫ) = ǫ0u0(t) + ǫ1u1(t) + ǫ2u2(t) + · · · (E.3)
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The first and second derivatives of (E.3) are obtained by differentiation as follow

du

dt
= ǫ0

du0

dt
+ ǫ1

du1

dt
+ ǫ2

du2

dt
+ · · ·

d2u

dt2
= ǫ0

d2u0

dt2
+ ǫ1

d2u1

dt2
+ ǫ2

d2u2

dt2
+ · · · (E.4)

Substituting (E.3) and (E.4) into (E.2) yields

0 =

(
d2u0

dt2
+ ǫ1

d2u1

dt2
+ ǫ2

d2u2

dt2
+ · · ·

)
+

ǫ

(
du0

dt
+ ǫ1

du1

dt
+ ǫ2

du2

dt
+ · · ·

)
+

(
u0(t) + ǫ1u1(t) + ǫ2u2(t) + · · ·

)
(E.5)

Arranging (E.5) in the order of increasing power of ǫ gives

(
d2u0

dt2
+ u0

)
+ ǫ1

(
d2u1

dt2
+

du0

dt
+ u1

)
+ ǫ2

(
d2u2

dt
+

du1

dt
+ u2

)
+ · · · = 0 (E.6)

Now by vanishing coefficients of each power of ǫ we have

ǫ0 :
d2u0

dt2
+ u0 = 0 (E.7)

ǫ1 :
d2u1

dt2
+

du0

dt
+ u1 = 0 (E.8)

ǫ2 :
d2u2

dt
+

du1

dt
+ u2 = 0 (E.9)

Solving (E.7) leads to u0 = a cos(t+ φ), then substituting u0 back into (E.8) yields

d2u1

dt2
+ u1 = a sin(t + φ) → u1 = b cos(t + φ)−

a

2
t cos(t+ φ) (E.10)

With u1 known, one can solve (E.9) to find u2 in a similar fashion. Finally, By

substituting ui where i = 0, 1, 2, · · · back into (E.3), the solution for u(t, ǫ) has the

form of

u(t, ǫ) = ǫ0 (a cos(t+ φ)) + ǫ1
(
b cos(t+ φ)−

a

2
t cos(t+ φ)

)
+ · · · (E.11)
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E.2 Singular Perturbation Expansion

In parameter perturbations, section E.1, the asymptotic expansion of the desired

quantities, f(t, ǫ), can be developed in the general form of [57]

f(t, ǫ) ∼
∞∑

i=0

ai(t)δi(ǫ) as ǫ → 0 (E.12)

where t is scalar or vector variable independent of ǫ, the coefficients ai are functions

of t only, and δi(ǫ) is the asymptotic sequence. This expansion, (E.12) is said to be

uniformly valid if





f(t, ǫ) =

N−1∑

i=0

ai(t)δi(ǫ) +RN (t, ǫ)

RN (t, ǫ) = O[δN(ǫ)] for all x of interest

(E.13)

Otherwise it is said to be nonuniformly valid and break down in regions called regions

of nonuniformity. Some of the sources of nonuniformity are, infinite domain, small

parameter multiplying the highest derivative, type change of a partial differential

equation, and presence of singularities [57]. In the case of small parameter multiplying

to the highest derivative, which is our interest in this dissertation, boundary and

initial conditions cannot be satisfied by (E.12). The issue in the singular case is that

the ratio of two consecutive terms ai/ai−1 does not approach zero by increasing m;

therefore, the series diverges and the truncation of the series, as an approximation,

is not valid for all t.

The MMS has been developed in order to address this issue [57]. MMS suggests

that f(t, ǫ) depends explicitly on t, ǫt, ǫ2t, ..., as well as ǫ itself. Thus, in order to

determine a valid truncation of expansion for all t up to O(ǫN), where N is a positive

integer, the dependency of t on the N + 1 different time scales T0, T1, ..., TN , where

Ti = ǫi t i = 0, · · · , N (E.14)
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must be determined. In general Ti < Ti−1 and (E.13) can be written as

f(t, ǫ) = f̃(T0, T1, · · · , TN , ǫ) =

N−1∑

i=0

ǫifi(T0, T1, · · · , TN ) +O(ǫTN) (E.15)

Notice that the error, the last term, in (E.15) dictates that the expansion is

valid for times up to O(ǫN), and beyond this time, other time scales must be added

in order to keep expansion uniformly valid.

Substitution of (E.14) and (E.15) into a general ordinary differential equation

causes the conversion of the ordinary one into partial differential equations using





d

dt
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
+ · · ·

d2

dt2
=

N∑

i=0

N∑

j=0

ǫiǫj
∂2

∂Ti∂Tj

(E.16)

Equating coefficients of like powers of ǫ yields a set of equations for determining f0,

f1,...,fN which contains arbitrary function of the time scales Ti. These functions are

valid if

fi
fi−1

< ∞ for all T0, T1, · · · , TN

Equations (E.14) to (E.16) are a variation of MMS called many-variable version [57].
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