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Abstract

HOME AREA NETWORKS FOR SMART GRID COMMUNICATIONS

Zhuo Li, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Qilian Liang

This dissertation studies five topic which are focused on but not limited to

the area of Home Area Networks (HANs) in Smart Grid communications: capac-

ity optimization for IR-UWB (Chapter 2), power consumption and downlink outage

probability in a dynamic HAN (Chapter 3), uplink multiuser selection in a dynamic

HAN (Chapter 4), capacity optimization in Heterogeneous HANs (Chapter5), hybrid

models of OFDM-based power line and wireless communications for HAN security

(Chapter 6), and scaling laws of ergodic capacity for hybrid wireless networks with

distributed base stations (DBS) (Chapter 7).

We investigate the capacity optimization of Impulse Radio (IR) UWB user

within the coexisting operating bandwidth with IEEE 802.11n user, while making

sure that its cumulative interference to the coexisting IEEE 802.11n user is below a

certain permissible threshold. The optimal power allocation scheme is presented by

using water-filling algorithm with Karush-Kuhn-Tucher (KKT) conditions, which is

also compared with a traditional equal power allocation scheme.

Considering the power saving potential of the emerging WiFi Direct technique,

we evaluate the performance of WiFi Direct technique in HANs for Smart Grid Com-
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munication from two aspects: power consumption and outage probability. By mod-

eling the traffic intensity and the number of working devices in a dynamic HAN as a

Markov chain, the power consumption of the dynamic HAN is evaluated. As to the

outage performance, in the downlink of the HAN, the probability density function

(PDF) of the signal to interference and noise ratio (SINR) for the active user is derived

from the amplitude distribution property of the classical indoor Saleh-Valenzuela (S-

V) channel.

This dissertation also considers the problem of how to optimize the downlink

capacity in a heterogeneous HAN with beamforming technique at the smart meter

for Smart Grid application. The PDF of the smallest allocated transmit power is

mathematically obtained from the properties of downlink indoor S-V channels. It

is analytically shown that the allocated transmit power has a lower limit which is

determined by the SINR threshold as well as the total number of active users in the

HAN.

Traditionally, jamming to the wireless in-home system is a fatal threat for Smart

Grid communications. To enhance HAN security for Smart Grid application, this

dissertation incorporates the OFDM - based power line (PL) system into the HAN,

and proposes two hybrid models of PL and wireless communications with transmit

diversity and receive diversity, respectively. Finally, a hybrid wireless network with

DBS is designed to improve the spectrum efficiency. It is analytically shown that

compared to the traditional hybrid wireless network, the ergodic throughput capacity

of hybrid wireless networks with DBS scales with gain with N ×NBS.
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Chapter 1

Introduction and Preliminaries

1.1 Smart Grid Communications

Smart Grid is considered as a tight combination of wireless communication net-

works and power line communication systems with some new characteristics, such

as energy saving, self-healing, high attack-resistance, etc. Communication networks

play an important role in the realization of Smart Grid. The major challenge for

developing Smart Grid communication solutions is to understand the architecture of

the future Smart Grid system and its implications to communication solutions[1]. A

typical smart grid communication system consists of an advanced metering infras-

tructure (AMI) with a multi-tier communication infrastructure that includes: home

area network (HAN), which is used to gather sensor information from a variety of

devices within the home, and optionally send control information to these devices

to better control energy consumption, and provides access to in-home appliances, as

shown in Figure 1.1; neighborhood area network (NAN) to connect the smart meters

to the local access points; and a wide area network (WAN) to connect the grid to the

core utility system [2] [3].

1.2 Preliminary to the Coexistence between IR-UWB and IEEE 802.11n

Ultra wideband (UWB) radio is a promising technology that can be applied at

very low power for short-range high data-rates communications. In light of its main

advantages of high data rates, low cost, and low power consumption, UWB systems

tend to be short-range and indoor applications, examples of which are communica-
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Figure 1.1. Communications of a HAN in Smart Grid.

tions between wireless monitors, digital camcorders, wireless printing, cell phones and

personal computers[4]. Besides, owing to its precision capabilities combined with the

extremely low power, UWB radio is ideal for certain frequency sensitive environments

such as hospitals and healthcare. It was also used in military applications for covert

communications. In this application, the military took advantage of the fact that

UWB signals spread across a very wide bandwidth and could be made to appear as

noise to most interception equipments [5]. UWB is part of ”see-through-the-wall”

precision radar imaging technology, precision locating and tracking. Moreover, UWB

technology is an ideal candidate for future Wireless Personal Area Networks (WPAN)

that requires processing information with low-power sources at very high speed across

short distances [6].Short range communication systems could be applied to the fields
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Figure 1.2. Spectrum Comparison of UWB and NB signals.

of Smart Grid[7], which includes an intelligent monitoring system that would keep

track of electrical power distribution system[8].

In principle, any wireless communication technology that produces signals with

a bandwidth wider than 500MHz or a fractional bandwidth greater than 0.2 can be

considered as UWB[9], where the fractional bandwidth is defined as:

η = 2× fH − fL
fH + fL

(1.1)

fL and fH are the lower bond and upper bond of the spectral frequency of UWB

radio.

The Federal Communication Commission (FCC) released a spectral mask with

some restrictions for UWB. For indoor UWB systems, a maximum mean effective

isotropic radiated power (EIRP) spectrum density of -41.3dBm/MHz is established

over the 3.1∼10.6GHz operating bandwidth[10]. Different from the NB wireless com-
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munications systems, i.e. Wireless Local Area Network (WLAN), Worldwide Inter-

operability for Microwave Access (WiMAX), and Long Time Evolution (LTE), UWB

systems conventionally occupy a relatively large bandwidth in the frequency domain

which is already allocated by these NB communication systems as illustrated in Fig.

1.2. Therefore, it is obvious that UWB systems would inevitably coexist with other

NB wireless communication systems by sharing some operation bandwidth [11].

In the existing literatures, the coexistence issue of UWB system and other

wireless communication systems, such as cellular systems and NB wireless systems,

is widely studied. The investigation is mainly categorized into two parts: one is

to study the the interference effect from other conventional systems on the UWB

system, and the other one is to analyze how UWB signals could impact other coex-

isting systems. Particularly, previous literatures focus on the inference introduced by

UWB signals to fixed wireless communications systems, for example, the global sys-

tem for mobile communications (GSM), universal mobile telecommunication system

(UMTS), and global positioning system (GPS) [12][13]. Later on, coexistence issue

between UWB system and NB communication systems attracted researchers’ atten-

tion due to the wide application of NB communication systems. Giogretti et.al [14]

evaluated the performance of wideband communication systems in the presence of

narrowband interference (NBI). In [14] closed-form bit-error probability expressions

for spread-spectrum UWB systems were derived under the additive white Gaussian

noise (AWGN) channels, flat-fading channels, and frequency-selective multipath fad-

ing channels respectively, where the NBI was considered as tone interferer. Further-

more, coexistence between UWB and Orthogonal-Frequency-Division-Multiplexing

(OFDM)-based systems was thoroughly analyzed in [15].

Considering the operating frequencies of IEEE 802.11n, IEEE 802.11n system

with either operating mode could be interference by UWB user, and the interference

4



of IEEE 802.11n system to UWB user is also unavoidable. The coexistence issue

of UWB and IEEE 802.11n systems has been investigated since the standardization

of IEEE 802.11n. [11] studied the maximum permissible emission power of UWB

system under the coexistence with IEEE 802.11n by setting up the physical layer

models of these two systems. The spectrum sensing performance of UWB-based

Cognitive Radio (CR) systems with the primary user of IEEE 802.11n was presented

in [16]. Based on these studies, the topic of how to optimize the capacity of UWB

user while making sure that these two systems can still work simultaneously is seldom

investigated. Therefore, study on the proper spectrum management of UWB system

which optimizes its transmission rate, seems to be definitely necessary. Besides, this

research will give a suggestion on the spectrum regulation of UWB system.

Capacity optimization for wireless communication systems has been widely

studied. Some of them focus on the coexistence situation of two systems. [17] pro-

posed a water-filling algorithm for direct-sequence (DS) UWB cognitive radio (CR)

network that maximizes the sum capacity while enabling each transmitter to fit its

power spectral density into, and thus to make the most of, the spectrum void. Bansal

et.al investigated an optimal power loading algorithm for an OFDM-based cognitive

radio system [18]. The downlink transmission capacity of the CR user is thereby max-

imized, while the interference introduced to the primary user (PU) remains within a

tolerable range. The non-convex NP-hard problem of weighted sum rate maximization

in a multiuser Gaussian channel that models a cognitive wireless network with affine

power constrains was studied in [19]. The key technique is the use of nonnegative

matrix theory, in particular the Perron-Frobenius Theorem and the Friedland-Karlin

inequalities. Reference [19] also extends to a multiuser-multiple carrier model, where

a common spectrum is divided into K frequency tones. [20] proposed a margin-based

power allocation scheme that utilizes each UWB node’s own position information,

5



and an exclusive region-based scheduling scheme that takes into consideration the

interaction among simultaneous transmission links.

This dissertation investigates capacity optimization of IR-UWB user within

the coexisting operating bandwidth with IEEE 802.11n user, while making sure that

its cumulative interference to the coexisting IEEE 802.11n user is below a certain

threshold. The optimal power allocation scheme is presented by using water-filling

algorithm with Karush-Kuhn-Tucher (KKT) conditions, which is also compared with

a traditional equal power allocation scheme.

1.3 Preliminaries to Dynamic HAN with WiFi Direct Technique

Nowadays WiFi Direct technology is attracting attentions for Smart Grid solu-

tions, which are driven by the desire of more efficient energy usage worldwide. Differ-

ent from the conventional WiFi infrastructure, WiFi Direct is a standard that allows

WiFi devices to communicate with each other without the need for Wireless Access

Point (AP). In this way, devices in the WiFi Direct network establish an ad-hoc peer-

to-peer connectivity [21]. Moreover, a distinction from the well-known Wireless Mesh

Network (WMN) is that the WiFi Direct devices could keep simultaneous connec-

tions within the network infrastructure. As a result, the configuration of WiFi Direct

network could be either one-to-one, or one-to-many. The WiFi Direct devices in the

Smart Grid application scenario could be smart phones, monitors, and smart meters,

etc. An example of WiFi Direct network configuration for HAN in Smart Grid is as

shown in Figure 1.3. The in-home appliances communicate with each other for file

transmission, and the household devices send user information to the smart meter,

while the smart meter conducts real-time monitoring to these in-home appliances.

WiFi is a mature, proven technology that implements many of the Smart Grid

application scenarios in the HAN [22], with the following advantages:
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Figure 1.3. WiFi Direct HAN for Smart Grid.

1) an IP based-network for seamless connection;

2) satisfactory operational range across walls and other barriers;

3) high data throughput and low power consumption;

4) government-grade security for ensuring integrity of communications.

In the Smart Grid application, WiFi Direct devices are always battery-operated

and thus power-sensitive. Consequently, an efficient power consumption scheme is

highly demanded. The WiFi Direct devices can support the Power Save feature

certified under the WMM (Wireless Multimedia) program [23]. As opposed to the

traditional Continuous Active Mode (CAM ) in which the devices remain awake all

the time even no data transmission is required, the Power Saving Mechanism (PSM )

attempts to conserve energy on idle devices by powering off their wireless interfaces

for specific period of time [24]. A device in the HAN can power down the transceiver
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to save energy. When the transceiver is on, it is said to be awake or active. When the

transceiver is off, it is said to be sleeping, dozing, or in the power-saving mode [25].

In the existing literature, an experimental study of the IEEE 802.11 power

saving mechanism on PDA in a wireless local area network was presented in [24],

which provides guidance to the design of future power saving mechanisms. Lee et al.

[26] proposed a cross layer power saving technique by utilizing the correlation based

carrier sensing indicator to improve the power efficiency for wireless receivers. A

scheduling algorithm to defer electric loads in Smart Grid is proposed by M. Alizadeh

et al. [27]. Kim and Poor [28] considered the power consumption scheduling problem

with future price uncertainty in Smart Grid applications, which is naturally cast as

a Markov decision process. Reference [29] pointed out that one of the fundamental

issues for the communication in a Smart Grid is the link capacity which should be

able to convey the system state information with negligible error. Yang et al. [30]

evaluates the outage probability of multisuer donwlink networks over Nakagami-m

fading channels. Performance evaluation of outage probability over Rayleigh fading

channels in distributed random access networks is presented in [31].

In this dissertation, we evaluate the advantages of a dynamic HAN for Smart

Grid with the emerging WiFi Direct technique from two perspectives: power saving

and communication reliability of the dynamic HAN. Since the power consumption of

the HAN is directly related with the number as well as the working states of WiFi

Direct devices, a Markov chain model is employed to represent a profile of the traffic

intensity and the the number of WiFi Direct devices in active state. The steady state

probability of the number of active users is derived from the Markov chain model,

and thus the average power consumption is obtained. Furthermore, we investigate

the downlink outage probability with multiple in-home users connected to the smart

meter. For this indoor network, the classical S-V channel model is adopted. The
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probability PDF of the signal to SINR for each user in the HAN is derived according

to the distribution property of channel gain. The outage probability of the downlink

scenario is analyzed with the characteristics of interference cancelation technique.

Multiuser selection scheme is applied to the uplink of a dynamic HAN for Smart

Grid communication scenario. We evaluate the performance of the multiuser selec-

tion scheme in the absence of interference as well as in the presence of MUI. In the

absence of interference, the PDF of received SNR for the selected user is derived from

the amplitude distribution property of indoor S-V channel, and thus the closed-form

outage probability is obtained for the scenario with dynamic number of active users.

In addition, the BER of multiuser selection scheme is studied by numerical simula-

tion. On the other hand, in the presence of MUI, we model the interference due to

free space path loss and log-normal shadowing. Particularly, evaluation of the inter-

ference impact on multiuser selection scheme is improved by assuming the multiuser

interference cancelation coefficient as a random variable between 0 and 1 for more

reasonable analysis. To our best knowledge, this is the first study on performance

analysis of multiuser selection scheme that is employed in dynamic HANs for Smart

Grid communications.

1.4 Preliminaries to Capacity Optimization in a Heterogeneous HAN

As shown in Figure 1.1, HAN of Smart Grid is a dedicated network connecting

heterogeneous household wireless devices with the smart meter, which can monitor

the power activities, report the power consumption and send necessary control infor-

mation to all the active users. The users in the HAN of Smart Grid could be smart

phones, smart sensors, monitors, and in-home appliances, etc. Thus, various commu-

nication technologies are adopted for these smart grid appliances. For example, WiFi

are used for the communications between cell phones, computers, printers and the
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smart meter; For monitors, Bluetooth is employed; as to the thermostat and refriger-

ators, ZigBee could be introduced. Heterogeneous wireless communication indicates

various Quality of Service (QoS) requirements. QoS typically refers to the perfor-

mance or reliability of a communication link, for example, channel capacity. From

the prospective of information theory, the Shannon channel capacity C (in bits/s) is

modeled as a monotonic function of signal to interference and noise ratio (SINR) η:

C = B log2(1 + η) (1.2)

where B is the channel bandwidth. So it is obvious that SINR is a measure index of

QoS for a communication link. We can claim that heterogeneous wireless communi-

cation in the HAN of Smart Grid indicates that each user may have different SINR

requirements. One way to achieve this is to adjust the transmit power to each user

when data like control information is transmitted from the smart meter to all the

users. With the traditional channel inversion method, since the subchannels created

to each user are independent, changing the transmit power to one user would change

the interference for all other users. This necessitates beamforming solution where the

beamforming vectors and power weights are jointly optimized [32].

The reliability and efficiency of smart grid depends directly on the performance

of the communication infrastructure [44]. In this dissertation, we take an in-depth

look at the total downlink capacity optimization and optimal power allocation of

heterogeneous multiuser HAN for Smart Grid applications. In this HAN, we present

that multiple transmit antennas are equipped at the smart meter with beamforming

technique, and therefore, the downlink from the smart meter to each user is essen-

tially a multiple input and single output (MISO) channel for spatial diversity. The

smart meter simultaneously transmits signals to each user, and thus code-division-

multiple-access (CDMA) technique is employed in this multi-user communication sce-
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nario [34]. Different from the traditional cellular network, heterogeneous service in

the HAN requires heterogeneous transmission bandwidths as well as heterogeneous

SINR constraints for each user [35]. This optimization problem is mathematically

proved to be a convex optimization problem. In this case, the optimal solution of

power allocation for each user could be obtained by employing KKT condition, which

is considered both necessary and sufficient for convex optimality [36]. An optimal

transmit power allocation algorithm is thus proposed and illustrated with examples

of totally three, five, eight and ten active home appliances in the HAN. In addi-

tion, the propagation environment of the HAN experiences scattering, where there

are many small reflectors. In this dissertation, S-V channel model is adopted to pro-

file the scattering mechanisms of the communication link between the smart meter

and home appliances. With channel state information is known at the transmitter

(CSIT), the transmit power from the smart meter to each user exhibits variation due

to the fading of the indoor S-V channels. Considering that the lowest SINR require-

ment should be satisfied for each user and the allocated transmit power fluctuates

with the S-V channel, by investigating the PDF property of the allocated transmit

power to each user, a theorem is presented that each user has a lower bound which

is determined by both the total number of active users in the HAN and the required

minimum SINR for the user. The lower bound of the transmit power to each user can

be considered as a useful benchmark to guarantee reliable communications for real

system design.

1.5 Preliminaries to Hybrid Models of Power Line and Wireless Communications in

HAN

As to the security issue of HANs for Smart Grid communications, Lee et. al [37]

reviewed fundamentals of wireless communication, investigated PHY attack models,
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and thus proposed a spread-spectrum wireless communication scheme for robust data

communication. In [37], the merits and drawbacks of both the wireless communica-

tion and the PL communication are discussed in depth. Moreover, the PHY attacks

to the wireless medium are categorized into four classes: eavesdropping, jamming,

restricting access, and injecting. The PL communication was validated as a good

candidate for Smart Grid application in [38]. Home Plug Green PHY TM has emerged

as the leading Specification for implementing Smart Grid functionality across HAN

PL-based networks [39]. Korki pointed out that the performance of the PL system

are affected by noise and multipath propagation in the PL channel [40]. In addition,

the Middleton’s Class A model was employed as the noise in the simulation to eval-

uate the performance of the PL communication network. A classic multipath model

for the PL channel was presented by Zimmermann, which was based on fundamental

physical effects, and was analyzed by numerical measurements [41]. Furthermore, it

was concluded that the average channel gain for PL communication is lognormally

distributed [42]. Lai and Messier evaluated the performance of the wireless and PL

diversity channel by applying MRC at the receiver part [43], but multipath propaga-

tion and attenuation were not considered in the evaluation, and the PL channel was

only supposed as static.

Based on the above considerations, we evaluate the advantages of a dynamic

HAN for Smart Grid with the emerging WiFi Direct technique from two perspective:

power saving and communication reliability of the dynamic HAN. Since the power

consumption of the HAN is directly related with the number as well as the working

states of WiFi Direct devices, a Markov chain model is employed to represent a profile

of the traffic intensity and the the number of WiFi Direct devices in active state. The

steady state probability of the number of active users is derived from the Markov

chain model, and thus the average power consumption is obtained. Furthermore, we
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investigate the downlink as well as uplink outage probability with multiple in-home

users connected to the smart meter. For this indoor network, the classical S-V channel

model is adopted. The PDF of the SNR/SINR for each user in the HAN is derived

according to the distribution property of channel gain. The outage probability of

the downlink scenario is analyzed with the characteristics of interference cancelation

technique.

In addition, we take an in-depth look at the characteristics of wireless and

PL communications of in-home system for Smart Grid application, and propose two

hybrid models with transmit diversity and receive diversity, under the environment of

a potential jamming attack to the wireless channel. Since the reliability of Smart Grid

directly relies on the performance on the communication infrastructure [44], which

could be evaluated by BER, the BERs of the proposed hybrid models are evaluated

and compared.

1.6 Preliminaries to Hybrid Wireless Networks with Distributed Base Stations

In recent years, a hybrid wireless network model is proposed to improve network

connectivity, in which sparse base stations are connected by wires between ad-hoc

networks [45]. But with the advance of users, network traffic is being proliferated and

thus spectrum resource is getting scare for wireless hybrid networks. One potential

solution to address this issue is to improve both the network topology and the traffic

pattern as a means to provide higher network capacity, which is considered as an

indicator of spectrum efficiency in Mbps/Hz.

The concept of distributed antenna systems (DAS) was originally introduced to

the interference-limited cellular networks to shorten access distance, reduce transmit

power and OCI, and thus enhance the system capacity [46]. It can be treated as a

macroscopic multiple-antenna system [47]. Heath et al. [48] proposed a downlink
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virtual MIMO architecture and analyzed its per-node capacity. In the context of the

3GPP LTE-Advanced standard, distributed MIMO technique is known as coordinated

multi-point (CoMP) transmission or reception [49]. The performance gain of CoMP

was studied in [50], but only when the large-scale fading information is known at the

transmitter.

The capacity of a hybrid wireless network has been widely studied in the lit-

erature. Gupta and Kumar [51] initiated the study of scaling laws in large ad-hoc

wireless networks. The ergodic throughput capacity of wireless hybrid networks using

the SIC strategy and the frequency reuse scheme was investigated in [52].

Based on these considerations, how can the ergodic capacity scale if the concept

of distributed base stations is employed in hybrid wireless networks? A thorough un-

derstanding of the information-theoretic capacity of multi-cell virtual MIMO system

accounting for fading and path loss effects, even with and ideal backhaul, is yet to

be obtained. In this dissertation, an analytical framework of the hyrbird wireless

network with distributed base stations is proposed. Based on the developed macro-

scopic multiple antenna system, the scaling law of the ergodic throughout capacity

under infrastructure mode is investigated over the independent but not identically

distributed composite fast fading channels, in which both large-scale path loss and

small-scale Rayleigh fading count, and the channel coherence time is much smaller

than the delay requirement of the application [53].

1.7 Organization of Dissertation

The reminder of this dissertation is organized as follows.

• Chapter 2 presents an optimal power allocation scheme to optimize the capacity

of IR-UWB user within the coexisting operating bandwidth with IEEE 802.11n
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user, while making sure that its cumulative interference to the coexisting IEEE

802.11n user is below a certain threshold.

• Chapter 3 introduces WiFi Direct technique into HANs for Smart Gird, eval-

uates the power consumption of a dynamic HAN, and analyzes the downlink

outage probability of a dynamic HAN.

• Chapter 4 evaluates the performance evaluation of the uplink scenario of the

dynamic HAN, in which multiuser selection scheme is employed at the smart

meter. It is numerically shown that show that WiFi Direct technique not only

improves the power saving in the HAN for Smart Grid, but also enhances the

reliability of HAN communications for Smart Grid.

• Chapter 5 presents an optimal power allocation scheme for heterogeneous HAN

to optimize its downlink capacity. In addition, a theorem is presented that each

user has a lower transmit power bound which is determined by both the total

number of active users in the HAN and the required minimum SINR for the

user. The lower bound of the transmit power to each user can be considered as a

useful benchmark to guarantee reliable communications for real system design.

• Chapter 6 proposes two types of hybrid models of OFDM-based wireless and

PL communication systems with transmit diversity and receive diversity, under

the environment of a potential jamming attack to the wireless channel.

• Chapter 7 designs an analytical framework of the hyrbird wireless network with

distributed base stations. The ergodic throughput capacity, which is an indica-

tor of spectrum efficiency, is investigated over the independent but not identi-

cally distributed composite fast fading channels. It is analytically shown that

compared to the traditional hybrid wireless network, the ergodic throughput

capacity of hybrid wireless networks with DBS scales with gain with N ×NBS.
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• Chapter 8 provides the conclusion. It summarizes the main achievements of

this dissertation and outlines future research directions.
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Chapter 2

Coexistence of UWB and IEEE 802.11n: Capacity Optimization for IR-UWB

Due to the unique properties, such as low complexity and low cost, good re-

sistance to severe multipath and jamming, and high time domain resolution for lo-

calization and tracking, Impulse Radio (IR) UWB is well suited to sensor network

applications. This chapter investigates the coexistence issue between IR UWB system

and narrowband (NB) OFDM-based wireless communications system, particularly

the capacity optimization of Impulse Radio (IR) UWB user within the coexisting

operating bandwidth with IEEE 802.11n user, while making sure that its cumula-

tive interference to the coexisting IEEE 802.11n user is below a certain permissible

threshold. The optimal power allocation scheme is presented by using water-filling

algorithm with Karush-Kuhn-Tucher (KKT) conditions, which is also compared with

a traditional equal power allocation scheme.

2.1 UWB Radio

Two types of UWB technologies are commonly used: impulse radio UWB (IR-

UWB) and multiband OFDM UWB (MB-OFDM UWB). In this chapter, we adopt

IR-UWB as the objective. IR-UWB uses a short pulse in the time domain that

occupies a large bandwidth in the frequency domain to modulate the information[54].

The most commonly used pulse is Gaussian pulse and its derivatives, i.e., first and

second derivatives of Gaussian pulse. The normalized Gaussian pulse is represented

as:

p(t) =
1√
2πσ

exp (−(t− μ)2

(2σ)2
) (2.1)
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where μ is the mean value the Gaussian random variable, and σ is its standard de-

viation. let σ2 = α2/(4π), where α is an index correlated to the width of pulse,

indicating the shape of pulse, namely the shaping factor. Fig. 2.1 Shows the normal-

ized Gaussian Impulse with μ = 0, and σ = 0.1.
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Figure 2.1. Normalized Gaussian Impulse.

2.2 IEEE 802.11n

Orthogonal Frequency Division Multiplexing (OFDM) technique is adopted in

IEEE 802.11n system, which is essentially a multi-carrier modulation (MCM) method.

The basic idea is to carry data in a large number of closely-spaced orthogonal sub-

carriers at a relatively low symbol rate. OFDM is used to cope with severe channel

conditions (for example, frequency selective fading due to multipath), effectively elim-

inate inter-symbol interference (ISI), and also reduce the overall amount of required

spectrum due to the overlapping of the tones[55]. For the traditional FDM multicar-
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rier modulation technique, as shown in Fig. 2.2(a), each subcarrier in the frequency

domain does not overlap each other. At the same time, in order to reduce mutual

interference between the various subcarriers, subcarriers need to retain sufficient fre-

quency spacing which results in low spectrum efficiency; But for OFDM technique,

due to the orthogonal overlapping between subcarries, the protection bandwidth is

greatly reduced and the spectrum efficiency is also highly improved as shown in Fig.

2.2(b).

frequency
(a)

Channel    1   2 3 4 5 6 7 8

(b)

Saved

Bandwidth

frequency

Figure 2.2. Traditional FDM and OFDM Techniques.

A typical OFDM system model is shown in Fig. 2.3. In the transmitter, the

input serial data stream is shifted into a parallel format. The parallel data in each

carrier is then separately modulated by the traditional modulation methods, such

as QPSK and QAM. After the required spectrum is worked out, an inverse fast

fourier transform (IFFT) is performed, and the guard period, also called the cyclic
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prefix (CP) is added to the start of each symbol. The receiver basically does the

reverse operation to the transmitter. CP is removed and fast fourier transform (FFT)

of each OFDM symbol is then taken to obtain the original transmitted spectrum.

Demodulation is performed in each carrier, which is followed by a parallel to serial

conversion [56].
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Figure 2.3. A Typical OFDM System Model.

The new Wireless Local Area Network (WLAN) standard, IEEE 802.11n, was

finalized as standard in 2009. This standard aims at improving network throughput

over previous standard, such as 802.11b and 802.11g with to the combination of

OFDM and Multiple Input and Multiple Output (MIMO) techniques. Moreover,

either 2.4GHz or 5GHz frequency band could be used for IEEE 802.11n. In the 5GHz

band, a high throughput (HT) OFDM system with 40MHz bandwidth is specified[57].
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The products with IEEE 802.11n technology, such as wireless LAN card, and wireless

routers, have been widely applied in personal computers, notebook computers and

other digital terminals prior to the finalization of the official standard.

Since OFDM technique is used in IEEE 802.11n signals, based on an ideal

Nyquist pulse, the PSD of the lth subcarrier in the IEEE 802.11n user is represented

as

Φl(f) = QlTs(
sin π(f − fl)Ts
π(f − fl)Ts

)2 (2.2)

where Ql is the transmit power in the lth subcarrier, and Ts is the symbol duration.

2.3 Coexistence System Model

2.3.1 Distribution Model in Spatial Domain

Before we study the capacity optimization issue of UWB system under the

coexistence with IEEE 802.11n system, the coexistence model of these two systems

in the spatial domain is set up. In the downlink transmission scenario, as shown

in Fig. 2.4, the receiver of IEEE 802.11n user could get the desired signal from its

transmitter, and also get the interference signal from the coexisting UWB transmitter.

For the same reason, not only the useful information from UWB transmitter, but

also the jammer from IEEE 802.11n transmitter is obtained at the receiving part of

UWB user. In this scenario, hii is denoted as the channel gain from IEEE 802.11n

transmitter to its receiver, hiu is the channel gain from IEEE 802.11n transmitter

to UWB receiver, hui represents the channel gain from UWB transmitter to IEEE

802.11n receiver, and huu is the channel gain from UWB transmitter to its receiver.

We assume these channel gains are perfectly known at the transmitters.

21



� �

� �

� �

� �

Figure 2.4. Distribution of IEEE 802.11n and UWB users in the spatial domain.

2.3.2 Distribution Model in Frequency Domain

In the frequency domain, the available bandwidth of IEEE 802.11n user can

be divided into N subcarriers. It is assumed that the bandwidth of each subcarrier

is Δf Hz. For band 1, band 2,. . .,band N , the bandwidths are correspondingly B1,

B2,. . .,BN . As shown in Fig. 2.5, UWB user and IEEE 802.11n user share the same

spectrum in certain frequency part. In this case, we can study the capacity issue of

UWB user within each subcarrier domain of IEEE 802.11n user, and then sum them

up to get the optimized capacity.

The frequency spectrum of Time Domain Inc PulsON 220 UWB transceiver

via Agilent Spectrum Analyzer as shown in Fig. 2.6. It is obvious to see that the

frequency spectrum of UWB transceiver spans in a large range with center frequency

4.28GHz. And the power is relatively low.

The frequency spectrum in the Max Hold mode of OFDM-based NB signal

is obtained from the WiFi-equipped cell phone. As shown in Fig. 2.7, the center

frequency is 2.4GHz with 20MHz operating bandwidth.
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Figure 2.5. Distribution of IEEE 802.11n and UWB users in the frequency domain.

2.4 Interference Model

Our objective is to optimize the capacity of UWB user within the coexisting

operating bandwidth with IEEE 802.11n user, under the constraint that its interfer-

ence to IEEE 802.11n user is under an acceptable threshold. Meanwhile, studying

the capacity of UWB user, the interference at the receiver part of UWB user should

be considered. For simplicity, we study the scenario that UWB system coexists with

only one NB wireless communication system, which is the IEEE 802.11n system. In

this way, the received interference of UWB user includes the additive white Gaussian

noise (AWGN) and interference from the coexisting IEEE 802.11n user.

We suppose μ = 0 in 4.1, so the Power Spectrum Density (PSD) of the UWB

user within the nth subcarrier of IEEE 802.11n is[58]:

Ψn(f) = Pn exp (−(2πfσ)2) (2.3)
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Figure 2.6. Frequency spectrum of UWB transceiver.

where Pn is the transmission power of UWB user within the subcarrier Bn of IEEE

802.11n. In this way, the interference of UWB user within the nth subcarrier to the

lth subcarrier of IEEE 802.11n user can be represented as:

I
(n)
l = |hui|2

∫ dnl+Δf/2

dnl−Δf/2

Ψn(f)df (2.4)

where dnl is the frequency separation between the nth subcarrier of and the lth subcar-

rier of IEEE 802.11n user, and hui is the downlink channel gain from UWB transmitter

to IEEE 802.11n receiver as mentioned in Section 2.3.
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Figure 2.7. Frequency spectrum of OFDM-based WiFi user.

The interference to UWB user within the nth subcarrier introduced by the lth

subcarrier of IEEE 802.11n can be written as

J (l)
n = |hiu|2

∫ dnl+Δf/2

dnl−Δf/2

Φl(f)df (2.5)

where hiu is the downlink channel gain from IEEE 802.11n transmitter to UWB

receiver as mentioned in Section 2.3, and Φl(f) is the PSD of IEEE 802.11n signals

within the lth subcarrier as represented in 4.4.

Table 2.1 lists the numerical values of IEEE 802.11n interference within the nth

subcarrier bandwidth of UWB user, namely
∑N

l=1 J
(l)
n , when the range of transmit

power of IEEE 802.11n user varies.
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Table 2.1. Interference of IEEE 802.11n user
∑N

l=1 J
(l)
n

Operating frequency
of IEEE 802.11n

Bandwidth
of IEEE
802.11n

Range of
Transmit
Power
(dBm)

Maximum∑N
l=1 J

(l)
n

(dB)

Minimum∑N
l=1 J

(l)
n

(dB)

2.417-2.437GHz 20MHz 18-21 -78.5308 -78.6660

2.417-2.437GHz 20MHz 15-18 -81.5167 -81.6516

5.170-5.190GHz 20MHz 18-21 -84.9494 -85.1046

5.170-5.190GHz 20MHz 15-18 -87.9597 -88.1149

5.160-5.200GHz 40MHz 18-21 -82.0331 -82.1809

5.160-5.200GHz 40MHz 15-18 -85.1469 -85.2966

2.5 Interference Evaluation based on I/N criteria

The interference to noise ratio (I/N), which is defined as the power ratio of

received interference and receiver noise floor, is a widely used interference evaluation

method. This method is originally adopted by FCC to regulate the UWB emis-

sion limits [10], and provides a simplified model for the calculation of the maximum

permissible interference level at the receiver input IEEE 802.11n user IMAX . The

normalized IMAX in dBm[59], can be represented as

Ith = I/N +N (2.6)

where I/N is the maximum permissible average or peak interference-to-noise ratio

at the receiver IF output necessary to maintain the acceptable performance criteria,

dB; N is the receiver’s inherent noise level at the receiver IF output referred to the

receiver input, dBm.

N = 10 logK + 10 log T + 10 logB +NF (2.7)
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where K is Boltzmann’s constant, normally 1.38 × 10−20, in milliwatts/K/Hz, T is

the system noise temperature, in degrees Kelvin, B is the receiver IF bandwidth, in

Hz, and NF is the noise coefficient, in dB.

According to (3.21) and (2.7), Table 2.2 lists the calculated maximum accept-

able interference at the receiver part of IEEE 802.11n user in three different operating

modes.

Table 2.2. Maximum permissible interference at the receiver part of IEEE 802.11n
user

Operating frequency
of IEEE 802.11n

Bandwidth of IEEE 802.11n Ith

2.417-2.437GHz 20MHz -105.62dBm

5.170-5.190GHz 20MHz -105.62dBm

5.160-5.200GHz 40MHz -102.61dBm

It is obvious that the maximum acceptable interference at the receiver part

of IEEE 802.11n is mainly determined by the bandwidth of the receiver, no matter

on which center frequency it operates. Moreover, for the interfered system with

larger operating bandwidth, higher interference are tolerable than that with smaller

operating bandwidth.

2.6 Optimal Power Allocation Scheme

We firstly study the capacity of UWB user within each operating bandwidth

shared with IEEE 802.11n subcarrier. The transmission power of UWB user within

the subcarrier Bn is represented as Pn, huu is the channel gain of the nth subcarrier

from UWB transmitter to its receiver, J
(l)
n denotes the interference introduced by the

lth subcarrier of IEEE 802.11n user to the UWB receiver within the nth subcarrier.
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According to the Shannon capacity formula, the transmission rate of UWB user within

the nth subcarrier can be represented as[60]:

Rn = Δf log2 (1 +
|huu|2Pn

σ2
awgn +

∑N
l=1 J

(l)
n

) (2.8)

where σ2
awgn is the power of additive white Gaussian noise.

As we know the capacity of UWB user within each subcarrier, the cumulative

capacity of UWB user within the whole coexisting operating bandwidth with IEEE

802.11n user is essentially the summation of these subcarrier-capacities. Our objective

is to maximize the capacity of UWB user while keeping its interference to IEEE

802.11n user below a certain threshold.

C = max
Pn

N∑
n=1

Δf log2 (1 +
|huu|2Pn

σ2
awgn +

∑N
l=1 J

(l)
n

) (2.9)

subject to
N∑
l=1

N∑
n=1

I
(n)
l ≤ Ith (2.10)

and

Pi ≥ 0, ∀n = 1, 2, . . . , N (2.11)

Since log(·) is a concave function, and the sum of the concave functions is still

a concave functions, to maximize a concave function is equivalent to minimizing the

negative of the concave function, namely a convex function. Obviously it is a problem

of convex optimization. In this case, by introducing a Lagrange multiplier ν to the in-
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equality constraint in (2.10) and Lagrange multipliers λn to the inequality constraints

in (4.8), we can get the following Karush-Kuhn-Tucher (KKT) condition[61]:

N∑
l=1

N∑
n=1

I
(n)
l ≤ Ith

P ∗
n ≥ 0, ∀n = 1, 2, . . . , N

λn ≥ 0, ∀n = 1, 2, . . . , N

λnP
∗
n = 0, ∀n = 1, 2, . . . , N

− 1

σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
+ P ∗

n

−λn + ν
N∑
l=1

∂I
(n)
l

∂P ∗
n

= 0, ∀n = 1, 2, . . . , N

(2.12)

From the last condition in (4.9), we know that

λn = ν

N∑
l=1

∂I
(n)
l

∂P ∗
n

− 1

σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
+ P ∗

n

(2.13)

So we can eliminate the slack variable λn firstly and get:

N∑
l=1

N∑
n=1

I
(n)
l ≤ Ith

P ∗
n ≥ 0, ∀n = 1, 2, . . . , N

νP ∗
n

N∑
l=1

∂I
(n)
l

P ∗
n

− P ∗
n

σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
+ P ∗

n

= 0, ∀n = 1, 2, . . . , N

1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
+ P ∗

n)
∂I

(n)
l

P ∗
n

≤ υ, ∀n = 1, 2, . . . , N

(2.14)

We can denote ∂J
(l)
n

∂P ∗
n

as K
(n)
l for simplicity, which is

K
(n)
l = |hui|2

∫ dnl+Δf/2

dnl−Δf/2

exp (−(2πfσ)2)df (2.15)

From the last condition in (4.11), we can see that if

ν <
1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
)
∑N

l=1K
(n)
l

(2.16)
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then, P ∗
n > 0. From the third condition, we can get P ∗

n as

P ∗
n =

1

ν
∑N

l=1K
(n)
l

− σ2
awgn +

∑N
l=1 J

(l)
n

|huu|2 (2.17)

Otherwise, P ∗
n = 0 if

ν ≥ 1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
)
∑N

l=1K
(n)
l

(2.18)

To summarize, the allocated power of UWB user can be written as

P ∗
n = max {0, 1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
)
∑N

l=1K
(n)
l

} (2.19)

Substituting (4.16) into (2.10), we can get

N∑
l=1

N∑
n=1

K
(n)
l max {0, 1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
)
∑N

l=1K
(n)
l

} ≤ Ith (2.20)

From (4.17), we can see that when the left side is equal to the right side, the

left side can reach its maximum value, namely, the allocated power is maximized. In

order to maximize the capacity of UWB user, (4.17) can be written as

N∑
l=1

N∑
n=1

K
(n)
l max {0, 1

(
σ2
awgn+

∑N
l=1 J

(l)
n

|huu|2
)
∑N

l=1K
(n)
l

} = Ith (2.21)

We compare the proposed optimized capacity of UWB user with the capacity

by using equal power allocation scheme[53] in three scenarios mentioned above. For

the equal power allocation scheme, the allocated power for UWB user within each

subcarrier shared with subcarriers of IEEE 802.11n user Peq can be represented as:

Peq =
Ith∑N

l=1

∑N
n=1K

(n)
l

(2.22)

And the capacity of UWB user with equal power allocation Ceqis:

Ceq =

N∑
n=1

Δf log2 (1 +
|huu|2Peq

σ2
awgn +

∑N
l=1 J

(l)
n

) (2.23)
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2.7 Conclusion

The maximum transmit power of IEEE 802.11n user is 200mW, namely 23dBm

both in 20MHz and 40MHz [57]. We can assume the transmit power of IEEE 802.11n

user Q is within the range of 64∼128mW (18∼21dBm) for indoor application. There

are 64 OFDM subcarriers in the mode of 20MHz and 128 subcarriers with 40MHz

bandwidth. Dividing the number of subcarriers by the total bandwidth, we can get

the subcarrier frequency spacing 312.5 KHz. The symbol duration of IEEE 802.11n

signal is 4μs. According to the ITU-R requirements, the interference power due to

unwanted emissions from sources sharing the same band on primary bases can be

partitioned as the intraservice interference, the coprimary services interference, and

other interfering aggregation. UWB systems are commonly classified as secondary

services. For calculating the maximum permissible interference at the receiver of

IEEE 802.11n user, system noise temperature is 293 K, noise coefficient of IEEE

802.11n receiver is 5.3dB, and the interference to noise ratio is -10dBm[13].

In this chapter, we select the operating frequency range of IEEE 802.11n user

as 2417∼2437MHz with 20MHz bandwidth, 5170∼5190MHz with 20MHz bandwidth,

and 5160∼5200MHz with 40MHz bandwidth. σ2
awgn is assumed to be 1× 10−3. The

shaping factor of Gaussian pulse is chosen as 0.2× 10−9. The channel gains between

IEEE 802.11n user and UWB user hii, hiu, hui, and huu are assumed to be Rayleigh

flat fading with an average power gain of 10dB. The detailed parameter settings are

shown in Table 6.2.3.

Fig. 2.8 is the interference introduced by the lth subcarrier of IEEE 802.11n to

UWB user within the nth subcarrier spectrum domain, where the operating frequency

of IEEE 80.211n is 2.417-2.437GHz and the operating bandwidth is 20MHz. We can

see that the interference to UWB changes periodically due to the OFDM characteristic
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Table 2.3. Parameter settings

Parameter Symbol Value

Transmit power of IEEE 802.11n user Q 64 ∼ 128mW (18 ∼ 21dBm)

Number of subcarriers N 64/128

Subcarrier frequency spacing Δf 312.5KHz

Symbol duration of IEEE 802.11n signal Ts 4× 10−6s

Power of AWGN σ2
awgn 4× 1−3s

Shaping factor of Gaussian pulse α 0.2× 1−9s

Channel gains h 10dB

Boltzmann’s constant K 1.38 × 10−20 mW/K/Hz

System noise temperature T 293 K

Noise coefficient NF 5.3dB

Interference to noise ratio I/N -10dB

for different distance between the lth subcarrier of IEEE 802.11n and the nth subcarrier

of UWB user in the spectrum domain.

From the numerical results are shown in Table 2.4 we can see that: 1) the

capacities of UWB user within the coexisting frequencies shared with IEEE 802.11n

user, using the proposed optimal power allocation scheme, are significantly larger than

those with equal power allocation scheme. 2) For the IEEE 802.11n user working on

a certain frequency, i.e. the 5GHz band, UWB user could achieve larger capacity

when coexisting with higher-bandwidth IEEE 802.11n user. This could be explained

according to (3.21), (2.7) and Table 2.2. Since the interfered system with larger

operating bandwidth can tolerate higher interference, the transmitting power of the

interfering system, namely the UWB user, will be larger, which means higher capacity

is achievable. 3) Compared with higher operating frequency of IEEE 802.11n user, the

capacity of UWB user under the coexisting IEEE 802.11n user with lower operating

frequency is larger. 4)When the range of transmit power of IEEE 802.11n varies,
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Figure 2.8. Interference Introduced by the lth Subcarrier of IEEE 802.11n to UWB
User (in 2.4GHZ with 20MHz bandwidth).

the capacity of UWB user changes. When the range decreases, the corresponding

interference introduced by IEEE 802.11n user to UWB user gets smaller, that means

UWB user could reach higher capacities.
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Table 2.4. Optimal capacity and capacity with equal power allocation scheme

Operating frequency of
IEEE 802.11n

Bandwidth
of IEEE
802.11n

Range of
Transmit
power
of IEEE
802.11n
(dBm)

Optimal Capacity
(bps)

Capacity with
equal power al-
location scheme
(bps)

2.417-2.437GHz 20MHz 18-21 1.22837×109 1.8420×108

2.417-2.437GHz 20MHz 15-18 1.22845×109 1.8427×108

5.170-5.190GHz 20MHz 18-21 1.13294×109 1.3815×108

5.170-5.190GHz 20MHz 15-18 1.13300×109 1.3819×108

5.160-5.200GHz 40MHz 18-21 1.86853×109 2.7631×108

5.160-5.200GHz 40MHz 15-18 1.86873×109 2.7648×108
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Chapter 3

Power Consumption and Downlink Outage Probability in a Dynamic HAN

3.1 Power Consumption of a Dynamic HAN

In this section, a Markov chain model is employed to represent the profile of a

dynamic HAN for Smart Grid with the total number of WiFi Direct devices as M , in

which the number of connections to the HAN varies from 0 to M as shown in Figure

3.1.

Before the presentation of the profile for this type of HAN, we propose the

definition of a dynamic HAN in the first place: Definition 1: A dynamic HAN is a

HAN in which WiFi Direct technique is employed for the communication between the

devices that alternate between active states and doze states for power saving, so that

the number of active users dynamically changes with the following assumptions:

1) the overall number of devices in the HAN is known ahead;

2) as to the WiFi Direct devices, the events of connecting to the HAN and discon-

necting to the HAN are independent with each other;

3) the possibility of the simultaneous occurrence of two or more events is excluded.

In Figure 3.1, the states of Markov Chain denote different numbers of connec-

tions to the dynamic HAN. For example, Nm means that there are currently m WiFi

Direct devices in the active state. Particularly, N0 indicates that none of the devices

is connected to the HAN, and NM shows that all of the M devices are actively con-

nected. When a new device joins in, the process goes from state Nm to state Nm+1.

Similarly, when a working device disconnects from the HAN, the process goes from

state Nm to state Nm−1. Basically, only one event can occur in a very small interval
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Figure 3.1. Markov Chain Model for the Number of Connections to a Dynamic HAN
.

of time. And even though the probability of more than one event is non-zero, it is

negligible[62].

In this Markov chain model, it is postulated that the number of devices that

are connected to the dynamic HAN follows poisson distribution with rate λ and the

holding time of the connection follows exponential distribution with average of TH

and rate of service μ = 1
TH

[63]. Therefore, we obtain the transition rates of λm and

μm as the following expressions,

λ = λ0 = λ1 = . . . = λm = . . . = λM−1 (3.1)

μm = mμ, m = 1, 2, . . . ,M (3.2)
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Given λm and μm, the global equilibrium equations for this Markov chain is

written as[64], ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λπ0 = μπ1

λπ0 + 2μπ2 = (λ+ μ)π1

λπ1 + 3μπ3 = (λ+ 2μ)π2
...

λπm + (m+ 2)μπm+2 = (λ+ (m+ 1)μ)πm+1

...

λπM−2 +MμπM−1 = (λ+ (M − 1)μ)πM−1

λπM−1 =MμπM

(3.3)

where πm is the steady-state probability of the mth state of the Markov Chain, which

determines the probability of m devices connected to the HAN. After Simplifying

(3.3), the general form of the state probability can be expressed as,

πm =
ρ

m
πm−1, m = 1, 2, . . . ,M (3.4)

where ρ = λ/μ is defined as the traffic intensity of the HAN [65].

Since,
M−1∑
m=0

πm = 1 (3.5)

by substituting (3.4) into (3.5), the probability of the initial state π0 can be obtained

as,

π0 =
1∑M

m=0
1
m!
ρm

(3.6)

Thus, the steady-state probability of the states in the Markov Chain is written

as,

πm =
1
m!
ρm∑M

i=0
1
i!
ρi
, m = 0, 1, . . . ,M (3.7)
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Remark 1: It is noteworthy that the denominator in (3.7) is the Taylor Series

expansions of the exponential function eρ for large M. In this way, (3.7) can be further

simplified as,

πm =
1
m!
ρm

eρ
, m = 0, 1, . . . ,M (3.8)

The WiFi Direct PSM aims at conserving energy on doze devices by turning off

their radio transceivers, and thus consumes less energy than that in active state. For

each PSM-equipped WiFi Direct device, it alternates between active state and doze

state. We denote the power consumption of each device in these two states and the

switching power consumption as Pa, Pd, and Psw. respectively.

In order to calculate the power consumption of the dynamic HAN, a new term

is defined as follows:

Defination 2: In a dynamic HAN with totallyM devices, the power consumption

with m active devices PM(m) is equal to:

PM (m) = mPa + (M −m)Pd + Psw (3.9)

Based on the Markov chain model presented above, the power consumption PM

in the dynamic HAN with totally M devices is essentially the expectation of PM(m)

expressed as:

PM = E[PM (m)]

=
M∑

m=0

πmPM (m)

=

M∑
m=0

πm[mPa + (M −m)Pd + Psw]

(3.10)
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Figure 3.2. Downlink with K active users connected with a Smart Meter.

3.2 Downlink Outage Performance

3.2.1 Downlink Model

In the dynamic HAN for Smart Grid, the most frequently connected device

is the smart meter, which is in charge of gathering power usage data and status

from the utilities within the home, and also distributing power information like prices

and control signals to the household appliances. In this section, we investigate the

downlink outage performance in the HAN with K active users connected to the

smart meter, as shown in Figure 3.2. Assume that the independent signal matrix

X = [x1, x2, . . . , xk, . . . , xK ] are transmitted, with transmitted power matrix P =

[P1,P2, . . . ,Pk, . . . ,PK ], where xk is the signal transmitted from the smart meter

to the kth user, and Pk is correspondingly the power of xk. The channel matrix is

H = [h1, h2, . . . , hk, . . . , hK ], where hk denotes the channel gain between the smart
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meter and the kth user, and is independent S-V indoor channel. After normalization,

E{h2k} = 1, ∀k.
By applying interference cancelation technique, the interference cancelation co-

efficient is added to each user, which is multiplied to the interference introduced by

other users. The interference cancelation coefficient matrix is α = [α1, α2, . . ., αK],

where αk = [αk1, αk2, . . . , αkK]
T , and αki is the interference cancelation coefficient for

the interference introduced by the ith transmitted signal to the kth user, which is a

random variable ranges from 0 to 1, for i = 1, 2, . . . , K.

Remark 2: As to the interference cancelation coefficient, it has the following

properties:

1) Specifically, αki = 0 denotes that the interference is fully canceled, while αki = 1

means that the interference is entirely present;

2) it is easy to see that αkk = 1;

3) without interference cancelation, α is a unit matrix since all the interferences

are fully present.

3.2.2 Statistics of SINR

In practical multiuser scenarios, each user would experience multiuser interfer-

ence (MUI) from other users. Considering the effect of MUI, the SINR that evaluates

the ratio between the desired signal power and the amount of noise and interference

generated by all the other users, should be used in the performance evaluation [72].

Thus the SINR γk at the kth user is written as:

γk =
|hk|2Pk∑

j �=k αkj|hk|2Pj + σ2
(3.11)

where σ2 is the power of Addictive White Gaussian Noise (AWGN).
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Theorem 1: For the HAN downlink scenario with indoor S-V channels, in which

K active household users are connected to the smart meter, assume that the smart

meter transmits signals to all the active users with equal power, that is, P1 = P2 =

. . . = Pk = . . . = PK , the probability density function (PDF) of the SINR γk at the

kth user is:

fK(γk) =
1

γ2k [(1 +
1
γk
)−∑K

k=1 αk]2η
e
(− 1

[(1+ 1
γk

)−
∑K

k=1
αk]η

)

(3.12)

where η = Pk/σ
2.

Proof: According to (3.11), γk is mathematically reformatted as:

γk =
|hk|2Pk∑

j �=k αkj|hk|2Pj + σ2

=
|hk|2Pk∑K

j=1 αkj|hk|2Pj − αkk|hk|2Pk + σ2

=
|hk|2Pk

|hk|2αkP − |hk|2Pk + σ2

(3.13)

So that |hk|2 can be represented by γk according to (3.13) as:

|hk|2 = σ2

(1 + 1
γk
)Pk − αkP

(3.14)

For the indoor S-V channel, since the amplitude of the channel gain follows

Rayleigh distribution [69], |hk|2 follows exponential distribution as [67]:

f|hk|2(|hk|2) =
1

|hk|2
exp(−|hk|2

|hk|2
) (3.15)

where |hk|2 is the mean of |hk|2.
Thus, the pdf of γk is obtained based on (3.15):

fγk(γk) =
σ2Pk

|hk|2γ2k[(1 + 1
γk
)Pk − αkP]2

e
(− σ2

|hk|
2
[(1+ 1

γk
)Pk−α

k
P]

)

(3.16)
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For tractable analysis, the pdf of γk with K active users in (3.16) is represented

as fK(γk). After normalization of the channel, |hk|2 = 1. We can simplify (3.16) as:

fK(γk) =
σ2

γ2k [(1 +
1
γk
)−∑K

k=1 αk]2Pk

e(− σ2

[(1 + 1
γk
)−∑K

k=1 αk]Pk

) (3.17)

Since Pk/σ
2 = η, (3.17) can be further simplified as:

fK(γk) =
1

γ2k [(1 +
1
γk
)−∑K

k=1 αk]2η
e
(− 1

[(1+ 1
γk

)−
∑K

k=1
αk]η

)

(3.18)

3.2.3 Statistics of Outage Probability

Data transmission is considered successful if the transmission rate is below the

the channel capacity. Otherwise, the link is said to be in outage. Thus the average

downlink outage probability of the dynamic HAN with totally M users is expressed

as [53][60]:

Pout =

M−1∑
m=1

πmPr[log2(1 + γm) ≤ Rreq]

=
M−1∑
m=1

πmPr[γm ≤ 2Rreq − 1]

=

M−1∑
m=1

πm

∫ 2Rreq−1

0

fm(γk)dγk

(3.19)

On the other hand, without WiFi Direct technique for the HAN, the outage

probability is just written as:

P
M
out = Pr[log2(1 + γk) ≤ Rreq]

=

∫ 2Rreq−1

0

fM−1(γk)dγk

(3.20)
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Table 3.1. Parameter settings for Power Consumption

Symbol Value

ρ 1∼10

M 5, 10, and 15

Pa 0.660watt

Pd 0.296watt

Psw 0.001watt

σ2 1× 10−4watt

3.3 Numerical Results

3.3.1 Power Consumption

The parameter settings for the calculation of power consumption are shown in

Table 2.1, the traffic intensity ρ varies within the range from 1 to 10. The total

number of WiFi Direct devices are 5, 10, and 15 respectively. The consumed energy

for each device is set to be 0.660 watt in active state, 0.296 watt in doze state, and

0.001watt while switching between active state and doze state[68]. The power of

AWGN is 1× 10−4watt. The average power of Rayleigh fading channel is normalized

as 1.

The steady state probability πm in (3.7) is listed in Table 2.2. We can see that

the probability that large number of users connected to the HAN is extremely small,

for example, π11 = 6.41×10−4 withM = 15. This phenomenon indicates the behavior

similarity of two dynamic HANs with M = 10 and M = 15.

In order to investigate the power saving property of the dynamic HAN with the

emerging WiFi Direct technique, a term power saving ratio κ is given:
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Table 3.2. The steady state probability πm

πm M=5 M=10 M=15

π0 0.0233 0.0184 0.0183

π1 0.0933 0.0735 0.0733

π2 0.1866 0.1469 0.1465

π3 0.2488 0.1949 0.1954

π4 0.2488 0.1959 0.1954

π5 0.1991 0.1567 0.1563

π6 NA 0.1045 0.1042

π7 NA 0.0597 0.0595

π8 NA 0.0299 0.0298

π9 NA 0.0133 0.0132

π10 NA 0.0053 0.0053

π11 NA NA 0.0019

π12 NA NA 6.41× 10−4

π13 NA NA 1.97× 10−4

π14 NA NA 5.64× 10−5

π15 NA NA 1.50× 10−5

Definition 3: The power saving ratio of a dynamic HAN compared to a static

HAN with overall M users is defines as:

κ =
MPa −PM

MPa
100% (3.21)

The comparison of the power consumption of a dynamic HAN with PSM and a

static HAN with CAM is shown in Figure 3.3. Figure 3.4 is the power saving ratio of

the dynamic HAN with PSM for different total number of WiFi Direct devices. The

power saving ratio for each traffic intensity is listed in Table 2.3.

Remark 3: From Figures 3.3 and 3.4, we could see that:
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Figure 3.3. Power Consumption of the Dynamic HAN and Static HAN.
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Table 3.3. Power Saving ratio for various traffic intensities

ρ M=5 M=10 M=15

1 41.54% 49.01% 51.20%
2 30.16% 42.88% 47.26%
3 22.28% 36.80% 43.32%
4 17.10% 30.95% 39.38%
5 13.64% 25.64% 35.45%
6 11.23% 21.13% 31.56%
7 9.50% 17.48% 27.76%
8 8.20% 14.20% 24.17%
9 7.19% 12.35% 20.88%
10 6.40% 10.60% 17.99%

1) since the power consumption of a static HAN with CAM is not related to the

traffic intensity, no matter how the traffic intensity changes, the static HAN

maintains a constantly high power consumption;

2) even for a certain total number of WiFi Direct devices in the dynamic HAN, the

power consumption with PSM increases along with the increment of the traffic

intensity, and PSM saves less power consumption compared with CAM as the

traffic intensity grows. This could be explained that intensive traffic intensity

indicates frequent switching between active states and doze states, and thus

the switching power consumption becomes considerate overhead. Moreover,

switching cost has more obvious effect on the power saving ratio with larger

total number of WiFi Direct devices in the HAN.

3.3.2 Downlink Outage Performance

By taking (3.17) into (3.19) and (3.20), we can get the numerical results of the

outage probability for each user using Monte-carlo Simulation. Figure 3.5 illustrates
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the comparison of outage probability between dynamic downlink HAN and static

downlink HAN when ρ = 4, M = 5 and 10. The solid lines are the outage probability

without WiFi Direct technique, and the dash lines are the one with WiFi Direct. Fig-

ure 3.6 illustrates the comparison of downlink outage probability in a dynamic HAN

when ρ = 4, M = 5 and 10. The solid lines are the outage probability without inter-

ference cancelation (IC), and the dash lines are the one with interference cancelation.
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Figure 3.5. Downlink Outage Probability with IC, ρ = 4.

Remark 4: From Figures 3.5 and 3.6, it is concluded that:

1) with more users, the outage probability exhibits dramatically higher values due

to a potentially worse SINR for each user;

2) the downlink outage probability performance of a HAN is greatly improved with

WiFi Direct technique, especially at low SNR region, which indicates that WiFi

47



0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

w/o IC,M=10
w/ IC,M=10
w/o IC,M=5
w/ IC,M=5

Figure 3.6. Downlink Outage Probability of a Dynamic HAN, ρ = 4.

Direct technique not only improves the power saving in Smart Grid, but also

enhances the reliability of communications in Smart Grid; item[3)] the downlink

HAN exhibits better outage performance with interference cancelation, which

reduces SINR effectively, especially with large total number of WiFi-Direct users

in the HAN.

3.4 Conclusion

In this chapter, we study the performance of dynamic HANs with the emerging

WiFi Direct technique for Smart Grid communications from two aspects: power con-

sumption and downlink outage performance. Particularly, we evaluate and compare

the power consumption of the dynamic HAN with power saving scheme and the tra-

ditional HAN with continuous active mode. For the power saving scheme, since the

WiFi Direct devices switch between active state and doze state, the power consump-
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tion of the WiFi Direct network with PSM is highly correlated with the number of

communication connections in the network. A Markov chain model is introduced to

model the traffic intensity and the number of connections with a specific WiFi Direct

device in a HAN, and thus based on this Markov chain model the power consumption

of the dynamic HAN is calculated. Furthermore, the downlink outage probability of

dynamic HANs for Smart Grid is evaluated with interference cancelation technique.

The numerical results show that WiFi Direct technique not only improves the power

saving in Smart Grid, but also enhances the reliability of communications in Smart

Grid.
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Chapter 4

Uplink Multiuser Selection in A Dynamic HAN

4.1 Uplink Multiuser Selection Scheme

4.1.1 Statistics of SNR in the Absence of Interference

Smart Meter

Device 1

......
......

......
......

Device K

Device kmultiuser selection

scheme is employed

r(t)

s1(t)

sk(t)

sK(t)

h1(t)

hk(t)

hK(t)

Figure 4.1. Principle of an Uplink Multiuser Communication Scenario in a HAN.

In a typical uplink multiuser communication scenario of a HAN for Smart Grid

as shown in Figure 4.1, the signal rupk (t) at the smart meter from the kth device

through the channel at symbol time t can be expressed as:

rupk (t) = hupk (t)supk (t) + nk(t), k = 1, 2, . . . , K (4.1)
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where supk (t) is the transmitted signal at symbol time t from the kth device, hupk (t) is

the uplink channel gain of link k from device k to the smart meter at symbol time

t, nk(t) is an independent and identically distributed (i.i.d.) sequence of zero-mean

complex Gaussian noise with variance σ2, and K is the total number of active devices.

Thus the received SNR per symbol from the kth device ηupk in the absence of

interference is:

ηupk =
P t

k|hupk |2
σ2

(4.2)

where P t
k is the average power of the transmitted signal from the kth device. Saleh-

Valenzuela (S-V) channel model is adopted for indoor HAN communication scenarios.

Since the amplitude of S-V channel gain follows Rayleigh distribution [69] [70], ηupk

follows exponential distribution, where P t
k and σ2 are assumed to be constant for

tractable analysis. The PDF of ηupk is written as [67][71]:

fηupk
(η) =

1

ηk
exp(− η

ηk
) (4.3)

where ηk is the average SNR from device k. Thus the cumulative density function

(CDF) of ηupk is:

Fηupk
(η) = 1− exp(− η

ηk
) (4.4)

By employing multiuser selection scheme at the smart meter, the link with the

maximum SNR among all the K active links is selected at each symbol time. So the

received SNR per symbol at the smart meter is

ηs = max ηupk , k = 1, 2, . . . , K (4.5)
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For i.i.d. random variable ηupk , k = 1, 2, . . . , K, the CDF of ηs with K active

devices can be calculated as:

FK
ηs (η) = Pr[ηs ≤ η] =

K∏
k=1

Pr[η
up
k ≤ η]

=

K∏
k=1

Fηupk
(η) = [Fηupk

(η)]K

= [1− exp(−η
η
)]K

(4.6)

where η = ηk, k = 1, 2, . . . , K, which denotes that all the links have the same aver-

age received SNR. The PDF of ηs with K active devices is obtained by taking the

derivative of FK
ηs (η) as to η:

fK
ηs (η) =

dFK
ηs (η)

dη
= K[1− exp(−η

η
)](K−1)fηupk

(η)

=
K

η
[1− exp(−η

η
)](K−1) exp(−η

η
)

(4.7)

Considering that each device with WiFi Direct technique in HANs of Smart grid

alternates between active state and doze state, the average PDF of ηs is consequently

written as:

f ηs(η) = E[fK
ηs (η)]

=

M∑
K=0

πKf
K
ηs (η)

=

M∑
K=0

πK
K

η
[1− exp(−η

η
)](K−1) exp(−η

η
)

(4.8)

where πK is the steady state probability when K users are in active state, as derived

in Chapter 2.

4.1.2 Statistics of SINR in the Presence of MUI

In practical systems, once the link with the best SNR is selected at the receiver

part of the smart meter at one symbol time, the selected signal would experience MUI
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from other unselected users. Considering the effect of MUI, the SINR that evaluates

the ratio between the desired signal power and the amount of noise and interference

generated by all the other unselected users, should be used in performance evaluation

[72]. Thus the SINR ηK with totally K active users can be expressed as:

γupK =
Pr

i

IK + σ2
=

Pr
i∑

k �=i Ik + σ2
(4.9)

where Pr
i is the received power of the selected device i, Ik is the MUI from the

unselected device k, and K is the total number of active users that is modeled as a

Markov chain, with the steady state probability πK . For more reasonable analysis

compared with [72], a multiuser interference cancelation coefficient αk that varies

between 0 and 1 is multiplied to each received power Pr
k . Consequently, Ik can be

expressed as:

Ik = αkPr
k (4.10)

In free space, the received power by a receiver antenna due to path loss Pr
k can

be described according to Friis transmission equation [73]:

Pr
k

P t
k

= GtGr[
λ

4πdk
]2 (4.11)

where Gt and Gr are the antenna gains of the transmitter and receiver antennas

respectively, dBi. λ is the wavelength of the transmitting signal, which can be calcu-

lated by λ = c/fc (c = 3× 108m/s is the speed of light, fc is the operating frequency

of the transmitting signal). dk is the distance between the transmitter and receiver

antennas.

The path loss model can also be expressed in dB form as follows:

Pr
k(dB) = P t

k(dB) +Gt(dBi) +Gr(dBi) + 20 log(
λ

4πdk
), (4.12)
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A signal transmitted through a wireless channel will typically experience ran-

dom variation due to blockage from objects in the signal path, giving rise to random

variations of the received power at a given distance. Such variations are also caused

by changes in reflecting surfaces and scattering objects. The most common model for

the additional random attenuation due to this effects is log-normal shadowing [74].

Models for path loss and log-normal shadowing can be superimposed to capture power

falloff versus distance along with the random attenuation about this path loss from

shadowing. The received power Pr
k(dB) by a receiver antenna from user k according

the superimposed model is:

Pr
k(dB) = P t

k(dB) +Gt(dBi) +Gr(dBi) + 20 log(
λ

4πdk
)−Xσk

(4.13)

where Xσk
is Gaussian-distributed random variable with mean zero and variance σ2

k.

The interference from unselected users is thus expressed as follows:

Ik(dB) = Pr
k(dB) + αk(dB)

= Pt
k(dB) +Gt(dBi) +Gr(dBi)

+ 20 log(
λ

4πdk
)−Xσk

+ αk(dB)

(4.14)

It is obvious that the interference Ik from the unselected user k follows log-

normal distribution with mean μk as:

μk = P t
k(dB) +Gt(dBi) +Gr(dBi) + 20 log(

λ

4πdk
) + αk(dB) (4.15)

and variance σ2
k.

Applying the central limit theorem, the sum of a series of random variables

that follow log-normal distribution can be approximately considered as another log-

normal-distributed random variable. By assuming that σ2
k = σ2

I , the sum of inter-

ference from all the unselected users IK in (4.9) also follows log-normal distribution
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with variance σ2
IK

and mean μIK , which are derived from the known parameters μk

and σ2 as shown below [75]:⎧⎪⎨
⎪⎩

σ2
IK

= ln[(exp (σ2
I )− 1)

∑
k �=i exp (2μk)

∑
k �=i exp

2 (μk)
+ 1]

μIK =
σ2
I−σ2

IK

2
+ ln(

∑
k �=i exp (μk))

(4.16)

4.2 Performance Analysis

In this section, the performance of multiuser selection scheme applied to a

dynamic HAN in Smart Grid with the emerging WiFi Direct technique is measured

in terms of uplink capacity outage probability and BER.

4.2.1 Outage Probability

4.2.1.1 In the Absence of Interference

The capacity of multi-device HAN with received SNR ηs in the absence of

interference by employing multiuser selection scheme is:

C(ηs) = log2(1 + ηs) (4.17)

The HAN is said to be in outage when when the required data transmission

rate Rreq is higher than the achievable capacity of the selected uplink. Thus the

closed-form uplink outage probability is expressed as [53] [60]:

P
up
out = Pr[C(ηs) ≤ Rreq]

= Pr[log2(1 + ηs) ≤ Rreq]

=
M∑

K=0

πK [1− exp(−2Rreq − 1

η
)]K

(4.18)

The deduction of the closed-form uplink outage probability in the absence of

interference is shown in Appendix A.
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4.2.1.2 In the Presence of MUI

In the presence of MUI, the uplink capacity outage probability of the dynamic

HAN can be written as:

P
up
Iout = Pr[πK log2(1 + γupK ) ≤ Rreq] (4.19)

By taking (4.9),(4.13) (4.16) into (4.19), we can obtain the closed-form outage

probability as below:

P
up
Iout = πKQ(

μi − μIK − (2Rreq − 1)(dB)− σ2(dB)√
σ2
i + σ2

IK

) (4.20)

where the Q-function is defined as the probability that a Gaussian random variable

is greater than x. The deduction of the closed-form uplink outage probability in the

presence of MUI is illustrated in Appendix B.

4.2.2 Bit Error Rate (BER)

For M-ary signaling, the SNR per bit ηb could be approximately expressed as:

ηb ≈ ηs
log2M

(4.21)

Combining with (4.8), we can get the average PDF of ηb as:

f ηb
(η) =

M∑
K=0

πK
K

ηb
[1− exp(− η

ηb
)](K−1) exp(− η

ηb
) (4.22)

where ηb is the average Eb

N0
, namely the average SNR per bit.

Assuming ηb is roughly constant over each bit time, the average BER in the

absence of interference is:

Pb =

∫ ∞

0

pb(η)fηb
(η)dη (4.23)

where pb(η) is the BER for a certain modulation scheme under AWGN channel [74].

For WiFi technique, the High Throughput (HT) physical(PHY) data subcarriers are

56



modulated using BPSK, QPSK, 16-QAM or 64-QAM [76]. The BER of these four

modulation schemes over AWGN channel could be easily obtained from [74].

The numerical results of BER can be evaluated by Mathematica, where the Q-

function which is used for the calculation of the BER of the four modulation schemes

over AWGN channel, can be represented by alternative Q-function as:

Q(x) =
1

π

∫ π
2

0

exp [− x2

2 sin2 φ
]dφ, x > 0 (4.24)

4.3 Numerical Results and Discussion

4.3.1 Outage Probability

4.3.1.1 In the Absence of Interference

Figure 4.2 shows the uplink outage probability of multiuser selection scheme in

the absence of interference of a dynamic HAN due to different traffic intensities when

the total number of WiFi Direct devices is 10. Meanwhile, for a fixed traffic intensity

ρ = 8 but different total number of WiFi-Direct devices in a HAN, the uplink outage

probability based on the multiuser selection scheme is illustrated in Figure 4.3.

Remark 5: From Figures 4.2 and 4.3 we can see that:

1) the uplink outage probability changes dramatically at low average SNR but has

a constant tendency when the average SNR is relatively high.

2) The traffic intensity of a certain HAN in smart grid has considerate impact on

the uplink outage probability of multiuser selection scheme. Intensive traffic

intensity indicates frequent switching between active state and doze state, and

high probability that more devices are involved in the uplink communication

with the smart meter. Consequently, a lower outage probability is achieved by

selecting the link with maximum SNR among all the active links.
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Figure 4.2. Uplink Outage Probability without MUI when M = 10.
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Figure 4.3. Uplink Outage Probability without MUI when ρ = 8.

3) It is figured out that the values of steady state probability PK for K larger

than 13 are extremely small with M = 16, so that the HANs with M = 12 and

M = 16 exhibit similar characteristics, which could explain the approximate
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overlap between the curves of outage probability with M = 12 and M = 16 in

Figure 4.3.

4.3.1.2 In the Presence of MUI

With MUI, the simulation parameters are set as listed in Table 3.1. The trans-

mit power of each device P t
k varies within the range from 64 to 128mW. The distance

from each device to the smart meter dk is between 1 and 1.5m. And the multiuser

interference cancelation coefficient αk takes values between 0 and 1. For two extreme

cases, αk = 0 denotes that the MUI is fully canceled and SINR reverts to SNR,

which is the same case as that in the absence of interference; αk = 1 means that the

desired signal experiences heavy MUI with no interference cancelation. By taking

monte-carlo simulation of 100000 times, we obtain the numerical results of outage

probability for αk = 1 and αk as a random variable, which are shown in Figures 4.4

and 4.5 respectively.

Table 4.1. Parameter Settings with MUI

Parameter Value

ρ 4,6,and 8

Gt 1dBi

Gr 1dBi

fc 2.4× 109Hz

σ2
I 3dB

σ2(dB) −40dB

dk 1 ∼ 1.5m

P t
k 64 ∼ 128mW

αk 0 ∼ 1
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Figure 4.4. Uplink Outage Probability with Full MUI when ρ = 8.
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Figure 4.5. Uplink Outage Probability with MUI when ρ = 8.

From Figures 4.4 and 4.5, the following conclusion is drawn that in the presence

of MUI, the dramatic impact of MUI on the outage performance of multiuser selection

scheme mainly depends on increasing unselected users, heavy traffic intensity, as well
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as the level of MUI. Particularly, when MUI is fully present (αk = 1), multiuser

selection scheme exhibits worse outage performance.

4.3.2 Bit Error Rate

The numerical values of BER are determined by mainly three factors: the total

number of WiFi-Direct devices in a HAN, the traffic intensity and the modulation

scheme of symbols. The numerical results of BER are compared with two fixed factors

and the other changing parameter. Particularly, the BER with BPSK due to different

traffic intensity when M = 5 is shown in Figure 4.6. Figure 4.7 illustrates the BER

with four kinds of modulation scheme: BPSK, QPSK, 16-QAM and 64-QAM when

ρ = 8,M = 10. For a certain traffic intensity of ρ = 8 and BPSK modulation scheme,

Figure 4.8 plots the BER with different total number of WiFi-Direct devices in a

HAN.
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Figure 4.6. BER of Multiuser Selection Scheme in a HAN with BPSK when M = 5.
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Figure 4.7. BER of Multiuser Selection Scheme in a HAN with ρ = 8,M = 10.
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Figure 4.8. BER of Multiuser Selection Scheme in a HAN with BPSK when ρ = 8.
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Remark 6: According to Figures 4.6-4.8, it is obvious to see that:

1) for a certain HAN in smart grid, larger traffic intensity results in better BER

performance with fixed modulation scheme and average SNR.

2) Different modulation schemes have obviously different impact on the BER per-

formance. Particularly, data modulated by 64-QAM has the highest BER, which

are due to the different BER performance of these modulation schemes under

AWGN channel. It is noteworthy that BPSK and QPSK exhibit the same BER

performance even over the fading channel.

3) when the total number of WiFi-Direct devices in a HAN of smart grid in con-

siderately large, as shown in Figure 4.8, the BER plots of multiuser selection

scheme are similar with M = 10 and M = 15. This also could be explained by

the property of numerical values of PK as mentioned in the last subsection.

4.4 Conclusions

In this chapter, the performance of multiuser selection scheme that is employed

in dynamic HANs for Smart Grid communications with WiFi Direct technique is

evaluated from two aspects: outage probability and BER. The closed-form capacity

outage probability is calculated in two cases: in the absence of interference and in

the presence of MUI. In the first case, the PDF of received SNR is derived from the

amplitude distribution property of indoor S-V channel gain. A random variable that

quantifies the level of MUI cancelation-multiuser interference cancelation coefficient

is added for the calculation of SINR when MUI is present. In addition, the BER

expressions of different modulation schemes under AWGN channel are included in

the calculation of BER of the multiuser selection scheme. Numerical results show

that the performance of multiuser selection scheme in dynamic HANs of for Smart

Grid communications is related with several factors, i.e. total number of devices in
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HANs, traffic intensity, modulation scheme, and multiuser interference cancelation

coefficient, etc.
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Chapter 5

Capacity Optimization in Heterogeneous HAN

5.1 Heterogeneous HAN for Smart Grid

For explicit expression, two definitions are given as follows:

Definition 4: A Heterogeneous HAN for Smart Grid is the HAN in which various

wireless communication technologies, including Wi-Fi, ZigBee, and Bluetooth, etc.,

are used for the communications between household wireless devices and the smart

meter. And the properties of the heterogeneous HAN is:

1) various SINRs are required for different users;

2) various bandwidths are used for the communications between the smart meter

and different users.

Definition 5: The downlink of a HAN in Smart Grid is defined as the commu-

nication link when the smart meter transmits signals to the users.

We consider a HAN with one smart meter installed outside the door, andK het-

erogeneous active in-home wireless devices that obtain control and monitor informa-

tion from the smart meter. The independent signal matrixX = [x1, x2, . . . , xk, . . . , xK ]
T

is transmitted in the downlink, with transmit power matrix P = [P1, P2, . . . , Pk, . . . , PK ]
T ,

where xk is the signal transmitted to the kth user, and Pk is correspondingly the power

of xk.
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Figure 5.1. Multiuser Downlink Model with Beamforming at Smart Meter.

Beamforming is employed at the transmit part of the smart meter, with N

transmit antennas, and each user has single receive antenna, as shown in Figure 5.1.

V is an N ×K beamforming matrix expressed as:

V =

[
V1 V2 . . . Vk . . . VK

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v11 v12 . . . v1k . . . v1K

v21 v22 . . . v2k . . . v2K
...

...
. . .

...
. . .

...

vN1 vN2 . . . vNk . . . vNK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

where Vk is the beamforming vector corresponding to the kth user.

The downlink channel matrix is H = [H1, H2, . . . , Hk, . . . , HK ], where Hk de-

notes the channel vector corresponding to the kth user, which also indicates the down-

link from the smart meter to each user is MISO channel for spatial diversity. All the
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downlink channels are independent and identically distributed (i.i.d.) Rayleigh flat

fading channels with unit variance[77].

H =

[
H1 H2 . . . Hk . . . HK

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1k . . . h1K

h21 h22 . . . h2k . . . h2K
...

...
. . .

...
. . .

...

hN1 hN2 . . . hNk . . . hNK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

5.2 Downlink Capacity Optimization

In this section, total downlink capacity optimization is investigated for a het-

erogeneous HAN. According to the model of a heterogeneous HAN with the smart

meter equipped with beamforming and K active users as illustrated in section 6.1,

we can see that the received signal rk of the kth user from the smart meter is:

rk = Hk
TVkxk +Hk

T
∑
j �=k

Vjxj + nk

= Hk
TV X + nk

(5.3)

where nk is the thermal noise at the users modeled as additive white Gaussian noise

(AWGN) with one-sided power spectral density (PSD) of N0.

For this multiuser downlink scenario, each user experiences interference which

stems from the transmitted signals to all other users. The SINR at the kth user is

written as:

ηk =
|Hk

TVk|2Pk∑
j �=k |Hk

TVj|2Pj +WkN0

(5.4)

where Wk is the transmission bandwidth assigned to the kth user.
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Applying singular value decomposition (SVD) theorem to |Hk
TVj|2, the detail

of which is in Appendix C, ηk in (5.2) can be mathematically reformatted as [78] [53]:

ηk =
λ2
k

∑N
n=1 |βn,k|2Pk∑

j �=k λ
2
j

∑N
n=1 |βn,k|2Pj +WkN0

=
λ2
k

∑N
n=1 |βn,k|2Pk∑K

j=1(λ
2
j

∑N
n=1 |βn,k|2Pj) +WkN0 − λ2

k

∑N
n=1 |βn,k|2Pk

=
λ2
k

∑N
n=1 |βn,k|2Pk∑N

n=1 |βn,k|2 ·
∑K

j=1 λ
2
jPj +WkN0 − λ2

k

∑N
n=1 |βn,k|2Pk

(5.5)

where βn,k is the channel gain from the nth transmit antenna at the smart meter to

the kth user, λj is the singular value of the matrix Vj .

Without loss of generality, λj = 1 for transmit beamforming. Therefore, the

total downlink capacity of the multiuser downlink system with K active users is

expressed as:

Ctot

=

K∑
k=1

Wk log2(1 + ηk)

=

K∑
k=1

Wk log2(1 +

∑N

n=1 |βn,k|2Pk∑N
n=1 |βn,k|2

∑K
j=1 Pj +WkN0 −

∑N
n=1 |βn,k|2Pk

)

=

K∑
k=1

Wk log2(

∑N

n=1 |βn,k|2
∑K

j=1 Pj +WkN0∑N

n=1 |βn,k|2 ·
∑K

j=1 Pj +WkN0 −
∑N

n=1 |βn,k|2Pk

)

(5.6)

For heterogenous communications, all the K users are required to achieve in-

dividual SINR requirements ηthk , k = 1, 2, . . . , K for successful communication. That

is:

ηk =

∑N
n=1 |βn,k|2Pk∑N

n=1 |βn,k|2 ·
∑K

j=1 Pj +WkN0 −
∑N

n=1 |βn,k|2Pk

≥ ηthk (5.7)
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The downlink capacity optimization of the heterogeneous HAN is expressed as:

max
Pk

K∑
k=1

Wk log2(

∑N
n=1 |βn,k|2 ·

∑K
j=1 Pj +WkN0∑N

n=1 |βn,k|2 ·
∑K

j=1 Pj +WkN0 −
∑N

n=1 |βn,k|2Pk

)

s.t.

∑N

n=1 |βn,k|2Pk∑N

n=1 |βn,k|2 ·
∑K

j=1 Pj +WkN0 −
∑N

n=1 |βn,k|2Pk

≥ ηthk ,

K∑
k=1

Pk = Ptot,

Pk ≥ 0, k = 1, 2, . . . ,K

(5.8)

Remark 7: The objective of this optimization problem is to maximize the total

downlink capacity with the constraints that:

1) all the K users must achieve individual SINR requirements for successful com-

munication;

2) the sum of allocated transmit power to each user is equal to the permissible

total transmit power at the smart meter.

3) the transmit power to each user is feasible.

This is interesting from a network operator’s perspective since it minimizes

inter-user interference and improves the throughput as well as the power efficiency of

the network at the same time.

In the following, an optimal transmit power allocation scheme is presented based

on (5.8).

For notation brevity, denote
∑N

n=1 |βn,k|2 · Ptot +WkN0 as AN
k ,

∑N
n=1 |βn,k|2 as

BN
k , which are both independent from Pk:

AN
k =

N∑
n=1

|βn,k|2 · Ptot +WkN0

BN
k =

N∑
n=1

|βn,k|2
(5.9)
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Thus, taking (5.9) into (5.8), the optimization problem can be written as:

max
Pk

K∑
k=1

Wk log2(
AN

k

AN
k − BN

k · Pk
)

s.t. Pk ≥ AN
k η

th
k

BN
k (1 + ηthk )

, k = 1, 2, . . . , K

K∑
k=1

Pk = Ptot

(5.10)

It is easy to see that (5.10) is a convex optimization problem. Since log(·) is

a concave function, and log2(
AN

k

AN
k −BN

k ·Pk
) is concave as to Pk. In addition, the sum

of concave functions is still a concave function. To maximize a concave function

is equivalent to minimizing the negative of the concave function, namely a convex

function:

min
Pk

−
K∑
k=1

Wk log2(
AN

k

AN
k − BN

k · Pk

)

s.t.
AN

k η
th
k

BN
k (1 + ηthk )

− Pk ≤ 0, k = 1, 2, . . . , K

K∑
k=1

Pk = Ptot

(5.11)

In this case, by introducing Lagrange multipliers λ and μk, k = 1, 2, . . . , K, we

can get the Lagrangian dual function of the optimization problem in (5.11) as [61]:

L(Pk, λ, μk) = −
K∑
k=1

Wk log2(
AN

k

AN
k − BN

k · Pk

)

+ λ(

K∑
k=1

Pk − Ptot)

+
K∑
k=1

μk[AN
k η

th
k − BN

k (1 + ηthk )Pk]

(5.12)
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Applying KKT condition, the optimal solution of transmit power allocation to

each user P ∗
k satisfies the following equations:

∂L(P ∗
k , λ, μk)

∂P ∗
k

= 0

μk ≥ 0, k = 1, 2, . . . , K

μk[AN
k η

th
k − BN

k (1 + ηthk )P ∗
k ] = 0, k = 1, 2, . . . , K

(5.13)

The first equation in (5.13) is taking the derivative of L(Pk, λ, μk) with respect

to P ∗
k and let it equal zero:

− BN
k

ln 2(AN
k − BN

k P
∗
k )

+ λ− μkBN
k (1 + ηthk ) = 0 (5.14)

Thus, μk is obtained as:

μk =
λ− BN

k

ln 2(AN
k −BN

k P ∗
K)

BN
k (1 + ηthk )

(5.15)

The second condition in (5.13) holds iff:

λ ≥ 1

ln 2(
AN

k

BN
k
− P ∗

k )
(5.16)

Taking (5.15) into the third equation of (5.13), we can get:

[λ− BN
k

ln 2(AN
k − BN

k P ∗
K)

][AN
k ηthk − BN

k (1 + ηthk )P ∗
k ] = 0 (5.17)

When (5.16) takes equality, P ∗
k =

AN
k

BN
k
− 1

ln 2λ
; otherwise, P ∗

k =
AN

k ηthk
BN
k (1+ηthk )

. Com-

bining with (5.9), we can get the optimal transmit power profile as:

P ∗

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ptot +
WkN0∑N

n=1 |βn,k|2
− 1

ln 2λ
, equality in (5.16),

(Ptot +
WkN0∑N

n=1 |βn,k|2
)

ηthk
(1 + ηthk )

, else.

(5.18)

Substituting (5.18) into (5.6), the optimized total downlink capacity is easily

obtained.
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5.3 Lower Bound of the Transmit Power

From the first constraint condition in (5.11), we can see that the transmit power

of each user has a minimum value for reliable communication which is related by its

SINR requirement:

P ∗
k min = (Ptot +

WkN0∑N
n=1 |βn,k|2

)
ηthk

(1 + ηthk )
, k = 1, 2, · · · ,K (5.19)

In this section, the property of the minimum transmit power P ∗
k min in (5.19) is

investigated with the following theorem.

Theorem 2: The minimum transmit power to the kth user P ∗
k min fluctuates due

to the downlink S-V channel βn,k, n = 1, 2, · · · , N . And P ∗
k min has a lower bound

which is determined by the required minimum SINR ηthk :

P ∗
k L =

Ptotη
th
k

(1 + ηthk )
(5.20)

Proof: For the indoor S-V channel, the amplitude of S-V channel gain preserves

Rayleigh distribution [69] [70],

f|βn,k|(|βn,k|) = 2|βn,k| exp(−|βn,k|2) (5.21)

So that the power for each link |βn,k|2 follows exponential distribution as:

f|βn,k|2(|βn,k|2) =
1

|βn,k|2
exp(−|βn,k|2

|βn,k|2
) (5.22)

where |βn,k|2 is the average power for each downlink. Without loss of generality,

|βn,k|2 is normalized as 1.

It is well known that the sum of K independent exponential variables follows

Erlang distribution. Therefore,
∑N

n=1 |βn,k|2 in (5.19) is Erlang distributed. According

to (5.9),
∑N

n=1 |βn,k|2 is denoted as BN
k for simplicity, so the PDF of BN

k is expressed

as:

fBN
k
(B) = B(N−1) exp(−B)

(N − 1)!
, B ≥ 0 (5.23)
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From (5.19) we can see that:

BN
k =

WkN0

(1 + 1
ηthk

)P ∗
k min − Ptot

(5.24)

Combining (5.24) with (5.23), we can obtain the PDF of the minimum allocated

transmit power to each user due to Rayleigh flat fading as:

fP∗

k min
(Pk) =

[ WkN0

K(1+ 1

ηth
k

)Pk−Ptot
](N−1) exp(− WkN0

K(1+ 1

ηth
k

)Pk−Ptot
)

(N − 1)!

× WkN0

(1 + 1
ηth
k

)Pk
2 , P ∗

k min ≥ Ptotη
th
k

(1 + ηthk )

(5.25)

It is noteworthy that P ∗
k min has a lower bound of

Ptotηthk
(1+ηthk )

.

5.4 Numerical Results and Discussion

Example 1: To validate the properties of the proposed optimal power allocation

scheme, we consider a HAN for Smart Grid consisting of one smart meter, one WiFi

device, and one Bluetooth device. The SINR threshold for WiFi appliances is 22dB

[79], and the SINR threshold for Bluetooth users is 18dB [80]. The transmission

bandwiths are 20MHz, and 1MHz, respectively. The default transmit power at

the smart meter to each user is 20dBm, and the thermal noise at each receiver is

−95dBm.

Figures 5.2 and 5.3 show the PDF of optimal allocated transmit power for a

WiFi user and a Bluetooth user, respectively. The blue dashed lines are the PDF

when two transmit antennas are equipped at the smart meter, the red double-dots

dashed lines are the PDF with four transmit antennas at the smart meter, and the

green solid lines are the PDF with eight transmit antennas. From Figures 5.2 and

5.3, we can see that with a certain total number of active users in the HAN, more

transmit antennas at the smart meter render the PDF of the minimum allocated

transmit power for a user concentrates on smaller values.
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Figure 5.2. PDF of the Allocated Transmit Power for a Wi-Fi Appliance.
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Figure 5.3. PDF of the Allocated Transmit Power for a Bluetooth User.

Figure 5.4 illustrates the comparison of the PDF of optimal allocated transmit

power for aWiFi user and a Bluetooth user, when four transmit antennas are equipped

at the smart meter. From Figure 5.4, it is obvious that a much higher transmit power

is required for a WiFi user.

Example 2: The numerical results of total downlink capacity with optimal

power allocation are obtained by Monte-Carlo simulation based on (5.6) and (5.18),

which are also compared to the ones with equal power allocation scheme. In this HAN
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Figure 5.4. PDF of the Allocated Transmit Power for a Wi-Fi User and a Bluetooth
User, N = 4.

scenario, the smart meter is equipped with 2,4,or 8 transmit antennas for beamforming

technique. The SINR threshold for a WiFi appliance is 22dB, while it is 18dB for a

ZigBee or Bluetooth user. The transmission bandwidths for these three types of users

are 20MHz, 5MHz, and 1MHz, respectively. The total transmit power at the smart

meter is 0.1 × K(Watts), where K is the number of active users in the HAN, and

the thermal noise at each receiver is −95dBm. Four scenarios with various number

of active users are shown in Table 1, where Nw, Nz, and Nb are the numbers of WiFi

users, ZigBee users, and Bluetooth users, respectively.

Table 5.1. Four Simulation Scenarios

Total No of active users Nw Nz Nb

K = 3 1 1 1

K = 5 2 2 1

K = 8 3 2 3

K = 10 4 3 3
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Tables 2 ∼ 5 list the downlink maximum capacity as well as the capacity with

equal power allocation scheme for the four scenarios mentioned above. The optimal

transmit power allocated to WiFi user(Pw), ZigBee user(Pz), and Bluetooth user(Pb)

are also presented in the tables. From these results, we can see that:

1) the downlink capacity with the proposed optimal power allocation scheme based

on (5.18) is significantly enhanced compared to the capacity with equal power

allocation scheme. Particularly, with beamforming technique at the smart me-

ter, the maximum capacity is slightly decreased as the number of antennas gets

larger, while the equal-power capacity dramatically declines;

2) as the number of active users in the HAN increases, the downlink capacity with

the proposed optimal power allocation scheme drops due to more interferers

from other users existing in the HAN.

Table 5.2. Capacity Comparison and Optimal Power Allocation with Three Users

K = 3 Copt(MHz) Cave(MHz) Pw(W ) Pz(W ) Pb(W )

N = 2 18.634 16.655 0.1202 0.1174 0.0623

N = 4 18.605 15.127 0.1197 0.1182 0.0622

N = 8 18.586 12.892 0.1194 0.1182 0.0624

Table 5.3. Capacity Comparison and Optimal Power Allocation with Five Users

K = 5 Copt(MHz) Cave(MHz) Pw(W ) Pz(W ) Pb(W )

N = 2 18.175 14.551 0.1196 0.1182 0.0712

N = 4 18.152 14.244 0.1194 0.1182 0.071

N = 8 18.141 13.591 0.1193 0.1182 0.0712
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Table 5.4. Capacity Comparison and Optimal Power Allocation with Eight Users

K = 8 Copt(MHz) Cave(MHz) Pw(W ) Pz(W ) Pb(W )

N = 2 17.720 13.641 0.1246 0.1195 0.0628

N = 4 17.680 12.052 0.1213 0.1186 0.0683

N = 8 17.661 9.985 0.1202 0.1184 0.0684

Table 5.5. Capacity Comparison and Optimal Power Allocation with Ten Users

K = 10 Copt(MHz) Cave(MHz) Pw(W ) Pz(W ) Pb(W )

N = 2 17.183 13.565 0.1199 0.1183 0.0534

N = 4 16.904 11.615 0.1196 0.1182 0.0565

N = 8 16.786 9.160 0.1194 0.1182 0.0558

2 4 8
0

5

10

15

20

25

N

C
ap

ac
ity

 (M
H

z)

(a)k=3

2 4 8
0

5

10

15

20

25

N

C
ap

ac
ity

 (M
H

z)

(b)k=5

2 4 8
0

5

10

15

20

25

N

C
ap

ac
ity

 (M
H

z)

(c)k=8

2 4 8
0

5

10

15

20

25

N

C
ap

ac
ity

 (M
H

z)

(d)k=10

Figure 5.5. Capacity Comparisons.

Figure 5.5 shows the capacity comparisons between the optimal power allocation

scheme and equal power allocation scheme for the four scenarios listed in Table 1.
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Figure 5.6. Capacity Comparison with N=2.

Figure 5.6 illustrates the comparisons when the number of transmit antennas at the

smart meter is fixed (N = 2), where the blue bar is the capacity with optimal power

allocation scheme, and the red bar is the one with equal power allocation scheme. It

is obviously shown that the optimal power allocation scheme outperforms the equal

power allocation scheme. Particularly, with more active users in the HAN, the gap

between these two schemes is getting larger.

5.5 Conclusion

In this chapter, we proposed an optimal power allocation scheme for downlink

capacity in a heterogeneous HAN with application to Smart Grid, in which beam-

forming technique is applied to the smart meter. The optimization problem of total

downlink capacity for the HAN is mathematically a convex optimization problem,

and KKT condition, both necessary and sufficient for convex optimization problem,
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is thus introduced to derive the optimal solution for power allocation. The property of

the minimum transmit power allocated to each user is also investigated by employing

the theorem that the sum of independent exponentially distributed random variables

follows Erlang distribution. Monte-carlo simulation is taken for total downlink ca-

pacity with the presented optimal power allocation scheme, which is also compared

with equal power allocation scheme. Numerical results show the dramatic advantage

of the proposed optimal power allocation scheme on the basis of the optimal total

downlink capacity.
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Chapter 6

Hybrid Models of OFDM-based Power Line and Wireless Communications For HAN

Security

6.1 Hybrid Models of OFDM-based Power Line and Wireless Communications

This chapter presents two hybrid models of OFDM-based wireless and PL com-

munications in HANs for Smart Grid security. Since OFDM technique is used in

both wireless system and PL system, the same OFDM symbols are generated at the

transmitter part, which are thus up-converted to the wireless channel (2.4GHz) and

the PL channel (2 ∼ 30MHz), separately. For the hybrid model with transmit di-

versity, Alamouti scheme is adopted as the space time block code (STBC), and the

desired transmission data are decoded using maximum likelihood (ML) detector; for

the hybrid model, SC scheme is employed to recover the transmission data over the

wireless channel and the PL channel. The details of these two hybrid models are

elaborated in subsections 6.1.1 and 6.1.2.

6.1.1 Alamouti-code Transmit Diversity

Figure 6.1 shows the hybrid model of OFDM-based wireless and PL communi-

cations with transmit diversity. At the transmitter part, the same OFDM symbols

are generated, and thus transmitted through wireless channel and PL channel by

Alamouti code. At the receiver part, only one receiver with ML detector is used to

recover the transmitted OFDM symbols. The Alamouti code for this hybrid model

is listed in Table 4.1. At a given OFDM symbol period t2k, two generated OFDM

symbols s[2k] and s[2k + 1] are simultaneously transmitted to the wireless channel
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Figure 6.1. The Hybrid Model with Transmit Diversity.

and the PL channel. During the next OFDM symbol period t2k+1, −s∗[2k + 1] is

up-converted to the wireless channel while s∗[2k] is up-converted to the PL channel.

At the receiver, the received OFDM symbols from the wireless channel and the PL

channel are combined to get:

r[2k] =s[2k]hRF [2k] + s[2k + 1]hPL[2k]

+ j[2k] + nRF [2k] + nPL[2k]

(6.1)

r[2k + 1] =− s∗[2k + 1]hRF [2k] + s∗[2k]hPL[2k]

+ j[2k + 1] + nRF [2k + 1] + nPL[2k + 1]

(6.2)

where hRF and hPL are the wireless channel and the PL channel respectively, and

the fading across two adjacent OFDM symbols are assumed to be constant. j is the
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jamming signal added to the wireless channel. nRF and nPL are the noise in the

wireless channel and the PL channel.

Table 6.1. Alamouti Code for the Hybrid Model with Transmit Diversity

OFDM Symbol Time Wireless Channel PL Channel

t2k s[2k] s[2k + 1]

t2k+1 −s∗[2k + 1] s∗[2k]

The received OFDM symbols in (6.1) and (6.2) are thus sent to ML detector,

and the desired transmitted OFDM symbols are estimated as[81]:

s̃[2k] = h∗RF [2k]r[2k] + hPL[2k]r
∗[2k + 1] (6.3)

s̃[2k + 1] = h∗PL[2k]r[2k]− hPF [2k]r
∗[2k + 1] (6.4)

6.1.2 SC Receive Diversity

As illustrated in Figure 6.2, in-home PL system is incorporated with the wireless

communication system to enhance the reliability of HAN in case of a potential security

threat from jamming. Channel diversity is realized at the receiver part of the hybrid

model, so that a post processing is needed to recover the desired data information at

receiver. The hybrid model with receive diversity employs SC scheme, in which the

received OFDM symbols with higher signal to noise ratio (SNR)/signal to jamming

and noise ratio (SJNR) is selected between the received signals propagated over the

wireless channel and the PL channel:

r[k] =

⎧⎪⎪⎨
⎪⎪⎩
s[k]hRF [k] + j[k] + nRF [k] if

s2[k]h2
RF [k]

j2[k]+n2
RF [k]

≥ s2[k]h2
PL[k]

n2
PL[k]

,

s[k]hPL[k] + nPL[k] if
s2[k]h2

RF [k]

j2[k]+n2
RF [k]

<
s2[k]h2

PL[k]

n2
PL[k]

.

(6.5)
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Figure 6.2. The Hybrid Model with Receive Diversity.

Remark 8: SC scheme is highly recommended in the proposed hybrid structure

for the following two reasons:

1) it is easy to implement with low complexity;

2) once the wireless channel experiences jamming signals, and the transmitted

data information over this radio frequency (RF) medium is severely distorted,

to simply abandon the corrupted signal is preferred.

6.2 Hybrid Model Characteristics

This section renders an in-depth investigation of the properties of the hybrid

models of OFDM-based wireless and PL communications, including the characteris-
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tics of wireless and PL channels, noises in these two channels, as well as jamming to

the wireless channel.

6.2.1 Channel Characteristics

Generally, Rayleigh fading is a statistical model to describe signal attenuation

over a non-LOS wireless channel environment. In this chapter, Rayleigh flat fad-

ing channel is adopted as the wireless channel in the hybrid architectures, and the

magnitude of the wireless channel follows Rayleigh distribution.

The PL channel differs from the wireless channel considerably in topology,

structure, and physical properties. Zimmermann proposed a multipath model for

the PL channel based on physical signal propagation effects including branches and

impedance mismatching [41]. The complex frequency response that describes the

typical transfer characteristics of PL channel ranging from 500kHz to 20MHz is:

HPL(f) =

Np∑
i=1

gi · e−(α0+α1fk)di · e−j2πf(di/vp) (6.6)

where i is the number of the path, and the path with the shortest delay has index

i = 1; Np is the total number of paths of the PL channel; α0 and α1 are attenuation

parameters; k is the exponent of the attenuation factor, and the typical values are

between 0.5 and 1; f is the operating frequency of the PL channel; di is the distance

for path i; vp is the propagation velocity along the PL cable, and vp is calculated by

vp = c/e, where c is the speed of light, and e is the dielectric constant of the PL cable,

so that the term di/vp can be denoted as the time delay for path i, namely τi; gi the

is the weighting factor for path i, and Galli [42] points out that the path amplitude

of the PL channel is log-normally distributed;
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6.2.2 Noise Characteristics

The wireless channel mainly experiences a thermal noise that is generally mod-

eled as addictive white Gaussian noise (AWGN). But as to the PL channel, not only

background noise, but also impulsive noise exist in power lines, so that AWGN is not

suitable to represent the PL noise any more. The PDF of impulsive noise can be

expressed as a sum of Gaussian functions with different variances [82]. The Middle-

ton’s Class A model is employed in this chapter to characterize the PL noise, and the

probability density function (PDF) of Middleton’s Class A model is given as:

pnPL
(z) =

∞∑
m=0

e−AAm

m!

1√
2πσ2

m

exp(− z2

2σ2
m

) (6.7)

where

σ2
m = (σ2

g + σ2
i )
m/A+ Γ

1 + Γ
(6.8)

is the variance represented by a weighted sum of Gaussian distribution.

Remark 9: It is noteworthy that there are two important parameters used in

Middleton’s Class A model:

1) impulsive index A: it is defined as the average number of source emission per

second multiplies the mean duration of a typical interfering source emission[83].

Small value of Ameans the statistics of noise is away from Gaussian distribution,

but as A is made large, it approaches Gaussian distribution.

2) Gaussian-to-Impulsive variance Ratio (GIR) Γ: it is denoted as Γ = σ2
g/σ

2
i ,

where σ2
g is Gaussian noise variance, and σ2

i is the impulsive noise variance.

Therefore, small value of Γ indicates an impulsive noise with relatively large

power.

85



6.2.3 Jamming Characteristics

Jamming is defined as the act of deliberately directing electromagnetic energy

towards an RF communication system in an attempt to disrupt or prevent signal

transmission, and is viewed as a special case of denial of service (DoS) attacks. The

distinction between jamming and interference is that generally a jamming signal is

intentionally generated to deteriorate the signal to noise ratio (SNR) over the wireless

channel, whereas an interference signal comes from the transmitted radio of other

coexisting wireless systems. In a PHY jamming attack, the jammer emits “useless”

information to the designated RF channel, which could be be white noise or any signal

that resembles network traffic [84].

In this chapter, a random complex Gaussian signal is selected as jamming in-

serted to the wireless channel with a certain probability in time domain as P (Jam).

Table 6.2. Parameter Settings for Monte-Carlo Simulation

Parameters Symbols Values

Symbol duration Ts 4× 10−6s

FFT size Nfft 64

CP size Ncp 16

Maximum Doppler shift fd 100Hz

Operating frequency of the PL channel fPL 3MHz

Attenuation parameters α0, α1 −2.03 × 10−3, 3.75× 10−7

Exponent of the attenuation factor k 0.7

Total number of path in the PL channel Npath 4

Distances of the paths di 10m, 10.3m, 10.6m, and 11m

Dielectric constant of the PL cable e 1.4

GIR Γ 0.01
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6.3 Simulation

Considering the vulnerability of the wireless system to the security threat from

jamming, the in-home PLC system is incorporated into the HAN for Smart Grid. In

this section, BER performance of the hybrid architectures presented in Section 6.1

is investigated by Monte-Carlo simulation. In the simulation scenarios, the param-

eter settings are listed in Table 4.2. At the transmitter part, QPSK is employed to

constellate the input data bits into complex symbols, which are thus assembled into

52 OFDM subcarriers, and the symbol duration is 4 × 10−6s. 12 pilots are inserted

to mitigate intercarrier interference (ICI) and the FFT size is 64. The size of cyclic

prefix (CP), which effectively eliminates intersymbol interference (ISI), is 16. In the

simulation, Rayleigh flat fading channel is generated by Jake’s model method, with

the maximum Doppler shift as 100Hz. For the signal propagation along PL cables,

the OFDM symbols generated at the transmitter are up-converted to the 3MHz four-

path PL channel, in which the attenuation parameters α0 and α1 are −2.03 × 10−3

and 3.75 × 10−7; the exponent of the attenuation factor is 0.7; the lengths of the

four paths are set as 10m, 10.3m, 10.6m, and 11m; the dielectric constant of the

PL cable is 1.4. GIR of the Middleton’s Class A noise is set as 0.01. In addition,

the channel side information (CSI) is assumed to be known at the receiver. Thus in

the simulation, the channel equalization is simply achieved by removing the channel

information from the data after receive diversity processing.

The BER comparison is over single wireless channel and single PL channel is

illustrated in Figure 6.3. Due to the harsh PL channel environment, the PLC exhibits

worse BER performance compared to the wireless system.

The BER performance over single wireless system is shown in Figure 6.4. A po-

tential jamming is added to the wireless channel with the probabilities of PrJ = 0.02
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Figure 6.3. BER of Wireless System and PL System, no Jamming.
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Figure 6.4. BER of Single Wireless System.

and 0.05. Once the wireless channel is contaminated by the jamming, the communi-

cation reliability is dramatically reduced.

Figures 6.5 and 6.6 illustrate the BER performance of the hybrid system with

SC receive diversity. Figure 6.5 is the one with no jamming to the wireless channel,
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Figure 6.5. BER of the Hybrid Model with Receive Diversity, no Jamming.
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Figure 6.6. BER of the Hybrid Model with Receive Diversity, P (Jam) = 2%, and
SJR = 5dB.
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while Figure 6.6 is the one with jamming of P (Jam) = 2% and signal to jamming

ratio SJR = 5dB. The PL channel is under three different conditions, with Eb/N0PL

as 12dB, 15dB, and 18dB, and the impulsive index A is set as 0.3.

Remark 10: From Figures 6.5 and 6.6:

1) it is noteworthy that there is an apparent turning point in each plot, as circled.

These turning points can be explained by exploring the receive diversity scheme

used at the receiver part of the hybrid architecture. The SC scheme always

chooses the branch with the higher SNR, so that when no jamming is added to

the wireless channel, as Eb/N0RF is getting larger, the transmitted signal over

the wireless channel is selected at the receiver, and the three plots overlap in

Figure 6.5.

2) By an intensive investigation on the positions of the turning points, we can

see that the x-axis values of the turning points are all smaller than the corre-

sponding Eb/N0PL. Taking the plot with Eb/N0PL = 15dB in Figure 6.5 as an

example, the turning point occurs when Eb/N0RF = 9dB. This phenomenon

indicates the severer channel condition of the PL channel compared to the wire-

less channel. And once a potential jamming is added to the wireless channel,

which deteriorates the wireless channel, the turning points appear rightwards,

as shown in Figure 6.6.

For the combinational model with Alamouti-code transmit diversity, Figure 6.7

shows its BER performance with three different values of EbN0PL. The three solid

lines are with no jamming to the wireless channel, and the three dashed plots are with

a potential jamming of P (Jam) = 2% and SJR = 5dB. For the PL channel, the

impulsive index A is still 0.3. Figure 6.8 illustrates the impact of Middleton’s Class

A noise in the PL channel on the BER performance of the hybrid model. The solid

lines are the BER performance with no jamming added to the wireless channel, but
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Figure 6.7. BER of the Hybrid Model with Transmit Diversity, P (Jam) = 2%,
A = 0.3, and SJR = 5dB.

for the PL channel, EbN0PL is set to be 15dB, and A is selected as 1, 0.3, and 0.1,

which indicate various probabilities of pulses overlapping in time. When the wireless

channel experiences a jamming of P (Jam) = 2% and SJR = 5dB, the three BER

plots totally overlap no matter what the value of A is.

Remark 11 An interesting observation from Figure 6.8 is that as A increases

BER decreases. This could be explained by the property of the impulsive index

A, which is mentioned in subsection 6.2.2. Large A indicates that the statistics of

Middleton’s Class A noise approaches Gaussian distribution, while small A means

that the noise in the PL is more like impulsive noise. For A = 1, approximately 1dB

gain is obtained at BER = 2 × 10−4 compared to A = 0.3, and 3dB gain compared

with A = 0.1.

91



0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

100

E
b
/N

0RF
, in dB

B
E

R

A=1
A=0.3
A=0.1
A=0.1
A=0.3
A=1

With Jam

No Jam
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Figure 6.9 is the BER comparison of a single wireless communication system,

and the two hybrid models of wireless and PL communication systems with trans-

mit diversity and receive diversity. The wireless channels in the three systems are

all threatened by a potential jamming of P (Jam) = 2% and SJR = 5dB. It is

shown that the hybrid model with Alamouti-code transmit diversity maintains BER

improvement over the single wireless system. But for the hybrid model with SC

receive diversity, only when EbN0RF is large enough after the turning point, BER

performance could be guaranteed.

6.4 Conclusion

In this chapter, a combination of the OFDM-based wireless communication and

the existing in-home PL system is proposed as a hybrid HAN for Smart Grid. Par-

ticularly, two hybrid model with Alamouti-code transmit diversity and SC receive

diversity are presented. Monte-Carlo simulation results show that the proposed hy-

brid structures effectively enhance the BER performance of the HAN, even when the

wireless channel experiences a potential jamming. The combination of wireless com-

munication and PL communication provides a new concept of the reliable and secure

HANs for Smart Grid, with the advantages as:

1) low cost : due to the ubiquity of power lines and wall outlets, the combinational

structures of wireless communication and the existing PL networks in HANs for

Smart Grid are cost-effective;

2) easy to implement : OFDM techniques could be used in both wireless commu-

nication and PL communications, so that for the hybrid model with Alamouti-

code transmit diversity, only one receiver is required to recover the transmitted

signals, and for the hybrid model with SC receive diversity, only one transmit-
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ter is used to generate the same transmission OFDM signals, which are thus

up-converted to wireless channel and PL channel separately;

3) high security and reliability : the hybrid models tolerate jamming to the wireless

channel well, provide a reliable communication system, and thus the security is

guaranteed in HANs for Smart Grid.
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Chapter 7

Scaling Laws for the Ergodic Capacity of Hybrid Wireless Networks with

Distributed Base Stations

7.1 Preliminaries

Similar to [85], we consider a two-tier hybrid wireless network on the surface a

square area: the lower tier consists of n nodes, which are uniformly and independently

distributed in a square area of [0,
√
n]× [0,

√
n]; the upper tier is composed of b base

stations, and the deployment of the base stations follows the grid deployment method

[86], that is, the square area is divided into b smaller squares, which are also called

cells and the base station locates at the center of each cell. Base stations do not

serve as data sources or data destinations, but only forward traffic between cells in

the infrastructure mode. Furthermore, we assume b = o( n
logn

) to make sure that b

tends to infinity as n → ∞, but at a much slower rate. When n → ∞, the number

of nodes, nc, in each cell of side length c =
√
n/b is bounded by Θ(n

b
) [52].

Since the throughput capacity of hybrid wireless networks is interference-limited,

we introduce 1) opportunistic communication to eliminate intra-cell interference, 2)

frequency reuse to reduce other-cell interference (OCI), and 3) distributed base sta-

tion (DBS) to achieve transmit/receive diversity.

7.1.1 Opportunistic Communication

According to the protocol model presented in [51], every other node k simulta-

neously transmitting over the same channel as node s should satisfy dkd ≥ (1+Δ)dsd,

where Δ is a positive constant to model a guard zone, dkd and dsd are the distances of
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Figure 7.1. Frequency Reuse Scheme for a = 1..

the opportunistic source node k to the destination node d and the scheduled source

node s away from the destination node d, respectively.

Assume, for any scheduled source s, there are K nodes within the same cell,

whose Euclidean distance away from destination node d is greater than dsd. without

loss of generality, we have d0d ≤ d1d ≤ . . . dkd ≤ . . . ≤ dKd, (k = 0, 1, . . . , K). Allowing

these K nodes to be opportunistic sources and transmit data simultaneously to the

destination node d, the channel now becomes a fading multiple-access channel. The

optimal multiple access strategy now is for all these sources to spread their signal

across the entire bandwidth, much like the the CDMA system [53]. However, rather

than decoding every node treating the intra-cell interference from other nodes as noise,

a SIC technique is employed at the receiver. That is, after one node is decoded, its

signal is deducted from the aggregate received signal before the next node is decoded,

which significantly limits the intra-cell interference. It allows the system to benefit
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from multiuser diversity. The SIC strategy maximizes the sum rate and achieves a

set of sum rate satisfying

R0 ≤ log

(
1 +

P 0 · |h0d|2
σ2

)
...

K∑
k=0

Rk ≤ log

(
1 +

∑K
k=0 P k · |hkd|2

σ2

) (7.1)

where Rk denotes the kth node’s achievable rate, P k is the transmit power from the

kth source node, hkd is and the composite channel between the kth source node and

the destination node, and σ2 is the power of AWGN.

7.1.2 Frequency Reuse

Other-cell interference caused by simultaneous signal transmission in difference

cells may still exist. Fortunately, such interference can be minimized by employing the

frequency reuse concept as illustrated in [87]. Specifically, we first group the cells to-

gether to form a certain number of clusters. Then, we assign different frequency bands

to cells within the same cluster; however, among different clusters, these frequency

bands will be reused. Hence, the transmissions in the cells (in different clusters)

with the same frequency can be carried out simultaneously without causing excessive

inter-cell interference as long as the distance between these cells is large enough. The

frequency reuse rule from [52] [88] is borrowed: for any integer a > 0, there exists a

reuse policy with M2 (reuse factor) frequency bands where M = 2(a+ 1), such that

all cells in the network can transmit simultaneously with bounded interferences.

Figure 7.1 shows an example of the frequency reuse scheme with a = 1. A reuse

set of M2 = 4(a + 1)2 = 16 frequency bands, {f1, f2, · · · , f16}, is assigned to the 16

cells of each cluster. Note that for a given cell, there is always one cell in every cluster
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Figure 7.2. Hybrid Wireless Network with N = 9 Distributed Base Stations.

that shares the same frequency band. In the left subfigure of Figure 7.1, the shaded

cells occupy the same frequency, and the right subfigure is a cluster including 16 cells.

7.1.3 Distributed Base Station

Traditionally, multiple antennas are used to provide diversity gain and increase

the reliability of wireless links. In this subsection, we will present a new way to achieve

transmit/receive diversity - distributed based stations (DBS). As introduced in the

last subsection, the frequency resource is reused in each cluster. For a target cell, it

can be served by not only the local base station, but also neighbor base stations from

the cells of adjacent clusters sharing the same frequency band.

Next, we propose the definition of the hybrid wireless network with N DBS.

Definition 8: In the hybrid wireless network, N DBS can cooperatively serve N

cells in which the N DBS are located. And each DBS is from the cells of N adjacent

clusters sharing the same frequency band.
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Figure 7.3. Infrastructure Mode with Distributed Base Stations.

Figure 7.2 illustrates an example of the hybrid wireless network with N = 9

DBS, in which each solid square area denotes a cluster, and the nine dashed squares

are the cells sharing the same frequency.

7.2 Modeling of Hybrid Wireless Networks with Distributed Base Stations

In this chapter, we investigate the traffic transmission between the nodes which

are located in different cells with the aid of cooperative DBS, and thus the infras-

tructure transmission mode is implemented as shown in Figure 7.3. N DBS are in

charge of forwarding signals to/from the nodes in the shaded cells as illustrated in

Figure 7.1. We assume NBS antennas are equipped in the DBS, while the nodes has

single antenna (Nnd = 1). The model of hybrid wireless networks with DBS has the

following properties:

1) The whole transmission procedure is composed of three phases: during the

uplink phase, the source node first transmit traffic to all the DBS under the existence

of opportunistic nodes in the same cell; And then, in the transport phase, the co-

working DBS decode the received data and send them to the DBS which are serving
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the destination cell via the wired network; Furthermore, the data is transmitted to

the destination node also by cooperative DBS during the downlink phase.

2) In uplink phase, the received signal at the DBS is described as:

yu =

κ∑
k=0

√
P uH

H
k xk + iu + n (7.2)

where P u is the transmit power at each source node or opportunistic nodes; κ is the

number of opportunistic nodes which simultaneously generate traffic to N DBS; Hk :

C1×N ·NBS is the composite channel matrix from the kth node to N DBS; xk represents

the normalized transmit symbol from the kth node; id denotes the uplink OCI, which

is colored Gaussian distributed with covariance matrix Kd; n ∼ CN(0, σ2
nIN ·NBS

) is

the AWGN.

Particularly, Hk consists N independent subchannel matrices to each DBS:

Hk = [Hk
1 Hk

2 . . . H
k
n . . .H

k
N ] (7.3)

where Hk
n : C1×NBS represents the composite fast fading channel matrix from the kth

node to the nth DBS:

Hk
n = hlsnH

ss
n,k, n = 1, 2, . . .N (7.4)

where hlsn = e−γdn/2

d
α/2
n

denotes the large-scale path loss to the nth DBS, in which the

distance between the nth DBS and the source node is dn, and γ and α are the ab-

sorption constant of the attenuation and path-loss exponent. Here we assume all the

nodes have approximately the same distance from the each DBS; Hss
n,k : C1×NBS is

the small-scale Rayleigh fading channel matrix, in which all the entries are standard

normal distributed.

3) Similarly, in the downlink phase, the received signal at the destination node

is expressed as:

yd =

√
P d

NBS
HHx+ id + n (7.5)
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where P d the transmit power at each DBS; H : CN ·NBS×1 is the composite channel

matrix from N DBS to the destination node; x : CN ·NBS×1 represents the normal-

ized transmit symbol matrix from each transmit antenna; id denotes the OCI to the

destination node.

Particularly, H consists N independent subchannel matrices from each DBS:

H = [H1 H2 . . .Hn . . .HN ]
T (7.6)

where Hn : CNBS×1 represents the composite fast fading channel matrix from the nth

DBS to the destination code:

Hn = hlsnH
ss
n , n = 1, 2, . . .N (7.7)

where hlsn = e−γdn/2

d
α/2
n

denotes the large-scale path loss from the nth DBS; Hss
n : CNBS×1

is the small-scale Rayleigh fading channel matrix, in which all the entries are standard

normal distributed.

4) The OCI is limited with the introduction of frequency resue strategy. The

downlink OCI Id = Θ((n
b
)−

α
2 ), and the uplink OCI Iu = Θ((n

b
)1−

α
2 ) [52]. For a certain

target cell, the OCI is treated as addictive colored Gaussian noise.

5) From [52], we know that for a given source and destination pair in any cell,

there are Θ(n
b
) nodes in the same cell that have greater distances from the destination

than the source node. Therefore, with N DBS cooperatively serving the cells, given

a source node communicating to the DBS, there exist at most κ = Θ(Nn
b
) nodes in

the cells sharing the same frequency that can serve as opportunistic nodes.

6) We assume a total bandwidth of W Hz for data transmission under infras-

tructure mode, which is split into two bands: Wu Hz for uplink, and Wd Hz for

downlink. Obviously, W = Wu + Wd. Taking into account the benefits of oppor-

tunistic sources and SIC decoding strategy, we found that the bandwidth allocated
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to a scheduled source for uplink transmission is ηuWu = κ+1
Nnc

Wu

M2 = Θ(Wu) Hz, where

M2 is the frequency reuse factor. While for downlink transmission, the bandwidth

allocated to each destination node is limited to ηdWd =
1

Nnc

Wd

M2 = Θ( b
Nn
Wd) Hz.

7.3 Ergodic Throughput Capacity

In this section, we pay our attention to the ergodic throughput capacity of

the hybrid wireless network with DBS under infrastructure node. Given a source-

destination pair (s, d) in the network, the transmission rate R from the source node s

to the destination node d is upper-bounded by the capacity of the virtual MIMO chan-

nel. Specifically, during the uplink phase, the schedule source and the opportunistic

nodes transmit all traffic to N DBS. And in the transport phase, the base stations

are connected by high bandwidth long range links and thus it is assumed that there

is no capacity constraint within the infrastructure transmission [89]. Subsequently,

the data is retransmitted to the destination node during the downlink phase.

Lemma 1: Consider a wireless network with N DBS, for a certain time slot, if

the information rate R is achievable between a node and N DBS, we have,

R ≤ 1

2
log

(
1 +

∑N
j=1 P uλ

2
j

Iu + σ2
n

)
+ ε (7.8)

where each λj corresponds to an eigenmode of the channel, and ε → 0 as the proba-

bility of error tends to zero.

The detailed derivation of Lemma 1 is provided in Appendix. The channel is

decomposed into N parallel sub-channels via singular value decomposition (SVD).

Lemma 1 can serve as the essential principle in investigating the information trans-

mission limits over general fading channels.

Definition 7: For a hybrid wireless network of n nodes, and b base stations, an

ergodic throughput capacity of T (n, b, N) bit/s for each node is feasible under the
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infrastructure mode, if with N distributed base stations, there is a spatial and tem-

poral scheme for scheduling transmissions such that every node can averagely receive

T (n, b, N) bit/s over all possible channel realizations. And the ergodic throughput

capacity is determined by:

T (n, b, N) = min{T u(n, b, N), T d(n, b, N)} (7.9)

where T u(n, b, N) and T u(n, b, N) are the uplink ergodic throughput capacity and

downlink ergodic throughput capacity, respectively.

7.3.1 Uplink Ergodic Throughput Capacity

In the fasting fading scenario, the ergodic capacity is defined as the ensemble

average of channel capacity over all possible channel realizations [90]. If we assume

the channel state information is known only at the receiver (CSIR), combining with

the received signal model of the uplink phase in (7.2), the ergodic capacity with

opportunistic communications and SCI scheme is expressed as:

Cu = E[log(1 +

∑κ
k=0 P u‖Hk‖2
Iu + σ2

n

)] (7.10)

Given the properties of the composite uplink channel matrix in (7.3) and (7.3),

the ergodic capacity of the source node and opportunistic nodes is further derived as:

Cu = E[log(1 +
P u

Iu + σ2
n

κ∑
k=0

N∑
n=1

(hlsn )
2‖Hss

n,k‖2)]

(a)
= E[log(1 + sinru

N∑
n=1

βn

κ∑
k=0

‖Hss
n,k‖2)]

(7.11)

At step (a),
Pu

Iu+σ2
n
is denoted as sinru, and (hlsn )

2 is denoted as βn.

Since the entries of Hss
n,k are independent identically distributed (i.i.d.) com-

plex normal random variables (r.vs.), ‖Hss
n,k‖2 follows Chi-square distribution with

2NBS degrees of freedom, which is also Gamma distributed: ‖Hss
n,k‖2 ∼ Γ(NBS, 2).
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Furthermore, denoting βn
∑κ

k=0 ‖Hss
n,k‖2 as ϕn and thus denoting

∑N
n=1 ϕn as ϕ, we

can see that ϕn ∼ Γ(κNBS, 2βn).

To this step, it is obvious that ϕn, n = 1, 2, . . . , N are independent but not

identically distributed(i.n.d). Our concern is what kinds of properties ϕ has. One

method called second order moment matching to obtain another reasonable Gamma

approximation of the sum of a series independent but weighted Chi-square distributed

r.vs. was proposed by R. W. Health et al [48].

Given ϕn ∼ Γ(κNBS, 2βn), ϕ can be approximated as another Gamma distri-

bution as Γ(kϕ, θϕ), with the same first and second moments as:

kϕ =
κNBS(

∑N
n=1 βn)

2∑N
n=1(βn)

2
and θϕ =

2
∑N

n=1(βn)
2∑N

n=1 βn
(7.12)

and the mean and variance are separately:

μϕ = 2κNBS

N∑
n=1

βn and σ2
ϕ = 4κNBS

N∑
n=1

β2
n (7.13)

Here, κ+ 1 is approximated by κ.

Clearly, no closed-form solution exists for this ergordic capacity. However, ap-

proximating log(1 + sinru · ϕ) by log(sinru · ϕ) for large sinru, the ergodic capacity

is expressed as:

Cu = E[log(1 + sinru

N∑
n=1

βn

κ∑
k=0

‖Hss
n,k‖2)]

= E[log(1 + sinru · ϕ)]

≈ E[log(sinru · ϕ)]
(a)
= log2 sinru + log2 e · ψ(kϕ) + log2(θϕ)

(b)
= log2 sinru + log2 e[ln kϕ +

1

kϕ
+O

( 1

k2ϕ

)
] + log2(θϕ)

(c)
= log2 sinru + log2 e{ln[

κNBS(
∑N

n=1 βn)
2∑N

n=1(βn)2
] +

∑N

n=1(βn)
2

κNBS(
∑N

n=1 βn)2

+O
( [

∑N

n=1(βn)
2]2

κ2N2
BS(

∑N

n=1 βn)4

)}+ log2[
2
∑N

n=1(βn)
2∑N

n=1 βn

]

(7.14)
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where ψ(kϕ) in step (a) is the digamma function, and its asymptotic approximation

ψ(kϕ) = ln kϕ+
1
kϕ

+O
(

1
k2ϕ

)
is used to get step (b). Further, according to (7.12), step

(c) is derived to obtain the final expression of Cu.

Since Iu = Θ((n
b
)1−

α
2 ), together with κ = Θ(Nn

b
), we can conclude that in the

high SINR scenario, the uplink ergodic capacity is upper bounded by Θ(log(NNBSn
b

)),

namely, Cu = O
(
log(NNBSn

b
)
)
.

Similarly, employing log(1 + sinru · ϕ) ≈ log2 e · sinrd · ϕ for small sinru,

Cu = E[log(1 + sinru

N∑
n=1

βn

κ∑
k=0

‖Hss
n,k‖2)]

= E[log(1 + sinru · ϕ)]

≈ E[log2 e · sinru · ϕ]
(a)
= log2 e · sinruE[ϕ]

= log2 e · sinru · 2κNBS

N∑
n=1

βn

(7.15)

And the uplink ergodic capacity is upper bounded by Θ(NNBSn
b

), namely, Cu =

O
(
NNBSn

b

)
.

Theorem 3: For a hybrid wireless network of n nodes and N distributed base

stations over Rayleigh fading channels, if the total number of base stations b = o( n
logn

),

the uplink ergodic throughput capacity under the infrasctructure transmission mode

at high SINR is

T u(n, b, N) = O
(
log(

NNBSn

b
)Wu

)
bit/s (7.16)

And at low SINR:

T d
infra = O

(NNBSn

b
Wu

)
bit/s (7.17)

where NBS is the number of transmit antennas equipped at the base station.

Numerical simulations are presented to to validate the scaling laws of the ergodic

capacity in the uplink phase. Figure 7.4 shows the ratio between ergodic capacity and
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Figure 7.4. Ergodic Capacity in the uplink phase with NBS = 4.

the capacity under AWGN at high SNR with NBS = 4 antennas at DBS (κ = 50),

in which N = 1 indicates no cooperation between base stations. By comparing the

performance, one can attribute the capacity improvement to the number of DBS

involved in (N). Similarly, Figure 7.5 illustrates uplink performance at high SNR

with N = 9 DBS. It is obvious that the ergodic capacity scales in O
(
NBS).

7.3.2 Downlink Ergodic Throughput Capacity

Given the received signal model as in (7.5), the ergodic capacity of the downlink

phase under infrastructure mode is:

Cd = E

[
log

(
1 +

P d‖H‖2
NBS(Id + σ2

n)

)]
(a)
= E[log(1 +

sinrd
NBS

· ‖H‖2)]

= E[log(1 +
sinrd
NBS

·
N∑

n=1

‖Hn‖2)]

= E[log(1 +
sinrd
NBS

·
N∑

n=1

(hlsn )
2‖Hss

n ‖2)]

(7.18)

where step (a) is obtained by denoting
P d

Id+σ2
n
as sinrd.
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Figure 7.5. Ergodic Capacity in the uplink phase with N = 9.

Since the entries of Hss
n are independent identically distributed (i.i.d.) complex

normal random variables (r.vs.), ‖Hss
n ‖2 follows Chi-square distribution with 2NBS

degrees of freedom, which is also Gamma distributed: ‖Hss
n ‖2 ∼ Γ(NBS, 2). Further-

more, we denote (hlsn )
2‖Hss

n ‖2 and
∑N

n=1(h
ls
n )

2‖Hss
n ‖2 in (7.18) as χn and χ =

∑N
n=1 χn

for simplicity, respectively. With a scalar βn = (hlsn )
2 = e−γdnd−α

n added to ‖Hss
n ‖2,

χn ∼ Γ(NBS, 2βn).

To this step, it is obvious that χn, n = 1, 2, . . . , N are i.n.d. Similarly, by

employing second order moment matching method, χ =
∑N

n=1 χn is approximated

to be another Gamma distribution Γ(kχ, θχ) with the same first and second order

moments as:

kχ =
NBS(

∑N
n=1 βn)

2∑N
n=1(βn)

2
and θχ =

2
∑N

n=1(βn)
2∑N

n=1 βn
(7.19)

and the mean and variance are separately:

μχ = 2NBS

N∑
n=1

βn and σ2
χ = 4NBS

N∑
n=1

β2
n (7.20)

where βn = e−γdnd−α
n .
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At high SINR, the ergodic capacity is expressed as:

Cd = E[log(1 +
sinrd
NBS

·
N∑

n=1

(hlsn )
2‖Hss

n ‖2)]

= E[log(1 +
sinrd
NBS

· χ)]

≈ E[log(
sinrd
NBS

· χ)]
(a)
= log2

sinrd
NBS

+ log2 e · ψ(kχ) + log2(θχ)

(b)
= log2

sinrd
NBS

+ log2 e[ln kχ +
1

kχ
+O

( 1

k2χ

)
] + log2(θχ)

≈ log2
sinrd
NBS

+ log2 e{ln[
NBS(

∑N
n=1 βn)

2∑N
n=1(βn)

2
] +

∑N
n=1(βn)

2

NBS(
∑N

n=1 βn)
2

+O
( [

∑N
n=1(βn)

2]2

N2
BS(

∑N
n=1 βn)

4

)}+ log2[
2
∑N

n=1(βn)
2∑N

n=1 βn
]

(7.21)

With Id = Θ((n
b
)(−

α
2 )), we can see that at high SINR the downlink ergodic

capacity is upper bounded by Θ(log(Nn
b
)), namely, Cd = O

(
log(Nn

b
)
)
.

We derive the ergodic capacity at low SINR as:

Cd = E[log(1 +
sinrd
NBS

·
N∑

n=1

(hlsn )
2‖Hss

n ‖2)]

= E[log(1 +
sinrd
NBS

· χ)]

≈ E[log2 e ·
sinrd
NBS

· χ]
(a)
= log2 e ·

sinrd
NBS

E[χ]

= log2 e ·
sinrd
NBS

· 2NBS

N∑
n=1

βn

(7.22)

It is clear that in the low SINR regime, the downlink ergodic capacity is upper

bounded by Θ(Nn
b
), so that Cd

infra = O
(
Nn
b

)
.

Theorem 4: For a hybrid wireless network of n nodes and N distributed base

stations over Rayleigh fading channels, if the total number of base stations b = o( n
logn

),
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the per-node downlink ergodic throughput capacity under the infrasctructure transmis-

sion mode at high SINR is

T d(n, b, N) = O
( b

Nn
log(

Nn

b
)Wd

)
bit/s (7.23)

And at low SINR:

T d(n, b, N) = O
(
Wd

)
bit/s (7.24)

7.4 Conclusion

The above sections have illustrated the advantages of distributed base stations

in hybrid wireless networks via information-theoretic arguments. With the intro-

duction of distributed base stations, the hybrid wireless network can be interpreted

as macroscopic multiple-antenna system. Cooperation among the base stations has

been shown to be able to potentially increase the ergodic capacity of the network

under the infrastructure mode, which is an indicator of spectrum efficiency, by an

amount proportional to the the number of DBS with respect to the standard single-

cell strategies in the hybrid wireless network. The uplink ergodic throughput capacity

is O
(
log(NNBSn

b
)Wu

)
at high SINR, and O

(
NNBSn

b
Wu

)
at low SINR; while the down-

link ergodic throughput capacity is O
(

b
Nn

log(Nn
b
)Wd

)
at high SINR, and O

(
Wd

)
at

low SINR.
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Chapter 8

Conclusion and Future Woks

This chapter concludes the whole dissertation. It begins with a summary of

the dissertation results and contributions, follows with a discussion of future research

directions in further investigation of HAN in Smart Grid communications.

8.1 Summary

This dissertation has focused on but not limited to Home Area Networks in

Smart Grid Communications. The contributions of this dissertation are:

• Capacity optimization and power allocation of IR-UWB user within the coexist-

ing operating bandwidth with IEEE 802.11n user (Chapter 2). Considering the

operating frequencies of IEEE 802.11n, IEEE 802.11n system with either oper-

ating mode could be interference by UWB user, and the interference of IEEE

802.11n system to UWB user is also unavoidable. With the proposed power

allocation scheme for IR-UWB user, the reliable communication is guaranteed

for the coexisting IEEE 802.11n user, while IR-UWB achieves its maximized

capacity.

• Performance analysis of a dynamic HAN (Chapter 3 and Chapter 4). Con-

sidering the power saving potential of the emerging WiFi Direct technique, we

introduced WiFi Direct technique to HAN for Smart Grid communications. We

evaluated the advantages of a dynamic HAN for Smart Grid with the emerging

WiFi Direct technique from two perspectives: power saving and communication

reliability of the dynamic HAN. Since the power consumption of the HAN is
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directly related with the number as well as the working states of WiFi Direct

devices, a Markov chain model is employed to represent a profile of the traffic

intensity and the the number of WiFi Direct devices in active state. Further-

more, we investigated the downlink outage probability with multiple in-home

users connected to the smart meter. Multiuser selection scheme is applied to the

uplink of a dynamic HAN for Smart Grid communication scenario. To our best

knowledge, this is the first study on performance analysis of multiuser selection

scheme that is employed in dynamic HANs for Smart Grid communications.

• Capacity Optimization in a Heterogeneous HAN (Chapter 5). We modeled the

communication scenario between the smart meter and in-home appliances as

a heterogeneous multi-user network. The optimal power allocation algorithm

was developed under the constraints that 1) each user should satisfy individual

SINR requirement for successful heterogeneous communication; 2) the sum of

transmit power allocated to each user is equal to the permissible total transmit

power at the smart meter; 3) the allocated transmit power to each user is

feasible. The optimization problem is mathematically shown to be convex and

the optimal power allocation is thus derived. Furthermore, numerical results

verify the capacity performance improvements of the proposed optimal power

allocation scheme It is also shown that beamforming technique contributes to

the optimal power allocation scheme.

• hybrid Models of Power Line and Wireless Communications in HAN (Chap-

ter 6). To enhance HAN security for Smart Grid application, this dissertation

incorporates the OFDM - based power line (PL) system into the HAN, and

proposes two hybrid models of PL and wireless communications with transmit

diversity and receive diversity, respectively. Simulation results validate the fea-
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sibility of these new combinational solutions, and furthermore show that the

hybrid models could tolerate jamming to the wireless system well.

• Hybrid Wireless Networks with Distributed Base Stations (Chapter 7). The

ergodic throughput capacity, which is an indicator of spectrum efficiency, was

investigated over the independent but not identically distributed composite fast

fading channels. As opposed to the existing hybrid wireless networks in which

the base station only serves individual cell area, the concept of distributed

base stations (DBS) was introduced to achieve transmit/receive diversity. It is

analytically shown that compared to the traditional hybrid wireless network,

the ergodic throughput capacity of hybrid wireless networks with DBS scales

with gain with N ×NBS.

8.2 Future Directions

8.2.1 Improved Hybrid Models for HAN Security in Smart Grid

Wireless channel is mainly suffering from a thermal noise that is generally mod-

eled as AWGN. But as to PL channel, not only the background noise, but also the

impulsive noise exist in power lines, so that AWGN is not suitable to represent the PL

noise any more. The noise existing in the power lines is classified into five types: col-

ored background noise, narrowband noise, periodic impulsive noise asynchronous to

the mains, periodic impulsive noise synchronous to the mains and asynchronous im-

pulsive noise [91]. The PDF of impulsive noise can be expressed as a sum of Gaussian

functions with different variances [82]. The Middleton’s Class A model is employed

in the previous work to characterize the PL noise, in which an important parameter

called Impulsive Index, indicates the probability of pulses overlapping in time domain.

In the previous work, simulation results revealed that BER performance of the hybrid
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model varies with different values of Impulsive Index. In the future work, the effects

of noise in PL channel will be theoretically analyzed from a perspective of information

theory, especially Fano’s Inequality[60].

In the previous work, Selection Combining (SC) scheme is employed at the

receiver to recover the transmitted data. The received OFDM signal with the higher

SNR is selected between the received signals propagated over the wireless channel

and the PL channel, separately. This scheme is highly recommended for its easy

implementation and good performance, especially when the transmitted information

over the wireless channel is distorted by jamming. But using this combining scheme,

it is not guaranteed that the output SNR is maximized. Based on this consideration,

in the future work, we will explore other combining scheme for more reliable HAN

communication.

8.2.2 Spectrum Efficiency of Wireless Hybrid Network with Correlated Distributed

Base Stations

In this dissertation, the spectrum efficiency of wireless hybrid network with

distributed base stations was investigated under the assumption that the distributed

base stations are fully uncorrelated. We may turn to the topic of distributed source

coding (DSC) in wireless hybrid network with correlated base stations. Especially

in the downlink phase, it is likely that the distributed base stations transmit highly

correlated data to a destination node. Thus DSC is performed at the distributed

base stations. In this scenario, what we concern is the achievability of the rates for

this hybrid wireless network. To address this problem, Slepian-Wolf theorem can be

employed [60].
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Appendix A

Computation of Uplink Outage Probability in the Absence of Interference
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In this appendix, we compute the closed-form uplink outage probability in the

absence of interference based on multiuser selection scheme.

P
up
out = Pr[C(ηs) ≤ Rreq]

= Pr[log2(1 + ηs) ≤ Rreq]

= Pr[1 + η ≤ 2Rreq ]

= Pr[η ≤ 2Rreq − 1]

=

∫ (2Rreq−1)

0
fηs(η)dη

(A.1)

By taking (4.8) into (4.23),we can get:

Pout =

∫ (2Rreq−1)

0
{

M∑
K=0

πK
K

η
[1− exp(−η

η
)](K−1) exp(−η

η
)}dη

=

M∑
K=0

πKFK
ηs (2

Rreq − 1)

=

M∑
K=0

πK [1− exp(−2Rreq − 1

η
)]K

(A.2)
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Appendix B

Computation of Uplink Outage Probability in the Absence of Interference
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In this appendix, we compute the closed-form uplink outage probability in the

presence of MUI.

PUP
iout = Pr[πK log2(1 + γK) ≤ Rreq]

= πKPr[log2(1 + γK) ≤ Rreq]

= πKPr[γK ≤ 2Rreq − 1]

= πKPr[γK(dB) ≤ (2Rreq − 1)(dB)]

= πKPr[Pr
i (dB)− IK(dB)− σ2(dB) ≤ (2Rreq − 1)(dB)]

= πKPr[Pr
i (dB)− IK(dB) ≤ (2Rreq − 1)(dB)− σ2(dB)]

= πKQ(
μi − μIK − (2Rreq − 1)(dB) + σ2(dB)√

σ2
i + σ2

IK

)

(B.1)

where μi can be easily obtained from (4.13) that:

μi = P t
i (dB) +Gt(dBi) +Gr(dBi) + 20 log(

λ

4πdi
) (B.2)
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Appendix C

Capacity Optimization in Heterogeneous HAN
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Proof of |Hk
TVj |2 = λ2j

∑N
n=1 |βn,k|2

In the notation of matrices, the matrix Vj
T ∈ 1×N has a singular value decom-

position (SVD):

Vj
T = UΛV ∗ (C.1)

where U ∈ 1×1 and V ∈ N×N are unitary matrices, and UU∗ = U∗U = V V ∗ =

V ∗V = I. Λ ∈ 1×N is the matrix with the first element as λj and all other elements

as zero. λ2j is the eigenvalue of the matrix Vj
TVj and also of VjVj

T .

Thus, for real matrices Hk and Vj , we can get :

|Hk
TVj|2 = |VjHk

T |2

= Tr[HkVj
TVjHk

T ]

= Tr[HkUΛV
∗V Λ∗UTHk

T ]

= Tr[HkUΛΛ
∗UTHk

T ]

= λ2jTr[HkUU
THk

T ]

= λ2jTr[HkHk
T ]

(C.2)

We assume the channel gain from the nth transmit antenna at the smart meter

to the kth user by βn,k. Therefore,

|Hk
TVj|2 = λ2

jTr[HkHk
T ]

= λ2
jTr[(β1,k β2,k . . . βN,k)(β1,k β2,k . . . βN,k)

T ]

= λ2
j

N∑
n=1

|βn,k|2
(C.3)

Similarly,

|Hk
TVk|2 = λ2k

N∑
n=1

|βn,k|2 (C.4)
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Appendix D

Proof of Lemma 1
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Figure D.1. The Sub-channel Converted from the MIMO channel via SVD.

Taking the uplink case of the source node (k = 0) for example, the capacity

can be computed by decomposing the vector channel into a set of parallel scalar sub-

channels. The vector H0 in (7.3) admits a singular value decomposition (SVD) with

N singular values λ1, λ2, . . . , λN of the H0 [53].

From the perspective of information theory, we can rewrite the output for each

sub-channel as [60]:

Yj = ΛjXj + Ij + Zj, j = 1, 2, . . . , N. (D.1)

The equivalency is summarized in Figure D.1. We assume that for a certain

time slot, all the messages Wj being sent out at rate Rj are independent and uni-

formly distributed over their respective ranges {1, 2, . . . , 2Rj}, corresponding to the

codewords Xj , which is received by the receiver as a random sequence Yj, including

the effects of interference and noise in the link. And then the decoder maps the

received signal to form an estimated message Ŵj.

Define the probability of error,

P j
e = Pr{Ŵj �=Wj} (D.2)
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associating with the independency of N sub-channels,

R = H(W )

= I(W ; Ŵ ) +H(W |Ŵ )

(a)

≤ I(X ;Y ) + ε

= I(X1, X2, . . . , XN ;Y1, Y2, . . . , YN ) + ε

= H(Y1, Y2, . . . , YN )−H(Y1, Y2, . . . , YN |X1, X2, . . . , XN ) + ε

(b)
= H(Y1, Y2, . . . , YN )

−H(I1 + Z1, I2 + Z2, . . . , IN + ZN |X1, X2, . . . , XN) + ε

= H(Y1, Y2, . . . , YN )−H(I1 + Z1, I2 + Z2, . . . , IN + ZN) + ε

= H(Y1, Y2, . . . , YN )−
N∑
j=1

H(Ij + Zj) + ε

≤
N∑
j=1

H(Yj)−
N∑
j=1

H(Ij + Zj) + ε

≤
N∑
j=1

(
H(Yj)−H(Ij + Zj)

)
+ ε

(c)
=

N∑
j=1

1

2
log

(
1 +

Puλ
2
j

Iu + σ2
n

)
+ ε

(d)

≤ 1

2
log

(
1 +

∑N
j=1 Puλ

2
j

Iu + σ2
n

)
+ ε

(D.3)

where (a) follows Fano’s inequality and data processing inequality, where ε =
∑N

j=1(1+

P j
eRj); (b) follows the that H(Y |X) = H(X + I + Z|X) = H(I + Z|X); (c) is the

definition of capacity; (d) follows Jensen’s inequality.

122



References

[1] M. Sooriyabandara, and J. Ekanayake, “Smart Grid-Technologies for its reali-

sation.” 2010 IEEE International Conference on Sustainable Energy Technologies

(ICSET), Dec. 2010, pp:1-4.

[2] A. Ghassemi, S. Bavarian, and L. Lampe, “Cognitive Radio for Smart Grid Com-

munications.” 2010 First IEEE International Conference on Smart Grid Commu-

nications, 2010, pp:297-302.

[3] Y. Zhang, L. Wang, W. Sun, G. R. C., and A. M., “Distributed Intrusion Detection

System in a Multi-Layer Network Architecture of Smart Grids.” IEEE Transanc-

tions on Smart Grid, Vol.2, Issue 4, 2011, pp:796-808.

[4] L. Yang, G. B. Giannakis, “Ultra-Wideband Communications: An Idea Whose

Time Has Come. IEEE Signal Processing Magazine.” Vol. 21, Issue 6:26-54, 2004.

[5] S. Wood and R. Aiello R, Essentials of UWB. 2008, Cambridge University Press.

Cambridge, UK.

[6] J. Bellorado, S. S. Ghassemzadeh, and L. J. Greenstein, et.al., “Coexistence

of Ultra-wideband systems with IEEE-802.11a Wireless LANs.” GLEBECOM’03,

2013

[7] P. Yi, A. Iwayemi, and C. Zhou, “Developing ZigBee Deployment Guideline Under

WiFi Interference for Smart Grid Applications.” IEEE Trans on Smart Grid. Vol.

2, Issue 1, 2011, pp::110-120.

[8] F. Berens and P. Jung, “Wireless ultra-wide-band (UWB) communications: Tech-

nology, regulation, standardization, and application areas.” 2010 IEEE ICUWB,

Volume 1, pp:12-19.

123



[9] A. Huseyin, C. Zhining, and D. Benedetto, Ultra Wideband Wireless Communi-

cation. 2006, Wiley-Interscience, Hoboken, N.J., pp:10-11.

[10] Federal Communication Commission, Revision of part 15 of the commission’s

rules regarding ultra-wideband transmission systems, FIRST REPORT AND OR-

DER. ET Docket 98-153, FCC 02-48, February 14, 2002, pp:2-94.

[11] Z. Li, W. Zou, and B. Li, et.al., “Analysis on Coexistence of Ultra Wideband with

OFDM-Based Communication Systems”. IEEE Transactions on Eletromagnetic

Compatibility. Vol.53, Issue 3, 2011, pp:823-830.

[12] M. Hamalainen, V. Hovinen, and R. Tesi, et.al., “ On the UWB System Co-

existence With GSM900, UMTS/WCDMA, and GPS.” IEEE Journal on Selected

Areas in Communications. Vol.2, No.9, Dec. 2002, pp:1712-1721.

[13] R. Giuliano and F. Mazzenga, “On the Coexistence of Power-Controlled

Ultrawide-Band Systems With UMTS, GPS, DCS1800, and Fixed Wireless Sys-

tems.” IEEE Transactions on Vehicular Technology. Vol.54, No.1, Jan. 2005, pp:62-

80.

[14] A. Giorgetti, M. Chiani, and M. Z. Win, “The Effect of Narrowband Interference

on Wideband Wireless Communication Systems.” IEEE Transactions on Commu-

nications. Vol.53, No.12, Dec. 2005, pp:2139-2149.

[15] M. Chiani, and A. Giorgetti, “Coexistence Between UWB and Narrow-Band

Wireless Communication Systems (Invited Paper).” Proceedings of The IEEE.

Vol.97, No.2, Feb. 2009, pp:231-254.

[16] S. Kandeepan, G. Baldini, and R. Piesiewicz, “Preliminary experimental results

on the spectrum sensing performances for UWB-Cognitive Radios for detecting.”

IEEE 802.11n systems 6th International Symposium on Wireless Communication

Systems (ISWCS), 2009, pp:111-115.

124



[17] R. Yang, K. S. Kwak, and Z. Zhou, “Distributed water-filling algorithm for

direct-sequence ultra wideband cognitive radio network with limit on aggregate

power emission.” IET Communications, Volume 4, Issue 12, 2010, pp:1404-1414.

[18] G. Bansal, M. J. Hossain, and V. K. Bhargava, “Optimal and suboptimal power

allocation schemes for OFDM-based cognitive radio systems.” IEEE Trans on

Wireless Communications, Vol. 7, NO. 11, Nov. 2008, pp:4710-4718.

[19] C W Tan, S Friedland, and S H Low, “Spectrum Management in multiuser

cognitive wireless networks: Optimality and Algorithm.” IEEE Journal on Selected

Areas in Communications. Vol. 29, NO. 2, Feb. 2011, pp:421-430.

[20] J. Cai, K H Liu, X Shen, J W Mark, and T D Todd, “Power Allocation and

Scheduling for Ultra-Wideband Wireless Networks.” IEEE Transactions on Vehic-

ular Technology. Vol.57, No.2, Mar. 2008, pp:1103-1112.

[21] H. Yoon, and J. Kim, “Collaborative Streaming-based Media Content Sharing

in WiFi-enabled Home Networks.” IEEE Transactions on Consumer Electronics,

Volume 54, Issue 4, 2010, pp: 2193-2200.

[22] Wi-Fi Alliance, “Wi-Fi for the Smart Grid”, http : //www.wi −
fi.org/knowledgecenteroverview.php?docid = 4686, Sep. 2010.

[23] Wi-Fi Alliance, “Wi-Fi CERTIFIED Wi-Fi Direct Frequently Asked Questions”,

http : //www.wi− fi.org/files/20091019W i− FiDirectFAQ.pdf , 2011.

[24] Y. He, R. Yuan, X. Ma, and J. Li, “The IEEE 802.11 Power Saving Mecha-

nism: An Experimental Study.” IEEE Wireless Communications and Networking

Conference (WCNC), 2008, pp: 1362-1367.

[25] C. H. Gan, and Y. B. Lin, “An Efficient Power Conservation Scheme for IEEE

802.11 Wireless Networks.” IEEE Transactions on Vehicular Technology, Vol.58,

No.4, May 2009, pp:1920-1929.

125



[26] I. Lee, J. Bo, E. Y. Choi, J. H. Lee, and S. K. Lee, “Analysis of Power Con-

sumption and Efficient Power Saving Techniques for MIMO-OFDM-basedWiresless

LAN receivers.” 2011 Fourth International Conference on Sensor Technologies and

Applications, pp:597-601.

[27] M. Alizadeh, A. Scaglione, and R. J. Thomas, “From Packet to Power Switching:

Digital Direct Load Scheduling.” IEEE Journal on Selected Areas in Communica-

tions, Vol.30, No.6, Jul.2012, pp:1027-1036.

[28] T. T. Kim, and H. V. Poor, “Scheduling Power Consumption With Price Uncer-

tainty.” IEEE Transanctions on Smart Grid, Vol.2, No.3, Sep. 2011, pp:519-527.

[29] H. Li, L. Lai, and W. Zhang, “Communication Requirement for Reliable and Se-

cure State Estimation and Control in Smart Grid.” IEEE Transanctions on Smart

Grid, Vol.2, No.3, Sep. 2011, pp:476-486.

[30] N. Yang, M. Elkashlan, and J. Yuan, “Outage Probability of Multisuer Re-

lay Networks in Nakagami-m Fading Channels.” IEEE Transactions on Vehicular

Technology, Vol.59, No.5, May 2010, pp:2120-2132.

[31] O. Ali, C. Cardinal, and F. Gagnon, “Performance of Optimum Combining in

a Poisson Field of Interferers and Rayleigh Fading Channels.” IEEE Transactions

on Wireless Communications, Vol.9, NO.8, Aug. 2010, pp: 2461-2467.

[32] Q. H. Spencer, C. B. Peel, A. L. Swindelhurst, and M. Haardt, “An Introduc-

tion to the Multi-User MIMO Dowlink.” IEEE Communication Magzine, Oct.2004,

pp:60-67.

[33] M. A. Azarm, R. Bari, and M. Yue, et.al, “Electrical Substation Reliability

Evaluation with Emphasis on Evolving Interdependence on Communication In-

frastructure.” In Proceedings of International Conference on Probabilistic Methods

Applied to Power Systems, Sep.2004, pp:487-491.

126



[34] A. Goldsmith, Wireless Communications, Cambridge University Press 2005,

pp:390-392.

[35] M. Schubert, and H. Boche, “Solution of the Multiuser Downlink Beamform-

ing Problem With Individual SINR Constraints.” IEEE Transactions on Vehicular

Technology, Vol.53, No.1, Jan.2004, pp:18-28.

[36] Z. Luo, and W. Yu, “An Introduction to Convex Optimization for Communica-

tions and Signal Processing,” IEEE Journal on Selected Areas in Communications,

Vol.24, No.8, Aug.2006, pp:1426-1438.

[37] E. Lee, M. Gerla, and S. Y. Oh, “Physical Layer Security in Wireless Smart

Grid.” IEEE Communications Magazine, Aug.2012, pp:46-52.

[38] S. Galli, A. Scaglione, and Z. Wang, “For the Grid and Through the Grid:

The Role of Power Line Communications in the Smart Grid.” Invited paper, in

Proceedings of the IEEE, Vol.99, No.6, Jun.2011, pp:998-1027.

[39] HomePlug Powerline Alliance, Inc., HomePlug Green PHY TM1.1 The Standard

for In-Home Smart Grid powerline Communications: An application and technol-

ogy overview. Oct.2012.

[40] M. Korki, N. Hosseinzadeh, and T. Moazzeni, “Performance Evaluation of a

Narrowband Power Line Communications for Smart Grid with Noise Reduction

Technique.” IEEE Transactions on Consumer Electronics, Vol.57, No.4, Nov.2011,

pp:1598-1606.

[41] M. Zimmermann, and K. Dosert, “A Multipath Model for the Powerline Chan-

nel.” IEEE Transactions on Communications, Vol.50, No.4, Apr.2002, pp:553-559.

[42] S. Galli, “A Novel Approach to the Statistical Modeling of Wireline Channels.”

IEEE Transactions on Communications, Vol.59, No.5, May 2011, pp:1332-1345.

127



[43] S. W. Lai, and G. G. Messier,“The Wireless/Power-line Diversity Channel.” In

Proceedings of 2010 IEEE International Conference on Communications (ICC),

2010, pp:1-5.

[44] M. A. Azarm, R. Bari, M. Yue, and Z. Musicki, “Electrical Substation Relia-

bility Evaluation with Emphasis on Evolving Interdependence on Communication

Infrastructure.” in Proceedings of International Conference on Probablistic Methods

Applied to Power Systems, Sep. 2004, pp:487-491.

[45] O. Dousse, P. Thiran, and M.Hasler, “Connectivity in ad-hoc and hybrid net-

works,” in the proceedings of 2002 INFOCOM, vol. 2, pp. 1079-1088, 2002.

[46] D. Gesbert, S. Hanly, and H. Huang, et al., “Multi-Cell MIMO Cooperative

Networks: A New Look at Interference,” Selected Areas in Communications, IEEE

Journal on , vol.28, no.9, pp.1380-1408, Dec. 2010.

[47] W. Choi and J. G. Andrews, “Downlink Performance and Capacity of Distributed

Antenna Systems in a Multicell Environment,” IEEE Trans. Wireless Commun.,

vol. 6, no. 1, pp: 69-73, Jan. 2007.

[48] R. W. Heath, T. Wu, Y. H. Kwon, and A. C. K. Soong, “Multiuser MIMO in

Distributed Antenna Systems With Out-of-Cell Interference,” IEEE Trans. Signal

Process., vol. 59, No. 10, pp:4885-4899, Oct. 2011.

[49] M. Sawahashi, Y. Kishiyama, and A. Morimoto, et al., “Coordinated multipoint

transmission/reception techniques for LTE-advanced [Coordinated and Distributed

MIMO],” Wireless Communications, IEEE , vol.17, no.3, pp.26,34, June 2010.

[50] W. Feng, Y. Wang, and N. Ge, et al. ”Virtual MIMO in Multi-Cell Distributed

Antenna Systems: Coordinated Transmissions with Large-Scale CSIT,” IEEE J.

Sel. Areas Commun. Vol. 31, no. 10, pp: 2067-2081, Oct. 2013.

[51] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE Trans-

actions on Information Theory, vol.46, no.2, pp: 388-404, Mar. 2000.

128



[52] X. Wang and Q. Liang, “On the Throughput Capacity and Performance Anal-

ysis of Hybrid Wireless Networks over Fading Channels,” IEEE Trans. Wireless

Commun., vol. 12, no. 6, pp: 2930-2940, Jun. 2013.

[53] D. Tse, P. Viswanath, Fundamentals of Wireless Communication, Cambridge

University Press, Sep. 2004.

[54] M D Benedetto and G Giancola, Understanding Ultra Wide Band Radio Funda-

mentals. 2004, Prentice Hall

[55] A Roca, Implementation of a WiMAX simulator in Simulink. Diplomarbeit, Vi-

enna, Feb. 2007.

[56] Z. Li, and Q. Liang, “Capacity Optimization of Ultra-wide Band System under

the Coexistence with IEEE 802.11n.” 11th International Symposium on Commu-

nications and Information Technologies (ISCIT), 2011, pp:553-557.

[57] IEEE 802.11n D.7.0. Part 11:Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications, 2008, pp:245.

[58] C X Juan and Q Sheng, “Spectrum analysis of Ultra-wide band signal based on

Gaussian pulse.” Global Mobile Congress (GMC), 2010, pp:1-4.

[59] Electronic Communications Committee, ECC Report 64: the protection require-

ments of radio communications systems below 10.6GHz from generic UWB appli-

cations. Feb. 2005, pp:5-7, 24-27.

[60] T M Cover, J A Thomas, Elements of Information Theory Second Edition. 2006,

John Wiley and Sons, Inc., Hoboken, New Jersey

[61] S Boyd and L Vandenberghe, Convex Optimization. 2004, Cambridge University

Press

[62] A. Mitrofanova, “Lecture 3: Continuous times Markov chains. Possion Process.

Birth and Death process.” NYU, department of Computer Science, Dec.18, 2007.

129



[63] I. Humar, J. Zhang, Z. Wu, and L. Xiang, “Energy Saving Modeling and Perfor-

mance Analysis in Multi-Power-State Base Station Systems”, 2010 GreenCom and

CPSCom, 2010, pp:474-478.

[64] A. G. Hawkes, and A. M. Sykes, “Equilibrium Distributions of Finite-State

Markov Processes.” IEEE Transactions on Reliability, Volume 39, Issue 5, 1990,

pp: 592-595.

[65] L. Kong, G. K. W. Wong, and D. H. K. Tsang, “Performance Study and System

Optimization on Sleep Mode Operation in IEEE 802.16e.” IEEE Transactions on

Wireless Communications, VOL.8, NO.9, Sep. 2009, pp: 4518-4528.

[66] A. M. Saleh, and R. A. Valenzuela, “A Statistical Model for Indoor Multipath

Propagation.” IEEE Jouranl on Selected Areas in Communications, Vol.SAC-5,

No.2, Feb. 1987, pp:128-137.

[67] M. K. Simon, and M. Alouini, Digital Communication over Fading Channels 2nd

Edition, John Wiley Sons, Inc., Hoboken, New Jersey, Dec. 2004.

[68] W. Akkari, A. Belghith, and A. B. Mnaouer, “Enhancing power saving mecha-

nisms for ad hoc networks using neighborhood information.” IEEE Wireless Com-

munications and Mobile Computing Conference, 2008, pp:794-800.

[69] A. A. M. Saleh, and R. A. Valenzuela, “A Statistical Model for Indoor Multipath

Propagation.” IEEE Jouranl on Selected Areas in Communications, Vol.SAC-5,

No.2, Feb. 1987, pp:128-137.

[70] Q. Zou, A. Tarighat, and Ali. H. Sayed, “Performance Analysis of Multiband

OFDM UWB Communications with Application to Range Improvement.” IEEE

Transactions on Vehicular Technology, Vol.56, No.6, Nov. 2007, pp: 3864-3878.

[71] X. Zhang, Z. Lv, W. Wang, “Performance Analysis of Multiuser Diversity in

MiMO Systems with Antenna Selection.” IEEE Transactions on Wireless Com-

munications, Vol.7, No.1, Jan. 2008, pp: 15-21.

130



[72] S. S. Nam, H.-C. Yang, M.-S. Alouini, and D. I. Kim, “Impact of Interference on

the Performance of Selection Based Parallel Multiuser Scheduling.” IEEE Trans-

actions on Wireless Communications, Vol.11, No.2, Feb. 2012, pp:531-536.

[73] N. Chang, R. Rashidzadeh, and M. Ahmadi, “Robust Indoor Positioning using

Differential Wi-Fi Access Points.” IEEE Transactions on Consumer Electronics,

Vol.56, No.3, Aug. 2010, pp:1860-1867.

[74] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005, pp:

172-180.

[75] G. L. Stuber, Principles of Mobile Digital Communication 2nd Edition, Kluwer

Academic Publishers, 2002, pp:129-131.

[76] “IEEE 802.11n D.7.0. Part 11:Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications.” Sep. 2008, pp: 245.

[77] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels

Second Edition. John Wiley and Sons. Inc., Hoboken, New Jersey, 2005.

[78] H. Jafarkhani, Space-Time Coding Theory and Practice. Cambridge Universiry

Press 2005, pp:48-49.

[79] A. Sheth, and R. Han, An Implementation of Transmit Power Control in 802.11b

Wireless Networks, Technical Report CU-CS934-02, University of Colorado, 2002.

[80] Gunmmadi, R. H. Balakrishnan, and S. Seshan. “Metronome: Coordinating

Spectrum Sharing in Heterogeneous Wireless Networks.” Communication Systems

and Networks and Workshops, 2009, pp:1-10.

[81] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Commu-

nications.” IEEE Journal on Select Areas in Communications, Vol. 16, No. 8, Oct.

1998, pp:1451-1458.

131



[82] M. Katayama, T. Yamazato, and H. Okada, “A Mathematical Model of Noise

in Narrowband Power Line Communication Systems.” IEEE Journal on Selected

Areas in Communications, Vol.24, No.7, Jul.2006, pp: 1267-1276.

[83] Y. Jiang, X. Hu, and X. Kai, et al., “Bayesian Estimation of Class A Noise

Parameters with Hidden Channel States.” 2007 International Symposium on Power

Line Communications and Its Applications (ISPLC’07), pp:2-4.

[84] A. Mpitziopoulos, D. Gavalas, and C. Konstantopoulos, et.al, “A Survey on

Jamming Attacks and Countermeasures in WSNs.” IEEE Communications Survey

& Tutorials, Vol.11, No.4, Sep.2009, pp:42-56.

[85] X. Zhu, P. Li,Y. Fang, and Y. Wang, “Throughput and Delay in Cooperative

Wireless Networks With Partial Infrastructure.” IEEE Transactions on Vehicular

Technology, vol. 58, no. 8, pp. 4620-4626, Oct. 2009.

[86] W. Fu and D. Agrawal, “Capacity of Hybrid Wireless Mesh Networks with Ran-

dom APs.” IEEE Transactions on Mobile Computing, vol. 12, no. 1, pp: 136-150,

Jan. 2013.

[87] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd Edi-

tion, Prentice Hall, 2002.

[88] D. Kirachaiwanich and Q. Liang, “Capacity of Wireless Hybrid Networks with

Successive Interference Cancellation,” in Proc. 2010 IEEE Globecom, pp. 1-5, Dec.

2010.

[89] B. Liu, P. Thiran and D. Towsley, “Capacity of Wireless Ad Hoc Network with

with Infrastructure.” Proc. ACM MobiHoc, Montreal, Canada, September 2007.

[90] J. G. Proaksi and M. Salehi, Digital Communication, 5th edition. McGraw-Hill,

2008.

132



[91] M. Gotz, M. Rapp, and K. Dostert, “Power Line Channel Charateristics and

Their Effect on Communication System Design.” IEEE Communications Magazine,

Apr.2004, pp:78-86.

133



Biographical Statement

Zhuo Li received the Bachelor’s degree in Network Engineering from the School

of Communication and Information Engineering, University of Electronic and Scien-

tific Technology of China, Chengdu, China, in 2004. She worked on the Master’s

degree in Circuits and Systems in the School of Information and Communication En-

gineering, Beijing University of Posts and Telecommunications, Beijing, China from

2008 to 2011. She is currently pursuing the Ph.D degree in Electrical Engineering

at the University of Texas at Arlington, Texas, USA. Her research interests include

ultra-wideband (UWB) communications, wireless communications in Smart Grid ap-

plications, and Home Area Network (HAN) security for Smart Grid.

134


