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Abstract 

A DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS-BASED APPROACH TO 

APPROXIMATE INFINITE HORIZON DYNAMIC PROGRAMMING  

WITH CONTINUOUS STATE SPACE  

 

Asama Kulvanitchaiyanunt, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Victoria Chen and Jay Rosenberger 

 Dynamic programming (DP) is an optimization approach that transforms a 

complex problem into a sequence of simpler sub-problems at different points in stage. 

The original DP approach used Bellman's equation to compute the "cost-to-go' function. 

This method is useful when considering a few states and decisions. However, when 

dealing with high-dimensional data set with continuous state space, the limit called 'curse 

of dimensionality' obstructs the solution as the size of the state space grows 

exponentially. Given recent advances in computational power, approximate dynamic 

programming (ADP) is introduced by not seeking to compute the future value function 

exactly and at each point of the state space; rather opting for an approximation of the 

future value function in the domain of the state space. Two main components of ADP 

method which have been challenged among existing ADP studies are discretization of 

the state space and estimation of the cost-to-go or future value function. 

 The first part of this dissertation research seeks to develop a solution method to 

solve an infinite horizon dynamic programming called Design and Analysis of Computer 

Experiment (DACE)-based Approach to ADP. Multivariate Adaptive Regression Splines 
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(MARS) which is a flexible, nonparametric statistical modeling tool is used to approximate 

future value functions in stochastic dynamic programming (SDP) problems with 

continuous state variables. The training data set is updated sequentially based on the 

conditions. This sequential grid discretization explores the state space and provides a 

statistically parsimonious ADP methodology which ‘adaptively’ captures the important 

variables from the state space. There are 3 different algorithms presented in this 

dissertation based on the conditions of sampling process of the training data set. 

Comparisons are presented on a forward simulation with 12 time periods.  

 The second part of the dissertation research is to develop a batch mode 

Reinforcement Learning (RL) using MARS as an approximator to solve the same problem 

with the first part. The main difference between these two methods is the input variables 

to approximate future value function. In batch mode RL method, the state-action space is 

used, thus the estimated function (output) is a function of both state and action variables. 

By contrast, DACE-based ADP used only state variable and the estimated future function 

is based only on state variables. The study on state-action discretization is presented in 

this dissertation. Two different designs are used, including Monte Carlo sampling and 

Sobol' sequence design.  Comparisons are presented on the same forward simulation. 

 The third part is to develop a two-stage framework for Adaptive Design for 

Controllability of a System of Plug-in Hybrid Electric Vehicle Charging Stations Case 

Study. The second-stage dynamic control problem is formulated and initially solved by 

mean value problem using linear programming. After that a DACE approach is used to 

develop a metamodel of the second stage solution based on the possible solution from 

the first stage. Then the metamodel will be turned into the first stage and at this point the 

final solution will be made. DACE helps reduce time-consuming computer models by 

replacing the loop between first and second stage with a constraint generated from the 
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gradient of the approximation function. Moreover, the metamodel can give more 

accessible description to the second stage.   
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Chapter 1  

Introduction 

1.1 Overview of Dynamic Programming 

 Dynamic programming (DP) was first introduced by Bellman in 1957 as an 

optimization approach that transforms a complex problem into a sequence of simpler 

sub-problems at different stages, often represented by time periods [1]. The essential 

characteristic is the multistage nature of the optimization (or decision-making) procedure. 

It has been widely used as a tool in variety of study areas, such as engineering, 

economics, finance, energy and science [2-8]. For example, in economics research, 

where the problem is dealing with time periods or making a decision regarding to a time 

period, DP is always seen to be tool to model and solve that problem [2, 9-12]. In the 

energy sector, the real-time problem or location problem uses DP [4-7], where time or 

location is referred to as stages. Another example of using DP as a tool is found in 

finance, a method presented by Yan and Bai [8] uses DP to model and allocate funds 

between stocks in a stock portfolio, as a result, to maximize income. 

 In a typical DP problem, a system evolves through a series of consecutive stages 

(or time periods). At each stage the system can be defined by a set of state variables 

(state for short). One or more decisions must be made at each stage. These decisions 

may depend on either the stage or the state or both. When a decision is made, a return 

(either profit or cost) is obtained, and the system undergoes a transition to the next stage. 

The return is assumed to be a known single-valued function of the state and decision. 

The objective of the DP formulation is to maximize the total profit or minimize the total 

cost over all the stages, and the output is the policy (series of decisions made in each of 

the consecutive stages) that achieves the objective [13]. 
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 Since the original sequential problem is converted into a collection of small 

problems (sub-problems), it is important to make sure that the solution to each of the sub-

problems is actually optimal in the original problem. In other words, the optimal choice in 

each stage-wise problem must be globally optimal to justify the transformation. Moreover, 

future decisions for the remaining stages will constitute an optimal policy with regard to 

the state resulting from the first decision. Bellman called this the "Principle of Optimality" 

[1, 13]. Given the different characteristics of the basic elements represented in potential 

problems, DP can be classified by: discrete or continuous stages, deterministic or 

nondeterministic (stochastic) transitions, finite or infinite horizon, discrete or continuous 

states, discrete or continuous decisions. This dissertation mainly focuses on infinite 

horizon, stochastic dynamic problems with continuous state and decision spaces. 

1.1.1 Stages 

 DP is a method for solving complex problems by breaking the problem down into 

simpler sub-problems. Sub-problems are indexed by stages. The resulting multistage 

problem is then solved stage by stage. At each stage, the sub-problem is solved as an 

ordinary optimization problem, and its solution helps to define the characteristics of the 

next stage problem in the sequence. The stages often represent different time periods in 

the problem's planning horizon. For example, the problem of determining the daily battery 

level of a plug-in hybrid electric vehicle (PHEV) charging station can be stated as a DP 

problem, where the objective is to minimize a cost function in each time period (each day) 

or stage. Sometimes the stages do not have time implications. For example, consider the 

problem of determining the shortest path for a traveler's trip from one city to another city 

with a certain number of intermediate stops in some optional cities. This problem can be 

formulated as a DP problem, where stages are defined as the number of the stops made 

by the traveler. 
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 A DP problem can be defined to have discrete or continuous stages based on the 

structure of the stage process. Stage is often analogous to time period, but it can also be 

something else. For example, in supply chain problem, they defined stage as the 

distance from the start point to the end, and they consider a continuous-stage system in 

this problem because it allows taking a real-time continuous production/transportation 

decision in every point in the distance [14]. The PHEV charging stations control problem 

has discrete time because the system follows the timing of the electricity market which 

evolves in 15-minute time intervals. A continuous-stage structure is frequently 

encountered in problems that are addressed by the classical methods of calculus of 

variations [12-13].  

 In case of discrete stages, the problem is classified by the problem’s time 

horizon, if the problem has a finite number of stages, then it is DP with finite horizon; 

otherwise, it is DP with infinite horizon. The solution methods for solve those two different 

horizons of DP are different [15].  

1.1.2 States 

The states reflect the information required to fully assess the consequences that 

the current decision has upon future actions on each stage. In the inventory problem by 

Chen (1999), each stage (time period) has only two variables describing the state which 

are the inventory level on hand of the single commodity and demand forecasts [16].  

States can be defined to be discrete or continuous or mixed. The gambling 

problem, for example, states are the amount betted in each round where round is 

referred to stage. In this case, it is discrete state [15]. The initial battery level in the PHEV 

charging stations control problem is one of the state variables and it does include 

continuous elements. Thus, the PHEV charging stations control problem has continuous 

state space. 
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The specification of the states of the system is very important to a DP problem. 

Suggestions that motivate the selection of states include: i) The state should provide 

enough information to make future decisions without considering how the process 

reached the current state (i.e., Markovian property); and ii) The number of states should 

be small to reduce the computational effort that may lead to the curse of dimensionality. 

As a variable, the state can be discrete or continuous or mixed. It may also have high 

dimension. 

Powell [15] defines a state variable as the ‘minimally’ dimensioned function of 

history that is necessary and sufficient to compute the decision function, the transition 

function, and the contribution function. In real situation, if the entire history of states is 

included up to the current time period, the problem is dealing with computational work. 

Here, the word ‘minimally’ is of significance. It can address the issue of the curse of 

dimensionality associated with the increase in the size of the state space. Thus, the state 

space should to be as small as possible.   

1.1.3 Decisions and Policies 

 Given the state entering a stage, decisions are made in that stage to achieve a 

desired objective in that stage, subject to any required constraints.  These decisions 

affect the state of the next stage, which affects the decisions in the next stage. In the 

inventory problem [16] the decision is the amount of the commodity to order at the 

beginning of each time period. Decision variables can be discrete or continuous or mixed.  

 A policy is an ordered set of decisions by state and stage. In the inventory 

problem [16], for example, a policy can be the twelve ordering amounts of the commodity 

dependent on the inventory levels entering each of the twelve months. An optimal policy 

is one that maximizes total profit or minimizes total cost over all the stages. 
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1.1.4 Transition Function 

 A transition function defines the transition of the state variables from the current 

stage to the next. It is a function of the state, decision, and random variables. function 

may be categorized as "deterministic" or "nondeterministic." The simplest case is 

deterministic, which can be illustrated by the shortest-path problem: If the traveler is in a 

given city, he will move to another city with complete certainty because the distances 

between each two of the associated cities are known. In this problem, the stage is time 

that has the traveler has elapsed since the beginning of his travel. The states are 

possible cities in the current stage and decision are destinations to select for the next 

stage. Transition function, in this case, is the value (distance) since the beginning of time 

period to current stage is equal to the return associated with a particular state plus the 

accumulative return though stage before the current stage. The distances between cities 

are known, thus it can deterministically make a decision and transform the state in the 

current stage to a state in the next stage [17].  The A nondeterministic or stochastic case 

is the one for which the decision outcome is unknown with certainty, but the state and 

decision variables at each stage are determined as a result of some (assumed) known 

probability distribution. Transition functions are generally assumed known, but if 

unknown, they can be approximated by some methods, for example, data mining and 

statistical modeling [18-22]. 

 We can also classify types of transition function by stationary or not. The 

stationary system occur when the distribution function of the transition do not change with 

stage or time. Moreover, in a stationary problem, the return per stage and the 

randomness statistics are also unchanged from one stage to the next stage [23-24]. For 

example, the PHEV charging stations control problem has a stationary system because 

the statistical properties of each state variable do not change over time, as a result, we 
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have the same transition function for all stages.  For the finite-horizon case, transitions 

can be stationary or nonstationary, and the stages can involve different structure for 

states, objectives, decisions, etc. For the infinite-horizon case, a steady-state equilibrium 

policy is desired, hence, the transitions must be assumed stationary 

1.1.5 Future Value or Cost-To-Go Function 

A stage return is the return provided by a system in each stage of a process. The 

total return of a process or system depends upon the decisions that are made at each 

stage. In this dissertation, we only focus on the case of discrete-time. Based on series of 

discrete stages, there are two types of DP, finite and infinite horizon. In a finite horizon 

problem, the total return is some combination of the stage returns (e.g., a sum or 

product), which are accumulated as the process moves from state to state, or 

equivalently from stage to stage. For the infinite-horizon case, a steady-state equilibrium 

policy is desired, hence, the transitions must be assumed stationary. In each stage, 

iterative algorithm is required to solve for a return but when the process reach the steady-

state equilibrium, then the return at the steady -state point will become the total return. 

The purpose of solving a DP problem is to find the optimal total return. It should 

also be noticed that it is possible for the return functions to vary from stage to stage. In 

the inventory problem [16], the stage return can be the ordering and inventory-carrying 

cost for a month or each time period, and the total return can be the total of that cost for 

all the months.   

Given the different characteristics of the basic elements, there can be various 

types of DP: deterministic or stochastic transitions, finite or infinite horizon, discrete or 

continuous states and decisions. The key to a DP solution is the future value function or 

cost-to-go function that provides the optimal return to operate the system from a given 

stage to the end of the time horizon corresponding to the states in that given stage. It can 
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also solve for the optimal control function that corresponds to the optimal policy and is 

based on “the principle of optimality."  

1.2 Main Advantages and Limitations 

One of the main advantages of DP is that it transforms a single high-dimensional 

optimization problem into a sequence of small optimization problems which can be solved 

in sequence. Another important advantage of DP is that it determines the absolute 

(global) optima rather than relative (local) optima.  

However, certain limitations of DP are still noticeable. The first limitation is that it 

assumes a fully observed system which means that it allows the system be able to make 

decisions based on the full knowledge of state space. In fact, in practice, the accurate 

and comprehensive process knowledge of complex nonlinear control system is rarely 

known a priori. In the case of a non-fully observed system, the partially observable 

Markov decision process (POMDP) can provide an elegant framework that indirectly 

observes the states of the system via a set of noisy observations. But with a complex 

problem, POMDPs takes long time to solve [25]. The second disadvantage is the “curse 

of dimensionality": the required DP calculations become cost-prohibitive, as the number 

of states and decisions increase, with an exponential growth in the computation with 

respect to the dimension of state space [15]. When DP has a high-dimensional state 

space with continuous-state problems, especially stochastic problems, both of the above 

limitations become intractable for the classical solution methods. In addition, the original 

or ‘exact’ DP methodology is relevant when the state of the system is defined completely 

by a finite set of discrete variables. It breaks down when considering infinite horizon with 

continuous state space DP. These limitations have motivated the research community to 

look and move beyond the classical Bellman’s approach to formulate and solve those 

difficult DP problems. Thus, approximate dynamic programming (ADP) was introduced.  
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1.3 Motivation 

 The original DP approach provided by Bellman [1] is used to compute the "cost-

to-go' function and stores each value for each stage in the state space. This method is 

useful when considering a few states and decisions. However, when dealing with a high-

dimensional, continuous state space, the limitation called the 'curse of dimensionality' 

prohibits solution. This kind of DP problem requires proper discretization of the 

continuous state space and future value function approximation. With advances in 

computational power, numerical methods have been developed by many researchers to 

implement the original DP method, and has yielded the ADP family of dynamic 

programming [15, 26]. 

 One of the most popular methods in ADP is called reinforcement learning (RL) 

[6], which was originally inspired by the trial and error process in the psychology of 

animal learning [27-29]. This approach is flexible because it does not need a state 

transition model to find the optimal policy because it directly maps the states to actions 

(decisions) [30]. RL performs well in discrete environments of small dimensionality [31]. It 

mostly focuses exclusively on steady-state problems with sets of discrete decisions [15]. 

However, sufficient exploration for high-dimensional, complex problems can require 

extremely large and impractical sample sizes in RL. The state and decision spaces can 

be provided via sampling [33-37]. In such a case of vary large or continuous problems, 

RL has to be combined with techniques that allow generalization over an information 

space (state-action space) [38]. Some parametric function approximators are applied to 

represent either value functions or policies, including neural network [30, 33] Gaussian 

stochastic processes [39-40], extreme randomized trees [38, 41], and kernel regression 

[40, 42].  
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 In the case of an infinite horizon DP problem, the main motivation of this kind of 

DP is to achieve faster convergence to the steady-state optimal solution and simplify the 

problem of function approximation. The concept of RL is often applied to solve infinite 

horizon DP with different types of leaning methods, such as heuristic DP by Werbos [36-

37, 43-44], and Tree-based batch mode Q-iteration by Ernst et al. [45]. RL is simple 

because it does not require a transition model. However, it converges slowly, and it may 

require too many trial processes to learn an optimal control strategy [30]. Bertsekas and 

Castanon (1989) propose an iterative aggregation approach to solve infinite horizon DP 

problems [46]. However, this method can cause some errors due to inappropriate 

aggregation [47]. Some researchers approximate the value function by adding some 

functions, such as nonlinear programming shape-preservation [9], and basis functions 

[48]. However, those methods perform well only in low-dimensional state spaces. Powell 

presents the idea of a post-decision state to solve infinite horizon DP. He defines the 

post-decision state as the state of the system after making a decision but before new 

information has arrived. This method is able to solve high-dimensional state and action 

space with several correlated exogenous processes. The value function is approximated 

by some methods, such as, linear approximation [4] and piecewise linear approximation 

[5-6, 49]. However, the limitation of this method is that the function needs to be either 

linear or concave (convex if minimizing).  

 A simple and natural way to address a continuous state space is by forming a 

finite grid of discretization points in the state space and using some approximators such 

as multilinear or spline interpolation to estimate the value function [50-51]. Unfortunately, 

the full grid grows exponentially in the dimension of the state space and consequently is 

not practical for high-dimensional problems. In order to reduce the number of 

discretization points and the corresponding computational effort, the study by Chen et al. 
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[52] developes statistical design of experiments (DoE) concept to sample the state space 

and flexible statistical modeling to approximate the optimal value function over the 

continuous state space. This approach is analogous to a design and analysis of computer 

experiments (DACE) [53-54] approach, where the computer experiment is the stage-wise 

optimization. Orthogonal arrays (OAs), Latin hypercubes, and number theoretic methods 

(NTMs) have been employed to more efficiently sample the continuous state space of a 

DP problem [52-56]. Corresponding to the use of efficient discretization methods for the 

state space, statistical modeling methods, including multivariate adaptive regression 

splines (MARS) and neural networks (NN) have been applied [52-56]. The existing 

literature on solving continuous-state DP using DACE have been applied to several finite-

horizon problems including a nine-dimensional inventory forecasting problem [16, 55, 57], 

a 20-dimensional wastewater treatment system [35-36], a 30-dimensional water reservoir 

[58], and a high-dimensional non-stationary ground level ozone pollution ADP problem 

[61-62].  

 A DACE-based approach does not exist in the infinite horizon DP literature. This 

motivates research to develop a DACE ADP approach that can handle high-dimensional, 

continuous-state infinite-horizon dynamic programming. According to research proposed 

by Fan [63] and Sahu [64], a sequential framework for state space discretization together 

with a statistical modeling tool to estimate the cost-to-go or future value functions can 

solve finite horizon dynamic problems successfully. This motivates research to develop a 

sequential DACE ADP approach to approximate an infinite horizon DP. In addition, the 

second task of this research is motivated by Pilla [65], which used a DACE approach to 

build a metamodel for the expected value function of the second-stage for solving a two-

stage stochastic programming problem. 
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1.4 Research Overview 

 The ultimate objective of this dissertation research is to develop new 

methodology based on a statistical perspective that employs a sequential DACE-based 

approach to approximate an infinite horizon, continuous-state stochastic dynamic 

programming problem. The proposed method uses DACE to address continuous state 

spaces by employing experimental design to generate the space for state variables and 

then for each and use a statistical model to fit these state variables and their responses 

to provide a continuous approximation of future value function. This research uses NTMs 

to sample the state space and MARS as statistical tool to model a metamodel of the 

future value function. A two-sided t-test for 45-degree line correspondence is considered 

as one of stopping rules of the DP algorithm to check for the convergence. The inventory 

forecasting problem by Chen [16] is implemented to demonstrate the approach. The 

results are compared by forward simulation over a finite set of time periods. 

 The other objective of this dissertation is to develop a two-stage framework that 

integrates the first and second-stage system for adaptive design for controllability of a 

system of PHEV charging stations using a DACE approach. In this project, the PHEV 

charging stations control problem is the second stage. One of the contributions of this 

dissertation is to formulate the control problem. For preliminary study, the problem is 

formulated as mean value problem and solved using linear programming. A DACE 

approach is employed to generate the metamodel of the second-stage given possible 

first-stage solutions. In this task, DACE is used to replace the loop between first and 

second stage with a constraint generated from the gradient of the approximation function.  

  A literature review i presented in Chapter 2, including some methods to solve 

ADP, such as Q-learning, using the post-decision state, and sequential DACE. The 

proposed method with three different algorithms is presented in Chapter 3. A nine-
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dimensional inventory forecasting problem is applied to test the proposed method. 

Chapter 4 presents batch mode reinforcement learning (RL) using MARS as an 

approximator. The comparison with the proposed method in Chapter 3 is also presented. 

The problem of controlling a system PHEV charging stations is presented in Chapter 5, 

including the formulation of the PHEV charging stations control problem with preliminary 

results using the mean value problem, followed by using DACE to estimate the expected 

value function of the control problem (second-stage) in two-stage framework. 

Conclusions and future work are presented in Chapter 6. 
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Chapter 2  

Review of Literature 

2.1 Modeling Dynamic Programs 

 The original (deterministic) Bellman's equation can be written as  

( ))(),(min)( 11 +++= tttttutt sVuscsV
t

 ........(2.1) 

where 1+ts  is the state we transition into if we are currently in state ts , and tu is the 

decision taken at stage t. This problem is deterministic problem. 

 The classical form of DP assumes that the state space consists of a finite 

number of states [44]. It also assumes that 1+tV is known and is used to compute )( tt sV .  

 Stochastic dynamic programming (SDP) is the version of DP whose goal is to 

minimize an expected “cost” when the randomness is included in the problem. A typical 

SDP formulation for a finite-horizon with continuous state is written as 
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where T  is the time horizon; ts is the vector of state variables; tu is the vector of decision 

variables; tε is the uncertainty; (.)tc  is the known cost function, and (.)tf is the 

multivariate transition function used to determine 1+ts . Constraints on the decision and 

state are represented by tΓ  .  
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2.1.1 Finite-Horizon Model 

 The idea of finite horizon is to determine what to do right now when we model the 

problem over horizon T  [15]. The finite horizon stochastic DP formulation in recursive 

form is written as, 

{ }
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The state vector describes the state of the system at the beginning of stage t. 

The decision vector is the variable we can control to minimize present plus future cost. 

The transition function of the state )(⋅tg  is assumed to be known. However, in many real 

problems the transition function is unknown, but it is estimated by some methods, for 

example, data mining and statistical models [18-22]. The transition function can be the 

same (stationary) or different for each stage (non-stationary). The future value function or 

cost-to-go function provides the minimal cost of the system from stage t through stage 

T , given the system is in state ts entering stage t. The goal is to find the future value 

functions )(⋅tV and the optimal decision variables *
tu . To solve finite horizon DP, the 

backward algorithm is applied. The future value function at the last stage )(⋅TV is solved 

first, and we continue to solve backward until )(1 ⋅V is obtained [15].  

2.1.2 Infinite-Horizon Model 

 For infinite horizon DP, the problem will be solved over an infinite time horizon. 

The infinite horizon problem is of particular interest to address steady-state properties in 

a Markov process. It studies problems where the parameters of the contribution function, 

transition function, and the process governing the exogenous information process do not 
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vary over time, although they may vary in cycles (e.g. an infinite horizon model of energy 

storage from a solar panel may depend on time of day) [15]. We solve the problem until 

the system reaches the steady-state equilibrium. 

 In a version of stochastic infinite-horizon DP, such a problem is usually 

formulated as a discounted model that takes the long-run return of each stage into 

account, but the return that is received in the future (or from a previous stage) is usually 

geometrically discounted according to a discount factor. Discount factors are important in 

infinite-horizon DP in which they determine how the reward is counted. The natural 

discount factor for example in a Tetris game problem is 1, since the received rewards 

have the same importance, independently of when received [64]. But for a problem in 

which the horizon is long enough to affect the time value of money, a discount factor (γ ), 

which is a number in between 0 and 1, is introduced to the problem [15, 66].  

 We can think of a steady-state problem as one without the time dimension, 

assuming the limit exists. Thus, we have ( )ttt sVsV ∞→= lim)(  [15]. The steady-state 

optimality equations can be expressed as 

V (s) =min
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where )(sV is the total return with state s ∈ S and decision Uu∈ . The discount 

factor,γ , is in between 0 and 1.  

 One also can define the cost-to-go function for the discounted infinite horizon 

model as  
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 Thus, an infinite horizon stochastic DP formulation in recursive form is written as, 
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 The transition function is the same for each stage as it is in a stationary problem. 

The system seeks steady-state optimality. 

2.2 Approximate Dynamic Programming 

 The characteristics of three variables causing the curses of dimensionality 

include: the state variables, the decision variables, and the exogenous information 

variables [15]. The original DP approach by Bellman in 1957 is a mathematical 

programming method for optimizing a system changing over time [1]. However, the 

solutions are only possible for small problems or under very limiting restrictions (linear 

dynamics, quadratic cost, Gaussian random variables). Thus it may not be able to 

mitigate the curses of dimensionality in DP. Puterman [67] shows that the original 

Bellman's equation can solve the discrete and small state space smoothly. Given recent 

advances in computational power, approximate dynamic programming (ADP) methods 

have become a practical method to find good solutions [15, 26]. ADP is both a modeling 

methodology and an algorithmic framework for solving multi-stage stochastic optimization 

problems. Most of the literature has focused on the problem of approximating the future 

value to overcome the problem of multidimensional state variables. Thus, the original 

stochastic Bellman's equation (1) becomes, 

V̂t st( ) =min
ut

ct (st,ut,εt )+ V̂t+1(st+1)( )
 

........(2.7) 

where V̂t st+1( ) is an approximation of the value function at time t+1. 

 Some researchers refer to ADP as neuro-dymamic programming (NDP) and 

reinforcement learning (RL). Bertsekas and Tsitsiklis [68] address these curses of 
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dimensionality by introducing an NDP method using artificial neural networks (ANNs) as 

the function approximator, and solve a discrete state dynamic problem. This method 

creates algorithms aiming at overcoming two main problems of classical DP algorithms, 

namely the curse of dimensionality and the transition probabilities requirement. The curse 

of dimensionality is conquered through use of parameterized function approximators that 

approximate the value function in a similar way to statistical regression. These algorithms 

rely on output generated by simulators in their computation, rather than explicit transition 

probabilities. However, the discussion by Lee and Lee [69] states that NDP is more of an 

off-line based learning, like reinforcement learning, and it assumes that large amounts of 

data can be collected from simulation trajectories obtained with “good” suboptimal 

policies. Thus, this method may be difficult to apply to continuous state variables. They 

also pointed out some limitations of NDP including error in approximation due to 

continuous state and decision space, costly on-line learning, and data quantity limitation. 

 RL is commonly studied in computer science. In RL, there is typically a small 

number of low-dimensional discrete decisions in deterministic models [15]. Names of RL 

algorithms depend on their algorithms, such as Q-learning and SARSA [15, 30, 35, 37, 

38, 40-41].  

2.2.1 Q-Learning 

 The main advantage of Q-Learning is that we are solving a complex problem that 

we cannot model but are able to observe behaviors directly. We do not need to know an 

explicit transition function, so we refer to it as model-free. In this case we may make a 

decision by observing the results of the decision from a physical process or exogenous 

process. At each state, we make a decision or action that maximizes the function 

),( usQ , which is formulated as 
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Q s,u( ) = r s,u( )+γmax
!u
Q( !s , !u )( )  ........(2.8) 

where ),( usr  is an immediate reward, γ is a relative value of delayed vs. immediate 

rewards (between 0 and 1), sʹ′ is the new state after making decision u , and uʹ′ is an 

action or decision in state sʹ′ . The return value of being in a state s is  

V s( ) =max
u

Q s,u( )( )  ........(2.9) 

 The original Q-Learning performs well when solving problems without a model, 

but it is difficult to apply to problems with high-dimensional state and action spaces [15]. 

Moreover, the usual way to observe state-action pairs is by constructing a table [15]. To 

overcome the over generalization of a state-action space, some parametric function 

approximators or regression tools are applied [15, 30, 35, 37-38, 40-41, 45]. Thus, 

equation (5) and (6) become 

Q̂ s,u( ) = r s,u( )+γmax
!u
Q̂( !s , !u )( )

 
......(2.10) 

V̂ s( ) =max
u

Q̂ s,u( )( )  ......(2.11) 

 Ernst et al. [38, 45] presents tree-based batch mode Q-iteration, which uses tree-

based supervised learning methods to approximate the Q  function. They introduce four-

tuples ( 1,,, +tttt srus ) and denote F as the set ( ){ }Fil
t

l
t

l
t

l
t srus 11,,, =+  of available four-

tuples. The sampling process is used to generate F . They call this problem the batch 

mode RL, as the set of transitions is used to produce the control policy in a single step. 

The state-action pair is an input variable, and ),( usQ  associated with the pair is an 

output variable. A training set is used to approximate ),(ˆ usQ . They compare results of 

several types of tree-based supervised learning methods, including Classification And 
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Regression Tree (CART), K-dimensional Tree (Kd-tree), Tree Bagging, Extra-Trees, and 

Totally Random Trees. The two best results are from using Extra-Trees and Tree 

Bagging.  

2.2.2 The Post-Decision State Variable 

 Powell presents the idea of post-decision [4-6, 15, 49] to solve high-dimensional 

state and action space with several correlated exogenous processes. He defines post-

decision state as the state of the system after making a decision but before new 

information has arrived and can be expressed as )(),(, ttttt
uMu

t ususss Δ+==  where 

)( tt sΔ is the expected change of the state between t and t+1, the decision ts . The state 

before making a decision, sometimes, called pre-decision state. The next pre-decision 

state is )()()( 111 ttttttt
u
tt uususs +++ +Δ+=+= εε . When making decisions, we use 
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where the superscript n is the iteration counter and )(ˆ n
t

n
t sv is the new observed value for 

visiting state n
ts or a sample of the value of being in state n

ts . Moreover, )(ˆ n
t

n
t sv is also a 

sample of the value that put us in state nu
ts
,
1−  since the transition from nu
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,
1−  to n

ts  requires 

only the realization of random exogenous information. Thus, we can update the estimate 

of the approximate value function around the post-decision state )(ˆ ,
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t
n
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where 1−nα is a smoothing factor (stepsize) between 0 and 1. 
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 The approximate value function V̂  is obtained by the value function 

approximations method such as linear approximations [65], piecewise linear 

approximations [5-6, 49], and cutting planes method [15]. In any case, convexity and 

concavity must be confirmed [15].  

 Powell also states in his book [15] that a state-action pair in Q-learning is a form 

of a post-decision state, but a post-decision state is more compact.  

2.3 Finite-Horizon with Continuous-State Dynamic Programming Solution Methods 

 The research for continuous-state DP has focused on methods helping to reduce 

computational efforts from the curse of dimensionality. Johnson et al. [50] addresses the 

continuous state space by forming a finite grid of discretization points in the state space 

and using linear and spline interpolation. They compare numerical solution methods 

using multilinear, Hermite gradient DP, and tensor-product cubic spline interpolation on a 

four-reservoir problem. They show that cubic splines required fewer grid levels in each 

dimension. Thus it reduces computational time. However, their method is based on a full 

grid points (i.e., a full factorial experimental design), which grows exponentially with the 

number of dimensions. 

 Chen [16] and Chen et al. [52] apply experimental design and a statistical model 

to high-dimensional continuous-state stochastic dynamic programs. The proposed 

method utilizes orthogonal array (OA) experimental designs and multivariate adaptive 

regression splines (MARS), where OAs are special subsets of full factorial experimental 

designs that grow only polynomially with the number of dimensions. This approach uses 

a statistical perspective that can be seen to be analogous to design and analysis of 

computer experiments DACE [53-54] and is most appropriate for reducing the 

computational effort for high-dimensional problems. The results achieve good accuracy 

compared to using a full factorial design with tensor-product cubic spline interpolation by 
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Johnson et al. [50]. Cervellera et al. [55] introduced the use of an alternate experimental 

design, Latin hypercubes, and neural networks, which is another statistical modeling 

method tool similar to Chen's approach, and obtained comparable results to using OAs 

and MARS on a nine-dimensional inventory forecasting problem and an eight-

dimensional water reservoir problem. Cervellera et al. [55] and Wen [70] study 

experimental designs number-theoretic methods (NTMs) and successfully solve a thirty-

dimensional water reservoir problem. Fan [63] creates an adaptive value function 

approximation (AVFA) approach using number-theoretic methods (NTMs) with feed-

forward neural networks (NNs) to solve finite horizon with continuous-state DP. Lastly, 

Sahu [64] implements AVFA with MARS. Both Fan and Sahu study the inventory 

forecasting problem by Chen [16] and utilize the ‘sequential’ concept from DACE to make 

the grid ‘only fine enough’ for the ‘efficient’ discretization and used MARS methods to 

approximate future value functions [64]. 

 The concept of RL is popular in ADP research [27-28, 60]. For continuous 

problems, RL generalizes over a state-action space [38]. Ernst et al. [38, 45] present 

batch mode RL using a Q-iteration algorithm with tree-based supervised learning 

methods to approximate the Q-function [38, 45]. They compare results of several types of 

approximators including CART, Kd-tree, Tree Bagging, Extra-Trees and Totally Random 

Trees and found that Extra-Trees and Tree Bagging are the two best, respectively, in 

terms of accuracy. They do not diverge to infinity, but they do not ensure convergence of 

the algorithm either. The convergence property is reached by the Totally Randomized 

Trees, but its performance is not as good as Extra-Trees and Tree Bagging. They also 

compare their proposed methods with Q-learning combined with a piecewise-constant 

grid and found that the proposed method performed better [38]. Ernst et al. [45] use batch 

mode RL with Extra-Trees to solve the problem of controlling the academic benchmark 
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electric power system, which is a finite horizon case. They suggest that the proper way to 

solve this kind of problem is to combine batch mode RL with model-based techniques, 

such as Model Predictive Control (MPC) [45]. However, in that case, it may require more 

computational effort and make a problem more complicated.    

 Using post-decision state variables is one of the most attractive methods to solve 

ADP. He et al. [49] use post-decision state variables with pricewise linear approximators 

to solve for optimal dosage decisions in controlling ovarian hyperstimulation in a finite-

horizon DP. The results indicate that this method can obtain policies as good as using 

Markov decision processes (MDP) benchmark in terms of accuracy but with lower 

computational time. However, this method uses lookup-tables that need to discretize the 

continuous state space and the state transitions, which may introduce discretization 

errors.  

2.4 Infinite-Horizon with Continuous-State Dynamic Programming Solution Methods 

 The most challenging part of infinite-horizon DP with continuous state space is 

convergence, since the problem needs to reach the steady-state equilibrium. In brief, the 

motivation of this kind of dynamic problem is to achieve faster convergence to an optimal 

solution and to simplify the problem of function approximation. Werbos [43] apply the 

concept of RL to infinite-horizon DP and proposes a critic structure called "heuristic DP". 

This method uses the parametric structure called actor (or action network) to approximate 

the control law, and another parametric structure called critic (or critic network) to 

approximate the value function. Critic training does not require a system model for its 

calculations, but actor training, on the other hand, requires finding the derivatives of a 

system model with respect to the control variables. Thus, in practice, heuristic DP 

converges slowly. To improve the convergence, Werbos [36-37] proposes an alternative 

referred to as Dual Heuristic Programming (DHP). DHP uses the critic to approximate the 
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derivatives of the value function with respect to the state variable. The actor is used to 

approximate the control law, as in all other adaptive critic approaches. It requires fully-

specified model based algorithms to train the critic and actor. Later on, Ferrari and 

Stengel [71] show that the DHP method could be more efficient than heuristic DP. 

However, due to the use of derivative information, the relationships for updating the 

control and value-derivative functional are more involved and, hence, introduce additional 

computation. Furthermore, since the DHP critic approximates a vector functional, the 

problem of function approximation is more challenging. Werbos [44] present "Action-

Dependent Heuristic DP" (ADHDP) with Q-learning method to ADP approaches. This 

method does not require a model of the system. In ADHDP/Q-learning methods, one can 

train a critic to match targets of the value function based on the Q  recurrence equation, 

using exactly the same procedure as in heuristic DP. The actor training is simplified, in 

that since the control variables are inputs to the critic, the derivatives of the value function 

with respect to the control variables are obtained directly from back-propagation through 

the critic. Thus ADHDP/Q-learning methods use no system models in the training 

process. Other ADP research based on the RL perspective includes the following. 

Anderson et al. [72-73] propose an RL method with robust control theory to guarantee the 

stability even during training. Saeks et al. [74] work with a variety of adaptive critic and 

adaptive DP implementations where the adaptive critic was developed and apply to a 

control of a hybrid electric vehicle, which is a real-time application. Si et al. [75] study 

direct neuro-DP, developed a model-independent to ADHDP approach, and successfully 

apply it to a wireless network call admission control in a large scale helicopter control 

problem. The principle disadvantage of RL is that it requires many trials (repeated 

experiences) to learn an optimal control strategy, especially if the system starts with a 

poor initial policy [76].  
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 Other ADP research includes the following. Bertsekas and Castanon [46] 

propose a class of iterative aggregation approaches to solving infinite horizon DP. This 

method is to interject aggregation iterations in the course of the usual successive 

approximation method. The principle of aggregation-disaggregation is to approximate by 

solving a smaller system of equations obtained by lumping together the states of the 

original system into a smaller set of aggregate states. Zhang and Baras [47] argue that 

inappropriate aggregation methods can cause large aggregation errors. They derive an 

adaptive aggregation scheme method to calculate the value function, which guarantees 

reduction in aggregation errors and increases the speed of convergence [62]. Cai et al. 

[9] present a Nonlinear Programming (NLP) method, called DPNLP, to solve the infinite 

horizon DP problems. This method uses shape-preserving approximation methods to 

approximate the optimal value function by adding some extra degree of freedom. DPNLP 

solves the deterministic or stochastic DP problem with one or two continuous state 

variables and several continuous control variables without the curse-of-dimensionality of 

the action space. DPNLP can solve DP problems with many continuous control variables 

easily and quickly, however, it can only solve one or two continuous state variables. The 

post-decision state variable approach is another way to solve infinite horizon DP. It uses 

of a forward algorithm where there is no need to loop though all possible states in the 

next time step in order to estimate the value of the current state, just like in Q-learning. 

However, it requires approximating the expectation of the value function by visiting the 

states with enough frequency to make a good decision [77]. Ryzhov and Powell [78] 

represent uncertainty of the value function using a Bayesian model with correlated belief. 

In this way, a decision made at a single state can provide with information about many 

states and make each individual observation more powerful. However, the performance 
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of the proposed method with an infinite-horizon problem is not very good, especially 

within an online objective setting.  

2.5 Statistical Approach to Approximate Dynamic Programming 

 The statistical approach to ADP uses statistical models to approximate the future 

value function when the problem is defines as continuous state (or decision) space. 

Foufoula-Georgiou and Kitanidis [79] use multi-linear interpolation in their proposed 

multilinear Hermite gradient DP to solve discrete time linearly constrained stochastic 

optimal control problems. Johnson et al. [50] use tensor-product cubic spline interpolation 

for solving a four-reservoir problem and show that cubic splines required fewer grid levels 

in each dimensions, hence it reduces computational time. Chen [16] and Chen et al. [52] 

observe that the methods presented by Foufoula-Georgiou and Kitanidis [79], and 

Johnson et al. [50] are based on a full grid of points and statistically equivalent to a full 

factorial experimental design. Chen et al. [52] proposes an approach based on an 

Orthogonal Array (OA), which is the special subset of full factorial experimental designs, 

and used a Multivariate Adaptive Regression Splines (MARS) as a statistical tool to 

approximate inventory forecasting SDP. Chen also shows that while the number of points 

in a full grid discretization grows exponentially with the number of dimensions, OAs grows 

only polynomially with the number of dimensions. This greatly reduces the computational 

effort for high-dimensional problems. The result achieves good accuracy compared to 

using a full factorial design with tensor-product cubic spline interpolation by Johnson et 

al. [50]. Cervellera et al. [58] use an alternative experimental design, number-theoretic 

methods (NTMs) and successfully solve a thirty-dimensional water reservoir problem. 

They also conclude that dimensionality issues can be mitigated by employing neural 

approximation with efficient discretizations of the state space. Cervellera et al. [55] 

introduce the use of another alternate experimental design, Latin Hypercube (LH), and an 
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alternate statistical modeling method, neural networks into Chen's [16] approach, and 

obtaine comparable results to the application of OAs and MARS to a nine-dimensional 

inventory forecasting problem and an eight-dimensional water reservoir problem. 

Cervellera et al. [80] propose a methodology called semilocal approximate minimization 

(SLAM), which introduces a semi-local approach based on kernel functions to 

approximate the solution of T-stage stochastic optimization (TSO) problems, which is a 

typical paradigm of Markovian decision processes. The approach is characterized by less 

demanding computational requirements and seeks to exploit the properties of semi-local 

approximation through kernel models and efficient sampling of the state space. Kelley 

and Kolstad [10] present an algorithm for infinite horizon models in environmental 

economics and policy, relying on a neural net approximation of the value function within 

an iterative version of the Bellman equation. They use "discrete grid methods" to 

generate the design and approximate the value function using neutral networks. They 

claim that the algorithm is capable of becoming arbitrarily accurate, unlike the linear-

quadratic method where the accuracy is bounded by the accuracy of the approximation of 

the return function. However, one concern of the method presented by Kelley and 

Kolstad is the size of state space. Moreover, with a high-dimensional problem, the NN 

has more observations to fit the underlying function to increase the accuracy, thus, 

computational time increases in order to estimate parameters over a large data set. 

Cervellera et al. [81] compare the neural networks approximation with a semi-local 

approach based on kernel functions (SLK) [50]. The results show that in terms of both 

accuracy and computational times, SLK is more attractive in higher-dimensional contexts 

due to its more advantageous computational requirements. Fan [63] successfully solves 

the nine-dimensional inventory forecasting a finite horizon dynamic programming with 

continuous-state problem described in Chen [16] by creating an adaptive value function 
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approximation (AVFA) approach using number-theoretic methods (NTMs) with feed-

forward neural networks (NNs). Sahu [64] proposes the same approach with MARS 

approximation instead of NNs Both studies utilize the ‘sequential’ concept from Design 

and Analysis of Computer Experiments (DACE) to make the efficient discretization (fine 

grid). Sahu's study also tests various guidelines for setting the number of basis functions 

for a MARS approximation. 

2.6 Two-Stage Framework 

 A two-stage framework was first introduced by Dantzig [82] and Beale [83]. In 

two-stage stochastic programs with recourse, traditionally, a set of decisions have to be 

made a priori when related environmental information is not completely available in the 

first-stage (or master) problem, called here-and-now decision. These decisions are called 

the first-stage decisions. Given the first-stage decisions, the later stage decision variables 

(also called recourse variables) can be decided [82-84]. In optimization algorithms, the 

second-stage decisions (or solution) are sent to the first-stage. At this time we need to 

solve for the first-stage decisions again along with the second-stage decisions. If the 

optimality is obtained, then stop, otherwise we need to solve for new second-stage 

decisions given the new set of the first-stage decisions. The deterministic equivalent of 

the two-stage stochastic programming problem with recourse can be written as 

[ ])(min xQExcT
Xx

+
∈

 ......(2.14) 

where  
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 ......(2.15) 

Equation (2.14) is the first-stage objective function, which includes the expectation of the 

second-stage objective function )(xQ , where x is the first-stage decision vector and y is 

the second-stage decision vector. Note that we consider the deterministic version so the 
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random events do not occur in the model. Parameters c and q are the known objective 

coefficient vector of x and y, respectively. Parameters T and W are matrices, specifying 

the second-stage linear constraints on x and y, respectively with the right-hand side 

vector h.  

 One of the most popular methods is based on building an outer linearization of a 

recourse cost function and a solution of the first-stage (master) problem plus this 

linearization. It is a cutting plane technique introduced by Benders [85], called the L-

shaped or Bender's decomposition method [84]. However, for complicated problems, the 

iterative cut can be very slow to converge because of the loop between first and second-

stage. Moreover, this method works only with the deterministic problem. 

 Modified versions of the cutting plane method are numerous. Birge and 

Louveaux [86] propose a multicut algorithm that allows the L-shaped method to be 

extended to include multiple cuts for the objective in each iteration. The regularized 

decomposition method due to Ruszczynski [87-88] is developed in such a way that the 

next solution of the master problem is not too different from the previous first-stage 

solution. It poses the problem as a non-smooth optimization problem and adds a 

regularizing term in the objective function, where the initial first-stage solution is the 

incumbent solution that is updated, as necessary, after finding optimality. Hooker and 

Ottosson [89] extend the Benders decomposition framework on a mixed-integer linear 

program so that constraint logic programs can be used as subproblems to generate cuts 

that are added to a master problem. Hooker [90] uses logic-based Benders 

decomposition to solve several multi-stage planning and scheduling problems. Trukhanov 

et al. [91] introduce an adaptive multicut method that generalizes the single cut and 

multicut methods. The proposed method adjusts the aggregation level of the optimality 

cuts in the master program.  
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 Among this research, the loop between first-stage and second-stage is still 

visible. Chen [16] proposes a discretization scheme based on design of experiment 

technique using orthogonal array design to create a finite set of points of the first-stage 

decision and use a statistical model to estimate the surface of the recourse function. Pilla 

[65] and Pilla et al. [92-93] develop a multivariate adaptive regression splines cutting 

plane approach for solving a two-stage stochastic program to solve airline fleet 

assignment problem. There are two phases in this method, DACE phase and 

Optimization Phase. The approximation of the expected recourse function is achieved by 

MARS approximation over a discretized first-stage decision space based on a Latin 

hypercube design in DACE Phase. An approximate second-stage recourse function then 

is optimized using a cutting plane algorithm. Compared with traditional L-shape method, 

this proposed method performs faster. 

 In this dissertation, we only focus on building the metamodel to represent the 

expected value function of the second-stage.   

2.7 Insight for Research 

 The original DP approach derived by Bellman [1] is proved to perform well only 

for small problems or under very limiting restrictions. Given advances in computational 

power nowadays, APD exists. For continuous state spaces, DP usually requires proper 

discretization, by forming a finite grid of discretization points of the continuous state 

space, and uses some methodology to approximate the future value (or cost-to-go) 

function. However, the full grid grows exponentially in dimension of the state space, 

hence, it is not practical for high-dimensional problems. Reinforcement learning (RL) ADP 

is one of the most popular methods in modern study of implementing DP [30, 35-37, 38, 

40-41, 43, 45, 71, 72-78]. RL is flexible because it does not require an explicit state 

transition model. The sufficient exploration of the state and decision spaces may be 
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achieved via sampling. In contract, to obtain the sufficient exploration for high-

dimensional, complex problems can require extremely large and impractical sample 

sizes. Moreover, trial-and-error is required in RL and may be costly when training the 

high dimensional data set. Another option for solving infinite horizon ADP is aggregation. 

However, an inappropriate aggregation may lead to large aggregation errors [46-47]. 

Lastly, using post-decision state variables does not perform very well for infinite horizon 

DP [78]. 

 According to studies by Chen [16], Chen et al. [18-20, 57], Cervellera et al. [29, 

55, 80-81], Wen [70], Fan et al. [20, 58], Fan [63], and Sahu [64], they all successfully 

combine sequential DACE approach for future value function approximation to 

approximate DP. However, these studies focus on finite-horizon DP. Thus, the proposed 

method in this dissertation will extend the AVFA for infinite horizon ADP for infinite 

horizon case with continuous state spaces. The proposed method is compared to batch 

mode Reinforcement Learning (RL) using MARS as an approximator proposed by Ernst 

et al. [38, 45]. 

 The second major contribution of this dissertation is to use DACE to build 

metamodels representing the expected value function of the second-stage problem in a 

two-stage framework for a plug-in hybrid electric vehicle (PHEV) charging stations case 

study.   The case study seeks adaptive system design for controllability, where the first 

stage optimizes system design and the second stage optimizes system control. 

According to studies by Pilla [65], and Pilla et al. [92-93], a DACE approach can be 

successfully used to develop a metamodel of the second stage solution based on an 

experimental design over possible solutions from the first stage. DACE helps control the 

execution of time-consuming computer models by replacing the loop between first and 

second stage with a constraint generated from the gradient of the approximation function. 
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The final solution will be made at the first stage with the expected value function from the 

second stage. The first stage solution is not made in this dissertation but the general 

formulation is presented in Chapter 5. 
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Chapter 3  

Using Design and Analysis of Computer Experiments to Approximate Infinite Horizon 

Dynamic Programming With Continuous State Space  

 The proposed methodology adopts a sequential approach for state-space 

exploration inspired by concepts from design and analysis of computer experiments 

(DACE) by Sacks et al. [53] and the concept of adaptive value function approximation 

(AVFA) by Fan [62]. The proposed method presented in this section is based on 

multivariate adaptive regression splines (MARS) modeling to achieve 'statistical 

parsimony' in data-driven (adaptive) future value function approximation. The stopping 

criteria for an infinite horizon dynamic programming is also studied and discussed in this 

section. 

3.1 Motivation 

 Central to dynamic programming (DP) is the ‘cost-to-go’ or ‘future value’ function, 

which is obtained via solving Bellman’s equation. ADP is introduced to solve a high-

dimensional DP problem, especially with a continuous state space. However, the 

usefulness of the ADP algorithm is limited by its computational cost. Complexity of the 

model adds to the computational cost, as does the exploration of the state space. Thus, 

the usefulness of the whole ADP algorithm hinges on finding the approximation model 

with optimal complexity using minimum state-space exploration. 
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3.1.1 Bias-Variance Tradeoff 

 

Figure 3.1 Schematic Illustration of Bias-Variance Tradeoff [94] 

 According to the figure 3.1, it has been observed that the increase in complexity 

of the model reduces the bias, which measures how good the true function is 

approximated, but it increases the variance in the predictive performance of the model, 

which makes the quality of prediction poor in terms of reliability [94]. The aspect of 'model 

complexity' has traditionally been quantified by the 'degrees of freedom (df)' measure, 

which is essentially the number of parameters in the model. In the context of multivariate 

adaptive regression splines (MARS), the degrees of freedom (df) measure is the number 

of linearly independent basic functions (BF) in the model. 

3.1.2 Generalization Error 

 Consider a regression function, ε+= )(xfy , where ε  is the random error 

independent of x and with mean zero, and f̂  is an estimate of the function f . Define 

the loss function for measuring the error of the estimation as 

( )2)(ˆ)()ˆ,( xfxfffL −=  ......(3.1) 

The generalization error is defined as the expected loss or expected prediction error over 

an independent test sample. This is also referred to as test error. This expectation 
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averages anything that is random including the randomness in the training sample that 

produced f̂ . Specifically, the test error is given by the following over an independent test 

sample. 

[ ] ( ) ( ) ⎥⎦
⎤

⎢⎣
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The training error is defined as the average loss or average training error over the 

training sample, given by the following. 
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The generalization error can be decomposed into bias and variance, such that Test Error 

= Bias2 + Variance, but it is untrue in the case of training error [94]. If we continue to 

increase the model complexity, the training error decreases monotonously, but not the 

test error. 

 

Figure 3.2: Illustration of Interplay between Training Error And Test Error 

Source: T. Hastie, R. Tibshirani , J. H. Friedman [94] 
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 When we increase the model complexity too much, the model adapts too closely 

to the training data and loses the generalization ability, and the test error increases in the 

independent testing data. When the model becomes complex, it can capture more 

complex underlying structure in the data, which decreases the bias of the estimating 

function, but it also increases the variance of the estimating function. As long as the 

decrease in the bias component more than compensates for the increase in the variance 

component, the estimation error in the testing data set decreases. Beyond certain model 

complexity, the rate of decrease in bias is more than offset by the rate of increase in 

variance, and the estimation error increases in the training dataset. In the continuum of 

model complexity, there is an optimal model complexity that gives the minimum test error. 

 This research follows the successful study by Fan [63] to seek to incorporate the 

test error in the model selection criterion in developing a data-driven algorithm to build 

flexible statistical models of optimal complexity. 

3.1.3 Consistency Trace 

 Consistency is defined as the asymptotic convergence of an estimator to the 

object of estimation. Analytical studies reveal that most nonparametric regression 

algorithms, which include multivariate adaptive regression splines (MARS), are consistent 

for approximating any regression function and the rate of convergence, depending on the 

particular algorithm and the underlying function it seeks to approximate [96]. This is a 

reassuring property of the MARS approximation that we seek to exploit. The observation 

of Fan [63] that the nonparametric regression function approximations follow a 

consistency trace is of practical significance.  
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Figure 3.3: Consistency Trace for Adaptive Value Function Approximation 

Source: Fan [63] 

 From figure 3.3, the adaptive value function approximation algorithm seeks to 

slowly grow both the data sample and the approximation model complexity, to follow a 

consistent trace. It also shows that the increase in model complexity and the size of 

training data can force the regression function approximation models to follow the 

consistency trace. This research seeks to exploit this observation regarding the 

consistency trace to develop data-driven stopping rules of the data sample incrementing 

for optimal model complexity. 

3.2 Multivariate Adaptive Regression Splines (MARS) 

 MARS, introduced by Friedman [95], yields an adaptive continuous 

approximation that does not impose any structural assumption on the data. It fits basis 

functions composed of single or products of truncated linear functions, with optional 

smoothing, using linear least squares estimation. MARS models can capture complex 

nonlinearity in the data and provide a data-driven and adaptive modeling method for 

approximation of the future value functions. MARS is flexible and can automatically 
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model interactions between variables. Its disadvantage is it does well with only 

quantitative predictor variables. 

 MARS is an adaptive procedure because the selection of basis functions is data-

based and specific to the problem at hand. The MARS procedure for estimating any 

arbitrary regression function consists of a forward stepwise algorithm to select certain 

spline basis functions followed by a backward stepwise algorithm to delete basis 

functions until the best set of basis functions is found that has the lowest generalized 

cross validation (GCV) error among all the possible sets of basis functions. The MARS 

forward stepwise algorithm is used to create the basis functions of the MARS model. The 

forward stepwise algorithm loops through the possible choices for basis functions, 

composed of covariates and knot locations, in selecting the next two basis functions to 

add to the model. The forward stepwise algorithm stops when Mmax basis functions have 

been selected, where Mmax is a user-specified constant. The MARS approximation 

approaches interpolation as the number of basis functions increases, but there is a 

tradeoff between Mmax and computational time. An improper Mmax may cause problems 

of over-fitting or under-fitting. In general, the backward stepwise algorithm is used to 

prevent over-fitting by decreasing the complexity of the model without degrading the fit to 

the data.  However, the backward algorithm is computationally intensive, and precious 

computational effort cannot be wasted within an DP setting.  Consequently, Tsai and 

Chen [97] presented automatic stopping rules to provide an efficient way of choosing 

Mmax in approximating the future value function. Sahu [64] has provided 

recommendations on setting a proper Mmax. 
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3.2.1 Structure of MARS 

The MARS approximation has the form  

∑ =
+=

M

m mm xhxf
10 ),()(ˆ ββ  ......(3.4) 

where x  is a v -variate vector of predictors, )(xhm  is a basis function, M  is the number 

of linearly independent basis functions, and mβ is the unknown coefficient for the m -th 

basis function )(xhm . The basis function )(xhm has the form   

hm (x) = sl,k xv(l,m) − kl,m( )"# $%
l

Lm

∏  ......(3.5) 

where [ ]+z  is the hinge function defined as max{0, z }, Lm is the order of predictor-

predictor interaction in the m -th basis function, xv(l,m)  is the input variable corresponding 

to the l -th hinge function in the m -th basis function, mlk ,  is the knot value corresponding 

to the xv(l,m) , and sl,m  takes the values -1 and +1 corresponding to the pair of basis 

functions for the each combination of xv(l,m)  and mlk , . The forward stepwise algorithm in 

MARS adds basis functions in pairs in each iteration and loops through the possible 

choices for basis functions (m ), covariates ( v ) and the knot locations ( k ) to select the 

next two basis functions to add to the model. The process stops when Mmax is reached. 

3.3 General Framework for Solving Continuous Stochastic Dynamic Programming 

A typical SDP formulation for an infinite horizon DP is 

V st( ) =min
ut
Eε c st,ut,εt( )+γV st−1( ){ }

s.t. st = f st−1,ut,εt( ), for t =1, 2,...
ut ∈ Γt, for t =1, 2,...

 ......(3.6) 

where  t  is the stage (time period). 
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 st is the vector of state variables. 

 tu is the vector of decision variables. 

 tε is the uncertain influences. 

 (.)tc is the known cost function. 

 (.)tf is the transition function. 

 tΓ is the set of constraints. 

 γ is the discount factor. 

 (.)V is the future value function. 

 The following value function iteration approach is one of the most widely used 

algorithms in dynamic programming, which is solved as a forward DP and seeks a 

steady-state or infinite-horizon solution [15]. The future value function (.)V represents 

the minimal cost of operation at each stage t  given the system is in state ts and entering 

stage t . The goal at each stage is to compute the future value function (.)V and find the 

optimal decision *
tu . The goal of the problem (an infinite horizon DP) is find the future 

value function at steady-state equilibrium solution. The stopping criteria of DP stage 

iteration or time period iteration is presented in the next section. The DP is solved forward 

recursively from the first DP stage iteration until reaching the steady-state set point. At 

the end of this exercise, the value function (.)kV  and the optimal policy *
ku  at the last 

iteration (steady-state), k , become the solution of problem. 

 This traditional recursive solution framework for SDP becomes computationally 

expensive as the number of state points for each stages increases. In the presence of 

continuous state variables, this traditional recursive framework completely breaks down. 
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Discretization of the state space coupled with some interpolation technique is adopted to 

approximate the future value function for any state point. The algorithm for solving an 

infinite horizon continuous SDP problem is as follows: 

Step 0: Initialization:  

• Choose N discretization points in the state space si,t{ }i=1
N

 for the t -th stage; 

where ,...2,1=t and si,t ∈ Rn
. 

• Set the initial estimated value function 0̂V =0. 

• Assume the discount factor [ ]1,0∈γ . 

• Set k =0.  

• Set t=1 

Step 1: The stage of an infinite horizon DP: 

• Set .1+← kk  

• For each discretization point si,t{i =1..N} solve for  

Vk si,t( ) =min
ui,t

E C si,t,ui,t,εi,t( ){ }+γV̂k−1 f si,t−1,ui,t−1,εi,t−1( )( )  where k is the k -

th iteration.  

• Approximate ( )tk sV  with ( )tk sV̂  for all n
t Rs ∈ . 

Step 2: The stopping condition: 

• Check the convergence of ( )tk sV̂ with the criteria discussed in section 3.5. If fail, 

set 1+= tt and go back to Step 1. 

This discretization of the state space makes the recursive solution framework work for 

continuous-state SDP. The approximation or interpolation is required to de-discretize any 

inference over the state space. The quality of the approximation is enhanced with the 
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increase in fineness of the discretization grid. However, the computational cost of the 

recursive solution process increases with the increase in the number of discretization 

points. This tradeoff between the quality of approximation and the cost associated with it 

has motivated this research to seek ways to find the optimal discretization that would give 

the optimal quality of approximation.  The use of sequential DACE in the finite-horizon 

ADP work of Fan [63] and Sahu [64] to create an adaptive value function approximation 

algorithm facilitates the creation of sequential DACE approach for infinite-horizon ADP. 

The research in this dissertation follows the work of Fan [63] and Sahu [64] to employ a 

sequential DACE approach for approximating the future value function for an infinite 

horizon dynamic program to achieve the goal of optimal discretization and optimal quality 

of approximation. 

3.4 Proposed Framework 

 The objective of this research is to develop an algorithm that uses a sequential 

DACE approach to approximate the future value function of an infinite horizon dynamic 

program that follows the consistency trace. Based on Chen et al. [52] and Sahu’s [64] 

research, MARS is the nonparametric statistical modeling method of choice because of 

its consistency. The Mmax guideline recommended by Sahu is used in this research, 

which is Mmax equal to ⎥⎦

⎤
⎢⎣

⎡
+
+
c
cn

2
2

, where n is the number of data points in the training 

data set, and c is the penalty parameter set to the default value of 3. 

 The method in this dissertation implements researches by Chen et al. [52], Fan 

[63] and Sahu [64] which all focus on solving finite horizon DP with continuous-state by 

developing an AVFA for infinite horizon ADP algorithm. There are two main components 

in this algorithm. The first one is DP stage iteration, which is the outer loop of the 

algorithm. The objective of this loop is to achieve an acceptable approximation of the 
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steady-state optimal value function. The second component is the Data loop, which 

conducts computer experiments to gain information for building the value function 

approximation using the concept of DACE.  

  In the Data loop presented in Figure 3.4 (a), the proposed method uses a 

sequential DACE approach for future value function approximation [8, 64]. The computer 

model is run at sample state points determined by the experimental design, and the 

output responses are used to fit the metamodel that approximates the future value 

function. In DACE metamodeling, sample points can be generated in batch, and a 

statistical model is constructed based on the whole batch. In a sequential DACE 

approach, sample points are selected sequentially; the metamodel is updated 

sequentially with new sample points; the performance of the metamodel is evaluated 

each time the metamodel is updated, and the sampling process is stopped as soon as 

the performance of the metamodel meets the set stopping criteria. 

3.4.1 Flowchart of the Proposed Framework 

 At each iteration of the DP, the Data loop runs inside the DP stage iteration loop 

presented in Figure 3.4 (b). The algorithm of the Data loop starts with the input of the 

initial size of the training data taken from a low-discrepancy quasi-random sequence and 

fits a model of optimal complexity for the size of the training dataset. At the end of the 

sequential step, the model with optimal complexity is evaluated in a fixed testing dataset, 

and stopping criteria of the Data loop is checked for compliance. The change in R2 in the 

test response is used as the stopping criterion. If the stopping criterion has not been met, 

then the algorithm proceeds to the next sequential step with a pre-specified increase in 

the size of the training dataset. The sequential data iterations continue until the stopping 

criterion of the Data loop is met. After that, the stopping criterion of the DP stage iteration 
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is then checked. The stopping rule of the DP stage iteration is subjected to the 

convergence of the value function and will be present in the next section. 

  

 

(a) 

 

(b) 

Figure 3.4: Flowchart of Proposed Sequential Algorithm (a) Data Loop (b) DP Stage 

Iteration 
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3.5 DP stage iteration Stopping Condition 

There is no limit time period or stage in a case of an infinite horizon DP. The 

solution of this kind of problem is obtained when it reaches steady-state equilibrium point 

or convergence of the value function. In order to ensure the convergence, we need a 

setting rule. In this dissertation, three different stopping rules are discussed as follows.  

3.5.1 L-Infinity Norm 

 The stopping conditions are required to decide at which DP stage iteration (i.e., 

for which value of k ) the process can be stopped. A simple way to stop the process is to 

define a priori a maximum number of iterations [15, 26, 45]. According to Powell [15], the 

convergence criterion is defined by 

γγφ 2/)1(1 −<− −kk VV  ......(3.7) 

where V is the max-norm defined by  

)(max sVV
s

=  ......(3.8) 

Thus, the stopping criteria is reached when the maximum change in the value of being in 

any state is lower than setting right-hand side of the equation (3.7), where γ is the 

discount factor, and φ is a specified error tolerance. 

3.5.2 Change in the Future Value Function Average 

 In systems theory, a system in a steady-state has numerous properties that are 

unchanging in time. In this case, the simple way to check is the change in the future 

value function average [15, 98-100]. This change should be very small. However, in a 

high-dimensional problem, this condition alone may not be adequate because it 

considers only the average value, which is only a measure of central tendency [101]. The 

change in the future value function average can be stated as: 
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Vt −Vt−1
Vt−1

 ......(3.9) 

Where Vt is the future value function average at time t.  

3.5.3 Confidence Interval T-test for 45-Degree Line Correspondence [102] 

 Correlation analysis can be used to ensure the convergence of the future value 

functions. A linear regression model with one predictor variable is used to find the relation 

between the future value function approximation of two different stages. The future value 

function approximation of the previous DP stage iteration is assigned as the predictor. 

The future value function of the current DP stage iteration is put as the response. The 

general model of linear regression can be stated as follows: 

iii XY εββ ++= 10  ......(3.10) 

where  

 iY is the value of the response variable in the i th trial. 

 0β is the Y intercept of the regression line. 

 1β is the slope of the regression line. 

 iX  is the value of the predictor variable in the i th trial. 

 iε is a random error term in the i th trial. 

The objective in simple linear regression is to generate the best line between the two 

variables. Then the slope and intercept are estimated. The best line, or fitted line, is the 

one that minimizes the distances of the points from the line, as shown in Figure 3.5. The 

fitted regression line can show the actual ratio for the correspondence between predictor 

and response. A one-to-one correspondence means that the value of the predictor gives 

about the same results as the response. The line of one-to-one correspondence should 
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make a 45-degree angle through the origin, and the formula for this line would have a 

slope coefficient of 1 and a y-intercept or constant term equal to 0 (passing the origin). 

We refer to this line as 45-degree line correspondence. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Example of Functional Relation 

A two-sided t-test is conducted with a 95 percent confidence interval for both 1β and 0β . 

The t-test for 1β  has two alternatives: 
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 ......(3.11) 

An explicit test of the alternatives (3.11) is based in the test statistic: 

}{
1*
1

1

bs
bt −

=  ......(3.12) 

where 1b is a point estimators of 1β , which is calculated by (3.13), and }{ 1bs is a 

standard error estimator from (3.14) 
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21 )(
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∑ −
=

XX
MSEbs
i

 ......(3.14) 

The decision rule with this test statistic for controlling the level of significance at α is: 

0),2;2/1(* Hntt  conclude  if −−≤ α  ......(3.15) 

1),2;2/1(* Hntt  conclude  if −−> α  ......(3.16) 

where n is the size of the data set.  

 The 1-α  confidence limits for 1β are: 

}{)2/;21( 11 bsntb −−± α  ......(3.17) 

where )2/;21( −− nt α denotes the 100)2/(α  percentile of the t distribution with n -2 

degrees of freedom. The t-test for 0β has two alternatives: 

0:
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 ......(3.18) 

 An explicit test of the alternatives (3.18) is based in the test statistic: 

}{
*

0

0

bs
bt =  ......(3.19) 

where b0 is a point estimators of β0 , which is calculated by (3.20), and s b0{ } is an 

estimator for the standard error, which is from (3.21) 
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The decision rule with this test statistic for controlling the level of significance at α is the 

same as (3.15) and (3.16). 

 The 1-α  confidence limits for 0β are: 

}{)2/;21( 00 bsntb −−± α  ......(3.22) 

 This research developed alternative stopping rules for the value iteration 

approach. The condition of the change in the future value function, and the 95% 

confidence interval t-test for 45-degree line correspondence are used as the stopping 

criteria. More discussion on why these conditions can be set as a stopping rule is 

presented in the next section. The comparison with the L-infinity norm stopping rule and 

the proposed stopping rules is shown in Appendix A. 

3.6 Application to Inventory Forecasting Problem 

This research seeks to study the performance of the resulting sequential ADP 

methodology based on MARS modeling on an infinite horizon nine-dimensional 

stochastic inventory forecasting problem [16]. The choice of this particular SDP problem 

is for easy comparison and benchmarking, as this nine-dimensional stochastic inventory 

forecasting problem has been extensively studied and frequently used for performance 

comparison by researchers in the past [16, 63-64]. 

3.6.1 Overview of Stochastic Inventory Forecasting Problem 

The nine-dimensional stochastic inventory forecasting problem [16] is concerned 

with optimal order quantities for three items over two forecast periods given the inventory 

level and demand forecast for each item.  

The state variables include: 

• The inventory level of item i  at the beginning of time period t , ( ))(itI . 
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• The forecast determined at the beginning of time period t  to predict the demand 

of item i  in the current time period t , ( ))( ),(
i
ttD . 

• The forecast determined at the beginning of time period t  to predict the demand 

of item i  in next time period 1+t , ( ))(
)1,(

i
ttD + . 

The state vector at the beginning of stage is represented by 

( )Ttttttttttttttttt DDDDDDIIIx )3(
)1,(

)2(
)1,(

)1(
)1,(

)3(
),(

)2(
),(

)1(
),(

)3()2()1( ,,,,,,,, +++=  

The decision variables are the amounts of item i  ordered in period t , the decision vector 

at the beginning of stage is represented by  

( ))3()2()1( ,, tttt uuu=u  

The transition functions are modeled using the multiplicative Martingale model of forecast 

evolution (See Chen [16] for details). The constraints on the decision variables (amounts 

ordered) and the state variables (inventory levels) are placed in the form of capacity 

constraints. The transition functions are given by 
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where )(i
tµ  is the mean demand for item i  in period t , and )(

),(
i
ktt +ε is the change in 

forecast for the time kt +  from the forecast made in period t . 

 The objective function is a cost function involving inventory holding costs and 

backorder costs. The cost function is typically V-shaped and is represented as 
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where ih is the holding cost parameter for item i , and iπ is the backorder cost parameter 

for item i . For optimization purposes, a smoothed version of the cost function has been 

used (See Chen [16] for details). 

3.6.2 Computational Setup 

 MATLAB software was used to code the algorithm along with "ARESLab: 

Adaptive Regression Splines toolbox for MATLAB" developed by Jekabsons [103]. The 

experiments are run on Windows 7 Home Premium with Intel(R) Core(TM) i7 @ 2.80 

GHz 8.00 GB RAM system. The fmincon function from Matlab is used for optimization. 

For any stage iteration, the training data used to build the future value function 

approximation models came from a nine-dimensional Sobol’ sequence [104]. As in the 

work by Fan [63] and Sahu [64], the sampling starts at 50 points and increments 50 more 

points for each iteration in the Data loop until the stopping criteria of the Data loop is met. 

The testing data consisted of 250 design points from a nine-dimensional Halton 

sequence [105].  

After obtaining the output at the steady-state point, the result is then tested in a forward 

simulation. There are three algorithms proposed in this dissertation, which will be tested 

in the same simulation for comparison. 

3.7 Proposed Algorithms 

3.7.1 Algorithm-I 

 Algorithm-I uses the original MARS algorithm presented by Friedman [95] with 

Mmax recommended by Sahu [64]. The stopping rule for the Data loop is the change in 

R2 when adding more states to the sample space. The change in R2 must be lower than 

or equal to 0.005. The stopping rules for DP stage iteration use the T-test for 45-degree 

line  and a percent change of the future value function average of 5% or lower, where the 

average is calculated over the 250 test values of the approximated future value function 
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3.7.1.2 Result and discussion 

 The CPU time of Algorithm-I is 19,971 seconds (5.55 hours). DP stage iteration 

stops at DP stage iteration 25, where the percent change of the future value function 

average is 0.5%, and it passes a two-sided t-test for 45-degree line correspondence. The 

result in Figure 3.5 shows the number of training data points at each DP stage iteration. 

The average number of training data points is 250. According to Figure 3.6, the DP stage 

iterations 2 and 5 required 700 and 400 training data points to meet the criteria of the 

Data loop, respectively. As a result, they require more elapsed time compared with other 

DP stage iterations.   

 

Figure 3.6: Number of Sample Points in Each DP Stage Iteration of Algorithm-I 

 Figure 3.7 shows the R2 of the testing data set in each DP stage iteration of 

Algorithm-I. Overall, R2 values of the testing data set are more than 0.9, except the one in 

stages 3, 4 and 5. Figure 3.8 presents the percent change in the future value function 

average, which is one of the DP stage iteration stopping criteria. The stopping rule is 

when the percent change in the future value function average is lower than or equal to 
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5%. From Figure 3.8, at the DP stage iteration 5, the percent change in the future value 

function average is dropped to 4%. If the stopping rule of the DP stage iteration were the 

percent change in future value function average alone, the process would stop at this 

point. However, Figure 3.7 shows that at the DP stage iteration 5, the R2 is 0.70, which is 

the lowest R2 of the system. The result in Figure 3.9 presents the R2 from the final future 

value function at the steady-state (true value), which is calculated by equation (3.26). 

This figure measures how close the future value functions at each stage are to the true 

value function at the steady-state equilibrium. The plot shows the trend of the 

convergence when incrementing DP stage iteration, the fraction of variance explained by 

the true value is closer to 1. However, at DP stage iteration 5, the R2 from the true value 

function does not follow the trend.    
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Figure 3.7: R2 of the Testing Data Set in Each DP Stage Iteration of the Algorithm-I 
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Figure 3.8: The Percent Change in the Future Value Function Average at Each DP Stage 

Iteration of Algorithm-I 

 

Figure 3.9: The R2 of the Future Value Function in Each DP Stage Iteration vs. the Final 

Value Function at the Steady-state of the Algorithm-I 

 Figure 3.10(a) shows the scatter plot of the value function at stage 4 vs. the 

value function at stage 5. From the plot it shows no sign of convergence, and there are 

some outliers. On the other hand, Figure 3.10(b) shows the scatter plot of the value 

function at the steady-state vs. the value function at the stage before it. The plot follows 

the 45-degree line correspondence. It can be concluded from the 95 percent confidence 
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interval t-test that the scatter plot of the future value functions at DP stage iteration 24 

and DP stage iteration 25 are following the 45-degree line correspondence. 
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(b) 

Figure 3.10: (a) The Scatter Plot of the Value Function at DP Stage Iteration 4 vs. 5. (b) 

The Scatter Plot of the Future Value Function at the Steady-State vs. the Future Value 

Function at the DP Stage Iteration before 

Figures 3.7-3.10 show that stage 2 requires more training data points, but the 

percent change in the future value function average of that DP stage iteration is very bad. 

Moreover, R2 from the true value final is very high, which indicates that the future value 

function at this DP stage iteration is very far away from the true future value function. 
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Moreover, the percent change in the future value function average alone is not enough to 

confirm convergence.   

3.7.2 Algorithm-II 

 Algorithm-II is based upon the performance results of Algorithm-I. From the 

results of Algorithm-I, DP stage iteration 2 requires a high number of training data points, 

which means that it requires a long time to reach the Data loop stopping criteria. 

However, the results show that the future value function at that stage is very far away 

from the future value function at the steady-state equilibrium point. These results 

suggested a new stopping rule for the Data Loop as follows:  

Data loop stopping criteria is minimum R2 of 0.8 and either minimum 

change of the future value function average of 10% or maximum change 

in R2 of 0.005. 

 We want an accurate approximation, so we need to consider a high value of R2, 

which indicates a good fit, and in this case 0.8 is used at a minimum. From Figures 3.8-

3.9, the R2 from the true value is good when the DP stage iteration is more than 20, 

where change of the value function is below 10%. Thus, we considered a minimum 

change of the value function of 10% as one of the conditions of the Data loop. 

3.7.2.1 Results 

 The CPU time of Algorithm-II is 19,243 seconds (5.35 hours). DP stage iteration 

stops at DP stage iteration 98. The average number of training data points at each stage 

is 161. The maximum number of training data points is 400 and occurs at stage 19, as 

shown in Figure 3.10.  
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Figure 3.11: Number of Sample Points in each DP Stage Iteration of Algorithm-II 

 In this version, the R2 of the testing data set is one of the rules in Data loop. The 

testing R2 at each stage must be at least 0.8. The result from Figure 3.12 shows that at 

the very beginning of the experiment, the trend of the R2 is unstable. However, after DP 

stage iteration 17, the value of the R2 is much closed to 1 and looks stable. 

 

Figure 3.12: R2 of the Testing Data Set in each DP Stage Iteration of Algorithm-II 



57 
 

 The results in Figures 3.13 (a) and (b) show the percent change in the future 

value function average at each DP stage iteration. It can be seen that the change in the 

future value function tends to reduce at each DP stage iteration. Since stage 18, the 

percent change is less than 10%, and it goes below 5% since stage 39. At this point, we 

ignore the change in R2 because the percent change in the future value function average 

is more than 10%. From Figure 3.14, it can be seen that before DP stage iteration 18, the 

future value functions are very far away from the future value function at the steady-state 

equilibrium point (true value). As a result, it requires fewer training data points and 

requires less CPU time.     

 From Figure 3.14, the R2 from the true future value function starts to become 

reasonable from DP stage iteration 78 where the R2 is greater than 0.7. 
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(a) 

 

(b) 

Figure 3.13: (a) The Percent Change in the Future Value Function Average at Each DP 

Stage Iteration of Algorithm-II Starting from DP Stage Iteration 2, (b) The Percent Change 

in the Future Value Function Average at Each DP Stage Iteration of Algorithm-II Starting 

from DP Stage Iteration 8 
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Figure 3.14: The R2 of the Future Value Function in Each DP Stage Iteration vs. the Final 

Future Value Function at the Steady-state of Algorithm-II 

Figure 3.15: (a) The Scatter Plot of the Future Value Functions at DP Stage Iteration 11 

vs. 12, (b) at DP Stage Iteration 23 vs. 24, (c) at DP Stage Iteration 60 vs. 61, and (d) at 

DP Stage Iteration 97 vs. 98 
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 The results in Figure 3.15(a) reveal that at the early iteration the scatter plot is 

not following the 45-degree line. But later on, the plots look much more linear. Figures 

3.15(b) and (c) have some shifts on the right-hand side. It can be concluded from the 95 

percent confidence interval t-test that the scatter plot of the future value function at 

stages 97 and 98 follow the 45-degree line correspondence.  

3.7.3 Algorithm-III 

 Algorithm-III constructed in the same way as Algorithm-II but different values of 

the R2 in the Data loop condition. A new stopping rule for the Data Loop is 

Data loop stopping criteria is minimum R2 of 0.75 and either minimum 

change of the future value function average of 10% or maximum change 

in R2 of 0.005. 

3.7.3.1 Results 

 The CPU time of Algorithm-III is 8627 seconds (2.40 hours). The DP stage 

iteration loop stops at iteration 43. The average number of training data points at each 

stage is 140. The maximum number of training data points is 250 and occurs at stage 7 

and 29, as shown in Figure 3.16.   

 

Figure 3.16: Number of Sample Points in each DP Stage Iteration of Algorithm-III 
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 The results from Figure 3.17 show that at the very beginning of the experiment, 

the R2 is unstable. However, after stage 19, the value of the R2 is closed to 1 and looks 

more stable. 

 

Figure 3.17: R2 of the Testing Data Set in Each DP Stage Iteration of Algorithm-III 

 The results in Figures 3.18 (a) and (b) show the percent change in the future 

value function average at each DP stage iteration. It can be seen that the change in the 

future value function average tends to reduce at each DP stage iteration. Since iteration 

19, the percent change is less than 10% and goes below 5% after DP stage iteration 28. 

However, the percent change in the future value function average drops and goes below 

10% at iteration 7. As a result, the change in R2 is considered to guarantee the best fit of 

the model. However, the future value function at that DP stage iteration does not pass the 

95 percent confidence interval t-test of the 45-degree line correspondence. Thus, the 

sampling process is not stopped at that iteration. 

 From Figure 3.19, the R2 from the true value of in each stage starts to be 

reasonable at DP stage iteration 34 where the R2 is greater than 0.7. 
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(a)  

 
(b) 

 
Figure 3.18: (a) The Percent Change in the Future Value Function Average at Each DP 

Stage Iteration of Algorithm-III Starting from DP Stage Iteration 2, (b) the Percent Change 

in the Future Value Function Average at Each Stage Iteration of Algorithm-III Starting 

from DP Stage Iteration 9 
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Figure 3.19: The R2 of the Future Value in Each DP Stage Iteration Vs. The Final Future 

Value Function at the Steady-state of Algorithm-III 

 

Figure 3.20: (a) The Scatter Plot of the Value Function at DP Stage Iteration 11 vs. 12. 

(b) at DP Stage Iteration 21 vs. 22, (c) at DP Stage Iteration 31 vs. 32, and (d) at DP 

Stage Iteration 42 vs. 43 

  The results in Figure 3.20 reveal that at the early stages the scatter plots are not 

following the 45-degree line correspondence. However, the plots look more linear later 

on. Figures 3.20(b) and (c) have some shifts on the right-hand side. It can be concluded 
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from the 95 percent confidence interval t-test that the scatter plot of the future values at 

stage 42 and stage 43 has a 45-degree correspondence. Thus, we can consider the 

function at DP stage iteration 43 in steady-state. 

3.7.4 Comparison of SDP Solution Quality 

 An inventory forecasting forward simulation is used to test the SDP solution 

quality. The metamodel outputs from the ADP algorithms are used to run the forward 

simulation. A Sobol’ sequence [104] is used to generate the initial state space with 100 

points of in nine dimensions. Randomness is considered at each state point with 100 

points. The simulation is for demonstration purposes and is limited to 12 stages. MATLAB 

software was used to code the algorithm along with "ARESLab: Adaptive Regression 

Splines toolbox for MATLAB" developed by Jekabsons [103]. The fmincon function is 

used for optimization. The total return is the total of the cost for all DP stage iterations. 

The experiments are run on Windows 7 Home Premium with Intel(R) Core(TM) i7 @ 2.80 

GHz 8.00 GB RAM system.  

 In the Figure 3.21, the CPU times for training the optimal model have been 

presented for comparison. Algorithm-III performs faster than Algorithm-II as the R2 is 

lower. Algorithm-II is slightly faster than Algorithm-I, but the convergence of Algorithm-II 

is done in stage 98 while Algorithm-I stops at stage 44. 

 The results in Figure 3.22 reveal that Algorithm-II gives the best quality of the 

SDP solution both in terms of the mean cost and the deviation in mean cost from the 

minimum, followed by Algorithm-III and Algorithm-I, respectively. Figure 3.22 (b) suggests 

that the proposed method in Algorithm-II is more promising compared than the other two 

algorithms. 
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1- Algorithm-I 

2- Algorithm-II 

3- Algorithm-III 

Figure 3.21: Comparison of CPU Time Used by Each Algorithm 
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1- Algorithm-I 

2- Algorithm-II 

3- Algorithm-III 

Figure 3.22: (a) Comparison of Mean Cost, (b) Comparison of Quality of SDP Solution 
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Chapter 4  

Comparison of Dace-Based Approach to Approximate an Infinite Horizon Dynamic 

Programming and Batch Mode Reinforcement Learning  

 Ernst et al. [38, 45] developed a tree-based batch mode reinforcement learning 

algorithm to determine an infinite-horizon optimal control problem with discounted 

rewards. Several classical tree-based supervised learning methods (CART, kD-tree, tree 

bagging) were used as approximators.  The review on Q-Learning is in section 2.2.1. 

There is some modification in Tree-Based Batch mode RL in this dissertation and the 

original version presented by Ernst et al. [45]. First, MARS is used as an approximator 

with the same stopping rule presented in Chapter 3. Second, the stopping condition for 

DP stage iteration originally in Ernst's work is based upon the L-infinity norm [38, 45]. In 

this dissertation though, the percent change in the future value function average and the 

95 percent confidence interval t-test of the 45-degree line correspondence are 

considered. However, the comparison on convergences with the L-infinity norm and the 

95 percent confidence interval t-test of the 45-degree line correspondence are discussed 

in the future work. Results from the proposed method in Chapter 3 and Batch mode RL 

are compared at the end of this chapter. 

4.1 Fitted Q-Iteration Algorithm 

Step 0: Initialization:  

• Choose N discretization points in the state space { }Niits 1= for the t -th stage; 

where ,...2,1=t and n
it Rs ∈ . 

• Set the initial estimated value function 0Q̂ = 0. 

• Assume the discount factor [ ]1,0∈γ . 

• Set k =0 and t =1. 
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Step 1: The stage of an infinite horizon DP: 

• Set .1+← kk  

• Build the training set, 

 ......(4.1) 

where i  and o  represent input and output variables of the training set, 

respectively, ts  is the state variable at time period t , tu  is the decision variable 

at time period t , tc  is the cost function at time period t , L is the number of 

discretization points in state-action space (state-decision space) for the t -th 

stage, and k  refers to the k -th iteration.  

• Approximate ( )usQk ,ˆ  with the training set. 

• Solve for  

( )usQV tkUuk ,ˆminˆ
∈

=  ......(4.2) 

Step 2: The stopping condition: 

• Check the convergence of kV with the criteria discussed in section 3.5. If the 

stopping criteria fail, set 1+← tt  and go back to Step 1. 

4.1.1 State-Action Space Discretization 

 According to the RL literature, a lookup table based upon a discretized state-

action space is used, which works only with a small state-action space, especially with 

discrete variables [15, 30, 35, 37-38, 40-41]. However, when the problem has a 

continuous or a very large discrete state and/or action spaces, the Q-function cannot be 

represented by a table with one entry for each state-action pair. The best method to 

generate the state-action space is still an open question in the RL research community. 
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Moreover, Ernst et al. [45] does not mention about how they came up with a state-action 

space discretization. 

 Thus, in this dissertation, we generate the state-action space by using Monte 

Carlo sampling with some different sizes of the training data set. Moreover, a Sobol’ 

sequence [104] is considered as a state-space generator along with 10 different action 

spaces generated by Monte Carlo sampling to study the stability of the methodology. 

4.1.2 Computational Setup 

 The inventory forecasting problem that is used in Chapter 3 is applied to Batch 

mode reinforcement learning with MARS. MATLAB software was used to code the 

algorithm along with "ARESLab: Adaptive Regression Splines toolbox for MATLAB" 

developed by Jekabsons [103]. The experiments are run on Windows 7 Home Premium 

with Intel(R) Core(TM) i7 @ 2.80 GHz 8.00 GB RAM system.  

 For any stage Iteration, the training data used to build the future value function 

approximation models came from a 12-dimensional state-action space. There is only one 

loop presented in the algorithm, which is the DP stage iteration with the fixed number of 

points of the training data set. The testing data set is not included in the algorithm. After 

obtaining the results, they are tested in the same simulation presented in Chapter 3.  

4.2 The Algorithms 

There are seven tests presented in this dissertation. To test the accuracy and 

stability of the results, each test contains 10 runs.   

4.2.1 Test-I: 125 Data Points 

 In this test, the size of the state-action data set is 125 points. First, the 3-

dimensional action space is generated using a full factorial design with 5 levels. Later on, 

the state space is generated using Monte Carlo sampling with 5 levels replicated 10 

times each. Thus, there are 10 runs, and each run contains the same action space but a 
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different state data set. The 12-dimension state-action spaces then become input 

variables for the algorithm are presented in section 4.1. The fmincon function from Matlab 

is used for optimization. 

4.2.1.1 Results  

 Figure 4.1 shows that the range of mean costs among those 10 runs is wide, 

which means that the results among those runs are not stable. Compared with the results 

in Chapter 3, which give mean costs value below 150 (the worst case of the proposed 

method in Chapter 3), none of those runs in this Test-I are comparable.   
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Figure 4.1: Comparison of Mean Cost of each Run in Test-I 

 Figures 4.2 and 4.3 show the CPU time and number of iterations. The results 

from these two figures also reveal that with the same number of iterations, the CPU time 

and mean cost are almost the same, i.e. runs 1 and 3, and runs 5 and 10. Run 7, which 
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used 62 iterations gives the best result in terms of mean cost; however, the runner up 

which is run 8 used 16 iterations. Moreover, run 6, which has 56 iterations, yields the 

worst result in term of mean cost. Thus, a higher number of iterations does not guarantee 

a better result.   
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Figure 4.2: CPU Time of Each Run in Test-I 
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Figure 4.3: Number of Iterations of Each Run in Test-I 

4.2.2 Test-II: 125 Data Points with Look-Up Table Solution 

 In this test, the size of the state-action data set is 125 points, which is the same 

as the one in Section 4.2.1. The difference here from Test-I is that Test-II used the look-

up table method to search for the minimum of the Q-function. 

4.2.2.1 Results  

 The results from Figure 4.4 reveal inconsistency. Compared with the worst case 

result in Chapter 3, run 10 is comparable, but it used only 3 iterations, which may not in 

steady-stage equilibrium. Compared with the results of Test-I, the range of mean costs in 

Figure 4.4 is wider than those in Figure 4.1, which means that using a continuous 

optimization technique is more accurate and consistent than using a look-up table.   
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Figure 4.4: Comparison of Mean Cost of Each Run in Test-II 

According to Figures 4.5 and 4.6, CPU time and the number of iterations are 

positively correlated. The results also show that the number of iterations does not 

guarantee a good result. In comparison with the results for Test-I, the look-up table 

method used more CPU time but does not give better results than the optimization 

methods. In summary, using an optimization technique gives better results with lower 

computational time, compared with the traditional look-up table. 
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Figure 4.5: CPU Time of Each Run in Test-II 
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Figure 4.6: Number of Iterations of Each Run in Test-II 
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4.2.3 Test-II: 216 Data Points 

 In this test, the size of the state-action data set is 216 points. First, the 3-

dimensional action space is generated using full factorial design with 6 levels. Later, the 

state space is generated using Monte Carlo sampling with 6 levels replicated 10 times 

each, following the same procedure as the one in section 4.2.1.  

4.2.3.1 Results  

 Figure 4.7 shows that the range of mean costs among those 10 runs is shorter 

than those in Figures 4.1 and 4.4. However, the boxplots are unstable. Moreover, the 

results in Chapter 3 are substantially better than those in Test-III.  
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Figure 4.7: Comparison of Mean Cost of Each Run in Test-III 

 CPU time and number iterations are positively correlated. From Figures 4.7 and 

4.9, run 4 and 5 have the same number of iterations, but the mean costs are totally 

different from each other. Thus, number of iterations does not guarantee an accurate 

result.  
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Figure 4.8: CPU Time of Each Run in Test-III 
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Figure 4.9: Number of Iterations of Each Run in Test-III 
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4.2.4 Test-IV: 343 Data Points 

 In this test, the size of the state-action data set is 343 points. A full factorial 

design with 7 levels is used to generate the 3-dimensional action space. Later, the state 

space is generated using Monte Carlo sampling with 7 levels replicated 10 times each. 

Then, the 12-dimensional state-action space becomes input for the algorithm presented 

in Section 4.1 using the optimization routine fmincon from Matlab. 

4.2.4.1 Results  

 The result from Figure 4.10 shows that the range of mean costs among those 10 

runs is wider than the one in Figure 4.7. This result indicates that adding more points in 

the training data set (state-action space) does not give more consistent results. Run 

number 9 gives the best result in terms of mean cost and is similar to the results in 

Chapter 3. However, this run uses 9 stage iterations, which may not ensure the 

convergence of an infinite horizon DP.  
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Figure 4.10: Comparison of Mean Cost of Each Run in Test-IV 
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 The results in Figures 4.10 and 4.12 reveal that more iterations do not guarantee 

better results. Figures 4.11 and 4.12 show that CPU time and the number of iterations 

are positively correlated. 
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Figure 4.11: CPU time of Each Run in Test-IV 
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Figure 4.12: Number of Iterations of Each Run in Test-IV 
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4.2.5 Test-V: 512 Data Points 

 In this test, the size of the state-action data set is 512 points. The 3-dimensional 

action space is generated using a full factorial design with 7 levels, and the state space is 

generated using Monte Carlo sampling with 7 levels replicated 10 times each. The state-

action space is used as an input in the algorithm with the optimization routine fmincon 

from Matlab.   

4.2.5.1 Results  

 Figure 4.13 shows a wide spread of each boxplot, indicating inconsistency. 

Moreover, the range in this figure is wider than the one with 216 data points in section 

4.2.3. Furthermore, the results in Chapter 3 are substantially better than those in Test-V.  
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Figure 4.13: Comparison of Mean Cost of Each Run in Test-V 

 The CPU time and number of iterations are not in the same pattern. From 

Figures 4.14 and 4.15, the CPU times of runs 6 and 8 are close, but their numbers of 
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iterations are significantly different. This may be a result of complexity of the function 

approximation. Runs 2 and 6 are comparable in both CPU time and number iterations as 

well. However, the result in mean cost of those two runs are significantly different from 

each other. Thus, the results in Test-V indicate inaccuracy and instability. 
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Figure 4.14: CPU time of Each Run in Test-V 
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Figure 4.15: Number of Iterations of Each Run in Test-V 

4.2.6 Test-VI: 512 Data Points with State Space Generated by Sobol' Sequence 

 In this test, the size of the state-action data set is 512 points. A 9-dimensional 

state space is generated by a Sobol' sequence design [104]. In this test, only one state 

space is used, but we match it with 10 different action spaces, so 10 runs are used as 

input in the algorithm presented in section 4.1, separately. There are two purposes of this 

test. The first is to study the effect of different action spaces to the solution. The second 

is to compare the results of using Sobol’ sequence and Monte Carlo sampling. 

4.2.6.1 Results  

 Figure 4.16 shows some consistency. Among those 10 runs, 2 runs are 

noticeably out of the group. Other than them, the boxplots are in the same range. 

However, the differences of those 2 runs and others are not as significant as the 

differences of each run in Figure 4.13. As a result, the state space generated by the 

Sobol' sequence design gives consistent results. When we compare the SPD solution 
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from Figures 4.13 and 4.16, Monte Carlo sampling gives the better result on average, but 

the Sobol' sequence design gives better results in the worst case; i.e. run 1 in Figure 4.16 

used the same action space as the one in Figure 4.13 (Test-V has only one action space 

generation). The results in Chapter 3 are significantly better than each of the 10 runs in 

Figure 4.16. Figures 4.17 and 4.18 show that CPU time and the number of iterations do 

not necessarily correspond to each other. The results also reveal that the early stage 

iterations take more CPU time than later iterations. 
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Figure 4.16: Comparison of Mean Cost of Each Run in Test-VI 
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Figure 4.17: CPU time of Each Run in Test-VI 
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Figure 4.18: DP Stage Iteration of Each Run in Test-VI 
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4.2.7 Test-VII: Online Q-learning   

 The purpose of the test is to test the amenability of the Q-iteration to follow a 

consistency trace when increasing the size of the input data. The test begins with 125 

dimension state-action space (Test-I) and increments by 125 points.   

4.2.7.1 Results  

 From Figure 4.19, the results do not follow the consistency trace with the model 

generalization performance improving with the simultaneous increase in the size of the 

training data. The more training data points do not seem to be helpful in obtaining a 

better result. Meanwhile, it requires more computational time. Run 5 in Figure 4.19 gives 

a good result with adding more state-action points to the data set, but it used more than 

twice the CPU time of the summation of the first, second, and third runs. Moreover, when 

incrementing 125 more points to the fifth run, the number of iterations is more than 1500 

iterations and does seem not to reach convergence.  
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1- Run number 1 of Test-I 

2- Run number 2 of Test-I 

3- Run number 3 of Test-I 

4- Run number 1 and 2 Combined 

5- Run number 1, 2 and 3 Combined 

Figure 4.19: Comparison of Mean Cost of Online Q-learning 
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1- Run number 1 of Test-I 

2- Run number 2 of Test-I 

3- Run number 3 of Test-I 

4- Run number 1 and 2 Combined 

5- Run number 1, 2 and 3 Combined 

Figure 4.20: CPU time of Each Run of Online Q-learning 
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1- Run number 1 of Test-I 

2- Run number 2 of Test-I 

3- Run number 3 of Test-I 

4- Run number 1 and 2 Combined 

5- Run number 1, 2 and 3 Combined 

Figure 4.21: DP Stage Iteration of Each Run of Online Q-learning 

4.3 Discussion of Results 

4.3.1 Comparison between Optimization Technique vs. Look-up Table Method 

 To compare the results when using an optimization technique (Test-I) and look-

up table method (Test-II) to optimize the Q-function when using the same state-action 

space, the mean costs of all 10 runs of each tests are combined in one single box plot. 

The results in Figures 4.19 and 4.20 reveal that the optimization technique gives better 

results compared with the look-up method. The algorithm with the optimization technique 
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gives a better quality of the SDP solution in terms of deviation in mean cost from the 

minimum. Moreover, the standard deviation of the mean cost from using the optimization 

technique is less than that of the look-up table. The look-up table method searches for 

the minimum value function when the action variables are discrete, while the optimization 

technique looks for the best result of each possible decision variable. As a result, the 

optimization technique gives better results and consumes less time at each state set 

point. It solves the problem once, while the look-up table method looks for the best result 

based on every point of action space. 
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1- Optimization Technique 

2- Look-up Table Method 

Figure 4.22: Comparison of Mean Cost of 125-Point State-Action Space with 

Optimization Technique vs. Look-up Table Method 



 

89 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2
Algorithms

De
vi

at
io

n 
in

 M
ea

n 
Co

st
 fr

om
 th

e 
M

in
im

um

Comparison in Quality of SDP Solution

 

1- Optimization Technique 

2- Look-up Table method 

Figure 4.23: Comparison in Quality of SDP Solution of 125-Point State-Action Spaces 

with Optimization Technique vs. Look-up Table Method 

4.3.2 Comparison between Monte Carlo sampling and Sobol' Sequence Design 

 Test-V and Test-VI have the same action space but different state spaces.    

Test-V used Monto Carlo Sampling to generation the state space while the other one 

uses a Sobol’ sequence design [104]. The mean cost of the 10 runs of Test-V as well as 

the 10 runs of Test-VI are combined in to 1 mean cost, separately.  

 The results in Figure 4.21 and 4.22 reveal that Sobol' sequence design gives 

more consistent results as the standard deviation of the mean cost is lower. However, the 

quality of the SDP solution in terms of deviation in mean cost from the minimum was the 

best for the algorithm with Monte Carlo sampling. 
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1- Monte Carlo Sampling 

2- Sobol' Sequence Design 

Figure 4.24: Comparison of Mean Cost of 512-Point State-Action Space with Monte Carlo 

Sampling vs. Sobol' Sequence Design 
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1- Monte Carlo Sampling 

2- Sobol' Sequence Design 

Figure 4.25: Comparison in Quality of SDP Solution of 512-Point of State-Action Space 

with Monte Carlo Sampling vs. Sobol' Sequence Design 

4.3.3 Comparison between Dace-based Approach to Approximate an Infinite Horizon 

Dynamic Programming and Batch Mode Reinforcement Learning with MARS 

 In this section, the selected runs from each test in this Chapter that have good 

results in terms of mean costs are compared with the results in Chapter 3 using the same 

forward simulation. 

 From Figure 4.27, the best number in terms of the quality of the SDP solution is 

number 1 which is the Algorithm-II of the proposed method in Chapter 3. Runs 6 and 8 

seem to be comparable with number 1, but the number of stage iterations of those runs 

are low (3 and 8, respectively) indicating that they may not ensure convergence. Number 

4, which is Q-Iteration algorithm of run 7 of Test-I gives a good result even if the size of 
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the training dataset is smaller than others. It shows that adding more training data points 

to the Q-iteration algorithm may not help to get a better result. Among 63 runs (3 runs 

from Chapter 3 and 60 runs from Chapter 4), it can be concluded that sequential DACE 

APD is better than Batch Mode RL. 
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1- Algorithm-II of the Proposed Method in Chapter 3 

2- Algorithm-III of the Proposed Method in Chapter 3 

3- Q-Iteration Algorithm of Run Number 5 of Test-I 

4- Q-Iteration Algorithm of Run Number 7 of Test-I 

5- Q-Iteration Algorithm of Run Number 8 of Test-I 

6- Q-Iteration Algorithm of Run Number 10 of Test-II 

7- Q-Iteration Algorithm of Run Number 6 of Test-III 

8- Q-Iteration Algorithm of Run Number 9 of Test-IV 

9- Q-Iteration Algorithm of Run Number 9 of Test-V 

Figure 4.26: Comparison of Mean Cost 
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1- Algorithm-II of the Proposed Method in Chapter 3 

2- Algorithm-III of the Proposed Method in Chapter 3 

3- Q-Iteration Algorithm of Run Number 5 of Test-I 

4- Q-Iteration Algorithm of Run Number 7 of Test-I 

5- Q-Iteration Algorithm of Run Number 8 of Test-I 

6- Q-Iteration Algorithm of Run Number 10 of Test-II 

7- Q-Iteration Algorithm of Run Number 6 of Test-III 

8- Q-Iteration Algorithm of Run Number 9 of Test-IV 

9- Q-Iteration Algorithm of Run Number 9 of Test-V 

Figure 4.27: Comparison in Quality of SDP Solution 
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Chapter 5  

Two-Stage Framework Application to a Controllability of a System of Plug-In Hybrid 

Electric Vehicle (PHEV) Charging Stations 

 This material is based upon work supported by the National Science Foundation 

under Grant No. 1128871. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the 

views of NSF. The title of this NSF project is “EPAS/AIS Collaborative Research: 

Adaptive Design for Controllability of a System of Plug-In Electric Vehicle Charging 

Stations.” The main purpose of the project is to develop a framework that integrates 

system design and dynamic system control. There are two stages in the project. The first 

stage (or master problem) addresses the system design problem, while the second stage 

(or subproblem) addresses the dynamic control problem. The research in this dissertation 

focused on a dynamic control of a system of plug-in hybrid electric vehicle (PHEV) 

charging stations (the second stage). A design and analysis of computer experiments 

(DACE) approach is used to build a metamodel for the expected value function of the 

second-stage.   

 A finite horizon dynamic problem is presented. Based upon the 15-minute 

updated period of the electricity market price, the objective function is to maximize profit, 

which is the revenue benefit from selling back to the grid and the charging of the vehicles 

minus the cost of buying electricity from the grid. The state variables in each 15-minute 

time period consist of the total wind purchased by the system, solar power generation at 

each charging station, total demand at each station, and nodal market price at station 

locations. As an initial solution analysis, the mean value problem is formulated as a 

deterministic linear program and solved to present potential policies providing insight into 

the behavior of the system. 
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5.1 Design and Analysis of Computer Experiments Approach 

 In statistics, a common problem is to model the relationship between input 

variables and responses. Many methods from statistical experimental design (DoE) and 

statistical modeling have been developed to address the estimation of the function 

relationship between the input and its responses [34]. When applied to a two-stage 

framework, the possible solutions of the first stage become input variables, and the 

objective solutions (or policies) from the second stage based on the first stage solutions 

are responses.  

The steps involved in DACE are: 

• Design of Experiments (DoE) is used to generate the set of sample points 

offering the first stage space as input to the optimization model, which then 

provides the corresponding responses. 

• An optimization model (computer experiment) of system performance is 

constructed based on knowledge of how the system operates based on each 

possible first stage solution. 

• A statistical model is used to approximate the second stage value given a first 

stage solution. 

Once the metamodel is obtained, it is passed to the first stage design problem. 

5.2 Adaptive Design for Controllability of a System of PHEV Charging Stations Case 

Study 

5.2.1 The First Stage Master Problem 

 The first stage master is the system design function where the objective consists 

of costs on the design parameters and an expected cost [ ]),( xsVEs  from the second-

stage optimal value function over possible initial states. The system design variables 
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include the locations of the charging stations and the number of slot at each charging 

station. The general formulation of the first stage design problem is 

[ ]),()( xsVExc s+  ......(5.1) 

which satisfies the specifications 

Dx Γ∈   s.t.  ......(5.2) 

! )(xc  is the “cost” objective. 

! x  is the system design variables. 

! s  is the control problem state variable. 

! ),( xsV  is the optimal value function for the second stage dynamic control 

problem. 

! DΓ is the constraint set for the system design variables. 

In this dissertation, the main focus is to solve for the [ ]),( xsVEs  from the second stage 

control problem. Thus, solution method of the first stage design problem is not presented.  

5.2.2 The Second Stage Control Problem 

 The controllability module is a dynamic control problem because decisions are 

made in several time stages, and the optimization problem becomes dynamic and multi-

stage. There is at least one transition equation on the problem, which means that the 

next state of the process depends entirely on the current state of the process and the 

current decisions taken [106]. 

 At each stage, the system is defined by sets of state variables, which include the 

market price of energy, solar production of each station, the total wind purchased to the 

system, and the total demand of each station. When a decision is made, a cost is 

obtained, and the system undergoes a transition to the next stage. The decision variables 

in this problem include wind allocation fraction among charging stations, electricity sold 
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back to the grid from the battery and direct charge, electricity purchased from the grid, 

demand satisfied by the battery and direct charge, and battery charging level. 

 The objective is to maximize profit or, equivalently, to minimize operational cost, 

which is the cost of buying from the grid minus the revenue from selling back to the grid 

and charging the PHEV both from the battery and the direct charge across all the 

stations. Following the timing of the electricity market, the system evolves in 15-minute 

time intervals. We consider a 24-hour time period. As a mean value problem, we assume 

that the forecasts are perfect. At each time period, each state variable is equal to its 

estimated value. The objective is given by equation (5.3) 

( )∑∑
∈ ∈

+− +−+
Tt Jj

tjttjttjtjt DrgCRgB ~~)(~max  ......(5.3) 

where tC
~ is the market selling price of energy in time period t , tB

~
 is the market buying 

price of energy in time period t , +
tjg  is the electricity bought from the grid of station j in 

time period t , −
tjg  is the electricity sold back to the grid from the direct charge of station j  

in time period t , tjR is the electricity sold back to the grid from the battery of station j  in 

time period t , tr  is the retail price of energy in time period t , and tjD
~ is the total demand 

in time period t  at charging station j . 

 The first constraint set (5.4) includes the battery level transition from period t -1 

to period t  for each station j : 

TtJj
e
D

e
R

BCII
j

tj

j

tj
tjjtjt ∈∀∈∀−−+= − ,

2

),1(,
 ......(5.4) 

where tjI  is the battery level of station j  at the beginning of time period t , tjBC is the 

battery Charge of station j in time period t , 2
tjD  is the demand satisfied by the battery of 
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station j  in time period t , and je  is the storage efficiency of station j . In our 

computational results, we assume that the storage efficiency je  is 79.8% [107-108].  

 The second constraint set (5.5) includes the energy balance for the battery 

charge at each station. 

TtJjDggSWWBC tjtjtjtjtjttj ∈∀∈∀−−++= −+ ,~~ 1  ......(5.5) 

where tjW  is the fraction of wind allocated to station j  in time period t , tW
~

is the total 

wind purchased in time period t , tjS
~ is the solar production of station j  in time period t , 

1
tjD  is the demand satisfied by the direct charge of station j  in time period t .  

  The total demand consists of the demand satisfied by direct charge and demand 

satisfied by the battery as shown in constraint set (5.6) 

TtJjDDD tjtjtj ∈∀∈∀+= ,~ 21  ......(5.6) 

 The combination of electricity sold back to the grid from the battery and demand 

satisfied by the battery together is less than or equal to the discharge rate ( dc ) multiplied 

by the storage efficiency, as shown in constraint set (5.7) 

TtJjedcDR jtjtj ∈∀∈∀≤+ ,*2  ......(5.7) 

 The battery charge must not be greater than the charge rate ( cr ), and the 

battery level must be constrained in between the minimum battery level and the battery 

capacity for each station, as in constraints (5.8) and (5.9), respectively. 

TtJjcrBCtj ∈∀∈∀≤ ,  ......(5.8) 

TtJjsizeUnitMinnit jj ∈∀∈∀≤≤ ,_I_U tj  ......(5.9) 

 The battery level at the last stage is assumed to be equal to the first stage.  
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JjII jjT ∈∀= ,1,  ......(5.10) 

 The fraction of wind allocation, constraint in equation (5.11), is constructed to 

allocate the total wind production to each station. Lastly, the set of nonnegative 

constraints is given in (5.12). 

∑
∈

=∀=
Jj

tj tW ,...1,01  ......(5.11) 

TtJjRBCggWI tjtjtjtjtjtj ∈∀∈∀≥−+ ,0,,,,,  ......(5.12) 

 As an initial solution analysis, the mean value problem is formulated as a 

deterministic linear program to provide insight into the behavior of the system. In this 

dissertation, the result on the mean value problem is used to fit with the DACE-Approach. 

5.2.3 Mean Value Problem Results 

 The result from MATLAB solving the mean value problem of control for 5 PHEV 

charging stations over 96 time periods is presented in this section. PHEV charging 

demand profile in 2012 from Khosrojerdi et al. [109] is used (including demand in Tarrant, 

Ellis, Dallas (Garland area), Collin and Denton). In this model, we assume that we have a 

contract with a wind farm (e.g. 30% of wind energy production) and we do not include this 

cost in the objective function. This simulation is based on January 2012, and the average 

retail sale price of electricity in the transportation sector in Texas is 10.17 cents per 

kilowatt-hour [110]. The maximum and minimum battery capacities are 3.6 and 0.72 MWh 

per slot. The charging rate and discharging rates are 0.6 and 0.075 MWh per slot. In this 

simulation, we assume that there is only 1 slot per each station. 
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Figure 5.1: Battery Level 
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Figure 5.2: Battery Charge 

 Figure 5.1 shows that the battery level starts to increase at t =12 and reach the 

maximum level at t = 16. After that, it stays constant until t = 38, and it starts reducing 

until it t = 50. Then, it reduces again at t = 71 until reaching the minimum at the end of 

time period. All stations have the same battery level. The battery charge is close to 0 in 

all time periods, except time periods 11 to 16 as shown in Figure 5.2. Due to a low 

market price, shown in Figure 5.6, the system increases the battery level even if there is 
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a small amount of demand in the system at that time. At t = 14, there is a drop due to a 

change in market price. All stations have the same battery charge.  
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Figure 5.3: Total Demand 
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Figure 5.4:  Demand Pulled from the Direct Charge 
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Figure 5.5: Demand Pulled from the Battery 
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Figure 5.6: Energy Market Price 

In this system, there are two ways to serve the total demand. The first way is by the 

direct charge, as shown in Figure 5.4. The other way is by the battery, which is shown in 

Figure 5.5. Since the beginning of time period, the demand is satisfied by direct charge 

until stage t = 38. At that time, the market price is increased. Thus, the system takes 

advantage by serving the demand by some energy stored in the battery. At time period t 

= 52, the market price is reduced, and the demand is supplied by the direct charge again. 

At time period t = 71, the peak market price occurs. Thus, the system decides to serve 
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the demand by energy stored in the battery as much as it can. However, due to the limit 

on charging rate and the amount of electricity in the battery, the system still needs to 

serve some demand through direct charge. The total demands at each station are 

17.800, 0.871, 9.166, 5.566 and 4.398 MWh, respectively. 

 From Figure 5.8, solar generation has a small impact on the system. However, 

the data input in this simulation uses January data set. The electricity sold back to the 

grid is mainly generated by wind power, see Figure 5.7. Figure 5.9 shows the allocation 

of wind generation to each station. The system mainly allocated wind energy to station 1 

where the highest demand occurs. 
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Figure 5.7: Total Wind Purchase to the System 
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Figure 5.8: Solar Generation 
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Figure 5.9: Wind Fractional Allocation 
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Figure 5.10: The Electricity Sold from Direct Charge 
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Figure 5.11: The Electricity Sold from the Battery 
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Figure 5.12: The Electricity Bought from the Power Grid 

 The electricity sold back to the grid from direct charge is similar to the total wind 

energy purchased to the system, except in time periods between 11 and 16 when the low 

market price occurs, Figure 5.10. The system decides to sell some energy from the 

battery back to the grid when the market price is high. However, the demand must be 

satisfied first. Thus, sometime when we have some demand in the system but the direct 

charge energy is not enough, it is necessary to purchase some energy from the grid even 

if the market price is not low, Figure 5.12.  
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Figure 5.13: The Objective Function Output 
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 The objective function is calculated by equation (5.3) with 5 stations and 96 time 

periods. The maximum profit over the 96 time periods is $4933.7.   

 Results from the mean value problem suggest that the system takes advantage 

of the low market price in the morning and uses direct charge from the wind and the grid 

to store energy in the battery before peak demand occurs.  Once the system has satisfied 

all demand for the day, the remaining stored electricity is sold back to the grid at the peak 

market price. It is beneficial to use the direct charge from the wind, the utility grid, and 

solar to supply demand. 

5.3 Generating the Experimental Design 

 The 11 clusters of the power grid (as shown in Figure 5.14) are used as potential 

station locations since a station location should be closed to the power grid. The total 

number of full factorial design points with 11 variables is 2048. This number is very large. 

Fractional factorial designs can be used in these cases to draw out valuable conclusions 

from fewer runs. In this case the lowest resolution design for a fractional factorial design 

is resolution-III, which requires 16 observations. 

 First, the full factorial design is generated. Sixteen observations are carefully 

selected from the full factorial design based on a fixing defining relation. In this study, 

every open station is assumed to have to same number of slots. To address the number 

of slots in the design, a block design is generated. Each block contains 16 observations 

with different defining relationships. The number of slots is from 1 to 10. Thus, the total 

number of blocks is 10, and the total number of observation is 160; see Appendix B for 

more details. 
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Figure 5.14: 11 Cluster of the Power Grid in DFW [109] 

5.4 Optimization Model 

 The results from control problem presented in section 5.2.2 are used as the 

response given the first stage input variable from section 5.3. However, the benefit of 

serving demand is not included here. The objective function is to minimizing the 

operational cost, thus the objective function in equation (5.3) becomes  

( )∑∑
∈ ∈

−+ +−
Tt Jj

tjtjttjtj RgBgC )(~~min  ......(5.13) 

  

The parameters of the simulation include, 

• Discharging rate is 75 kW/slot. 

• Maximum battery capacity is 3.6 MWh/slot. 

• Charging rate is 600 kW /slot.    

• Minimum level of battery capacity is 720 kWh/slot. 

• 30% of total wind generation is assigned to the system. 
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A PHEV charging demand profile for all 9 counties in 2012 [109] is assigned to the nodes 

in Figure 5.14. 2012 historical data of wind, solar, and market price are used in the 

optimization model [111-113]. Perfect forecasting is assumed in this model. 

5.5 Statistical Model 

 To estimate the relationship of the input variables and the response for 

controllability of PHEV charging stations, multiple linear regression is used. The 

predictors are binary variables representing the selection of open stations and numerical 

for the number of slots, and the response is the value function from the control problem.  

5.5.1 Preliminary Multiple Linear Regression Model 

 The multiple linear regression model can be expressed in the following form: 

                                                                                          εβ

ββββββββββββ

++

+++++++++++=

Nslot
xxxxxxxxxxxY

12

111110109988776655443322110   

.....(5.14)
 

 

where: 

 Y  = Value function from the deterministic LP for PHEV charging 

station (minimize controllability cost.)  

 ix  = The binary variable 
⎩
⎨
⎧

open       is station  if 1
opennot  is station  if0

i
i

  where i = 1,..,11 

 Nslot =  Number of slots (Nslot is integer number started from 1 to 10)  

 ε = Uncontrollable error 
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Figure 5.15: Response vs. Predictors Plots 
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 From Figure 5.15, the trends for the binary variables are unclear, which may be 

attributed to possible interaction effects with the number of slots and each other.  The 

trend for the number of slot seem to be mostly downward with some curvature.  This 

implies that controllability improves as the number of slots increases. 

5.5.1.1 Model fit 

Using the least squares method, we can find the least squares estimates for the 

model parameters ( iβ ), shown in equation (5.14). Using the parameter estimates shown 

in Table 5.1, an estimated regression function can be written as follows: 

Nslotxxxxx
xxxxxxY

73.4272.5193.5727.186.6399.2

84.6889.9371.578.13647.57188.7916403ˆ

1110987

654321

−−−−−+

−+−+−−−=
 

......(5.15)
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Table 5.1: Analysis of Variance of Preliminary Model 
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5.5.1.2 Model assumptions 

• Model Form 

 To check on the linearity of the model, a plot of residuals ( ie ) vs. predictors is 

examined to determine if the model has curvature trends. The plot with Nslot in Figure 

5.16 shows curvature. Hence, the model form is inadequate and will need to be 

addressed. 

 

Figure 5.16: Residuals ( ie ) vs. Predictors Plots 
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• Constant variance 

 

Figure 5.17: Residuals ( ie ) vs. Predicted Response( hatY ) 

 Figure 5.17 shows no indication of a “funnel-shape” along the curve.  Hence, the 

constant error variance assumption appears to be satisfied. 

• Normality 

To check on the normality of the errors, we can examine the normality plot shown 

in Figure 5.18. 
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Figure 5.18: Normality Plot  

The plot above shows longer tails than the normal distribution. By addressing the 

issue of curvature, it is possible the normality of the errors will improve. 

5.5.1.3 Model summary remedial actions 

R2 in this model is 0.86, which high enough to have a good fit. However, there is 

a curvature trend for Nslot. For the remedial actions, to address the curvature, both the 

addition of regression spline basis functions and the addition of interaction terms are 

considered. There are two types of interaction terms. The first type is the interaction 

between each charging station location and the number of slots. The second type is the 

interaction between two stations where the distance between those stations is within 30 

miles.  Stations that are located farther than 30 miles apart are assumed to have no joint 

influence on controllability.  Stepwise regression is used to select model terms at a 0.05 

significance levels (alpha). 

Salford system data mining and predictive analytics software version 7.0 for 

multivariate adaptive regression splines was employed to add regression spline basis 
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functions.  The residuals from the stepwise regression model were entered into the 

software as the output variable data, and Nslot was entered as the input variable.  The 

software identified knot locations, and the appropriate regression spline basis functions 

were then added to the stepwise regression model. 

5.5.2 Multiple Linear Regression Model with Stepwise Selection 

 The multiple linear regression model with interaction terms after stepwise 

selection can be expressed in the following form: 

εβββββββ

βββββββββββ

++++++++

++++++++++=

7517741611151014913812611

41039281710695745342310

intintintintint

intintintint

xxxx
xxxxxxY

 

......(5.16)
 

where: 

 Y  = Value function from deterministic LP for PHEV charging station 

(minimize controllability cost.) 

 ix  = Binary variable 
⎩
⎨
⎧

open       is station  if 1
opennot  is station  if0

i
i

  where i = 1, ..., 11 

 Nslot =  Number of slots (Nslot is integer number started from 1 to 10)  

 inti = Interaction between xi and Nslot 

 xixj = Interaction between xi and xj 

 ε = Uncontrollable error 
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Figure 5.19: Value Function vs. Predictors Plots (Additional Variables) 
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5.5.2.1 Model fit 

Table 5.2: Analysis of Variance of Multiple Linear Regression Model with Stepwise 

Selection 
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The estimated regression function can be written as follows: 

7574

111098643

211097543

35.245.65
int84.11int36.15int33.14int92.12int59.12int66.16int58.17

int54.10int24.1324.2379.7492.531.10731.8728.3316658ˆ

xxxx

xxxxxxY

−−

−−−−−−+

−−++++++−=
  

......(5.17)

 

 

5.5.2.2 Model assumptions 

• Model Form 

To check on the linearity of the model, a plot of residuals ( je ) vs. predictors is 

examined to determine if the model has curvature trends. 

 

 Figure 5.20: Residuals ( je ) vs. Predictors Plots 

 Curvature trend is still visible, so the current model form is still inadequate.  

Regression spline terms are yet to be added. 
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• Constant variance 

  

Figure 5.21: Residuals ( je ) vs. Predicted Response ( hatY ) 

 Figure 5.21 shows a “funnel-shape,” which indicates possible non-constant error 

variance.   This is assessed again later. 

• Normality 

To check on the normality of the model we can examine the normality plot shown 

in Figure 5.22. The plot shows a longer left tail and a shorter right tail than the normal 

distribution. However it does show an improvement from Figure 5.18.  

  

Figure 5.22: Normality Plot  
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5.5.2.3 Model summary 

Several interaction terms were identified as statistically significant.  There is an 

increase in R2 from 0.86 to 0.97.  To address the continued presence of curvature due to 

Nslot, the remedial action using regression spline basis functions is implemented next.   

5.5.3 Multiple Linear Regression Model with Stepwise Selection and Basis Functions 

The multivariate adaptive regression splines (MARS) software by Salford 

Systems was executed using with the residuals from the stepwise regression model and 

Nslot.  Knots to model curvature were selected at Nslot values of 3, 4, and 6.  The 

resulting multiple linear regression model with stepwise selection and basis functions can 

be expressed in the following form: 

εββββ

βββββββ

βββββββββββ

+++++

+++++++

++++++++++=

32122011918

7517741611151014913812611

41039281710695745342310

intintintintint

intintintint

BFBFBFNslot
xxxx

xxxxxxY
  

......(5.18)

 

 

where: 

 Y  = Value function from deterministic LP for PHEV charging station  

 ix  = Binary variable 
⎩
⎨
⎧

open       is station  if 1
opennot  is station  if0

i
i

  where i = 1, ..., 11 

 Nslot =  Number of slots (Nslot is integer number started from 1 to 10)  

 inti = Interaction between xi and Nslot 

 xixj = Interaction between xi and xj 

 BF1 = Regression spline basis function max(0, Nslot-3) 

 BF2 = Regression spline basis function max(0, Nslot-4) 

 BF3 = Regression spline basis function max(0, Nslot-6) 

 ε = Uncontrollable error  
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Figure 5.23: Value Function vs. Predictors Plots (Additional Variables) 

5.5.3.1 Model fit 

From table 5.3, the estimated regression function can be obtained as follows: 

NslotBFBFBFxx
xx

xxxxxxY

04.3106.1851.371.2654.13
89.48int58.11int06.14int23.14int57.13int26.12int83.13int38.17

int58.10int07.137.1532.7174.4272.9873.6201.3716721ˆ

32175

74111098643

211097543

+−−−−

−−−−−−−+

−−++++++−=
  

......(5.19)
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Table 5.3: Analysis of Variance of Multiple Linear Regression Model with Stepwise 

Selection and Basis Functions 
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5.5.3.2 Model assumptions 

• Model Form 

To check on the linearity of the model, a plot of residuals ( ie ) vs. predictors is 

examined to determine if the model have some curvature trends. 

All plots in Figure 5.24 seem to show reasonable scatter. There is some minor 

curvature visible in the interaction term plots Nslot plot. However, for practical purposes, 

the model form appears reasonably adequate. 

    

 

 

 

 

 

 

Figure 5.24: Residuals ( ie ) vs. Predictors Plots 
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• Constant variance 

 

Figure 5.25: Residuals ( ie ) vs. Predicted Response ( hatY )  

 The residuals vs. predicted values of the response is satisfied. Figure 5.25 shows 

a well scattered plot, indicating the constant error variance assumption is reasonable. To 

further verify the constant variance assumption, the Modified-Levene test was performed. 

Group 1 consists of the observations that have a hatY  value equal or less than mean 

value of Yhat -16744.72394, and group 2 consists of the observations that have a 

hatY value greater than -16744.72394. 
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Table 5.4: T-test for Modified-Levene 

 

 

 

T-test:  H0: Means of 1id and 2id populations are equal 

 H1: Means of 1id and 2id populations are not equal 

 Assume: α  = 0.05 Decision Rule: Reject 0H  if ( )2;2/1* −−> ntt α
 

 ( ) ( ) 975.1158,975.02160;2/05.01 ==−− tt  

Since, 88.1* −=t , ( ) 975.1158;975.088.1* =<= tt  

Conclusion: It is failed to reject 0H . Therefore, non-constant error variance is not 

detected, and together with the plot, it is concluded that the constant error variance 

assumption is reasonable.   
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• Normality 

To check on the normality of the model we can examine the normality plot shown 

in Figure 5.26. The plot above shows extremely strong linearity, indicating a strong match 

between the residuals and normality. 

 

  

Figure 5.26: Normality Plot  

Test for normality 0H  :  Normality is OK 

1H   :  Normality is violated 

The decision rule is to reject 0H if ρ̂  <  c  
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Table 5.5: Normality Test 

 

From table 5.5, let 01.0=α , 99781.0ˆ =ρ  

 c ),( nα = c(0.01,160) ∼ 0.982 

Since ρ̂  >  c  (0.99781 > 0.982), then we fail to reject 0H . Together with the 

normality plot, it is concluded that the assumption of normally distributed errors is 

reasonable. 

5.5.3.3 Model summary 

The R-squared of the final model is 0.9887, which implies a very good fit. The 

model has constant variance and normality. There is minor curvature still visible in some 

of the residual vs. predictor plots; however, a more complex model to closely address this 

curvature is impractical.  

5.6 Discussion on the Final Model 

 In the two-stage framework, DACE was developed to replace time-consuming 

computer models or expensive physical experiments by replacing the loop between first 

and second stage with a constraint generated from the gradient of the approximation 

function [53-54]. It also allows more complicated recourse functions if appropriate. 
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 The final model or metamodel gives some accessible descriptions to the control 

problem based on the design variables. The objective function is to minimize the 

operational cost. The profit is only by selling the electricity back to the grid, as in the 

benefit of serving demand is not included. Negative parameter estimators in equation 

(5.19) means that the system pays less in term of operational cost when there is less 

demand, and the system could benefit by selling the surplus energy back to the grid at 

the peak market price. For example, at node E, which is located in Dallas, there is a lot of 

demand in the system, so the system has little excess electricity to sell back to the grid. 

Thus, the system needs to buy some electricity from the grid to satisfy the demand. 

 Some stations that are located nearby would have joint influence on 

controllability. From equation (5.19), it is beneficial to build at both Stations E and G, and 

Stations D and G together.  
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Chapter 6  

Summary and Future Work 

The prospect of the proposed sequential DACE algorithms in enabling a 

nonparametric statistical modeling method for solving an infinite horizon approximate 

dynamic programming framework seems promising. The proposed sequential algorithm 

exploits the propensity of MARS modeling to follow the consistency trace, whereas the 

MARS modeling algorithm provides an explicit complexity measure (the number of basis 

functions) that can be controlled directly during the model building stage. 

In chapter 3, three different stopping conditions of the DP stage iteration are 

described, and two of them are presented in the proposed algorithms. A two-sided t-test 

for 45-degree line correspondence is considered as one of stopping rules of the DP 

algorithm to check for the convergence to help find a near optimal solution quickly. From 

Figure A-2, it shows that the algorithm that passed the t-test (both origin point and slope) 

yielded better results from the forward simulation. The results in Chapter 3 did not include 

the L-infinity norm as one of the stopping conditions, but the simulation results in 

Appendix A show that the L-infinity norm may not be a good choice for a stopping rule. 

Future research can be done to study the stopping rule to ensure convergence. In theory, 

at the steady-state equilibrium, the future value function has converged. The results from 

the forward simulation in Appendix A shows that at the point where it passed a two-sided 

t-test for the 45-degree line correspondence rule, the algorithm may not be at steady-

state. From Figure A-1, the steady-state equilibrium is reached after stage iteration 1000. 

In practice, the steady-state point may take a long time to be reached, but it may come 

up with little change in the result. It can be seen from the results that the mean cost at DP 

stage iteration 98 is close to the one at the real steady stage point but takes much less 

time to find. Thus, DP stage iteration 98 can be considered as a good place to stop. 
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Future research will study the width of b0 and b1 from equation (3.13) and (3.20) as a 

condition to ensure convergence.  

The results of the sequential algorithms in Chapter 3 show that at the very 

beginning of the DP stage iterations, where the value function is far away from the true 

value function at the steady-state, we may consider a small number of state points. 

However, a good fit must be confirmed by a high value of the R2. The percent change in 

the future value function average (as defined in Chapter 3) and R2 can be used as a 

condition to stop exploring the state space. In this way, it can reduce computational time 

and give a good result more quickly. The results in this dissertation suggested that the 

Data loop condition when minimum R2 is 0.8 and either minimum change of the future 

value function average is 10% or maximum change in R2 is 0.005 gives the best result 

compared with the other two algorithms. Future research can be done to better values of 

R2, change in R2, and change of the future value function average. 

In Chapter 4, batch mode reinforcement learning with MARS is presented. The 

main questions of this Q-iteration algorithm are how to generate the state-action space 

and how many training data points. Monte Carlo sampling is used to generate the state 

space, and a full factorial design is used to generate the action space. The results from 

the forward simulation presented in Chapter 4 show that adding more state-action data 

points does not improve the performance or give a better result. Moreover, the online 

mode reinforcement learning is presented to test the amenability of Q-iteration to follow a 

consistency trace when increasing the size of the input data. The results of the online 

mode fail to follow a consistency trace. Sobol’ sequence design is the other method used 

to generate a state space. The results reveal that different action spaces have only a 

small impact on the results when using the same state space generated by Sobol’ 

sequence. Moreover, in the worst case, Sobol' sequence design gives better result, but 
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Monte Carlo sampling gives the better result on average. Another comparison done in 

Chapter 4 is how to solve for the future Q-function. The results reveal that an optimization 

technique gives better results with lower computational time, compared with the 

traditional look-up table. Future research can be done to use the Q-function (state-action 

data set as an input) instead of V-function (state data set as an input) in the proposed 

algorithm presented in Chapter 3. In addition, the future work can study the effect of 

different action spaces to the results when using a state space generated by Monte Carlo 

sampling. Another interesting direction for future work is to find a good sampling sizes for 

the training sets as the input of the Q-function approximation. 

Chapter 5 presents an application of a control problem for a system of PHEV 

charging stations. The main purpose of this NSF supported project is to develop a two-

stage framework that integrates the first-stage system design problem and the second-

stage dynamic system control problem. In this dissertation, a design and analysis of 

computer experiments (DACE) approach is applied to build a metamodel for the expected 

value function of the second stage for solving a two-stage framework problem. After that, 

the expected value function of the second stage will be included in the objective of the 

first-stage problem. As an initial solution analysis, the mean value problem is formulated 

as a deterministic linear program and solved. The results give potential policies that 

provide insight into the behavior of the system, i.e. how can the system take advantage of 

peak or low market price and when is the best time to charge the battery. The metamodel 

gives an assessable description to the control problem based on the design variables; for 

example, which station yields more profit and which two stations should be built together.  

In the future work, this problem will be formulated as an infinite-horizon stochastic 

dynamic programming, because it is assumed to have stationary system dynamics and 

many time periods. The proposed method in Chapter 3 can be applied to this application. 
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The future work can study more accurate metamodels for the expected value function of 

the second stage with more complex first stage design variables. 
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Appendix A 

Comparison on the Stopping Conditions to Ensure the Convergence of An Infinite 

Horizon Dynamic Programming 
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Figure A-1: L-Infinity Norm and Mean Cost vs. Stage Iteration 

Figure A-1 is the results of running the output from Algorithm-II in forward 

simulation discussed in Chapter 3. There are three important issues appearing in Figure 

A-1. First, at the beginning of DP stage iteration, the values of the L-Infinity Norm were 

high and unstable. At those periods, the values of the mean cost in the forward simulation 

are inconsistent. Second, when the values of the L-Infinity Norm dropped, the values of 

mean cost went up. At DP iteration around 400, the value function iteration seemed to be 

at steady state equilibrium as the values of the L-Infinity Norm were low and stable as 

well as the values of mean cost. However, after DP stage iteration 520, the mean cost 

went up to the peak until the problem reaches steady state point after DP stage iteration 

980. The mean cost at the true steady state equilibrium is 30.  

Using a confidence interval t-test for 45-degree line correspondence, the problem 

stopped at DP stage iteration 98 where the mean cost is 33.5. In theory, we want to solve 

the system until we reach the steady state point where the value function does not (or 

slightly) change anymore. But in practical, we want to get the steady state point and want 
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to speed up the computational time. Even if the DP stage iteration 980 gives a better 

result from the forward simulation, when we compare the number of iterations and 

computational time, stage iteration number 98 is more attractive (each DP stage iteration 

used 196.36 seconds in average).  
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1- Pass both t-tests,     2- Pass either one,     3- Do not pass both t-tests  

Figure A-2: Boxplot from the Result of the T-test 

Figure A-2 presents Boxplots where number 1 is the mean cost of DP iterations 

that pass the confidence interval t-test for 45-degree line correspondence. The other two 

boxplots are ones that failed the t-test. From the plots, they show that boxplot number 1 

gives the better result in terms of the mean cost and a consistent result. There are some 

outliers visible in the plot but they are 10% of the total and their values are still less than 

the other two mean values. Thus, it can be concluded that using confidence interval t-test 

for 45-degree line correspondence as an infinite DP condition helps ensure a good result.  
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Appendix B 

Resolution-III Fractional Factorial Designs for PHEV Charging Station Case Study 

(Partial Design)
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The resolution-III with 11 variables requires 16 observations. To address the 

number of slot variables, from 1 to 10 slots, a block design is generated. Each block 

contains 16 observations with different defining relations. Thus, the total number of block 

is 10, and the total number of observation is 160. Tables 1 and 2 are examples of the 

block design generated from different defining relation (I). The last column (Nslot) is the 

number of slots, which is the same at every open station.  

Table B.1: Block-I Defining Relation I=DHK=1 

Run A B C D 
E=A
BC 

F=B
CD 

G=
AC
D 

H=A
BD 

J=A
BC
D 

K=A
B 

L=A
C 

Nsl
ot 

1 0 0 0 0 0 0 0 0 1 1 1 

1 

2 1 0 0 0 1 0 1 1 0 0 0 
3 0 1 0 0 1 1 0 1 0 0 1 
4 1 1 0 0 0 1 1 0 1 1 0 
5 0 0 1 0 1 1 1 0 0 1 0 
6 1 0 1 0 0 1 0 1 1 0 1 
7 0 1 1 0 0 0 1 1 1 0 0 
8 1 1 1 0 1 0 0 0 0 1 1 
9 0 0 0 1 0 1 1 1 0 1 1 

10 1 0 0 1 1 1 0 0 1 0 0 
11 0 1 0 1 1 0 1 0 1 0 1 
12 1 1 0 1 0 0 0 1 0 1 0 
13 0 0 1 1 1 0 0 1 1 1 0 
14 1 0 1 1 0 0 1 0 0 0 1 
15 0 1 1 1 0 1 0 0 0 0 0 

16 1 1 1 1 1 1 1 1 1 1 1 
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Table B.2: Block-II Defining Relation I=AEGH=1 

Run A B C D 
E=A
BC 

F=B
CD 

G=
AC
D 

H=
AB
D 

J=A
BC
D 

K=A
B 

L=A
C 

Nlo
st 

1 0 0 0 0 0 0 0 0 1 1 1 

2 

2 1 0 0 0 1 0 1 1 0 0 0 
3 0 1 0 0 1 1 0 1 0 0 1 
4 1 1 0 0 0 1 1 0 1 1 0 
5 0 0 1 0 1 1 1 0 0 1 0 
6 1 0 1 0 0 1 0 1 1 0 1 
7 0 1 1 0 0 0 1 1 1 0 0 
8 1 1 1 0 1 0 0 0 0 1 1 
9 0 0 0 1 0 1 1 1 0 1 1 

10 1 0 0 1 1 1 0 0 1 0 0 
11 0 1 0 1 1 0 1 0 1 0 1 
12 1 1 0 1 0 0 0 1 0 1 0 
13 0 0 1 1 1 0 0 1 1 1 0 
14 1 0 1 1 0 0 1 0 0 0 1 
15 0 1 1 1 0 1 0 0 0 0 0 

16 1 1 1 1 1 1 1 1 1 1 1 
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