
A DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS-BASED APPROACH TO

APPROXIMATE INFINITE HORIZON DYNAMIC PROGRAMMING

WITH CONTINUOUS STATE SPACES

by

ASAMA KULVANITCHAIYANUNT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2014

ii

Copyright © by Asama Kulvanitchaiyanunt 2014

All Rights Reserved

iii

Acknowledgements

 First of all, I would like to express my deepest gratitude to my supervising

professors, Dr. Victoria Chen and Dr. Jay Rosenberger, for all their guidance, advice and

motivation throughout the journey of my study at UT Arlington. I appreciate their leading

me into an exciting and challenging research area. Dr. Chen has been an excellent role

model, as a researcher and lecturer. She inspired me with her enthusiasm for research

and her ability to write superb technical documents, as well as her communication skills.

Dr. Rosenberger is himself very impressive. His knowledge in optimization is unmatched.

He provided good insight into the research, encouraged me to think independently, and

he kept me motivated to work. Both my advisors cared not only about my studies, but

they also cared about my personal life. In Thailand, my country, they say that a teacher is

just like a small boat that transfers people to the final destination. They both, Dr. Chen

and Dr. Rosenberger, are just like that in my point of view. They gave me the path to

make my dream come true.

 I also want to acknowledge the wonderful support of my project collaborators

from the Department of Electrical Engineering, Dr. Wei-Jen Lee and Mr. Piampoom

Sarikprueck. They always provided me valuable comments and advice that were

significant to the project. I would also like to thank my committee member Dr. Shouyi

Wang for good comments that improved my dissertation research.

 For my financial support, I would like to thank the National Science Foundation

and the Department of Industrial & Manufacturing Systems Engineering at UT Arlington.

 I will always remember my friends from the Center on Stochastic Modeling,

Optimization, & Statistics (COSMOS) that made my doctoral study life enjoyable.

 Last but not least, I would like to thank my family, for their unflinching faith in my

ability. My father is my role model for living. He is the best doctor I have ever seen. He

iv

not only taught me how to walk but also walked with me. My mother keeps telling me that

she is so proud of me. That makes me feel that I can go further. I would like to thank my

grandmother for bringing some smiles to my face. I would like to take this opportunity to

express my thanks to my aunts, Ratchya, Ratanyou and Hathaitip, for their support. I also

thank all my other friends and relatives, without their love and support, I would not have

gone so far.

April 14, 2014

v

Abstract

A DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS-BASED APPROACH TO

APPROXIMATE INFINITE HORIZON DYNAMIC PROGRAMMING

WITH CONTINUOUS STATE SPACE

Asama Kulvanitchaiyanunt, PhD

The University of Texas at Arlington, 2014

Supervising Professor: Victoria Chen and Jay Rosenberger

 Dynamic programming (DP) is an optimization approach that transforms a

complex problem into a sequence of simpler sub-problems at different points in stage.

The original DP approach used Bellman's equation to compute the "cost-to-go' function.

This method is useful when considering a few states and decisions. However, when

dealing with high-dimensional data set with continuous state space, the limit called 'curse

of dimensionality' obstructs the solution as the size of the state space grows

exponentially. Given recent advances in computational power, approximate dynamic

programming (ADP) is introduced by not seeking to compute the future value function

exactly and at each point of the state space; rather opting for an approximation of the

future value function in the domain of the state space. Two main components of ADP

method which have been challenged among existing ADP studies are discretization of

the state space and estimation of the cost-to-go or future value function.

 The first part of this dissertation research seeks to develop a solution method to

solve an infinite horizon dynamic programming called Design and Analysis of Computer

Experiment (DACE)-based Approach to ADP. Multivariate Adaptive Regression Splines

vi

(MARS) which is a flexible, nonparametric statistical modeling tool is used to approximate

future value functions in stochastic dynamic programming (SDP) problems with

continuous state variables. The training data set is updated sequentially based on the

conditions. This sequential grid discretization explores the state space and provides a

statistically parsimonious ADP methodology which ‘adaptively’ captures the important

variables from the state space. There are 3 different algorithms presented in this

dissertation based on the conditions of sampling process of the training data set.

Comparisons are presented on a forward simulation with 12 time periods.

 The second part of the dissertation research is to develop a batch mode

Reinforcement Learning (RL) using MARS as an approximator to solve the same problem

with the first part. The main difference between these two methods is the input variables

to approximate future value function. In batch mode RL method, the state-action space is

used, thus the estimated function (output) is a function of both state and action variables.

By contrast, DACE-based ADP used only state variable and the estimated future function

is based only on state variables. The study on state-action discretization is presented in

this dissertation. Two different designs are used, including Monte Carlo sampling and

Sobol' sequence design. Comparisons are presented on the same forward simulation.

 The third part is to develop a two-stage framework for Adaptive Design for

Controllability of a System of Plug-in Hybrid Electric Vehicle Charging Stations Case

Study. The second-stage dynamic control problem is formulated and initially solved by

mean value problem using linear programming. After that a DACE approach is used to

develop a metamodel of the second stage solution based on the possible solution from

the first stage. Then the metamodel will be turned into the first stage and at this point the

final solution will be made. DACE helps reduce time-consuming computer models by

replacing the loop between first and second stage with a constraint generated from the

vii

gradient of the approximation function. Moreover, the metamodel can give more

accessible description to the second stage.

viii

Table of Contents

Acknowledgements .. iii

Abstract .. v

List of Illustrations .. xiii

List of Tables ... xvii

Chapter 1 Introduction ... 1

1.1 Overview of Dynamic Programming .. 1

1.1.1 Stages ... 2

1.1.2 States .. 3

1.1.3 Decisions and Policies ... 4

1.1.4 Transition Function .. 5

1.1.5 Future Value or Cost-To-Go Function ... 6

1.2 Main Advantages and Limitations ... 7

1.3 Motivation ... 8

1.4 Research Overview .. 11

Chapter 2 Review of Literature .. 13

2.1 Modeling Dynamic Programs. ... 13

2.1.1 Finite-Horizon Model ... 14

2.1.2 Infinite-Horizon Model .. 14

2.2 Approximate Dynamic Programming. .. 16

2.2.1 Q-Learning ... 17

2.2.2 The Post-Decision State Variable .. 19

2.3 Finite-Horizon with Continuous-State Dynamic Programming Solution

Methods .. 20

ix

2.4 Infinite-Horizon with Continuous-State Dynamic Programming Solution

Methods .. 22

2.5 Statistical Approach to Approximate Dynamic Programming 25

2.6 Two-Stage Framework ... 27

2.7 Insight for Research ... 29

Chapter 3 Using Design and Analysis of Computer Experiments to

Approximate Infinite Horizon Dynamic Programming With Continuous

State Space ... 32

3.1 Motivation .. 32

3.1.1 Bias-Variance Tradeoff .. 33

3.1.2 Generalization Error .. 33

3.1.3 Consistency Trace ... 35

3.2 Multivariate Adaptive Regression Splines (MARS) ... 36

3.2.1 Structure of MARS ... 38

3.3 General Framework for Solving Continuous Stochastic Dynamic

Programming ... 38

3.4 Proposed Framework ... 41

3.4.1 Flowchart of the Proposed Framework .. 42

3.5 DP Stage Iteration Stopping Condition ... 44

3.5.1 L-Infinity Norm ... 44

3.5.2 Change in the Mean of the Value Functions ... 44

3.5.3 Confidence Interval T-Test for 45-Degree Line Correspondence 45

3.6 Application to Inventory Forecasting Problem .. 48

3.6.1 Overview of Stochastic Inventory Forecasting Problem 48

3.6.2 Computational Setup ... 50

x

3.7 Proposed Algorithms .. 50

3.7.1 Algorithm-I ... 50

3.7.1.1 Results and discussion ... 51

3.7.2 Algorithm-II .. 55

3.7.2.1 Results ... 55

3.7.3 Algorithm-III ... 60

3.7.3.1 Results ... 60

3.7.4 Comparison of SDP Solution Quality ... 64

Chapter 4 Comparison of Dace-Based Approach to Approximate an Infinite

Horizon Dynamic Programming and Batch Mode Reinforcement

Learning ... 67

4.1 Fitted Q-Iteration Algorithm ... 67

4.1.1 State-Action Space Discretization ... 68

4.1.2 Computational Setup ... 69

4.2 The Algorithms .. 69

4.2.1 Test-I: 125 Data Points .. 69

4.2.1.1 Results ... 70

4.2.2 Test-II: 125 Data Points with Look-up Table Solution 72

4.2.2.1 Results ... 72

4.2.3 Test-III: 216 Data Points .. 75

4.2.3.1 Results ... 75

4.2.4 Test-IV: 343 Data Points ... 77

4.2.4.1 Results ... 77

4.2.5 Test-V: 512 Data Points .. 79

4.2.5.1 Results ... 79

xi

4.2.6 Test-VI: 512 Data Points with State Space Generated by Sobol'

Sequence .. 81

4.2.6.1 Results ... 81

4.2.7 Test-VII: Online Q-learning ... 84

4.2.7.1 Results ... 84

4.3 Discussion of Results .. 87

4.3.1 Comparison between Optimization Techniques vs. Look-up Table

Method .. 87

4.3.2 Comparison between Monte Carlo Sampling and Sobol'

Sequence Design .. 89

4.3.3 Comparison between Dace-based Approach to Approximate an

Infinite Horizon Dynamic Programming and Batch Mode

Reinforcement Learning with MARS ... 91

Chapter 5 Two-Stage Framework Application to a Controllability of a System

of Plug-In Hybrid Electric Vehicle (PHEV) Charging Stations 94

5.1 Design and Analysis of Computer Experiments Approach 95

5.2 Adaptive Design for Controllability of a System of PHEV Charging

Stations Case Study .. 95

5.2.1 The First Stage Master Problem .. 95

5.2.2 The Second Stage Control Problem .. 96

5.2.3 Mean Value Problem Results .. 99

5.3 Generating the Experimental Design ... 106

5.4 Optimization Model .. 107

5.5 Statistical Model .. 108

5.5.1 Preliminary Multiple Linear Regression Model ... 108

xii

5.5.1.1 Model fit ... 110

5.5.1.2 Model assumptions ... 112

5.5.1.3 Model summary remedial actions ... 114

5.5.2 Multiple Linear Regression Model with Stepwise Selection 115

5.5.2.1 Model fit ... 117

5.5.2.2 Model assumptions ... 118

5.5.2.3 Model summary .. 120

5.5.3 Multiple Linear Regression Model with Stepwise Selection and

Basis Functions ... 120

5.5.3.1 Model fit ... 121

5.5.3.2 Model assumptions ... 123

5.5.3.3 Model summary .. 127

5.6 Discussion on the Final Model ... 127

Chapter 6 Summary and Future Work ... 129

Appendix A Comparison on the Stopping Conditions to Ensure the

Convergence of an Infinite Horizon Dynamic Programming 133

Appendix B Resolution-III Fractional Factorial Designs for PHEV Charging

Station Case Study (Partial Design) .. 136

References ... 139

Biographical Information .. 153

xiii

List of Illustrations

Figure 3.1 Schematic Illustration of Bias-Variance Tradeoff ... 33

Figure 3.2 Illustration of Interplay between Training Error and Test Error 34

Figure 3.3 Consistency Trace for Adaptive Value Function Approximation 36

Figure 3.4 Flowchart of Proposed Sequential Algorithm (a) Data Loop (b) DP

Stage Iteration .. 43

Figure 3.5 Example of Functional Relation ... 46

Figure 3.6 Number of Sample Points in Each DP Stage Iteration of

Algorithm-I .. 51

Figure 3.7 R2 of the Testing Data Set in Each DP Stage Iteration of the

Algorithm-I .. 52

Figure 3.8 The Percent Change in the Future Value Function Average at

Each DP Stage Iteration of Algorithm-I .. 53

Figure 3.8 The R2 of the Future Value Function in Each DP Stage Iteration

vs. the Final Value Function at the Steady-state of the Algorithm-I 53

Figure 3.10 (a) The Scatter Plot of the Value Function at DP Stage Iteration

4 vs. 5. (b) The Scatter Plot of the Future Value Function at the

Steady-State vs. the Future Value Function at the DP Stage Iteration

before ... 54

Figure 3.11 Number of Sample Points in Each DP Stage Iteration of

Algorithm-II ... 56

Figure 3.12 R2 of the Testing Data Set in Each DP Stage Iteration of the

Algorithm-II ... 56

Figure 3.13 The Percent Change in the Future Value Function Average at

Each DP Stage Iteration of Algorithm-II ... 58

xiv

Figure 3.14 The R2 of the Future Value Function in Each DP Stage Iteration

vs. the Final Value Function at the Steady-state of the Algorithm-II 59

Figure 3.15 (a) The Scatter Plot of the Value Function at DP Stage Iteration

4 vs. 12. (b) at DP Stage Iteration 23 vs. 24, (c) at DP Stage

Iteration 60 vs. 61, and (d) at DP Stage Iteration 97 vs. 98 59

Figure 3.16 Number of Sample Points in Each DP Stage Iteration of

Algorithm-III .. 60

Figure 3.17 R2 of the Testing Data Set in Each DP Stage Iteration of the

Algorithm-III .. 61

Figure 3.18 The Percent Change in the Future Value Function Average at

Each DP Stage Iteration of Algorithm-III Starting from DP Stage

Iteration 2, (b) the Percent Change in the Future Value Function

Average at Each DP Stage Iteration of Algorithm-III Starting from DP

Stage Iteration 9 ... 62

Figure 3.19 The R2 of the Future Value Function in Each DP Stage Iteration

vs. the Final Value Function at the Steady-state of the Algorithm-III 63

Figure 3.20 (a) The Scatter Plot of the Value Function at DP Stage Iteration

11 vs. 12. (b) at DP Stage Iteration 21 vs. 22, (c) at DP Stage

Iteration 31 vs. 32, and (d) at DP Stage Iteration 42 vs. 43 63

Figure 3.21 Comparison of CPU Time Used by Each Algorithm 65

Figure 3.22 (a) Comparison of Mean Cost, (b) Comparison of Quality of SDP

Solution .. 66

Figure 4.1 Comparison of Mean Cost of Each Run in Test-I. .. 70

Figure 4.2 CPU Time of Each Run in Test-I. ... 71

Figure 4.3 Number of Iterations of Each Run in Test-I .. 72

xv

Figure 4.4 Comparison of Mean Cost of Each Run in Test-II. ... 73

Figure 4.5 CPU Time of Each Run in Test-II. .. 74

Figure 4.6 Number of Iterations of Each Run in Test-II ... 74

Figure 4.7 Comparison of Mean Cost of Each Run in Test-III. .. 75

Figure 4.8 CPU Time of Each Run in Test-III. ... 76

Figure 4.9 Number of Iterations of Each Run in Test-III .. 76

Figure 4.10 Comparison of Mean Cost of Each Run in Test-IV. 77

Figure 4.11 CPU Time of Each Run in Test-IV. ... 78

Figure 4.12 Number of Iterations of Each Run in Test-IV .. 78

Figure 4.13 Comparison of Mean Cost of Each Run in Test-V. 79

Figure 4.14 CPU Time of Each Run in Test-V. .. 80

Figure 4.15 Number of Iterations of Each Run in Test-V ... 81

Figure 4.16 Comparison of Mean Cost of Each Run in Test-VI. 82

Figure 4.17 CPU Time of Each Run in Test-VI. ... 83

Figure 4.18 Number of Iterations of Each Run in Test-VI .. 83

Figure 4.19 Comparison of Mean Cost of Online Q-learning ... 85

Figure 4.20 CPU Time of Each Run of Online Q-learning. .. 86

Figure 4.21 Number of Iterations of Each Run of Online Q-learning 87

Figure 4.22 Comparison of Mean Cost of 125 Dimension State-Action Space

with Optimization Technique vs. Look-up Table Method 88

Figure 4.23 Comparison in Quality of SDP Solution of 125 Dimension State-

Action Space with Optimization Technique vs. Look-up Table

Method. ... 89

Figure 4.24 Comparison of Mean Cost of 512 Dimension State-Action Space

with Monte Carlo Sampling vs. Sobol' Sequence Design 90

xvi

Figure 4.25 Comparison in Quality of SDP Solution of 512 Dimension State-

Action Space with Monte Carlo Sampling vs. Sobol' Sequence

Design. .. 91

Figure 4.26 Comparison of Mean Cost .. 92

Figure 4.27 Comparison in Quality of SDP Solution .. 93

Figure 5.1 Battery Level ... 100

Figure 5.2 Battery Charge .. 100

Figure 5.3 Total Demand ... 101

Figure 5.4 Demand Pulled from the Direct Charge .. 101

Figure 5.5 Demand Pulled from the Battery ... 102

Figure 5.6 Energy Market Price ... 102

Figure 5.7 Total Wind Purchase to the System ... 103

Figure 5.8 Solar Generation ... 103

Figure 5.9 Wind Fractional Allocation .. 104

Figure 5.10 The Electricity Sold from Direct Charge .. 104

Figure 5.11 The Electricity Sold from the Battery .. 104

Figure 5.12 The Electricity Bought from the Power Grid .. 105

Figure 5.13 The Objective Function Output ... 105

Figure 5.14 11 Clusters of the Power Grid in DFW .. 107

Figure 5.15 Response vs. Predictors Plots .. 109

Figure 5.16 Residuals (ie) vs. Predictors Plots ... 112

Figure 5.17 Residuals (ie) vs. Predicted Response(hatY) ... 113

Figure 5.18 Normality Plot ... 114

Figure 5.19 Value Function vs. Predictors Plots (Additional Variables) 116

xvii

Figure 5.20 Response vs. Predictors Plots .. 118

Figure 5.21 Residuals (ie) vs. Predicted Response(hatY) ... 119

Figure 5.22 Normality Plot ... 119

Figure 5.23 Value Function vs. Predictors Plots (Additional Variables) 121

Figure 5.24 Response vs. Predictors Plots .. 123

Figure 5.25 Residuals (ie) vs. Predicted Response(hatY) ... 124

Figure 5.26 Normality Plot ... 126

Figure A-1 L-Infinity Norm and Mean Cost vs. Stage Iteration 134

Figure A-2 Boxplot from the Result of the T-test .. 135

xviii

List of Tables

Table 5.1: Analysis of Variance of Preliminary Model……………………… 111

Table 5.2: Analysis of Variance ... 117

Table 5.3: Analysis of Variance ... 122

Table 5.4: T-test for Modified-Levene .. 125

Table 5.5: Normality Test ... 127

Table B.1: Block-I Defining Relation I=DHK=1 .. 137

Table B.2: Block-II Defining Relation I=AEGH=1 ... 138

1

Chapter 1

Introduction

1.1 Overview of Dynamic Programming

 Dynamic programming (DP) was first introduced by Bellman in 1957 as an

optimization approach that transforms a complex problem into a sequence of simpler

sub-problems at different stages, often represented by time periods [1]. The essential

characteristic is the multistage nature of the optimization (or decision-making) procedure.

It has been widely used as a tool in variety of study areas, such as engineering,

economics, finance, energy and science [2-8]. For example, in economics research,

where the problem is dealing with time periods or making a decision regarding to a time

period, DP is always seen to be tool to model and solve that problem [2, 9-12]. In the

energy sector, the real-time problem or location problem uses DP [4-7], where time or

location is referred to as stages. Another example of using DP as a tool is found in

finance, a method presented by Yan and Bai [8] uses DP to model and allocate funds

between stocks in a stock portfolio, as a result, to maximize income.

 In a typical DP problem, a system evolves through a series of consecutive stages

(or time periods). At each stage the system can be defined by a set of state variables

(state for short). One or more decisions must be made at each stage. These decisions

may depend on either the stage or the state or both. When a decision is made, a return

(either profit or cost) is obtained, and the system undergoes a transition to the next stage.

The return is assumed to be a known single-valued function of the state and decision.

The objective of the DP formulation is to maximize the total profit or minimize the total

cost over all the stages, and the output is the policy (series of decisions made in each of

the consecutive stages) that achieves the objective [13].

2

 Since the original sequential problem is converted into a collection of small

problems (sub-problems), it is important to make sure that the solution to each of the sub-

problems is actually optimal in the original problem. In other words, the optimal choice in

each stage-wise problem must be globally optimal to justify the transformation. Moreover,

future decisions for the remaining stages will constitute an optimal policy with regard to

the state resulting from the first decision. Bellman called this the "Principle of Optimality"

[1, 13]. Given the different characteristics of the basic elements represented in potential

problems, DP can be classified by: discrete or continuous stages, deterministic or

nondeterministic (stochastic) transitions, finite or infinite horizon, discrete or continuous

states, discrete or continuous decisions. This dissertation mainly focuses on infinite

horizon, stochastic dynamic problems with continuous state and decision spaces.

1.1.1 Stages

 DP is a method for solving complex problems by breaking the problem down into

simpler sub-problems. Sub-problems are indexed by stages. The resulting multistage

problem is then solved stage by stage. At each stage, the sub-problem is solved as an

ordinary optimization problem, and its solution helps to define the characteristics of the

next stage problem in the sequence. The stages often represent different time periods in

the problem's planning horizon. For example, the problem of determining the daily battery

level of a plug-in hybrid electric vehicle (PHEV) charging station can be stated as a DP

problem, where the objective is to minimize a cost function in each time period (each day)

or stage. Sometimes the stages do not have time implications. For example, consider the

problem of determining the shortest path for a traveler's trip from one city to another city

with a certain number of intermediate stops in some optional cities. This problem can be

formulated as a DP problem, where stages are defined as the number of the stops made

by the traveler.

3

 A DP problem can be defined to have discrete or continuous stages based on the

structure of the stage process. Stage is often analogous to time period, but it can also be

something else. For example, in supply chain problem, they defined stage as the

distance from the start point to the end, and they consider a continuous-stage system in

this problem because it allows taking a real-time continuous production/transportation

decision in every point in the distance [14]. The PHEV charging stations control problem

has discrete time because the system follows the timing of the electricity market which

evolves in 15-minute time intervals. A continuous-stage structure is frequently

encountered in problems that are addressed by the classical methods of calculus of

variations [12-13].

 In case of discrete stages, the problem is classified by the problem’s time

horizon, if the problem has a finite number of stages, then it is DP with finite horizon;

otherwise, it is DP with infinite horizon. The solution methods for solve those two different

horizons of DP are different [15].

1.1.2 States

The states reflect the information required to fully assess the consequences that

the current decision has upon future actions on each stage. In the inventory problem by

Chen (1999), each stage (time period) has only two variables describing the state which

are the inventory level on hand of the single commodity and demand forecasts [16].

States can be defined to be discrete or continuous or mixed. The gambling

problem, for example, states are the amount betted in each round where round is

referred to stage. In this case, it is discrete state [15]. The initial battery level in the PHEV

charging stations control problem is one of the state variables and it does include

continuous elements. Thus, the PHEV charging stations control problem has continuous

state space.

4

The specification of the states of the system is very important to a DP problem.

Suggestions that motivate the selection of states include: i) The state should provide

enough information to make future decisions without considering how the process

reached the current state (i.e., Markovian property); and ii) The number of states should

be small to reduce the computational effort that may lead to the curse of dimensionality.

As a variable, the state can be discrete or continuous or mixed. It may also have high

dimension.

Powell [15] defines a state variable as the ‘minimally’ dimensioned function of

history that is necessary and sufficient to compute the decision function, the transition

function, and the contribution function. In real situation, if the entire history of states is

included up to the current time period, the problem is dealing with computational work.

Here, the word ‘minimally’ is of significance. It can address the issue of the curse of

dimensionality associated with the increase in the size of the state space. Thus, the state

space should to be as small as possible.

1.1.3 Decisions and Policies

 Given the state entering a stage, decisions are made in that stage to achieve a

desired objective in that stage, subject to any required constraints. These decisions

affect the state of the next stage, which affects the decisions in the next stage. In the

inventory problem [16] the decision is the amount of the commodity to order at the

beginning of each time period. Decision variables can be discrete or continuous or mixed.

 A policy is an ordered set of decisions by state and stage. In the inventory

problem [16], for example, a policy can be the twelve ordering amounts of the commodity

dependent on the inventory levels entering each of the twelve months. An optimal policy

is one that maximizes total profit or minimizes total cost over all the stages.

5

1.1.4 Transition Function

 A transition function defines the transition of the state variables from the current

stage to the next. It is a function of the state, decision, and random variables. function

may be categorized as "deterministic" or "nondeterministic." The simplest case is

deterministic, which can be illustrated by the shortest-path problem: If the traveler is in a

given city, he will move to another city with complete certainty because the distances

between each two of the associated cities are known. In this problem, the stage is time

that has the traveler has elapsed since the beginning of his travel. The states are

possible cities in the current stage and decision are destinations to select for the next

stage. Transition function, in this case, is the value (distance) since the beginning of time

period to current stage is equal to the return associated with a particular state plus the

accumulative return though stage before the current stage. The distances between cities

are known, thus it can deterministically make a decision and transform the state in the

current stage to a state in the next stage [17]. The A nondeterministic or stochastic case

is the one for which the decision outcome is unknown with certainty, but the state and

decision variables at each stage are determined as a result of some (assumed) known

probability distribution. Transition functions are generally assumed known, but if

unknown, they can be approximated by some methods, for example, data mining and

statistical modeling [18-22].

 We can also classify types of transition function by stationary or not. The

stationary system occur when the distribution function of the transition do not change with

stage or time. Moreover, in a stationary problem, the return per stage and the

randomness statistics are also unchanged from one stage to the next stage [23-24]. For

example, the PHEV charging stations control problem has a stationary system because

the statistical properties of each state variable do not change over time, as a result, we

6

have the same transition function for all stages. For the finite-horizon case, transitions

can be stationary or nonstationary, and the stages can involve different structure for

states, objectives, decisions, etc. For the infinite-horizon case, a steady-state equilibrium

policy is desired, hence, the transitions must be assumed stationary

1.1.5 Future Value or Cost-To-Go Function

A stage return is the return provided by a system in each stage of a process. The

total return of a process or system depends upon the decisions that are made at each

stage. In this dissertation, we only focus on the case of discrete-time. Based on series of

discrete stages, there are two types of DP, finite and infinite horizon. In a finite horizon

problem, the total return is some combination of the stage returns (e.g., a sum or

product), which are accumulated as the process moves from state to state, or

equivalently from stage to stage. For the infinite-horizon case, a steady-state equilibrium

policy is desired, hence, the transitions must be assumed stationary. In each stage,

iterative algorithm is required to solve for a return but when the process reach the steady-

state equilibrium, then the return at the steady -state point will become the total return.

The purpose of solving a DP problem is to find the optimal total return. It should

also be noticed that it is possible for the return functions to vary from stage to stage. In

the inventory problem [16], the stage return can be the ordering and inventory-carrying

cost for a month or each time period, and the total return can be the total of that cost for

all the months.

Given the different characteristics of the basic elements, there can be various

types of DP: deterministic or stochastic transitions, finite or infinite horizon, discrete or

continuous states and decisions. The key to a DP solution is the future value function or

cost-to-go function that provides the optimal return to operate the system from a given

stage to the end of the time horizon corresponding to the states in that given stage. It can

7

also solve for the optimal control function that corresponds to the optimal policy and is

based on “the principle of optimality."

1.2 Main Advantages and Limitations

One of the main advantages of DP is that it transforms a single high-dimensional

optimization problem into a sequence of small optimization problems which can be solved

in sequence. Another important advantage of DP is that it determines the absolute

(global) optima rather than relative (local) optima.

However, certain limitations of DP are still noticeable. The first limitation is that it

assumes a fully observed system which means that it allows the system be able to make

decisions based on the full knowledge of state space. In fact, in practice, the accurate

and comprehensive process knowledge of complex nonlinear control system is rarely

known a priori. In the case of a non-fully observed system, the partially observable

Markov decision process (POMDP) can provide an elegant framework that indirectly

observes the states of the system via a set of noisy observations. But with a complex

problem, POMDPs takes long time to solve [25]. The second disadvantage is the “curse

of dimensionality": the required DP calculations become cost-prohibitive, as the number

of states and decisions increase, with an exponential growth in the computation with

respect to the dimension of state space [15]. When DP has a high-dimensional state

space with continuous-state problems, especially stochastic problems, both of the above

limitations become intractable for the classical solution methods. In addition, the original

or ‘exact’ DP methodology is relevant when the state of the system is defined completely

by a finite set of discrete variables. It breaks down when considering infinite horizon with

continuous state space DP. These limitations have motivated the research community to

look and move beyond the classical Bellman’s approach to formulate and solve those

difficult DP problems. Thus, approximate dynamic programming (ADP) was introduced.

8

1.3 Motivation

 The original DP approach provided by Bellman [1] is used to compute the "cost-

to-go' function and stores each value for each stage in the state space. This method is

useful when considering a few states and decisions. However, when dealing with a high-

dimensional, continuous state space, the limitation called the 'curse of dimensionality'

prohibits solution. This kind of DP problem requires proper discretization of the

continuous state space and future value function approximation. With advances in

computational power, numerical methods have been developed by many researchers to

implement the original DP method, and has yielded the ADP family of dynamic

programming [15, 26].

 One of the most popular methods in ADP is called reinforcement learning (RL)

[6], which was originally inspired by the trial and error process in the psychology of

animal learning [27-29]. This approach is flexible because it does not need a state

transition model to find the optimal policy because it directly maps the states to actions

(decisions) [30]. RL performs well in discrete environments of small dimensionality [31]. It

mostly focuses exclusively on steady-state problems with sets of discrete decisions [15].

However, sufficient exploration for high-dimensional, complex problems can require

extremely large and impractical sample sizes in RL. The state and decision spaces can

be provided via sampling [33-37]. In such a case of vary large or continuous problems,

RL has to be combined with techniques that allow generalization over an information

space (state-action space) [38]. Some parametric function approximators are applied to

represent either value functions or policies, including neural network [30, 33] Gaussian

stochastic processes [39-40], extreme randomized trees [38, 41], and kernel regression

[40, 42].

9

 In the case of an infinite horizon DP problem, the main motivation of this kind of

DP is to achieve faster convergence to the steady-state optimal solution and simplify the

problem of function approximation. The concept of RL is often applied to solve infinite

horizon DP with different types of leaning methods, such as heuristic DP by Werbos [36-

37, 43-44], and Tree-based batch mode Q-iteration by Ernst et al. [45]. RL is simple

because it does not require a transition model. However, it converges slowly, and it may

require too many trial processes to learn an optimal control strategy [30]. Bertsekas and

Castanon (1989) propose an iterative aggregation approach to solve infinite horizon DP

problems [46]. However, this method can cause some errors due to inappropriate

aggregation [47]. Some researchers approximate the value function by adding some

functions, such as nonlinear programming shape-preservation [9], and basis functions

[48]. However, those methods perform well only in low-dimensional state spaces. Powell

presents the idea of a post-decision state to solve infinite horizon DP. He defines the

post-decision state as the state of the system after making a decision but before new

information has arrived. This method is able to solve high-dimensional state and action

space with several correlated exogenous processes. The value function is approximated

by some methods, such as, linear approximation [4] and piecewise linear approximation

[5-6, 49]. However, the limitation of this method is that the function needs to be either

linear or concave (convex if minimizing).

 A simple and natural way to address a continuous state space is by forming a

finite grid of discretization points in the state space and using some approximators such

as multilinear or spline interpolation to estimate the value function [50-51]. Unfortunately,

the full grid grows exponentially in the dimension of the state space and consequently is

not practical for high-dimensional problems. In order to reduce the number of

discretization points and the corresponding computational effort, the study by Chen et al.

10

[52] developes statistical design of experiments (DoE) concept to sample the state space

and flexible statistical modeling to approximate the optimal value function over the

continuous state space. This approach is analogous to a design and analysis of computer

experiments (DACE) [53-54] approach, where the computer experiment is the stage-wise

optimization. Orthogonal arrays (OAs), Latin hypercubes, and number theoretic methods

(NTMs) have been employed to more efficiently sample the continuous state space of a

DP problem [52-56]. Corresponding to the use of efficient discretization methods for the

state space, statistical modeling methods, including multivariate adaptive regression

splines (MARS) and neural networks (NN) have been applied [52-56]. The existing

literature on solving continuous-state DP using DACE have been applied to several finite-

horizon problems including a nine-dimensional inventory forecasting problem [16, 55, 57],

a 20-dimensional wastewater treatment system [35-36], a 30-dimensional water reservoir

[58], and a high-dimensional non-stationary ground level ozone pollution ADP problem

[61-62].

 A DACE-based approach does not exist in the infinite horizon DP literature. This

motivates research to develop a DACE ADP approach that can handle high-dimensional,

continuous-state infinite-horizon dynamic programming. According to research proposed

by Fan [63] and Sahu [64], a sequential framework for state space discretization together

with a statistical modeling tool to estimate the cost-to-go or future value functions can

solve finite horizon dynamic problems successfully. This motivates research to develop a

sequential DACE ADP approach to approximate an infinite horizon DP. In addition, the

second task of this research is motivated by Pilla [65], which used a DACE approach to

build a metamodel for the expected value function of the second-stage for solving a two-

stage stochastic programming problem.

11

1.4 Research Overview

 The ultimate objective of this dissertation research is to develop new

methodology based on a statistical perspective that employs a sequential DACE-based

approach to approximate an infinite horizon, continuous-state stochastic dynamic

programming problem. The proposed method uses DACE to address continuous state

spaces by employing experimental design to generate the space for state variables and

then for each and use a statistical model to fit these state variables and their responses

to provide a continuous approximation of future value function. This research uses NTMs

to sample the state space and MARS as statistical tool to model a metamodel of the

future value function. A two-sided t-test for 45-degree line correspondence is considered

as one of stopping rules of the DP algorithm to check for the convergence. The inventory

forecasting problem by Chen [16] is implemented to demonstrate the approach. The

results are compared by forward simulation over a finite set of time periods.

 The other objective of this dissertation is to develop a two-stage framework that

integrates the first and second-stage system for adaptive design for controllability of a

system of PHEV charging stations using a DACE approach. In this project, the PHEV

charging stations control problem is the second stage. One of the contributions of this

dissertation is to formulate the control problem. For preliminary study, the problem is

formulated as mean value problem and solved using linear programming. A DACE

approach is employed to generate the metamodel of the second-stage given possible

first-stage solutions. In this task, DACE is used to replace the loop between first and

second stage with a constraint generated from the gradient of the approximation function.

 A literature review i presented in Chapter 2, including some methods to solve

ADP, such as Q-learning, using the post-decision state, and sequential DACE. The

proposed method with three different algorithms is presented in Chapter 3. A nine-

12

dimensional inventory forecasting problem is applied to test the proposed method.

Chapter 4 presents batch mode reinforcement learning (RL) using MARS as an

approximator. The comparison with the proposed method in Chapter 3 is also presented.

The problem of controlling a system PHEV charging stations is presented in Chapter 5,

including the formulation of the PHEV charging stations control problem with preliminary

results using the mean value problem, followed by using DACE to estimate the expected

value function of the control problem (second-stage) in two-stage framework.

Conclusions and future work are presented in Chapter 6.

13

Chapter 2

Review of Literature

2.1 Modeling Dynamic Programs

 The original (deterministic) Bellman's equation can be written as

())(),(min)(11 +++= tttttutt sVuscsV
t

(2.1)

where 1+ts is the state we transition into if we are currently in state ts , and tu is the

decision taken at stage t. This problem is deterministic problem.

 The classical form of DP assumes that the state space consists of a finite

number of states [44]. It also assumes that 1+tV is known and is used to compute)(tt sV .

 Stochastic dynamic programming (SDP) is the version of DP whose goal is to

minimize an expected “cost” when the randomness is included in the problem. A typical

SDP formulation for a finite-horizon with continuous state is written as

,,...,1for),(
and1,...,1for),,(s.t.

),,(min

1

1,...,1

Ttus
Ttusfs

uscE

ttt

tttt

T

t
ttttuu T

=Γ∈

−==
⎭
⎬
⎫

⎩
⎨
⎧

+

=
∑

ε

ε

........(2.2)

where T is the time horizon; ts is the vector of state variables; tu is the vector of decision

variables; tε is the uncertainty; (.)tc is the known cost function, and (.)tf is the

multivariate transition function used to determine 1+ts . Constraints on the decision and

state are represented by tΓ .

14

2.1.1 Finite-Horizon Model

 The idea of finite horizon is to determine what to do right now when we model the

problem over horizon T [15]. The finite horizon stochastic DP formulation in recursive

form is written as,

{ }

,,...,1for),(
and1,...,1for),,(s.t.

)(),,(min)(

1

11

Ttus
Ttusgs

sVuscExV

ttt

tttt

ttttttutt
t

=Γ∈

−==

+=

+

++

ε

ε

(2.3)

The state vector describes the state of the system at the beginning of stage t.

The decision vector is the variable we can control to minimize present plus future cost.

The transition function of the state)(⋅tg is assumed to be known. However, in many real

problems the transition function is unknown, but it is estimated by some methods, for

example, data mining and statistical models [18-22]. The transition function can be the

same (stationary) or different for each stage (non-stationary). The future value function or

cost-to-go function provides the minimal cost of the system from stage t through stage

T , given the system is in state ts entering stage t. The goal is to find the future value

functions)(⋅tV and the optimal decision variables *
tu . To solve finite horizon DP, the

backward algorithm is applied. The future value function at the last stage)(⋅TV is solved

first, and we continue to solve backward until)(1 ⋅V is obtained [15].

2.1.2 Infinite-Horizon Model

 For infinite horizon DP, the problem will be solved over an infinite time horizon.

The infinite horizon problem is of particular interest to address steady-state properties in

a Markov process. It studies problems where the parameters of the contribution function,

transition function, and the process governing the exogenous information process do not

15

vary over time, although they may vary in cycles (e.g. an infinite horizon model of energy

storage from a solar panel may depend on time of day) [15]. We solve the problem until

the system reaches the steady-state equilibrium.

 In a version of stochastic infinite-horizon DP, such a problem is usually

formulated as a discounted model that takes the long-run return of each stage into

account, but the return that is received in the future (or from a previous stage) is usually

geometrically discounted according to a discount factor. Discount factors are important in

infinite-horizon DP in which they determine how the reward is counted. The natural

discount factor for example in a Tetris game problem is 1, since the received rewards

have the same importance, independently of when received [64]. But for a problem in

which the horizon is long enough to affect the time value of money, a discount factor (γ),

which is a number in between 0 and 1, is introduced to the problem [15, 66].

 We can think of a steady-state problem as one without the time dimension,

assuming the limit exists. Thus, we have ()ttt sVsV ∞→= lim)([15]. The steady-state

optimality equations can be expressed as

V (s) =min
u∈U

c s,u,ε()+γ P "s s,u()
s∈S
∑ V "s()

$
%
&

'
(
)

(2.4)

where)(sV is the total return with state s ∈ S and decision Uu∈ . The discount

factor,γ , is in between 0 and 1.

 One also can define the cost-to-go function for the discounted infinite horizon

model as

()
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
∞

=
∈ 1

,,min)(
t

ttt
t

Uu
uscEsV εγ (2.5)

 Thus, an infinite horizon stochastic DP formulation in recursive form is written as,

16

{ }

,...2,1for),(
2,...,1for),,(s.t.

)(),,(min)(

1

11

=Γ∈

==

+=

+

++

tus
tusgs

sVuscEsV

ttt

tttt

ttttttutt
t

ε

γε

(2.6)

 The transition function is the same for each stage as it is in a stationary problem.

The system seeks steady-state optimality.

2.2 Approximate Dynamic Programming

 The characteristics of three variables causing the curses of dimensionality

include: the state variables, the decision variables, and the exogenous information

variables [15]. The original DP approach by Bellman in 1957 is a mathematical

programming method for optimizing a system changing over time [1]. However, the

solutions are only possible for small problems or under very limiting restrictions (linear

dynamics, quadratic cost, Gaussian random variables). Thus it may not be able to

mitigate the curses of dimensionality in DP. Puterman [67] shows that the original

Bellman's equation can solve the discrete and small state space smoothly. Given recent

advances in computational power, approximate dynamic programming (ADP) methods

have become a practical method to find good solutions [15, 26]. ADP is both a modeling

methodology and an algorithmic framework for solving multi-stage stochastic optimization

problems. Most of the literature has focused on the problem of approximating the future

value to overcome the problem of multidimensional state variables. Thus, the original

stochastic Bellman's equation (1) becomes,

V̂t st() =min
ut

ct (st,ut,εt)+ V̂t+1(st+1)()

........(2.7)

where V̂t st+1() is an approximation of the value function at time t+1.

 Some researchers refer to ADP as neuro-dymamic programming (NDP) and

reinforcement learning (RL). Bertsekas and Tsitsiklis [68] address these curses of

17

dimensionality by introducing an NDP method using artificial neural networks (ANNs) as

the function approximator, and solve a discrete state dynamic problem. This method

creates algorithms aiming at overcoming two main problems of classical DP algorithms,

namely the curse of dimensionality and the transition probabilities requirement. The curse

of dimensionality is conquered through use of parameterized function approximators that

approximate the value function in a similar way to statistical regression. These algorithms

rely on output generated by simulators in their computation, rather than explicit transition

probabilities. However, the discussion by Lee and Lee [69] states that NDP is more of an

off-line based learning, like reinforcement learning, and it assumes that large amounts of

data can be collected from simulation trajectories obtained with “good” suboptimal

policies. Thus, this method may be difficult to apply to continuous state variables. They

also pointed out some limitations of NDP including error in approximation due to

continuous state and decision space, costly on-line learning, and data quantity limitation.

 RL is commonly studied in computer science. In RL, there is typically a small

number of low-dimensional discrete decisions in deterministic models [15]. Names of RL

algorithms depend on their algorithms, such as Q-learning and SARSA [15, 30, 35, 37,

38, 40-41].

2.2.1 Q-Learning

 The main advantage of Q-Learning is that we are solving a complex problem that

we cannot model but are able to observe behaviors directly. We do not need to know an

explicit transition function, so we refer to it as model-free. In this case we may make a

decision by observing the results of the decision from a physical process or exogenous

process. At each state, we make a decision or action that maximizes the function

),(usQ , which is formulated as

18

Q s,u() = r s,u()+γmax
!u
Q(!s , !u)() (2.8)

where),(usr is an immediate reward, γ is a relative value of delayed vs. immediate

rewards (between 0 and 1), sʹ′ is the new state after making decision u , and uʹ′ is an

action or decision in state sʹ′ . The return value of being in a state s is

V s() =max
u

Q s,u()() (2.9)

 The original Q-Learning performs well when solving problems without a model,

but it is difficult to apply to problems with high-dimensional state and action spaces [15].

Moreover, the usual way to observe state-action pairs is by constructing a table [15]. To

overcome the over generalization of a state-action space, some parametric function

approximators or regression tools are applied [15, 30, 35, 37-38, 40-41, 45]. Thus,

equation (5) and (6) become

Q̂ s,u() = r s,u()+γmax
!u
Q̂(!s , !u)()

......(2.10)

V̂ s() =max
u

Q̂ s,u()() (2.11)

 Ernst et al. [38, 45] presents tree-based batch mode Q-iteration, which uses tree-

based supervised learning methods to approximate the Q function. They introduce four-

tuples (1,,, +tttt srus) and denote F as the set (){ }Fil
t

l
t

l
t

l
t srus 11,,, =+ of available four-

tuples. The sampling process is used to generate F . They call this problem the batch

mode RL, as the set of transitions is used to produce the control policy in a single step.

The state-action pair is an input variable, and),(usQ associated with the pair is an

output variable. A training set is used to approximate),(ˆ usQ . They compare results of

several types of tree-based supervised learning methods, including Classification And

19

Regression Tree (CART), K-dimensional Tree (Kd-tree), Tree Bagging, Extra-Trees, and

Totally Random Trees. The two best results are from using Extra-Trees and Tree

Bagging.

2.2.2 The Post-Decision State Variable

 Powell presents the idea of post-decision [4-6, 15, 49] to solve high-dimensional

state and action space with several correlated exogenous processes. He defines post-

decision state as the state of the system after making a decision but before new

information has arrived and can be expressed as)(),(, ttttt
uMu

t ususss Δ+== where

)(tt sΔ is the expected change of the state between t and t+1, the decision ts . The state

before making a decision, sometimes, called pre-decision state. The next pre-decision

state is)()()(111 ttttttt
u
tt uususs +++ +Δ+=+= εε . When making decisions, we use

() 1,...,0,)(ˆ),(min)(ˆ ,1 −=+= − TtsVuscsv nu
t

n
tt

n
ttu

n
tt

t

(2.12)

where the superscript n is the iteration counter and)(ˆ n
t

n
t sv is the new observed value for

visiting state n
ts or a sample of the value of being in state n

ts . Moreover,)(ˆ n
t

n
t sv is also a

sample of the value that put us in state nu
ts
,
1− since the transition from nu

ts
,
1− to n

ts requires

only the realization of random exogenous information. Thus, we can update the estimate

of the approximate value function around the post-decision state)(ˆ ,
11
nu

t
n
t sV −− with the new

observation)(ˆ n
t

n
t sv , as

),(ˆ)(ˆ)1()(ˆ 1
,
1

1
11

,
11

n
t

n
tn

nu
t

n
tn

nu
t

n
t svsVsV −−

−
−−−− +−= αα (2.13)

where 1−nα is a smoothing factor (stepsize) between 0 and 1.

20

 The approximate value function V̂ is obtained by the value function

approximations method such as linear approximations [65], piecewise linear

approximations [5-6, 49], and cutting planes method [15]. In any case, convexity and

concavity must be confirmed [15].

 Powell also states in his book [15] that a state-action pair in Q-learning is a form

of a post-decision state, but a post-decision state is more compact.

2.3 Finite-Horizon with Continuous-State Dynamic Programming Solution Methods

 The research for continuous-state DP has focused on methods helping to reduce

computational efforts from the curse of dimensionality. Johnson et al. [50] addresses the

continuous state space by forming a finite grid of discretization points in the state space

and using linear and spline interpolation. They compare numerical solution methods

using multilinear, Hermite gradient DP, and tensor-product cubic spline interpolation on a

four-reservoir problem. They show that cubic splines required fewer grid levels in each

dimension. Thus it reduces computational time. However, their method is based on a full

grid points (i.e., a full factorial experimental design), which grows exponentially with the

number of dimensions.

 Chen [16] and Chen et al. [52] apply experimental design and a statistical model

to high-dimensional continuous-state stochastic dynamic programs. The proposed

method utilizes orthogonal array (OA) experimental designs and multivariate adaptive

regression splines (MARS), where OAs are special subsets of full factorial experimental

designs that grow only polynomially with the number of dimensions. This approach uses

a statistical perspective that can be seen to be analogous to design and analysis of

computer experiments DACE [53-54] and is most appropriate for reducing the

computational effort for high-dimensional problems. The results achieve good accuracy

compared to using a full factorial design with tensor-product cubic spline interpolation by

21

Johnson et al. [50]. Cervellera et al. [55] introduced the use of an alternate experimental

design, Latin hypercubes, and neural networks, which is another statistical modeling

method tool similar to Chen's approach, and obtained comparable results to using OAs

and MARS on a nine-dimensional inventory forecasting problem and an eight-

dimensional water reservoir problem. Cervellera et al. [55] and Wen [70] study

experimental designs number-theoretic methods (NTMs) and successfully solve a thirty-

dimensional water reservoir problem. Fan [63] creates an adaptive value function

approximation (AVFA) approach using number-theoretic methods (NTMs) with feed-

forward neural networks (NNs) to solve finite horizon with continuous-state DP. Lastly,

Sahu [64] implements AVFA with MARS. Both Fan and Sahu study the inventory

forecasting problem by Chen [16] and utilize the ‘sequential’ concept from DACE to make

the grid ‘only fine enough’ for the ‘efficient’ discretization and used MARS methods to

approximate future value functions [64].

 The concept of RL is popular in ADP research [27-28, 60]. For continuous

problems, RL generalizes over a state-action space [38]. Ernst et al. [38, 45] present

batch mode RL using a Q-iteration algorithm with tree-based supervised learning

methods to approximate the Q-function [38, 45]. They compare results of several types of

approximators including CART, Kd-tree, Tree Bagging, Extra-Trees and Totally Random

Trees and found that Extra-Trees and Tree Bagging are the two best, respectively, in

terms of accuracy. They do not diverge to infinity, but they do not ensure convergence of

the algorithm either. The convergence property is reached by the Totally Randomized

Trees, but its performance is not as good as Extra-Trees and Tree Bagging. They also

compare their proposed methods with Q-learning combined with a piecewise-constant

grid and found that the proposed method performed better [38]. Ernst et al. [45] use batch

mode RL with Extra-Trees to solve the problem of controlling the academic benchmark

22

electric power system, which is a finite horizon case. They suggest that the proper way to

solve this kind of problem is to combine batch mode RL with model-based techniques,

such as Model Predictive Control (MPC) [45]. However, in that case, it may require more

computational effort and make a problem more complicated.

 Using post-decision state variables is one of the most attractive methods to solve

ADP. He et al. [49] use post-decision state variables with pricewise linear approximators

to solve for optimal dosage decisions in controlling ovarian hyperstimulation in a finite-

horizon DP. The results indicate that this method can obtain policies as good as using

Markov decision processes (MDP) benchmark in terms of accuracy but with lower

computational time. However, this method uses lookup-tables that need to discretize the

continuous state space and the state transitions, which may introduce discretization

errors.

2.4 Infinite-Horizon with Continuous-State Dynamic Programming Solution Methods

 The most challenging part of infinite-horizon DP with continuous state space is

convergence, since the problem needs to reach the steady-state equilibrium. In brief, the

motivation of this kind of dynamic problem is to achieve faster convergence to an optimal

solution and to simplify the problem of function approximation. Werbos [43] apply the

concept of RL to infinite-horizon DP and proposes a critic structure called "heuristic DP".

This method uses the parametric structure called actor (or action network) to approximate

the control law, and another parametric structure called critic (or critic network) to

approximate the value function. Critic training does not require a system model for its

calculations, but actor training, on the other hand, requires finding the derivatives of a

system model with respect to the control variables. Thus, in practice, heuristic DP

converges slowly. To improve the convergence, Werbos [36-37] proposes an alternative

referred to as Dual Heuristic Programming (DHP). DHP uses the critic to approximate the

23

derivatives of the value function with respect to the state variable. The actor is used to

approximate the control law, as in all other adaptive critic approaches. It requires fully-

specified model based algorithms to train the critic and actor. Later on, Ferrari and

Stengel [71] show that the DHP method could be more efficient than heuristic DP.

However, due to the use of derivative information, the relationships for updating the

control and value-derivative functional are more involved and, hence, introduce additional

computation. Furthermore, since the DHP critic approximates a vector functional, the

problem of function approximation is more challenging. Werbos [44] present "Action-

Dependent Heuristic DP" (ADHDP) with Q-learning method to ADP approaches. This

method does not require a model of the system. In ADHDP/Q-learning methods, one can

train a critic to match targets of the value function based on the Q recurrence equation,

using exactly the same procedure as in heuristic DP. The actor training is simplified, in

that since the control variables are inputs to the critic, the derivatives of the value function

with respect to the control variables are obtained directly from back-propagation through

the critic. Thus ADHDP/Q-learning methods use no system models in the training

process. Other ADP research based on the RL perspective includes the following.

Anderson et al. [72-73] propose an RL method with robust control theory to guarantee the

stability even during training. Saeks et al. [74] work with a variety of adaptive critic and

adaptive DP implementations where the adaptive critic was developed and apply to a

control of a hybrid electric vehicle, which is a real-time application. Si et al. [75] study

direct neuro-DP, developed a model-independent to ADHDP approach, and successfully

apply it to a wireless network call admission control in a large scale helicopter control

problem. The principle disadvantage of RL is that it requires many trials (repeated

experiences) to learn an optimal control strategy, especially if the system starts with a

poor initial policy [76].

24

 Other ADP research includes the following. Bertsekas and Castanon [46]

propose a class of iterative aggregation approaches to solving infinite horizon DP. This

method is to interject aggregation iterations in the course of the usual successive

approximation method. The principle of aggregation-disaggregation is to approximate by

solving a smaller system of equations obtained by lumping together the states of the

original system into a smaller set of aggregate states. Zhang and Baras [47] argue that

inappropriate aggregation methods can cause large aggregation errors. They derive an

adaptive aggregation scheme method to calculate the value function, which guarantees

reduction in aggregation errors and increases the speed of convergence [62]. Cai et al.

[9] present a Nonlinear Programming (NLP) method, called DPNLP, to solve the infinite

horizon DP problems. This method uses shape-preserving approximation methods to

approximate the optimal value function by adding some extra degree of freedom. DPNLP

solves the deterministic or stochastic DP problem with one or two continuous state

variables and several continuous control variables without the curse-of-dimensionality of

the action space. DPNLP can solve DP problems with many continuous control variables

easily and quickly, however, it can only solve one or two continuous state variables. The

post-decision state variable approach is another way to solve infinite horizon DP. It uses

of a forward algorithm where there is no need to loop though all possible states in the

next time step in order to estimate the value of the current state, just like in Q-learning.

However, it requires approximating the expectation of the value function by visiting the

states with enough frequency to make a good decision [77]. Ryzhov and Powell [78]

represent uncertainty of the value function using a Bayesian model with correlated belief.

In this way, a decision made at a single state can provide with information about many

states and make each individual observation more powerful. However, the performance

25

of the proposed method with an infinite-horizon problem is not very good, especially

within an online objective setting.

2.5 Statistical Approach to Approximate Dynamic Programming

 The statistical approach to ADP uses statistical models to approximate the future

value function when the problem is defines as continuous state (or decision) space.

Foufoula-Georgiou and Kitanidis [79] use multi-linear interpolation in their proposed

multilinear Hermite gradient DP to solve discrete time linearly constrained stochastic

optimal control problems. Johnson et al. [50] use tensor-product cubic spline interpolation

for solving a four-reservoir problem and show that cubic splines required fewer grid levels

in each dimensions, hence it reduces computational time. Chen [16] and Chen et al. [52]

observe that the methods presented by Foufoula-Georgiou and Kitanidis [79], and

Johnson et al. [50] are based on a full grid of points and statistically equivalent to a full

factorial experimental design. Chen et al. [52] proposes an approach based on an

Orthogonal Array (OA), which is the special subset of full factorial experimental designs,

and used a Multivariate Adaptive Regression Splines (MARS) as a statistical tool to

approximate inventory forecasting SDP. Chen also shows that while the number of points

in a full grid discretization grows exponentially with the number of dimensions, OAs grows

only polynomially with the number of dimensions. This greatly reduces the computational

effort for high-dimensional problems. The result achieves good accuracy compared to

using a full factorial design with tensor-product cubic spline interpolation by Johnson et

al. [50]. Cervellera et al. [58] use an alternative experimental design, number-theoretic

methods (NTMs) and successfully solve a thirty-dimensional water reservoir problem.

They also conclude that dimensionality issues can be mitigated by employing neural

approximation with efficient discretizations of the state space. Cervellera et al. [55]

introduce the use of another alternate experimental design, Latin Hypercube (LH), and an

26

alternate statistical modeling method, neural networks into Chen's [16] approach, and

obtaine comparable results to the application of OAs and MARS to a nine-dimensional

inventory forecasting problem and an eight-dimensional water reservoir problem.

Cervellera et al. [80] propose a methodology called semilocal approximate minimization

(SLAM), which introduces a semi-local approach based on kernel functions to

approximate the solution of T-stage stochastic optimization (TSO) problems, which is a

typical paradigm of Markovian decision processes. The approach is characterized by less

demanding computational requirements and seeks to exploit the properties of semi-local

approximation through kernel models and efficient sampling of the state space. Kelley

and Kolstad [10] present an algorithm for infinite horizon models in environmental

economics and policy, relying on a neural net approximation of the value function within

an iterative version of the Bellman equation. They use "discrete grid methods" to

generate the design and approximate the value function using neutral networks. They

claim that the algorithm is capable of becoming arbitrarily accurate, unlike the linear-

quadratic method where the accuracy is bounded by the accuracy of the approximation of

the return function. However, one concern of the method presented by Kelley and

Kolstad is the size of state space. Moreover, with a high-dimensional problem, the NN

has more observations to fit the underlying function to increase the accuracy, thus,

computational time increases in order to estimate parameters over a large data set.

Cervellera et al. [81] compare the neural networks approximation with a semi-local

approach based on kernel functions (SLK) [50]. The results show that in terms of both

accuracy and computational times, SLK is more attractive in higher-dimensional contexts

due to its more advantageous computational requirements. Fan [63] successfully solves

the nine-dimensional inventory forecasting a finite horizon dynamic programming with

continuous-state problem described in Chen [16] by creating an adaptive value function

27

approximation (AVFA) approach using number-theoretic methods (NTMs) with feed-

forward neural networks (NNs). Sahu [64] proposes the same approach with MARS

approximation instead of NNs Both studies utilize the ‘sequential’ concept from Design

and Analysis of Computer Experiments (DACE) to make the efficient discretization (fine

grid). Sahu's study also tests various guidelines for setting the number of basis functions

for a MARS approximation.

2.6 Two-Stage Framework

 A two-stage framework was first introduced by Dantzig [82] and Beale [83]. In

two-stage stochastic programs with recourse, traditionally, a set of decisions have to be

made a priori when related environmental information is not completely available in the

first-stage (or master) problem, called here-and-now decision. These decisions are called

the first-stage decisions. Given the first-stage decisions, the later stage decision variables

(also called recourse variables) can be decided [82-84]. In optimization algorithms, the

second-stage decisions (or solution) are sent to the first-stage. At this time we need to

solve for the first-stage decisions again along with the second-stage decisions. If the

optimality is obtained, then stop, otherwise we need to solve for new second-stage

decisions given the new set of the first-stage decisions. The deterministic equivalent of

the two-stage stochastic programming problem with recourse can be written as

[])(min xQExcT
Xx

+
∈

(2.14)

where

{ }.0,:min)(≥=+=
∈

yhWyTxyqxQ T

Yy
(2.15)

Equation (2.14) is the first-stage objective function, which includes the expectation of the

second-stage objective function)(xQ , where x is the first-stage decision vector and y is

the second-stage decision vector. Note that we consider the deterministic version so the

28

random events do not occur in the model. Parameters c and q are the known objective

coefficient vector of x and y, respectively. Parameters T and W are matrices, specifying

the second-stage linear constraints on x and y, respectively with the right-hand side

vector h.

 One of the most popular methods is based on building an outer linearization of a

recourse cost function and a solution of the first-stage (master) problem plus this

linearization. It is a cutting plane technique introduced by Benders [85], called the L-

shaped or Bender's decomposition method [84]. However, for complicated problems, the

iterative cut can be very slow to converge because of the loop between first and second-

stage. Moreover, this method works only with the deterministic problem.

 Modified versions of the cutting plane method are numerous. Birge and

Louveaux [86] propose a multicut algorithm that allows the L-shaped method to be

extended to include multiple cuts for the objective in each iteration. The regularized

decomposition method due to Ruszczynski [87-88] is developed in such a way that the

next solution of the master problem is not too different from the previous first-stage

solution. It poses the problem as a non-smooth optimization problem and adds a

regularizing term in the objective function, where the initial first-stage solution is the

incumbent solution that is updated, as necessary, after finding optimality. Hooker and

Ottosson [89] extend the Benders decomposition framework on a mixed-integer linear

program so that constraint logic programs can be used as subproblems to generate cuts

that are added to a master problem. Hooker [90] uses logic-based Benders

decomposition to solve several multi-stage planning and scheduling problems. Trukhanov

et al. [91] introduce an adaptive multicut method that generalizes the single cut and

multicut methods. The proposed method adjusts the aggregation level of the optimality

cuts in the master program.

29

 Among this research, the loop between first-stage and second-stage is still

visible. Chen [16] proposes a discretization scheme based on design of experiment

technique using orthogonal array design to create a finite set of points of the first-stage

decision and use a statistical model to estimate the surface of the recourse function. Pilla

[65] and Pilla et al. [92-93] develop a multivariate adaptive regression splines cutting

plane approach for solving a two-stage stochastic program to solve airline fleet

assignment problem. There are two phases in this method, DACE phase and

Optimization Phase. The approximation of the expected recourse function is achieved by

MARS approximation over a discretized first-stage decision space based on a Latin

hypercube design in DACE Phase. An approximate second-stage recourse function then

is optimized using a cutting plane algorithm. Compared with traditional L-shape method,

this proposed method performs faster.

 In this dissertation, we only focus on building the metamodel to represent the

expected value function of the second-stage.

2.7 Insight for Research

 The original DP approach derived by Bellman [1] is proved to perform well only

for small problems or under very limiting restrictions. Given advances in computational

power nowadays, APD exists. For continuous state spaces, DP usually requires proper

discretization, by forming a finite grid of discretization points of the continuous state

space, and uses some methodology to approximate the future value (or cost-to-go)

function. However, the full grid grows exponentially in dimension of the state space,

hence, it is not practical for high-dimensional problems. Reinforcement learning (RL) ADP

is one of the most popular methods in modern study of implementing DP [30, 35-37, 38,

40-41, 43, 45, 71, 72-78]. RL is flexible because it does not require an explicit state

transition model. The sufficient exploration of the state and decision spaces may be

30

achieved via sampling. In contract, to obtain the sufficient exploration for high-

dimensional, complex problems can require extremely large and impractical sample

sizes. Moreover, trial-and-error is required in RL and may be costly when training the

high dimensional data set. Another option for solving infinite horizon ADP is aggregation.

However, an inappropriate aggregation may lead to large aggregation errors [46-47].

Lastly, using post-decision state variables does not perform very well for infinite horizon

DP [78].

 According to studies by Chen [16], Chen et al. [18-20, 57], Cervellera et al. [29,

55, 80-81], Wen [70], Fan et al. [20, 58], Fan [63], and Sahu [64], they all successfully

combine sequential DACE approach for future value function approximation to

approximate DP. However, these studies focus on finite-horizon DP. Thus, the proposed

method in this dissertation will extend the AVFA for infinite horizon ADP for infinite

horizon case with continuous state spaces. The proposed method is compared to batch

mode Reinforcement Learning (RL) using MARS as an approximator proposed by Ernst

et al. [38, 45].

 The second major contribution of this dissertation is to use DACE to build

metamodels representing the expected value function of the second-stage problem in a

two-stage framework for a plug-in hybrid electric vehicle (PHEV) charging stations case

study. The case study seeks adaptive system design for controllability, where the first

stage optimizes system design and the second stage optimizes system control.

According to studies by Pilla [65], and Pilla et al. [92-93], a DACE approach can be

successfully used to develop a metamodel of the second stage solution based on an

experimental design over possible solutions from the first stage. DACE helps control the

execution of time-consuming computer models by replacing the loop between first and

second stage with a constraint generated from the gradient of the approximation function.

31

The final solution will be made at the first stage with the expected value function from the

second stage. The first stage solution is not made in this dissertation but the general

formulation is presented in Chapter 5.

32

Chapter 3

Using Design and Analysis of Computer Experiments to Approximate Infinite Horizon

Dynamic Programming With Continuous State Space

 The proposed methodology adopts a sequential approach for state-space

exploration inspired by concepts from design and analysis of computer experiments

(DACE) by Sacks et al. [53] and the concept of adaptive value function approximation

(AVFA) by Fan [62]. The proposed method presented in this section is based on

multivariate adaptive regression splines (MARS) modeling to achieve 'statistical

parsimony' in data-driven (adaptive) future value function approximation. The stopping

criteria for an infinite horizon dynamic programming is also studied and discussed in this

section.

3.1 Motivation

 Central to dynamic programming (DP) is the ‘cost-to-go’ or ‘future value’ function,

which is obtained via solving Bellman’s equation. ADP is introduced to solve a high-

dimensional DP problem, especially with a continuous state space. However, the

usefulness of the ADP algorithm is limited by its computational cost. Complexity of the

model adds to the computational cost, as does the exploration of the state space. Thus,

the usefulness of the whole ADP algorithm hinges on finding the approximation model

with optimal complexity using minimum state-space exploration.

33

3.1.1 Bias-Variance Tradeoff

Figure 3.1 Schematic Illustration of Bias-Variance Tradeoff [94]

 According to the figure 3.1, it has been observed that the increase in complexity

of the model reduces the bias, which measures how good the true function is

approximated, but it increases the variance in the predictive performance of the model,

which makes the quality of prediction poor in terms of reliability [94]. The aspect of 'model

complexity' has traditionally been quantified by the 'degrees of freedom (df)' measure,

which is essentially the number of parameters in the model. In the context of multivariate

adaptive regression splines (MARS), the degrees of freedom (df) measure is the number

of linearly independent basic functions (BF) in the model.

3.1.2 Generalization Error

 Consider a regression function, ε+=)(xfy , where ε is the random error

independent of x and with mean zero, and f̂ is an estimate of the function f . Define

the loss function for measuring the error of the estimation as

()2)(ˆ)()ˆ,(xfxfffL −= (3.1)

The generalization error is defined as the expected loss or expected prediction error over

an independent test sample. This is also referred to as test error. This expectation

34

averages anything that is random including the randomness in the training sample that

produced f̂ . Specifically, the test error is given by the following over an independent test

sample.

[] () () ⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢⎣
⎡ −=

22
)(ˆ)(ˆ)()ˆ,(xfyExfxfEffLE (3.2)

The training error is defined as the average loss or average training error over the

training sample, given by the following.

() ()∑ ∑∑ = ==
−==

N

i

N

i iiii
N

i
xfy

N
xfxfL

N
ffL

N 1

2

11
)(ˆ1)(ˆ),(1)ˆ,(1

(3.3)

The generalization error can be decomposed into bias and variance, such that Test Error

= Bias2 + Variance, but it is untrue in the case of training error [94]. If we continue to

increase the model complexity, the training error decreases monotonously, but not the

test error.

Figure 3.2: Illustration of Interplay between Training Error And Test Error

Source: T. Hastie, R. Tibshirani , J. H. Friedman [94]

35

 When we increase the model complexity too much, the model adapts too closely

to the training data and loses the generalization ability, and the test error increases in the

independent testing data. When the model becomes complex, it can capture more

complex underlying structure in the data, which decreases the bias of the estimating

function, but it also increases the variance of the estimating function. As long as the

decrease in the bias component more than compensates for the increase in the variance

component, the estimation error in the testing data set decreases. Beyond certain model

complexity, the rate of decrease in bias is more than offset by the rate of increase in

variance, and the estimation error increases in the training dataset. In the continuum of

model complexity, there is an optimal model complexity that gives the minimum test error.

 This research follows the successful study by Fan [63] to seek to incorporate the

test error in the model selection criterion in developing a data-driven algorithm to build

flexible statistical models of optimal complexity.

3.1.3 Consistency Trace

 Consistency is defined as the asymptotic convergence of an estimator to the

object of estimation. Analytical studies reveal that most nonparametric regression

algorithms, which include multivariate adaptive regression splines (MARS), are consistent

for approximating any regression function and the rate of convergence, depending on the

particular algorithm and the underlying function it seeks to approximate [96]. This is a

reassuring property of the MARS approximation that we seek to exploit. The observation

of Fan [63] that the nonparametric regression function approximations follow a

consistency trace is of practical significance.

36

Figure 3.3: Consistency Trace for Adaptive Value Function Approximation

Source: Fan [63]

 From figure 3.3, the adaptive value function approximation algorithm seeks to

slowly grow both the data sample and the approximation model complexity, to follow a

consistent trace. It also shows that the increase in model complexity and the size of

training data can force the regression function approximation models to follow the

consistency trace. This research seeks to exploit this observation regarding the

consistency trace to develop data-driven stopping rules of the data sample incrementing

for optimal model complexity.

3.2 Multivariate Adaptive Regression Splines (MARS)

 MARS, introduced by Friedman [95], yields an adaptive continuous

approximation that does not impose any structural assumption on the data. It fits basis

functions composed of single or products of truncated linear functions, with optional

smoothing, using linear least squares estimation. MARS models can capture complex

nonlinearity in the data and provide a data-driven and adaptive modeling method for

approximation of the future value functions. MARS is flexible and can automatically

37

model interactions between variables. Its disadvantage is it does well with only

quantitative predictor variables.

 MARS is an adaptive procedure because the selection of basis functions is data-

based and specific to the problem at hand. The MARS procedure for estimating any

arbitrary regression function consists of a forward stepwise algorithm to select certain

spline basis functions followed by a backward stepwise algorithm to delete basis

functions until the best set of basis functions is found that has the lowest generalized

cross validation (GCV) error among all the possible sets of basis functions. The MARS

forward stepwise algorithm is used to create the basis functions of the MARS model. The

forward stepwise algorithm loops through the possible choices for basis functions,

composed of covariates and knot locations, in selecting the next two basis functions to

add to the model. The forward stepwise algorithm stops when Mmax basis functions have

been selected, where Mmax is a user-specified constant. The MARS approximation

approaches interpolation as the number of basis functions increases, but there is a

tradeoff between Mmax and computational time. An improper Mmax may cause problems

of over-fitting or under-fitting. In general, the backward stepwise algorithm is used to

prevent over-fitting by decreasing the complexity of the model without degrading the fit to

the data. However, the backward algorithm is computationally intensive, and precious

computational effort cannot be wasted within an DP setting. Consequently, Tsai and

Chen [97] presented automatic stopping rules to provide an efficient way of choosing

Mmax in approximating the future value function. Sahu [64] has provided

recommendations on setting a proper Mmax.

38

3.2.1 Structure of MARS

The MARS approximation has the form

∑ =
+=

M

m mm xhxf
10),()(ˆ ββ (3.4)

where x is a v -variate vector of predictors,)(xhm is a basis function, M is the number

of linearly independent basis functions, and mβ is the unknown coefficient for the m -th

basis function)(xhm . The basis function)(xhm has the form

hm (x) = sl,k xv(l,m) − kl,m()"# $%
l

Lm

∏ (3.5)

where []+z is the hinge function defined as max{0, z }, Lm is the order of predictor-

predictor interaction in the m -th basis function, xv(l,m) is the input variable corresponding

to the l -th hinge function in the m -th basis function, mlk , is the knot value corresponding

to the xv(l,m) , and sl,m takes the values -1 and +1 corresponding to the pair of basis

functions for the each combination of xv(l,m) and mlk , . The forward stepwise algorithm in

MARS adds basis functions in pairs in each iteration and loops through the possible

choices for basis functions (m), covariates (v) and the knot locations (k) to select the

next two basis functions to add to the model. The process stops when Mmax is reached.

3.3 General Framework for Solving Continuous Stochastic Dynamic Programming

A typical SDP formulation for an infinite horizon DP is

V st() =min
ut
Eε c st,ut,εt()+γV st−1(){ }

s.t. st = f st−1,ut,εt(), for t =1, 2,...
ut ∈ Γt, for t =1, 2,...

(3.6)

where t is the stage (time period).

39

 st is the vector of state variables.

 tu is the vector of decision variables.

 tε is the uncertain influences.

 (.)tc is the known cost function.

 (.)tf is the transition function.

 tΓ is the set of constraints.

 γ is the discount factor.

 (.)V is the future value function.

 The following value function iteration approach is one of the most widely used

algorithms in dynamic programming, which is solved as a forward DP and seeks a

steady-state or infinite-horizon solution [15]. The future value function (.)V represents

the minimal cost of operation at each stage t given the system is in state ts and entering

stage t . The goal at each stage is to compute the future value function (.)V and find the

optimal decision *
tu . The goal of the problem (an infinite horizon DP) is find the future

value function at steady-state equilibrium solution. The stopping criteria of DP stage

iteration or time period iteration is presented in the next section. The DP is solved forward

recursively from the first DP stage iteration until reaching the steady-state set point. At

the end of this exercise, the value function (.)kV and the optimal policy *
ku at the last

iteration (steady-state), k , become the solution of problem.

 This traditional recursive solution framework for SDP becomes computationally

expensive as the number of state points for each stages increases. In the presence of

continuous state variables, this traditional recursive framework completely breaks down.

40

Discretization of the state space coupled with some interpolation technique is adopted to

approximate the future value function for any state point. The algorithm for solving an

infinite horizon continuous SDP problem is as follows:

Step 0: Initialization:

• Choose N discretization points in the state space si,t{ }i=1
N

 for the t -th stage;

where ,...2,1=t and si,t ∈ Rn
.

• Set the initial estimated value function 0̂V =0.

• Assume the discount factor []1,0∈γ .

• Set k =0.

• Set t=1

Step 1: The stage of an infinite horizon DP:

• Set .1+← kk

• For each discretization point si,t{i =1..N} solve for

Vk si,t() =min
ui,t

E C si,t,ui,t,εi,t(){ }+γV̂k−1 f si,t−1,ui,t−1,εi,t−1()() where k is the k -

th iteration.

• Approximate ()tk sV with ()tk sV̂ for all n
t Rs ∈ .

Step 2: The stopping condition:

• Check the convergence of ()tk sV̂ with the criteria discussed in section 3.5. If fail,

set 1+= tt and go back to Step 1.

This discretization of the state space makes the recursive solution framework work for

continuous-state SDP. The approximation or interpolation is required to de-discretize any

inference over the state space. The quality of the approximation is enhanced with the

41

increase in fineness of the discretization grid. However, the computational cost of the

recursive solution process increases with the increase in the number of discretization

points. This tradeoff between the quality of approximation and the cost associated with it

has motivated this research to seek ways to find the optimal discretization that would give

the optimal quality of approximation. The use of sequential DACE in the finite-horizon

ADP work of Fan [63] and Sahu [64] to create an adaptive value function approximation

algorithm facilitates the creation of sequential DACE approach for infinite-horizon ADP.

The research in this dissertation follows the work of Fan [63] and Sahu [64] to employ a

sequential DACE approach for approximating the future value function for an infinite

horizon dynamic program to achieve the goal of optimal discretization and optimal quality

of approximation.

3.4 Proposed Framework

 The objective of this research is to develop an algorithm that uses a sequential

DACE approach to approximate the future value function of an infinite horizon dynamic

program that follows the consistency trace. Based on Chen et al. [52] and Sahu’s [64]

research, MARS is the nonparametric statistical modeling method of choice because of

its consistency. The Mmax guideline recommended by Sahu is used in this research,

which is Mmax equal to ⎥⎦

⎤
⎢⎣

⎡
+
+
c
cn

2
2

, where n is the number of data points in the training

data set, and c is the penalty parameter set to the default value of 3.

 The method in this dissertation implements researches by Chen et al. [52], Fan

[63] and Sahu [64] which all focus on solving finite horizon DP with continuous-state by

developing an AVFA for infinite horizon ADP algorithm. There are two main components

in this algorithm. The first one is DP stage iteration, which is the outer loop of the

algorithm. The objective of this loop is to achieve an acceptable approximation of the

42

steady-state optimal value function. The second component is the Data loop, which

conducts computer experiments to gain information for building the value function

approximation using the concept of DACE.

 In the Data loop presented in Figure 3.4 (a), the proposed method uses a

sequential DACE approach for future value function approximation [8, 64]. The computer

model is run at sample state points determined by the experimental design, and the

output responses are used to fit the metamodel that approximates the future value

function. In DACE metamodeling, sample points can be generated in batch, and a

statistical model is constructed based on the whole batch. In a sequential DACE

approach, sample points are selected sequentially; the metamodel is updated

sequentially with new sample points; the performance of the metamodel is evaluated

each time the metamodel is updated, and the sampling process is stopped as soon as

the performance of the metamodel meets the set stopping criteria.

3.4.1 Flowchart of the Proposed Framework

 At each iteration of the DP, the Data loop runs inside the DP stage iteration loop

presented in Figure 3.4 (b). The algorithm of the Data loop starts with the input of the

initial size of the training data taken from a low-discrepancy quasi-random sequence and

fits a model of optimal complexity for the size of the training dataset. At the end of the

sequential step, the model with optimal complexity is evaluated in a fixed testing dataset,

and stopping criteria of the Data loop is checked for compliance. The change in R2 in the

test response is used as the stopping criterion. If the stopping criterion has not been met,

then the algorithm proceeds to the next sequential step with a pre-specified increase in

the size of the training dataset. The sequential data iterations continue until the stopping

criterion of the Data loop is met. After that, the stopping criterion of the DP stage iteration

43

is then checked. The stopping rule of the DP stage iteration is subjected to the

convergence of the value function and will be present in the next section.

(a)

(b)

Figure 3.4: Flowchart of Proposed Sequential Algorithm (a) Data Loop (b) DP Stage

Iteration

44

3.5 DP stage iteration Stopping Condition

There is no limit time period or stage in a case of an infinite horizon DP. The

solution of this kind of problem is obtained when it reaches steady-state equilibrium point

or convergence of the value function. In order to ensure the convergence, we need a

setting rule. In this dissertation, three different stopping rules are discussed as follows.

3.5.1 L-Infinity Norm

 The stopping conditions are required to decide at which DP stage iteration (i.e.,

for which value of k) the process can be stopped. A simple way to stop the process is to

define a priori a maximum number of iterations [15, 26, 45]. According to Powell [15], the

convergence criterion is defined by

γγφ 2/)1(1 −<− −kk VV (3.7)

where V is the max-norm defined by

)(max sVV
s

= (3.8)

Thus, the stopping criteria is reached when the maximum change in the value of being in

any state is lower than setting right-hand side of the equation (3.7), where γ is the

discount factor, and φ is a specified error tolerance.

3.5.2 Change in the Future Value Function Average

 In systems theory, a system in a steady-state has numerous properties that are

unchanging in time. In this case, the simple way to check is the change in the future

value function average [15, 98-100]. This change should be very small. However, in a

high-dimensional problem, this condition alone may not be adequate because it

considers only the average value, which is only a measure of central tendency [101]. The

change in the future value function average can be stated as:

45

Vt −Vt−1
Vt−1

(3.9)

Where Vt is the future value function average at time t.

3.5.3 Confidence Interval T-test for 45-Degree Line Correspondence [102]

 Correlation analysis can be used to ensure the convergence of the future value

functions. A linear regression model with one predictor variable is used to find the relation

between the future value function approximation of two different stages. The future value

function approximation of the previous DP stage iteration is assigned as the predictor.

The future value function of the current DP stage iteration is put as the response. The

general model of linear regression can be stated as follows:

iii XY εββ ++= 10 (3.10)

where

 iY is the value of the response variable in the i th trial.

 0β is the Y intercept of the regression line.

 1β is the slope of the regression line.

 iX is the value of the predictor variable in the i th trial.

 iε is a random error term in the i th trial.

The objective in simple linear regression is to generate the best line between the two

variables. Then the slope and intercept are estimated. The best line, or fitted line, is the

one that minimizes the distances of the points from the line, as shown in Figure 3.5. The

fitted regression line can show the actual ratio for the correspondence between predictor

and response. A one-to-one correspondence means that the value of the predictor gives

about the same results as the response. The line of one-to-one correspondence should

46

make a 45-degree angle through the origin, and the formula for this line would have a

slope coefficient of 1 and a y-intercept or constant term equal to 0 (passing the origin).

We refer to this line as 45-degree line correspondence.

Figure 3.5: Example of Functional Relation

A two-sided t-test is conducted with a 95 percent confidence interval for both 1β and 0β .

The t-test for 1β has two alternatives:

1:
1:

11

10

≠

=

β

β

H
H

(3.11)

An explicit test of the alternatives (3.11) is based in the test statistic:

}{
1*
1

1

bs
bt −

= (3.12)

where 1b is a point estimators of 1β , which is calculated by (3.13), and }{ 1bs is a

standard error estimator from (3.14)

21)(
))((

∑
∑

−

−−
=

XX
YYXX

b
i

ii (3.13)

Predictor

R
es

po
ns

e

47

21)(
}{

∑ −
=

XX
MSEbs
i

(3.14)

The decision rule with this test statistic for controlling the level of significance at α is:

0),2;2/1(* Hntt conclude if −−≤ α (3.15)

1),2;2/1(* Hntt conclude if −−> α (3.16)

where n is the size of the data set.

 The 1-α confidence limits for 1β are:

}{)2/;21(11 bsntb −−± α (3.17)

where)2/;21(−− nt α denotes the 100)2/(α percentile of the t distribution with n -2

degrees of freedom. The t-test for 0β has two alternatives:

0:
0:

01

00

≠

=

β

β

H
H

(3.18)

 An explicit test of the alternatives (3.18) is based in the test statistic:

}{
*

0

0

bs
bt = (3.19)

where b0 is a point estimators of β0 , which is calculated by (3.20), and s b0{ } is an

estimator for the standard error, which is from (3.21)

() XbYXbY
n

b ii 110
1

−=−= ∑ ∑ (3.20)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+=
∑ 2

2

0)(
1}{

XX
X

n
MSEbs

i

(3.21)

48

The decision rule with this test statistic for controlling the level of significance at α is the

same as (3.15) and (3.16).

 The 1-α confidence limits for 0β are:

}{)2/;21(00 bsntb −−± α (3.22)

 This research developed alternative stopping rules for the value iteration

approach. The condition of the change in the future value function, and the 95%

confidence interval t-test for 45-degree line correspondence are used as the stopping

criteria. More discussion on why these conditions can be set as a stopping rule is

presented in the next section. The comparison with the L-infinity norm stopping rule and

the proposed stopping rules is shown in Appendix A.

3.6 Application to Inventory Forecasting Problem

This research seeks to study the performance of the resulting sequential ADP

methodology based on MARS modeling on an infinite horizon nine-dimensional

stochastic inventory forecasting problem [16]. The choice of this particular SDP problem

is for easy comparison and benchmarking, as this nine-dimensional stochastic inventory

forecasting problem has been extensively studied and frequently used for performance

comparison by researchers in the past [16, 63-64].

3.6.1 Overview of Stochastic Inventory Forecasting Problem

The nine-dimensional stochastic inventory forecasting problem [16] is concerned

with optimal order quantities for three items over two forecast periods given the inventory

level and demand forecast for each item.

The state variables include:

• The inventory level of item i at the beginning of time period t , ())(itI .

49

• The forecast determined at the beginning of time period t to predict the demand

of item i in the current time period t , ())(),(
i
ttD .

• The forecast determined at the beginning of time period t to predict the demand

of item i in next time period 1+t , ())(
)1,(

i
ttD + .

The state vector at the beginning of stage is represented by

()Ttttttttttttttttt DDDDDDIIIx)3(
)1,(

)2(
)1,(

)1(
)1,(

)3(
),(

)2(
),(

)1(
),(

)3()2()1(,,,,,,,, +++=

The decision variables are the amounts of item i ordered in period t , the decision vector

at the beginning of stage is represented by

())3()2()1(,, tttt uuu=u

The transition functions are modeled using the multiplicative Martingale model of forecast

evolution (See Chen [16] for details). The constraints on the decision variables (amounts

ordered) and the state variables (inventory levels) are placed in the form of capacity

constraints. The transition functions are given by

)(

),(

),(

)(
)2,(

)(
2

)(
)2,1(

)(
)1,(

)(
)1,(

)(
)1,1(

)(
),(

)(
),(

)()()(
1

i
tt

i
t

i
tt

i
tt

i
tt

i
tt

i
tt

i
tt

i
t

i
t

i
t

D

DD

DuII

++++

++++

+

⋅=

⋅=

⋅−+=

εµ

ε

ε

(3.23)

where)(i
tµ is the mean demand for item i in period t , and)(

),(
i
ktt +ε is the change in

forecast for the time kt + from the forecast made in period t .

 The objective function is a cost function involving inventory holding costs and

backorder costs. The cost function is typically V-shaped and is represented as

[] []()∑
=

++++ −+=
3

1

)(
1

)(
1),(

i

i
ti

i
tittv IIhuxc π (3.24)

50

where ih is the holding cost parameter for item i , and iπ is the backorder cost parameter

for item i . For optimization purposes, a smoothed version of the cost function has been

used (See Chen [16] for details).

3.6.2 Computational Setup

 MATLAB software was used to code the algorithm along with "ARESLab:

Adaptive Regression Splines toolbox for MATLAB" developed by Jekabsons [103]. The

experiments are run on Windows 7 Home Premium with Intel(R) Core(TM) i7 @ 2.80

GHz 8.00 GB RAM system. The fmincon function from Matlab is used for optimization.

For any stage iteration, the training data used to build the future value function

approximation models came from a nine-dimensional Sobol’ sequence [104]. As in the

work by Fan [63] and Sahu [64], the sampling starts at 50 points and increments 50 more

points for each iteration in the Data loop until the stopping criteria of the Data loop is met.

The testing data consisted of 250 design points from a nine-dimensional Halton

sequence [105].

After obtaining the output at the steady-state point, the result is then tested in a forward

simulation. There are three algorithms proposed in this dissertation, which will be tested

in the same simulation for comparison.

3.7 Proposed Algorithms

3.7.1 Algorithm-I

 Algorithm-I uses the original MARS algorithm presented by Friedman [95] with

Mmax recommended by Sahu [64]. The stopping rule for the Data loop is the change in

R2 when adding more states to the sample space. The change in R2 must be lower than

or equal to 0.005. The stopping rules for DP stage iteration use the T-test for 45-degree

line and a percent change of the future value function average of 5% or lower, where the

average is calculated over the 250 test values of the approximated future value function

51

3.7.1.2 Result and discussion

 The CPU time of Algorithm-I is 19,971 seconds (5.55 hours). DP stage iteration

stops at DP stage iteration 25, where the percent change of the future value function

average is 0.5%, and it passes a two-sided t-test for 45-degree line correspondence. The

result in Figure 3.5 shows the number of training data points at each DP stage iteration.

The average number of training data points is 250. According to Figure 3.6, the DP stage

iterations 2 and 5 required 700 and 400 training data points to meet the criteria of the

Data loop, respectively. As a result, they require more elapsed time compared with other

DP stage iterations.

Figure 3.6: Number of Sample Points in Each DP Stage Iteration of Algorithm-I

 Figure 3.7 shows the R2 of the testing data set in each DP stage iteration of

Algorithm-I. Overall, R2 values of the testing data set are more than 0.9, except the one in

stages 3, 4 and 5. Figure 3.8 presents the percent change in the future value function

average, which is one of the DP stage iteration stopping criteria. The stopping rule is

when the percent change in the future value function average is lower than or equal to

52

5%. From Figure 3.8, at the DP stage iteration 5, the percent change in the future value

function average is dropped to 4%. If the stopping rule of the DP stage iteration were the

percent change in future value function average alone, the process would stop at this

point. However, Figure 3.7 shows that at the DP stage iteration 5, the R2 is 0.70, which is

the lowest R2 of the system. The result in Figure 3.9 presents the R2 from the final future

value function at the steady-state (true value), which is calculated by equation (3.26).

This figure measures how close the future value functions at each stage are to the true

value function at the steady-state equilibrium. The plot shows the trend of the

convergence when incrementing DP stage iteration, the fraction of variance explained by

the true value is closer to 1. However, at DP stage iteration 5, the R2 from the true value

function does not follow the trend.

()
∑
=

−
=

N

i

ture
ii

truefrom N
YYMSE

1

ˆ
(3.25)

true

2

Variance
1 truefromMSE

R −= (3.26)

Figure 3.7: R2 of the Testing Data Set in Each DP Stage Iteration of the Algorithm-I

53

Figure 3.8: The Percent Change in the Future Value Function Average at Each DP Stage

Iteration of Algorithm-I

Figure 3.9: The R2 of the Future Value Function in Each DP Stage Iteration vs. the Final

Value Function at the Steady-state of the Algorithm-I

 Figure 3.10(a) shows the scatter plot of the value function at stage 4 vs. the

value function at stage 5. From the plot it shows no sign of convergence, and there are

some outliers. On the other hand, Figure 3.10(b) shows the scatter plot of the value

function at the steady-state vs. the value function at the stage before it. The plot follows

the 45-degree line correspondence. It can be concluded from the 95 percent confidence

54

interval t-test that the scatter plot of the future value functions at DP stage iteration 24

and DP stage iteration 25 are following the 45-degree line correspondence.

-500 0 500 1000 1500-500

0

500

1000

1500

Value Function at the stage number 4

V
al

ue
 F

un
ct

io
n

at
 th

e
st

ag
e

nu
m

be
r 5

(a)

-5000 0 5000 10000 15000-5000

0

5000

10000

15000

Value Function at the stage before last stage

Va
lu

e
Fu

nc
tio

n
at

 th
e

la
st

 s
ta

ge

(b)

Figure 3.10: (a) The Scatter Plot of the Value Function at DP Stage Iteration 4 vs. 5. (b)

The Scatter Plot of the Future Value Function at the Steady-State vs. the Future Value

Function at the DP Stage Iteration before

Figures 3.7-3.10 show that stage 2 requires more training data points, but the

percent change in the future value function average of that DP stage iteration is very bad.

Moreover, R2 from the true value final is very high, which indicates that the future value

function at this DP stage iteration is very far away from the true future value function.

55

Moreover, the percent change in the future value function average alone is not enough to

confirm convergence.

3.7.2 Algorithm-II

 Algorithm-II is based upon the performance results of Algorithm-I. From the

results of Algorithm-I, DP stage iteration 2 requires a high number of training data points,

which means that it requires a long time to reach the Data loop stopping criteria.

However, the results show that the future value function at that stage is very far away

from the future value function at the steady-state equilibrium point. These results

suggested a new stopping rule for the Data Loop as follows:

Data loop stopping criteria is minimum R2 of 0.8 and either minimum

change of the future value function average of 10% or maximum change

in R2 of 0.005.

 We want an accurate approximation, so we need to consider a high value of R2,

which indicates a good fit, and in this case 0.8 is used at a minimum. From Figures 3.8-

3.9, the R2 from the true value is good when the DP stage iteration is more than 20,

where change of the value function is below 10%. Thus, we considered a minimum

change of the value function of 10% as one of the conditions of the Data loop.

3.7.2.1 Results

 The CPU time of Algorithm-II is 19,243 seconds (5.35 hours). DP stage iteration

stops at DP stage iteration 98. The average number of training data points at each stage

is 161. The maximum number of training data points is 400 and occurs at stage 19, as

shown in Figure 3.10.

56

Figure 3.11: Number of Sample Points in each DP Stage Iteration of Algorithm-II

 In this version, the R2 of the testing data set is one of the rules in Data loop. The

testing R2 at each stage must be at least 0.8. The result from Figure 3.12 shows that at

the very beginning of the experiment, the trend of the R2 is unstable. However, after DP

stage iteration 17, the value of the R2 is much closed to 1 and looks stable.

Figure 3.12: R2 of the Testing Data Set in each DP Stage Iteration of Algorithm-II

57

 The results in Figures 3.13 (a) and (b) show the percent change in the future

value function average at each DP stage iteration. It can be seen that the change in the

future value function tends to reduce at each DP stage iteration. Since stage 18, the

percent change is less than 10%, and it goes below 5% since stage 39. At this point, we

ignore the change in R2 because the percent change in the future value function average

is more than 10%. From Figure 3.14, it can be seen that before DP stage iteration 18, the

future value functions are very far away from the future value function at the steady-state

equilibrium point (true value). As a result, it requires fewer training data points and

requires less CPU time.

 From Figure 3.14, the R2 from the true future value function starts to become

reasonable from DP stage iteration 78 where the R2 is greater than 0.7.

58

(a)

(b)

Figure 3.13: (a) The Percent Change in the Future Value Function Average at Each DP

Stage Iteration of Algorithm-II Starting from DP Stage Iteration 2, (b) The Percent Change

in the Future Value Function Average at Each DP Stage Iteration of Algorithm-II Starting

from DP Stage Iteration 8

59

Figure 3.14: The R2 of the Future Value Function in Each DP Stage Iteration vs. the Final

Future Value Function at the Steady-state of Algorithm-II

Figure 3.15: (a) The Scatter Plot of the Future Value Functions at DP Stage Iteration 11

vs. 12, (b) at DP Stage Iteration 23 vs. 24, (c) at DP Stage Iteration 60 vs. 61, and (d) at

DP Stage Iteration 97 vs. 98

60

 The results in Figure 3.15(a) reveal that at the early iteration the scatter plot is

not following the 45-degree line. But later on, the plots look much more linear. Figures

3.15(b) and (c) have some shifts on the right-hand side. It can be concluded from the 95

percent confidence interval t-test that the scatter plot of the future value function at

stages 97 and 98 follow the 45-degree line correspondence.

3.7.3 Algorithm-III

 Algorithm-III constructed in the same way as Algorithm-II but different values of

the R2 in the Data loop condition. A new stopping rule for the Data Loop is

Data loop stopping criteria is minimum R2 of 0.75 and either minimum

change of the future value function average of 10% or maximum change

in R2 of 0.005.

3.7.3.1 Results

 The CPU time of Algorithm-III is 8627 seconds (2.40 hours). The DP stage

iteration loop stops at iteration 43. The average number of training data points at each

stage is 140. The maximum number of training data points is 250 and occurs at stage 7

and 29, as shown in Figure 3.16.

Figure 3.16: Number of Sample Points in each DP Stage Iteration of Algorithm-III

61

 The results from Figure 3.17 show that at the very beginning of the experiment,

the R2 is unstable. However, after stage 19, the value of the R2 is closed to 1 and looks

more stable.

Figure 3.17: R2 of the Testing Data Set in Each DP Stage Iteration of Algorithm-III

 The results in Figures 3.18 (a) and (b) show the percent change in the future

value function average at each DP stage iteration. It can be seen that the change in the

future value function average tends to reduce at each DP stage iteration. Since iteration

19, the percent change is less than 10% and goes below 5% after DP stage iteration 28.

However, the percent change in the future value function average drops and goes below

10% at iteration 7. As a result, the change in R2 is considered to guarantee the best fit of

the model. However, the future value function at that DP stage iteration does not pass the

95 percent confidence interval t-test of the 45-degree line correspondence. Thus, the

sampling process is not stopped at that iteration.

 From Figure 3.19, the R2 from the true value of in each stage starts to be

reasonable at DP stage iteration 34 where the R2 is greater than 0.7.

62

(a)

(b)

Figure 3.18: (a) The Percent Change in the Future Value Function Average at Each DP

Stage Iteration of Algorithm-III Starting from DP Stage Iteration 2, (b) the Percent Change

in the Future Value Function Average at Each Stage Iteration of Algorithm-III Starting

from DP Stage Iteration 9

63

Figure 3.19: The R2 of the Future Value in Each DP Stage Iteration Vs. The Final Future

Value Function at the Steady-state of Algorithm-III

Figure 3.20: (a) The Scatter Plot of the Value Function at DP Stage Iteration 11 vs. 12.

(b) at DP Stage Iteration 21 vs. 22, (c) at DP Stage Iteration 31 vs. 32, and (d) at DP

Stage Iteration 42 vs. 43

 The results in Figure 3.20 reveal that at the early stages the scatter plots are not

following the 45-degree line correspondence. However, the plots look more linear later

on. Figures 3.20(b) and (c) have some shifts on the right-hand side. It can be concluded

64

from the 95 percent confidence interval t-test that the scatter plot of the future values at

stage 42 and stage 43 has a 45-degree correspondence. Thus, we can consider the

function at DP stage iteration 43 in steady-state.

3.7.4 Comparison of SDP Solution Quality

 An inventory forecasting forward simulation is used to test the SDP solution

quality. The metamodel outputs from the ADP algorithms are used to run the forward

simulation. A Sobol’ sequence [104] is used to generate the initial state space with 100

points of in nine dimensions. Randomness is considered at each state point with 100

points. The simulation is for demonstration purposes and is limited to 12 stages. MATLAB

software was used to code the algorithm along with "ARESLab: Adaptive Regression

Splines toolbox for MATLAB" developed by Jekabsons [103]. The fmincon function is

used for optimization. The total return is the total of the cost for all DP stage iterations.

The experiments are run on Windows 7 Home Premium with Intel(R) Core(TM) i7 @ 2.80

GHz 8.00 GB RAM system.

 In the Figure 3.21, the CPU times for training the optimal model have been

presented for comparison. Algorithm-III performs faster than Algorithm-II as the R2 is

lower. Algorithm-II is slightly faster than Algorithm-I, but the convergence of Algorithm-II

is done in stage 98 while Algorithm-I stops at stage 44.

 The results in Figure 3.22 reveal that Algorithm-II gives the best quality of the

SDP solution both in terms of the mean cost and the deviation in mean cost from the

minimum, followed by Algorithm-III and Algorithm-I, respectively. Figure 3.22 (b) suggests

that the proposed method in Algorithm-II is more promising compared than the other two

algorithms.

65

1- Algorithm-I

2- Algorithm-II

3- Algorithm-III

Figure 3.21: Comparison of CPU Time Used by Each Algorithm

66

0

50

100

150

200

250

1 2 3
Algorithms

M
ea

n
Co

st

Comparison of Mean Cost

(a)

0

20

40

60

80

100

120

140

160

180

200

1 2 3
Algorithms

De
vi

at
io

n
in

 M
ea

n
Co

st
 fr

om
 th

e
M

in
im

um

Comparison in Quality of SDP Solution

(b)

1- Algorithm-I

2- Algorithm-II

3- Algorithm-III

Figure 3.22: (a) Comparison of Mean Cost, (b) Comparison of Quality of SDP Solution

67

Chapter 4

Comparison of Dace-Based Approach to Approximate an Infinite Horizon Dynamic

Programming and Batch Mode Reinforcement Learning

 Ernst et al. [38, 45] developed a tree-based batch mode reinforcement learning

algorithm to determine an infinite-horizon optimal control problem with discounted

rewards. Several classical tree-based supervised learning methods (CART, kD-tree, tree

bagging) were used as approximators. The review on Q-Learning is in section 2.2.1.

There is some modification in Tree-Based Batch mode RL in this dissertation and the

original version presented by Ernst et al. [45]. First, MARS is used as an approximator

with the same stopping rule presented in Chapter 3. Second, the stopping condition for

DP stage iteration originally in Ernst's work is based upon the L-infinity norm [38, 45]. In

this dissertation though, the percent change in the future value function average and the

95 percent confidence interval t-test of the 45-degree line correspondence are

considered. However, the comparison on convergences with the L-infinity norm and the

95 percent confidence interval t-test of the 45-degree line correspondence are discussed

in the future work. Results from the proposed method in Chapter 3 and Batch mode RL

are compared at the end of this chapter.

4.1 Fitted Q-Iteration Algorithm

Step 0: Initialization:

• Choose N discretization points in the state space { }Niits 1= for the t -th stage;

where ,...2,1=t and n
it Rs ∈ .

• Set the initial estimated value function 0Q̂ = 0.

• Assume the discount factor []1,0∈γ .

• Set k =0 and t =1.

68

Step 1: The stage of an infinite horizon DP:

• Set .1+← kk

• Build the training set,

(4.1)

where i and o represent input and output variables of the training set,

respectively, ts is the state variable at time period t , tu is the decision variable

at time period t , tc is the cost function at time period t , L is the number of

discretization points in state-action space (state-decision space) for the t -th

stage, and k refers to the k -th iteration.

• Approximate ()usQk ,ˆ with the training set.

• Solve for

()usQV tkUuk ,ˆminˆ
∈

= (4.2)

Step 2: The stopping condition:

• Check the convergence of kV with the criteria discussed in section 3.5. If the

stopping criteria fail, set 1+← tt and go back to Step 1.

4.1.1 State-Action Space Discretization

 According to the RL literature, a lookup table based upon a discretized state-

action space is used, which works only with a small state-action space, especially with

discrete variables [15, 30, 35, 37-38, 40-41]. However, when the problem has a

continuous or a very large discrete state and/or action spaces, the Q-function cannot be

represented by a table with one entry for each state-action pair. The best method to

generate the state-action space is still an open question in the RL research community.

() (){ }L
l

tkUu

l
t

l
t

l
t

ll usQcusoi
1

11 ,(ˆmin),,(,
=

+−
∈

+= γ

69

Moreover, Ernst et al. [45] does not mention about how they came up with a state-action

space discretization.

 Thus, in this dissertation, we generate the state-action space by using Monte

Carlo sampling with some different sizes of the training data set. Moreover, a Sobol’

sequence [104] is considered as a state-space generator along with 10 different action

spaces generated by Monte Carlo sampling to study the stability of the methodology.

4.1.2 Computational Setup

 The inventory forecasting problem that is used in Chapter 3 is applied to Batch

mode reinforcement learning with MARS. MATLAB software was used to code the

algorithm along with "ARESLab: Adaptive Regression Splines toolbox for MATLAB"

developed by Jekabsons [103]. The experiments are run on Windows 7 Home Premium

with Intel(R) Core(TM) i7 @ 2.80 GHz 8.00 GB RAM system.

 For any stage Iteration, the training data used to build the future value function

approximation models came from a 12-dimensional state-action space. There is only one

loop presented in the algorithm, which is the DP stage iteration with the fixed number of

points of the training data set. The testing data set is not included in the algorithm. After

obtaining the results, they are tested in the same simulation presented in Chapter 3.

4.2 The Algorithms

There are seven tests presented in this dissertation. To test the accuracy and

stability of the results, each test contains 10 runs.

4.2.1 Test-I: 125 Data Points

 In this test, the size of the state-action data set is 125 points. First, the 3-

dimensional action space is generated using a full factorial design with 5 levels. Later on,

the state space is generated using Monte Carlo sampling with 5 levels replicated 10

times each. Thus, there are 10 runs, and each run contains the same action space but a

70

different state data set. The 12-dimension state-action spaces then become input

variables for the algorithm are presented in section 4.1. The fmincon function from Matlab

is used for optimization.

4.2.1.1 Results

 Figure 4.1 shows that the range of mean costs among those 10 runs is wide,

which means that the results among those runs are not stable. Compared with the results

in Chapter 3, which give mean costs value below 150 (the worst case of the proposed

method in Chapter 3), none of those runs in this Test-I are comparable.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

Figure 4.1: Comparison of Mean Cost of each Run in Test-I

 Figures 4.2 and 4.3 show the CPU time and number of iterations. The results

from these two figures also reveal that with the same number of iterations, the CPU time

and mean cost are almost the same, i.e. runs 1 and 3, and runs 5 and 10. Run 7, which

71

used 62 iterations gives the best result in terms of mean cost; however, the runner up

which is run 8 used 16 iterations. Moreover, run 6, which has 56 iterations, yields the

worst result in term of mean cost. Thus, a higher number of iterations does not guarantee

a better result.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.2: CPU Time of Each Run in Test-I

72

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
Nu

m
be

r o
f I

te
ra

tio
n

Number of Stage Iteration

Run Number

Figure 4.3: Number of Iterations of Each Run in Test-I

4.2.2 Test-II: 125 Data Points with Look-Up Table Solution

 In this test, the size of the state-action data set is 125 points, which is the same

as the one in Section 4.2.1. The difference here from Test-I is that Test-II used the look-

up table method to search for the minimum of the Q-function.

4.2.2.1 Results

 The results from Figure 4.4 reveal inconsistency. Compared with the worst case

result in Chapter 3, run 10 is comparable, but it used only 3 iterations, which may not in

steady-stage equilibrium. Compared with the results of Test-I, the range of mean costs in

Figure 4.4 is wider than those in Figure 4.1, which means that using a continuous

optimization technique is more accurate and consistent than using a look-up table.

73

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st
Comparison of Mean Cost

Figure 4.4: Comparison of Mean Cost of Each Run in Test-II

According to Figures 4.5 and 4.6, CPU time and the number of iterations are

positively correlated. The results also show that the number of iterations does not

guarantee a good result. In comparison with the results for Test-I, the look-up table

method used more CPU time but does not give better results than the optimization

methods. In summary, using an optimization technique gives better results with lower

computational time, compared with the traditional look-up table.

74

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.5: CPU Time of Each Run in Test-II

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

Figure 4.6: Number of Iterations of Each Run in Test-II

75

4.2.3 Test-II: 216 Data Points

 In this test, the size of the state-action data set is 216 points. First, the 3-

dimensional action space is generated using full factorial design with 6 levels. Later, the

state space is generated using Monte Carlo sampling with 6 levels replicated 10 times

each, following the same procedure as the one in section 4.2.1.

4.2.3.1 Results

 Figure 4.7 shows that the range of mean costs among those 10 runs is shorter

than those in Figures 4.1 and 4.4. However, the boxplots are unstable. Moreover, the

results in Chapter 3 are substantially better than those in Test-III.

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

Figure 4.7: Comparison of Mean Cost of Each Run in Test-III

 CPU time and number iterations are positively correlated. From Figures 4.7 and

4.9, run 4 and 5 have the same number of iterations, but the mean costs are totally

different from each other. Thus, number of iterations does not guarantee an accurate

result.

76

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.8: CPU Time of Each Run in Test-III

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

Figure 4.9: Number of Iterations of Each Run in Test-III

77

4.2.4 Test-IV: 343 Data Points

 In this test, the size of the state-action data set is 343 points. A full factorial

design with 7 levels is used to generate the 3-dimensional action space. Later, the state

space is generated using Monte Carlo sampling with 7 levels replicated 10 times each.

Then, the 12-dimensional state-action space becomes input for the algorithm presented

in Section 4.1 using the optimization routine fmincon from Matlab.

4.2.4.1 Results

 The result from Figure 4.10 shows that the range of mean costs among those 10

runs is wider than the one in Figure 4.7. This result indicates that adding more points in

the training data set (state-action space) does not give more consistent results. Run

number 9 gives the best result in terms of mean cost and is similar to the results in

Chapter 3. However, this run uses 9 stage iterations, which may not ensure the

convergence of an infinite horizon DP.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

Figure 4.10: Comparison of Mean Cost of Each Run in Test-IV

78

 The results in Figures 4.10 and 4.12 reveal that more iterations do not guarantee

better results. Figures 4.11 and 4.12 show that CPU time and the number of iterations

are positively correlated.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.11: CPU time of Each Run in Test-IV

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

Figure 4.12: Number of Iterations of Each Run in Test-IV

79

4.2.5 Test-V: 512 Data Points

 In this test, the size of the state-action data set is 512 points. The 3-dimensional

action space is generated using a full factorial design with 7 levels, and the state space is

generated using Monte Carlo sampling with 7 levels replicated 10 times each. The state-

action space is used as an input in the algorithm with the optimization routine fmincon

from Matlab.

4.2.5.1 Results

 Figure 4.13 shows a wide spread of each boxplot, indicating inconsistency.

Moreover, the range in this figure is wider than the one with 216 data points in section

4.2.3. Furthermore, the results in Chapter 3 are substantially better than those in Test-V.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

Figure 4.13: Comparison of Mean Cost of Each Run in Test-V

 The CPU time and number of iterations are not in the same pattern. From

Figures 4.14 and 4.15, the CPU times of runs 6 and 8 are close, but their numbers of

80

iterations are significantly different. This may be a result of complexity of the function

approximation. Runs 2 and 6 are comparable in both CPU time and number iterations as

well. However, the result in mean cost of those two runs are significantly different from

each other. Thus, the results in Test-V indicate inaccuracy and instability.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.14: CPU time of Each Run in Test-V

81

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

Figure 4.15: Number of Iterations of Each Run in Test-V

4.2.6 Test-VI: 512 Data Points with State Space Generated by Sobol' Sequence

 In this test, the size of the state-action data set is 512 points. A 9-dimensional

state space is generated by a Sobol' sequence design [104]. In this test, only one state

space is used, but we match it with 10 different action spaces, so 10 runs are used as

input in the algorithm presented in section 4.1, separately. There are two purposes of this

test. The first is to study the effect of different action spaces to the solution. The second

is to compare the results of using Sobol’ sequence and Monte Carlo sampling.

4.2.6.1 Results

 Figure 4.16 shows some consistency. Among those 10 runs, 2 runs are

noticeably out of the group. Other than them, the boxplots are in the same range.

However, the differences of those 2 runs and others are not as significant as the

differences of each run in Figure 4.13. As a result, the state space generated by the

Sobol' sequence design gives consistent results. When we compare the SPD solution

82

from Figures 4.13 and 4.16, Monte Carlo sampling gives the better result on average, but

the Sobol' sequence design gives better results in the worst case; i.e. run 1 in Figure 4.16

used the same action space as the one in Figure 4.13 (Test-V has only one action space

generation). The results in Chapter 3 are significantly better than each of the 10 runs in

Figure 4.16. Figures 4.17 and 4.18 show that CPU time and the number of iterations do

not necessarily correspond to each other. The results also reveal that the early stage

iterations take more CPU time than later iterations.

800

1000

1200

1400

1600

1800

2000

2200

1 2 3 4 5 6 7 8 9 10
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

Figure 4.16: Comparison of Mean Cost of Each Run in Test-VI

83

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

Ti
m

e
in

 M
in

ut
e

CPU time

Run Number

Figure 4.17: CPU time of Each Run in Test-VI

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

Figure 4.18: DP Stage Iteration of Each Run in Test-VI

84

4.2.7 Test-VII: Online Q-learning

 The purpose of the test is to test the amenability of the Q-iteration to follow a

consistency trace when increasing the size of the input data. The test begins with 125

dimension state-action space (Test-I) and increments by 125 points.

4.2.7.1 Results

 From Figure 4.19, the results do not follow the consistency trace with the model

generalization performance improving with the simultaneous increase in the size of the

training data. The more training data points do not seem to be helpful in obtaining a

better result. Meanwhile, it requires more computational time. Run 5 in Figure 4.19 gives

a good result with adding more state-action points to the data set, but it used more than

twice the CPU time of the summation of the first, second, and third runs. Moreover, when

incrementing 125 more points to the fifth run, the number of iterations is more than 1500

iterations and does seem not to reach convergence.

85

200

400

600

800

1000

1200

1400

1 2 3 4 5
Run Number

M
ea

n
Co

st
Comparison of Mean Cost

1- Run number 1 of Test-I

2- Run number 2 of Test-I

3- Run number 3 of Test-I

4- Run number 1 and 2 Combined

5- Run number 1, 2 and 3 Combined

Figure 4.19: Comparison of Mean Cost of Online Q-learning

86

1 2 3 4 5
0

20

40

60

80

100

120
Ti

m
e

in
 M

in
ut

e
CPU time

Run Number

1- Run number 1 of Test-I

2- Run number 2 of Test-I

3- Run number 3 of Test-I

4- Run number 1 and 2 Combined

5- Run number 1, 2 and 3 Combined

Figure 4.20: CPU time of Each Run of Online Q-learning

87

1 2 3 4 5
0

10

20

30

40

50

60

Nu
m

be
r o

f I
te

ra
tio

n

Number of Stage Iteration

Run Number

1- Run number 1 of Test-I

2- Run number 2 of Test-I

3- Run number 3 of Test-I

4- Run number 1 and 2 Combined

5- Run number 1, 2 and 3 Combined

Figure 4.21: DP Stage Iteration of Each Run of Online Q-learning

4.3 Discussion of Results

4.3.1 Comparison between Optimization Technique vs. Look-up Table Method

 To compare the results when using an optimization technique (Test-I) and look-

up table method (Test-II) to optimize the Q-function when using the same state-action

space, the mean costs of all 10 runs of each tests are combined in one single box plot.

The results in Figures 4.19 and 4.20 reveal that the optimization technique gives better

results compared with the look-up method. The algorithm with the optimization technique

88

gives a better quality of the SDP solution in terms of deviation in mean cost from the

minimum. Moreover, the standard deviation of the mean cost from using the optimization

technique is less than that of the look-up table. The look-up table method searches for

the minimum value function when the action variables are discrete, while the optimization

technique looks for the best result of each possible decision variable. As a result, the

optimization technique gives better results and consumes less time at each state set

point. It solves the problem once, while the look-up table method looks for the best result

based on every point of action space.

0

500

1000

1500

2000

2500

1 2

M
ea

n
Co

st

Comparison of Mean Cost

1- Optimization Technique

2- Look-up Table Method

Figure 4.22: Comparison of Mean Cost of 125-Point State-Action Space with

Optimization Technique vs. Look-up Table Method

89

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2
Algorithms

De
vi

at
io

n
in

 M
ea

n
Co

st
 fr

om
 th

e
M

in
im

um

Comparison in Quality of SDP Solution

1- Optimization Technique

2- Look-up Table method

Figure 4.23: Comparison in Quality of SDP Solution of 125-Point State-Action Spaces

with Optimization Technique vs. Look-up Table Method

4.3.2 Comparison between Monte Carlo sampling and Sobol' Sequence Design

 Test-V and Test-VI have the same action space but different state spaces.

Test-V used Monto Carlo Sampling to generation the state space while the other one

uses a Sobol’ sequence design [104]. The mean cost of the 10 runs of Test-V as well as

the 10 runs of Test-VI are combined in to 1 mean cost, separately.

 The results in Figure 4.21 and 4.22 reveal that Sobol' sequence design gives

more consistent results as the standard deviation of the mean cost is lower. However, the

quality of the SDP solution in terms of deviation in mean cost from the minimum was the

best for the algorithm with Monte Carlo sampling.

90

0

500

1000

1500

2000

2500

1 2
Run Number

M
ea

n
Co

st

Comparison of Mean Cost

1- Monte Carlo Sampling

2- Sobol' Sequence Design

Figure 4.24: Comparison of Mean Cost of 512-Point State-Action Space with Monte Carlo

Sampling vs. Sobol' Sequence Design

91

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2
Algorithms

De
vi

at
io

n
in

 M
ea

n
Co

st
 fr

om
 th

e
M

in
im

um

Comparison in Quality of SDP Solution

1- Monte Carlo Sampling

2- Sobol' Sequence Design

Figure 4.25: Comparison in Quality of SDP Solution of 512-Point of State-Action Space

with Monte Carlo Sampling vs. Sobol' Sequence Design

4.3.3 Comparison between Dace-based Approach to Approximate an Infinite Horizon

Dynamic Programming and Batch Mode Reinforcement Learning with MARS

 In this section, the selected runs from each test in this Chapter that have good

results in terms of mean costs are compared with the results in Chapter 3 using the same

forward simulation.

 From Figure 4.27, the best number in terms of the quality of the SDP solution is

number 1 which is the Algorithm-II of the proposed method in Chapter 3. Runs 6 and 8

seem to be comparable with number 1, but the number of stage iterations of those runs

are low (3 and 8, respectively) indicating that they may not ensure convergence. Number

4, which is Q-Iteration algorithm of run 7 of Test-I gives a good result even if the size of

92

the training dataset is smaller than others. It shows that adding more training data points

to the Q-iteration algorithm may not help to get a better result. Among 63 runs (3 runs

from Chapter 3 and 60 runs from Chapter 4), it can be concluded that sequential DACE

APD is better than Batch Mode RL.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

M
ea

n
Co

st

Comparison of Mean Cost

1- Algorithm-II of the Proposed Method in Chapter 3

2- Algorithm-III of the Proposed Method in Chapter 3

3- Q-Iteration Algorithm of Run Number 5 of Test-I

4- Q-Iteration Algorithm of Run Number 7 of Test-I

5- Q-Iteration Algorithm of Run Number 8 of Test-I

6- Q-Iteration Algorithm of Run Number 10 of Test-II

7- Q-Iteration Algorithm of Run Number 6 of Test-III

8- Q-Iteration Algorithm of Run Number 9 of Test-IV

9- Q-Iteration Algorithm of Run Number 9 of Test-V

Figure 4.26: Comparison of Mean Cost

93

1- Algorithm-II of the Proposed Method in Chapter 3

2- Algorithm-III of the Proposed Method in Chapter 3

3- Q-Iteration Algorithm of Run Number 5 of Test-I

4- Q-Iteration Algorithm of Run Number 7 of Test-I

5- Q-Iteration Algorithm of Run Number 8 of Test-I

6- Q-Iteration Algorithm of Run Number 10 of Test-II

7- Q-Iteration Algorithm of Run Number 6 of Test-III

8- Q-Iteration Algorithm of Run Number 9 of Test-IV

9- Q-Iteration Algorithm of Run Number 9 of Test-V

Figure 4.27: Comparison in Quality of SDP Solution

94

Chapter 5

Two-Stage Framework Application to a Controllability of a System of Plug-In Hybrid

Electric Vehicle (PHEV) Charging Stations

 This material is based upon work supported by the National Science Foundation

under Grant No. 1128871. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the

views of NSF. The title of this NSF project is “EPAS/AIS Collaborative Research:

Adaptive Design for Controllability of a System of Plug-In Electric Vehicle Charging

Stations.” The main purpose of the project is to develop a framework that integrates

system design and dynamic system control. There are two stages in the project. The first

stage (or master problem) addresses the system design problem, while the second stage

(or subproblem) addresses the dynamic control problem. The research in this dissertation

focused on a dynamic control of a system of plug-in hybrid electric vehicle (PHEV)

charging stations (the second stage). A design and analysis of computer experiments

(DACE) approach is used to build a metamodel for the expected value function of the

second-stage.

 A finite horizon dynamic problem is presented. Based upon the 15-minute

updated period of the electricity market price, the objective function is to maximize profit,

which is the revenue benefit from selling back to the grid and the charging of the vehicles

minus the cost of buying electricity from the grid. The state variables in each 15-minute

time period consist of the total wind purchased by the system, solar power generation at

each charging station, total demand at each station, and nodal market price at station

locations. As an initial solution analysis, the mean value problem is formulated as a

deterministic linear program and solved to present potential policies providing insight into

the behavior of the system.

95

5.1 Design and Analysis of Computer Experiments Approach

 In statistics, a common problem is to model the relationship between input

variables and responses. Many methods from statistical experimental design (DoE) and

statistical modeling have been developed to address the estimation of the function

relationship between the input and its responses [34]. When applied to a two-stage

framework, the possible solutions of the first stage become input variables, and the

objective solutions (or policies) from the second stage based on the first stage solutions

are responses.

The steps involved in DACE are:

• Design of Experiments (DoE) is used to generate the set of sample points

offering the first stage space as input to the optimization model, which then

provides the corresponding responses.

• An optimization model (computer experiment) of system performance is

constructed based on knowledge of how the system operates based on each

possible first stage solution.

• A statistical model is used to approximate the second stage value given a first

stage solution.

Once the metamodel is obtained, it is passed to the first stage design problem.

5.2 Adaptive Design for Controllability of a System of PHEV Charging Stations Case

Study

5.2.1 The First Stage Master Problem

 The first stage master is the system design function where the objective consists

of costs on the design parameters and an expected cost []),(xsVEs from the second-

stage optimal value function over possible initial states. The system design variables

96

include the locations of the charging stations and the number of slot at each charging

station. The general formulation of the first stage design problem is

[]),()(xsVExc s+ (5.1)

which satisfies the specifications

Dx Γ∈ s.t. (5.2)

!)(xc is the “cost” objective.

! x is the system design variables.

! s is the control problem state variable.

!),(xsV is the optimal value function for the second stage dynamic control

problem.

! DΓ is the constraint set for the system design variables.

In this dissertation, the main focus is to solve for the []),(xsVEs from the second stage

control problem. Thus, solution method of the first stage design problem is not presented.

5.2.2 The Second Stage Control Problem

 The controllability module is a dynamic control problem because decisions are

made in several time stages, and the optimization problem becomes dynamic and multi-

stage. There is at least one transition equation on the problem, which means that the

next state of the process depends entirely on the current state of the process and the

current decisions taken [106].

 At each stage, the system is defined by sets of state variables, which include the

market price of energy, solar production of each station, the total wind purchased to the

system, and the total demand of each station. When a decision is made, a cost is

obtained, and the system undergoes a transition to the next stage. The decision variables

in this problem include wind allocation fraction among charging stations, electricity sold

97

back to the grid from the battery and direct charge, electricity purchased from the grid,

demand satisfied by the battery and direct charge, and battery charging level.

 The objective is to maximize profit or, equivalently, to minimize operational cost,

which is the cost of buying from the grid minus the revenue from selling back to the grid

and charging the PHEV both from the battery and the direct charge across all the

stations. Following the timing of the electricity market, the system evolves in 15-minute

time intervals. We consider a 24-hour time period. As a mean value problem, we assume

that the forecasts are perfect. At each time period, each state variable is equal to its

estimated value. The objective is given by equation (5.3)

()∑∑
∈ ∈

+− +−+
Tt Jj

tjttjttjtjt DrgCRgB ~~)(~max (5.3)

where tC
~ is the market selling price of energy in time period t , tB

~
 is the market buying

price of energy in time period t , +
tjg is the electricity bought from the grid of station j in

time period t , −
tjg is the electricity sold back to the grid from the direct charge of station j

in time period t , tjR is the electricity sold back to the grid from the battery of station j in

time period t , tr is the retail price of energy in time period t , and tjD
~ is the total demand

in time period t at charging station j .

 The first constraint set (5.4) includes the battery level transition from period t -1

to period t for each station j :

TtJj
e
D

e
R

BCII
j

tj

j

tj
tjjtjt ∈∀∈∀−−+= − ,

2

),1(,
(5.4)

where tjI is the battery level of station j at the beginning of time period t , tjBC is the

battery Charge of station j in time period t , 2
tjD is the demand satisfied by the battery of

98

station j in time period t , and je is the storage efficiency of station j . In our

computational results, we assume that the storage efficiency je is 79.8% [107-108].

 The second constraint set (5.5) includes the energy balance for the battery

charge at each station.

TtJjDggSWWBC tjtjtjtjtjttj ∈∀∈∀−−++= −+ ,~~ 1 (5.5)

where tjW is the fraction of wind allocated to station j in time period t , tW
~

is the total

wind purchased in time period t , tjS
~ is the solar production of station j in time period t ,

1
tjD is the demand satisfied by the direct charge of station j in time period t .

 The total demand consists of the demand satisfied by direct charge and demand

satisfied by the battery as shown in constraint set (5.6)

TtJjDDD tjtjtj ∈∀∈∀+= ,~ 21 (5.6)

 The combination of electricity sold back to the grid from the battery and demand

satisfied by the battery together is less than or equal to the discharge rate (dc) multiplied

by the storage efficiency, as shown in constraint set (5.7)

TtJjedcDR jtjtj ∈∀∈∀≤+ ,*2 (5.7)

 The battery charge must not be greater than the charge rate (cr), and the

battery level must be constrained in between the minimum battery level and the battery

capacity for each station, as in constraints (5.8) and (5.9), respectively.

TtJjcrBCtj ∈∀∈∀≤ , (5.8)

TtJjsizeUnitMinnit jj ∈∀∈∀≤≤ ,_I_U tj (5.9)

 The battery level at the last stage is assumed to be equal to the first stage.

99

JjII jjT ∈∀= ,1, (5.10)

 The fraction of wind allocation, constraint in equation (5.11), is constructed to

allocate the total wind production to each station. Lastly, the set of nonnegative

constraints is given in (5.12).

∑
∈

=∀=
Jj

tj tW ,...1,01 (5.11)

TtJjRBCggWI tjtjtjtjtjtj ∈∀∈∀≥−+ ,0,,,,, (5.12)

 As an initial solution analysis, the mean value problem is formulated as a

deterministic linear program to provide insight into the behavior of the system. In this

dissertation, the result on the mean value problem is used to fit with the DACE-Approach.

5.2.3 Mean Value Problem Results

 The result from MATLAB solving the mean value problem of control for 5 PHEV

charging stations over 96 time periods is presented in this section. PHEV charging

demand profile in 2012 from Khosrojerdi et al. [109] is used (including demand in Tarrant,

Ellis, Dallas (Garland area), Collin and Denton). In this model, we assume that we have a

contract with a wind farm (e.g. 30% of wind energy production) and we do not include this

cost in the objective function. This simulation is based on January 2012, and the average

retail sale price of electricity in the transportation sector in Texas is 10.17 cents per

kilowatt-hour [110]. The maximum and minimum battery capacities are 3.6 and 0.72 MWh

per slot. The charging rate and discharging rates are 0.6 and 0.075 MWh per slot. In this

simulation, we assume that there is only 1 slot per each station.

100

0 10 20 30 40 50 60 70 80 90 1000.5

1

1.5

2

2.5

3

3.5

4

Time (15 minutes)

Ba
tte

ry
 L

ev
el

 (M
W

h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.1: Battery Level

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (15 minutes)

Ba
tte

ry
 C

ha
rg

e
(M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.2: Battery Charge

 Figure 5.1 shows that the battery level starts to increase at t =12 and reach the

maximum level at t = 16. After that, it stays constant until t = 38, and it starts reducing

until it t = 50. Then, it reduces again at t = 71 until reaching the minimum at the end of

time period. All stations have the same battery level. The battery charge is close to 0 in

all time periods, except time periods 11 to 16 as shown in Figure 5.2. Due to a low

market price, shown in Figure 5.6, the system increases the battery level even if there is

101

a small amount of demand in the system at that time. At t = 14, there is a drop due to a

change in market price. All stations have the same battery charge.

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

Time (15 minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.3: Total Demand

0 10 20 30 40 50 60 70 80 90 1000

0.02

0.04

0.06

0.08

0.1

Time (15minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.4: Demand Pulled from the Direct Charge

102

0 10 20 30 40 50 60 70 80 90 1000

0.01

0.02

0.03

0.04

0.05

0.06

Time (15minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.5: Demand Pulled from the Battery

0 10 20 30 40 50 60 70 80 90 10020

25

30

35

40

45

50

55

Time (15minutes)

M
ar

ke
t P

ric
e

($
/M

W
h)

Figure 5.6: Energy Market Price

In this system, there are two ways to serve the total demand. The first way is by the

direct charge, as shown in Figure 5.4. The other way is by the battery, which is shown in

Figure 5.5. Since the beginning of time period, the demand is satisfied by direct charge

until stage t = 38. At that time, the market price is increased. Thus, the system takes

advantage by serving the demand by some energy stored in the battery. At time period t

= 52, the market price is reduced, and the demand is supplied by the direct charge again.

At time period t = 71, the peak market price occurs. Thus, the system decides to serve

103

the demand by energy stored in the battery as much as it can. However, due to the limit

on charging rate and the amount of electricity in the battery, the system still needs to

serve some demand through direct charge. The total demands at each station are

17.800, 0.871, 9.166, 5.566 and 4.398 MWh, respectively.

 From Figure 5.8, solar generation has a small impact on the system. However,

the data input in this simulation uses January data set. The electricity sold back to the

grid is mainly generated by wind power, see Figure 5.7. Figure 5.9 shows the allocation

of wind generation to each station. The system mainly allocated wind energy to station 1

where the highest demand occurs.

0 10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

Time (15minutes)

W
in

d
En

er
gy

 (M
W

h)

Figure 5.7: Total Wind Purchase to the System

0 10 20 30 40 50 60 70 80 90 1000

1

x 10-4

Time (15minutes)

So
la

r E
ne

rg
y

(M
W

h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.8: Solar Generation

104

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

Time (15minutes)

Fr
ac

tio
n

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.9: Wind Fractional Allocation

0 10 20 30 40 50 60 70 80 90 1000

0.5

1

1.5

2

Time (15minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.10: The Electricity Sold from Direct Charge

0 10 20 30 40 50 60 70 80 90 1000

0.01

0.02

0.03

0.04

0.05

0.06

Time (15minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.11: The Electricity Sold from the Battery

105

0 10 20 30 40 50 60 70 80 90 1000

0.01

0.02

0.03

0.04

0.05

0.06

Time (15minutes)

El
ec

tri
ci

ty
 (M

W
h)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.12: The Electricity Bought from the Power Grid

 The electricity sold back to the grid from direct charge is similar to the total wind

energy purchased to the system, except in time periods between 11 and 16 when the low

market price occurs, Figure 5.10. The system decides to sell some energy from the

battery back to the grid when the market price is high. However, the demand must be

satisfied first. Thus, sometime when we have some demand in the system but the direct

charge energy is not enough, it is necessary to purchase some energy from the grid even

if the market price is not low, Figure 5.12.

0 10 20 30 40 50 60 70 80 90 100-10

0

10

20

30

40

50

Time (15minutes)

Co
st

($
)

Station 1
Station 2
Station 3
Station 4
Station 5

Figure 5.13: The Objective Function Output

106

 The objective function is calculated by equation (5.3) with 5 stations and 96 time

periods. The maximum profit over the 96 time periods is $4933.7.

 Results from the mean value problem suggest that the system takes advantage

of the low market price in the morning and uses direct charge from the wind and the grid

to store energy in the battery before peak demand occurs. Once the system has satisfied

all demand for the day, the remaining stored electricity is sold back to the grid at the peak

market price. It is beneficial to use the direct charge from the wind, the utility grid, and

solar to supply demand.

5.3 Generating the Experimental Design

 The 11 clusters of the power grid (as shown in Figure 5.14) are used as potential

station locations since a station location should be closed to the power grid. The total

number of full factorial design points with 11 variables is 2048. This number is very large.

Fractional factorial designs can be used in these cases to draw out valuable conclusions

from fewer runs. In this case the lowest resolution design for a fractional factorial design

is resolution-III, which requires 16 observations.

 First, the full factorial design is generated. Sixteen observations are carefully

selected from the full factorial design based on a fixing defining relation. In this study,

every open station is assumed to have to same number of slots. To address the number

of slots in the design, a block design is generated. Each block contains 16 observations

with different defining relationships. The number of slots is from 1 to 10. Thus, the total

number of blocks is 10, and the total number of observation is 160; see Appendix B for

more details.

107

Figure 5.14: 11 Cluster of the Power Grid in DFW [109]

5.4 Optimization Model

 The results from control problem presented in section 5.2.2 are used as the

response given the first stage input variable from section 5.3. However, the benefit of

serving demand is not included here. The objective function is to minimizing the

operational cost, thus the objective function in equation (5.3) becomes

()∑∑
∈ ∈

−+ +−
Tt Jj

tjtjttjtj RgBgC)(~~min (5.13)

The parameters of the simulation include,

• Discharging rate is 75 kW/slot.

• Maximum battery capacity is 3.6 MWh/slot.

• Charging rate is 600 kW /slot.

• Minimum level of battery capacity is 720 kWh/slot.

• 30% of total wind generation is assigned to the system.

108

A PHEV charging demand profile for all 9 counties in 2012 [109] is assigned to the nodes

in Figure 5.14. 2012 historical data of wind, solar, and market price are used in the

optimization model [111-113]. Perfect forecasting is assumed in this model.

5.5 Statistical Model

 To estimate the relationship of the input variables and the response for

controllability of PHEV charging stations, multiple linear regression is used. The

predictors are binary variables representing the selection of open stations and numerical

for the number of slots, and the response is the value function from the control problem.

5.5.1 Preliminary Multiple Linear Regression Model

 The multiple linear regression model can be expressed in the following form:

 εβ

ββββββββββββ

++

+++++++++++=

Nslot
xxxxxxxxxxxY

12

111110109988776655443322110

.....(5.14)

where:

 Y = Value function from the deterministic LP for PHEV charging

station (minimize controllability cost.)

 ix = The binary variable
⎩
⎨
⎧

open is station if 1
opennot is station if0

i
i

 where i = 1,..,11

 Nslot = Number of slots (Nslot is integer number started from 1 to 10)

 ε = Uncontrollable error

109

Figure 5.15: Response vs. Predictors Plots

110

 From Figure 5.15, the trends for the binary variables are unclear, which may be

attributed to possible interaction effects with the number of slots and each other. The

trend for the number of slot seem to be mostly downward with some curvature. This

implies that controllability improves as the number of slots increases.

5.5.1.1 Model fit

Using the least squares method, we can find the least squares estimates for the

model parameters (iβ), shown in equation (5.14). Using the parameter estimates shown

in Table 5.1, an estimated regression function can be written as follows:

Nslotxxxxx
xxxxxxY

73.4272.5193.5727.186.6399.2

84.6889.9371.578.13647.57188.7916403ˆ

1110987

654321

−−−−−+

−+−+−−−=

......(5.15)

111

Table 5.1: Analysis of Variance of Preliminary Model

112

5.5.1.2 Model assumptions

• Model Form

 To check on the linearity of the model, a plot of residuals (ie) vs. predictors is

examined to determine if the model has curvature trends. The plot with Nslot in Figure

5.16 shows curvature. Hence, the model form is inadequate and will need to be

addressed.

Figure 5.16: Residuals (ie) vs. Predictors Plots

113

• Constant variance

Figure 5.17: Residuals (ie) vs. Predicted Response(hatY)

 Figure 5.17 shows no indication of a “funnel-shape” along the curve. Hence, the

constant error variance assumption appears to be satisfied.

• Normality

To check on the normality of the errors, we can examine the normality plot shown

in Figure 5.18.

114

Figure 5.18: Normality Plot

The plot above shows longer tails than the normal distribution. By addressing the

issue of curvature, it is possible the normality of the errors will improve.

5.5.1.3 Model summary remedial actions

R2 in this model is 0.86, which high enough to have a good fit. However, there is

a curvature trend for Nslot. For the remedial actions, to address the curvature, both the

addition of regression spline basis functions and the addition of interaction terms are

considered. There are two types of interaction terms. The first type is the interaction

between each charging station location and the number of slots. The second type is the

interaction between two stations where the distance between those stations is within 30

miles. Stations that are located farther than 30 miles apart are assumed to have no joint

influence on controllability. Stepwise regression is used to select model terms at a 0.05

significance levels (alpha).

Salford system data mining and predictive analytics software version 7.0 for

multivariate adaptive regression splines was employed to add regression spline basis

115

functions. The residuals from the stepwise regression model were entered into the

software as the output variable data, and Nslot was entered as the input variable. The

software identified knot locations, and the appropriate regression spline basis functions

were then added to the stepwise regression model.

5.5.2 Multiple Linear Regression Model with Stepwise Selection

 The multiple linear regression model with interaction terms after stepwise

selection can be expressed in the following form:

εβββββββ

βββββββββββ

++++++++

++++++++++=

7517741611151014913812611

41039281710695745342310

intintintintint

intintintint

xxxx
xxxxxxY

......(5.16)

where:

 Y = Value function from deterministic LP for PHEV charging station

(minimize controllability cost.)

 ix = Binary variable
⎩
⎨
⎧

open is station if 1
opennot is station if0

i
i

 where i = 1, ..., 11

 Nslot = Number of slots (Nslot is integer number started from 1 to 10)

 inti = Interaction between xi and Nslot

 xixj = Interaction between xi and xj

 ε = Uncontrollable error

116

Figure 5.19: Value Function vs. Predictors Plots (Additional Variables)

117

5.5.2.1 Model fit

Table 5.2: Analysis of Variance of Multiple Linear Regression Model with Stepwise

Selection

118

The estimated regression function can be written as follows:

7574

111098643

211097543

35.245.65
int84.11int36.15int33.14int92.12int59.12int66.16int58.17

int54.10int24.1324.2379.7492.531.10731.8728.3316658ˆ

xxxx

xxxxxxY

−−

−−−−−−+

−−++++++−=

......(5.17)

5.5.2.2 Model assumptions

• Model Form

To check on the linearity of the model, a plot of residuals (je) vs. predictors is

examined to determine if the model has curvature trends.

 Figure 5.20: Residuals (je) vs. Predictors Plots

 Curvature trend is still visible, so the current model form is still inadequate.

Regression spline terms are yet to be added.

119

• Constant variance

Figure 5.21: Residuals (je) vs. Predicted Response (hatY)

 Figure 5.21 shows a “funnel-shape,” which indicates possible non-constant error

variance. This is assessed again later.

• Normality

To check on the normality of the model we can examine the normality plot shown

in Figure 5.22. The plot shows a longer left tail and a shorter right tail than the normal

distribution. However it does show an improvement from Figure 5.18.

Figure 5.22: Normality Plot

120

5.5.2.3 Model summary

Several interaction terms were identified as statistically significant. There is an

increase in R2 from 0.86 to 0.97. To address the continued presence of curvature due to

Nslot, the remedial action using regression spline basis functions is implemented next.

5.5.3 Multiple Linear Regression Model with Stepwise Selection and Basis Functions

The multivariate adaptive regression splines (MARS) software by Salford

Systems was executed using with the residuals from the stepwise regression model and

Nslot. Knots to model curvature were selected at Nslot values of 3, 4, and 6. The

resulting multiple linear regression model with stepwise selection and basis functions can

be expressed in the following form:

εββββ

βββββββ

βββββββββββ

+++++

+++++++

++++++++++=

32122011918

7517741611151014913812611

41039281710695745342310

intintintintint

intintintint

BFBFBFNslot
xxxx

xxxxxxY

......(5.18)

where:

 Y = Value function from deterministic LP for PHEV charging station

 ix = Binary variable
⎩
⎨
⎧

open is station if 1
opennot is station if0

i
i

 where i = 1, ..., 11

 Nslot = Number of slots (Nslot is integer number started from 1 to 10)

 inti = Interaction between xi and Nslot

 xixj = Interaction between xi and xj

 BF1 = Regression spline basis function max(0, Nslot-3)

 BF2 = Regression spline basis function max(0, Nslot-4)

 BF3 = Regression spline basis function max(0, Nslot-6)

 ε = Uncontrollable error

121

Figure 5.23: Value Function vs. Predictors Plots (Additional Variables)

5.5.3.1 Model fit

From table 5.3, the estimated regression function can be obtained as follows:

NslotBFBFBFxx
xx

xxxxxxY

04.3106.1851.371.2654.13
89.48int58.11int06.14int23.14int57.13int26.12int83.13int38.17

int58.10int07.137.1532.7174.4272.9873.6201.3716721ˆ

32175

74111098643

211097543

+−−−−

−−−−−−−+

−−++++++−=

......(5.19)

122

Table 5.3: Analysis of Variance of Multiple Linear Regression Model with Stepwise

Selection and Basis Functions

123

5.5.3.2 Model assumptions

• Model Form

To check on the linearity of the model, a plot of residuals (ie) vs. predictors is

examined to determine if the model have some curvature trends.

All plots in Figure 5.24 seem to show reasonable scatter. There is some minor

curvature visible in the interaction term plots Nslot plot. However, for practical purposes,

the model form appears reasonably adequate.

Figure 5.24: Residuals (ie) vs. Predictors Plots

124

• Constant variance

Figure 5.25: Residuals (ie) vs. Predicted Response (hatY)

 The residuals vs. predicted values of the response is satisfied. Figure 5.25 shows

a well scattered plot, indicating the constant error variance assumption is reasonable. To

further verify the constant variance assumption, the Modified-Levene test was performed.

Group 1 consists of the observations that have a hatY value equal or less than mean

value of Yhat -16744.72394, and group 2 consists of the observations that have a

hatY value greater than -16744.72394.

125

Table 5.4: T-test for Modified-Levene

T-test: H0: Means of 1id and 2id populations are equal

 H1: Means of 1id and 2id populations are not equal

 Assume: α = 0.05 Decision Rule: Reject 0H if ()2;2/1* −−> ntt α

 () () 975.1158,975.02160;2/05.01 ==−− tt

Since, 88.1* −=t , () 975.1158;975.088.1* =<= tt

Conclusion: It is failed to reject 0H . Therefore, non-constant error variance is not

detected, and together with the plot, it is concluded that the constant error variance

assumption is reasonable.

126

• Normality

To check on the normality of the model we can examine the normality plot shown

in Figure 5.26. The plot above shows extremely strong linearity, indicating a strong match

between the residuals and normality.

Figure 5.26: Normality Plot

Test for normality 0H : Normality is OK

1H : Normality is violated

The decision rule is to reject 0H if ρ̂ < c

127

Table 5.5: Normality Test

From table 5.5, let 01.0=α , 99781.0ˆ =ρ

 c),(nα = c(0.01,160) ∼ 0.982

Since ρ̂ > c (0.99781 > 0.982), then we fail to reject 0H . Together with the

normality plot, it is concluded that the assumption of normally distributed errors is

reasonable.

5.5.3.3 Model summary

The R-squared of the final model is 0.9887, which implies a very good fit. The

model has constant variance and normality. There is minor curvature still visible in some

of the residual vs. predictor plots; however, a more complex model to closely address this

curvature is impractical.

5.6 Discussion on the Final Model

 In the two-stage framework, DACE was developed to replace time-consuming

computer models or expensive physical experiments by replacing the loop between first

and second stage with a constraint generated from the gradient of the approximation

function [53-54]. It also allows more complicated recourse functions if appropriate.

128

 The final model or metamodel gives some accessible descriptions to the control

problem based on the design variables. The objective function is to minimize the

operational cost. The profit is only by selling the electricity back to the grid, as in the

benefit of serving demand is not included. Negative parameter estimators in equation

(5.19) means that the system pays less in term of operational cost when there is less

demand, and the system could benefit by selling the surplus energy back to the grid at

the peak market price. For example, at node E, which is located in Dallas, there is a lot of

demand in the system, so the system has little excess electricity to sell back to the grid.

Thus, the system needs to buy some electricity from the grid to satisfy the demand.

 Some stations that are located nearby would have joint influence on

controllability. From equation (5.19), it is beneficial to build at both Stations E and G, and

Stations D and G together.

129

Chapter 6

Summary and Future Work

The prospect of the proposed sequential DACE algorithms in enabling a

nonparametric statistical modeling method for solving an infinite horizon approximate

dynamic programming framework seems promising. The proposed sequential algorithm

exploits the propensity of MARS modeling to follow the consistency trace, whereas the

MARS modeling algorithm provides an explicit complexity measure (the number of basis

functions) that can be controlled directly during the model building stage.

In chapter 3, three different stopping conditions of the DP stage iteration are

described, and two of them are presented in the proposed algorithms. A two-sided t-test

for 45-degree line correspondence is considered as one of stopping rules of the DP

algorithm to check for the convergence to help find a near optimal solution quickly. From

Figure A-2, it shows that the algorithm that passed the t-test (both origin point and slope)

yielded better results from the forward simulation. The results in Chapter 3 did not include

the L-infinity norm as one of the stopping conditions, but the simulation results in

Appendix A show that the L-infinity norm may not be a good choice for a stopping rule.

Future research can be done to study the stopping rule to ensure convergence. In theory,

at the steady-state equilibrium, the future value function has converged. The results from

the forward simulation in Appendix A shows that at the point where it passed a two-sided

t-test for the 45-degree line correspondence rule, the algorithm may not be at steady-

state. From Figure A-1, the steady-state equilibrium is reached after stage iteration 1000.

In practice, the steady-state point may take a long time to be reached, but it may come

up with little change in the result. It can be seen from the results that the mean cost at DP

stage iteration 98 is close to the one at the real steady stage point but takes much less

time to find. Thus, DP stage iteration 98 can be considered as a good place to stop.

130

Future research will study the width of b0 and b1 from equation (3.13) and (3.20) as a

condition to ensure convergence.

The results of the sequential algorithms in Chapter 3 show that at the very

beginning of the DP stage iterations, where the value function is far away from the true

value function at the steady-state, we may consider a small number of state points.

However, a good fit must be confirmed by a high value of the R2. The percent change in

the future value function average (as defined in Chapter 3) and R2 can be used as a

condition to stop exploring the state space. In this way, it can reduce computational time

and give a good result more quickly. The results in this dissertation suggested that the

Data loop condition when minimum R2 is 0.8 and either minimum change of the future

value function average is 10% or maximum change in R2 is 0.005 gives the best result

compared with the other two algorithms. Future research can be done to better values of

R2, change in R2, and change of the future value function average.

In Chapter 4, batch mode reinforcement learning with MARS is presented. The

main questions of this Q-iteration algorithm are how to generate the state-action space

and how many training data points. Monte Carlo sampling is used to generate the state

space, and a full factorial design is used to generate the action space. The results from

the forward simulation presented in Chapter 4 show that adding more state-action data

points does not improve the performance or give a better result. Moreover, the online

mode reinforcement learning is presented to test the amenability of Q-iteration to follow a

consistency trace when increasing the size of the input data. The results of the online

mode fail to follow a consistency trace. Sobol’ sequence design is the other method used

to generate a state space. The results reveal that different action spaces have only a

small impact on the results when using the same state space generated by Sobol’

sequence. Moreover, in the worst case, Sobol' sequence design gives better result, but

131

Monte Carlo sampling gives the better result on average. Another comparison done in

Chapter 4 is how to solve for the future Q-function. The results reveal that an optimization

technique gives better results with lower computational time, compared with the

traditional look-up table. Future research can be done to use the Q-function (state-action

data set as an input) instead of V-function (state data set as an input) in the proposed

algorithm presented in Chapter 3. In addition, the future work can study the effect of

different action spaces to the results when using a state space generated by Monte Carlo

sampling. Another interesting direction for future work is to find a good sampling sizes for

the training sets as the input of the Q-function approximation.

Chapter 5 presents an application of a control problem for a system of PHEV

charging stations. The main purpose of this NSF supported project is to develop a two-

stage framework that integrates the first-stage system design problem and the second-

stage dynamic system control problem. In this dissertation, a design and analysis of

computer experiments (DACE) approach is applied to build a metamodel for the expected

value function of the second stage for solving a two-stage framework problem. After that,

the expected value function of the second stage will be included in the objective of the

first-stage problem. As an initial solution analysis, the mean value problem is formulated

as a deterministic linear program and solved. The results give potential policies that

provide insight into the behavior of the system, i.e. how can the system take advantage of

peak or low market price and when is the best time to charge the battery. The metamodel

gives an assessable description to the control problem based on the design variables; for

example, which station yields more profit and which two stations should be built together.

In the future work, this problem will be formulated as an infinite-horizon stochastic

dynamic programming, because it is assumed to have stationary system dynamics and

many time periods. The proposed method in Chapter 3 can be applied to this application.

132

The future work can study more accurate metamodels for the expected value function of

the second stage with more complex first stage design variables.

133

Appendix A

Comparison on the Stopping Conditions to Ensure the Convergence of An Infinite

Horizon Dynamic Programming

134

Figure A-1: L-Infinity Norm and Mean Cost vs. Stage Iteration

Figure A-1 is the results of running the output from Algorithm-II in forward

simulation discussed in Chapter 3. There are three important issues appearing in Figure

A-1. First, at the beginning of DP stage iteration, the values of the L-Infinity Norm were

high and unstable. At those periods, the values of the mean cost in the forward simulation

are inconsistent. Second, when the values of the L-Infinity Norm dropped, the values of

mean cost went up. At DP iteration around 400, the value function iteration seemed to be

at steady state equilibrium as the values of the L-Infinity Norm were low and stable as

well as the values of mean cost. However, after DP stage iteration 520, the mean cost

went up to the peak until the problem reaches steady state point after DP stage iteration

980. The mean cost at the true steady state equilibrium is 30.

Using a confidence interval t-test for 45-degree line correspondence, the problem

stopped at DP stage iteration 98 where the mean cost is 33.5. In theory, we want to solve

the system until we reach the steady state point where the value function does not (or

slightly) change anymore. But in practical, we want to get the steady state point and want

135

to speed up the computational time. Even if the DP stage iteration 980 gives a better

result from the forward simulation, when we compare the number of iterations and

computational time, stage iteration number 98 is more attractive (each DP stage iteration

used 196.36 seconds in average).

0

100

200

300

400

500

600

700

800

900

1000

1 2 3

1- Pass both t-tests, 2- Pass either one, 3- Do not pass both t-tests

Figure A-2: Boxplot from the Result of the T-test

Figure A-2 presents Boxplots where number 1 is the mean cost of DP iterations

that pass the confidence interval t-test for 45-degree line correspondence. The other two

boxplots are ones that failed the t-test. From the plots, they show that boxplot number 1

gives the better result in terms of the mean cost and a consistent result. There are some

outliers visible in the plot but they are 10% of the total and their values are still less than

the other two mean values. Thus, it can be concluded that using confidence interval t-test

for 45-degree line correspondence as an infinite DP condition helps ensure a good result.

136

Appendix B

Resolution-III Fractional Factorial Designs for PHEV Charging Station Case Study

(Partial Design)

137

The resolution-III with 11 variables requires 16 observations. To address the

number of slot variables, from 1 to 10 slots, a block design is generated. Each block

contains 16 observations with different defining relations. Thus, the total number of block

is 10, and the total number of observation is 160. Tables 1 and 2 are examples of the

block design generated from different defining relation (I). The last column (Nslot) is the

number of slots, which is the same at every open station.

Table B.1: Block-I Defining Relation I=DHK=1

Run A B C D
E=A
BC

F=B
CD

G=
AC
D

H=A
BD

J=A
BC
D

K=A
B

L=A
C

Nsl
ot

1 0 0 0 0 0 0 0 0 1 1 1

1

2 1 0 0 0 1 0 1 1 0 0 0
3 0 1 0 0 1 1 0 1 0 0 1
4 1 1 0 0 0 1 1 0 1 1 0
5 0 0 1 0 1 1 1 0 0 1 0
6 1 0 1 0 0 1 0 1 1 0 1
7 0 1 1 0 0 0 1 1 1 0 0
8 1 1 1 0 1 0 0 0 0 1 1
9 0 0 0 1 0 1 1 1 0 1 1

10 1 0 0 1 1 1 0 0 1 0 0
11 0 1 0 1 1 0 1 0 1 0 1
12 1 1 0 1 0 0 0 1 0 1 0
13 0 0 1 1 1 0 0 1 1 1 0
14 1 0 1 1 0 0 1 0 0 0 1
15 0 1 1 1 0 1 0 0 0 0 0

16 1 1 1 1 1 1 1 1 1 1 1

138

Table B.2: Block-II Defining Relation I=AEGH=1

Run A B C D
E=A
BC

F=B
CD

G=
AC
D

H=
AB
D

J=A
BC
D

K=A
B

L=A
C

Nlo
st

1 0 0 0 0 0 0 0 0 1 1 1

2

2 1 0 0 0 1 0 1 1 0 0 0
3 0 1 0 0 1 1 0 1 0 0 1
4 1 1 0 0 0 1 1 0 1 1 0
5 0 0 1 0 1 1 1 0 0 1 0
6 1 0 1 0 0 1 0 1 1 0 1
7 0 1 1 0 0 0 1 1 1 0 0
8 1 1 1 0 1 0 0 0 0 1 1
9 0 0 0 1 0 1 1 1 0 1 1

10 1 0 0 1 1 1 0 0 1 0 0
11 0 1 0 1 1 0 1 0 1 0 1
12 1 1 0 1 0 0 0 1 0 1 0
13 0 0 1 1 1 0 0 1 1 1 0
14 1 0 1 1 0 0 1 0 0 0 1
15 0 1 1 1 0 1 0 0 0 0 0

16 1 1 1 1 1 1 1 1 1 1 1

139

References

1. R. E. Bellman. Dynamic Programming. Princeton, NJ: Princeton University

Press; 1957.

2. I. King. A Simple Introduction to Dynamic Programming in Macroeconomic

Models. Economics Department, The University of Auckland. 2002.

3. D. P. Bertsekas. Dynamic Programming: An Overview. In Proceedings of

Sixth International Conference on Chemical Process Control, (J. B.

Rawlings, B. A. Ogunnaike, and J. W. Eaton, eds.) 1995.

4. W. R. Scott and W. B. Powell. Approximate Dynamic Programming for

Energy Storage with New Results on Instrumental Variables and Projected

Bellman Errors. Princeton University, Technical Report. 2013.

5. R. N. Anderson, W. B. Powell and W. Scott. Adaptive Stochastic Control for

the Smart Grid. Proceeding of IEEE V.99, Issue 6. 2011.

6. J. M. Nascimento, and W. B. Powell. An Optimal Approximate Dynamic

Programming Algorithm for The Lagged Asset Acquisition Problem.

Mathematics of Operations Research 34(1), 210237. 23. 2009.

7. M.P. O’Keefe and T. Marke. Dynamic Programming Applied to Investigate

Energy Management Strategies for a Plug-In HEV. Conference Paper. The

22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium

and Exhibition, Yokohama, Japan 2006.

8. E. Yan, F. Bai. Application of Dynamic Programming Model in Stock

Portfolio under the Background of the Subprime Mortgage Crisis.

International Journal of Business and management, vol. 4, No.3, March

2009.

140

9. Y. Cai, K. L. Judd, T. S. Lontzek, V. Michelangeli, and C. Su. Nonlinear

Programming Method for Dynamic Programming. National bureau of

economic research, Cambridge, MA. 2013.

10. D. L. Kelly and C. D. Kolstad. Solving Infinite Horizon Growth Models with an

Environmental Sector. Computational Economics, Society for Computational

Economics, vol. 18(2), p. 217-31, October 1999.

11. S. C. Graves, H. Meal, S. Dasu, Y. Qin. Two-Stage Production Planning in A

Dynamic Environment. (S. Axsater, C. Schneeweiss, E. Silver, eds.). Multi-

Stage Production Planning and Control. Lecture Notes in Economics and

Mathematical Systems, Springer-Verlag, 9-43. 1986.

12. M. Carter. Mathematical Economics. The MIT Press, 2001.

13. L. Cooper, and M. W. Cooper. Introduction to Dynamic Programming.

Pergamon Press, NY. 1981.

14. P. Berling and V. martinez-de-Albeniz. Optimal Expediting Decisions in a

Continuous-Stage Serial Supply Chain. IESE Business School, University of

Navarra, Spain, 2011.

15. W. B. Powell. Approximate Dynamic Programming. Wiley, New York, 2007.

16. V. C. P. Chen. Application of MARS and Orthogonal Arrays to Inventory

Forecasting Stochastic Dynamic Programs. Computational Statistics and

Data Analysis, 30, pp. 317-341. 1999.

17. H. A. Taha. Operation Research: An Introduction 7th Edition. Pearson

Education International. 2003.

18. Yang, Z., V. C. P. Chen, M. E. Chang, T. E. Murphy, and J. C. C. Tsai.

Mining and Modeling for a Metropolitan Atlanta Ozone Pollution Decision-

141

Making Framework. IIE Transactions, Special Issue on Data Mining, 39(6),

pp. 607–615. 2007.

19. Z. Yang,V. C. P. Chen, M. E. Chang, M. L. Sattler, and A. Wen. A Decision-

Making Framework for Ozone Pollution Control. Operations Research,

57(2), pp. 484–498. 2009.

20. H. Fan, P. K. Tarun, V. C. P. Chen, D. T. Shih, J. M. Rosenberger, S. B.

Kim, and D. Bergman. Data-Driven Optimization for Minimizing the

Environmental Impact of Airport Deicing Activities. COSMOS Technical

Report 12-06. 2012.

21. N. V. Sule, V. C. P. Chen, and M. L. Sattler. A Decision-Making Framework

for Assessing Control Strategies for Ground Level Ozone. Atmospheric

Environment, 45, pp. 4996–5004. 2011.

22. C. F. Lin, A. K. LeBoulluec, L. Zeng, V. C. P. Chen, and R. J. Gatchel. An

Adaptive Pain Management Framework. Health Care Management Science.

2013.

23. M. Scott. Applied Stochastic Processes in Science and Engineering. The

University of Waterloo. 2013.

24. G. Lindgren, H. Rootzen, and M. Sandsten. Stationary Stochastic Processes

for Scientists and Engineers. CRC Press. Taylor & Francis Group. 2013.

25. M. hauskrecht. Value-Function Approximations for Partially Observable

Markov Decision Processes. Journal of Artificial Intelligence Research 13

(2000) 33-94. 2000.

26. J. Si, A. G. Barto, W. B. Powell, D. Wunsch. Handbook of Learning and

Approximate Dynamic Programming. New York, NY: Wiley. 2004.

142

27. P. J. Werbos. Beyond Regression: New Tools for prediction and Analysis in

the Behavioral Sciences, PhD thesis. Harvard University. 1974.

28. P. J. Werbos. Back Propagation and Neurocontrol: A Review and

Prospectus. Neural Networks pp. 209-216. 1989.

29. C. Cervellera, V. C. P. Chen, A. Wen. Optimization of a Large-Scale Water

Reservoir Network by Stochastic Dynamic Programming with Efficient State

Space Discretization. European Journal of Operational Research; 171:1139-

1151. 2006.

30. R. Sutton, and A. Barto. Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press. 1998.

31. F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforcement Learning

for Imitating Constrained Reaching Movements. RSJ Advanced Robotics,

Special Issue on Imitative Robots, vol. 21, num. 13, p. 1521-1544. 2007.

32. J. Si, A. G. Barto, W. B. Powell, D. Wunsch. Handbook of Learning and

Approximate Dynamic Programming. New York, NY: Wiley. 2004.

33. P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in

the Behavioral Sciences, Ph.D. dissertation, Committee on Applied

Mathematics, Harvard University, 1974.

34. J. M. Lee, J. H. Lee. Approximate Dynamic Programming Strategies and

Their Applicability for Process Control: A Review and Future Directions.

International Journal of Control, Automation, and System; 2(3):267-278.

2004.

35. L. P. Kaelbling, M. L. Littman, A. W. Moore. Reinforcement Learning: A

Survey. Journal of Artificial Intelligence Research; 4:237-285. 1996.

143

36. P. J. Werbos. Approximate Dynamic Programming for Real-time Control and

Neural Modeling. In: Handbook of Intelligent Control, (eds., D. A. White and

D. A. Sofge). New York, NY: Van Nostrand Reinhold. p. 493-525. 1992.

37. P. J. Werbos. Using ADP to Understand and Replicate Brain Intelligence:

The Next Level design. In: Proceedings of the 2007 IEEE Symposium on

Approximate Dynamic Programming and Reinforcement Learning (ADPRL

2007). p. 209-216. 2007.

38. D. Ernst, M. Glavic, F. Capitanescu, L. Wehenkel. Reinforcement Learning

Vs. Model Predictive Control: A Comparison on a Power System Problem.

IEEE Transactions on Systems, Man, and Cybernetcis-Part B: Cybernetics;

39(2): 517-529. 2009.

39. C. E. Rasmussen, C. Williams. Gaussian Processes for Machine Learning.

Cambridge, MA: MIT Press. 2006.

40. C. E. Rasmussen, M. Kuss. Gaussian Processes in Reinforcement

Learning. Advances in Neural Information Processing Systems. Cambridge,

MA: MIT Press. 2004.

41. A. Guez, R. D. Vincent, M. Avoli, and J. Pineau. Adaptive Treatment of

Epilepsy via Batch-mode Reinforcement Learning. In Proceedings of the

20th Conference on Innovative Applications of Artificial Intelligence (IAAI).

Chicago, IL. 2008.

42. D. Ormoneit and S. Sen. Kernel-Based Reinforcement Lerning. Mach

Learn., vol. 49, no. 2/3, pp. 161-178, Nov. 2002.

43. P. J. Werbos. Advanced Forecasting Methods for Global Crisis Warning and

Models of Intelligence." General Systems Yearbook, 22, pp. 25-38. 1977.

144

44. P. J. Werbos. ADP: Goals, Opportunities and Principles. Handbook of

Learning and Approximate Dynamic Programming (IEEE Press series on

Computation Intelligence), (J. Si, A. G. Barto, W. B. Powell and D. Wunsch,

eds.). NY: Wiley-IEEE Press. pp. 3-44. 2004.

45. D. Ernst, P. Geurts and L. Wehenkel. Tree-based Batch Mode

Reinforcement Learning. Journal of Machine Learning Research 6 503-556,

2005.

46. D. P. Bertsekas, and D. A. Castanon. Adaptive Aggregation Methods for

Infinite Horizon Dynamic Programming. IEEE Transactions on Automatic

Control, Vol. 34, No. 6. 1989.

47. C. Zhang and J. S. Baras. A New Adaptive Aggregation Algorithm for Infinite

Horizon Dynamic Programming. Center for Satellite and Hybrid

Communication Networks Technical Report 2001-5, 2001.

48. Z. Wen, L. J. Durlofsky, B. Van Roy, and K. Aziz. Approximate Dynamic

Programming for Optimizing Oil Production. Chapter 25 in Reinforcement

Learning and Approximate Dynamic Programming for Feedback Control,

edited by F. L. Lewis and D. Liu, Wiley-IEEE Press, 2012.

49. M. He, L. Zhao, and W. B. Powell. Approximate Dynamic Programming

Algorithms for Optimal Dosage Decisions in Controlled Ovarian

Hyperstimulation. European Journal of Operational Research, Volume 222,

Issue 2, 16 October 2012, Pages 328-340. 2012.

50. S. A. Johnson, J. R. Stedinger, C. A. Shoemaker, Y. Li, and J. A. Tejada-

Guibert. Numerical Solution of Continuous-State Dynamic Programs Using

Linear and Spline Interpolation." Operations Research, 41, pp. 484-500.

1993.

145

51. W. Whitt. Approximations of Dynamic Programs I. Mathematics of

Operations Research; 3:231-243. 1978.

52. V. C. P. Chen, D. Ruppert, and C. A. Shoemaker. Applying Experimental

Design and Regression Splines to High-Dimensional Continuous-State

Stochastic Dynamic Programming." Operations Research, 47, pp. 38-53.

1999.

53. J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn. Design and Analysis of

Computer Experiments. Statistical Science, 4, pp. 409-423, 1989.

54. V. C. P. Chen, K. L. Tsui, R. R. Barton, and M. Meckesheimer. Design,

Modeling, and Applications of Computer Experiments. IIE Transactions, 38,

pp. 273–291. 2006.

55. C. Cervellera, A. Wen, and V. C. P. Chen. Neural Network and Regression

Spline Value Function Approximations for Stochastic Dynamic

Programming." Computers and Operations Research, 34, pp. 70-90. 2007.

56. V. C. P Chen, K. L. Tsui, R. R. Barton, and J. K. Allen. A review of design

and modeling in computer experiments. In Handbook of Statistics: Statistics

in Industry, (R. Khattree and C. R. Rao, eds.), 22, Elsevier Science,

Amsterdam, pp. 231-261. 2003.

57. P. K. Tarun, V. C. P. Chen, H. W. Corley, F. Jiang. Optimizing Selection of

Technologies in a Multiple Stage, Multiple Objective Wastewater Treatment

System [Internet]. Journal of Multi- Criteria Decision Analysis. 2011.

58. H. Y. Fan, V. C. P. Chen. Adaptive Value Function Approximation for

Continuous-State Stochastic Dynamic Programming. COSMOS Technical

Report. 2010.

146

59. J. C. C. Tsai, V. C. P. Chen, J. Chen, M. B. Beck. Stochastic Dynamic

Programming Formulation for a Wastewater Treatment Decision-Making

Framework. Annals of Operations Research, Special Issue on Applied

Optimization under Uncertainty; 132: 207-221. 2004.

60. S. Dreyfus. Richard Bellman on the Birth of Dynamic

Programming. Operations Research 50 (1), pp. 48–51. 2002.

61. Z. Yang, V. C. P. Chen, M. E. Chang, M. L. Sattler, A. Wen. A Decision-

Making Framework for Ozone Pollution Control. Operations Research;

57(2): 484-498. 2009.

62. B. Ariyajunya, V. C. P. Chen, S. B. Kim. Orthogonalized Dynamic

Programming State Space for Efficient Value Function Approximation. In

Proceedings of the 2010 IE Research Conference. Cancun, Mexico: 2010.

63. H. Fan. Sequential Frameworks For Statistics-Based Value Function

Representation In Approximate Dynamic Programming. PhD Dissertation,

University of Texas at Arlington. 2008.

64. S. Sahu. Multivariate Adaptive Regression Spline Based Framework for

Statistically Parsimonious Adaptive Dynamic Programming. PhD

Dissertation, The University of Texas at Arlington. 2011.

65. V. L. Pilla. Robust Airline Fleet Assignment. PhD Dissertation, The

University of Texas at Arlington. 2006.

66. M. Petrik, and B. Scherrer, Biasing Approximate Dynamic Programming with

a Lower Discount Factor. NIPS, page 1265-1272. Curran Associates,

Inc., 2008.

67. M. L. Puterman. Markov Decision Processes. Wiley, New York, 1994.

147

68. D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming, Athena

Scientific. 1996.

69. J. Lee, and J. H. Lee. Approximate Dynamic Programming Strategies and

Their Applicability for Process Control: A Review and Future Directions.

International Journal of Control, Automation, and Systems, vol. 2, no. 3, pp.

263-278: 2004.

70. A. Wen. Statistics-Based Approach to Stochastic Optimal Control Problems,

PhD Dissertation, The University of Texas at Arlington. 2005.

71. S. Ferrari, and R. F. Stengel. Model-Based Adaptive Critic Designs.

Handbook of Learning and Approximate Dynamic Programming (IEEE Press

series on Computation Intelligence), (J. Si, A. G. Barto, W. B. Powell and D.

Wunsch, eds.). NY: Wiley-IEEE Press. pp. 65-95. 2004.

72. C. W. Anderson, M. Kretchmar, P. Young, and D. Hittle. Robust

Reinforcement Learning using Integral-Quadratic. Handbook of Learning

and Approximate Dynamic Programming (IEEE Press series on

Computation Intelligence), (J. Si, A. G. Barto, W. B. Powell and D. Wunsch,

eds.). NY: Wiley-IEEE Press. pp. 337-358. 2004.

73. C. W. Anderson, D. Hittle, M. Kretchmar, and P. Young. Robust

Reinforcement Learning for Heating, Ventilation, and Air Conditioning

Control of Buildings." Handbook of Learning and Approximate Dynamic

Programming (IEEE Press series on Computation Intelligence), (J. Si, A. G.

Barto, W. B. Powell and D. Wunsch, eds.). NY: Wiley-IEEE Press. pp. 517-

534. 2004.

148

74. R. Saeks, C. Cox, J. Neidhoefer, P. Mays, and J. Murray. Adaptive Critic

Control of A Hybrid Electric Vehicle. IEEE Transaction on Intelligent

Transportation Systems, 3(4). 2002.

75. J. Si, D. Liu, and L. Yang. Direct Neural Dynamic Programming. Handbook

of Learning and Approximate Dynamic Programming (IEEE Press series on

Computation Intelligence), (J. Si, A. G. Barto, W. B. Powell and D. Wunsch,

eds.).NY: Wiley-IEEE Press. pp. 125-151. 2004.

76. S. D. Whitehead, R. S. Sutton, and D. H. Ballard. Advances in

Reinforcement Learning and Their Implications for Intelligent Control.

Department of Computer Science, University of Rochester, Rochester NY.

2007.

77. J. C. Medina, and R. F. Benekohal. Q-learning and Approximate Dynamic

Programming for Traffic Control – A Case Study for an Oversaturated

Network. in Proceedings of the Boar Annual Meeting, 2012.

78. I. O. Ryzhov and W. B. Powell. Approximate Dynamic Programming With

Correlated Bayesian Beliefs. in Proceedings of the 48th Allerton Conference

on Communication, Control, and Computing. 2010.

79. E. Foufoula-Georgiou,and P. K. Kitanidis. Gradient Dynamic Programming

for Stochastic Optimal Control of Multidimensional Water Resources

Systems. Water Resources Research, 24, pp. 1345-1359. 1988.

80. C. Cervellera, D. Macciò, and M. Muselli. Functional Optimization Through

Semilocal Approximization Minimization. Operations Research, 58(5), pp.

1491-1504. 2010.

149

81. C. Cervellera, and D. Macciò. A Comparison of Global and Semi-local

Approximization in T-stage stochastic optimization. European Journal of

Operational Research, 208(2), pp. 109-118. 2011.

82. G. B. Dantzig, and P. Wolfe. Decomposition Principle of Linear Programs,

Operations Research 8(1), 101-111. 1960.

83. E. Beale. On Minimizing a Convex Function Subject to Linear Inequalities.

The Royal Statistical Society 17b, 173-184. 1955.

84. J. R. Birge, and F. Louveaux. Introduction to Stochastic Programming, 2nd

Edition. SpringerSeries in Operations Research and Financial Engineering.

2011.

85. J. F. Benders. Partitioning Procedures for Solving Mixed-Variable

Programming Problems. Numerische Mathematik 54, 238–252. 1962.

86. J.R. Birge, and F.V. Louveaux. A Multicut Algorithm for Two-Stage

Stochastic Linear Programs. European Journal of Operational Research 34,

384–392. 1988.

87. A. Ruszczynski. A Regularized Decomposition Method for Minimizing a Sum

of PolyHedral Functions. Mathematical Programming 35, 309-333. 1986.

88. A. Ruszczynski. Regularized Decomposition of Stochastic Programs:

Algorithmic Techniques and Numerical Results. Working Paper. Department

of Management Science, Rutgers University, Newark, NJ. 1993.

89. J. N. Hooker, and G. Ottosson. Logic-based Benders Becomposition.

Mathematical Programming 96 33-60. 2003.

90. J.N. Hooker. Planning and Scheduling by Logic-Based Benders

Decomposition. Operations Research 55 588-602. 2007.

150

91. S. Trukhanov, L. Ntaimo, and A. Schaefer. Adaptive Multicut Aggregation for

Two-Stage Stochastic Linear Programs with Recourse. European Journal of

Operational Research 206 395–406. 2010.

92. V. L. Pilla, J. M. Rosenberger, V. C. P. Chen, and B. C. Smith. A statistical

computer experiments approach to airline fleet assignment. IIE

Transactions. 40(5): 524-537. 2008.

93. V. L. Pilla, J. M. Rosenberger, V. C. P. Chen, N. Engsuwan, and S.

Siddappa. A multivariate adaptive regression splines cutting plane approach

for solving a two-stage stochastic programming fleet assignment model.

European Journal of Operational Research. v. 216. issue 1. pp. 162–171.

2012.

94. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning.

Springer. New York, 2002.

95. J. H. Friedman. “Multivariate Adaptive Regression Splines” (with discussion),

Annals of Statistics, 19, pp. 1–67, 1991.

96. S. Geman, E. Bienenstock, and R. Doursat,R. Neural networks and the

bias/variance dilemma. Neural Computation 4, 1–58, 1992.

97. J. C. C. Tsai and V. C. P. Chen. Flexible and robust implementations of

multivariate adaptive regression splines within a wastewater treatment

stochastic dynamic program. Quality and Reliability Engineering

International, 21, pp. 689-699, 2005.

98. G. L. Nemhauser. Introduction to Dynamic Programming. New York, NY:

Wiley. 1966.

99. D. P. Bertsekas. Dynamic Programming and Optimal Control. Belmont, MA:

Athena Scientific. 2001.

151

100. D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.

Belmont, MA: Athena Scientific, 2007.

101. J. Bibby. Aziomatisations of average and a further generalization of

monotonic sequence. Glasgow Mathematical Journal, vol. 15, pp. 63-65.

1974.

102. M. H. Kutner, C. J. Nachtsheim, J. Neter and W. Li. Applied Linear Statistical

Models. McGraw-Hill. 2005.

103. G. Jekabsons. ARESLab: Adaptive Regression Splines toolbox for

Matlab/Octave, 2012. [Online]. Available: http://www.cs.rtu.lv/jekabsons/

104. I. M. Sobol. The distribution of points in a cube and the approximate

evaluation of integrals. USSR Computational Mathematics and Mathematical

Physics, 7, pp. 784-802. 1967.

105. J. H. Halton. On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals. Numerische Mathematik, 2, pp. 84-

90. 1960.

106. A. H. Ronald. Dynamic Programming and Markov Processes. John Wiley &

Sons. 1960.

107. D. Wetz, “Energy Storage Needs and Options," Renewable Energy Sources,

The University of Texas at Arlington., Arlington, TX, 2010.

108. S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco.

Energy Storage Systems for Transport and Grid Application. IEEE Trans.

Industrial Electronics, vol.57, No.12, pp.3881-3895, 2010.

109. A. Khosrojerdi, M. Xiao, P. Sarikpruech, J. K. Allen and F. Mistree.

Designing a System of Plug-in Hybrid Electric Vehicle Charging Stations.

Proceedings of the ASME 2013 International Design Engineering Technical

152

Conferences and Computers and Information in Engineering Conference.

Portland, Oregon, 2013.

110. U.S. Department of Energy. Electric Power Monthly March 2012 (with Data

for January 2012). March, 2012. [Online]. Available:

http://www.eia.gov/cneaf/electricity/epm/epm_sum.html

111. National Renewable Energy Laboratory. National Solar Radiation Data

Base. August, 2012. [Online]. Available:

http://rredc.nrel.gov/solar/old_data/nsrdb/

112. A. Miller and B. Lumby. Utility Scale Solar Power Plants: A Guide for

Developers and Investors. International Finance cooperation (IFC). 2012.

113. Electric Reliability Council of Texas. ERCOT History. 2002. [Online].

Available: http://www.ercot.com/about/profile/history/

114. F. Huang, "Optimization of PHEV charging station. MS Thesis, Department

of Electrical Engineering, University of Texas at Arlington, Arlington, TX,

2010.

115. J. Pineau, M. G. Bellemare, A. J. Rush, A. Ghizaru, S. A. Murphy.

Constructing Evidence-Based Treatment Strategies using Methods from

Computer Science. Drug and Alcohol Dependence; 88:S52-S60. 2007.

116. R. Demir. An Approximate Dynamic Programming Approach to Discrete

Optimization. PhD Thesis. Department of Sloan School of Management.

Massachusetts Institute of Technology, Sloan School of Management,

Operations Research. 2000.

117. D. C. Heath, P. L. Jackson. Modeling the Evolution of Demand Forecasts

with Application to Safety Stock Analysis in Production Distribution-Systems.

IIE Transactions 26(3) 17-30. 1994.

153

Biographical Information

 Asama Kulvanitchaiyanunt received a B.S. in Chemical Engineering from

Chulalongkorn University, Bangkok, Thailand, and a MS in Industrial Engineering from

Lehigh University, Bethlehem, PA. She is a member of the Center on Stochastic

Modeling Optimization and Statistics at the University of Texas at Arlington and an active

member of INFORMS, IEEE, and IIE. During her doctoral studies at UTA, she has

worked as a Graduate Research Associate with Dr. Victoria Chen, Dr. Jay Rosenberger

and Dr. Wei-Jen Lee in the National Science Foundation (NSF) supported project on an

adaptive design for controllability of a system of Plug-in Hybrid Electric Vehicle (PHEV)

charging stations which is a part of her doctoral dissertation. Her research interests

include mathematical programming, dynamic programming, data mining, machine

learning, and optimization in energy application. In the future, she intends to engage

herself in research activity in the areas of application of optimization and data mining to

solve numerous real-world problems such as facility location, decision making in energy

application and transportation.

