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Abstract

SOCIAL DATA ANALYTICS USING TENSORS AND SPARSE TECHNIQUES

Miao Zhang, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Chris Ding

The development of internet and mobile technologies is driving an earthshaking so-

cial media revolution. They bring the internet world a huge amount of social media content,

such as images, videos, comments, etc. Those massive media content and complicate social

structures require the analytic expertise to transform those flood of information into action-

able strategies, because mining those data can help organizations take control of those data,

therefore organizations can improve customer satisfaction, identify patterns and trends, and

make smarter marketing strategies. Mining those data can also help the consumers to grasp

the most important and convenient information from the overwhelming data sea. By and

large, there are three big constituents in social media content - users, resources/events and

user’s tags on those resources. In this thesis, we study three key technology areas to explore

the social media data. The first is viral marketing (word of mouth) technology: we try to

identify the most influential individuals on the social networks. We propose highly efficient

and scalable methods to calculate the influence spread and then different greedy strategies

will be applied to find the most influential users. Second, we live in a rich materialistic

society: too main choices on everything. Recommender systems are the up-and-coming

new information technology. Traditional recommender systems deal with users and items

v



(books, movie, etc). New web 2.0 technology enables and encourages users to comment

items (images) by assigning tags (key words). This social tagging recommendation helps

new users (and existing users) to comment on more items with more tags — assist the

users to communicate with each other — inciting more activities in the social network —

thus attracting more users! The tagging information also helps web sites to organize their

resources. We propose to use lower-order tensor decomposition techniques to tackle the

extremely sparse social network data. Last but not least, inthe social tagging area, there

are many types of social media objects, data and resources; and image is the most over-

whelming part. Fast automatic analysis of vast number of images is mostly based on image

annotation and segmentation. We propose an efficient and robust image reconstruction

model by applying L1 norm sparse coding techniques in the collection of images (a tenor);

this help significantly the annotation and segmentation analysis. We did extensive exper-

iments on several real world data sets to evaluate our proposed models to the above three

social network tasks, and experimental results demonstrate that our methods outperform

state-of-the-art approaches consistently.
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CHAPTER 1

Introduction

1.1 Introduction

Social network technologies have been seeing a lot of changes in this information

technology era. Social media content are not static libraries for users to passively receive

any more. They allow users to create their own content and communicate with each other.

Every one can contribute to the web content. There are a huge number of users on the web

and there are connections and communications/influences between them. The social web

and mobile technologies have accelerated the speed at whichinformation is shared and in-

fluence is propagated, and they also bring the internet worlda huge amount of social media

content, such as images, videos, comments, etc. Therefore,the development of internet and

mobile technologies have helped to generate rich and big data to social networks. There are

billions of users, billions of connections, billions of contents, which includes textual con-

tents and multimedia contents (images, videos, audio, etc.). Those massive media content

and complicate social structure can be transformed into actionable strategies by analytic

expertise, Organizations can take control of those data by mining the latent information

and intrigue structures, and furthermore can improve customer satisfaction, identify pat-

terns and trends, and make smarter marketing strategies. Mining those data can also help

the consumers to grasp important and convenient information to facilitate their life styles.

We will analyze the complex social media content from three different angles - users,

resources/events and user’s tag information on those resources, which we believe cover

the most important factors of social networks. Therefore, in this thesis, we analyze the

social networks from three key technology areas. First, forthe user dimension, we try
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to identify the most influential individuals on the social networks, which can be applied

to the viral marketing strategies. This problem is first defined as influence maximization

problem in [1]. Kempe et al. proposed two basic stochastic models, which are extracted

from previous studies on social network analysis, one is independent cascade (IC) model

and the other is linear threshold (LT) model. We first concentrate on providing both exact

and fast approximate solutions to IC model. And also we propose an greedy algorithm

based incremental search strategies to find the most influential individuals. Second, for tag

dimension, we tackle the 3D social tagging recommendation problem. Different from the

traditional 2D recommender system, users are allowed to useshort phrases, which refer to

tags, to describe their social resources. Therefore, thereare three dimensions involved in

tagging recommendation - the three constituents (users, items, tags) mentioned above. Tag

recommendation system helps the tagging process by advising a set of tags to the user that

he may use for a specific item. The tagging information helps web sites to organize their

resources, and also assist the users to communicate with each other. We propose to use

lower-order tensor decomposition techniques to tackle theextremely sparse social network

data. We also propose three tensor fold-in algorithms to deal with new user problems in

tagging recommendation systems. Last but not least, for resources, there are many types

of social media resources, and image is a big component part.We propose an efficient

model to represent the gigantic amount of images in social media using tensor and L1

norm sparse techniques, which can be applied in image categorization problems. We did

extensive experiments on several real world data sets to evaluate our proposed models to the

above three social network tasks, and experimental resultsdemonstrate that our methods

outperform the state-of-art approaches consistently.

This thesis is organized as follows. Chapter II analyzes exact solutions of small

networks; one key finding from these analysis is the inclusion-exclusion principle which

we prove vigorously. We further propose exact probabilistic solutions to influence spread

2



for both Directed Acyclic Graph (DAG) and non-DAG under IC model, and another fast

and scalable linear order approximate algorithm for non-DAG graph. We also propose an

incremental search strategy to continue refining the seed set, which is first obtained by

greedy methods. After incremental search, the influence spread of the selected seed set

is improved. Chapter III introduces the social tagging recommendation problem and our

proposed low-order tensor decomposition models to deal with those sparse data in social

networks specifically. Chapter IV gives an efficient and robust model using tensor and L1

norm based sparse techniques for image representation and image categorization problems.

Chapter V proposes the future work and summarize the thesis.

3



CHAPTER 2

Approximate and Exact Evaluation of Influence Propagation on Networks

2.1 Introduction

Independent cascade (IC) model is widely used to model social influence propagation

on social networks, such as opinions, information, ideas, innovations, etc. One important

task is to identify the most influential nodes in these networks. This is especially useful for

viral marketing (word-of-mouth marketing), which aims at acertain number of influential

consumers at the beginning, and relies on communications and trust between individuals

within close social networks [2] [3] to market some product.Web 2.0 enables convenient

communications among people within or between different social circles through online

social networks, such as Twitter, Facebook, Linkedin, and so on. Information can propagate

from a small number of individuals to a huge number of users insocial networks in a short

time.

There are various research topics in viral marketing studies, such as, (1) how to de-

termine the edge weights between different users; (2) how tocalculate the social influence

given a set of activated nodes (seed set); (3) how to select the optimal seed set, which has

the maximum social influence, i.e., the number of activated nodes in the end are the largest.

This problem is defined as influence maximization problem in [1]. The above three chal-

lenges rely on each other, such as, we need to know how to calculate the social influence

given a seed set, if we want to find the most influential nodes. In this thesis, we concentrate

on solving the second topic and third topic. To address the problem of how to calculate the

social influence given each seed set, we first need to present asocial influence model defin-

ing how the propagation proceeds under some circumstances.There are several influence

4



models those have been proposed and studied, and the most popular ones are linear thresh-

old model (LT) and independent cascade model (IC), which were presented by Kempe et al.

in [1]. We study the influence propagation process under IC model in this thesis. IC Model

can be described as a stochastic process based on some probabilistic settings. For details,

social network can be modeled as one graphG(V,E) with edge weightsP . IC model starts

with an initial active seed node set; in the first step, those active nodes try to influence their

inactivated out-bound neighbors with probability of the corresponding edge weights; each

active node only has one chance to influence its each inactivated out-bound neighbor; in

next step, the newly activated nodes continue to influence their own inactivated out-bound

neighbors with one single chance to each neighbor; this process proceeds until no more

inactivated nodes become activated.

Kempe et al. proved the influence maximization problem underIC model is NP-

hard in [1], and Wei Chen et al. proved that calculating the influence spread of a seed

set under IC model is NP-hard too in [4]. Kempe et al. applied Monte Carlo simulation

to approximate the influence spread, which is widely used in other papers to approximate

the influence spread. which is time-consuming, because Monte Carlo simulation needs

to be run at least thousands of times to reach a good approximation of the true influence

spread. Therefore, as the first challenge, proposing an efficient approximation method to

calculate the influence spread of a seed set is urgent. To thatend, we present probabilistic

solutions to calculate the influence spread under IC model both exactly and approximately.

And then based on our fast and approximate solution given seed sets, incremental search

strategies are proposed to continue refining the seed set, which is first obtained by two

greedy methods. After incremental search, the influence spread of the selected seed set is

improved comparing with the input seed set selected by greedy methods.

Our main contributions are listed as follows:

5



(1) First we analyze the exact solutions to small networks, and inspired by the analysis we

propose to compute activation probability on each node using Inclusion-Exclusion theorem,

then activation probabilities on entire network can be calculated by applying Inclusion-

Exclusion theorem iteratively.

(2) Second we propose an injection point algorithm to compute the spread of the network

exactly, and inspired by our exact solution, we also proposeanother approximate and fast

algorithm to compute the influence spread given seed sets. Our approximate probabilistic

solution significantly speeds up the calculation of propagation spread given seed sets.

(2) We also propose an incremental search strategy to continue refining the seed set, which

is first obtained by two greedy methods. After incremental search, the influence spread

of the selected seed set is improved comparing with the inputseed set selected by greedy

methods.

2.1.1 Related Work

There have been a lot of research work studying and analyzingdifferent aspects

of social influence, we group these related work into three categories. The first category

includes research work on influence models. The second category includes the related

work on how to compute social influence spread. The third category focuses on solving

the ultimate viral marketing goal - find a set of seed nodes those have the maximal social

influence.

For the first category, Domingos et al. [5] [6] first proposed to mine the customers’

network value, and then based on customers’ network value tosolve the social influence

maximization problem. Kempe et al. [1] first presented the two basic influence models - LT

and IC model, extracted from previous work [7] [8]. Aggarwalet al. proposed a stochastic

information flow model to determine the authoritative individuals in [9], which is closely

related to IC model. Other aspects of influence models, such as the edge weights between

6



individuals were also studied in [10]. Tang et al. [11] [12] proposed a Topical Factor Graph

(TFG) model to analyze social influence on a specific topic.

For the second and third categories, Kempe et al. [1] presented to use Monte Carlo

Simulation to estimate the influence spread for given seed set, and proposed a greedy

method to find a good seed set, which is not scalable to large scale networks, because

Monte Carlo Simulation needs to be run at least tens of thousand times to get a good es-

timation. Then many heuristic algorithms were introduced for the IC model. Kimura et

al. proposed two influence cascade models based on shortest-path to approximate the in-

fluence spread of a seed set, and present algorithms to give good approximations to IC

model for finding good seed sets [13]. Chen et al. proposed a heuristic algorithm using

degree discount for a limited version of IC model, in which the edge weights/probabilities

between any two connected individuals are the same in [14]. Chen et al. also proposed a

maximum influence arborescence (MIA) heuristic model for the generic IC model in [4]. In

MIA model, maximum influence paths (MIP) between every pair of two nodes need to be

pre-computed, and then based on these MIPs, local MIA structures can be formed. There

are other research work digging into this problem [15] [16] [17] [18].

2.2 Independent Cascade Model

In this section, we give a brief introduction to IC model. A social network can be

represented by a directed graphG(V,E) with edge weight/probabilityP , i.e.,P (u, v) or

Puv in short denotes the propagation probability through edge(u, v) ∈ E from nodeu to

nodev. The total number of nodes inG is n = |V |.

Given an activated seed setS, the independent cascade model works as follows.S0 =

S is the activated node set at step0, andSt denoted the activated node set at stept. At step

t+1, every newly activated nodeu in St, i.e.,{u|u ∈ St\St−1}, is trying to influence its out-

7



bound non-activated neighborsv, which don’t belong toSt, i.e. {v|(u v)∩ (v ∈ V \St)}

with probabilityP (u, v). The process stops when an equilibrium state is reached, i.e. there

are no more nodes being activated in next propagation step. In independent cascade model,

once a node is activated (influenced), it will stay activatedever after. Also, each activated

node{u|u ∈ St(t ≥ 0)} can only influence its out-bound neighborv once.

Now, we are ready to define the probabilistic solution to IC model, which is the acti-

vation probability for each node in the graph in the final step(in the stationary/equilibrium

state), given a seed setS.

The solution of a IC model on a networkG is a probability distribution, i.e., the

activation probability for each node. At present, the widely used method of computing this

probability distribution is using Monte Carlo computer simulation method. Since the exact

solution is NP-hard, efficient algorithms are the focus of current research.

2.2.1 Exact Influence Spread for Small Networks

In this section, we give three small network examples to illustrate the exact influence

propagation process. The three small networks are shown in Figure 2.1, where node 1 is

the seed (shaded in green) in each case. We present the exact propagation solution for each

network. These exact solutions can be extended to larger networks.

From these exact results we obtain three important benefits:

(1) We learn the rules of adding contributions from different path of influence prop-

agation. At first glance, these contributions seems to be statistically independent. But the

exact results show they may not be independent and why. This introduces the inclusion-

exclusion principle we found useful in correctly enumerating contributions from different

paths.

(2) The rules we learned in this process are helpful to formulate an exact computa-

tional algorithm.
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Figure 2.1: Small networks: (a) 3-node network; (b) 4-node network; (c) 5-node network

(3) Exact solutions obtained can be used to evaluate approximate algorithms in pre-

vious studies [14, 13, 9, 18]. This may lead to refined methodsto further improve these

existing approximate algorithms.

For those networks, we assume that transition probabilities on the edges already exist

and remain fixed during the influence propagation.

2.2.1.1 Solution for 3-node Network

The IC influence propagation process for the 3-node network in Figure 2.1(a) can be

illustrated in Figure 2.2.

We start with Figure 2.2(a), where node 1 is a seed node and thus always activated.

The four networks of Figure 2.2(b, c, d, e) are the four possibilities of node 1 attempts to

activate nodes 2 and 3. The 4 probabilities are indicated next to the arrow. For example the

case where nodes 2 and 3 are both been successfully activatedis shown in Figure 2.2(b),

with probabilityP12P13.

The cases in Figure 2.2(b) and 2.2(e) are terminal, i.e., there are no further possibili-

ties. In 2.2(c), node 2 (been successfully activated by node1) will attempt to activate node

3. The results are shown in Figure 2.2(f) and Figure 2.2(g) with the appropriate probabil-

ities indicated next to the arrows. Similarly, in Figure 2.2(d), node 3 (been successfully
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Figure 2.2: Different stages of influence propagation for a 3-node network in (a). Graphs
(b),(c),(d),(e) are first stage results of seed node 1 attempting to influence nodes{2, 3}with
corresponding probabilities given. Thick red edges indicate the influence action. Thick cir-
cle means the node is successfully influenced, also indicated by a number 1 or 0 underneath.
From graph (c), node 2 tries to influence node 3; results are given in (f),(g).

activated by node 1 will attempt to activate node 2. The results are shown in Figure 2.2(h)

and Figure 2.2(i) with the appropriate probabilities indicated next to the arrows

Now, we can compute the activation probabilities. Let’s consider node 2. There are

3 cases where node 2 becomes activated:

(i) Figure 2.2(b) with probabilityP12P13.

(ii) Figure 2.2(c) with probabilityP12(1 − P13). Note that this is equal to the sum of

probabilities of Figure 2.2(f) and Figure 2.2(g).

(iii) Figure 2.2(h) with probability(1 − P12)P13P32. This probability for the influence

flow path to Figure 2.2(h) equals to the probability to reach Figure 2.2(d) multiplied by the

probability to further reach Figure 2.2(h).

Therefore, by adding these 3 probabilities, the activationprobability for node 2 is,

π2 = P12 + P13P32 − P12P13P32. (2.1)
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Another way to computeπ2 is by directly counting influence flow paths. First, node 2 can

be influenced by node 1 directly, with probabilityP12 (this is the sum of probabilities of

Fig.2.2(b),(c)). Second, If node 1 fails to influence node 2,there is another path node 2 can

be activated, which is illustrated by Figure 2.2(a)→ 2.2(d)→ 2.2(h). For this influence

path the probability is(1−P12)P13P32. Adding these two we get the same result in Eq.(2.1).

Inclusion-exclusion. The above two counting methods rely on the detailed influence prop-

agation stages shown in Figure 2.2. The result of Eq.(2.1) can be obtained without relying

on Figure 2.2. We compute probabilities ofdifferent pathstogether with an inclusion-

exclusion principle. For node 2, there are two paths:

(i) 1→ 2, with probabilityP1→2 = P12.

(ii)1→ 3→ 2, with probabilityP1→3→2 = P13P32 .

These two events are not independent because in (ii) we did not include the factor(1−P12).

We use inclusion-exclusion principle to correct for over-counting, i.e., we set

π2 = P1→2 + P1→3→2 − P1→2P1→3→2. (2.2)

This gives the same result of Eq.(2.1).

For node 3, the probability can be calculated similarly,

π3 = P13 + P12P23 − P12P13P23. (2.3)

2.2.1.2 Solution for 4-node Network

Let us look at a more complicated case — the 4-node network of Figure 2.1(b). The

IC influence propagation process is illustrated in Figure 2.3. The settings in Figure 2.3 are

the same as those of Figure 2.2.

We start with Figure 2.3(a), where node 1 is a seed node. The four networks of Figure

2.3(b, c, d, e) are the four possibilities of node 1 attempts to activate nodes 2 and 3. The 4

probabilities are indicated next to the arrow.
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Figure 2.3: Different stages of influence propagation from a4-node network of (a). Node 1
is the seed. Symbols are same as Figure 2.2. From graph (c), node 2 attempts to influence
node 4. Only successful result graph (g) is shown. Results ofall unsuccessful attempts are
skipped.

The cases in Figure 2.3(e, f, i, j) are terminal, i.e., there are no further possibilities. In

Figure 2.3(b), node 2 and 3 (been successfully activated by node 1) will attempt to activate

node 4. The successful result is shown in Figure 2.3(f) with the appropriate probabilities

indicated next to the arrows, figures for failure results arenot shown here. We will compute

the activation probabilities by directly counting influence flow paths, so the failure results

will reach irrelevant terminal cases. In Figure 2.3(c), node 2 (been successfully activated

by node 1) will attempt to activate node 4. The successful result is shown in Figure 2.3(g)

with the appropriate probabilities indicated next to the arrows, and the failure result will

reach an irrelevant terminal case, so we didn’t show the figure here. In Figure 2.3(g), node

4 will attempt to activate node 3. The successful result is shown in Figure 2.3(i). Similarly,

in Figure 2.3(d), node 3 (been successfully activated by node 1 will attempt to activate
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node 4. The successful result is shown in Figure 2.2(h) with the appropriate probabilities

indicated next to the arrows, while the failure result is notshown here. In Figure 2.3(h),

node 4 will attempt to activate node 2. The successful resultis shown in Figure 2.3(j).

Now, we compute the activation probabilities. We computeπ2 by counting influence

flow paths. For node 2, first, it can be influenced by node 1, withresults given in Fig. 2.3(b,

c). The corresponding probability isπ(1)
2 = P12.

If node 1 fails to influence node 2, there is another path node 2can be activated,

which is illustrated by Figure 2.3(a)→ 2.3(d)→ 2.3(h)→ 2.3(j). For this influence path,

the probability isπ(2)
2 = (1−P12)P13P34P42. Adding these two we get the following result,

π2 = P12 + P13P34P42 − P12P13P34P42. (2.4)

We note again that we may directly compute the probabilitiesof two paths (i)P1→2 =

P12, and (ii)P1→3→4→2 = P13P34P42 and useinclusion-exclusionto correct for the non-

independence to obtain

π2 = P1→2 + P1→3→4→2 − P1→2P1→3→4→2. (2.5)

which gives the same result.

For node 3, the probability can be calculated symmetrically,

π3 = P13 + P12P24P43 − P12P13P24P43.

For node 4, it can be activated by

(i) node 2 only, shown in Figure 2.3(g);

(ii) node 3 only, shown in Figure 2.3(h);

(iii) nodes 2 and 3 simultaneously, shown in Figure 2.3(f).

The total activation probability for node 4 is

π4 =(1− P13)P12P24 + (1− P12)P13P34 + P12P13(P24 + P34 − P24P34)

=P12P24 + P13P34 − (P12P24)(P13P34).

(2.6)
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Figure 2.4: First stages of influence propagation of the 5-node network. Node 1 is the seed.
Symbols are same as in Figure 2.2.

Once again, this results can be derived using the inclusion-exclusion principle mentioned

above, without counting detailed influence propagation stages in Figure 2.3.

2.2.1.3 Solution for 5-node Network

As the last example, we compute activation probabilities for the 5-node network in

Figure 2.1(c). The first stages of node 1 attempts to influencenodes 2,3 are shown in Figure

2.4(b,c,d).

Let us compute the activation probability for node 2. The contributions are shown in

graphs Fig.2.4(b,c,d). The contributions of Fig.2.4(b,c)isP12.

The contribution of Fig.2.4(d) is computed as the following. The probability to reach

Fig.2.4(d) is(1 − P12)P13. Starting from Fig.2.4(d), we may ignore node 1 and consider

the remaining network with nodes{2, 3, 4, 5}, and node 3 is activated. This situation is

identical to Figure 2.3, and we need to computeπ2. Following the results of Eq.(2.5), we

obtain

P32 + P35P54P42 − P32(P35P54P42).
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The contribution to node 2 of Fig.2.4(d) is a result of combining two paths3 → 2 and

3→ 5→ 4→ 2 with the inclusion-exclusion principle. Therefore the final score for node

2 is

π2 = P12 + (1− P12)P13

[

P32 + P35P54P42 − P32(P35P54P42)
]

. (2.7)

Now we compute activation probability for node 4. It can be activated by the follow-

ing 3 paths:

(1) Starting from the situation in Figure 2.4(b) and activate node 4;

(2) Starting from the situation in Figure 2.4(c) and activate node 4; This is the same

as the 4-node graph in Figure 2.3 and the node of interest is node 2.

(3) Starting from the situation in Figure 2.4(d) and activate node 4; This is the same

as the 4-node graph in Figure 2.3 and the node of interest is node 4.

The total probability for node 4 being activated is

π4 =P12P13(P24 + P35P54 − P24P35P54)

+ P12(1− P13)(P24 + P23P35P54 − P24P23P35P54)

+ (1− P12)P13(P32P24 + P35P54 − P32P24P35P54)

(2.8)

We note that the 5-node network in Figure 2.1(c) includes both the 3-node network

and the 4-node network cases, for example, 5-node network results become the results of

the 3-node network, whenP24 = P35 = P54 = P42 = P53 = P45 = 0; whenP54 = P45 = 1,

the results become those of the 4-node network.

When it comes to much more complicated large-scale network,the exact propagation

solution is hard to derive. It’s an exponential growth case along the number of nodes inV .

Therefore, in this paper, we propose an approximation solution to IC model, which is exact

solution for directed acyclic graph (DAG) and approximation solution for generic graphs.

The exact solution for generic case is introduced later.
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2.3 Inclusion-Exclusion Theorem

The lessons we learned in previous section on exact solutionare useful. One of the

most important lessons is the inclusion-exclusion principle that we briefly mentioned in

previous section. Here we formalize the concept and prove itvigorously.

Let πv(0 ≤ πv ≤ 1) denote the activation probability for each node{v|v ∈ V \S0},

which means to what extentv is activated.

We have the following Theorem, which is called inclusion-exclusion theorem,

Theorem 1 Given fixed seed setS and edge weightsP , for every non-seed nodev and

its in-bound neighborsNv = (u1, · · · , uk), i.e.,Nv = {ui|ui  v}, πv, the stationary

probability ofv being activated, is related to{πui
}, stationary probabilities of its in-bound

neighbors, with the following relationship,

πv =
∑

ui v

πui
Puiv −

∑

ui,uj v,

i<j

(πui
Puiv)(πuj

Pujv)

+
∑

ui,uj,ul v,

i<j<l

(πui
Puiv)(πuj

Pujv)(πul
Pulv)

+ · · ·+ (−1)k(πu1
Pu1v)(πu2

Pu2v) · · · (πuk
Pukv). (2.9)

To better understand this result, we compare it to a simpler model of random walk.

In this random-walk model, all neighbors ofv can activatev any time it walks towardsv.

In this model, the activated probability would be

π(k)
v =

∑

ui v

πui
Puiv. (2.10)

In contrast to the random walk model, in the IC model, any actor can only attempt

to affectv once. Thus the activation probability in IC model is lower than that in random

walk model. Comparing Eq.(2.9) and Eq.(2.10), we see that the reduction from random

16



walk model to IC model are the second term and later terms in Eq.(2.9). They are exactly

the inclusion-exclusion principle.

Figure 2.5 illustrates the propagation process of IC model.In this figure, nodev is the

target node. Its in-bound neighborsNv = {u1, · · · , uk} attempts to influence it. Suppose

there is only one activated neighboru1 in step 1, thenu1 tries to influencev. If u1 fails

to influencev in step 1, then newly activatedu2 tries to activatev in step 2. Ifu2 fails to

influencev in step 2, then newly activatedu3 tries to activatev in step 3, and so on so forth.

Proof of Theorem 1

To simplify the notations, we defineσui
= πui

Puiv.

Step 1 : The probability thatv is activated byu1 is

π(1)
v = πu1

Pu1v = σu1
. (2.11)

Step 2 : Ifu1 failed to activatev in step 1, the failure probability is1 − π
(1)
v . Now u2

attempts to influencev; the probability thatu2 succeed in this isπu2
Pu2v = σu2

; Therefore,

the conditional probability thatu1 failed butu2 succeed in activatingv is (1 − π
(1)
v )σu2

.

This should be added to the total probability thatv becomes activated. Thus

π(2)
v = π(1)

v + (1− π(1)
v )σu2

= σu1
+ σu2

− σu1
σu2

. (2.12)

Step 3 : Nowu3 attempts to activatev under the condition that neitheru1 noru2 activated

v. The probability thatu3 succeed in this isπu3
Pu3v = σu3

; The probability that neitheru1

noru2 activatedv is 1 − π
(2)
v . Therefore, the conditional probability thatu1, u2 failed but

u3 succeed in activatingv is (1 − π
(2)
v )σu3

. This should be added to the total probability

thatv becomes activated. Thus

π(3)
v = π(2)

v + (1− π(2)
v )σu3

= σu1
+ σu2

+ σu3
− σu1

σu2
− σu1

σu3
− σu2

σu3

+ σu1
σu2

σu3
. (2.13)
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Figure 2.5: Illustration of the propagation process of IC model: v is the target node, Figure
(a) is the first step; (b) is the second step; (c) is the third step.

Using induction, we can include the value ofπv in step k.

Step k : Nowuk attempts to activatev under the condition that none ofv’s previous in-

neighbors activatedv. The total probability thatv becomes activated is,

π(k)
v = π(k−1)

v + (1− π(k−1)
v )σuk

=
∑

ui∈Nv

σui
−

∑

ui,uj∈Nv,

i<j

σui
σuj

+
∑

ui,uj,ul∈Nv,

i<j<l

σui
σuj

σul

+ · · ·+ (−1)k−1σu1
σu2
· · ·σuk

. (2.14)

This completes the proof.

2.3.1 Computing Activation Probability on a Single Node

Based on the inclusion-exclusion theorem, we can get the following Lemma,

Lemma 2 Given a single nodev’s in-bound neighbors{ui|ui  v} and edge weightsP ,

to calculate the probability that nodev becomes activated, we have the following iterative

update equation,

π(i+1)
v = π(i)

v + (1− π(i)
v )σui+1

, i = 1, · · · , k − 1. (2.15)

Thus, now we can present the algorithm to compute the activation probability of

single nodev in the following,
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Input : Nv = {ui|ui  v}, {σui
}, k = |Nv| denotes the number of in-bound

neighbors ofv

Output : π∗
v = π

(k)
v

Initialize i = 1, π
(1)
v = σu1

for i = 1 : k − 1 do

π
(i+1)
v = π

(i)
v + (1− π

(i)
v )σui+1

end

Algorithm 1: Activation Probability onv

2.3.2 Computing Activation Probability on Entire Network

Now we are ready to describe the algorithm to compute activation probability on

entire network. Given fixed seed setS and edge weightsP , the activation probability to IC

model for each nodev can be represented in the following,

π∗
v = F (π∗

Nv
), v = 1, · · · , n. (2.16)

which can be obtained by the following updating strategy, whereπNv
denotes a vector

whose elements are the activation probabilities ofv’s in-bound neighbors.

π(t+1)
v = F (π

(t)
Nv
), v = 1, · · · , n. (2.17)

where,F (·) denotes a function, which is represented in Eq.(2.15).

The detailed algorithm for computing activation probabilities for all nodesV is given

in Algorithm 2, whereπ denotes the activation probability vector whose elements are acti-

vation probabilities for all nodes.
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2.4 Computing Exact Activations for DAG Networks

Although, the above iterative strategy gives approximate solutions to the entire net-

work, Independent Cascade Model only allows each node to be updated (influence) once.

This can be achieved in DAG (directed acyclic graph), where atopological order can be

established.

In this section, we describe the algorithm to compute the exact activations when

the network is a directed acyclic graph (DAG)1. The algorithm for non-DAG network is

presented in next section.

Given the networkG(V,E) and the seed setS. If G\S is a DAG, then we can

compute all activations by passing through all the nodes. This is a linear time algorithm,

linear in both|V | and|E|.

1In fact, we only requireG\S to be a DAG, because the seed setS are already activated.

Input : G(V,E), n = |V |, edge weightP , activated seed setS0 = S, m = |S|,

maxIter

Initialize π
(0)
v∈S = 1, π(0)

v/∈S = 0

for l = 1 : maxIter do

for i = 1 : n, vi /∈ S do

π
(l)
vi ← Activation probability onvi

end

if ‖π(l) − π(l−1)‖1 < δ then
break;

end

end

Output : stationary activation probability for each nodeπ = π(l)

Algorithm 2: Activation probability on entire network
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Figure 2.6: In-links are deleted for an activated nodev.

In this algorithm, we utilize the above inclusion-exclusion theorem (IET). In IET the

activation onv is easily computed from the activations onNv (the in-bound nodes tov).

A key observation is that ifG\S is a DAG, then the ordering of nodes can be arranged in

such a way that the activations onNv are available (already computed) beforev is visited

(see Theorem 2). With this, activations are computed following the order in one pass.

We call this algorithm as DAG-IET algorithm. The main steps are:

(a) constructed the seeded network,

(b) compute the topological ordering of the seeded network,

(c) compute activations on nodes using the ordering.

Below, we discuss the algorithm in details. We first define theseeded network : A

seeded networkGS is the original networkG with seed setS activated and all in-links to

these seed nodes are deleted.

The reason that in-links are deleted is that once a node is activated, it remains acti-

vated. Such in-links to this node will not affect the solution, and thus can be deleted. Figure

2.6 illustrates the situation.

If G is a DAG, the seeded networkGS is a DAG, andG\S is a DAG. If G\S is a

DAG,GS must be a DAG. Even ifG is not a DAG, the seeded networkGS could be a DAG.

WhenGS is a DAG, the topological ordering is obtained by the well-known topolog-

ical sort algorithm. This is a order-|E| algorithm.

After the topological ordering is computed, activations onnon-seed nodes are com-

puted using this ordering. One can easily prove the following
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Figure 2.7: (a) A DAG network. Probabilities on the edges areshown. (b) Topological
order of the seeded network. (c) Activations computed usingDAG-IET algorithm.

Theorem 3 In the topological ordering of the DAG-IET algorithm, all nodes pointing tov

are located beforev.

Figure 2.7 gives an illustration of the DAG-IET algorithm.

Illustration: The network in Figure 2.7 is a DAG. Node 2 and 5 are seed nodes. First,

edges (1,2) and (4,5) are deleted to obtain the seeded network. This network is sorted

to topological sort order, shown in Figure 2.7(b). Then we use DAG-IET algorithm in

Algorithm 1 to compute the activation probabilities for each non-seed node, and the results

are shown in Figure 2.7(c). Note that the final results forv1 areπ1 = 0 because there are

no activated nodes to influence it.

2.5 Injection Point Algorithm for Non-DAG Networks: Decomposition

In this and next two sections, we describe the algorithms forsolving networks whose

seeded networks are non-DAG.
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Figure 2.8: Illustration of the injection point algorithm.Red-dashed circle indicates a
strongly connected component (SCC). (a) is input network with influence weight on each
edge. (b,c,d,f) are 4 case of influence spread from injectionnodesv11, v12, with branching
probabilities given in Eq.(2.19). In (b) in-links to activatedv1, v4 are deleted. In (c) inlinks
to v4 are retained becausev4 could be activated by the influence coming fromv1. In (f), no
influence passed on fromv11, v12 and thus all nodes have no possibility to be activated. (e)
and (j) give the exact and approximate solutions of activation respectively.
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Figure 2.9: A non-DAG seeded network decomposed into a collection of strongly con-
nected components (SCC): the small circles are single nodes, and green ones are seed
nodes. There is no activated in-bound neighbors forSCC1, therefore nodes inSCC1 can-
not be activated thus could be deleted from the network

In this section we describe how to decompose the non-DAG network to a series of

logical units which is called“injection-nodes + strongly connected component (SCC)”

sub-network. In next section, we describe how to solve these sub-networks exactly. Using

the insights obtained there, in Section 7, we describe how tosolve these sub-networks

approximatelyusing a linear algorithm.

A non-DAG seeded network can be decomposed into a collectionof strongly con-

nected components (SCC). Thecomponent graphGSCC is obtained if we view each SCC

as a single node (contracting all edges in a SCC). Figure (2.9) illustrates this process.

This component graphGSCC is acyclicand we build a topological order on this com-

ponent graph. Along this ordering on the component graph, the in-bound neighbors of a

SCC (all nodes in the SCC) are all located before this SCC. Note that a seed node can not

be inside a SCC because in-bound links to the seed nodes are deleted when constructing

the seeded network. Thus seed nodes become 1-node SCCs on thecomponent graph (we

call them seed SCCs).

In general, on the topological ordering the first several SCCs before the first seed

SCC are deleted since there is no activated nodes to influencethem. The activations on

them are set to zero.
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Computing activations on the component graph are thus reduced to a series of tasks

of computing activations on a

“in-bound neighboring nodes + SCC” sub-network.

The first of these sub-networks is the one where “in-bound neighboring nodes” are seed

nodes. Here the activations on the in-bound neighboring nodes are known and our goal is

to compute activations on the nodes in the SCC.

We further analyze the “in-bound neighboring nodes + SCC” sub-network, and re-

duce “in-bound neighboring nodes” on the component networkto “injection nodes” in the

original seeded network. Each of these in-bound neighboring nodes in the component

graph could be: (a) a SCC, (b) a single non-seed node in the original network, (c) the seed

node.

In case (b), single non-seed node will remain un-activated.Nodes like this are deleted

from the network.

In case (a), we denote SCC1 as the in-bound neighbor of SCC2. This implies some

nodesV1s in SCC1 points to some nodes in SCC2 in the original network. Note that the

activations on the nodes in SCC1 are already computed. NodesV1s in SCC1 are retained

(since they will influence SCC2) and other nodes in SCC1 are deleted (since they will not

influence SCC2). NodesV1s are called injection nodes for SCC2. The activations on these

nodes are in general in[0, 1].

In case (c), the seed node is an injection node for SCC2.

In summary, we have decompose the original seeded non-DAG network to a series

of logical units, “injection-nodes + SCC” sub-networks.
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2.6 Injection Point Algorithm for Non-DAG Networks: Exact Algorithm

The key network structure we deal with is the ”injection-nodes + SCC” sub-network.

Here there are several injection nodes that attempt to influence a SCC, as illustrated in

Figure 2.8(a). Nodesv11, v12 are injection nodes. They have been activated and they attempt

to influence nodesv1 · · · v10 which form a SCC.

Injection nodes: it is important to note that injection nodes v11, v12 in Figure 2.8(a)

could be either seed nodes, or intermediate nodes, such asv3 in Figure 2.8(c). If injection

nodesv11, v12 are intermediate nodes, they have activation probabilitiesπ11, π12. If v11, v12

are seed nodes, we say they also have activation probabilities:π11 = 1 andπ12 = 1, i.e.,

they are activated with probability 1.

Injection nodes standardization: we note there are severalcases as shown in Figure

2.10. In Figure 2.10(a), nodev has several injection nodes. This case can be transformed

equivalently to “one injection-node” case where injectionnodes combined into one nodeu

which injects intov. Hereπu = 1 and the edge weightPu,v equals the activation probability

of v computed using Theorem 1 (algorithm 1). In Figure 2.10(b), node u attempts to

influence nodesv1, · · · , vk. This can be equivalently viewed as eachv1, · · · , vk has its own

injection nodeu.

Injected nodes: inside the SCC, nodes who are immediately/directly influenced by

the injection nodes. In Figure 2.8(a), nodesv1, v4 are injected nodes.

The computational algorithm is recursive reduction by enumerating all possible situ-

ations/states/cases of injected nodes. For each case, start anew on this reduced network. If

the reduced network is a DAG, we use DAG-IET algorithm to solve it. If the reduced net-

work is a non-DAG, start anew. This is repeated until the reduced network is small enough

and the solution can be directly read from a recomputed and stored library. Solutions of

different cases are combined together with appropriate probabilities.
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2.6.1 Illustration of Recursive Reduction

Before we proceed further, we explain how our algorithm workfor the network of

Figure 2.8(a). This illustrates the essential elements of the algorithm.

Figure 2.8(a) has two injection nodesv11, v12 with activation probabilityπ11, π12. The

injected nodes arev1, v4. The next stage of influence propagation are the 4 cases shownin

Figure 2.8(b), (c), (d), (f). We first evaluate the activation probabilitiesπ(b)
1:10 for the case

in Figure 2.8(b). This case is arrived with probabilityP (b) = π11P11,1π12P12,4. Similarly,

we evaluateπ(c)
1:10 for the case in Figure 2.8(c) andπ(d)

1:10 for the case in Figure 2.8(d). Note

thatπ(f)
1:10 = 0 for the case in Figure 2.8(f) because there is no influence injection. The final

activation probability are the weighted sum:

π1:10 = P (b)π
(b)
1:10 + P (c)π

(c)
1:10 + P (d)π

(d)
1:10 (2.18)

where the branching probabilities are

P (b) = π11P11,1π12P12,4,

P (c) = π11P11,1π12(1− P12,4), (2.19)

P (d) = π11(1− P11,1)π12P12,4.

The network of Figure 2.8(b) is a DAG and the activation probabilities are computed

using DAG-IET algorithm.

The network of Figure 2.8(c) is non-DAG and its topological order is shown in Figure

2.8(h). We use DAG-IET algorithm to computeπ2, π3. Note thatG4,5,6,7 ≡ (v4, v5, v6, v7)

is a SCC. Thus{v3
⋃

G4,5,6,7} form an “injection-node + SCC” structure. We use the

injection point algorithm to compute their activation probabilities.

The network of Figure 2.8(d) is non-DAG and its topological order is shown in

Figure 2.8(i). We use DAG-IET algorithm to computeπ5, π6, π7. Now G1,2,3,8,9,10 ≡
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(v1, v2, v3, v8, v9, v10) is a SCC. Thus{v7
⋃

G1,2,3,8,9,10} form an “injection-node + SCC”

sub-network. We use the injection point algorithm to compute their activation probabilities.

The essence of the injection point algorithm is a divide-and-conquer strategy: it re-

peatedly reduce an “injection-nodes + SCC” sub-network to smaller “injection-nodes +

SCC” sub-network until these SCCs become small enough to be solved using the exact

solutions explained in Section 2.2.1.

2.6.2 The Global Recursive Structure of Injection Point Strategy

As shown in Figure 2.8, the injection point algorithm is usedto solve an “injection-

nodes + SCC” sub-network in a recursive manner where the SCCsinvolved are gradually

reduced in size until they are small enough and can be solved directly using the method of

Section 2.2.1 (pre-implemented as a suit of library routines).

The Injection Point Algorithm is the following:
Injection-Point-Algorithm (IPA)

Input: “injection-nodes + SCC” sub-network

Output: activation probabilities of all nodes

Perform injection on “injection-nodes + SCC” sub-network.

FOR each injection result, DO

Step 1. Find all SCCs of current network.

Step 2. Contracting all SCCs and establishing a topologicalorder.

Step 3. Use DAG-IET to compute activation probabilities:

IF no SCC, all activation probabilities on current network are computed

IF encountering a SCC which is small enough, call a library tosolve it

IF the SCC is not small, identifying injection nodes to the SCC and call

injection-point-algorithm on this sub-network.

Continue to compute activation probabilities on the computing order until
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the end or another SCC

Step 4. Accumulate activation probabilities from different injection branch.

RETURN

v

u1 uk

v

u

v1 vk v1

uu

vk

u

(a) (b)

Figure 2.10: Injection equivalence

2.7 Injection Point Algorithm for Non-DAG Networks: Approximate Algorithm

In this section, we develop an approximate algorithm to solve the “injection-node +

SCC” sub-network efficiently in two passes of the nodes and thus in linear time.

The algorithm is a modification of the DAG-IET algorithm of Section 4. When

the sub-network is a DAG, the topological ordering ensures that when visiting each “un-

touched” nodev (where activation has not been evaluated so far), activations on the in-

bound neighboring nodesNv have already been correctly computed.

When the sub-network is non-DAG, the topological ordering does not exist. How-

ever, we can follow a DFS (depth-first-search) to visit each node and compute its activation.

The problem here is that for some un-touched nodes, their in-bound neighboring nodes (or

some of them) could also be un-touched, and thus the contribution from these un-touched

neighboring nodes are unknown — the computation can not proceed.

We solve this problem bypre-computingthe activations. We do the DFS-and-compute-

activation pass twice. The first pass pre-computes the activations (approximately). In the

second pass, for each node, all its in-bound neighboring nodes are already touched, i.e.,
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have non-zero activation values (could be under-valued). Using IET, we compute the acti-

vation on this node (in fact,updatingthe value since this node is already touched).

The essence of the algorithm can be seen from computingπ2, π3 of the 3-node non-

DAG network of Figure 2.1(a). These activations will serve as values onNv for all un-

touched node. At first iteration,

π
(1)
2 = P12, π

(1)
3 = P13

With these values, activations on{Nv} are available for allv. At second iteration,

π
(2)
2 = P12 + P13P32 − P12P13P32, π

(2)
3 = P13 + P12P23 − P13P12P23

At this point, the results are exactly correct.

The key observation is that even if there are SCCs in a non-DAG(such as SCC(v2, v3)

in Figure 2.1(a)), influence does not propagate infinitely ascycles. This is because, in IC

model, once a non-seed node is activated, it remains so forever. Once the node is activated,

the in-link is effectively broken as shown in Figure 2.6 — it blocks the cycle.

Weighted DFS: intuitively, we wish to follow a traverse ordering that propagates

influence most efficiently. A greedy approach is to follow thelinks with largest weight.

This naturally motivates the weighted depth-first-search (DFS): when deciding who to visit

among all links out of nodev, we follow the link with highest edge weight (the activation

probability). Standard DFS algorithm can be slightly modified to achieve this.

In summary, the algorithm is given below.

Approximate algorithm for “injection-node + SCC” sub-network:

(1) Pick the injected node with highest activation probability.

(2) Do weighted DFS pass and update/compute activations.

(3) Repeat step (2) once more.
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Figure 2.8(j) gives the approximate activation probabilities for nodes in seeded graph

of Figure 2.8(a), while Figure 2.8(e) shows the exact activation probability for each node.

The differences between approximate solutions and exact solutions are all very small.

2.8 Selecting Seed Set for Viral Marketing

To this end, we can define the objective function of maximizing the social influence

as follows,

max
S

σ(S) =

n
∑

v=1

πv (2.20)

s.t. |S| = m,

πv = F (πNv
), v = 1, · · · , n.

where,m is the size of seed set. We will present an probabilistic additive strategy to solve

the above social influence maximization problem using greedy methods.

2.8.1 Greedy Method to Solve Social Influence Maximization

As discussed above, influence maximization is to determinem activated seeds at

the beginning of the information propagation, in order to maximize the social influence in

the end. We first propose an probabilistic additive strategyand two greedy methods, then

based on these two greedy methods, another efficient incremental search strategy will be

introduced.

2.8.1.1 Greedy Method 1

The basic idea is to select each nodevi as a single seed, i.e.,S = {vi}, and then

compute the stationary activation probability using Algorithm 2 for all the other nodes

{u|u /∈ S}. We letβ{i} denote the stationary activation probability for every node when
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vi is selected as the seed node. LetB = (β{1}, β{2}, · · · , β{n}) Obviously, the elements on

diagonal of matrixB are all 1. After getting every stationary activation probability vector

in B, we calculate the influence spread of each node, denoted byσ(vi), which is the sum

of β{i}. The following Algorithm 3 describes the detailed process on how to calculateB.

Input : Edge weightP

for i = 1 : n, S = {vi} do

π
(0)
vi = 1, π(0)

V \vi
= 0,

π ←− Call Algorithm 2(P ,S = {vi}),

β{i} = π.

end

Output : Stationary activation probability matrixB
Algorithm 3: Computing stationary activation probability vector when each node

is selected as the seed node

After we get the social influence spread for each node being seed node, we sort the

influence spread scores in descending order, i.e.,σ(v1) > σ(v2) > · · · > σ(vn), and then

select the topm nodes with largest influence scores as the initialization seed setS.

Greedy method 1 is based on our inclusion-exclusion theorem, and it’s much faster

than greedy method using Monte Carlo Simulation, which needs at least thousands of sim-

ulations even for calculating the influence score of eachvi, not mention the entire stationary

activation probability matrixB. We will present the time needed for both methods in the

experiment section.
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2.8.1.2 Greedy Method 2

Before presenting Greedy Method 2, we first introduce a probabilistic additive strat-

egy when adding more nodes to a current seed set.

2.8.1.3 Probabilistic Additive

Suppose we have a current seed setSc and its activation probability vectorβSc
, cal-

culated by Algorithm 2, and now we are going to addvi to the current seed set, note,v’s

activation probability vectorβ{i} can be get from matrixB. We have the following defini-

tion,

definition 4 Probabilistic Additive of vectorβSc
andβ{i} is defined as follows,

βSc∪{i} = βSc

⊎

β{i} = 1− (1− βSc
). ∗ (1− β{i}) (2.21)

where.∗ means element wise multiplication. Similarly, Probabilistic Additive ofm vectors

is defined as follows,

β{1}∪{2}···∪{m} = β{1}

⊎

β{2} · · ·
⊎

β{m} = 1− Πm
i=1(1− β{i}) (2.22)

whereΠ also means element wise multiplication.

We can use the Probabilistic Additive of each node inS β∪{i|i∈S} as the initialization

when calculating the activation probability for entire network using Algorithm 2 with seed

setS, which is much faster than 0 or 1 initialization used in Algorithm 2.

As Greedy Method 1 did, Greedy Method 2 first uses algorithm 3 to calculate the

stationary probability distribution matrixB, and then calculate influence score for each

nodeσ(vi). Different with Greedy Method 1, Greedy Method 2 adds only one node to seed

set at a time, which is described in the following,

(1) Add nodei1 with the largest influence score to seed setS1, S1 = {i1}, and the activation

probability vector isβS1
= β{i1}.
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(2) Add nodei2, which can lead to the largest influence score of seed setS2, S2 = S1 ∪

{i2} = {i1, i2}. Then we use probabilistic additive ofβS1
andβ{i2} to initializeπ0 when

calculating the activation probability vector forS2 using Algorithm 2,π(0) = βS1∪{i2} =

βS1

⊎

β{i2};

(3) Repeat the above process until we need to add nodeim, and nodeim should lead to

the largest influence score of seed setSm, Sm = Sm−1 ∪ {im} = {i1, · · · , im}. Then we

use probabilistic additive ofβSm−1
andβ{im} to initializeπ0 when calculating the activation

probability vector forSm using Algorithm 2,π(0) = βSm−1∪{im} = βSm−1

⊎

β{im};

In this way, we get another seed setS. To get a better seed set, we do Incremental

Search starting from the seed sets calculated from both greedy methods.

2.8.1.4 Incremental Search Strategy

After we get an initialization seed set by those two greedy methods introduced in last

section, we want to keep digging more efficient seed set by replacing the nodes those have

least contribution in the current seed set to the final influence score.

First, we give two important procedures, addk node to current seed setSc and drop

k node fromSc, which are listed in Algorithm 4 and Algorithm 5, respectively. For k, we

normally choosek = 1, 2, 3.

Now, we are ready to present the incremental search strategyin Algorithm 6,

After using incremental search on seed set obtained from greedy methods, we get a

seed set with larger influence sore.

2.9 Experiments

To validate the performance of our Inclusion-Exclusion Theorem, we conduct ex-

periments on real data sets to compare the results using Inclusion-Exclusion Theorem (Al-
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gorithm 2) and that of using Monte Carlo Simulation. We conduct another two groups

of experiments. One is to compare the solutions of our fast approximate algorithm with

Input : Current Seed Set:Sc, the size ofSc: q = |Sc|, Activation Probability

Matrix: B

for i = 1 : Ck
n−q do

Select nodes to add :{vi1 , · · · , vik},

Sn = Sc ∪ {vi1, · · · , vik},

π(0) = βSc∪{i1}···∪{ik},

π ←− Call Algorithm 2(P , Sn, π(0)),

σ(Sn) =
∑

v πv.

end

{vi1, · · · , vik} ←− argmax(σ(Sn)),

Output : Sc = Sc ∪ {vi1, · · · , vik}, βSc
= π, σ(Sc) = σ(Sn)

Algorithm 4: Add k node

Input : Current Seed Set:Sc, the size ofSc: q = |Sc|, Activation Probability

Matrix: B

for i = 1 : Ck
q do

Select nodes to drop :{vi1 , · · · , vik},

Sn = Sc\{vi1, · · · , vik},

π(0) = β∪{j|j∈Sn},

π ←− Call Algorithm 2(P , Sn, π(0)),

σ(Sn) =
∑

v πv.

end

{vi1, · · · , vik} ←− argmax(σ(Sn)),

Output : Sc = Sc\{vi1 , · · · , vik}, βSc
= π, σ(Sc) = σ(Sn)

Algorithm 5: Dropk node
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those of other state-of-the-art approximate algorithms - (1) Monte Carlo simulations, (2)

maximum influence arborescence (MIA) model in [4]. The otherone is to demonstrate the

correctness of our injection point algorithm for the exact solution to IC model. We also

conduct experiments on real world data sets to compare the influence spread of seed set get

from our incremental search strategy with those of seed setsget from various algorithms.

2.9.1 Data Sets

We use two real world data sets - p2p-Gnutella08 and wiki-Vote, which are two

directed networks, and downloaded from SNAP2. Table 2.1 lists the detailed information

of these two data sets.

p2p-Gnutella08 is a snapshot of Gnutella peer-to-peer file sharing network from Au-

gust 2002. Nodes represent hosts in the Gnutella network topology and edges represent

connections between the Gnutella hosts. We call this network p2p in this paper.

2http://snap.stanford.edu

Input : Current Seed Set:Sc, the size ofSc: q = |Sc|, k

for i = 1 : maxIter do
Sa, σ(Sa)←− Add k nodes,

Sd, σ(Sd)←− Dropk nodes,

if ‖σ(Sa)− σ(Sd)‖ < δ then
break;

end

end

Output : Sc = Sd

Algorithm 6: Incremental search strategy
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Table 2.1: Description of data sets

Name # Nodes # Edges
p2p-Gnutella08 6301 20,777

wiki-Vote 7115 103,689

Wiki-Vote contains the Wikipedia voting data from the inception of Wikipedia till

January 2008. Nodes in the network represent wikipedia users and a directed edge from

nodei to nodej represents that useri voted on userj.

We also generate one subgraph from p2p-Gnutella08, which has 223 nodes and 954

edges. We call this subgraph p2p-223.

2.9.2 Inclusion-Exclusion Theorem V.S. Monte Carlo Simulation

First, we present the influence spread (activation probability for each node) compari-

son between IC Monte Carlo Simulation and Inclusion-Exclusion Theorem (Algorithm 2),

to verify the effectiveness of Inclusion-Exclusion Theorem in approximating the influence

spread for entire network. For demonstration purpose, we first present the results for each

node on p2p-223 subgraph. We randomly selected 10 nodes as seed nodes. The results from

Monte-Carlo Simulations are the average of 20000 simulations/realizations. Edge weight

P is fixed for both methods. The activation probabilities for each node from two methods

are shown in Figure 2.11. There are 223 nodes and 954 edges on p2p-223 network, and

we omit the nodes with activation probability 0, which left us less than 90 nodes presented

in the figure. For convenient comparison, we sort the activation probabilities of Monte

Carlo Simulations, and present their corresponding activation probabilities calculated by

Inclusion-Exclusion Theorem. Apparently, the two curves from these two methods almost

coincide with each other.

We then present more comparisons between activation probabilities achieved by ap-

plying Monte Carlo simulation and those achieved by Inclusion-Exclusion Theorem. Fig-
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Figure 2.11: Activation probability comparison between ICMonte Carlo Simulation and
Inclusion-Exclusion Theorem

Table 2.2: Mean squared errors (MSE) and mean absolute errors (MAE) between the two
activation probability vectors achieved Inclusion-Exclusion Theorem and Monte Carlo sim-
ulation on p2p-223 network

m = 20 m = 30 m = 40 m = 50
MSE 8.5× 10−5 7.9× 10−5 7.8× 10−5 7.1× 10−5

MAE 4.8× 10−4 4.7× 10−4 4.5× 10−4 3.8× 10−4

ure 2.12 shows the influence spreads by those two methods at different sizes of the same

seed set -m = {10, 20, 30, 40, 50} on the three data sets - p2p-223, p2p and wiki-Vote.

The influence spreads are almost the same on p2p-223 subgraph, and are very close on

p2p and wiki-Vote data sets. As shown on the figures, the altitudes of the histogram at

the samem are almost the same for those two methods. We also show the mean squared

errors (MSE) and mean absolute errors (MAE) between two activation probability vectors

achieved by those two methods. Table 2.2, 2.3 and 2.4 show theMSE and MAE results at

m = {20, 30, 40, 50} (results atm = 10 are omitted due space limit) on the three data sets

mentioned above, which demonstrate that the two vectors arealmost the same when given

the same seed set, i.e., the approximate results achieved byInclusion-Exclusion Theorem

are effective for generic graphs.
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Figure 2.12: Influence spreads computed by Inclusion-Exclusion Theorem and Monte
Carlo Simulation given different sizes of seed sets

Table 2.3: Mean squared errors (MSE) and mean absolute errors (MAE) between the two
activation probability vectors achieved Inclusion-Exclusion Theorem and Monte Carlo sim-
ulation on p2p network

m = 20 m = 30 m = 40 m = 50
MSE 7.5× 10−5 8.5× 10−5 8.4× 10−5 8.3× 10−5

MAE 3.0× 10−3 3.8× 10−3 3.7× 10−3 3.3× 10−3

Second, we compare the time needed to compute the influence spread given different

sizes of seed sets. Table 2.5 and Table 2.6 list the time needed for both Inclusion-Exclusion

Theorem and Monte Carlo Simulation on two data sets - p2p-223and p2p, at different

m, wherem denotes the number of seed nodes selected. And at the samem, the same

seed set is selected for both methods. Let’s look at Table 2.6, whenm = 50, the time for

Inclusion-Exclusion Theorem is just 2.8450 seconds, whileMonte Carlo Simulation needs

36945.6 seconds for 20000 realizations. So the time for Inclusion-Exclusion Theorem is

Table 2.4: Mean squared errors (MSE) and mean absolute errors (MAE) between the two
activation probability vectors achieved Inclusion-Exclusion Theorem and Monte Carlo sim-
ulation on wiki-Vote network

m = 20 m = 30 m = 40 m = 50
MSE 5.0× 10−6 5.1× 10−6 5.2× 10−6 5.1× 10−6

MAE 8.1× 10−5 8.1× 10−5 8.2× 10−5 8.0× 10−5
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Table 2.5: Time (sec) needed to compute the influence spread given different sizes of seed
setsm on p2p-223 network

Methods m = 10 m = 20 m = 30
Inclusion-Exclusion 0.1079 0.02531 0.01925

Monte Carlo Simulation
(20000 times)

95.3935 94.0613 93.1055

Table 2.6: Time (sec) needed to compute the influence spread given different sizes of seed
setsm on p2p network

Methods m = 10 m = 30 m = 50
Inclusion-Exclusion 3.2012 3.0126 2.8450

Monte Carlo Simulation
(20000 times)

32345.4 35372.2 36945.6

competitive with that of just one time Monte Carlo Simulation, however, Monte Carlo

Simulations need thousands of times simulations to reach a steady solution. Therefore, our

probabilistic solutions speed up the computation of influence spread, especially on large

data sets, which make greedy methods to viral marketing scalable to large data sets.

2.9.3 Comparison of Injection Point Approximate Algorithm

The purpose of experiments here is to validate the approximation accuracy of our

fast algorithm introduced in Section 2.7. Monte Carlo simulation [1] is widely used and

regarded as one good estimation of IC model. The maximum influence arborescence (MIA)

model [4] is also a good way to approximate the spread given seed nodes. We compare the

results of our approximate method to those two methods giventhe same seed sets. For

each data set, given a seed setS, we run Monte Carlo simulations for 20000 times to get

the final activation probability for each node. And for MIA model’s threshold, we tune the

value of threshold according to the papers suggestion - find apoint where the change of

arborescence size slows down.
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We first compare the total influence spread given seed setS, which is the sum of the

activation probability of each node, which is shown in Figure (2.13). As we can see, the

spread of our approximate algorithm is more near to the spread of Monte Carlo simulations.

For example, on wiki-Vote data set, when number of seed set is50, the spread of our

algorithm is 2267, which is near to Monte Carlo simulation’s2270, while MIA get 2200,

underestimating the influence spread of seed nodes.

Next we compare root-mean-square error (RMSE) of our approximate solution with

that of MIA, assuming Monte Carlo simulation gives the correct values. The results are

shown in Figure (2.14). As we can see, our approximate algorithm gets more accurate

approximation to the results of Monte Carlo simulations. RMSE of our approximate algo-

rithm is less than 0.005, while RMSE of MIA is around 0.035.
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Figure 2.13: Influence spread comparison
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2.9.3.1 Time Comparison

Our approximate algorithm is fast, since we follow a weighted DFS traverse ordering

to update the activations twice. Monte Carlo simulations are time consuming, because they

need to run 20000 times to get a good and steady approximation. MIA is also slower

than our algorithm, because for each node, they need to buildthe maximum influence in-

arborescence tree structure first. We list the running time comparison in Table 2.7 for p2p

data set and Table 2.8 for wiki-Vote data set. Our experiments are run on a PC with a

3.0GHz Intel Core 2 Duo Processor and 12GB memory.

Table 2.7: Running time (seconds) comparison on p2p data set

seed nodes |S| = 10 |S| = 50 |S| = 100
Monte Carlo 1.62 × 104 1.59 × 104 1.58 × 104

MIA 2.53 × 103 2.61 × 103 2.64 × 103

Our approximate 1.04 × 102 0.93 × 102 1.01 × 102
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Figure 2.14: RMSE comparison between our approximate algorithm and MIA
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Table 2.8: Running time (seconds) comparison on wiki-Vote data set

seed nodes |S| = 10 |S| = 50 |S| = 100
Monte Carlo 4.45 × 104 4.51 × 104 4.53 × 104

MIA 8.23 × 103 8.31 × 103 8.42 × 103

Our approximate 2.85 × 102 2.81 × 102 2.79 × 102
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Figure 2.15: Accumulated absolute differences between exact solution and Monte Carlo
simulation solutions when Monte Carlo simulations are run from 2000 to 20000 times

2.9.4 Comparison of Injection Point Exact Algorithm

We do experiments here is to demonstrate that the solution from Monte Carlo simula-

tions, as the number of simulations increase, approaches tothe exact solution by injection

point algorithm. For each data set, given a seed setS, we run Monte Carlo simulations

from 2000 to 20000 times and check the differences between estimated solution by Monte

Carlo simulations and our exact solution. Because the exactalgorithm is slow, we do these

experiments on sub-networks. Sub-network from wiki-Vote data set has 233 nodes and 456

edges and sub-network from p2p data set has 105 nodes and 151 edges.

The differences between Monte Carlo simulations solution and our exact algorithm

solution are defined as

∆πi = |(πexact)i − (πmc)i|, Error=
n

∑

i=1

∆πi (2.23)
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Figure 2.16: Influence spreads of seed sets selected by different methods. Note, the curves
corresponding to incremental search 1 and incremental search 2 almost coincide with each
other on p2p-223 network

where,n is the number of nodes in the graph andπexact is the exact activation probabilities

calculated by our injection point algorithm;πmc is the activation probabilities by Monte

Carlo simulations (averaged over the specified number of MC simulations).

2.9.4.1 Wiki-Vote data set

We randomly select 5 nodes as the seed nodes. Figure 2.15b shows the accumulated

differences between our exact solution and Monte Carlo simulation solutions on wiki-Vote

data set, which is calculated by Eq.(2.23)

On Figure 2.15b, red circle represents the differences between the exact solution

and the Monte Carlo simulation solution at different numberof times (indicated along

horizontal axis). The curve is roughly descending, which isconsistent with our intuition -

the more times Monte Carlo simulations, the more accurate the Monte Carlo solution will

be. This verifies the correctness of our exact solution to some extent.

Figure 2.17 shows the difference of exact solution and MonteCarlo simulation so-

lution on every node on wiki-Vote data set. The horizontal ordinate represents the index
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Figure 2.17: Difference between exact solution and Monte Carlo simulations on wiki-Vote
data set (number of seed nodes=5). Shown are the absolute value of the difference at
each node.∆π2000 is the results of Monte Carlo simulations of 2000 times. Similarly, for
∆π4000, ∆π8000, ∆π16000.
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of each node.∆π2000 means the absolute value of the difference between the two methods

when Monte Carlo simulations are run 2000 times and similarly, ∆π4000, ∆π8000, ∆π16000

mean the absolute value of the difference between the two methods when Monte Carlo

simulations are run 4000, 8000, 16000 times. To present the difference clearly, we show

three 2-group comparison:∆π2000 vs. ∆π4000, ∆π4000 vs. ∆π8000 andπ8000 vs. ∆π16000.

The overall difference is decreasing when the running timesof Monte Carlo simulations

are doubled. The biggest difference in∆π2000 is around 0.025, and in∆π4000, it’s reduced

to 0.02. In∆π16000, it’s reduced to 0.008, which is small enough to ignore.

2.9.4.2 P2p data set

We randomly select 5 nodes as the seed nodes. Figure 2.15a shows the accumu-

lated differences between the two methods, which is calculated by Eq.(2.23). The curve is

roughly descending too, similarly with that on wiki-Vote data set.

2.9.5 Seeds Selected by Different Methods

This part is to compare the social influence of seed sets selected by our incremental

strategies with those of seed sets selected by other methods. We compare the following set

of algorithms.

(1) Random selection: selectm nodes randomly fromV as the seed nodes.

(2) Degree selection: selectm nodes with the largest out-degree as the seed nodes.

(3) Distance selection: selectm nodes with smallest average shortest-path distances to all

other nodes as the seed nodes.

(4) Incremental search 1: it’s a combination of greedy method 1 and incremental search.

• Compute activation probability matrixB using Algorithm 3.

• Selectm nodes with the largest influence scoreσ(vi).
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• Apply incremental search strategy using Algorithm 6 on seednodes selected by last

step, with parameterk = [1, 2, 3].

(5) Incremental search 2: it’s a combination of greedy method 2 and incremental search.

• Selectm nodes using greedy method 2 introduced in section 5.3.

• Apply incremental search strategy using Algorithm 6 on seednodes selected by last

step, with parameterk = [1, 2, 3].

Note, for all the above 5 methods, we apply our Algorithm 2 to compute the influence

spread for the entire network for a given seed set. And edge weightP remains fixed for the

same data set. The experiments are run on a PC with a 3.0GHz Intel Core 2 Duo Processor

and 12GB memory.

The results on 3 data sets are shown in Figure 2.16. Our methods outperform the

other methods significantly. The point is that once we get theactivation probability matrix

B, a lot of recalculation can be omitted by combining our proposed probabilistic additive

strategy.

2.10 Conclusion

In this chapter, we first propose an inclusion-exclusion theorem to compute the ac-

tivation probability for each node on the network, then we propose an injection point al-

gorithm to compute the influence spread under IC model both approximately and exactly.

The exact solution can provide guidance on developing efficient estimate solutions. The

structures used in the exact algorithm provides a convenient way to design the approximate

algorithm which runs linear in both number of edges and nodes. Experiments shown our

approximate algorithm gives good approximations to activation probabilities, with RMSE

about seven times smaller than the state-of-art MIA approximate algorithm while signif-

icantly faster than MIA algorithm. We believe the “injection-node + SCC” structure and
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their solution algorithms could be useful for solving a number of problems in IC model. We

also propose an incremental search strategy to further refine the selected seed sets, which

are first gained by greedy methods, and the incremental search strategies improve the final

spread greatly.
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CHAPTER 3

Social Tagging Recommendation

3.1 Introduction

Social Tagging is an important feature of Web 2.0, which enable many users add key-

words (tags) to items/resources like music (last.fm), pictures(flickr), web pages(del.icio.us).

This tagging information helps those websites organize their resources and assist the users

to communicate with each other. Tag recommendation system helps the tag process by

advising a set of tags to the user that he may use for this item.Just like the traditional

recommendation system, the tag recommendation system is also based on the similarly ob-

servation, ”a user always marks an item with the tag which hasalready been used by the

other users”. However, different from the traditional item-user (two dimensions) recom-

mendation system, the tag recommendation system contains three dimensions - users, tags,

items. Although some traditional methods, such as Collaborative Filtering, link mining,

etc, can be directly extend to the tag recommendation by folding three dimensional space

into three bipartite relationship item-tag, tag-user, user-item, these methods miss the holis-

tic interactions between three dimensions. Symeonidis et al [19] first use the tensor model

for the tag recommendation system and predict the tags to theusers. Several studies using

tensors also appeared in [20][21][22].

However, most of these tensor decomposition methods [23] suffer from several in-

herent weakness. One of the most well known challenge is the sparse data problem. In

Table 3.1, we list the statistics of three widely used tensordata sets. We use tensor to

model the data. The number of nonzero tensor elements show the number of tags actually

been attached to items. (Note that a specific tag can be attached to many different items;
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Table 3.1: Real world tag data set statistics, with number oftags, number of items, number
of users, number of nonzero tensor elements (NNZ) and relative NNZ.

Dataset #Item #Tag #User NNZ Rel-NNZ
Last.Fm 1278327 272605 51992 10274749 5.6E-10

Movie Lens 7601 14810 4009 95499 2.1E-7
Delious 67 1472 2387 9212 3.9E-5

each of these attachment constituent a nonzero tensor element.) From the statistics, the

relativenumber of nonzero tensor elements is defined as

Relative NNZ=
number of tags actually attached
|items| × |tags| × |users|

are extremely low, less than 1.0E-04=0.0001=0.01%, which indicates that all of these real

world tag data sets are sparse networks. Many tensor decomposition algorithms are im-

peded by the sparse problem, hence can’t handle users who have marked few items. Fur-

thermore, previous tensor approaches simply set the masked-out values to zero and com-

pute tensor decomposition once as the prediction. Thirdly,these tensor decomposition

methods have high space and time complexity, and are impractical for large data sets.

In this chapter, we present a new tensor decomposition modelthat specifically deals

with very sparse data. The model utilizes low-order polynomials to improve/enhance statis-

tics among users, items and tags. In contrast, traditional tensor decomposition methods

such as Tucker and Parafac decompositions use only high order polynomials (3rd order

polynomials for 3rd order tensor) which appear to overfit these very sparse social tagging

data. Experiments on many social tagging data shows that ourlow order tensor decompo-

sition model outperforms traditional decompositions consistently and significantly for the

tag prediction problem. In addition, this low order tensor model has lower time complexity.

3.2 Problem Definition

Our research work focuses on how to provide a user with a ranked list of tags for a

special item. For example, Figure 3.1a shows an example of the user-tag-item-relationship.

50



Tag

0 1 1 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 1 1 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1 0 1 0

0 0 1 0

1 0 0 0

0 0 1 0

0 0 0 0

1 0 1 0

0 0 1 0

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 1 1

0 0 0 1

0 0 0 0

0 0 1 0

0 0 0 0

0 0 1 1

0 0 0 1

User

Item

(a) TensorX

Tag

0 1 1.16 0

0 0 0.49 0

0 1 -0.33 0

0 0 0.33 0

0 0 -0.66 0

0 1 1.16 0

0 0 0.49 0

0 1 -0.33 0

0 0 0.33 0

0 0 -0.66 0

Item

(b) Result

Figure 3.1: (a) An example of tensorX with 3 users and a post been masked. (b) The
predicted results.

If we want to recommend the tag for user 1 on item 3, we will maskthe column of user 1

item 3, which has been drawn as the yellow color and set this column as the missing values.

Then, we run tag recommendation algorithm which provide predicted values for each tag

that may be used by this user. Figure 3.1b shows these predicted values. Then, we sort

these values, and return the topN tags to the user. In this example, ifN is equal to 1, we

will return tag 2 to this user.

We formalize the notion of user-tag-item relationship and formulate the tag recom-

mendation problem. The tag dataset is a tuple ofT = (U, T, I, R), whereU , T andI are

the subset of users, tags and items respectively andR is a relationship betweenI,U andT ,

whichR ∈ IUT . For example,(i, j, k) ∈ R, that means userk mark itemi with the tagj.

For the tag recommendation, we will recommend for the special user-item pair(i, k) a list

of tagsT (i, k). We define these user-item pairs as the post as following.

Post(i, k) = {(i, k)|i ∈ I, k ∈ U, ∃j ∈ T : (i, j, k) ∈ I × T × U}

In the real application,T (i, k) is calculated by ranking on the set of tags by some

criterion and quality and then select the topn unused tags to recommend the user.

We list all the notations in our paper in table 3.2.
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Table 3.2: Symbols

Symbol Definition
X original tensor,X = XΩ +Xm

Xold the original training tensor
Xnew the fold-in tensor
XΩ elements with observed value inX
Xm elements with missing value inX
Ni the total number of items
Nj the total number of tags
Nk the total number of users

||X|| Frobenius norm,||X||2 =
∑Ni

i=1

∑Nj

j=1

∑Nk

k=1
X2

ijk

Xi++ Xi++ =
∑Nj

j=1

∑Nk
k=1

. X+j+,X++k similarly defined
Xi∗∗ Xi∗∗ = Xi++/NjNk. X∗j∗,X∗∗k are similarly defined

Xij+ Xij+ =
∑Nk

k=1
Xijk . X+jk,Xi+k are similarly defined

Xij∗ Xij∗ = Xij+/Nk. X∗jk ,Xi∗k are similarly defined

X+++ X+++ =
∑Ni

i=1

∑Nj

j=1

∑Nk
k=1

Xijk

X∗∗∗ x∗∗∗ = X+++/NiNtNk

ε the convergence factor,ε = 0.001

3.3 Low Order Tensor Decomposition

3.3.1 Motivation

Most social tagging data are very sparse. This refers to the relative number of nonze-

ros in the data are very low. For example, for the last.fm data, the percentage number of

actually assigned tags are0.1%.

We first mention an idea often used for improving rare statistics. Let us consider

a rare disease such as a certain type of cancer. Suppose our task is to count the rate of

its occurring per thousand people for a county. This rate will fluctuate significantly from

0th – O r d e r
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Figure 3.2: Tensor decomposition relationship
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county to county because the number of samples are too small.Instead, we can average

over a large population or a larger region (say both the county and its neighboring counties)

to improve the statistics.

Now we demonstrate how to improve the statistics for tensor decomposition. The

key idea is to use low-order polynomials. We will discuss the0-th, 1st, 2nd order decom-

positions. Figure 3.2 shows the relationship between each tensor decompositions.

Consider the zero-th order polynomial. We set

Yijk = d (3.1)

whered is a constant, and obtain the optimal solution by

min
d

J =
∑

ijk

(Xijk − d)2 (3.2)

Clearly,

J =
∑

ijk

(X2
ijk − 2Xijkd+ d2) =

∑

ijk

X2
ijk − 2

∑

ijk

Xijkd+NiNjNkd

Setting∂J/∂d = 0, we obtain the optimal solution

d = X∗∗∗, (3.3)

whereX∗∗∗ is defined in Table 3.2. Clearlyd is the average of the tensorX in all dimen-

sions. Interestingly, this clearly matches our intuition.

Consider the first order polynomials. We set

Yijk = ai (3.4)

and obtain the optimal solution by

min
ai

J =
∑

ijk

(Xijk − ai)
2 (3.5)
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Clearly,

J =
∑

ijk

(X2
ijk − 2Xijkai + a2i ) (3.6)

=
∑

ijk

X2
ijk − 2

∑

i

Xi++ai +NjNk

∑

i

a2i (3.7)

whereXi++, Xi∗∗ are defined in Table 3.2. Setting∂J/∂ai = 0, we obtain the optimal

solution

ai = Xi∗∗, (3.8)

Clearly,ai is the average overj, k dimensions. This significantly improve the statistics (by

a factor ofNjNk). We can do this for other dimension and the decomposition model of

Eq.(3.4) can be expanded to general 1st order terms

Yijk = ai + bj + ck (3.9)

The optimal solution of this model is given similarly by the averages of other dimensions.

Consider the second order polynomials. We set

Yijk = Uij (3.10)

and obtain the optimal solution by

min
Uij

J =
∑

ijk

(Xijk − Uij)
2 (3.11)

Clearly,J can be expanded as

∑

ijk

(X2
ijk − 2XijkUij + U2

ij) =
∑

ijk

X2
ijk − 2

∑

ij

Xij+Uij +Nk

∑

ij

U2
ij

whereXij+, Xij∗ are defined in Table 3.2. Setting∂J/∂Uij = 0, we obtain the optimal

solution

Uij = Xij∗, (3.12)
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i.e.,Uij is the average over thek dimension. This clearly improve the statistics. We can

do this for other dimension and the decomposition model of Eq.(3.10) can be expanded to

generic 2nd order terms

Yijk = Uij + Vik +Wjk (3.13)

The optimal solution of this model is given similarly by the averages of other dimensions.

3.3.2 Baseline Low Order Tensor Decomposition

From the above analysis, combing zero order Eq.(3.3) ,first order Eq.(3.8) and second

order Eq.(3.13), our low-order model of tensor decomposition is defined as

Yijk = ai + bj + ck + d+ Uij + Vik +Wjk (3.14)

Thus the model parameters areθ = (a, b, c, d, U, V,W ).

This model has a very important property that it’s optimal solution can be found in

closed form, as showing in the following theorem:

Theorem 5 The optimization of

min
θ

J =
∑

ijk

(Xijk − Yijk(θ))
2 (3.15)

has the optimal solution

d = X∗∗∗, ai = −Xi∗∗, bj = −X∗j∗, ck = −X∗∗k, (3.16)

Uij = Xij∗, Vik = Xi∗k, Wjk = X∗jk. (3.17)

or combined together

Yijk = X∗∗∗ −Xi∗∗ −X∗j∗ −X∗∗k +Xij∗ +Xi∗k +X∗jk (3.18)
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3.4 Missing Value Problem

In recommender systems for both rating data and social tagging data, there are miss-

ing values. Here we discuss the algorithm to deal with missing value in tensor and prove

its convergence.

The tensor missing value problem can formulated as

min
Y
‖X − Y ‖2Ω =

∑

(ijk)∈Ω

(Xijk − Yijk)
2 (3.19)

whereΩ represent the collection of tensor elements which have beenassigned values. The

missing value problem is to solve for the tensor decomposition modelY such as Eq.(3.14)

while only parts ofX are known.

We now describe the solution algorithm. First, we useAm to represent the elements

of tensorA whose values are missing. Therefore for any tensorA, A = AΩ + Am. Our

approach is to iteratively computeY 0, Y 1, Y 2, · · · by filling up the missing values and

solving the standard tensor decomposition

min
Y t+1
‖(XΩ + Y t

m)− Y t+1‖2 (3.20)

whereY t is the solution att-th iteration, andY t
m is the missing value part ofY t. Note that

XΩ = X is the input tensor with missing values.

We now prove that this iterative algorithm converges:

Theorem 6 The solution to the optimization of Eq.(3.20) satisfies

‖X − Y t‖2Ω ≥ ‖X − Y t+1‖2Ω (3.21)

for t = 0, 1, 2, · · · .

Proof. We have

‖X − Y t‖2Ω = ‖(X + Y t
m)− Y t‖2 ≥ ‖(X + Y t

m)− Y t+1‖2 (3.22)
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The first equality is due the definition of‖ · ‖Ω. The second inequality is due to the way

Y t+1 through Eq.(3.20). Furthermore, notingY t+1 = Y t+1
Ω + Y t+1

m we have

‖(X + Y t
m)− Y t+1‖2 = ‖(X − Y t+1)Ω + (Y t − Y t+1)m‖

2

= ‖X − Y t+1‖2Ω + ‖Y t − Y t+1‖2m ≥ ‖X − Y t+1‖2Ω (3.23)

Combining Eq.(3.22) and Eq.(3.23), we obtain Eq.(3.21). This completes the proof.

This theorem guarantees the convergence of the algorithm because the error goes

down monotonically and but remains bigger than zero:

‖X − Y 0‖2Ω ≥ ‖X − Y 1‖2Ω ≥ ‖X − Y 2‖2Ω ≥ · · · (3.24)

3.5 Tensor Fold-in Algorithm for New Users

As social networks become popular, each day, thousands of new users are added to

the system and the decompositions must be updated daily in anonline fashion. In this

section, we provide analysis of the new user problem, and present fold-in algorithms for

Tucker, ParaFac, and Low-order tensor decompositions proposed in last section.

3.5.1 Overview of Tensor Decomposition Models

In tensor decomposition, we useYijk to reconstruct/approximate the tensorXijk,

Xijk ≈ Yijk, (3.25)

Y is formed using several factors/parameters, and the optimal values of those parameters

are obtained by the following optimization,

min
θ

J =
∑

ijk

(Xijk − Yijk(θ))
2 (3.26)

Different forms ofYijk constitute different models. Here we list three most important and

widely used decomposition models in tag recommendation area.

57



����

�

�

� �

����

����

���

����

���	

����
�

(a) Tucker model

�

��

���� ����

���

����

���	
�

��������
�

(b) ParaFac model

���� ����

����

�

�

����

���

��

��

���

���	 ��

���

����

���

����

(c) LOTD model

Figure 3.3: Three tensor models: (a) Tucker Model; (b) ParaFac Model; (c) LOTD Model.

Tucker Model [24]: It can be exemplified in Fig. 3.3a. And the model parameters

areUni×P , Vnj×Q, Wnk×R, SP×Q×R. Note that matrix sizes are shown as subscripts. The

optimal values of those parameters are obtained by the following optimization,

min J =

ninjnk
∑

ijk

(Xijk −
P
∑

p=1

Q
∑

q=1

R
∑

r=1

UipVjqWkrSpqr)
2, (3.27)

ParaFac Model [23]: It can be exemplified in Fig. 3.3b. And themodel parameters

areUni×R, Vnj×R, Wnk×R. The optimal values of those parameters are obtained by the

following optimization,

min J =

ninjnk
∑

ijk

(Xijk −
R
∑

r=1

UirVjrWkr)
2, (3.28)

Low-order Tensor Decomposition Model: Both Tucker and ParaFac decomposition

applied third order interpolation (three factors multiply), while Low-order Tensor Decom-

position (LOTD) uses zeroth order, first order and second order interpolation. This low-

order scheme has better performance for sparse tensor data,because it has lower chance to

58



overfit the extremely sparse tensor data than higher order schemes. LOTD can be exem-

plified in Fig. 3.3c. The optimal values of the parameters areobtained by the following

optimization,

min J =

NiNjNk
∑

ijk

[Xijk − (d+ ai + bj + ck + Uij + Vik +Wjk)]
2, (3.29)

This model has the following closed form solution,

d = X∗∗∗, ai = −Xi∗∗, bj = −X∗j∗, ck = −X∗∗k,

Uij = Xij∗, Vik = Xi∗k, Wjk = X∗jk

(3.30)

where the notations such asX∗∗∗, Xi∗∗ are explained in Table 3.2.

3.5.2 Fold-in Algorithms

As mentioned above, a large number of new users log on the social tagging systems

everyday. To deal with the problem of recommending personalized tags to those new users

efficiently, we propose fold-in methods for different tensor decompositions. This paper

focuses on fold-in new users into the system.

Tensor factors ofXold are computed using models in last section. Based on those

factors, we can fold inXnew without decomposingX = (Xold, Xnew) all over again to get

the prediction values ofXnew.

3.5.2.1 Tucker Decomposition Fold-in Algorithm

For Tucker, the fold-in process is shaded in Fig. 3.3a. The shaded part ofX rep-

resents new usersXnew. Among model parameters,(U, V, S) remain unchanged, and the

size ofW in Eq. 3.27 will change fromnk × R to (nk + l)× R, wherel is the number of
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new users. Then we splitW(nk+l)×R as the following,W old remains unchanged, so our task

here is to computeW new.

W(nk+l)×R = (W old
nk×R,W

new
l×R )

W old = (W1,W2, · · · ,Wnk
)

W new = (Wnk+1,Wnk+2, · · · ,Wnk+l).

(3.31)

Theorem 7 SubstitutingX = (Xold, Xnew) andW = (W old,W new) into Eq. 3.27, while

fixing the old parameters, the optimalW new is obtained by the following algorithm.

(1) Rearrange the inputXnew as a matrix

Xnew = (vec(Xnk+1), · · · , vec(Xnk+l)), (Xk)ij = Xijk, (3.32)

(2) Rearrange the computed core-tensorS as a series of matrices

S = (S1, · · · , SR), (Sr)pq = Spqr (3.33)

(3) Compute the followingninj-by-R matrix

A = (vec(A1), · · · , vec(AR)), Ar = USrV T , (3.34)

(4)W new is given by

W new = XnewTA(ATA)−1. (3.35)

3.5.2.2 ParaFac Fold-in Algorithm

For ParaFac, the fold-in process is shaded in Fig. 3.3b. The shaded part ofX repre-

sents new usersXnew. Among model parameters,(U, V ) remain unchanged andW needs

to be split as Eq.3.31.

Theorem 8 SubstitutingX = (Xold, Xnew) andW = (W old,W new) into Eq. 3.28, while

fixing the old parameters, the optimalW new is obtained by the following algorithm.
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(1) Rearrange inputXnew as a matrix

Xnew = (vec(Xnk+1), · · · , vec(Xnk+l)), (Xk)ij = Xijk, (3.36)

(2) Compute the following(ninj)-by-R matrixC, whose element is

C[ij]r = UirVjr, (3.37)

(3)W new is given by

W new = XnewTC(CTC)−1. (3.38)

3.5.2.3 LOTD Fold-in Algorithm

For LOTD, The fold-in process is shaded in Fig. 3.3c. The shaded part ofX rep-

resents new usersXnew. Among model parameters,(a, b, d, U) remain unchanged and

c, V,W need to be split the same way asW does in Eq.3.31.cold, V old,W old remains un-

changed. Our task is to computecnew, V new,W new.

Theorem 9 SubstitutingX = (Xold, Xnew) andc = (cold, cnew), V = (V old, V new),W =

(W old,W new) into Eq. 3.29, while fixing the old parameters, the optimalcnew, V new,W new

is obtained by the following algorithm.

(1) Compute a new tensorA as follows,

Aijk = Xnew
ijk − (d+ ai + bj + Uij) (3.39)

(2) Computecnew, V new,W new as follows,

ck = −A∗∗k, Vik = Ai∗k, Wjk = A∗jk (3.40)

3.6 Experiment Results

We carried out experiments on several real world datasets toevaluate the performance

of our methods.
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DataSets: Our experiments use the dataset in table 3.1.

Many recommendation algorithms produce the bad recommendation results on the

”long tail” of users who marks only few items. All of the recommendation methods are

based on the statistic method. If the data sample are very less, any method will not receive

any good result. Thus, we restrict the evaluation on the ”dense” part of the tag dataset

following the traditional approach. For each dataset, we introduce how we prune these

dataset.

Last.fm DataSet[25]: Last.fm dataset consists of web pagescrawled from the Last.fm

web site which is a social media systems that provide the personalized media for its users

and also promise the users to add the tags on that media. Thesedataset is crawled in the

first half of 2009. We first choose the active users which mark more than 2400 tags but

less than 5000 times on the items. The reason for us to delete the users who marks the tags

more than 5000 times is that these users have a great chance tobe a fake user. Then, we

select the tags which is used by 1000 times but less than 4000 times. In the end, we choose

the items which is marked more than 88 times but less than 3000times.

MovieLens DataSet[26]: MovieLens dataset collect the item-tag-user information

from the online movie recommender service MovieLens. We first choose the active users

which mark more than 30 tags but less than 600 times on the items. Then, we select the

tags which is used by 30 times but less than 1000 times. In the end, we choose the items

which is marked more than 25 times but less than 1000 times.

Bibsonomy DataSet[27]: The bibsonomy dataset is download from bibsonomy.org.

We first choose the active users which mark more than 1000 tagsbut less than 2600 times

on the items. Then, we select the tags which is used by 420 times but less than 2000 times.

In the end, we choose the items which is marked more than 76 times but less than 1000

times.
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3.6.1 Evaluation Strategy and Metrics

We use the same evaluation protocol in [20] [22]. From the input tensor, for every

user, we randomly mask one post, i.e., this post become missing values. (If there is only

one post in this user, we don’t move that post.) This forms thetensor on which we run

various recommendation algorithms to fill up the masked values. The filled-up values are

the predictions.

We measure the prediction quality using traditional Precision-Recall methods in a

top-N fashion. For each post(i, k), we sort the predicted values,Nj values forNj tags.

We pickN = 1, 2, 3, · · · , 10 top values and asset that the tags associated with these picked

values are predicted as “positive”. We assess the predictedtags with the known information

which have been masked out. The precision and recall are defined as

Precision(Post(i, k)) =
|t ∈ Top(i, k, N) ∩ t ∈ Post(i, k)|

N
(3.41)

Precision(Ttest, N) =
Precision(Post(i, k))

|Post|
(3.42)

Recall(Post(i, k)) =
|t ∈ Top(i, k, N) ∩ t ∈ Post(i, k)|

| ∩ t ∈ Post(i, k)|
(3.43)

Recall(Ttest, N) =
Recall(Post(i, k))

|Post|
(3.44)

F1(Ttest, N) =
2 · Precision(Ttest, N) · Recall(Ttest, N)

Recall(Ttest, N) +Recall(Ttest, N)
(3.45)

Clearly, at smallN (less tags picked), precision is high and recall is low; At higherN

(more tags picked) recall is higher and precision is lower. This forms the well-known ROC

curve, as shown in Figures 3.4-3.6.

All the parameters for the different algorithms in these experiments are set according

to the original papers. We note that many recommendation algorithm requires initialization

of the missing values (masked out values). In our experiments, we use the average value of

all 3 dimensions for initialization. This is better than using zero as for initialization.
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Figure 3.4: The Precision-Recall curve for the Last.fm dataset

3.6.2 Performance of the LOTD Model

We compare the prediction quality of LOTD to the other models. Figure 3.4, 3.5 and

3.6 show the comparison to (1) FolkRank, (2) PageRank, (2) Pairwise decomposition, (4)

Tucker Decomposition, (5) Parafac Decomposition, (5) Popular Tags, together with our (6)

1st order LOTD, (7) 2nd order LOTD, (8) 3rd order LOTD methods(3rd order is illustrated

in Figure 3.2).

The experiment results indicate : (A) In general, the 2nd order LOTD method has

the best precision-recall curves for all datasets. (B) The performances of PageRank,Popular

Tags and First Order Tensor decomposition is much lower thanthe other methods. The rea-

son is these three methods only capture the global information and recommend different

users the same tag sets. (C) Tucker and Parafac method are thetraditional tensor decompo-

sition methods, but the accuracy of these two methods are lower than the other factorization

models.

3.6.3 Performance of the Fold-in Models

Considering the possible adoption of the social tagging prediction in real systems, a

new user registers and logins the system and assigns some tags to some items. Based on
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Figure 3.5: The Precision-Recall curve for the MovieLens dataset
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Figure 3.6: The Precision-Recall curve for the bibsonomy dataset

this information, the system makes a prediction/recommendation to this new user, that is,

produces a ranked list of tags to this user. There could be multiple predictions occurring at

the same time. For evaluation part, we evaluate the quality of the ranked list of tags. For

example, if we want to provide userk a ranked list of tags for itemi, we first mask the

tagging activities regarding to userk towards itemi and set them as missing values, then

tensor fold-in algorithms predict these missing values. Wedefine a user-item pair as a post.

10-fold cross-validation is adopted in our all experiments. For each dataset listed

above, we randomly partition the input tensor into 10 parts.Each part is retained as the

testing dataXnew (fold-in tensor) for once. For every user inXnew, we randomly mask one
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post, i.e., this post becomes missing values. This forms thetensor defined asXnew
masked on

which we run various fold-in algorithms to fill up the masked values. All the rest parts of

input tensor constitute a training tensor, which isXold. For each time, we use tensor factors

of Xold andXnew
masked to predict the missing values inXnew

masked; the average of precision and

recall results is the final prediction result.

For each fold-in prediction, we use traditional Precision-Recall methods in a top-N

fashion. For each post(i, k), we sort the predicted values. We pickN = 1, 2, 3, · · · , 10 top

values and return the corresponding tags associated with these picked values.

Last.fm DataSet[25]: Last.fm is a social media system that provides the personalized

media for its users and also promises the users to add the tagson that media.

Subset A: SubsetA of Last.fm dataset has 203 items, 241 tags, 425 users and the

Relative NNZ (density) is0.11%.

Subset B: SubsetB has 100 items, 157 tags, 280 users and the Relative NNZ is

0.27%.

MovieLens DataSet[26]: MovieLens dataset collects the item-tag-user information

from the online movie recommender service MovieLens.

Subset A: SubsetA of MovieLens dataset has 345 items, 369 tags, 465 users and the

Relative NNZ is0.0175%.

Subset B: SubsetB has 98 items, 199 tags, 263 users and the Relative NNZ is

0.078%.

Bibsonomy DataSet[27]: The bibsonomy dataset is downloaded from bibsonomy.org.

Subset A: SubsetA of Bibsonomy dataset has 362 items, 116 tags, 361 users and the

Relative NNZ is0.065%.

Subset B: SubsetB has 117 items, 101 tags, 204 users and the Relative NNZ is

0.24%.
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(b) MovieLens data: subsetA
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(c) Bibsonomy data: subsetA
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(d) Last.fm data : subsetB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Recall vs Precision for Movielens dataset 

Recall

P
re

ci
si

on

 

 
Tucker Fold in
ParaFac Fold in
LOTD Fold in

(e) MovieLens data: subsetB
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Figure 3.7: Precision-Recall curves for three tensor Fold-in methods on three datasets:
from left to right: Last.fm data, MovieLens data, Bibsonomydata. The performance gap
between LOTD fold-in and ParaFac/Tucker fold-in methods increases from the smaller
subsetB to larger subsetA.

We compare the prediction qualities of the three fold-in algorithms. Figure 3.7a, 3.7b

and 3.7c show the comparison between (1) Tucker Fold-in, (2)ParaFac Fold-in, (3) LOTD

Fold-in on subsetA of each dataset, and Figure 3.7d, 3.7e and 3.7f show the comparison

on subsetB of each subset.

The experiment results indicate: (A) LOTD Fold-in method has the best precision-

recall curves for all datasets, because of the sparsity of real world dataset. (B) Tucker and

ParaFac fold-in methods are based on the traditional tensordecomposition models, and they

overfit these sparse tensor data. The results are consistentwith the results in last section,

in which, the original LOTD model gains better performance than the original Tucker and

ParaFac decompositions. (C) For each dataset, we notice that the difference between LOTD

fold-in and Tucker/ParaFac fold-in methods on subsetA is much bigger than that of subset
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B, which means that LOTD fold-in can gain relatively much better performance than the

other two fold-in methods on sparser dataset. It is illustrated again that LOTD fold-in

method is targeted at sparse data.

3.6.3.1 Efficiency of the Proposed Fold-in Algorithms

Table 3.3: Time for folding in one new user vs. original algorithm

Alg. Time for one new user(sec)
Tucker 33
ParaFac 16000
LOTD 21

Tucker Fold-in 0.72
ParaFac Fold-in 0.0024
LOTD Fold-in 0.00077

Table 3.3 gives the runtime of the fold-in methods and original methods on Last.fm

dataset. As the original algorithms, the same convergence tolerance factorε = 0.001

is used. We can see that the consuming time for the fold-in methods is much less than

the corresponding original algorithm, because we don’t need to calculate the whole ten-

sor decomposition again. We can see that LOTD Fold-in methodis much faster than the

traditional Tucker and ParaFac Fold-in methods.

3.7 Conclusion

In this chapter, we present a systematic study of low-order tensor decomposition

approach that are specifically targeted at the very sparse data problem in tagging rec-

ommendation problem. We demonstrate that low-order polynomials are uniquely capable

of enhancing statistics and avoids overfitting than traditional tensor decompositions such

as Tucker and Parafac decompositions. We performed extensive experiments on several
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datasets and compared with six existing methods. Experimental results demonstrate that

our approach outperform existing approaches.

We also propose three tensor fold-in techniques to deal withnew user problem. The

tensor factors coming fromXold carry the historic information and also the similar users

activities. While factors fromXnew indicate the new users’ personalized preference and

features those can help to detect their potential activities. Whenl gets bigger, social tag-

ging system can combine currentXnew into Xold, and then reproduce the decomposed

factors. With new decomposed factors, which carry more latest information and trends,

the system can do online recommendations again. The fold-intechniques proposed in this

paper have fast online performance, requiring just a few simple matrix operations for new

users. Meanwhile, the experiment results demonstrate thatthe fold-in methods can pro-

vide comparable prediction quality. Especially, LOTD fold-in method based on Low-order

Tensor Decomposition model is specifically targeted at the sparsity challenge in tag recom-

mendation systems, because low-order polynomials can enhance the statistics of the sparse

tagging datasets. Therefore, it can gain better predictingaccuracy than the other two fold-in

methods, which are based on two traditional tensor decomposition models. The traditional

tensor methods (Tucker and ParaFac) obviously overfit the sparse tensor decompositions.

The fold-in methods can help social tagging recommendationsystems achieve high scala-

bility while providing good predictive accuracy.
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CHAPTER 4

Robust Tucker Tensor Decomposition For Effective Image Representation

4.1 Introduction

The development of online social media provides tons of images and videos every-

day, which makes image or video storage and denoising problems two important and urgent

research topics.

In a typical image storage problem, an image is represented as a 1-d long feature

vector, and then this long vector denotes one data point in a high dimensional space. But

as we all know, an image can be naturally represented as a 2-d matrix, with each element

denoting the feature value on that specific spot. The 1-d vector denotation of an image

makes it convenient for subspace learning, such as principal component analysis (PCA)[28]

and linear discriminant analysis (LDA)[29] used in face recognition area.

Recently, some of other subspace learning algorithms applied on 1-d vector data

are studied, such as locality preserving projection (LPP)[30] and localized linear models

(LLM)[31], which are proven to be efficient. However, the 1-dvector denotation strategy as

a whole ignores the neighborhood feature information within one image, while 2-d matrix

denotation retains the important spatial relationship between features within one image.

Therefore, a lot of tensor decomposition techniques are studied in computer vision

applications. For example, Shashua and Levine [32] adoptedrank-one decomposition to

represent images, which was described in detail in [33]. Yang et al. [34] introduced a two

dimensional PCA (2DPCA), in which, one-side low-rank approximation was applied. Gen-

eralized Low Rank Approximation of Matrices (GLRAM) was proposed by Ye et al. [35],

and the method projected the original images onto one two dimensional space. Ding and Ye
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proposed a two dimensional singular value decomposition (2DSVD) [36], which computes

principal eigenvectors of row-row and column-column covariance matrices. Other tensor

decomposition methods are also proposed and some of them areproven to be equivalent

to 2DSVD and GLRAM in [37]. High order singular value decomposition (HOSVD) [38]

were proposed for higher dimensional tensor by Vasilescu and Terzopoulos [39].

In above tensor analysis algorithms, an image is denoted by a2-d matrix or second

order tensor as itself, which retains the neighborhood information within the image itself,

and then a set of images can be denoted by a third-order tensor. They minimize the sum

of squared errors, which is known as frobenious norm, in which large errors due to outliers

and feature noises such as occlusion, after being squared, dominate the error function and

force the low rank approximation to concentrate on these fewdata points and features,

while nearly ignoring most of other data points.

Over the years, there are many different approaches proposed to solve this problem

both on 1-d vector data and 2-d matrix data. [40] [41] [42] [43] [44] [45] [46] [47] [48].

The approach using pureL1-norm is used widely because it offers an simple and elegant

formulation [43] [44] [45] [47] to suppress the impact coming from noisy data or features.

A difficulty of pureL1-based methods is that the optimization tends to be hard. Sev-

eral computational methods have been proposed [43] [44] [45] [47]. These methods are

either complicated or difficult to scale to large problems.

In this chapter, we propose a robust Tucker tensor decomposition (RTD) model to

deal with images occluded by noisy information, and also propose a simple yet computa-

tionally efficient algorithm to solve theL1-norm based Tucker tensor decomposition opti-

mization. This method also provides some insights to the optimization problem such as the

Lagrangian multiplier and KKT condition. We also carry out extensive experiments in face

recognition, and verify the robustness of the proposed method to image occlusions. Both

numerical and visual results demonstrate the effectiveness of our proposed method.
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4.2 Robust Tucker Tensor Decomposition (RTD)

Standard Tucker tensor decomposition [38] uses reconstructed tensorY to approxi-

mate the original tensorX,

Yijk =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

UipVjqWkrSpqr (4.1)

whereY is a third order tensor,Y ∈ ℜni×nj×nk , U ∈ ℜni×P , V ∈ ℜnj×Q, W ∈ ℜnk×R,

S ∈ ℜP×Q×R is a core tensor, which couples different 3rd order multi-linear polynomials.

Therefore, mathematically,Y can be expressed as the following (Eq.(4.2)), which simpli-

fies the tensor constructing expressions in next sections.

Y = U ⊗1 V ⊗2 W ⊗3 S (4.2)

Tucker tensor decomposition has the following cost function [33],

min
U,V,W,S

‖X − Y ‖2F =

ni
∑

i=1

nj
∑

j=1

nk
∑

k=1

(

Xijk − Yijk

)2

s.t. UTU = I, V TV = I,W TW = I

(4.3)

It is well-known that the solution to the above optimizationis given by high order singular

value decomposition (HOSVD) [38], which will be introducedin the algorithm part. As

we can see, the standard Tucker tensor decomposition uses Frobenius norm to decompose

the original tensor. Frobenius norm is known for being sensitive to outliers and feature

noises, because it sums the squared errors. While,L1-norm just sums the absolute value

of error, which reduces the influence of the outliers comparing to the Frobenius norm.

So the more robust against outlier version of Tucker tensor decomposition is formulated

usingL1-norm. L1-norm of a third order tensorA with size ni × nj × nk is defined
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as‖A‖1 =
∑ni

i=1

∑nj

j=1

∑nk

k=1 |aijk|. Therefore, the robust Tucker tensor decomposition

(RTD) is formulated as,

min
U,V,W,S

‖X − Y ‖1 =
ni
∑

i=1

nj
∑

j=1

nk
∑

k=1

∣

∣

∣
Xijk − Yijk

∣

∣

∣

s.t. UTU = I, V TV = I,W TW = I

(4.4)

Illustration: before going any further, we want to give a glance at the denoising effect

by RTD first. Figure 4.1 and Figure 4.2 illustrate the reconstructed effect on AT&T data set,

with existence of two different occlusion strategies, which will be explained in details in

the experiment part. In both figures, images of the second rowrepresent the reconstructed

images by RTD and those of the fourth row represent images reconstructed by Tucker

tensor decomposition. In both noise and corruption cases, Robust Tucker decomposition

gives clearly better reconstruction.

4.3 Efficient Algorithm for Robust Tucker Tensor Decomposition

The standard Tucker decomposition can be efficiently solvedusing the HOSVD algo-

rithm [38]. In this chapter, we propose an efficient algorithm to solve robust Tucker tensor

decomposition. We employ the Augmented Lagrange Multiplier (ALM) method [49] to

solve this problem. ALM has been successfully used in otherL1 related problems [50].

One important finding is that ALM is extremely well suited to this RTD model. The

algorithm iteratively solves two sub-problems: One is a simplified LASSO (see Eq.(4.7))

with simple exact solution; Another is a standard Tucker tensor decomposition of Eq.(4.3).

This enables us to utilize existing software to efficiently solve the RTD.
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Outline of the algorithm: we first rewrite the objective function of robust Tucker tensor

decomposition equivalently as

min
U,V,W,S,E

‖E‖1

s.t. E = X − U ⊗1 V ⊗2 W ⊗3 S

UTU = I, V TV = I,W TW = I

(4.5)

Now we use ALM approach by enforcing the equality constraintE = X − U ⊗1

V ⊗2 W ⊗3 S using Lagrange multipliers (matrixΛ) and quadratic penalty. Then ALM

becomes to solve the following problem,

min
E,U,V,W,S

‖E‖1 + 〈Λ, X − U ⊗1 V ⊗2 W ⊗3 S − E〉

+
µ

2
‖X − U ⊗1 V ⊗2 W ⊗3 S − E‖2F

s.t. UTU = I, V TV = I,W TW = I

(4.6)

where scalarµ is the penalty parameter,〈P,Q〉 is defined as
∑

ijk PijkQijk.

The ALM is an iteratively updating algorithm. There are two major parts, solving the

sub-problems and updating parameters, which will be presented in the following sections.

4.3.1 Solving the Sub-optimization Problems

The key step of the algorithm is solving the two sub-programsof Eq.(4.6) for each

set of parameter values ofΛ, µ. Fortunately, this can be solved in closed form solutions for

E and group of (U, V,W, S).

A: solve forE. First, we solveE while fixingU , V , W andS. From Eq.(4.6), the objective

function becomes

min
E
‖E‖1 +

µ

2
‖E − P‖2F (4.7)

whereP is a constant matrix independent ofE:

P = X − U ⊗1 V ⊗2 W ⊗3 S +
Λ

µ
. (4.8)
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This problem has closed form solution

E∗
ijk = sign(Pijk)max(|Pijk| − 1/µ, 0). (4.9)

B: solve for (U, V,W, S). In this step, we solveU , V , W andS together while fixingE.

From Eq.(4.6), the objective function becomes

min
U,V,W,S

µ

2
||Q− U ⊗1 V ⊗2 W ⊗3 S||

2
F ,

s.t. UTU = I, V TV = I,W TW = I

(4.10)

where

Q = X −E +
A

µ
; (4.11)

This is exactly the usual Tucker tensor decomposition. Thisis solved by the known

HOSVD algorithm [38]. HOSVD is an iterative algorithm. Given initial guess ofU, V,W

we updateU, V,W until convergence.

U is given by theP eigenvectors with largest eigenvalues ofF , where

Fii′ =
∑

jj′kk′

QijkQi′j′k′(V V T )jj′(WW T )kk′ (4.12)

V is given by theQ eigenvectors with largest eigenvalues ofG, where

Gjj′ =
∑

ii′kk′

QijkQi′j′k′(UUT )ii′(WW T )kk′ (4.13)

W is given by theR eigenvectors with largest eigenvalues ofH, where

Hkk′ =
∑

jj′ii′

QijkQi′j′k′(V V T )jj′(UUT )ii′. (4.14)

These steps are repeated until convergence. After(U∗, V ∗,W ∗) are obtained,S is given by

Spqr =
∑

ijk

QijkUipVjqWkr. (4.15)
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4.3.2 Updating Parameters

In each iteration of ALM, after obtaining consistentE and (U, V,W, S), the parame-

tersΛ andµ are updated as the following

Λ ⇐ Λ + µ(X − U ⊗1 V ⊗2 W ⊗3 S −E) (4.16)

µ ⇐ µρ (4.17)

whereρ > 1 is a constant.

The complete algorithm is described in Algorithm 1.

Input : X, P , Q, R

Output : U, V,W, S

Initialize µ = 1/||X||F , ρ = 1.01, U0, V0,W0

repeat
ComputeE using Eq.(4.9)

ComputeU, V,W, S using Eq.(4.12 - 4.15)

Λ = Λ + µ(X − U ⊗1 V ⊗2 W ⊗3 S − E)

µ = min(µρ, 1010)

until Converge

Algorithm 7: RTD Algorithm

We initialize (U, V,W ) either by random or by the solution to the standard Tucker

decomposition. In all these cases the ALM algorithm did converge. The converged solu-

tions from different initialization are very close to each other[51], and there are no visible

differences in the reconstructed images.
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Convergence Analysis: by taking derivative of the Lagrangian function w.r.t.E, we obtain

the Karush-Kuhn-Tucker (KKT) condition,

Λijk =















sign(Eijk) if Eijk 6= 0

∂|Eijk| if Eijk = 0

(4.18)

where∂|Eijk| ∈ [−1, 1] is the subgradient of functionf(x) = |x|.

here we viewΛijk as Lagrangian multipliers. We now verify the KKT condition

of our algorithm. The following are examples from AT&T dataset, whose tensor size is

56x46x400. More detailed dataset information will be introduced in the experiment part.
At convergence, the first25 elements of computedEijk are,

E =

























0.0012 −0.0003 0.0000 −0.0005 0

0.0005 −0.0005 0 −0.0007 −0.0011

−0.0001 0 −0.0005 −0.0008 0

−0.0002 0 −0.0015 −0.0001 0

0 0 −0.0012 0 0.0001

























The corresponding25 elementsΛijk are

Λ =

























1.0000 −1.0000 1.0000 −1.0000 0.2806

1.0000 −1.0000 −0.8213 −1.0000 −1.0000

−1.0000 −0.5164 −1.0000 −1.0000 0.3976

−1.0000 −0.2643 −1.0000 −1.0000 −0.4540

0.0630 0.1762 −1.0000 0.3274 1.0000

























We see that the above KKT condition are satisfied for every elements. WhenEijk is

nonzero,Λijk is its sign. WhenEijk is zero,Λijk is its subgradient (a value in[−1, 1]).

4.4 Efficient Algorithm forL1-PCA

In standard computer vision problems, each image is converted to a vector and a set

of images is represented by a matrix. Here PCA is mostly wide used. The advantage of

tensor approach is that each image retains its 2D form in tensor representation and thus

tensor analysis retains more information on image collections.
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We need to compare the tensor approaches with matrix approaches. Thus we imple-

ment the algorithm for computingL1PCA.L1PCA is formulated as the following

min
U,V
‖X − UV ‖1 =

n
∑

j=1

p
∑

i=1

|(X − UV )ij|, (4.19)

whereX = (x1, · · · , xn) containn images.X ∈ ℜp×n wherep = rc for r-by-c images.

The factor matricesU, V have sizes ofU ∈ ℜp×k, V ∈ ℜk×n.

Similarly with solving RTD, Eq.(4.19) can be rewritten equivalently as

min
E,U,V

‖E‖1, s.t. E = X − UV, (4.20)

ALM solves a sequence of sub-problems

min
E,U,V

‖E‖1 + 〈A,X − UV − E〉+
µ

2
||X − UV −E||2F (4.21)

where matrixA is the Lagrange multipliers.

A: solve forE. First, we solveE while fixing U andV . From Eq.(4.21), the objective

function becomes

min
E
‖E‖1 +

µ

2
||E − (X − UV +

A

µ
)||2F (4.22)

This problem has closed form solution:

E∗
ij = sign(Pij)(|Pij| − 1/µ)+, P = X − UV +

A

µ
. (4.23)

B: solve forU, V . Next we solveU andV together while fixingE. From Eq.(4.21), the

objective function becomes

min
U,V
〈A,X − UV − E〉+

µ

2
||X − UV −E||2F . (4.24)

Which is is equivalent to

min
U,V

µ

2
||Q− UV ||2F , Q = X −E +

A

µ
; (4.25)
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The solution is given by standard PCA. Denote the singular value decomposition (SVD) of

Q as

Q = FΣGT (4.26)

Only first k largest singular values and associated singular vectors are needed. Then the

solution ofU, V are given by

U = Fk,

V = ΣkG
T
k

(4.27)

In each iteration of ALM, after obtaining consistentE and (U, V ), the parametersA andµ

are updated as the following

A ⇐ A+ µ(X − UV − E) (4.28)

µ ⇐ µρ (4.29)

whereρ > 1 is a constant.

4.5 Experiments

In this section, three benchmark face databases AT&T, YALE and CMU PIE are used

to evaluate the effectiveness of our proposed RTD tensor factorization approach.

4.5.1 Data Description

The properties of the three data sets we used are summarized in Table 4.1, and the

detailed information of each data set is given as the following.

AT&T: The AT&T face data contains 400 upright face images of 40 individuals,

collected by AT&T Laboratories Cambridge. Each image is resized to 56x46 pixels in this

experiment.

YALE: There are totally 38 classes (10 subjects in original database with 28 subjects

in the extended database) under 576 viewing conditions (9 poses with 64 different illu-
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Table 4.1: Description of data sets

Data set #imagesnk #Dimensionsni × nj #ClassK
AT&T 400 56× 46 40
YALE 1984 48× 42 31
CMU PIE 680 32× 32 68

Table 4.2: Performance comparison (storage, noise-free error and classification accuracy)
on AT&T data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 1,030,400 4.7269 × 104 0.6050
RTD 19,672 3.0457 × 104 0.7125
L1PCA 119,040 3.1435 × 104 0.7025
Standard Tensor 19,6723.3834 × 104 0.6775
Standard PCA 119,0403.4959 × 104 0.6675

mination conditions). 64 images in different illuminationconditions from 31 classes are

selected for our experiment, so there are totally 1984 images.

CMU PIE: CMU PIE is a face database of 41,368 images of 68 people, collected

by Carnegie Mellon Robotics Institute between October and December 2000. Each image

is resized into 32x32 pixels in our experiment. We randomly select 10 images from each

class with different combinations of pose, face expressionand illumination condition.

4.5.2 Corrupted Images

For evaluation purpose, we generate occluded images from the above three image

data sets. One added advantage of this approach is that we cancompare the reconstructed

images with the original uncorrupt images to assess the effectiveness of removing the cor-

ruption (occlusion).

We use two type of occlusions added to the original input images to evaluate the ef-

fectiveness of proposed RTD tensor method against outliers. First, square block occlusions

with different size are added. The occlusion is generated asthe following, given the size
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Table 4.3: Performance comparison(storage, noise-free error and classification accuracy)
on Yale data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 3,999,744 6.9070 × 104 0.3766
RTD 64,204 4.3685 × 104 0.3896
L1PCA 124,000 4.6886 × 104 0.3311
Standard Tensor 64,2044.8164 × 104 0.3831
Standard PCA 124,0005.0806 × 104 0.2989

Table 4.4: Performance comparison(storage, noise-free error and classification accuracy)
on CMU PIE data with block occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 696,320 2.4501 × 104 0.4735
RTD 47,840 0.8578 × 104 0.5294
L1PCA 115,872 1.0388 × 104 0.5279
Standard Tensor 47,8401.7610 × 104 0.4926
Standard PCA 115,8721.8419 × 104 0.4882

of occlusiond, we randomly pick up thed × d block position for each image, and we set

pixels in thisd × d area to zero. There are some examples of occluded images using this

method in Figure 4.1.

Second, mixed occlusions with 3 different corrupting methods are added to the origi-

nal images. First corruption methods are called cross occlusions, and the cross has specified

lengthl and widthw. For each class, we randomly selectm images to add cross occlusions.

We also randomly select the position of the cross, and set thepixels in the cross to the aver-

age pixel value of the whole data set. To make the occlusions realistic and diversified, for

each class, on the basis of cross occlusions, we randomly selectm images to add square

block occlusions introduced above. In the end, rectangularocclusions are added. Similarly,

for each class, we randomly selectm images to add rectangular occlusions. We randomly

set the sizes of each rectangle within a permitted range [a, b], and within each rectangle,
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Table 4.5: Performance comparison(storage, noise-free error and classification accuracy)
on AT&T data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 1,030,400 2.9635 × 104 0.8725
RTD 19,672 1.8536 × 104 0.9450
L1PCA 119,040 1.9924 × 104 0.9325
Standard Tensor 19,6722.4942 × 104 0.8875
Standard PCA 119,0402.5723 × 104 0.8800

Table 4.6: Performance comparison(storage, noise-free error and classification accuracy)
on Yale data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 3,999,744 4.5618 × 104 0.3725
RTD 64,204 3.3482 × 104 0.4134
L1PCA 124,000 3.6471 × 104 0.3916
Standard Tensor 64,2044.1843 × 104 0.3678
Standard PCA 124,0004.0981 × 104 0.3714

some of the pixels are set to 0, and the rest are set to 1. The first row in Figure 4.2 demon-

strates this mixed occlusion method.

Figure 4.1 and Figure 4.2 only show 1 person of 400 people in AT&T data set due to

space limitation. For AT&T data set, an8 × 8 occlusion is added to every image of each

class in the first type of occlusion. For the second type of occlusion, within each class of

images, we first randomly selectm = 2 images to add the cross, and for each selected

image the length of cross isl = 22 and width isw = 3. Second, we randomly select

m = 2 images to add the square block. Third, we randomly selectm = 2 images to add

the rectangle, and for each added rectangle, the sizes are random within a ranger of [a, b]

= [4, 10]. Similarly, for Yaleb data set,d = 8 andl = 20, w = 3, m = 12, [a, b] = [4, 10].

For CMU PIE data set, we setd = 6 andl = 15, w = 3, m = 3, [a, b] = [3, 10].
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Table 4.7: Performance comparison(storage, noise-free error and classification accuracy)
on CMU PIE data with mixed occlusion

Methods Storage Noise-free Error Class ACC
CorruptedX 696,320 2.4532 × 104 0.4562
RTD 47,840 1.7856 × 104 0.5332
L1PCA 115,872 1.8442 × 104 0.5106
Standard Tensor 47,8402.1427 × 104 0.4762
Standard PCA 115,8722.1019 × 104 0.4632

4.5.3 Experiment Results

In this section, we compare the performance of our RTD methodwith standard

Tucker tensor method,L1-norm PCA method (L1PCA) and standard PCA method at stor-

age space, the noise reduction effect and classification accuracy.

One of the biggest advantage of our proposed RTD method is to save image storage

space, because for Tucker tensor decomposition methods, toreconstruct the images, we

only need to storeU , V andW , the core tensorS can be calculated usingU , V , W . The

sizes ofU , V , W areni × P , nj × Q, nk × R, respectively. So the storage space for our

L1-norm tensor are

ni × P + nj ×Q+ nk ×R

While for PCA based methods,U andV need to be stored, and the sizes ofU andV are

p × k andk × n respectively, and herep = ni × nj andn = nk. So the storage space for

PCA based methods would be

ni × nj × k + k × nk

The parameters we used in our experiment for each data set is given in Table 4.8. Accord-

ingly, the needed storage space for each method on every datasets can be calculated, which

are given in Table 4.2, 4.3, 4.4. Noise-free ReconstructionError: letX be the original

images andO be the occlusion. ThenX + O are the input data to tensor decompositions
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Table 4.8: Parameters of different data sets

Data set P ×Q× R k
AT&T 36× 36× 40 40
YALE 30× 30× 31 31
CMU PIE 25× 25× 68 68

and PCA. LetY be the reconstructed images from Eq.(4.1). All tensor analysis and PCA

minimize‖(X + O) − Y ‖F . However, our goal is to recover thetrue, noise-freeimages.

For occluded data, we take the original images as the approximation of the true noise-free

images, and consider‖X − Y ‖F as a measure of the ability to recover the noise-free im-

ages. We thus call‖X−Y ‖F as the noise-free reconstruction error. It can be computed for

PCA and tensor decompositions.

The noise-free error for each method is listed in Table 4.2, 4.3, 4.4 for the first type of

occlusion and Table 4.5, 4.6, 4.7 for the second type of occlusion. We can see (1) the noise-

free errors for RTD andL1PCA arealwayssmaller than those for Tucker decomposition

and PCA; This shows the effectiveness ofL1 norm for removing corruptions. (2) Noise-free

errors for RTD are always smaller than those forL1PCA; This demonstrates the advantage

of Tensor decomposition approach.

A byproduct of image denoising is improved classification accuracy. Here we per-

form classification as the demonstration and evaluation of denoising effectiveness of the

proposed RTD. We use k nearest neighbor (kNN) (we use 1NN here) as the multi-class

classifier. Classification accuracy on occluded image data are listed in Table 4.2, 4.3, 4.4

for the first type of occlusion and Table 4.5, 4.6, 4.7 for the second type of occlusion. All

classification results are based on 2-fold cross-validation. For each class, we randomly split

the images into 2 parts, and then we set each of the two parts astraining set and the rest

part as testing set. The reported accuracy is the average of 100 times of cross validations.
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4.5.4 Reconstruction Images and Discussion

Figure 4.1 and Figure 4.2 demonstrate the sample occluded images and the corre-

sponding reconstructed images from different methods. As we can see, the reconstructed

images from our RTD method reduce the occlusion more successfully than other methods,

which is also shown by the noise-free error in Table 4.2, 4.3,4.4, 4.5, 4.6, 4.7, the noise-free

error of our methods are smaller than other methods. Our method needs far less storage

space than PCA based methods, for example, the storage for PCA based method is 119,040

for AT&T data set, while for our RTD method, the storage is only 19,672, that is to say,

PCA based methods need 6 times bigger storage than tensor methods do on AT&T data set.

Classification accuracies on the reconstructed images fromRTD method are higher in most

cases, which demonstrated the effectiveness our method.

4.6 Conclusion

In this chapter, we propose anL1-norm based robust Tucker tensor decomposition

(RTD) method, which is effective for correcting corrupted images. Our method requires far

less storage space than PCA based methods. We also propose a computationally efficient

algorithm to solve the proposed RTD model. Extensive experiments are carried out to

evaluate the proposed RTD. Both numerical and visual results are consistently better for

images with outliers or noisy features than standard PCA,L1PCA and standard Tucker

tensor decomposition methods. This validates the effectiveness of the proposed RTD.
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Figure 4.1: Samples of occluded images and reconstructed images on AT&T face data.
First row is the input occluded images; Second row is from RTD; Third row is fromL1PCA;
Fourth row is from Tucker decomposition; Fifth row is from PCA.
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Figure 4.2: Samples of type 2 (mixed) occluded images and reconstructed images using
different methods of AT&T data set. The first row is from inputoccluded images; the
second row is from RTDreconstructed images; the third row isfrom L1 PCA; the fourth
row is from Tucker tensor; and the fifth row is from PCA. The cross corruptions can only
be removed by RTD.
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CHAPTER 5

Conclusion and Future Work

In this dissertation, we study three key technology areas toexplore the social media

data. The first is viral marketing (word of mouth) technology: we try to identify the most

influential individuals on the social networks. We propose highly efficient and scalable

methods to calculate the influence spread and then differentgreedy strategies will be ap-

plied to find the most influential users. We do extensive experiments on real world data

sets to justify the effectiveness and efficiency of our algorithms. Second, we tackle the 3D

social tagging recommendation problem. Different from thetraditional 2D recommender

system, users are allowed to use short phrases, which refer to tags, to describe their social

resources. Therefore, there are three dimensions involvedin tagging recommendation -

the three constituents (users, items, tags) mentioned above. Tag recommendation system

helps the tagging process by advising a set of tags to the userthat he may use for a specific

item. The tagging information helps web sites to organize their resources, and also assist

the users to communicate with each other. We propose to use lower-order tensor decompo-

sition techniques to tackle the extremely sparse social network data. Experiments on real

world data sets demonstrate the better performance of our proposed models comparing to

state-of-the-art methods. Last but not least, in the socialtagging area, there are many types

of social media resources, and image is a big component part.We propose an efficient and

robust model by applying tensor andL1 norm sparse coding techniques for effective im-

age representations and image categorization. Experiments show the effectiveness of our

models.
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We mainly focused on independent cascade model in the study of viral marketing

part. We will keep studying and solving other models in the social influence area, such as

linear threshold model.
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