COMPARISON OF PRESTRESSED
CONCRETE GIRDERS,
WITH DEBONDED STRANDS

AND HARPED STRANDS

by

CARMEN DIAZ-CANEJA NIETO

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF CIVIL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2014



Copyright © by Carmen Diaz-Caneja Nieto 2014

All Rights Reserved

N
' i



Acknowledgements

| would like to express my appreciation to Dr. Seyedali Abolmaali for his support .
My appreciation extends to Dr. Yeonho Park and Dr. Swoo-Heon Lee, for their time and
effort to help and guidance me throughout the experimental part of my research. | greatly
appreciate Dr. Shih-Ho Chao for helping me to have a better understanding of
prestressed concrete.

A special thanks needs to be extended to my husband, Brett DeVries, Family and
friends for their constant encouragement, support and love. | am truly blessed to them in
my life.

Additionally, 1 would like to thank Trinity Infrastructure LLC, Atesvi and Texas
Concrete for allowing me to conduct this research. All of their employees have be helpful
and friendly, but a special thanks needs to be extended to Carlos Fernandez Lillo, Clara
Balboa Arias and Tri Le. Their insight and help has been crucial for me to conduct this
research.

April 09, 2014



Abstract
COMPARISON OF PRESTRESSED CONCRETE GIRDERS WITH DEBONDED

STRANDS AND HARPED STRANDS

Carmen Diaz-Caneja Nieto

The University of Texas at Arlington, 2014

Supervising Professor: Seyedali Abolmaali

TxDOT standards follow a design that uses depressed strands for the
prestressed concrete |-Girders. A new design criteria using debonded strands for
prestressed concrete girders that is widely used in Europe is being introduced in Texas.
This new design has been proven to be effective and faster to construct since the strands
don’t need to be harped.

The Lyndon B. Johnson (LBJ) Express construction project is located on I-35 and
[-635 in North Dallas Texas and required placement of approximately 7,000 girders to
complete this extensive project. A typical girder utilized in this project is the Tx54 with a
span length of 110 feet; therefore this particular girder design was studied in this
research. The testing of the girders were conducted at the precast plants of two different
manufacturers: one manufacture constructed prestressed concrete girders with
debonded strands and the other only prestressed concrete girders using depressed
strands. For the testing, strain gauges were placed along five girders to measure the

reaction of the concrete when the strands are released.



This study follows the process of construction for the two types of girders. The
beams were tested at the precast plants and modeled by a finite element software to
allow for comparison with tested results. This comparison will allow the safest and faster

girder design for future construction projects.
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Chapter 1
Introduction
1.1 Introduction
1.1.1 Prestressed Concrete
Prestressed Concrete is the method in which the properties of the concrete is
improved by introducing steel within the concrete. Concrete is a material known to have a
high capacity to withstand compression forces, but concrete is not able to support tensile
forces. On the contrary, steel is a material that is able to support tensile and compressive
forces. Combining those two materials we get an element that is strong in compression
but also is able to handle tensile forces. However, when a flexural load is introduced to a
regular reinforced section, some cracks are developed.
To reduce the tensile stressing that are produced at the bottom, as shown in
Figure 1.1, a compressive force (prestressing) is introduced to the reinforced concrete

section, effectively transforming the concrete section into an elastic material.

vy

COMPRESSION )

A A 4
| A W A
‘ REINFORCED CONCRETE BEAM

TENSION

Figure 1.1: Principles of reinforced concrete.
When this method is utilized to construct the bridge girders, it is referred to as a

Prestressed Concrete (PC) beams. The objective in the girders is to obtain a parabolic



strand profile where the load is distributed uniformly on the concrete along the length of

the strand (Figure 1.2).

Y\wlrwlrwlrwlrwlrwlrwlrvlrir/Y
wlrlre_,ﬁ_y
A

A

Figure 1.2: Parabolic distribution of prestressing.
The prestressing concept is not new, many examples can be found from
centuries ago and in different locations throughout the world. Some of those examples
are the wooden barrels (Figure 1.3) or the Totora Reed boats (Figure 1.4 and Figure 1.5)

that can be found in Lake Titicaca .

—
— +—
COMPRESSIVE
PRESTRESS
—
WOODEM STAVE TENSILE

PRESTRESS
RADIAL
PRESSURE

WOODEN BARREL

METAL BAND

Figure 1.3: Prestressing concept for a wooden barrel.



Figure 1.4: Totora reed boats (Staples, 2006).

Boat's Deck

The hullis two
large bundles

Compressive

Forces Tension Forces

supoorted by the ropes

Heart of Bundle

Figure 1.5: Prestressing concept of totora reed boats.

Although the prestressing concept has been around for a while, the use of PC
in the United States is a relatively new concept that was introduced by Eugene Freyssinet
(1879-1962). He built the first concrete bridge in the US in Pensylvania, with a centre
span of 155 ft in 1949 (Naaman, 2012).

1.1.2 ABAQUS

ABAQUS is a general-purpose finite element program that was used to model
the 3D model of the girders and evaluate the response.

The finite element method (FEM) is commonly used to model the behavior of PC
girders and main objective for utilizing (FEM) in this study is to obtain a model that

reflects the girder behavior after release.



The main advantage of creating this model is that it can be used to predict the
behavior of the girder at release, which is one of the most critical steps when casting a
girder.

1.2 Project Background

The Lyndon B. Johnson (LBJ) Express construction project is located on 1-35 and
[-635 in North Dallas Texas (Figure 1.6). When completed, this project will consist of
eight lanes for general purpose traffic, two to four managed lanes, and two to three
frontage road lanes. Project construction began early in 2011 and completion will occur in
the summer of 2015, resulting in dramatically expanded capacity. To complete this

project, approximately 7,000 girders will be placed to complete this extensive project.

Figure 1.6: Project location (Google, Inc.).

A typical girder for this project was studied is the Tx54 with a span length of 110
feet. The testing of the girders was conducted at the precast plants of two different
manufacturers: one manufacture only constructs PC girders with debonded strands and
the other only constructs PC girders using depressed strands. For the testing, strain
gauges were placed along four girders, two from each manufacter, to measure the

reaction of the concrete when the stress from the prestressed strands were released. The



strain gauges location were varied along the study, first it was focused to the girder end
since is where potential cracks has seen to occur and then the strain gages were placed
along the girder to measure the stress that the concrete has along the girder.
1.3 Research Obijectives

The main objective of this research is to compare and analyze two typical
techniques for prestressing concrete girders. The analysis is focused on the stresses that
the steel transmit to the concrete when the prestressed strands are released and also the
two different precast construction. The experimental data was used to verify a finite

element model that can be used in the future to predict the girder behavior at release.

The following steps were conducted to achieve this objective:
1. Visit to two precast plants to observe the construction process. Both prestressing
methods used to construct the girders were observed and described in this study.
2. Girder testing at the precast plants to obtain experimental data to verify the
calculations and the finite element model.
3. Girder calculations were conducted to obtain the parameters needed for the finite
element model.
4. Abaqus was used to create a finite element model of the behavior of the girder at
release. It was focused on the transfer region of the girder.
1.4 Organization and Summary
The organization of this thesis progresses in such a way that it will allow the
reader to understand basic concepts before results and conclusions are provided. In
general, the layout follows the previously listed steps 1 through 4. The following provides

a brief summary of each chapter within this thesis:



Chapter 2 provides information found in literature on the end girder behavior for
both methods of prestressing. The two different methods of girder construction are
described.

Chapter 3 describes the testing procedure that was followed to compare the
behavior of both girders.

Chapter 4 provides the calculations necessary following AASHTO 2012 to model
rhe girder with the finite element program Abaqus.

Chapter 5 describes the basic background information about the information
used for the finite element program Abaqus to model the girder.

Chapter 6 is the chapter where general conclusions from this study are provided.

Chapter 2
Prestressed |-Girder Construction

2.1 Girder End Behavior
Prestressed girders for bridge construction is increasing being used due to their
high performance and their quality/economy ratio. Strands in the concrete girders cannot
be only straight and bonded because the high tensile forces transmitted to the concrete
at release, would cause the girder to fail. Two different methods utilized to reduce this

tensile forces which are being compared in this study are:

1. Utilizing partial debonded strands (Figure 2.1), and

2. Using harped strands (Figure 2.2).

Debonding
~7]

Anchorage // .'/ i = — Jack
Tl ===k




Figure 2.1: Schematic showing pretensioning of debonded strands.

Hold-down forces

Anchorage ~—" T~ Jack

~—Y Y K y A >
Hold-up forces

Figure 2.2: Schematic showing pretensioning with harped strands.

The use of harped strands is the common method used in Texas; however, each
of these two methods has been utilized in the LBJ Express Project and each construction
technique is independent. However, several cracking has been seen to develop after the
release of the prestressed strands.

As a result of these developed cracking in the harped strand girders, several
investigations have been conducted to identify the stresses induced by the strand
releasing process. Generally, it was found that these cracks are originated by the effect
of the prestress transfer that is produced when the strands are released.

Kannel, French, and Stolarski (1998) conducted a study on end cracking
behavior on 45, 54, and 72 inch I-beams with draped strands. It was observed that the
horizontal cracks formed at the web-flange interface were produced by stress
concentrations and the strand release pattern did not affect those cracks (Kannel et al.
1998). To reduce end cracking, debonding additional prestressed strands would reduce
the tensile forces (Kannel et al. 1998).

Kahl and Burgeno (2011) conducted an investigation on the effects produced by
the debonded strands on the prestressed concrete beams. Since the bond strength of
these debonded strands are considered zero compared to strands that are fully bonded
to concrete, the stress levels at the end of the beam are less than harped strands (Kahl &

Burgueno, 2011). However, cracks can occur along the entire debonded length when



using flexible sheating, due to the radial expansion that is produced for the reduction of
the bond strength (Kahl & Burgueno, 2011). It was stated that this damage can be only
local and solely affected by confinement or reinforcement (Kahl & Burgueno, 2011).
2.2 Construction Procedure

In September 2010, Texas Department of Transportation released a new set of girder
standards, for Tx40 and Tx54. The girder that it is studied is Tx54 which replaced
Standard Beam type IV. The reasons for these new girder sections are:

e Improved stability,

e Wider length between girders,

e Improved durability

For the LBJ project, approximately 7,000 girders have been casted. The Tx54 type
girders have been utilized extensively for the LBJ project, representing approximately 66
percent of the total girder types that has been constructed and implemented.
Approximately 34 percent of these Tx54 type girders use constructed using the harped
strand methods, with the remained constructed utilizing the debonded strand method of
construction. The typical length for Tx54 in the project was 110 ft; therefore, conducting
testing on this length of Tx54 beam is warranted. Construction sequencing for the Tx54
girders which were utilized in this research is provided subsequently.

2.2.1.1 Girder with Harped Strands Construction Sequence
The following outlines the construction sequence conducted during the

construction of the Tx54 girders using harped strands:

1. Placement the bottom strands in the casting bed. These bottom strands are

shown in Figure 2.3, and were either manually or mechanically placed within the

casting bed.
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Figure 2.3: Placement of bottom strands in the casting bed
2. Placement of the harped strands. These harped strands were placed above the
bottom strands within the casting bed, as shown in Figure 2.4. Similarly to the
bottom strands, these harped strands were either mechanically or manually
placed. The horizontal configuration of these strands was temporary, and the

strands were manipulated in the subsequent construction step.

e Jacks _—— Girder Boundary
/ Support | _—— Strands to be Harped Anchorage —
__________ beoooooodioonoony ooy —\
. : |
1 1 E 1

L L L e T T T T T T LT T T T T TTTT
= == - —

Strands — Casting Bed
Figure 2.4: Placement of harped strands in the casting bed
3. Placement of hold-down and hold-up anchors. An uplift force of 29 kips is
produced at the hold down point. The magnitude of this force has to be taken into
account to ensure that the hold-down device will be able to resist this load.
Typical locations of the hold-down and hold-up anchors is provided in Figure 2.6,
where the hold-down anchors are normally placed within the girder limits and the
hold-up anchors are positioned outside. Placement of these anchors is critical, as

incorrect placement of these anchors could cause an accident.
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Figure 2.5: Schematic of the hold-up and hold-down anchors.
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Figure 2.6: Hold-up and hold-down anchors placement within the casing bed
(construction of two girders in one casting bed).
4. Placement of Reinforced Steel. The typical reinforcement placed is shown in

Figure 2.7, and is usually placed manually by a crew of 6 to 8 workers.

~ Jacks _-Hold-up |
[ S " anchor . Harped Strand Anch
- Support - . - Harped Strands nchorage .
O\ __ Steel Reinforcement \
__________________________ .\y———-——-.-——-——-—.———— ————————--.! _
a /%
\\‘\ =5 : || :\\\ = %
#.llllllﬁlllllll/ llJlJJII‘A‘!:lllll\llllﬁlll!llJ lll\.l‘bﬁllI 11
J/, \\\ \\
Hold-down anchor ~ Strands ~ —Casting Bed

Figure 2.7: Girder with all the necessary reinforcement.
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5. Stressing of the strands. An average axial force of 31 kips was placed on each

strand with jacks (Figure 2.8).

~Hold-u
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Figure 2.8:Stressing the strands
6. Placement of mold for the girder. The molds were placed with mobile cranes and

allow the concrete to be poured and cured around the steel reinforcement (Figure

2.9).
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Suppor} _~~ anchor \\ ~ Harped Strands Anchorage ~
. A Mold for girder \.__\ \ - Steel Reinfocement
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ir

:i

= = 1 EX ]\] 'I"I I_! .' 'I_] ]—!. ]'1. 'I'.'I.'I._! :I_-i'. '.I'.T 'I_] ]_] 1 11
e 3 ==
— Strands ~——Casting Bed

Figure 2.9: Mold placement along the girder line.

7. Concrete pouring. Qualitiy assurance was conducted during the pouring of the
concrete by checking that the slump was less than 9 inches, and six cylinders
were obtained to test the compression strength of the concrete.

8. Concrete curing. Wet curing was used and it usually required a cure time of at

least 24 hours.
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9. Concrete strength verification. The concrete cylinders obtained when the
concrete is pour into the molds, were tested following ASTM Standard
C39/C39M, which consisted of applying a compressive force until failure
occurred. The concrete strength is obtained by dividing the load at which the
concrete fails by its area.

10. Concrete block placement. If the technicians at the facility consider that the uplift
force at the hold-down point locations to be too great. To prevent this, two
concrete blocks, as shown in Figure 2.10 and Figure 2.11, of approximately

18,500 Ibs were placed along the girder line to compensate for this uplift force.

- Hydraulic Jacks
_— Concrete
rSupport [ gjock

H_
-
i

T LT 11T T T T T T T 1 T 1 T 1 T T T T L 1T I‘il L T T T T T T T T T T 1T T 1 T 01T L 1TT
o e '\. N =3

T Strands - .

~— (Casting Bed

Figure 2.10: Concrete block placement before releasing the stress from the strands.

12



Concrete Block

Figure 2.11: Schematic of concrete block on top of the girder.

11. Release of stress and cutting of the strands. The stress is released gradually,
typically taking between 20 and 30 minutes to release all the stress placed upon
the strands. Once all of the stress has been released, the strands are cut by
flame cutting.

2.2.1.2 Girder with Debonded Strands Construction Sequence
The following outlines the construction sequence conducted during the
construction of the Tx54 girders using debonding strands:

1. Steel reinforcement assembly. For this case, the facility had an area that was
used to construct steel reinforcement cage. One or several workers can work at

the same time at different locations of the girder as shown in Figure 2.12.




Figure 2.12: Steel reinforcement being assembled.
Steel reinforcement and strand placement in the casting bed. Once the steel
cages were constructed, they were lifted and transported to the casting bed
(Figure 2.13) with a crane as shown in Figure 2.14.
The same cranes are the ones used to lift the girder after the construction of the

girder was completed (Figure 2.15).

Figure 2.13: Reinforced steel after being placed in the casting bed.
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Figure 2.14: Girder reinforcement being moved to the casting bed.

Figure 2.15: Girder lifting.

3. Once the cage is placed, the strands are placed in the device shown in Figure
2.16 in their respective position in the steel cage. Then a cable is hooked to the
end of this device and pulling from it mechanically, the strands are placed along

the girder line in an efficient and quick manner.
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Figure 2.16: Device used to place the strands along the girder.
4. Stressing of strands. After all the strands are placed, the strands are stressed

with a force of 44 kips per strand. (Figure 2.17)

/ _J_asc:gpor . Anchorage —.

| i.l _—— Steel Reinforcement

| i e s o 2 e s f e e e an
g 000 U
== LML LR DO L D

=: i3 T — T — * = .\:
\ N
\ Stress ~—— Strands “—Casting Bed

Figure 2.17: Stress of the strands
5. Placement of plastic sleeve to debond the strands. A worker is needed to place
the plastic sleeve as shown in Figure 2.18. The location for the debonding is

always at the end of the girder and only at the bottom strands.
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Figure 2.18: Debond strand location in the grider line.

Texas Department of Transportation requires that the ends of this plastic sleeves
has to be taped, which can be time consuming since the workers do not have easy
access to the strands due to the reinforcement from the steel cage. Different types of
plastic sleeves have been tried to reduce the time required for plastic sleeve placement.
When this testing was started, due to the type of plastic sleeve that was used, Figure
2.19. For this type of sleeve, all the debonded length was required to be taped so that the

concrete didn’t penetrate between the sheath and the strand.

17



Figure 2.19: Strand debonded.

To reduce this time, another type of plastic sleeve is being used, as shown in
Figure 2.20. Instead of only one sleeve, two cylindrical sheets were used, reducing the
time for its placement. Using this type of debonding, it is not needed to tape along all the
debonded length, just taping the end of the length and in the center is enough to prevent
the concrete from penetrating and coming in contact with the strand. Therefore, this type

of sheet reduced the effort and time when debonding the strands. Figure 2.21

18



Figure 2.21: Worker placing the plastic sleeve to debond the strand.

Concrete pouring and vibration(Figure 2.22). Similarly to the harped strands, the
slump was verified (Figure 2.23 and Figure 2.24) and six cylinders (Figure 2.25)
were taken to ensure the concrete strength was adequate before release.

Additionally, the temperature is checked.
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Figure 2.23: Worker realizing slump test.
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Figure 2.25: Collection of concrete cylinders.
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7. Wet curing concrete. The process of curing usually took about 24 hours and used

a wet matis placed along the girder line (Figure 2.26 and Figure 2.27).

Figure 2.27: Girder line view with wet mat.
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8. Concrete strength verification. The cylinders were tested following ASTM
Standard C39/C39M. The test consisted of applying a compressive force until
failure occurs. Dividing the load at which the concrete fails by its area, the
concrete strength was obtained. Once the concrete had reached the desire
concrete strength for release, the release of the stress process began.

9. Release of mold. The mold is opened with the help of a crane, as shown in

Figure 2.28 and Figure 2.29.

Figure 2.28: Crane opening girder mold.
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Figure 2.29: Girder mold partially opened.

10. Top strands flaming cut. The first strands were cut were those located at the top
of the girder, as shown in Figure 2.30. Once the top strands were cut, the stress
that is applied to the strands started gradually to be reduced with the jacks
(Figure 2.31). In order to control the release, one worker had to control the stress

with the gauge that is shown in Figure 2.32.
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Figure 2.30: Worker flame cutting the top strands of girder.
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Figure 2.32: Gauge to control the release of the stress applied to the strands.

11. Release of bottom strands. Flame cutting of the bottom strands began after the
release of 80 percent of the strand stress. The flame cutting was conducted by a
worker at each end of the girder who were in constant contact (Figure 2.33). This
ensured that the strands were flame cut in the same sequence (Figure 2.34).
This cutting sequence continued until all of the bottom strands were cut and only

the strands between the girders remained (Figure 2.35).
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Figure 2.34: View of strands after being cut.
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Figure 2.35: View between girders after cutting the strands.
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Chapter 3
Testing Procedure
3.1 Testing procedure description

Strain gauges were used to measure the micro-strains that occurred in the

concrete when the strands within the girder were released. The subsequent steps were

followed to attach the strain gauges to the girders:

1.

10.

11.

Degrease/cleaned the area where the strain gauge were to beplaced, using
aCSM-2 degreaser.

The surface was wetted with M-Prep Conditioner A.

The surface was roughened using a silicon-carbide paper.

A mark was placed in the location for the strain gauge for proper placement of
strain gauge.

A reasonable amount of M-Prep Neutralizer 5A was applied and scrubbed.

The strain gauge was carefully removed from its envelope

The strain gauge was placed on the concrete at the previously marked in the
location.

The gauge peel was removed.

A protective coat was applied as shown in Figure 3.1

This proceed was repeated and a reasonable amount of time was waited for the
coat protecction to make effect before starting the testing.

The strain gauge was connected to a switch box, (Figure 3.3) The switch box
connects the strain gauge to the strain reader (Figure 3.4). The strain reader is
connected to the computer (Figure 3.5) that using an specific software it gets the

readings from the strain gauges.
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Figure 3.1: Coat protection over the strain gauge.

Figure 3.2: Strain gauge attached to the girder.
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Figure 3.4: View of girder with testing equipment installed.
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Figure 3.5: Strain reader connected to the computer.

Figure 3.6: Strain gauges on the girder.

3.2 Expected testing results
The force from the prestressing is gradually transferred from the steel to the

concrete at the end of the girder. At the end of the girder the steel is considered to

31



transfer zero stresses and progressively transfer all the prestress to the concrete. Section
4.2. explains the idealized relationship between steel stress and distance from from the
end of the girder.

Since most of the strands are located at the bottom of the girder, higher
compression strain is expected in that region. Tension strains can be expected at the top
of the girder due to the effect of the prestress and the effect self-weight of the girder.

3.3 First Monitoring

The first monitoring was conducted on one Tx54 girder with debonded strands.
Fifteen strain gauges were placed on concrete at the end of the girder, exactly at 54
inches from the (Figure 3.7). strain gauges were labeled for the section and row in which

they were placed (i.e., the strain gauge placed in Section 1 and row 3 would be labeled

[1-3]).
==w  Attached strain gauge with gauge length of 5-in.
¥ S0 , Section1 , Section2 , Section3d
@2 | 1 1 1
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:;[_ m—\.‘: = =] =
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il 32 1 54

Figure 3.7: Strain location for the first monitoring (units in inches).

The last row of strain gauges were not installed due to the conditions present at

the time of monitoring, with the mold attached at the casting bed. Placement of these
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strain gauges would have been time consuming and resulted in an unacceptable girder
construction delay; therefore, these strain gauges were not placed.

Results from strain gauges located in Section 1 is provided in Figure 3.9. Strain [1-4]
shows an abrupt increase in strain (tension) immediately before the flame cutting of the
strands on top of the girder finished. This can be explained by a concrete failure in that
area, potentially leading to the development of a. It should be noted that microcracks
(Figure 3.8) have been observed in previously constructed girders with the same design.
Alternatively, this result can also be explained by a malfunction in the strain gauge. Strain
gauges [1-2] and [1-3] experienced the expected compression, varying lineally with no
abrupt changes. Strain gauge [1-1] experienced relatively small amounts of change in

strain during all the release process.

Figure 3.8: Microcraks at girder end.
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Figure 3.9: Strain gauges located at section 1.

Strain gauge results from Section 2 during the first monitoring period are
provided in Figure 3.10. Similar but not as great strains as strain gauge [1-4] are shown
in strain gauge [2-4] (i.e., the concrete experienced tension at the beginning of the
monitoring period followed by an abrupt drop in strain to compression following the end of
the flame cutting of the top strands). Monitoring results from strain gauge [2-3] are
drastically different than what should theoretically occur (i.e., the strain gauge results
showed that the concrete is experiencing tension when there should theoretically be
compression in that region). Strain gauge [2-2] showed an abrupt change in
compression, which can be interpreted that the concrete has failed, potentially leading to
the appearance of microcracks. An abrupt change in strain at multiple strain gauges
occurs at the end of the flame cutting of the top strands leads, leads to the conclusion
that this phase of the construction sequence should be modified to prevent the

development of microcracks in the girder.
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Figure 3.10: Strain gauges located at section 2.
Figure 3.11 represents the results obtained from the strain gauges located in Section 3.
All the strain gauges, except [3-4] showed a linear variation (i.e., no abrupt change in the
strain results) of the concrete. Strain gauge [3-4] showed more variation in the concrete;
however, these changes in the strains were relatively small compared to other sections.
A general conclusion can be made that the abrupt change in strains at the end of
the flame cutting of the top strands is greater the closer the strain gauges were to the end

of the beam at the start of the web.
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Figure 3.11: Strain gauges located at section 3.

3.4 Second Monitoring

The second testing incorporated both the harped and debonded strands for the
Tx54 girder with a length of 110 feet. Seventeen strain gauges were attached in each of
the two prestressed girders at the same location. It should be noted that two concrete
blocks were placed along the girder line for the harped strands girder. As a result of the
first monitoring results, which showed that the critical motoring locations were at the
edges of the girder, greater amounts of strain gauges were placed at these locations. The
resulting strain gauge locations for the second monitoring of both types of Tx54 girders is

provided in Figure 3.12.
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Strain gauge results from the second monitoring of the Tx54 girders are provided
in Figure 3.13 through Figure 3.29. These figures present a comparison between strain
gauges at the same location of the girder for two types of prestressing method. The
results cannot be directly compared because the timing for the release varied between

the two girders. However, the strain gauge reading at the end of the monitoring period

Figure 3.12: Strain gauge locations for the second monitoring.

between the two girders can be compared.

General conclusions from the second monitoring of the debonded and harped

strand Tx54 girders are as follows:

1.

was subjected to tensile forces at the release for both cases. These

Some strain gauges at the end of the girder showed that the concrete

results are similar to those obtained from the first monitoring.

showed an abrupt tension strain variation (similar to the first monitoring)

when the flame cutting of the top of the strands was completed.

when the compression from the girder was supposed to be released but

prevented by the concrete block.

strands girders when compared to the debonded strands (Figure 3.30).
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The strain gauges at the end of the girder for the debonded girders

Harped girder strain gauges tended to monitor a noise strain variation

The top of the girder strain gauges showed higher strains for the harped




5. Strain gauges at the bottom of both types of girders did not show a
significant variation in strains (Figure 3.31).

6. Strains monitored at the end of the girder showed tension and
compression behavior at the same section (Figure 3.32), which was in

agreement with the first monitoring.
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Figure 3.13: Strain gauge [2] readings for both types of girders.
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Figure 3.14: Strain gauge [3] readings for both types of girders.
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Figure 3.15: Strain gauge [4] readings for both types of girders.
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Figure 3.16: Strain gauge [5] readings for both types of girders.
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Figure 3.17: Strain gauge [6] readings for both types of girders.
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Figure 3.18: Strain gauge [7] readings for both types of girders.
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Figure 3.19: Strain gauge [8] readings for both types of girders.
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Figure 3.20: Strain gauge [9] readings for both types of girders.
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Figure 3.21: Strain gauge [10] readings for both types of girders.
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Figure 3.22: Strain gauge [11] readings for both types of girders.
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Figure 3.23: Strain gauge [12] readings for both types of girders.
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Figure 3.24: Strain gauge [13] readings for both types of girders.
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Figure 3.25: Strain gauge [14] readings for both types of girders.
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Figure 3.26: Strain gauge [15] readings for both types of girders.
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Figure 3.27: Strain gauge [16] readings for both types of girders.
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Figure 3.28: Strain gauge [17] readings for both types of girders.
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Figure 3.29: Strain gauge [18] readings for both types of girders.
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Strain gauges at top
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Figure 3.30: Values for strain gauges [2], [3], [4], [5], [6], [7] & [8].
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Figure 3.31: Values for strain gauges [9], [10], [11], [12], [13], [14] & [15].
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Strain gauges at girder end
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Figure 3.32 Strain gauges [2], [16], [17], [18] & [9] values.
3.5 Third Monitoring
The third testing was followed a similar testing method as the second monitoring;
however, eleven strain gauges were attached only to the bottom flange of each Tx54
girder. Additionally, the concrete block was not placed on top of the harped strands
girder. Locations of the strain gauges for both of the girders is shown in Figure 3.33.
Results for the third monitoring are provided in Figure 3.34 through Figure 3.44.
Similarly to the second monitoring, a comparison between the harped and debonded
girders cannot be directly be compared because of variations in release timing. However,
the final strain gauge result between the two girders can be compared.
Conclusions and comparisons between the two other monitoring periods (first
and second) are stated as follows:
1. Very similar results and conclustions are gathered from the third
monitoring as the second.
2. The girder with harped strands did not present a noise variation in the

strains; therefore, the conclusion made during the second monitoring
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about the concrete block causing this variation can be considered

accurate.
2 Jf 5
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Figure 3.33: Strain location for the third monitoring.
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Figure 3.34: Strain gauge {2} readings for both types of girders.
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Figure 3.35: Strain gauge {3} readings for both types of girders.
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Figure 3.36: Strain gauge {4} readings for both types of girders
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Strain {5}
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Figure 3.37: Strain gauge {5} readings for both types of girders.
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Figure 3.38: Strain gauge {6} readings for both types of girders
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3.39: Strain gauge {7} readings for both types of girders.
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Figure 3.40: Strain gauge {8} readings for both types of girders.
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Figure 3.41: Strain gauge {9} readings for both types of girders.
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Figure 3.42: Strain gauge {10} readings for both types of girders.
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Figure 3.43: Strain gauge {11} readings for both types of girders.
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Figure 3.44: Strain gauge {12} readings for both types of girders.
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Chapter 4

Girder Design

The design and revision process for the LBJ Express Project can be summarized

as follows:

Preliminary girder design following AASHTO LRFD Bridge Design
Specifications and Texas Department of Transportation Standards is
conducted by consulting firms working for Trinity Infrastructure.

The preliminary design is reviewed and approved by Trinity
Infrastructure.

Issued for construction drawings are produced by the preliminary girder
design consulting firms.

These drawings are sent to manufacturing plants to produce the girders.
The manufacturing plant companies are allowed to improve the design,
following the AASHTO LRFD Bridge Design Specifications. The
production shop drawings that will be used for the casting of the girder is
sent to the technical office in Trinity Infrastructure.

These shop drawing are reviewed, revised, and approved by Trinity
Infrastructure. Once these drawings are approved, casting of the girders

can be conducted.

As a result of the AASHTO LRFD Bridge Design Specifications being significantly utilized

in the design of the girders for the LBJ Express Project, these specifications will also be

used for this research. The subsequent calculation procedure was based on girder

specifications provided by the shop drawings (APENDIX B) from the precast plants and

include the following:

Diameter of the strands (9),
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e Total number of strands,

e Number of strands harped or debonded,

e Tensile strength of prestressing steel (fpu),

e Type of tendon,

e Compressive strength of concrete (f',),

e Compressive strength of concrete at release (f';),
e Eccentricity at center line of girder (e.;), and

e Eccentricity at end of girder (eqnq)-

4.1 Prestress losses

For the purpose of this study, it is important to estimate the prestress losses that
occur after transfer of stress from the steel to the concrete. f,, will be considered as the
stress remaining after all losses have occurred at release. For pretensioned member, the
total losses are computed as (AASHTO, 2012):

Afyr = Afpps + Afprr (1)
Where; Af,r is the total loss (ksi), Af,gs is the sum of all losses or gains due to elastic

shortening or extension at the time of application of prestress and/or external load (ksi)

and Af,,,r is the sum of the losses due to long-term shrinkage and creep of concrete and

the relaxation of steel (ksi).
4.1.1 Elastic Shortening

This elastic shortening can be calculated as follows (AASHTO, 2012):
Ep
AprS = E_thcgp (2)
According to section C5.9.5.2.3a of AASHTO (2012), the loss due to elastic

shortening in pretensioned member may be determined by the following alternative

equation (AASHTO, 2012):
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_ Aps'fpbt'(lg"'e‘mz'Ag)_eTn'Mg'Ag
Afys = Loteloten™te) ey @
ps'(Igtem?Ag)+ Ep

Where; 4, is the gross area of section and E; is the modulus of elasticity of concrete at

transfer
E,; is the modulus of elasticity of concrete at transfer as (AASHTO, 2012):
Eg = 33,000 - Ky - w.25\[f" 4
Where; K; is the correction factor for source of aggregate to be taken as 1.0 unless
determined by physical test, and as approved by the authority of jurisdiction (AASHTO,
2012) ,w, is the unit weight of concrete, E, is the modulus of elasticity of prestressing
tendons, e, is the average prestressing steel eccentricity at midspan. f,;, is the stress in
prestressing steel immediately prior to transfer. According to Table 5.9.3-1 (AASHTO,
2012), for low relaxation strands, the stress limit is f,,. = 0.75" f,,, where f,, is the
tensile strength of prestressing steel. I, is the moment of inertia of the gross concrete
section and M, is the midspan moment due to self-weight
4.1.1.1.1 Creep, Shrinkage and Relaxation of Prestressed Tendons
The prestressed losses due to creep, shrinkage, and relaxation can be calculated

as (AASHTO, 2012):

Mpir = 1072525y 12 Yot + M (5)
The value obtained from the previous equation is just an approximation. According to
Section C5.9.5.3 (AASHTO, 2012) the values obtained are conservative; therefore,
Article 5.9.5.4 (AASHTO, 2012) can be used instead to obtain these values. However,
this article just specifies losses from the time to transfer the girder to when the deck is

placed and the time from when the deck is placed until the final time, so for the

calculation of prestress losses after release it is used article 5.4.3.2 (AASHTO, 2012).
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4.1.1.2 Creep

The creep coefficient can be calculated as follows (AASHTO, 2012):

W(t,t) = 1.9 kg kpe - k- k- ;70118 )
Where (AASHTO, 2012);

ke =145-013(%) 2 1 @)
Where; % is the volume-to-surface ratio and kj. can be defined as (AASHTO, 2012):

kp. = 1.56 — 0.008H (8)
Where; H is the relative humidity (%).

To calculate the coefficient ks (AASTHO 2012):

5
kf - 1+frg (9)

To calculate the coefficient k. (AASTHO 2012)

t

kea = (10)

Where; t is the maturity of concrete (day). Additional equations can be defined as

(AASHTO, 2012):

f Aps
Eci = % (11)
g =W g, (12)

Therefore the losses due to creep (AASTHO 2012):
Ays(CR) = &+ B, (13)
4.1.1.3 Shrinkage
The shrinkage can be calculated as (AASTHO 2012):

Esp = kSthkfktd0'48 . 10_3 (14)
Where (AASTHO 2012):

kns = 2 — 0.014H (15)
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Therefore, the total losses due to shrinkage are computed as follows:
Afps(SH) =&n -’ Eps (16)
4.1.1.4 Relaxation of Prestressing Steel

The relaxation of the prestressing steel can be defined as (AASTHO 2012):

o) = fyne |1 - 22200 (£222 o 55))| (15)

K foy
Where; K = 30 for low relaxation strands, t is duration of loading in hours (AASTHO
2012):
Afps(RL) = fope = fps(0) (16)
4.1.2 Total prestress after all losses have occurred at release
The total prestress after all losses have occurred at release can be calculated as
(AASHTO, 2012):
foe(at release) = fypr = Afypes — Dfps(CR) — Afps(SH) — Afps(RL) (17)
4.2 Stress in Prestressing Steel at Nominal Flexural Resistance (AASTHO 5.7.3.1)
For flanged sections subjected to flexure about one axis where the approximate
stress distribution may be considered satisfied by an equivalent rectangular compressive

stress block of 0.85 - f', for which f,. is not less than 0.5 f,,,, the average stress in

prestressing steel f,; (AASHTO, 2012), may be taken as:

fos = fu (1 - k%) (18)
k=2 (1.04 - %) (19)

Pu
To calculate ¢, the distance from extreme compression fiber to the centroid of the
prestressing tendons, (AASHTO, 2012) differentiate for components with just bonded
strands or components with both bonded and unbounded strands. For the girders with

harped strands the following equation was used (AASTHO 2012)::
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c= Apsfpu+Asfs+Alsf1s—0.85f1:(b—by)hf

0.85 frcﬁlbw+kApsf:J
14

Where; A is the area of prestressing steel (in), Ay is the area of mild tension
reinforcement (in®), A’ is the area of compression reinforcement (in®), b is the width of
the compression face of the member (in), b,, is the width of the web, hf is the depth of

compression flange (in) and f(; is the stress block factor defined in section 5.7.2.2
(AASHTO, 2012). For the purpose of this study, the area of mil tension and compression
reinforcement are ignored.

For the girder with debonded tendons, (AASHTO, 2012) has a conservative
simplified analysis for components with bonded tendons and with unbonded tendos.

Therefore this analysis is used for the girders with debonded strands (AASTHO 2012):.

c= Apsbfpu+Apsufpe+Asfs+Alsf1s—0.85f1.(b—by)hr

0.85frcﬁ1bw+kA,,s’2ﬂ
P

Where; Ay, is the area of bonded prestressing steel (in%), Apsy is the area of unbonded

prestressing steel (in?),
4.3 Transfer and development length
The distance where the strand prestressing force is gradually transferred from

the steel to the concrete is called transfer length. (AASHTO, 2012) assumes that it varies
linearly from zero (at the location where bonding commences) to the effective prestress in
the strands after loses at the end of the transfer length. This relationship is reflected in
Figure 4.1. Generally, it is assumed for the girder design that this transfer length is equal
to 60 times the strand diameter. Some of the factors that influence the transfer length are:

e The method of transfer,

e The concrete strength, and

e The type of the strand.
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To develop the strength of the strands, the strand stress needs to be increased
from the effective stress in the prestressing steel after losses to the stress in the strand at

nominal resistance of the member (AASHTO, 2012).

f Average stress when nominal resistance of member is required
ps

f Effective stress after losses
pe

px

Girder
end | ly

A
A
Y

Y

A
o

Y

Figure 4.1: Idealized relationship between steel stress and distance from end of girder.

For the development length, (AASHTO, 2012) differentiates between bonded

strands and patrtially bonded strands.

e Bonded Strands Section 5.11.4.2 (AASHTO, 2012):

2
Lo 2 k (fos = 3 fpe) do @2)
Where; d}, is the nominal strand diameter (inch), fps is the average stress in prestressing

steel at the time for which the nominal resistance of the member is required (ksi), and f,,

is the effective stress in the prestressing steel after losses, see 4.1. Additionally, k is set
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to a value of 1.6 for pretensioned members with a depth greater than 24 inches. The
variation of strain that was observed in the testing, can be calculated as follows:

e From the beginning of the girder until the end of transfer length (AASHTO, 2012):

_ Jpelpx
Jox = “o0d, (23)

e From the end of transfer length to the end of development length (AASHTO,

2012):

lpx—60dp

fpx = fi)e + 1g—60d, (fi)s - fpe) (24)

Where; [, is the distance from free end of pretensioned strand to section of girder

(inches), and f,, is the design stress in pretensioned strand at nominal flexural strength
at the girder (ksi), see 4.1.

e Partially debonded Strands Section 5.11.4.3 (AASHTO, 2012):

la 2 2(fos = > fpe ) (25)

Partially debonded strands has some limitations imposed by (AASHTO, 2012)

e The number of debonded strands have to be less than 25 percent of the total
strands. (AASHTO, 2012)

e The number of debonded strands in a row cannot be more than 40 percent of the
total strands in that row. (AASHTO, 2012)

e The debonded strands have to be equally distributed about the centerline of the
girder, in such way that the lengths are symmetrically. (AASHTO, 2012)

e Exterior strands in each row have to be fully boded. (AASHTO, 2012)
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Chapter 5
Finite Element Model
5.1 Background

The primary objective of finite element (FE) simulation for this research is to
establish a valid simulation of the prestress transfer that is produced during the release of
the stress from the strands in each type of girder.

Most of the FE models established previously by researchers have not been able
to accurately simulate this transfer with a 3D model for large girders. Kahl and Burgueno
(2011) modeled a small scale girder with 3D model for the girder geometry and for the
strands. Since they were able to consider the strand as a 3D element, introducing an
initial stress in the element allowed for the prestress transfer at the end of the girder to
occur (Kahl and Burgueno, 2011). This approach was followed at the beginning of this
study, but the computational cost of the strands transferring the stress was greater than
the capabilities of the computer. A similar study was conducted by Oliva and Okumus
(2011), which modeled a wide flange girder, similar to the one in this study; however,
modeling the strands was conducted by placing voids in the location of the strands and
then manually applying the prestressing forces.

5.2 Materials
5.2.1 Concrete

During the release of the strands, other researchers have seen the appearance
of microcracks at the end of the girder (Kahl and Burueno, 2011; Oliva and Okumus,
2011). Therefore, the concrete damage plasticity model has been used to characterize
the cracks in the FEM model (Kahl and Burueno, 2011; Oliva and Okumus, 2011). This
model represents the concrete as an inelastic material, combining concepts of isotropic

damaged elasticity with isotropic tensile and compressive plasticity. However, during the
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testing in this study, cracks have not appeared during the monitoring period of the
Therefore, concrete is assumed as only a linear elastic material for the release. The
modulus of elasticity used are the same ones as the ones discussed in Chapter 4.
5.2.2 Strands

The modulus of elasticity varied between both prestressing methods; for the
harped strands the modulus of elasticity was 28,600 ksi, and for the girder with debonded
strands, the modulus of elasticity was 28,500 ksi. Contrarily, the Poisson’s ratio was
assumed to be 0.3 for both cases.

5.3 Element Types

To capture the effect of release, three dimensional tetrahedral elements (C3D4 in
Abaqus library [Figure 5.1 and Figure 5.2]) was used to model the girder. The strands
were modeled as a 3D truss dimensional (T3D2 in Abaqus library [Figure 5.3 and Figure
5.4]), since it was not computationally feasible to model these strands as a solid
continuum-type element (ideal model). For the harped strands, the nominal diameter was
0.5 inches and the cross sectional area applied was 0.153 in. The girders with debonded

strands had a nominal diameter 0.6 inches and the cross sectional of 0.216 in”.

C 3D 4

L L Number of nodes

- 3 Dimensional
Continuum

Figure 5.1: Abaqus library naming.
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1

Figure 5.2: 4-node tetrahedral element.

T 3D 2

L L LNumberofnodes

3 Dimensional
Truss

Figure 5.3: Abaqus library naming.

1

Figure 5.4: 2-node 3 dimensional truss element.
5.3.1 Concrete
To simulate the concrete, a three dimensional tetrahedral elements (C3D4 from
the Abaqus library) was utilized. Due to the dimension of the girder and the geometry, an
automated mesh technique was used. For this type of technique, the most accurate
elements to fill all the arbitrary shapes are the tetrahedral elements.

5.3.2 Strands
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As previously stated, Oliva and Okumus (2011) modeled the debonded bonded
strands as holes; therefore the generated mesh was irregular. This technique was
attempted in this study but caused resulted irregular mesh. Therefore, no strands were
modeled in the debonded area.

The strands were created with chained wires as three dimensional trusses (T3D2
in the Abaqus Element Library), defining the different points that were needed to applied
the forces in order to model each strand. Figure 5.5, Figure 5.6 and Figure 5.7 shows

different views for the girder with harped strands and with debonded strands.

Figure 5.5: End view of girder with harped strands.

Figure 5.6: Elevation view of girder with harped strands.
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Figure 5.7: View of girder with debonded strands.

5.4 Constraints

The constrain feature was utilized to ensure that the strands are embedded into
the concrete. The whole model of the girder was defined as the host region and the
strands are the embedded elements. Additionally, utilizing this feature in Abaqus ensures
that the strands do not incorrectly translate into the concrete when forces are applied.

5.5 Boundary Conditions

Symmetry of the girder about the midspan and the forces applied allows the
girder to be modeled as only half of the total length. Resulting in a major reduction in the
computational cost of the analysis. The rotation and movement along the X and Z
direction is restrained at midspan. At the beginning of the girder the only restrain is that
the girder cannot move in the Y direction. This will allow the girder to camber up once the

concrete is released and it will be supported by the end of the girder.

Figure 5.8: Boundary conditions of finite element model.
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5.6 Prestress Transfer

The strands cannot be released until the concrete hasn’t achieved a minimum
compressive strength, which is always specified in the shop drawings of the girders.
Section 4.2 provides the equations to calculate the effective stress (f,,) along the girder
end (l,x). The force to be applied at different locations (Figure 5.9 and Figure 5.10) was
computed by multiplying the effective stress by the nominal area of the strand. The
concrete stresses are zero at the girder end, and in order to simulate the real contribution
of the steel, it has been considered a linear reduction of the cross sectional area from the
end of the girder until the end of the development length where all the nominal area of the

steel has been considered.

Figure 5.9: Prestress force at different locations for girder with debonded strands.
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Figure 5.10: Prestress force at different locations for girder with harped strands.
5.7 Mesh
The entire element is meshed to define the location of the nodes where forces
and displacements are calculated. Therefore, finer meshes lead to more accurate results
but results in a greater computational time. It is beneficial to balance the size of the

element with the computational time. Figure 5.11 and Figure 5.12 shows the result of

meshing the girder in both cases.
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Figure 5.11: End view of mesh at girder with harped strands.
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Figure 5.12: End view of mesh at girder with debonded strands.
5.8 Results and Comparison

5.8.1 Harped Strands
The results obtained from the Abaqus harped strand girder model showed the
transfer of the prestress along the length of the girder (Figure 5.13). A comparison of
strain results between second and third monitoring and the Abaqus results is provided in
Figure 5.14. It should be noted that the general trend of the field measurements can be
modeled in Abaqus for the strains measure at the bottom of the girder. However, the
tensile and compressive forces observed at the very end of the girder during monitoring

was not obtained with the Abaqus model.
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E, Max. Principal
(Avg: 75%)

+9.267e-04
+6.495e-04
+7.723e-04
+6.950e-04
+6.175e-04
+5.406e-04
+4.634e-04
+3.661e-04
+3.08%e-04
+2.317e-04
+1.545e-04
+7.723e-05
+0.000e+00

Figure 5.13: Results obtained from Abaqus for girder with harped strands.

Girders with Harped Strands
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Distance from girder end (in)

Figure 5.14: Comparison of Abaqus results with testing measurements for the harped
strands.
5.8.2 Debonded Strands

The strain results obtained from the Abaqus model for the debonded strand
girder are provided in Figure 5.15, and a comparison between the Abaqus results and
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second and third monitoring are shown in

Girder with Debonded Strands
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) %
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// / e ABAQUS

300 ==fl=Second Monitoring

// / =ie=Third monitoring
B / /

T T T T T T T T 1
o 20 40 60 80 100 120 140 160 180
Distance from girder end (in)

Strain (JE) Compression

100

Figure 5.16. In general, lower strain values were obtained from the Abaqus results;
however, the values obtained at the center of the web at the end of the Abaqus modeled
girder are greater than those measured during the monitoring. The strains obtained at the
bottom of the girder along the girder length follows the general trend of the monitoring

results.

E, Max. Principal
[Avg: 75%)
+6.460e-04

+1.410e-04
+7.050e-05
+0.000e+00

Figure 5.15: Results obtained from Abaqus for girder with debonded strands.
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Girder with Debonded Strands
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Figure 5.16: Comparison of Abaqus results with testing measurements for the debonded

strands.
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Chapter 6
General Results and Conclusions
The following conclusions can be drawn from the strain gauging monitoring and
Abaqus modeling conducted in this study for Tx54 girders with either the debonded and
harped strands:

1. Flame cutting of the strands led to abrupt strain change in the strain
gauges at the end of the debonded girders.

2. Section near the end of the girders of both types of prestressed girders
experienced both tension and compression along the same section.

3. Strains at the end of the girders with harped strands showed higher
values that in the girders with debonded strands.

4. The construction process of the girders with debonded strands is safer
than that of girders with harped strands, because the hold-down and
hold-up anchors are not required during the construction process.

5. Assembling the reinforcement cages for the girder with the debonded
strands is less time-consuming and requires less labor work because it
can be prefabricated before being placed in the prestressing bed.

6. The need for concrete blocks at the ends of the prestressing bed for
harped strands is time-consuming since those blocks weights about
18,500 Ibs and the work requires a forklift to place the blocks on top of
the girders. Additionally, this could cause damage to the girders if care is
not taken during the placement.

7. Microcracks were still observed in both types of girders.
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Appendix B

Shop drawings provided by the precast plants
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Girder with harped strands
From the shop drawings in APENDIX B, the information that it can be obtained is the
following:
e @ strands = 0.5”, Nominal area = 0.153 in” (Naaman, 2012)
e Total number of strands = 78, A,; = 78+ 0.153 in* = 11.93 in?
e Number of deflected strands = 24

e Tensile strength of prestressing steel (f,,,) = 270 ksi

e Type of tendon = low relaxation strand
e Compressive strength of concrete (f’,) = 7908 psi
e Compressive strength of concrete at release (f';) = 6408 psi
e Eccentricity at center line, e, = 15.06 in
e Eccentricity at end, e.,,q = 7.06 in
With the information of the location of the strands, it can be obtained the distance
from extreme compression fiber to the centroid of the prestressing tendons (d,,)
Centerline section:
d,-72=2-295in+2-315in+2-335in+2-355in+2-375in+2-39.5in+4
*41.5in+8-435in+12-455in+14-475in+14-495in + 14
-51.5in

d, = 49.35 in
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End section:
d,*72=2-35in+2-55in+2-75in+2-95in+2-11.5in+2-13.5in+2-155in
+2-175in+2-195in2+4+2-21.5in+2-235in+2-255in+ 2
“415in+6-435in+10-455in+12-475in+12-495in+ 12
-51.5in
d, = 40.32 in
The beam length in this case is 126.5 ft, but for the purpose of this study, this
length is going to be considered 110 ft to be able to compare it to the other type of
prestressing girders.
Prestress losses (Section 5.9.5.1 (AASHTO, 2012))
As discussed in 4.1, the total losses for a pretensioned member is:

Myr = DMfpgs + Doy Equation 5.9.5.1-1 (AASHTO, 2012)

Elastic Shortening

Mfpps = 5—’1 frg Equation 5.9.5.2.3a-1 (AASHTO, 2012)

According to Comment C5.9.5.2.3a (AASHTO, 2012), the loss due to elastic

shortening in pretensioned member may be determined by the following alternative

equation:
Aps fope (Ig + em®  Ag) — e - Mg - Ag
AprS - 2 Ag'lg'Eci
Aps- (I +em? - Ay) + .
Where:

A, is the gross area of section, 4, = 817 in?
E.; is the modulus of elasticity of concrete at transfer, that it can be obtained with

equation 5.4.2.4-1 (AASHTO, 2012):
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E; = 33,000 - Ky - w.25\[f

Where:

K, is the correction factor for source of aggregate to be taken as 1.0 unless determined
by physical test, and as approved by the authority of jurisdiction (AASHTO, 2012), K; =
1.

w, is the unit weight of concrete and according to table 3.5.1-1 (AASHTO, 2012), the unit
weight for normal weight concrete with 5 < f’ <15 ksi is 0.140 + 0.001- f' , since f’,
is 6.4 ksi, w, = 0.1464 kcf

Therefore,

E,; = 4676.44 ksi

E, is the modulus of elasticity of prestressing tendons, E,, = 28,600 ksi

em=€c., 1S the average prestressing steel eccentricity at midspan, e,, = 15.06 in

fope is the stress in prestressing steel immediately prior to transfer. According to table
5.9.3-1 (AASHTO, 2012), for low relaxation strands, the stress limit can be taken as
fobt = 0.75 * fi, = 0.75 - 270 ksi = 202.5 ksi

I is the moment of inertia of the gross concrete section that can be obtained from the
standard in Appendix A.

y Iy = 299,740 in*.

M,is the midspan moment due to self-weight of the concrete. The self-weight of the
concrete is obtained from the standard in Appendix A

_ selfweight-1*> 0.851klf - 110 ft?
9 8 B 8

=1287.14 k- ft = 15446 k - in

Therefore,
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AprS

_11.93 in% - 202.5 ksi - (299,740 in* + 15.06% in? - 817 in?) — 15.06 in - 15446 k - in - 817 in?

11.93in2 - (299,740 in* + 15.062 in? - 817 in?) + L7 I2299740 467644 ksl
’ 28,600 ksi

AprS = 2143 kSl

Creep, Shrinkage and Relaxation of Prestressed Tendons

Afppr =10 % Ve Vst 127y - Vs + Afpg Equation 5.9.5.3-1 (AASHTO, 2012)

The value obtained from equation 5.9.5.3-1 (AASHTO, 2012) is just an approximation.
According to Comment C5.9.5.3 (AASHTO, 2012) the values obtained are conservative
so article 5.9.5.4 (AASHTO, 2012) can be used instead to obtain these values. However,
this article just specifies losses from the time to transfer the girder to when the deck is
placed and the time from when the deck is placed until the final time, so for the

calculation of prestress losses after release article 5.4.3.2 (AASHTO, 2012) is used.

Creep

Creep coefficient:
Yt t;) =19 kg kpe kg keg-t;70118 Equation 5.4.2.3.2-1 (AASHTO, 2012)
Where:

%4
ks =1.45-0.13 (E) =1 Equation 5.4.2.3.2-2 (AASHTO, 2012)

V. v
5is the volume-to-surface ratio, 5= 0.85

ks =134>10K
kn. = 1.56 — 0.008H Equation 5.4.2.3.2-3 (AASHTO, 2012)

H is the relative humidity (%), H = 65
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kpe= 1.04

5
kf = ——— Equation 5.4.2.3.2-4 (AASHTO, 2012)
1+ f ci
t
ke =T a7 1o ! Equation 5.4.2.3.2-5 (AASHTO, 2012)

t is the maturity of concrete (day), it is taken as 1 since that is the time that takes from

the moment the concrete is pour to when the strands are released.

1
= =0.027
kta 61 — 4 - 6408 psi + 1 0.0

Therefore,
Y =19-134-1.04-0.67-0.027 - 179118 = 0,05
fobt "Aps 2025 ksi - 11.93 in?
.= = = 0.000632 (Naaman, 2012
T A E; 817in?- 467644 ksi ( )
& =W &y
& =3.16-107°
Af,s(CR) = &, E, = 0.9 ksi
Shrinkage
s = kskpckskeq0.48-1073 Equation 5.4.2.3.3-1 (AASHTO, 2012)
In which:
kps =2 —0.014H = 1.09 Equation 5.4.2.3.3-2 (AASHTO, 2012)
en =1.3:1075

Afyo(SH) = &4 - E, = 1.3-107° - 28,600 ksi = 0.37 ksi
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Relaxation of Prestressing Steel

logy1o(t) (fone
£rs® = fone [1 - B (% _ 0.55)]

Where:
K = 30 for low relaxation strands
t is duration of loading in hours. t = 24 h since it is when the strands are released.
fpy I8 the yield strength of prestressing steel (ksi)
From table C5.7.3.1.1-1 (AASHTO, 2012), for a low lax strand:
foy = 0.9 i, = 09270 ksi = 243 ksi

Therefore,

log,,(24 h) <202.5 ksi

fos(£) = 202.5 ksi [1 S S

- 0.55)] = 199.86 ksi

Afys(RL) = fope — fps(£) = 202.5 ksi — 199.86 ksi = 2.64 ksi

Total Prestress losses at release

fpe(at release) = fpbt - AprS - Afps(CR) - Afps(SH) - Afps(RL)
fye(at release) = 202.5 — 21.43 ksi — 0.9 ksi — 0.37 ksi — 2.64 ksi = 177.16 ksi

Stress in Prestressing Steel at Nominal Flexural Resistance, section 5.7.3.1 (AASHTO,

2012).

As explained in 4.1.1.4, the average stress in prestressing steel (f,s) may be

taken as:
fos = fou <1 — kdc_p> Equation 5.7.3.1.1-2 (AASHTO, 2012)
Where:
k=2 (1.04 — %) Equation 5.7.3.1.1-1 (AASHTO, 2012)
pu
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To calculate c, the distance from extreme compression fiber to the centroid of the

prestressing tendons:

c= Apsfpu+Asfs+A’sf,s - 0-85f,c(b - bw)hf
0.85" B1by, + kAps’z’—“ Equation 5.7.3.1.1-3 (AASHTO, 2012)
14

R, is the stress block factor defined in section 5.7.2.2 (AASHTO, 2012). Since f’.
is 7.9 ksi, interpolating £; = 0.655

The value of k can be obtained directly from table C5.7.3.1.1-1 (AASHTO, 2012).
For low lax strand, k = 0.28
Since the girders texted are Tx54 the following properties are obtained from the bridge
standards from Texas Department of Transportation are shown in Appendix A.

b=36in, b, =7in, hf =7.5in.

Therefore:
11.93in?% - 270 ksi — 0.85 - 7.9 ksi(36 in — 7 in)7.5 in _
c = SokeT = 33.14 in
0.85-7.9 ksi - 0.655 -7 in + 0.28 - 11.93 in? .
40.32 in
=270k '(1 0.28 33.14 in) = 208 ksi
fos = St “C2032in) = St

Development of Prestressing Strand (Section 5.11.4 (AASHTO, 2012))
Bonded Strand Section 5.11.4.2 (AASHTO, 2012)
2 .
>k (fps -2 fpe) d, Equation 5.11.4.2-1 (AASHTO, 2012)
Where:

k is 1.6 for pretensioned members with a depth greater than 24 in
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2
lg =16 (208 ksi — 5177.16 ksi) 0.5in =7191in

The transfer length, [;, may be taken as 60 strands diameter, so for this case:
l;,=60-d, =60-0.5in=30in
Therefore, for this case:

Steel Stress vs Distance from End
Girder Harped Strands

80 100

Girder
end >

Girder with debonded strands

From the shop drawings in Appendix B, the information that it can be obtained is the
following:

e @ strands = 0.5”, Nominal area = 0.153 in* (Naaman, 2012)

e Total number of strands = 46, A,; = 46 - 0.216 in* = 9.94 in®

e Tensile strength of prestressing steel (f,,,) = 270 ksi

e Type of tendon = low relaxation strand

e Compressive strength of concrete (f’.) = 7275 psi
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e Compressive strength of concrete at release (f';) = 6345 psi
e Eccentricity at center line, e, = 15.01 in
e Eccentricity at end, e,,; = 13.79 in
e Beamlength, [ =110 ft
With the information of the location of the strands, it can be obtained the distance
from extreme compression fiber to the centroid of the prestressing tendons (d,)
d, 46=4-35in+14-475in+2-495in+2-515in
d, =19.15in
Prestress losses (Section 5.9.5.1 (AASHTO, 2012))
As discussed in 4.1, the total losses for a pretensioned member is:
Afyr = Afyps + Afyir Equation 5.9.5.1-1 (AASHTO, 2012)
Elastic Shortening
Afpps = 5—’1 feow Equation 5.9.5.2.3a-1 (AASHTO, 2012)
According to Comment C5.9.5.2.3a (AASHTO, 2012), the loss due to elastic

shortening in pretensioned member may be determined by the following alternative

equation:
A _ Aps Sove (I +em® - Ay) — ey =My Ay
prS - 2 Ag-lgEg
Aps - (I + en? - Ag) + e
Where:

A, is the gross area of section, A, = 817 in?

E.; is the modulus of elasticity of concrete at transfer, that it can be obtained with
equation 5.4.2.4-1 (AASHTO, 2012):

E. = 33,000 - K, - w25\[f
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Where:

K, is the correction factor for source of aggregate to be taken as 1.0 unless determined
by physical test, and as approved by the authority of jurisdiction (AASHTO, 2012), K; =
1.

w, is the unit weight of concrete and according to table 3.5.1-1 (AASHTO, 2012), the unit
weight for normal weight concrete with 5 < f’ <15 ksi is 0.140 + 0.001- f'_, since f”,
is 7.3 ksi, w, = 0.1473 kcf

Therefore,

E.; = 4699.31 ksi

E, is the modulus of elasticity of prestressing tendons, E, = 28,500 ksi

en=€c. 1S the average prestressing steel eccentricity at midspan, e,,, = 15.01 in

fope IS the stress in prestressing steel immediately prior to transfer. According to table
5.9.3-1 (AASHTO, 2012), for low relaxation strands, the stress limit can be taken as
fobe = 0.75 fp, = 0.75- 270 ksi = 202.5 ksi

1, is the moment of inertia of the gross concrete section that can be obtained from the
standard in Appendix A.

I, = 299,740 in*

Myis the midspan moment due to self-weight of the concrete. The self-weight of the

concrete is obtained from the standard Appendix A.

_ selfweight-1*>  0.851klf -110 ft?

g 3 8 =1287.14 k- ft = 15446 k - in

Therefore,
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AprS

_9.94 in% - 202.5 ksi - (299,740 in* + 15.06% in? - 817 in?) — 15.01 in - 15446 k - in - 817 in?

9.941in? - (299,740 in* + 15.062 in? - 817 in2) 4 S/ 2299740 469931 kst
! 28,500 ksi

AprS = 18.57 kSi

Creep, Shrinkage and Relaxation of Prestressed Tendons
Afprr =10 -f”;—:”s Vs Vst " 12 ¥n - ¥st + Afpr Equation 5.9.5.3-1 (AASHTO, 2012)

The value obtained from equation 5.9.5.3-1 (AASHTO, 2012) is just an approximation.
According to Comment C5.9.5.3 (AASHTO, 2012) the values obtained are conservative
so article 5.9.5.4 (AASHTO, 2012) can be used instead to obtain these values. However,
this article just specifies losses from the time to transfer the girder to when the deck is
placed and the time from when the deck is placed until the final time, so for the

calculation of prestress losses after release article 5.4.3.2 (AASHTO, 2012) is used.

Creep

Creep coefficient:
W(t,t;) =19 kg kpe ke kg -t;70118 Equation 5.4.2.3.2-1 (AASHTO, 2012)
Where:

%4
ks =1.45-0.13 (E) >1 Equation 5.4.2.3.2-2 (AASHTO, 2012)

V. . \%4
5 is the volume-to-surface ratio, i 0.85

ks = 1.34 > 1 OK
kne = 1.56 — 0.008H Equation 5.4.2.3.2-3 (AASHTO, 2012)

H is the relative humidity (%), H = 65
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kpe= 1.04

5
kf = ——— Equation 5.4.2.3.2-4 (AASHTO, 2012)
1+ f ci
ks = 0.68
t
ke =T a7 1o ! Equation 5.4.2.3.2-5 (AASHTO, 2012)

t is the maturity of concrete (day), it is taken as 1 since that is the time that takes from

the moment the concrete is pour to when the strands are released.

1

“e1—4-6345psi+1 0%

Kea

Therefore,
¥ =19-134-1.04-0.68-0.027 - 1-°118 = 0,05
fobe *Aps  202.5 ksi - 9.94 in?
= = = 0.000524 (Naaman, 2012
T A E; 817in?-4699.31 ksi ( )
& =W &y
g, =262-1075
Afys(CR) = &, - E, = 0.75 ksi
Shrinkage
Esn = ksknckyk;q0.48 - 1073 Equation 5.4.2.3.3-1 (AASHTO, 2012)
Where:
Ky = 2 — 0.014H = 1.09 Equation 5.4.2.3.3-2 (AASHTO, 2012)
g = 1.3-107°

Afy)s(SH) = &g, E, = 1.3+ 107" - 28,600 ksi = 0.37 ksi
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Relaxation of Prestressing Steel

logyo(t) (fone
Fps(® = fone [1 - ZEwlD) (% - 0.55)]

Where:
K = 30 for low relaxation strands
t is duration of loading in hours. t = 24 h since it is when the strands are released.
fpy I8 the yield strength of prestressing steel (ksi)
From table C5.7.3.1.1-1 (AASHTO, 2012), for a low lax strand:
foy = 0.9 i, = 09270 ksi = 243 ksi

Therefore,

log,,(24 h) (202.5 ksi

fps(t) = 202.5 ksi [1 — 30 243 ks

- 0.55)] = 199.86 ksi

Afys(RL) = fopr — fos(t) = 202.5 ksi — 199.86 ksi = 2.64 ksi
Total Prestress losses at release
foe(at release) = fype — Afpps — Afpys(CR) = Afy(SH) — Afyy5(RL)
fpe(at release) = 202.5 — 18.57 ksi — 0.75 ksi — 0.37 ksi — 2.64 ksi = 180.17 ksi
Stress in Prestressing Steel at Nominal Flexural Resistance (AASTHO 5.7.3.1)
As explained in 4.1.1.4, the average stress in prestressing steel (f,s) may be taken as:

c
fps = fpu (1 - kd_>
p
Equation 5.7.3.1.1-2 (AASHTO, 2012)

Where:

k=2 (1.04 - %) Equation 5.7.3.1.1-1 (AASHTO, 2012)
pu
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To calculate c, the distance from extreme compression fiber to the centroid of the
prestressing tendons for components with bonded tendons and unbounded tendons

Equation 5.7.3.1.3b (AASHTO, 2012), the simplified analysis:

c= Apsbfpu+Apsufpe+Asfs+A,sf’s - 0-85f’c(b - bw)hf
0.85f" Buby, + kAys 2

dp

Where:
A,sp is the area of bonded prestressing steel, 4,, = 36-0.216 in* = 7.78 in?
A,y is the area of unbonded prestressing steel, A,s, = 10 0.216 in® = 2.16 in?

R, is the stress block factor defined in section 5.7.2.2 (AASHTO, 2012). Since f'.
is 7.3 ksi, interpolating 5; = 0.685

The value of k can be obtained directly from table C5.7.3.1.1-1 (AASHTO, 2012).
For low lax strand, k = 0.28

Since the girders tested are Tx54 the following properties from the bridge
standards of the Texas Department of Transportation are shown in Appendix A.

b=36in, b, =7in, hf =7.5in.

Therefore:
7.78 in? - 270 ksi + 2.16 in® - 180.17ksi — 0.85 - 7.275 ksi (36 in — 7 in)7.5 in
c= .
0.85 - 7.275 ksi - 0.685 - 7in + 0.28 - 9.93 in2 270kt
19.15in
=143
=270k '(1 0.28 14.3m> = 213.5 ksi
fos = St “%1915in) ~ oS
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Development of Prestressing Strand (Section 5.11.4 (AASHTO, 2012))

Bonded Strand Section 5.11.4.2 (AASHTO, 2012)
Bonded Strand

2 .
I, >k (fps -2 fpe) d, Equation 5.11.4.2-1 (AASHTO, 2012)
Where:
k is 1.6 for pretensioned members with a depth greater than 24 in
.2 . . .
l; =16 (213.5 ksi — 3 180.17 ksz) 0.6 in = 89.65 in
The transfer length, l;, may be taken as 60 strands diameter, so for this case:
l,=60-d, =60-0.6in=36in

Therefore:

Steel Stress vs Distance from End
Girder Bonded Strands

20 40 60 80 I 100

ld L.

Partially Debonded Strands Section 5.11.4.3 (AASHTO, 2012)

2
lg =2 (f,,s —gfpe) d, = 112 in
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2
lg=2 (213.5 ksi — 5180.17 ksi) 0.6in

Therefore

Steel Stress vs Distance from End
Girder Partially Deonded Strands

250

2135
£l o =
200" 180,17 e
fp; —_— —
150 | |
100 / I !
iy | |
)
0 36 113,
Girder © 20 40 60 80 100 120 140
end »l< le \
< lg >
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