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Abstract 

PHASE I MONITORING WITH APPLICATIONS 

IN MANUFACTURING AND 

HEALTHCARE 

 

Smriti Neogi PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Li Zeng 

This research develops statistical methods for quality monitoring in complex 

systems. Quality monitoring typically consists of two phases called Phase I analysis (or 

offline monitoring) and Phase II analysis (or online monitoring). This research is focused 

on Phase I monitoring. Two application areas are considered, complex manufacturing 

processes and healthcare delivery processes.  

 In the first application, a robust strategy for Phase I analysis of optical profiles in 

low-E glass manufacturing is developed.  The proposed approach aims to solve the 

problems such as violation of normality, high dimensionality, detection of multiple change 

points, etc. It will provide a convenient process monitoring tool for practitioners in the low-

E glass industry.  

In the second application, a systematic methodology for Phase I monitoring of 

patient readmission is developed. Patient readmission is a critical contributor to the rising 

health care costs and has become an important performance indicator for assessing and 

monitoring quality of care. This work consists of two parts: construction of readmission 

model and change detection based on the constructed model. The proposed approach is 
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demonstrated using real data from chronic obstructive pulmonary diseases (COPD) 

patients.  
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  Chapter 1

Introduction 

1.1 Motivation 

Statistical Process Control (SPC) has become an integral part of continuous 

improvement (Montgomery, 2009). There are two main reasons: the economic downturn 

situation and the availability of abundant data on account of fast paced electronic data 

acquisition system. Companies are striving hard to survive in this economic downturn. In 

such a scenario delivering good-quality products/services through reducing process 

variability and defects has become essential than ever before. Another reason that 

emphasizes the importance of SPC is the availability of big data (Manyika et al., 2008). 

The advanced measurement/sensing technologies used today capture tons of data which 

can provide valuable information on the process which generated the data. Using those 

data, changes in the product/service quality can be detected and root causes of the 

changes can be found. However, one challenge in using the data is that some data are 

difficult to deal with using conventional SPC methods. For example, traditional process 

control methods are based on assumptions which may be violated in some processes 

due to the complex variation sources existing in the process. To conduct process control 

and quality improvement, it is very important to develop methods which can conquer the 

intrinsic complexity of the data. To fill in the gap in the literature, this dissertation aims to 

explore statistical methods for quality monitoring in complex systems. Two application 

areas are considered, complex manufacturing processes and healthcare delivery 

processes. More specifically, this research focuses on Phase I quality monitoring, a brief 

introduction on which is provided as follows. 

Quality monitoring typically consists of two phases called Phase I analysis (or 

offline monitoring) and Phase II analysis (or online monitoring) (Sullivan, 2002). Figure 
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1.1 shows a schematic overview of the two types of monitoring. Basically, Phase I 

monitoring is used to detect changes in the historical data. The purpose is to identify data 

from the in-control condition and estimate the parameters of the in-control model. Such 

estimates will then be used to establish the monitoring system. Once the monitoring 

system becomes available, it will be used to inspect online data to determine if the 

process is in control or out of control, which is the main task of Phase II monitoring. 

Usually, when a change is detected, the process will be stopped and root causes of the 

change will be identified. Adjustment will then be made in the process to fix the problems 

to bring the process back to normal.   

 

Figure 1-1 Overview of Phase I and Phase II Monitoring 

Figure 1.1 shows that Phase I monitoring is very critical in process control efforts 

as it is designed to construct the monitoring system based on historical data. In practice, 

it is a common situation that the historical data consist of measurements from different 

sources or generated under different conditions. So there are potentially multiple change 

points in the data. Without identifying those change points, miss-leading results will be 

produced in Phase II monitoring. On the other hand, Phase I monitoring is a very 

challenging problem and not well studied in many applications (most monitoring work 

considers Phase II monitoring).  

historical 

data X

A monitoring system

Data processing
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1.2 Research Problems 

Quality monitoring is becoming an increasingly serious concern in manufacturing 

and service industries such as health care. In this research we have considered the 

Phase I quality monitoring problems in manufacturing and healthcare applications as 

described in the following.   

1.2.1 Quality Monitoring in Low-E Glass Manufacturing 

Low-E glass is a special kind of tempered glass where the heat is reflected back 

to the side where it was generated (Arasteh et al., 2004; Carmody et al., 1996; Frost et 

al., 1993). In summer when the heat is generated by the sun it is reflected back to the 

exteriors thus keeping the interiors of buildings cooler, while in winter when the heat is 

generated by the heaters it is reflected back to the interiors thus keeping the interiors 

warmer than the outside. The thermal emission of the glass is minimized by depositing 

various metals and metal oxides on the surface of the glass. The coating enhances the 

thermal properties of the glass by reflecting the infrared energy thus keeping the radiant 

heat on the same side of the glass where it was originated. As a result, the windows 

become more efficient because radiant heat originated from indoors in winter is reflected 

back inside, while infra-red heat radiation from the sun during summer is reflected 

keeping the inside cooler.  

 

Figure 1-2 Low-E Glass Manufacturing Process 

 Figure 1.2 shows a schematic diagram of the Low-E glass manufacturing 

process. Glass ribbons as shown in the figure enter the coating chambers on one side. 

Coating chambers
Scanner

Glass ribbon Low-E glass

Low-E Glass Manufacturing Process
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Inside the coating chambers chemicals are deposited on the surface of the ribbon to 

enhance the optical properties of the glass. From the other end of the coating chambers 

the low-E glass exits. The finished product is scanned using scanners for quality control. 

1.2.1.1 Quality Data in Low-E Glass Manufacturing: Optical Profiles 

The quality data generated in Low-E glass manufacturing are optical profiles, as 

shown in Figure 1.3, which are one type of profile data. A profile, or a curve, represents 

the relationship of a response variable on an explanatory variable such as time and 

distance. In the optical profiles, the response is the optical property of the glass, i.e., the 

reflectance of light on the glass surface and the explanatory variable is the wavelength of 

light. Quality monitoring based on such data is called “Profile Monitoring”. This is a new 

research topic in SPC field which has gained much popularity recently because quality 

profiles are becoming common in manufacturing processes Researchers in this field have 

done a lot of work on Phase II monitoring, while very little research has been done on 

Phase I analysis.  

 

Figure 1-3 Optical Profiles 

1.2.1.2 Problems in Phase I Monitoring of Profile Data: Non-normality 

In the low-E glass manufacturing process, there are many chemical sub-

processes that may generate various types of noises in the system. Those noises lead to 
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deviation of the data from normality. In such a scenario, the existing statistical process 

monitoring techniques fail to provide a solution because most of them are based on the 

normality assumption of the data.  Robust monitoring methods need to be developed to 

monitor the optical profile data in the low-E glass manufacturing process. Such methods 

have broad applicability as there are many other advanced manufacturing processes 

where normality is not satisfied.   

This study is focused on the Phase I monitoring of optical profiles. There are 

three challenges in this problem. Firstly the data have high dimension. In general profile 

signals could contain as high as tens or hundreds of data points. For example, in each of 

the profile shown in Figure 1.3, there are 90 data points. How to deal with the high 

dimensionality of the data needs to be considered in the monitoring. The second 

challenge is to differentiate the out-of- control data from the incontrol data to identify the 

change points in the data. Especially, there might be multiple change points existing in 

the data. The true locations of those change points need to be identified with accuracy.  

Finally and most critically, since normality is violated in this case, a robust method that 

works on nonnormal data needs to be developed. This research proposes a robust 

strategy of Phase I analysis for optical profile monitoring. The proposed strategy aims to 

solve the abovementioned problems and provide a convenient process monitoring tool for 

practitioners in the low-E glass industry.  

1.2.2 Risk-adjusted Readmission Monitoring in COPD Care 

There are 3 components in this research: hospital readmission, chronic 

obstructive pulmonary diseases (COPD), and risk-adjustment. These three components 

are discussed in the following. 
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1.2.2.1 Hospital Readmission 

The Patient Protect and Affordable Care Act (PPACA), also known as the 

Affordable Care Act (ACA) of 2010, became a law on March 2013. The main goal of this 

act is to improve the quality of health insurance. This health care reform has ensured that 

30-day readmission be a metric to decide the quality of in-patient health care and a 

significant contributor to rising health care costs. A significant part of the healthcare act 

which focusses on reducing the costs related to readmissions poses a penalty to 

hospitals with high hospital readmissions. 

However, as any chronic disease such as COPD advances, the condition of the 

patient becomes more severe. The patient may have more frequent exacerbations and 

hence more admissions to the hospitals. These factors can provide an estimate of how 

advanced stage COPD the patient has. Palliative care is usually started when a patient is 

on maximum medication yet his/her condition is getting worse. Palliative care means 

treatment to keep a patient as comfortable as possible in order to reduce the severity of 

the disease rather than to cure it. Most importantly, it helps the patient to bear. The goal 

of a palliative care is to focus on the planned care for the patient and his/her family. The 

idea is that in a hospital a multidisciplinary team of health care professional can anticipate 

any problems before they happen and help the patient with any medication and/or 

equipment needed. 

1.2.2.2 COPD 

COPD is a type of chronic disease which is a broad term for people with chronic 

bronchitis, emphysema, or both. Figure1.4 illustrates the classification of COPD. 

 Chronic means tenacious and untiring. 

 Bronchitis is the infection of the bronchi which are the airways of the lungs. 
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 Emphysema is injury to the smaller airways and alveoli (air pouches and 

bags) of the lungs. 

 Pulmonary means anything affecting the lungs. 

 

 

Figure 1-4 Classification of COPD 

Patients with COPD have the airflow to the lungs restricted (obstructed). 

Symptoms in patients with COPD include cough and breathlessness. Chest infections are 

more common if a patient has COPD. A sudden worsening of symptoms when a patient 

has infection is called flare-up or exacerbation. Sputum generally turns yellow or green 

during a chest infection. Viruses that cannot be killed by antibiotics cause chest infections 

in COPD patients. 

1.2.2.3 Risk Adjustment 

Unlike products in industrial processes which are mostly homogenous, patients 

are heterogeneous because they come from different backgrounds, can have different 

conditions and severity that can add to the baseline risk. Thus, in monitoring the quality of 

care, we cannot only consider the patient outcomes such as the readmission of each 

Chronic 
Bronchitis 

Emphysema Asthma 

COPD 
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patient, but also need to consider the patient risk factors, called “risk adjustment”. Risk-

adjusted monitoring in health care has become a heated topic in the SPC field, and many 

risk-adjusted control charts have been developed which are extensions of their non-risk-

adjusted counterparts in industrial applications. 

1.2.2.4 Problems in Phase I Monitoring of COPD Readmission Data 

 The existing quality monitoring work in healthcare is limited in the 

following aspects: 

First, they mostly focus on patient mortality in surgical/intensive unit care and no 

work has been done on the monitoring of patient readmission in chronic disease 

applications like COPD care. A special challenge in this new application area lies in the 

correlation in the readmission outcomes. Since a disease like COPD cannot be cured 

completely, one patient may be readmitted many times to the hospital. Consequently, the 

data may contain multiple observations on readmission from the same patients, which 

are intrinsically correlated. Such correlation needs to be considered in the monitoring. 

Second, the existing work only considers one covariate in the monitoring. Typically, the 

effects of all risk factors are summarized into one risk score and a simple logistic 

regression model is built to describe the dependency of the binary readmission outcomes 

on the risk scores. Then change detection is conducted based on this model. Obviously, 

this simple method cannot adequately model the effects of risk factors on readmission 

and may cause errors in monitoring. 

Finally, most existing work on risk-adjusted monitoring focuses on Phase II 

analysis, and there is little work on Phase I analysis.    
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1.2.2.5 Summary of our Study and Contributions 

 

Figure 1-5 Proposed Approach 

This research proposes a systematic approach for Phase I monitoring of patient 

readmission. It consists of two tasks as shown in Figure 1.5. In the modeling task, we 

build an appropriate statistical model for the data considering correlations in the 

readmission outcomes. Model/variable selection is done to determine the right form of 

model and significant risk factors to use in the modeling. Once the best model is 

determined, the parameters of the model are estimated. In the monitoring task, change 

detection based on the established model in the first task is examined and a convenient 

method for Phase I monitoring is developed.  

This work contributes to the literature by solving the three issues mentioned in 

section 1.2.2.4: it is the first effort to consider monitoring of patient readmission in chronic 

disease care; it considers the effects of a large number of risk factors by proposing a 

systematic procedure for model building; and it proposes a method for Phase I risk-

adjusted monitoring which can be applied in many areas in health care. 
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1.3 Outline of This Research 

This report focuses on methodologies for addressing the two research problems 

described in section 1.2. Figure 1.6 shows the outline of this report. 

Chapter 2 will present details of the proposed strategy of Phase I analysis for 

monitoring optical profiles in low-E glass manufacturing. A review of existing work on 

Phase I profile monitoring will be given and our proposed method will be explained. This 

is followed by the results and discussion of a simulation study and case study.   

Chapter 3 is dedicated to the first task of the second research problem, i.e., risk-

adjusted modeling of patient readmission in COPD care. Specifically, background 

introduction and literature review will be given first, and then details of the proposed 

approach will be presented. Results of the case study will be reported after that, where 

this approach is applied to a dataset from COPD patients. The established model will be 

used in the study of Task 2 in the future.  

Chapter 4 will present the second task of the second research problem, i.e., risk-

adjusted Phase I monitoring of patient readmission based on the model constructed in 

Chapter 3. A review of literature on risk-adjusted outcome monitoring in health care will 

be given and some issues in the future work will be discussed. The proposed method will 

be reported in my dissertation. 

Chapter 5 will summarize studies and findings in this research and briefly 

describe directions of my future research. 
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Figure 1-6 Outline of this Report 
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  Chapter 2

Robust  Phase I Monitoring of Profile Data with Application in Low-E Glass Manufacturing 

2.1. Introduction 

In some manufacturing processes, product quality is characterized by the 

relationship between a response variable and an explanatory variable which is called 

profiles. Monitoring of quality profiles has received much attention recently due to the 

increasing popularity of this type of quality data in practice (Woodall et al., 2004). 

Parametric and nonparametric methods have been developed for this purpose. This 

study focuses on parametric profile monitoring where the shape of the profiles can be 

characterized by a parametric model adequately.  

The basic idea of parametric profile monitoring includes two steps: First, an 

appropriate statistical model is used to characterize the profiles. The choice of models 

depends on the characteristics of the profile data in the studied applications. Linear 

models (Kim et al, 2003), polynomial models (Kazemzadeh et al., 2009), splines (Walker 

et al., 2002), mixed-effect models (Jensen et al., 2008)  and nonlinear models (Williams 

et al.,2007)  have been used in existing studies. Second, the parameter estimates of the 

fitted model are monitored by using multivariate control chart techniques such as T
2
 

control chart and Multivariate EWMA control charts (Noorossana et al., 2011). Woodall 

(Woodall et al., 2007) and Noorossana et al. (2011) give excellent review of the state of 

art in this research area.  

The majority of existing studies on profile monitoring focus on Phase II 

monitoring, while only a few efforts are made on Phase I analysis. Mahmoud and 

Woodall
13

 develop an F test approach for Phase I monitoring of linear profiles. Mahmoud 

et al. (2007) propose a change point method based on likelihood ratio test for Phase I 

monitoring of linear profiles. Kazemzadeh et al.
 
(2008) compare three approaches for 
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Phase I analysis of polynomial profiles, including the extension of the change point 

method, the extension of the F test approach, and a standard procedure based on T
2
 

test. It is found that the change point approach performs the best.   

One limitation of the literature is that most studies rest on normality assumptions: 

the random errors in the profile models are typically assumed to be normally distributed, 

and the random effects in mixed-effect models are also bound by this assumption. 

However, this may not be the case in some manufacturing processes, such as the low-

emittance (low-E) glass manufacturing process illustrated in Figure 2.1. The low-E glass 

is a type of energy-efficient glass products which is manufactured through physical or 

chemical coating processes, where solid materials, e.g., metal, metal oxide and metal 

nitride, are deposited on the surface of flat glass. The coating enhances the 

thermal/optical performance of the product so that they are able to reduce unwanted heat 

gain in summer and heat loss in winter (Arasteh et al., 2004, Frost et al., 1993 and 

Carmody et al., 1996). The quality of coating is measured by optical profiles of scanned 

locations on the glass surface. Figure 2.1 shows an example of a typical type of optical 

profiles, the reflectance profiles, which represent the percentage of light (r) that reflects 

from the glass surface over a range of wavelengths (λ). Due to the many chemical sub 

processes involved in low-E glass manufacturing, various random noises may be present 

in the production. As a result, the quality measurements may contain a considerable 

amount of extreme values and thus normality assumptions are not appropriate in 

modeling such profiles.  

In fact, the effect of non-normality on the performance of profile monitoring has 

been investigated by a group of researchers such as Mahmoud and Woodall (2004), 

Williams et al. (2007), Vaghefi et al. (2009) and Noorossana et al. (2011). A general 

conclusion in these studies is that when normality is not satisfied, the conventional profile 
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monitoring techniques may give misleading results. Though some techniques are found 

to be robust for certain types of deviations from normality (Noorossana et al., 2011) there 

lacks a generic method for profile monitoring in the presence of non-normality.  

 

Figure 2-1 Low-E Glass Manufacturing Process and Example of Optical Profiles 

This study aims to fill the gap in the literature by proposing a robust strategy for 

Phase I analysis of quality profiles. For non-normal data, nonparametric control charts 

are usually used to replace the conventional control charts based on normality. This idea 

is adopted in the proposed strategy. Moreover, to avoid issues with multivariate 

monitoring, independent component analysis (ICA) is used to transform multivariate 

coefficient estimates of the profile models into univariate independent data. In addition, 

we also study two methods to detect multiple change points as this is often the case in 

Phase I analysis. The properties of this strategy are demonstrated in a numerical study 

considering different scenarios of non-normality. In the case study, it is applied to optical 

profile data from low-E glass manufacturing as shown in Figure 2.1.  

The remainder of the paper is organized as follows. Section 2.2 presents the 

problem formulation in Phase I analysis of profiles and the basic idea of the proposed 

strategy. Details of each component in the strategy are given in Section 2.3. Section 2.4 

and 2.5 report the results of the numerical study and the case study respectively. Finally, 

Section 2.6 summarizes the findings in this work.  
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2.2 Problem Formulation 

2.2.1 Profile Models and Phase I Monitoring 

Without loss of generality, polynomial models which fit the optical profiles in 

Figure 2.1 will be used to illustrate the proposed method. Let x be the explanatory 

variable and y be the corresponding response. Suppose there are m profiles, each 

containing n sampling points, and the x values are fixed and constant among the profiles. 

Two types of polynomial models have been used in the literature: regular polynomial 

models (Kazamzadeh et al., 2008) and mixed-effect polynomial models (Amiri et al., 

2009). Mathematical expressions of these models are given below: 

Regular polynomial model 

                ij

h

jh

p

jpij xxy   0......                                               (1) 

where i=1,...,m is the index of profiles, j=1,...,n is the index of sampling points, 

and h=0,...,p is the index of the exponent of polynomials.  β0,..., βp are the fixed, unknown 

coefficients, and εij is the random error which follows certain non-normal distribution with 

zero mean. 

Mixed-effect polynomial model 
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where each coefficient Ch consists of two parts: the fixed effect, ηh, which is fixed 

and unknown, and the random effect, αhi, which varies from profile to profile. The random 

effects are assumed to follow non-normal distributions with zero mean. The mixed-effect 

models are preferred when the within-profile correlation is significant (Amiri et al., 2009 

and Jensen et al., 2008) or when there is intrinsic variation in the shapes of profiles.  

We take a change-point view in the Phase I analysis, that is, assume the 

historical data stream contains w change points, i.e.,   
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where K1,..., Kw are the change points, and M1,..., Mw+1 are the polynomial models 

followed by the data between adjacent change points. Two types of changes may occur 

in the data: location shift which corresponds to the change in the coefficients in (1) or the 

fixed effects in (2), and scale shift which corresponds to the change in the scale of the 

random error in (1) or the scale of random effects/error in (2). The goal of Phase I 

monitoring is three-fold: determine whether any change occurs in the data, identify the 

change points as accurately as possible, and establish in-control parameters based on 

the change point estimates.     

2.2.2 Basic Idea of the Proposed Strategy 

Following the standard practice of parametric profile monitoring, change 

detection will be applied to the coefficient estimates of the profile models, i.e., βs in (1) or 

Cs in (2). When those estimates are not normally distributed, a natural idea is to use 

nonparametric control charts. As multiple coefficients typically exist, we can either use a 

multivariate nonparametric control chart on all the coefficients simultaneously, or use 

univariate nonparametric control charts on each coefficient separately. Since the 

estimates of coefficients are correlated with each other, the first solution appears to be 

more reasonable. It is also possible since multivariate nonparametric control charts are 

available in the literature, including the sign MEWMA chart proposed by Zou and Tsung 

(2011) and the rank-based MCUSUM chart and the nonparametric MCUSUM chart 

proposed by Qiu and Hawkins (2003). However, as calculating the statistics in these 

multivariate techniques involves matrix inversion operations, they may suffer instability 

issues in some cases. For example, according to our simulations, when the variation of 
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the coefficient estimates is not balanced, that is, the variation of some coefficients is too 

large or too small, the statistics may not exist due to singularity of inverted matrices. In 

addition, the results from multivariate control charts do not have easy interpretation. In 

contrast, the second idea is free of instability issues and easy to implement and 

understand, given that the correlation between the estimates of coefficients can be 

eliminated in some way.  

In fact, the second idea is followed in the study of Kazemzadeh et al (2009) for 

Phase II monitoring of polynomial profiles under normality assumptions, where 

orthogonal polynomial models are used for fitting the profile data. Since the coefficient 

estimates in orthogonal polynomial regression are independent, they can be monitored 

separately using univariate control charts. In this study, we propose a similar method to 

solve this problem in the context of non-normality, which uses independent component 

analysis (ICA) to transform the multivariate coefficient estimates into univariate 

independent components (ICs), and then applies univariate nonparametric control charts 

to each IC. This method is generic in that it can be applied to different forms of 

polynomial models and other models. Moreover, as will be explained in Section 2.3.2, the 

use of ICA will bring special benefits in change point detection.  

Figure 2.2 shows the components of the proposed strategy for Phase I 

monitoring of profile data. First, polynomial models are fitted for the data to obtain the 

estimates of coefficients. Second, ICA is applied to the multivariate coefficient estimates. 

The selected ICs are then monitored using univariate nonparametric control charts to 

detect location/scale shifts. Considering that multiple change points may exist, once a 

change point is detected, the data stream will be segmented at the change point and the 

detection will continue on the uninspected data. Details of each component will be given 

in Section 2.3. 
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Figure 2-2 2Basic Idea of Proposed Strategy for Phase I Monitoring of Profile Data 

2.3 The Proposed Strategy for Phase I Monitoring of Profile Data 

2.3.1 Statistical Modeling 

The first step in the Phase I analysis is to fit a polynomial model for each profile 

in the historical data stream. The degree of polynomials, p, can be determined through 

preliminary analysis comparing the residuals under different choices of p. Since non-

normality is assumed, ordinary least squares method can be used to fit the models. If the 

underlying model is a regular polynomial model in (1), the estimates of coefficients are  
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where each column represents the estimates of one coefficient from the m 

profiles. For mixed-effect models in (2), the obtained matrix represents the estimates of 

Cs. The coefficient estimates will be used in the following analyses. 

2.3.2 Independent Component Analysis 

ICA is a data projection technique which transforms original multivariate data into 

univariate independent components through linear transformation (Hyvarinen et al., 

2001). Similar to another popular projection tool, the principle component analysis (PCA), 

ICA is often used for dimension reduction purposes in the literature as a number of 
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significant ICs can be selected to represent the original data. For example, it is used in 

monitoring complex nonlinear profiles to reduce the dimension of data points contained in 

each profile (Ding et al., 2006). Ding et al. point out another advantageous aspect of ICA: 

unlike PCA which projects data onto a lower subspace that preserves the majority of the 

variability in the original data, ICA projects data to a subspace where the distinction of 

any existing structures in the data will be maximized in the resulting ICs. So the objective 

of ICA aligns well with the objective of Phase I analysis, i.e., separating data following 

different structures.  

With the abovementioned properties, ICA is appropriate in our study to transform 

the multivariate coefficient estimates into univariate independent components, so that 

univariate nonparametric control charts can be applied to detect changes. Some 

algorithms of ICA are available in commercial software such as Matlab and R. The 

fastICA function in Matlab is used in this study. It is worth mentioning that as the degree 

of polynomials is typically not high, the advantage of ICA in data reduction is not a key 

concern here. Results of the numerical study show clearly its role in manifesting the 

changes in the data, as given in Section 2.4.    

2.3.3 Univariate Nonparametric Control Chart  

Various univariate nonparametric methods have been developed for monitoring 

non-normal data, including the bootstrap control chart by Jones and Woodall (1998), and 

the rank-based tests by Gordon and Pollak (1994), and Hackl and Ledolter (1991). Here 

we choose the control chart proposed by Hawkins and Deng (2010) for detecting location 

shifts and the one proposed by Ross et al. (2011) for detecting scale shifts. These two 

techniques are chosen because they do not require prior knowledge of in-control 

parameters and easy to implement. Moreover, they can also be applied for Phase II 

monitoring of large-volume data streams which exist in many manufacturing processes 
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such as the low-E glass manufacturing. Note that these techniques are designed to 

detect a single change point in the data; detection of multiple change points is realized 

through data segmentation which will be described in Section 2.3.4. The basics of the two 

techniques are provided as follows.  

Assume Z1,…, Zm are independent non-normal random variables with distribution 

.1for          ~
;1for          ~

2

1

miKFZ
KiFZ

i

i




 

where K is the change point between the two different distributions F1 and F2. 

The focus here is to determine whether a change exists and if so, estimate the change 

point K.     

The control chart of Hawkins and Deng (2010) to detect location shifts is based 

on the Mann-Whitney two-sample test. Let 
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which follows a standard normal distribution asymptotically. Note that this statistic 

holds for each possible value of k. A natural estimate of the change point is the value of k 

that gives the largest mkU ,
 . In the control chart, the following statistic is used 
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The control limit needs to be found through simulations under a specified in-

control average run length (ARLin-control). It is required that m≥15. 

The control chart of Ross et al. (2011) to detect scale shifts is based on the Mood 

test. The Mood statistic is 
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The statistic of the control chart takes a similar form as the Mann-Whitney 

statistic in (4), 
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The control limit also needs to be obtained through simulations. Fortunately, 

Ross et al. (2011) provide polynomial approximations of the control limit under a group of 

in-control average run lengths. It is required that m≥20.  

2.3.4 Data Segmentation for Multiple Change Point Detection 

To identify multiple change points that may exist in the data, the two control 

charts in Section 2.3.3 need to be used repeatedly. There are two ways to do this as 

illustrated in Figure 2.3: 

Binary segmentation (BS): Change detection is first conducted on all the 

data. Whenever a change is detected, the data stream is split into two segments at 



22 

the estimated change point. Then change detection is conducted on each segment 

separately.   

Sequential segmentation (SS): Change detection is conducted sequentially 

starting from the segment with minimum required number of data points. If no 

change is detected, a new data point will be added to the segment and the 

detection continues; when a change is detected, the segment by the estimated 

change point will be discarded and change detection is applied to the subsequent 

data.  

 

Figure 2-3 Two Ways for Data Segmentation in Multiple Change Point  Detection 

Each of the two methods has been used in existing studies for detecting multiple 

change points (Ross et al., 2011 and Kazemzadeh et al., 2008), but no study has been 

done to evaluate and compare their performance. In general, they both have pros and 

cons: the BS method works on a whole segment to detect changes, while the SS method 

adds new data point one by one. So the sample size in the BS method is likely to be 

larger than in the SS method, and thus the BS method tends to be more accurate in 

identifying the change points; on the other hand, the segment used in the BS method 

may contain multiple change points, while that used in the SS method is more likely to 

contain one single change point due to its sequential nature. So the assumption of single 

change point holds better for the SS method, and thus it is supposed to be more 

Binary segmentation Sequential segmentation
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accurate. Simulation results on the performance of these two methods will be given in 

Section 2.4.2.  

2.4 Numerical Study 

Simulations are done to address the following concerns:  

1. Performance of the two data segmentation methods described in Section 3.4 

in multiple change point detection, and 

2. Properties of the proposed strategy for Phase I monitoring of profile data.  

For the first concern, univariate non-normal data streams containing two change 

points are simulated under different parameter scenario, and the two data segmentation 

methods are applied to each stream. Their performance in identifying the true change 

points is evaluated and compared. For the second concern, profile data with non-normal 

errors are simulated under different parameter scenarios, and the proposed Phase I 

analysis is applied. Characteristics of the proposed strategy will be summarized. In this 

section, we will first describe how data are generated in the simulations, and then report 

the results of the above studies.  

2.4.1 Data Generation 

Univariate data following non-normal distributions need to be simulated in this 

study. To be flexible, we use two large classes of non-normal distributions, the skew-

normal distribution (Azzalini et al., 1985) and the skew-t distribution (Azzalini et al., 2008), 

which represent general cases of skewed and/or heavy-tailed distributions. For a random 

variable Z following the skew-normal distribution SN(μ, σ
2
, λ) with location parameter μ, 

scale parameter σ
2
 and skewness parameter λ,  its density function has the following 

form 

  






 







z
zNZf 22  ,|2),,|(  



24 

where N(z|μ, σ
2
) is the density of normal distribution with mean μ and variance 

σ
2
, and Φ is the cumulative distribution of the standard normal distribution. One issue 

with this parameterization is that it does not control the mean of Z directly so that the 

zero-mean assumption of the random errors/effects in model (1)-(2) cannot be 

implemented easily. To solve this problem, we adopt an alternative parameterization in 

the simulations  
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where ω and τ
2
 are the mean and variance of Z. Similarly, the skew-t distribution 

can be represented by 
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where v is the degree of freedom, and μ and σ
2
 can be obtained using the same 

formulas as in the skew-normal distribution.  

Using the skew-normal and the skew-t distribution, we can simulate different 

situations of non-normality by manipulating their parameters. Sampling from these 

distributions can be done using Markov chain Monte Carlo (MCMC) algorithms (Robert et 

al., 2004). In our study, we use the slice sampler (Neal, 2003) through the slicesample 

function in Matlab to generate samples following the two distributions. Figure 2.4 shows 

the empirical distributions of examples of the simulated data, where ω=0, τ
2
=1 and 

100000 samples are generated in each case.
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Figure 2-4 Normalized Histograms of Simulated Data from Skew-Normal and Skew-t 

Distribution  

2.4.2 Performance of Data Segmentation Methods 

In this study, data streams following skew-normal distribution (λ=6) and skew-t 

distribution (λ=6, v=6) are simulated. To obtain insight on the two data segmentation 

methods in multiple change point detection, a simple scenario is considered in which 

each data stream contains two equally-spaced change points (i.e., K1=100, K2=200, 

m=300) or in other words, three segments with equal length (100). The changes are 

either location or scale shifts. When location shifts occur, the scale parameters of the 

three segments take the same value (τ
2
=1), while their location parameters ω1, ω2, and 

ω3 are different. Similarly, when scale shifts occur, the location parameters of the three 

segments are the same (ω =0), while their scale parameters 
2

1 , 
2

2 and
2

3  take different 

values. 4 cases are simulated under each type of shifts, which lead to a total of 8 cases. 

Table 2.1 summarizes the parameter settings and interpretations in these cases. Figure 

2.5 shows an example of data streams generated in each case, where the solid line in 

each plot indicates the true value of the location parameter.  
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Table 2-1 Parameter Settings in Evaluating Performance of Data Segmentation Methods 

 
  

Interpretation 
Case 

Location shift Scale shift 

ω1 ω2 ω3 
2

1  2

2  
2

3  

I 0 1 0 1 2.5 1 a small change, then back to in-control 

II 0 2 0 1 4 1 a large change, then back to in-control 

III 0 2 1 1 4 2.5 a large change, followed by a small change 

IV 0 1 2 1 2.5 4 a small change, followed by a large change 
 

 

Figure 2-5 Examples of Data Streams Generated under each case listed in Table 2.1 

Under each case listed in Table 2.1, 10000 data streams are simulated. The BS 

and the SS method are applied to each of the streams. In using the control charts in (4) 

and (5), a control limit with ARLin-control=2000 is applied. The performance of the two 

methods in each case is evaluated using the following measures:  
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s detectedge point ior no channge point only 1 chathatyprobabilitRMIS     
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22   al of K10% intervis within ent estimatchange poiy that theprobabilitRE   

Here the “10% interval” in the last two measures means the interval [90, 110] for 

K1, and [190, 210] for K2. The above performance measures essentially represent the 

false alarming rate, miss detection rate, and accuracy in estimating K1 and K2.  

Table 2.2 gives the results on the performance measures in location shift 

detection. Figure 2.6 shows the corresponding distributions of change point estimates for 

skew-normal data. The change point estimates for skew-t data exhibit similar patterns. 

We find the following things from the results: 

The performance of the BS and the SS method shows some common 

characteristics: According to results in Table 2.2, both methods have lower miss 

detection rate and more accurate change point estimates when the location difference 

between the two sides of the change point is higher. From the upper panel of Figure 2.6, 

we can see that the estimates of K1 in Case II and III have a sharper distribution than in 

other cases, meaning that the estimation is more accurate. This is because the difference 

in the locations at the two sides of K1 is larger in these two cases. For the estimation of 

K2, Case II performs the best as the location difference at the two sides of the change 

point in this case is larger than in other cases.     

The two methods are different in two aspects: (1) From Table 2.2, the BS method 

has much smaller false alarming rate and considerably larger miss detection rate than the 

SS method. This means that the BS method tends to miss some change points, while the 

SS method tends to detect some false change points. This is consistent to our intuitive 

understanding of these two methods given in Section 2.3.4: since the BS method works 
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on a whole segment which contains more information, it is less likely to signal a false 

change point; but meanwhile it is more likely to miss some true change points as it can 

only pick one change point from the segment being inspected which may in fact contain 

multiple change points. In contrast, the SS method examines the data sequentially so 

that it is more likely to detect the true change points; but meanwhile it tends to generate 

more false alarms due to the limited information used especially at the beginning of each 

detection. (2) From Figure 2.6, we can see that the change point estimates from the two 

methods have similar distributions in general, with the mode of the SS method being 

slightly higher than the BS method. Overall we can say that they provide change point 

estimates of similar accuracy.  

Comparing the skew-normal and skew-t data: The results of the two distributions 

show similar patterns, but in most cases the skew-t data have higher false alarm rate and 

miss detection rate, and less accurate change point estimates than the skew-normal 

data.  

Table 2-2 Performance of the BS and the SS Method in Detecting Location Shifts 

 
Case 

Binary segmentation  Sequential segmentation 

RFA RMIS RE1 RE2  RFA RMIS RE1 RE2 

 

SN 

 

I 0.1049 0.0234 0.8081 0.8034  0.4722 0.0002 0.8711 0.8720 

II 0.1306 0 0.9841 0.9834  0.5075 0 0.9830 0.9969 

III 0.0724 0.0011 0.9797 0.8848  0.5068 0.0003 0.9849 0.8708 

IV 0.1655 0.0064 0.8281 0.8132  0.4481 0.0002 0.8680 0.8678 

 

ST 

 

I 0.1476 0.0938 0.6804 0.6820  0.6526 0.0025 0.8019 0.8075 

II 0.1885 0 0.9395 0.9403  0.6676 0 0.9477 0.9827 

III 0.1305 0.0106 0.9393 0.8026  0.6718 0.0005 0.9538 0.8030 

IV 0.1948 0.0452 0.7301 0.7219  0.6139 0.0040 0.8062 0.8020 
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Figure 2-6 Normalized Histograms of Change Point Estimates Under Location Shifts 

The results on the performance measures in detecting scale shifts are given in 

Table 2.3, and the corresponding distributions of change point estimates for the skew-

normal data are shown in Figure 2.7. In general, the performance of the two methods 

shows similar patterns as in the cases of location shifts. Both methods perform the best 

in Case II where the difference at the two sides of the change points is larger than in 

other cases. The BS method has higher miss detection rate, while the SS method has 

higher false alarming rate. Both rates are larger than in the cases of location shifts. 
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Correspondingly, the distribution of change point estimates has larger variance. This is 

because scale shifts are, in general, more difficult to detect than location shifts.  

Table 2-3 Performance of the BS and the SS Method in Detecting Scale Shifts  

 
Case 

Binary segmentation  Sequential segmentation 

RFA RMIS RE1 RE2  RFA RMIS RE1 RE2 

 

SN 

 

I 0.0702 0.5057 0.3470 0.3460  0.6097 0.0256 0.5994 0.5743 

II 0.1341 0.0757 0.7613 0.7618  0.6563 0.0007 0.8016 0.8137 

III 0.0411 0.5819 0.8383 0.1378  0.5213 0.2055 0.7737 0.2420 

IV 0.0280 0.7749 0.4958 0.1259  0.5918 0.1367 0.5895 0.2779 

 

ST 

 

I 0.0890 0.5385 0.3032 0.3072  0.6715 0.0324 0.5381 0.5319 

II 0.1670 0.1051 0.6943 0.6924  0.7195 0.0016 0.7672 0.7580 

III 0.0651 0.5775 0.7730 0.1312  0.6157 0.1547 0.7420 0.2575 

IV 0.0419 0.7679 0.4404 0.1296  0.6522 0.1223 0.5469 0.2855 

           

 

Figure 2-7 Normalized histograms of change point estimates under scale shifts 
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2.4.3 Properties of the Proposed Strategy for Phase I Monitoring 

In this study, we simulate streams of profile data following the regular polynomial 

model in (1) or the mixed-effect model in (2) with degree-2 polynomials and apply the 

proposed strategy for Phase I monitoring on each stream. Like the simulated data in 

Section 2.4.2, each stream contains three segments, and each segment contains 100 

profiles following a different model. The random errors/random effects in the models are 

generated from skew-normal distributions. The in-control models are  

Regular polynomial model:               01

2

2 xxy  

)6 ,1 ,0(~   ,2 2

012   SN  

Mixed-effect polynomial model:       iiii xxxxy ,0,1

2

,201

2

2  

)6 ,1 ,0(~

)6 ,1 ,0(~

)6 ,1 ,0(~

)6 ,1 ,0(~

2

2

2

0,0

2

1,1

2

2,2

012




















SN

SN

SN

SN

i

i

i

 

where the explanatory variable x takes values [0, 0.1, 0.2,…., 3.0]. To be 

convenient, the change structure in Case I and II in Table 2.1 is applied to each data 

stream, that is, the first and third segments follow the above in-control model, while the 

second segment follows a different model. 6 cases are simulated considering different 

settings of the parameters of the second segment, which are listed in Table 2.4. Under 

each case, profile streams are generated and the proposed Phase I analysis is applied to 

each stream. The results of one typical example under each case are shown in Figure 

2.8. In each plot of the figure, the left column displays the estimates of coefficients, while 

the right column displays the selected independent components. The estimated change 

points are marked in the plots of ICs. 
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Table 2-4 Parameter settings of the second segment in the simulated profile data 

Case Model Parameters  Interpretation 

1 Regular 5.22   Small location shift in quadratic coefficient 

2 Regular 31   Mild location shift in linear coefficient 

3 Regular 5.21  , 5.20   
Small location shift in both linear coefficient 

and intercept 

4 Regular 5.22   Small scale shift 

5 Regular 15  Mild shift in skewness 

6 Mixed-effect 82

1   Large shift in random-effect variance 

 

The results in Figure 2.8 can be summarized in the following aspects 

 1) The effect of ICA: We can see that the shifts manifest themselves more clearly in the 

ICs than in the coefficient estimates. This is particularly the case in Figure 2.8(c) where 

the data contain two small location shifts. Little evidence of the shifts can be found in the 

coefficient estimates, while the evidence is quite apparent in the ICs. This validates the 

intrinsic capacity of ICA in manifesting the structure in the data. Another observation is 

that the shifts tend to appear in the first ICs, which implies the potential of ICA for data 

reduction when a large number of coefficients exist.  

2) Change point estimation: From Figure 2.8(a)-(c), it is seen that the change points of 

location shifts are estimated accurately. Not surprisingly, from Figure 2.8(d), we see that 

it is more difficult to estimate change points of scale shifts than location shifts. In Figure 

2.8(f), due to the random effects of the coefficients in the mixed-effect model, Change 

point estimation: From Figure 2.8(a)-(c), it is seen that the change points of location shifts 

are estimated accurately. Not surprisingly, from Figure 2.8(d), we see that it is more 

difficult to estimate change points of scale shifts than location shifts. In Figure 2.8(f), due 

to the random effects of the coefficients in the mixed-effect model, estimation of the 

change points in scales becomes even more difficult. But according to our simulations not  
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                 (a)                                                               (b)  

       
                    (c)                                                                (d)            

       
                                          (e)                                                                   (f) 

Figure 2-8 Example of Coefficient Estimates and Selected ICs under Each Case (a-Case-
1, b-Case-2, c-Case-3, d-Case-4, e-Case-5, f-Case-6 listed in Table 2.4  

 

1

2

3

4

-2

0

2

4

6

0 50 100 150 200 250 300
0

2

4

6

12

13

14

15

16

-14

-12

-10

-8

-6

0 50 100 150 200 250 300
4

6

8

10

12

1

2

3

4

-2

0

2

4

6

0 50 100 150 200 250 300
0

2

4

6

12

13

14

15

16

-14

-12

-10

-8

-6

0 50 100 150 200 250 300
4

6

8

10

12

1

2

3

4

-2

0

2

4

6

0 50 100 150 200 250 300
0

2

4

6

12

13

14

15

16

-14

-12

-10

-8

-6

0 50 100 150 200 250 300
4

6

8

10

12

100 200

2̂

1̂

0̂

IC1

IC2

IC3

1

2

3

4

-2

0

2

4

6

0 100 200 300
0

2

4

6

-12

-10

-8

-6

-4

-18

-16

-14

-12

0 100 200 300
-12

-10

-8

-6

-4

1

2

3

4

-2

0

2

4

6

0 100 200 300
0

2

4

6

-12

-10

-8

-6

-4

-18

-16

-14

-12

0 100 200 300
-12

-10

-8

-6

-4

1

2

3

4

-2

0

2

4

6

0 100 200 300
0

2

4

6

-12

-10

-8

-6

-4

-18

-16

-14

-12

0 100 200 300
-12

-10

-8

-6

-4

100 200

96 200

2̂

1̂

0̂

IC1

IC2

IC3

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

2

4

6

-24

-22

-20

-18

-20

-15

-10

-5

0 100 200 300
4

6

8

10

12

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

2

4

6

-24

-22

-20

-18

-20

-15

-10

-5

0 100 200 300
4

6

8

10

12

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

2

4

6

-24

-22

-20

-18

-20

-15

-10

-5

0 100 200 300
4

6

8

10

12

100 198

2̂

1̂

0̂

IC1

IC2

IC3

0

1

2

3

4

-5

0

5

10

0 100 200 300
0

2

4

6

12

14

16

18

20

-25

-20

-15

0 100 200 300
-50

-45

-40

-35

0

1

2

3

4

-5

0

5

10

0 100 200 300
0

2

4

6

12

14

16

18

20

-25

-20

-15

0 100 200 300
-50

-45

-40

-35

0

1

2

3

4

-5

0

5

10

0 100 200 300
0

2

4

6

12

14

16

18

20

-25

-20

-15

0 100 200 300
-50

-45

-40

-35

119 201

112 205

119 192 249

2̂

1̂

0̂

IC1

IC2

IC3

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

1

2

3

4

-56

-54

-52

-50

-48

-14

-12

-10

-8

-6

0 100 200 300
32

34

36

38

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

1

2

3

4

-56

-54

-52

-50

-48

-14

-12

-10

-8

-6

0 100 200 300
32

34

36

38

1

1.5

2

2.5

3

-2

0

2

4

6

0 100 200 300
0

1

2

3

4

-56

-54

-52

-50

-48

-14

-12

-10

-8

-6

0 100 200 300
32

34

36

38

2̂

1̂

0̂

IC1

IC2

IC3

-2

0

2

4

6

-5

0

5

10

15

0 100 200 300
-5

0

5

10

-5

0

5

10

-6

-4

-2

0

2

0 100 200 300
-2

0

2

4

6

-2

0

2

4

6

-5

0

5

10

15

0 100 200 300
-5

0

5

10

-5

0

5

10

-6

-4

-2

0

2

0 100 200 300
-2

0

2

4

6

-2

0

2

4

6

-5

0

5

10

15

0 100 200 300
-5

0

5

10

-5

0

5

10

-6

-4

-2

0

2

0 100 200 300
-2

0

2

4

6

100 155

220

2̂

1̂

0̂

IC1

IC2

IC3



34 

                      
shown here, the accuracy in the estimation gets improved when the magnitude of the 

shift is larger. Finally, as shown in Figure 2.8(e), the two nonparametric control charts 

cannot detect shifts in skewness, which is reasonable as they are designed for 

location/scale shifts 

2.5 Case Study 

In this study, the proposed Phase I analysis is applied to a set of optical profile 

data as shown in Figure 2.1. The data were from a large-scale low-E glass producer in 

the US. For confidentiality reasons, the name of the company and information of their 

products are not disclosed in this text. The data set consists of 314 optical profiles and 

each profile contains 30 data points corresponding to λ=[705nm, 710nm, …,850nm]. 

Before implementing the analysis, some preprocessing is done on the raw data. This 

includes the centering/scaling transformation of  values, i.e., x=[–average()]/150, 

which can improve the numerical properties of the fitting, and determining the appropriate 

degree of polynomials through fitting polynomial models to each profile and checking the 

residuals. As an example, Figure 2.9 shows the fitted models and resulting residuals for 

one profile. We can see that the residuals become very small and exhibit random 

patterns with equal variance when p=4. Therefore, we decide that the degree-4 

polynomial model gives adequate fitting and will be used in the Phase I analysis First, 

coefficient estimates are obtained from each profile, which are shown in Figure 2.10. The 

estimates consist of a considerable amount of extreme values, a sign of non-normality. It 

appears that multiple change points may exist in the data, and an apparent one of which 

occurs during profiles #200~#250. Then ICA is applied to these estimates. Figure 2.11 

shows the resulting ICs. The apparent shift can be seen in the first IC, and there is also 

evidence of shifts in other ICs.   
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Figure 2-9 Example of fitted polynomial models and residuals 

The BS and the SS method are applied to each IC. The estimates of change 

points are listed in Table 2.5. As expected, more change points are detected by the SS 

method, especially in detecting scale shifts. But the change point estimates from the two 

methods are very similar. For location shifts, multiple change points are detected 

including the apparent one (#232) in Figure 2.10. Fewer change points are detected for 

scale shifts. Particularly, only one change point is obtained by the BS method. Using the 

detected change points, the data are divided into multiple segments. Figure 2.12 and 

2.13 show the segments based on the results of the SS method.   

Table 2-5 Estimates of change points for each independent component 

IC 
Location shift detection Scale shift detection 

Binary seg. Sequential seg. Binary seg. Sequential seg. 

IC1 55, 100, 159, 232 55, 100, 159, 229 234 5,160, 232 

IC2 89, 148, 232, 246 89, 148, 232, 246 N/A 36, 48,246 

IC3 50, 140, 304 50, 140, 291 N/A N/A 

IC4 14, 100, 122, 162, 232, 248 14, 99, 122, 159, 232 N/A 118, 251 

IC5 69, 128 13, 69, 128, 158, 247 N/A 159 
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Figure 2-10 Estimates of Coefficients of Degree-4 Polynomial Models 

 

Figure 2-11 Independent Components Obtained from the Coefficient Estimates 
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Figure 2-12 Estimates of Location Change Points using the Sequential Segmentation 

Method 

 

Figure 2-13 Estimates of Scale Change Points using the Sequential Segmentation 

Method 
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Based on the results of the two methods, two groups of profiles are identified 

which have constant location and scale. The two groups contain profiles #159~#232 and 

#246~#291, which are shown in Figure 2.14. They have apparently different shapes, 

indicating that the process underwent a location shift. Degree-4 polynomial models are 

fitted for the two groups separately. Figure 2.15 shows the quantile-quantile (QQ) plots of 

the coefficient estimates of the first group. It is clear that the distribution of the estimates 

is not normal, which justifies the use of non-parametric change detection techniques.  

 

Figure 2-14 The Identified Two Groups of Profiles 

We have consulted with the engineers on the findings in the Phase I analysis. 

After carefully reviewing the process history, they identified an abrupt change in the 

voltage/current of certain coating chambers which is likely to have caused the location 

shift between the two groups of profiles in Figure 2.14. It is believed that such changes 

occur when the production switches to a different type of glass products. They also 
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shown in Figure 2.12 and 2.13. Such drifts are in general difficult to control due to all 

sorts of random factors in the coating process.  

 

 

Figure 2-15 QQ-Plots of the Coefficient Estimates of Profiles #159~#232 

 2.6 Summary 

This study proposes a strategy for Phase I monitoring of profile data under non-

normality. The strategy contains three components: fitting appropriate models for profiles, 

independent component analysis on coefficient estimates, and change point detection on 

each independent component using nonparametric control charts. The performance of 

this strategy is studied through simulations on general classes of non-normal 

distributions. It is found that the use of ICA can reveal the structure in the data; between 

the two methods to detect multiple change points, binary segmentation has a lower false 

alarming rate, while sequential segmentation has a lower miss detection rate; the 

estimation of change points is more accurate when the difference in the location/scale at 

the two sides of the change point is larger. In the case study, the proposed strategy is 
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applied to optical profiles from low-E glass manufacturing. A number of change points are 

detected, and two groups of profiles with constant location/scale are identified. Causes 

for the detected process shifts are also analyzed.  
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  Chapter 3

Risk-Adjusted Modeling of Patient Readmission in COPD Care 

3.1 Literature Review 

There are two major components in this research, i.e., patient readmission and 

statistical models for binary readmission data. Many studies have been done on these 

topics. A brief review of the literature is given in this section. 

3.1.1 Patient Readmission 

Many studies have been done to identify risk factors and build prediction models 

for hospital readmission in various medical applications. In those studies readmission is 

typically measured either by binary indicators of whether a patient had readmission within 

a short period after discharge, e.g., 30 days, or by the interval between discharge and 

readmission.  

Kariv et al. (2006) identified the risk factors for readmission after major 

abdominal surgery that may improve postoperative care and discharge plans. Stewart et 

al. (2000) identified risk factors for 30 day hospital readmission following Coronary Artery 

Bypass Grafting (CABG). Ferraris et al. (2001) investigated the factors associated with 

early hospital readmission after cardiac procedures. The idea is to develop strategies to 

minimize the problem. Kiran et al. (2004) determine the readmission rate and outcomes 

for patients undergoing intestinal operations. Variables that might predict readmission are 

evaluated.   

There are also many studies on the readmission of COPD patients. Kansagara et 

al. (2011) summarize validated readmission risk prediction models, describe their 

performance and assess their suitability for clinical or administrative use. COPD 

readmission is perceived as an adverse effect in itself and suggested to be used as 

health service performance indicator for quality monitoring. COPD is the third leading 
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cause of death in the United States and the only leading cause for which morbidity and 

mortality are rising. Over half of the patients who are hospitalized for acute exacerbations 

are readmitted at least once in the ensuring 6 months. Cao et al. (2006) ascertain rates of 

re-hospitalizations for AECOPD patients and evaluate factors associated with frequent 

readmissions for acute exacerbations. They find that frequent past readmission for 

AECOPD is associated with disease severity and psychosocial distress and increased 

use of vaccinations. Hospitalizations for such patient accounts for as much as 40% of the 

total direct cost of medical care of COPD in the nation. 

Garcia et al. (2007) suggest that the Integrated Care (IC) intervention improved 

the COPD disease knowledge and treatment adherence suggesting that the factors such 

as education, coordination among levels of care, and improved accessibility, reduced 

hospital readmission in COPD after 1 year. Lau, Yam and Poo (2001) find out the factors 

associated with shorter time to first readmission after discharge from hospital after acute 

exacerbation. The factors considered are demographic and social data, comorbidities, 

treatment and first blood investigation after admission. Chen, Li and Johansen (2001) 

compare factors such as sex and age in hospital readmissions for COPD associated with 

overall and cardiac comorbid conditions. Gudmundsson et al. (2005) present a study to 

analyze the risk of re-hospitalization in patients with COPD disease and associated risk 

factors. They find that in patients with low health status, anxiety is an important risk factor 

for rehospitalization. Puhan et al. (2005) find evidence from their trials that respiratory 

rehabilitation is effective in COPD patients after acute exacerbation. Almagro et al. (2006) 

identify the risk factors for hospital readmission in COPD patients. In bivariate analysis 

the readmission is found to be associated with previous hospitalizations. In multivariate 

analysis the best predictor of readmission is found to be the combination of 

hospitalization for COPD in the previous year and PaCO2 at discharge. Hasan et al. 
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(2004) identify predictors of early hospital readmission in a diverse patient population. 

They find that seven significant predictors of early readmission: insurance status, marital 

status, having a regular physician, Charlson comorbidity index, SF12 physical component 

score ≥ 1 admission within the last year, and current length of stay > 2 days. Bahadori 

and FitzGerald (2007) use systematic review to summarize the results from available 

studies to identify potential risk factors for hospital admission and/or readmission among 

patients experiencing COPD exacerbations. Ng et al. (2007) evaluate the impact of 

comorbid depression on mortality, hospital readmission, smoking behavior, respiratory 

symptom burden, and physical and social functioning in patients with COPD. Smith et al. 

(2000) determine clinical and patient-centered factors predicting non-elective hospital 

readmission. They find that the risk of readmission increases if the patient has more 

hospitalizations and emergency room visits in the prior 6 months, higher blood urea 

nitrogen, lower mental health function, a diagnosis of OCPD and increased satisfaction 

with access to emergency care assessed on the index hospitalizations. Garcia-Aymerich 

et al. (2003) find the factors causing exacerbations in COPD. Their final multivariate 

model shows the risk factors such as admissions for COPD in the year before 

recruitment, FEV1, percentage predicted, oxygen tension, higher levels of usual physical 

activity and taking anticholinergic drugs. Chen and Narsavage (2006) examine the 

relationship among physiological, psychological and social factors and hospital 

readmission to develop a model predicting COPD hospital discharge.   

3.1.2 Statistical Models for Binary Responses 

In this research, we will consider binary readmission outcomes indicating 

whether the patient was readmitted within 30 days after discharge. Thus, statistical 

models for binary responses need to be found. The most popular model used in 

readmission studies is the logistic regression (LR) model, which is a special type of 
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Generalized Linear Model (GLM) commonly used for binary outcomes (Myers et al. 

2002). Only a few studies consider special issues in model construction such as variable 

selection (Cao et al., 2006; Ferraris et al., 2001) and correlation in the outcomes (Hasan 

et al., 2007). Overall, the modeling of readmission is an underdeveloped field in 

healthcare studies. A comprehensive review of statistical models for binary responses is 

provided as follows.  

Binary response is used when there are only two possible values a variable can 

take:  0 or 1, representing without or with readmission. The statistical models available for 

binary outcomes can be divided into two categories depending on whether the outcomes 

are independent or correlated. When the data come from different patients, that is, there 

is only one observation for each patient, the binary outcomes are assumed to be 

independent. In contrast, when there are more than one observation from the same 

patient on account of multiple readmissions, the outcomes are assumed to be correlated. 

It needs to be pointed out that when the correlation between outcomes from the same 

patients is believed to be moderate or the number of patients with multiple admissions is 

relatively small, the independence assumption will be applied to avoid the complexity in 

characterizing the correlation structure of the outcomes. After a complete search in the 

statistical literature, we find four major models for binary responses: the Logistic 

Regression (LR) model and the Logistic Regression Tree (LRT) model for independent 

outcomes, and the Generalized Estimating Equations (GEE) and the Generalized Linear 

Mixed Models (GLMM) for correlated outcomes. Basics of each model is given as follows.   

3.1.2.1 Logistic Regression 

In the Logistic Regression model (Myers et al., 2002), the binary response 

variable is assumed to follow a Binomial distribution 

)(Binomial~ ii py
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Where yi is the readmission outcome of patient i and pi is the probability of 

readmission of patient i. This probability depends on the covariates through  

....)( 22110  xxpi 
 

Where x1, x2,…. are the risk factors, β0, β1,….are the parameters of this model 

which represent the effects of the risk factors on the probability of readmission. These 

parameters are usually estimated using maximum likelihood estimation methods. η is the 

link function which   connects the mean of the response variable to the linear function of 

the risk factors in such a way that the range of the nonlinearly transformed mean ranges 

from -∞ to +∞. Some popular link functions used for GLMs are: 

 

 

 

 

The LR model is used extensively to model binary responses, especially in 

medical and social science studies. This model is simple and conceptually easy to 

understand. Moreover, due to the popularity of the LR model, software for model building 

and diagnostics, like R, and SPSS, has become available and widely used in practice. 

3.1.2.2 Logistic Regression Tree 

The Logistic Regression Tree model proposed by Chan and Loh (2004) is a tree 

structure extension of The LR model. Like other regression tree models, the LRT model 

divides the sample space into subspaces and then builds simple LR models within these 

subspaces 
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Usually categorical covariates are used for the partition and continuous 

covariates are used in fitting the LR models. For example, patients may be divided into 

groups by their gender and/or race, and one LR model is fitted for each group. The main 

advantage of LRT models is that it can overcome the interpretability issues of the LR 

model in the face of multi-collinearity, nonlinearity and interactions, without sacrificing 

estimation accuracy. Another advantage lies in the intuitive graphical representation of 

the model structure.  

 

Figure 3-1 An Example of the Logistic Rregression Tree 

Figure 3.1 shows an example of a Logistic Regression Tree model where the 

data space is divided into a number of spaces. For example, the first subspace contains 

patients who are male and younger than 60 years old, while the second subspace 

contains patients who are male, more than 60 years old and smoke regularly. An 

appropriate LR model is fitted for each of these subspaces. The LRT models fit the use in 

healthcare very well as it is a common practice to study the behaviors of subpopulations 

of patients in medical research.  
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3.1.2.3 Generalized Estimating Equations  

The GEE model (Liang and Zeger, 1986) is an extension of generalized linear 

models which considers the correlation in the response data. It can estimate the effects 

of covariates more accurately in the presence of correlation. The GEE model takes the 

same model form as the LR model, except that the correlation among the data from same 

patients is taken into consideration. The GEE estimator of the model parameters can be 

obtained by solving 

0μyV
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where μi is the mean vector which is a function of β, R is a working correlation 

matrix of yi which is common to all patients, V is the corresponding covariance matrix, 

and Ai is a t×t diagonal matrix with the variance of μi as the diagonal elements. The 

working correlation matrix R needs to be specified for the estimation. Popular choices of 

R include: 

Independence: the outcomes from same patients. This is based on the 

assumption that there is no correlation among the readmission outcomes of the same 

patients. In this case, the correlation takes the following form 
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Exchangeable: This is also known as compound symmetry. In this model it 

assumes all the variances of readmission outcomes are equal and their pairwise 

covariances are also equal. This means that every observation is equally correlated with 
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every other observation. Let ρ be the correlation coefficient between two outcomes, the 

corresponding correlation matrix is 
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Auto Regression 1 (AR1): In a time series analysis when the observations are 

correlated to their own past values through the number of lags between them then this 

phenomena is called auto-regressive. In an autoregressive correlation structure the two 

observations close to each other over time or space are more highly correlated than 

observations spreading further apart. The AR1 structure has homogenous variances and 

correlations that decline exponentially with distance. If ρ is the correlation coefficient then,  
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Unstructured: This is the most liberal structure, which means that there is no 

pattern at all. Each variance and each covariance is different and has no correlation to 

others. That is, the correlation matrix is of the following form 
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The GEE estimates can be obtained via the Newton-Raphson algorithm. One 

good property of this method is that it yields consistent estimates even when the 

correlation structure is mis specified. However, misspecification of the correlation 

structures will after the accuracy of the estimation.   
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3.1.2.4 Generalized Linear Mixed Models 

The basic idea of the GLMM is to characterize the heterogeneity across patients 

by assuming the regression coefficients to be random and follow a certain probability 

distribution. Under this assumption, the outcomes of the same patients are correlated as 

they share the same unobserved coefficient. For this reason, the GLMM is often used to 

handle correlations in the outcomes. Specifically, the simplest form of the GLMM is 

ii

i

i u
p

p



βX

1
log

 

where β is the fixed effect of covariates, and ui is the random effect of patient i 

which are assumed to be independent and normally distributed as N(0, σ
2
). σ

2
 is the 

variance of the random effect, which is a measure of the patient heterogeneity. In this 

model, the correlation of outcomes from the same patient is a constant depending on σ
2
. 

The above GLMM is more precisely referred to as a random-intercept model as the 

random effect is on the intercept. The random effect can also occur on the coefficients of 

some predictors, e.g., βk+δ, where βk is the fixed effect of xk, and δ is the associated 

random effect. The estimators of β and σ
2 
can be obtained by the restricted maximum 

likelihood estimation method.  

3.1.2.5 Selection of Models 

For independent data, either the LR or the LRT can be used. Each has their pros 

and cons: The LR model is simple, but lacks of easy interpretation in complex cases 

where interactions between risk factors need to be considered; the LRT model bears 

better interpretability, but this good property will be affected when the model has many 

covariates and the tree structure is very complex. As is the case in any regression 

analysis, there is no “best” model for a given dataset, and it is useful to consider all 
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possible ways of explaining the data and chose the best model through model 

comparison.   

For correlated data, either the GEE model or the GLMM can be used. Generally 

speaking, the decision depends on the specific situation and the goal of the study. When 

the concern is the population averaged readmission, GEE should be used, while when 

the concern is heterogeneity among the patients in readmission, GLMM should be used 

(Hu et al., 1998). Another point is that in GLMM, the correlation of outcomes from the 

same patients is a constant for all patients, while in GEE there are other options. So GEE 

is able to characterize more complex correlation structures.  

3.2 Problem Formulation 

This study aims to develop a statistical model for patient readmission in COPD 

care based on a real data set provided by the University of Texas Medical Branch 

(UTMB) in Galveston, Texas.  

Some important risk factors to COPD readmission are shown in Figure 3.2, 

including patient characteristics, e.g., age, gender, marital status and comorbidity, and 

process variables of the COPD care, e.g., the use of steroid and other treatments. The 

goal of this study is to build an appropriate statistical model to describe the dependency 

of readmission on the risk factors. The following issues need to be solved in this 

endeavor: 

Determination of outcome correlation: We need to find whether the correlation 

among the readmission outcomes of the same patients is significant to determine which 

model to use. If the correlation is significant, then GEE or GLMM will be used; otherwise 

the LR or LRT model will be used. 

Model selection: When the correlation of outcomes is determined, the best model 

for the given dataset needs to be found by comparing the candidate models. For 
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example, if it is found that the outcomes can be viewed as independent, then the LR and 

LRT model will be compared to determine the one that fits the data better. 

Variable selection: Significant risk factors to patient readmission need to be 

identified through variable selection techniques. 

Link function selection: As given in section 3.1.2.1, there are three popular link 

functions for the GLMs. We need to determine which link function works the best for the 

data through comparing their predictive performance. 

The proposed modeling approach which can solve the above issues is described 

in the following section.  

 

Figure 3-2 Risk factors to COPD readmission 

3.3 The Proposed Approach 

In this research we propose a systematic approach to build models for patient 

readmission. Figure 3.3 shows a schematic representation of our proposed approach. In 

the first step we determine whether the correlation among outcomes of the same patients 
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is significant by fitting a Generalized Estimating Equations (GEE) model. The model 

estimates contain the estimate of the correlation. If the correlation estimate is not 

significant then we will treat the data as independent data; otherwise they will be treated 

as correlated data. For independent data, the LR and the LRT model will be built 

separately and compared through cross validation to determine the fitting model for data. 

Variable selection and link function selection will also be considered in building the two 

models. If the outcomes are correlated, the GEE model and the GLMM will be built and 

compared. The best model selected in this procedure will be used in the monitoring task

 

Figure 3-3 Overview of the Proposed Approach 
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The variable/link function selection will follow these steps:  

(1) Fit a simple LR model for each individual covariate (main effect). The significant 

covariates are retained for the next step. The purpose of this screening is to identify all 

the potential significant covariates from the pool of available covariates.  

(2) Fit a simple LR model for each two-way interaction of the selected covariates in last 

step. Significant interactions will be retained. 

(3) Build a LR model using all the significant covariates and interactions through model 

selection techniques such as stepwise selection and likelihood ratio tests.   

(4) Once the LR model is determined, comparing the three link functions in terms of their 

predictive performance and choose the best one. 

(5) Build the LRT model using the selected covariates in the first step. 

(6) Compare the LR and LRT model through cross validation. 

The proposed approach will be applied to the dataset from COPD patients in a 

case study. The results of the analysis will be given in the following section.  

3.4 Case Study 

In this research the response variable is 30-day readmission of COPD patients 

from the University of Texas Medical Branch (UTMB), Galveston, TX. As shown in Figure 

3.4, those patients were from all over the country but the majority of them were from 

Galveston, TX. 
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Figure 3-4 Spatial Distributions of the Patients 

The data consist of the readmission data and 47 covariates as shown in Table 

3.1. After data cleaning (removing “NA”), we have 282 observations.  

Table 3-1 Variables in the Dataset 

Variable number Name 

1 ALL 

2 X48hrs 

3 FOLLOWUP_15 

4 FOLLOWUP_30 

5 COPD_ORDERSET_USAGE 

6 PFT_ORDERED_EVER 

7 GENDER 

8 MARITAL_STATUS 

9 CS 

10 CS_CURRENT_ORDER 

11 LABA 

12 LABA_CURRENT_ORDER 

13 LAMA 

14 LAMA_CURRENT_ORDER 
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Table 3-1 - Continued 
 

15 ER_VISITS 

16 OUPT_VISITS 

17 HOSPITALIZATIONS 

18 HOSPITALIZATIONS_COPD 

19 OXYGEN 

20 SMOKER 

21 ALCOHOL_USE 

22 DRUG_USE 

23 DEPRESSION 

24 ANXIETY 

25 LUNG_CANCER 

26 DIABETES 

27 HYPERTENSION 

28 CONGESTIVE_HEART_FAILURE 

29 CORONARY_ARTERY_DISEASE 

30 OSTEOPOROSIS 

31 FLU 

32 PNEUMOCOCCAL 

33 PULMONARY_REHAB 

34 PFT_ORDERED 

35 ANTIBIOTICS_OVER1_DOSE 

36 ANTIBIOTICS_ALL_DOSES 

37 HEMOGLOBIN 

38 RDW 

39 EOS, 

40 EOS_PERCENT 

41 WBC 

42 MAGNESIUM 

43 LOS 

44 Admission Source 

45 RACE 

46 AGE 

47 FIN_CLASS 

 
Among the patients, 78% of them have only one observation, 14.5% of them 

have two observations, and 7.5% of them have more than two observations. This means 
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that most of the data are from different patients and thus can be assumed to be 

independent. 

3.4.1 Univariate Analysis at alpha level 0.05 

A univariate analysis is first done to select significant main effects, that is, a 

simple logistic regression model was fitted for each main effect of the risk factors 

separately. Significant main effects at α=0.05 are shown in Table 3.2.   

Table 3-2 Significant Main Effects in the Univariate Analysis 

Variable number Effects p value 

1 LAMA 0.0142 *   

2 ER_VISITS 3.14e-10 *** 

3 HOSPITALIZATIONS 8.53e-07 *** 

4 HOSPITALIZATIONS_COPD 0.00027 *** 

5 OXYGEN 0.000284 *** 

6 ALCOHOL_USE 0.045 *   

7 DRUG_USE 0.0191 *   

8 FLU 0.0231 *   

9 RDW 0.00688 ** 

 
From the results in Table 3.2, we can see that the two most significant covariates are the 

number of previous emergency room visits (ER_VISITS) and the number of 

hospitalizations (HOSPITALIZATIONS). This finding is consistent with some existing 

studies on COPD readmission (e.g., Smith et al., 2000; Almagro et al., 2006; Bahadori 

and FitzGerald, 2007). 

3.4.2 Fitting a Model for all the Selected Main Effects 

The significant main effects shown in Table 3.2 were modeled using the LR and 

the GEE (link logit). The comparison of the p values in these two models is shown in 

Table 3.3. 
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Table 3-3 Comparison of Estimates of the GEE and LR Model 

Model Alpha level 
0.001  

Alpha Level  
0.01  

 

Alpha Level 
 0.05  

Alpha Level 
 0.1  

GEE model ER_VISITS 
(1.4×10

-05
 ) 

HOSPITALIZATIONS 
(0.00127 ) 

HOSPITALIZATIONS_CO
PD (0.003426 ) 

 

LAMA  
(0.01697 ) 

 

ALCOHOL_USE 
(0.054091) 

Logistic 
Regression  

model 

ER_VISITS 
(1.3×10

-07
) 

 

HOSPITALIZATIONS 
(0.0064 ) 

HOSPITALIZATIONS_CO
PD (0.0071) 

 
 

LAMA  
(0.0195 ) 

ALCOHOL_USE 
(0.0435 ) 

 

 
From the results in Table 3.3, we can see that the significance of the main effects 

is different in the two models. For example, the p value of ER-VISITS in the LR model is 

smaller than that in the GEE model, meaning that this factor is more significant in the LR 

model. Similarly, the factor ALCOHOL_USE has a smaller p value in the LR model. If 

α=0.05 is used, this factor will be significant in the LR model and not significant in the 

GEE model. This is actually consistent with the essential difference between the two 

models. In general, the GEE tends to degrade the significance of covariates because it 

takes the correlation in the outcomes into consideration which will increase the standard 

error in estimating the effect of each factor. As a result, some factors that are significant 

in the LR model will become insignificant when the GEE model is used. 

3.4.3 Estimation of Correlation 

The estimate of the correlation among readmission outcomes from same patients 

is as follows  

Estimated Correlation Parameters using GEE: 

Estimate Std.err 

alpha   0.1602  0.1101 
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Number of clusters:   212  Maximum cluster size: 6 

The Confidence Interval is given by equation  

CI= estimate ± 1.96 (std. error) = [0.0556, 0.3759] 

Since the above confidence interval contains “0” in it, we determine that the 

correlation is not significant. Thus the data can be viewed as independent and the two 

models for independent outcomes, the LR and the LRT model, should be used.  

3.4.4 Significant Two-Way Interaction at 0.05 Level 

To select the significant two-way interactions, a univariate analysis is done to the 

interactions of the significant main effects. Again, a simple LR model is fitted to each 

interaction using a logit link.  The following interactions are significant at α=0.05: 

ER_VISITS:HOSPITALIZATIONS  (p value =  0.0041 ** ) 

ER_VISITS:DRUG_USE  ( p value = 0.028 *  ) 

HOSPITALIZATIONS_COPD:OXYGEN (p value = 0.0437 *  )  

OXYGEN:RDW (p value = 0.0499 *) 

3.4.5 Build the Complete LR Model  

The complete Logistic Regression model (Link = logit) containing the significant 

main effects and two-way interactions is below. The estimates of the parameters and 

standard errors are displayed in Table 3.4.   

X30DAY_READMISSION ~ LAMA + ER_VISITS + HOSPITALIZATIONS + 

HOSPITALIZATIONS_COPD + OXYGEN + ALCOHOL_USE + DRUG_USE + 

FLU + RDW + ER_VISITS:HOSPITALIZATIONS + ER_VISITS:DRUG_USE + 

HOSPITALIZATIONS_COPD:OXYGEN + OXYGEN:RDW 
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Table 3-4 Coefficients in the complete model 

 Estimate Std. 
Error 

z 
value 

Pr(>|z|) 

Intercept -4.289       2.308            -
1.859          

0.0631 .   

LAMA 1.220        0.502 2.428          0.0152 *   
ER_VISITS                                                   1.897        0.410            4.620           3.85×10

-

06
***

 

HOSPITALIZATIONS 0.176        0.072            2.444           0.0145 *   
HOSPITALIZATIONS_COPD 0.377        0.279            1.352           0.1765     
OXYGEN -3.173        3.345           -

0.949           
0.3427     

ALCOHOL_USE 0.782         0.429            1.821           0.0687 .   
DRUG_USE                                                  0.130         0.799            0.163           0.8702 
FLU 0.285         0.455            0.627           0.5306     
RDW -0.026          0.152           -

0.171           
0.8640     

ER_VISITS:HOSPITALIZATIONS           0.012         0.035            0.345           0.7303 
ER_VISITS:DRUG_USE                            -1.064        0.646            -

1.647          
0.0996. 

HOSPITALIZATIONS_COPD:OXYGEN -0.638      0.286             -
2.227         

0.0259* 

OXYGEN:RDW                                             0.293       0.220             1.335         0.1820 

 
3.4.6 Variable Selection 

Two variable selection methods were used on the complete model: stepwise 

selection and likelihood ratio test. The likelihood ratio test starts from the full model and 

remove a covariate when the test is insignificant. Results in each step are shown in the 

following sections. Table 3.5 lists the results of the stepwise selection, where “mcomp” is 

the complete LR model found in the previous analysis. 
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Table 3-5 Results from Stepwise Selection 

Model Predictors Deviance df AIC 

mcomp 

LAMA, ER_VISITS, HOSPITALIZATIONS, 
HOSPITALIZATIONS_COPD, OXYGEN, 
ALCOHOL_USE, DRUG_USE, FLU, RDW, 
ER_VISITS:HOSPITALIZATIONS, 
ER_VISITS:DRUG_USE, 
HOSPITALIZATIONS_COPD:OXYGEN 
,OXYGEN:RDW  

170.99 269 198.99 

Xoxyrdw 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + FLU + RDW + 
ER_VISITS:HOSPITALIZATIONS + 
ER_VISITS:DRUG_USE + 
HOSPITALIZATIONS_COPD:OXYGEN 

172.95 270 198.95 

Xhoscopoxy 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + FLU + RDW + 
ER_VISITS:HOSPITALIZATIONS + 
ER_VISITS:DRUG_USE 

177.12 271 201.12 

Xervisianddrug 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + FLU + RDW + 
ER_VISITS:HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD:OXYGEN 

175.33 271 199.33 

Xervisinhosp 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + FLU + RDW + 
HOSPITALIZATIONS_COPD:OXYGEN 

175.53 272 197.53 

Xrdw 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + FLU + 
HOSPITALIZATIONS_COPD:OXYGEN 

176.41 273 196.41 

Xflu 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + DRUG_USE + 
HOSPITALIZATIONS_COPD:OXYGEN 

177.1 274 195.1 

Xdruguse 

LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
ALCOHOL_USE + 
HOSPITALIZATIONS_COPD:OXYGEN 

178.38 275 194.38 

Xalcuse 
LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + OXYGEN + 
HOSPITALIZATIONS_COPD:OXYGEN 

182.01 276 196.01 
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Table-3.5 - Continued 

Xoxy 
LAMA + ER_VISITS + HOSPITALIZATIONS + 
HOSPITALIZATIONS_COPD + 
HOSPITALIZATIONS_COPD:OXYGEN 

185.88 277 197.88 

Xhospco 
LAMA + ER_VISITS + HOSPITALIZATIONS + 
OXYGEN + HOSPITALIZATIONS_COPD:OXYGEN 

183.66 277 195.66 

Xhosp 
LAMA + ER_VISITS + OXYGEN + 
HOSPITALIZATIONS_COPD:OXYGEN 

196.71 278 206.71 

Xerv 
LAMA + HOSPITALIZATIONS + OXYGEN + 
HOSPITALIZATIONS_COPD:OXYGEN 

220.99 278 230.99 

Xlama 
ER_VISITS + HOSPITALIZATIONS + OXYGEN + 
HOSPITALIZATIONS_COPD:OXYGEN 

188.65 278 198.65 

 
Table 3.6 lists the results from the likelihood ratio test. At each step one covariate 

was removed and the reduced model was compared to the previous model by the 

likelihood ratio test. If the p value of the test is less than 0.05, that means there is a 

significant difference between the previous (bigger) model and the reduced model. Thus 

the model selection will stop and the previous model was retained; otherwise the 

selection will proceed. Note that the likelihood ratio can only compare two nested models. 

Table 3-6 Results from Likelihood Ratio Test  

Models 
Compared 

Deviance 
difference 

p value 
of LRT 

test 
Decision 

mcomp vs 
Xoxyrdw 

-1.961 0.1613 
model without the interaction oxygen:RDW. Keep the 

model Xoxyrdw 

Xoxyrdw vs 
Xhoscopoxy 

-4.161 0.0413 
p value less than 0.05 so we keep model with the 

hospitlaztion_COPD:oxygen. Reject the model 
Xhoscopoxy and keep the model Xoxyrdw 
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Table 3.6 - Continued 

Xoxyrdw vs 
Xervisianddrug 

-2.374 0.1233 
model without the interaction ER_VISITS:DRUG_USE. 

Keep the model Xervisianddrug 

Xervisianddrug 
vs Xervisinhosp 

-0.201 0.6531 
model without the interaction 

ER_VISITS:HOSPITALIZATIONS. Keep the model 
Xervisinhos 

 Xervisinhosp vs 
Xrdw 

-0.875 0.3494 model without RDW. Keep the model Xrdw 

Xrdw vs Xflu -0.697 0.4037 model without FLU. Keep the model Xflu 

Xflu vs 
Xdryguse 

-1.280 0.2578 model without DRUG_USE. Keep the model "Xdruguse" 

Xdruguse vs 
Xalcuse 

-3.631 0.0566 model without ALCOHOL_USE. Keep the model "Xalcuse" 

Xalcuse vs Xoxy -3.866 0.0492 
p value less than 0.05 so we keep modle with the oxygen. 

Reject the model Xoxy and keep the model Xalcuse. 

Xalcuse vs 
Xhospco 

-1.649 0.199 
model without HOSPITALIZATIONS_COPD. Keep the 

model Xhospco 

Xhospco vs 
Xhos 

-13.041 0.0003 
p value less than o.o5 so we keep the model with 

HOSPITALIZATIONS. Reject the model Xhos and keep 
the model Xhospco 

Xhospco vs 
Xerv 

-37.321 1 10
-09

 

p value less than 0.05 so we keep the model with 
ER_VISITS. Reject the model Xerv and keep the model 

Xhospco 

Xhospco vs 
Xlama 

-4.987 0.0255 
p value less than 0.05 so we keep the model with LAMA. 

Reject the model Xlama and keep the model Xhospco 

 
3.4.7 Comparing Different Link Functions 

The final logistic regression model is then compared by changing the link 

functions. The three link functions are logit, probit and cloglog. The receiver operating 

characteristic (ROC)curves were made for link function as shown in Figures 3.5, 3.6 and 

3.7. 
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Figure 3-5 ROC Curve for the Logit Link Function 
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Figure 3-6 ROC Curve for the Probit Link Function 
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Figure 3-7 ROC Curve for the Cloglog Link Function 

3.4.8 Performance Criteria for Selecting the Best LR Model 

Different performance criteria can be applied in selecting the best LR model 

which represent different perspectives to evaluate the models. For example if the 

prediction performance is of interest, then criteria on how well the model can predict 

future values should be used. If the fitting performance is concerned, then criteria on how 
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well the model fits the data need to be used. Some of the commonly used model 

selection criteria are: 

AIC (Akaike Information Criterion) 

BIC (Bayesian Information Criterion) 

Prediction- Cross Validation or Area under ROC curve (AUC) 

Simplicity 

The final model from the stepwise selection and backward elimination based on the AIC 

criteria is: 

MODEL-backstep: X30DAY_READMISSION ~ LAMA + ER_VISITS + 

HOSPITALIZATIONS +  HOSPITALIZATIONS_COPD + OXYGEN + ALCOHOL_USE + 

DRUG_USE + ER_VISITS:DRUG_USE + HOSPITALIZATIONS_COPD:OXYGEN) 

The final model from the forward model selection is: 

MODEL-fwdstep: X30DAY_READMISSION ~ LAMA + ER_VISITS + 

HOSPITALIZATIONS +     HOSPITALIZATIONS_COPD + OXYGEN + ALCOHOL_USE 

+ DRUG_USE + FLU + RDW + ER_VISITS:DRUG_USE + 

HOSPITALIZATIONS_COPD:OXYGEN + OXYGEN:RDW) 

The results from the stepwise selection and backward selection are the same. However, 

the results from the forward selection are different. Since a lower AIC value indicates a 

better fitting of the model, the model selected by the backward selection is better than 

that from the forward selection. 

The final model from the backward elimination based on the p value criteria is: 

MODEL-Backlrt: X30DAY_READMISSION ~ LAMA + ER_VISITS + 

HOSPITALIZATIONS + OXYGEN + HOSPITALIZATIONS_COPD:OXYGEN) 

Another performance criterion is the Area under the ROC curve (AUC). In the 

following section the final models will be compared according to their AUCs. Since link 
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functions can also play a significant role, we have considered all the three link function for 

each model. 

Table 3-7 Performance Evaluation for Various LR Models 

MODEL 
Link 

Function 
AIC 

Residual 
Deviance 

AUC 

Backstep_logit Logit 194.72 174.72 88.73% 

Backstep_probit Probit 193.67 173.67 88.79% 

backstep_cloglog cloglog 198.01 178.01 88.13% 

fwd_logit Logit 197.12 171.12 88.43% 

fwd_probit Probit 197.01 171.01 88.55% 

fwd_cloglog cloglog 199.41 173.41 88.02% 

Backlrt_logit Logit 195.66 183.66 88.42% 

Back lrt_probit Probit 193.92 181.92 88.23% 

Back lrt_cloglog cloglog 201.37 189.37 87.76% 

 
From the results in Table 3.7, it can be seen that all the link functions deliver 

similar results. Hence we can use the most popular link function, the logit link function. 

Since the backstep model that was found using the stepwise model selection has the 

best AUC, the best LR model is: 

BEST MODEL: X30DAY_READMISSION ~ -4.49 + 1.15 x LAMA + 1.96 x 

ER_VISITS + 0.19xHOSPITALIZATIONS + 0.33xHOSPITALIZATIONS_COPD + 

1.05xOXYGEN + 0.76 xALCOHOL_USE + 0.05 x DRUG_USE -0.91 x 

ER_VISITS:DRUG_USE - 0.57 xHOSPITALIZATIONS_COPD:OXYGEN) 

3.4.9 Analytical Techniques for Predictive Analysis and Logistic Regression Tree (LRT) 

Predictive analysis uses machine learning, modeling, statistics and data mining 

to analyze the current scenario using historical facts to make predictions about future. 

The approaches and techniques to carry predictive analysis are: 

 Regression models 

 Linear Regression models 
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 Discrete choice models 

 Logistic regression 

 Time series models 

 Survival or duration analysis 

 Classification and Regression Trees (CART) 

 Multivariate Adaptive Regression Splines (MARS) 

 Logistic Regression Tree (LRT) 

 Machine learning techniques 

 Neural networks. 

Classification and Regression Trees (CART), Multivariate Adaptive Regression 

Splines (MARS) and Logistic Regression Tree (LRT) are non-parametric decision tree 

learning technique. A decision tree predictive model plots observations about an item to 

draw conclusions about the item’s target value. In the decision tree structure the leaves 

represent class labels and branches represent aggregations of features that lead to those 

class labels. A decision tree makes various rules based on the variables in the dataset. 

These rules are based on variable’s values selected to get the split to differentiate 

observations based on dependent variable. Once a rule is selected and splits a node into 

two then there is a recursive procedure that is applied to each child node. Figure 3.8 

shows a schematic comparison between a regular model with a tree model. Tree models 

have some advantages over the regular models such as 

Tree models can be used to model more complex models.:Tree models are visually 

intuitive and convenient to use. Tree model does not have interactions which makes it 

easy to interpret.  

They can provide important insights based on experts describing a situation. 
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Figure 3-8 Comparison Between Regular Model and Tree Model 

The Logistic Tree with Unbiased Selection (LOTUS) algorithm developed by 

Chan and Loh (2004) can be used to build the LRT model. The selected main effects of 

risk factors in section 3.4.1 will be used in fitting the LRT model. Those main effects are: 

1. LAMA (Binary) 

2. ER Visit (Numeric) 

3. Hospitalizations (Numeric) 

4. Hospitalization_COPD (Numeric) 

5. Oxygen (Binary) 

6. Alcohol use (Binary) 

7. Drug Use (Binary) 

8. RDW (Numeric) 

9. Flu (Binary) 

In this study three ways to fit the LRT model are considered which assign different 

variables for splitting the tree and fitting the LR model at each end of the branch. The 

designations of LOTUS are shown in Figure 3.9. 
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Figure 3-9 9 Designations of Variables in LOTUS 

The explanation of each type of variable is as described below: 

 Nominal categorical variable: A variable that has categories but the order is not 

important. For example Gender. 

 Ordinal categorical variable: A variable that has categories and the order has 

some significance. For example, financial status Low, medium and high. 

LRT Model 1: The designation of variables in this model is shown in Table 3.8. All the 

categorical variables are designated by “c”, which means that they are used for splitting 

nodes only. All the numeric variables are designated by “f”, which means that they are 

used for fitting the logistic model only.  

Table 3-8 Designation of variables in LRT Model 1 

S/NO Variable Variable type 
LOTUS 
denotation 

Response 
varibale 

30 day readmission 
categorical 
(binary) 

d 

1 LAMA 
categorical 
(binary) 

c 

Dependent 
Variable "d" 

Independent variables 

splitting nodes 
only 

nominal categorical 
variable "c" 

ordinal 
categorical 
variable "o" 

numerical 
variable "s" 

Fitting the logistic node 
model only 

numerical 
variable "f" 

both Splitting nodes and fitting the logistic 
node model 

numerical 
variable "n" 

Excluded 
variables "x" 
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Table 3.8- Continued 

2 ALCOHOL_USE 
categorical 
(binary) 

c 

3 ER_VISITS numeric f 

4 HOSPITALIZATIONS numeric f 

5 HOSPITALIZATIONS_COPD numeric f 

6 OXYGEN 
categorical 
(binary) 

c 

7 DRUG_USE 
categorical 
(binary) 

c 

8 FLU 
categorical 
(binary) 

c 

9 RDW numeric f 

 
The Logistic Regression Tree model diagram for the designation given in Table 3.8 is 

shown in Figure 3.10.  

 

Figure 3-10 Logistic Regression Tree Model 1 

Logistic regression tree output 

 Regression tree output:  

 Node 1: OXY = 0   
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Node 2: Probability = 0.1060E+00 

Node 1: OXY = 1   

Node 3: DRUG = 0   

Node 6: Probability = 0.2500E+00 

Node 3: DRUG = 1   

Node 7: Probability = 0.5000E+00   

Terminal node models of logistic regression tree 

Node 2: Deviance = 7.9762E+01 

Total Cases = 151, Cases Fit = 151 

Total Cases with Y=1 = 16 

Variable      Coefficient              Std Error              T-Value 

Intercept      -3.815                   6.259 ×10
-01

           -6.094 

ER                1.931                   5.037 × 10
-01

          3.833 

HOSC          6.313 × 10
-01

       2.569 × 10
-01

           2.457 

Model at terminal node 2 is:  

(OXY=0) ~ -3.815 + 1.931ER + 6.3134×HOSC + (6.259×10
-01

 + 5.037×10
-01

 + 

2.569×10
-01

) 

Node 6: Deviance = 8.715×10
+01

 

Total Cases = 116, Cases Fit = 116 

Total Cases with Y=1 = 29   

Variable      Coefficient         Std Error              T-Value 

Intercept      -3.168                6.071×10
-01

         -5.219 

ER               1.809                 4.704×10
-01

         3.846 

HOS           3.261×10
-01

         1.118×10
-01

         2.916 

HOSC         -3.286×10
-01

     1.501×10
-01

          -2.189 
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Model at terminal node 6 is :  

(OXY=1, DRUG = 0) ~ -3.168 + 1.809×ER +3.261×HOS – 3.286×HOSC + 

(6.071×10
-01

 + 4.704×10
-01

 + 1.118×10
-01

 + 1.501×10
-01

 ) 

 Node 7: Deviance = 1.3955E+01 

Total Cases = 16, Cases Fit = 16 

Total Cases with Y=1 = 8 

Variable     Coefficient   Std Error      T-Value 

Intercept      -1.466            6.597              -2.223 

RDW           9.365×10
-01

  4.223×10
-01

      2.217 

Model at terminal node 7 is :  

(OXY=1, DRUG = 1) ~ -1.4668 + 9.365×10
-01

×RDW + (6.5976 + 4.223×10
-01

) 

LRT Model 2: The designation of variables in this model is given in Table 3.9. In this 

model the categorical variables are nominal and they are used for splitting nodes only. All 

the numeric variables are designated by “n” which means that they are used both for 

splitting the nodes and fitting the logistic node model.  

Table 3-9 Designation of Variable in LRT Model 2 

S/NO Variable 
Variable 
type 

LOTUS 
denotation 

Response 
varible 

30 day readmission 
categorical 
(binary) 

d 

1 LAMA 
categorical 
(binary) 

c 

2 ALCOHOL_USE 
categorical 
(binary) 

c 

3 ER_VISITS numeric n 

4 HOSPITALIZATIONS numeric n 



74 

Table 3.9 – Continued 
 

5 HOSPITALIZATIONS_COPD numeric n 

6 OXYGEN 
categorical 
(binary) 

c 

7 DRUG_USE 
categorical 
(binary) 

c 

8 FLU 
categorical 
(binary) 

c 

9 RDW numeric n 

 
The logistic regression tree model diagram for the designation given in Table 3.9 is 

shown in Figure 3.11.  

 

Figure 3-11 Logistic Regression Tree Model 2 

Regression tree: 

Node 1: ER <= 0.0000E+00 

Node 2: Probability = 0.5742E-01 

Node 1: ER > 0.0000E+00 

Node 3: Probability = 0.5541E+00 

Terminal Node Models of Logistic Regression Tree: 

Node 2: Deviance = 8.6085E+01 

Total Cases = 209, Cases Fit = 209 

Total Cases with Y=1 = 12 
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Variable     Coefficient   Std Error        T-Value 

Intercept    -3.631            5.070×10
-01

    -7.162 

HOS           1.670×10
-01

   6.596×10
-01

     2.531 

Model at terminal node 2 is :  

(ER<=0) ~ -3.6319 + 1.67×10
-01

×HOS+ (5.070×10
-01

  + 6.596×10
-02

  )  

Node 3: Deviance = 9.4014E+01 

Total Cases = 74, Cases Fit = 74 

Total Cases with Y=1 = 41 

Variable      Coefficient     Std Error       T-Value 

Intercept      -5.833            2.409             -2.421 

RDW           4.056×10
-01

    1.623×10
-01

    2.498 

Model at terminal node 3 is :  

(ER >0) ~ -5.8338 + 4.056×10
-01

×RDW + (2.409 + 1.623×10
-01

) 

LRT Model 3: The designation of variables in this model is given in Table 3.10. In this 

model the categorical variables are nominal and they are used for splitting nodes only. All 

the numeric variables are designated by “f” which means that they are used for fitting the 

logistic node model only. The numerical variable ER visit is designated “n” which means 

that it is used both for splitting the nodes and fitting the logistic node model.  
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Table 3-10 Designation of Variables in LRT Model 3 

S/NO Variable 
Variable 

type 
LOTUS 

denotation 

Response 
variable 

30 day readmission 
categorical 

(binary) 
d 

1 LAMA 
categorical 

(binary) 
c 

2 ALCOHOL_USE 
categorical 

(binary) 
c 

3 ER_VISITS numeric n 

4 HOSPITALIZATIONS numeric f 

5 HOSPITALIZATIONS_COPD numeric f 

6 OXYGEN 
categorical 

(binary) 
c 

7 DRUG_USE 
categorical 

(binary) 
c 

8 FLU 
categorical 

(binary) 
c 

9 RDW numeric f 

 
The logistic regression tree model diagram for the designation given in Table 3.10 is 

shown in Figure 3.12.  

 

Figure 3-12 Logistic Regression Tree Model 3 
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Regression tree: 

Node 1: ER <= 0.0000 

Node 2: Probability = 0.574×10
-01

 

Node 1: ER > 0.0000 

Node 3: OXY = 0   

Node 6: Probability = 0.428 

Node 3: OXY = 1   

Node 7: Probability = 0.603   

Terminal Node Models of Logistic Regression Tree: 

Node 2: Deviance = 8.6085E+01 

Total Cases = 209, Cases Fit = 209 

Total Cases with Y=1 = 12 

Variable     Coefficient   Std Error         T-Value 

Intercept       -3.631           5.070×10
-01

   -7.162 

HOS           1.670×10
-01

  6.596×10
-02

   2.531 

Model at terminal node 2 is :  

(ER <=0) ~ -3.6319 + 1.67×10
-01

×HOS + (5.070×10
-01

 + 6.596×10
-02

) 

Node 6: Deviance = 2.0594E+01 

Total Cases = 21, Cases Fit = 21 

Total Cases with Y=1 = 9 

Variable     Coefficient    Std Error      T-Value 

Intercept      -3.273          1.348            -2.427 

HOSC          1.937           8.570×10
-01

   2.260 

Model at terminal node 6 is :  

(ER >0, OXY=0) ~ -3.273 + 1.937×HOS+ (1.3484 + 8.570×10
-01

) 
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Node 7: Deviance = 6.3142E+01 

Total Cases = 53, Cases Fit = 53 

Total Cases with Y=1 = 32 

Variable      Coefficient    Std Error       T-Value 

Intercept      -7.635            3.287            -2.322 

RDW           5.319×10
-01

   2.196×10
-01

   2.421 

Model at terminal node 7 is :  

(ER >0, OXY=1) ~ -7.635 + 5.319×10
-01

×RDW + (3.287 + 2.196×10
-01

) 

The LRT Model 1 is chosen here for its intuitive interpretation. The model is 

shown in Figure 3.13. 

 

Figure 3-13 Fitted LRT model (left) and LR models at End Nodes (right) 

3.4.10 Model Comparison 

Cross validation technique is a model validation technique for evaluating how the 

results of a statistical analysis will generalize to an independent data set. Cross validation 

involves dividing a data set into complementary sub datasets. The analysis is performed 

on data set called the training data set and validated on another data set called testing 
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data set. Cross validation is used when the goal is prediction and it is required to 

estimate how well the data will predict in a real situation. Common types of Cross 

validation are: 

 K-fold cross validation 

 2-fold cross validation 

 Repeated sub sampling validation 

 Leave-one-out Cross Validation 

In our study a simple 2-fold cross validation is applied. For each fold there is a 

random assignment of the data points so that each data set is of equal size. The 

advantage of 2-fold cross validation is that the training and testing data set are both 

large. In our case we randomly chose 80% data for training and 20 % data for testing. 

Performance could be measured on the training data set using a threshold. A 

threshold is used to determine the predicted readmission. The rule is: if the predicted 

probability of readmission based on the considered model is larger than the threshold, 

then the prediction of the readmission is 1; otherwise, the prediction is 0. The threshold 

can be selected between 0 and 1. The success rate of a model is defined to be the 

percentage of simulations in which the prediction equals to the observation. In this study 

the cross validation is carried out for LR as well as LRT for each combination of threshold 

and number of simulations. Figure 3.14 shows the success rates of the two models for 

100 simulations at a threshold of 0.5. Figure 3.15 shows the results for 10,000 

simulations at a threshold of 0.7.  
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Figure 3-14 Success Rates Based on 100 Simulations at a Threshold of 0.5 

  

Figure 3-15 Success Rates Based on 10,000 Simulations at a Threshold of 0.7 
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From the figures above, it can be seen that both LR and LRT have similar results 

for performance. Table 3.11 shows the results of all the simulations carried at different 

thresholds. 

Table 3-11 Simulation Results at Different Thresholds 

Simulation 
number 

Number of 
Simulations  

Threshold 

% 
simulations  
where LR 
performed 
better than 

LRT 

1 10000 0.5 0.3623 

2 10000 0.55 0.465 

3 10000 0.6 0.4992 

4 10000 0.65 0.4798 

5 10000 0.7 0.4435 

6 10000 0.75 0.3796 

7 10000 0.8 0.3132 

8 10000 0.85 0.2674 

9 10000 0.9 0.2571 

10 10000 0.95 0.2871 

 

 
Figure 3-16 Comparison of Performance of LR vs LRT 
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Figure 3.16 shows the graphical summary of the percent simulations where LR 

performed better than LRT. From the figure we can see that LRT performs better than LR 

over 50% of the time under different threshold values. Hence we conclude that the LRT is 

the best model for the data. Risk-adjusted monitoring will be conducted based on this 

model in our future study. 
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  Chapter 4

 Risk-Adjusted Phase I Monitoring of Patient Readmission in COPD Care 

4.1 Literature Review 

Risk-adjusted Monitoring is very important in healthcare industry to ensure 

homogeneity among all the cases considered by the healthcare provider. Figure 4.1 

shows a schematic diagram of the risk-adjusted monitoring in healthcare. In a non-risk-

adjusted monitoring the patient outcome such as survival rate, readmission, adverse 

events etc. is a function of Quality of care only. However, unlike manufacturing processes 

where products are homogeneous, in health care scenario patients come from different 

backgrounds with various risk factors such as severity, comorbidity, age, etc., associated 

with them. Hence in a risk-adjusted monitoring patient outcome is a function of healthcare 

quality as well as the risk factors associated with the patient. 

 

Figure 4-1 Risk-adjusted Monitoring in Healthcare 

Many studies have been done on risk-adjusted monitoring of patient outcomes 

and Phase I monitoring. A brief review of literature on these two topics is given as 

follows. 
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4.1.1 Risk-adjusted Monitoring 

Grigg and Farewell (2004), Woodall (2006), and Cook et. al (2008) give excellent 

reviews on methods and techniques for risk-adjusted monitoring of healthcare provider’s 

performance. These methods can be divided into three categories: simple risk-adjusted 

plots, extension of non risk-adjusted SPC control charts, and Bayesian approaches. The 

proposed approaches in the first two categories focus on Phase II monitoring, while 

Bayesian approaches can be used for both Phase I and Phase II monitoring. 

Simple risk-adjusted plots: Simple plots of the cumulative difference between 

observed and expected outcomes have been used to detect changes in surgical 

performance 

)p (  1 tttt yCC    

where tC  is the statistic at time t, ty  is the observed outcome (death/survival), 

and tp  is the baseline mortality probability of patient t. Obviously, if there is a sustained 

change in the performance of care providers, an increasing/decreasing trend can be seen 

in the plot. Such methods include the observed-expected (O-E) plot (Polonieki, 1998) and 

the variable life- adjusted (VLAD) plot (Lovegrove, et al., 1997). While these plots are 

very easy to implement and understand by healthcare practitioners, the statistical 

properties of the statistic monitored are not clear and thus it is very difficult to set up 

control limits. 

Extension of non-risk-adjusted SPC control charts: As SPC is a well-studied area 

in other contexts especially industrial applications, various non-risk-adjusted control 

charts are available in the literature. These techniques have been extended to medical 

applications by incorporating risk adjustment. Popular extensions of these techniques 

include 
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(1) Risk-adjusted p chart: p-chart is a basic SPC technique to monitor binary data 

such as defectiveness or nondefectiveness of products in industrial process control 

where defective rate is an important concern. To apply this technique in Phase II 

monitoring, subgroups of data need to be collected, and a normal distribution is assumed 

when the sample size of subgroups is adequately large 













i

00
0

1

n

)p-(1 p
 ,pN ~ 

n
ˆ

i

   

i

i

n

t

ity

p  

where in is the sample size of subgroup i, ip̂  is the corresponding average 

defective rate, ity is the measurement of product in subgroup i, and p0 is the base-line 

defective rate estimated from historical data. 3-sigma control limits can be obtained 

based on this distribution. To extend this method to medical contexts, patients in 

consecutive time periods of same length, e.g., 6 months, are grouped, and the 

distribution used in the monitoring becomes 
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where 0tip is the base-line mortality probability of patient t in the group i. 

Cockings, Cook and Iqbal (2006) and Cook, et al. (2003) use such charts to monitor 

mortality in intensive care. The risk-adjusted p-chart is easy in implementation and 

interpretation, and also provides a convenient way to set up control limits. However, the 

need of grouping patients in considerably long periods may lead to delay in capturing 

changes in performance.   

(2) Risk-adjusted set method: The set method monitors the time between 

adverse events (e.g., death) by counting the number of events (e.g., survival) between 
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any two consecutive occurrences of such events. Specifically, letting Ct be the current set 

number, i.e., count of events following the occurrence of an interested event, Ct = Ct-1 + 

1, that is, this statistic will increase by 1 if the t
th
 observation is not the interested event. 

This continues until an interested event occurs, and then the set number will be reset to 

0. An alarm is signaled when T  C t  happens n times, where (T,n) is a pair of thresholds 

determined through simulation. 

An extension of this method to incorporate risk-adjustment has been proposed by 

Grigg and Farewell (2004). The basic idea is to weigh each event by the base-line 

mortality probability of the patient. Specifically, the set number will be calculated by  

0

ot

1
p

p
   tt CC  

where, otp is the base-line mortality probability of patient t, and  p0 is the average 

base-line mortality probability of all patients, which can also be termed as the base-line 

mortality probability of an “average” patient. Here the average patient is used as a 

benchmark to assess the normality of each observation, and patients with a higher base-

line mortality probability than the average patient will be assigned a higher weight. 

The set method provides a graphical representation, called grass plot, to assist 

decision making. The drawbacks of this method lie in the complexity in determining the 

paired thresholds and interference based on the time between events rather than 

individual observations, which may cause delay in change detection.  

(3) Risk-adjusted CUSUM chart: Cumulative Sum (CUSUM) control charts is a 

popular SPC technique due to their optimal properties. In the general setting, such charts 

aim to test the following hypothesis: 

00 :  H
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11 :  H
 

where θ denotes the parameter of the risk adjustment model, θ0 is the base-line 

which is typically known, and  θ1 is a hypothesized value of interest. The following statistic 

is monitored 

) W(0,max  t1  tt CC  

where Wt is the CUSUM score assigned to the t
th
 observation. A control limit H 

will be found through simulation to achieve a specified in-control average run length 

(ARL0), and an alarm is signaled when Ct > H. The CUSUM score is given by the log-

likelihood ratio of the two hypotheses  
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Where yt is the t
th
 observation, and L( ty ) is the likelihood function of the risk 

adjustment model. For example, for binary data following a Bernoulli distribution with 

parameter θ=p, the likelihood function is 

yt-1yt
1 )-(1  )L(  ty  

CUSUM charts based on the above likelihood have been used widely to monitor 

defective rate of products in industrial processes. 

Risk-adjusted CUSUM charts for binary performance measure are first proposed 

by Steiner, et al. (2000) in monitoring 30-day mortality in cardiac surgeries, and then 

applied in other applications such as liver transplant to monitor one-year mortality 

(Leandro, Rolando, and Gallus, 2005) and coronary artery bypass surgeries to monitor 

adverse outcomes (Novick, et al, 2006). These charts, like their non-risk-adjusted 

counterparts in industrial contexts, are very powerful in detecting small changes in 
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performance, but their use is limited by the perceived difficulty of interpretation by health 

care practitioners (Cook, Coory and Webster, 2011; Pilcher, et al, 2010). 

(4) Risk-adjusted EWMA chart: Like CUSUM charts, the exponentially weighted 

moving average (EWMA) charts are a popular and widely used SPC technique. The 

statistic monitored in these charts takes the following form 

1)1(  ttt CSC   

Where tS  is the EWMA score assigned to the t
th
 observation, and 10    is a 

smoothing- constant. Essentially, the statistic is a linear combination of all the 

observations with higher weights assigned to recent observations. With the linearity in the 

statistic, its distribution can be obtained analytically, and consequently control limits can 

be specified base on that. 

There are different definitions for the EWMA score depending on the types of 

data monitored. For binary performances, tS  can be the base-line mortality probability or 

the difference of the observed and the base line mortality probability (Cook, et al., 2008; 

Cook, Coory and Webster, 2011). 

The risk-adjusted EWMA charts have similar performance to the risk- adjusted 

CUSUM charts in detecting small changes. It’s main advantage over the latter lies in its 

intuitive interpretation as the EWMA statistic can be viewed as an estimate of the current 

level of the process. Moreover, the influence of previous observations is removed in the 

statistic gradually by adjusting the weights rather than resetting the statistic as CUSUM 

does. 

Bayesian Approaches: Bayesian approaches have been used for process 

monitoring and change detection in various applications. Recently, such approaches are 

developed for different risk- adjusted monitoring problems, including Phase I monitoring 

(Assareh, Smith and Mengersen, 2011a, 2011b; Assareh and Mengersen, 2012), 
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estimating the location where change in performance occurs (Assareh, Smith and 

Mengersen, 2011c), and self–starting performance monitoring (Zeng and Zhou, 2011). As 

suggested by Assareh, Smith and Mengersen (2011a, 2011c), Bayesian approaches can 

be used in conjunction with the non-Bayesian control charts such as risk-adjusted 

CUSUM charts to estimate the location of the change point when a change is detected 

using those charts. Summaries, such as mean, median and mode, of the posterior 

samples can be used as estimates of the change point. The drawbacks of Bayesian 

approaches lie in its need for specifying prior distributions and computation load.  

4.1.2 Phase I Monitoring 

The most popular method for phase I change detection is the generalized 

likelihood ratio (GLR) method due to its generality (Lai, 1995). It has been used in various 

applications such as profile data (Mahmoud et al., 2007; Kazemzadeh et al., 2008) and 

simple logistic models (Kamran et al., 2012). Two types of changes may take place in 

practice: 

Change in model form: In case of a change in model form the data follow a 

model form such as linear, quadratic, cubic or any polynomial before the change-point 

and a completely different model form after the change-point. Figure 4.2 shows an 

example of change in model form. In this example the data from x=0 to 6 follows a linear 

equation, while the data from x=7 follows a fourth-order polynomial model. 
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Figure 4-2 Change in Model Form 

Change in model parameter: In case of a change in the model parameters there 

can be a change in one or more parameters of the model. For example, as shown in 

Figure 4.3 the data follows a linear model. However, before the change point the model 

follows the model of y1 and after the change point the model follows the model of y2. The 

model form however remains linear. 

 

Figure 4-3 Change in Model Parameters 
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In this research we will focus on the second type of changes, i.e., changes in the model 

parameters. As a result, this method is built on the following change- point model 
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where )(
0

M  is an appropriate statistical model of the data with parameters 

θ, m is the total number of available observations in the historical dataset, and k, 1km, 

is the change point at which the model parameter changes from 0θ  to 1θ , 10 θθ  . The 

change detection is equivalent to testing the hypothesis  

mkH :0  

11:1  mkH  

When the null hypothesis is rejected, we conclude that change occurred in the 

process; otherwise we conclude that the process is in control. 

Assume the observations are independent of each other. The likelihood under the null 

hypothesis is  

)),......(ˆ  ,......( )  ),......( 1101 mmm yyyyLHyyL θ  

where ),......(ˆ 1 myyθ is the estimate of θ  based on all the observations. The 

likelihood under the alternative hypothesis is  

)),......(ˆ ,......( )),......(ˆ ,......( ) ),......( 11110111 mkmkkkm yyyyLyyyyLHyyL  θθ
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where ),......(ˆ
10 kyyθ  is the estimate of θ 0 based on all the observations {

kyy ,......1 } and ),......(ˆ 11 mk yy θ  is the estimate of θ 1 based on all the observations {

mk yy ,......1 }. The likelihood ratio which is a function of the change-point “k”  is  
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Usually the logarithm of this ratio is used for convenience 
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Since this value depends on the value of “k”, the largest likelihood ratio among all the 

possible values of k will be used as the statistic in change detection: 

)(max
11

kLgRc
mk 

  

The upper control limit (UCL) of this statistic can be obtained through Monte 

Carlo simulation of null samples. Specifically, m observations following the null model 

with parameter ),......(ˆ 1 myyθ  are generated first and the statistic c is calculated for the 
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sample. This is repeated for a number of times, which produces a set of c values. The 

100(1-α)% percentile of these c values will be used as the control limit, where α is the 

specified Type I error rate. When a change is detected, the true change point K can be 

estimated by 

11

)(maxargˆ
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Figure 4.4 illustrates how the value of c and K can be found. 

 

Figure 4-4 Change Point Estimation 

In this study, we will apply the GLR method for Phase I monitoring of the 

readmission data.  
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4.2 Problem Formulation 

 

Figure 4-5 The Change Point Model Used in this Study 

The change point model used in this study is shown in Figure 4.5. Assume there 

are totally m observations in the historical dataset and a change point k may exist in the 

data. The observations {(x1, y1),……, (xk, yk)} follow model M0, while {(xk+1, yk+1),……, (xm, 

ym)} follow model M1. Here the two models are of the same form, but with different 

parameters. According to the modeling study described in chapter 3, the model can be a 

logistic regression model or a logistic regression tree model. Both of these forms will be 

considered in this study. As in a typical Phase I analysis, here our problem is to 

determine if there is any change in the process, and if so, estimate the location of the 

change point. We focus on detecting a single change point in a given data set, and 

multiple change points can be detected by using the binary segmentation strategy 

described in Chapter 2. 

There are two special issues in applying the GLR method for the readmission 

data: 

Estimating the model parameters: To calculate the GLR statistic, we need to find 

estimates of the parameters under each model. For too small or too large k values, the 
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observations used to estimate M0 or M1 will not be adequate to guarantee accurate 

estimation of the model parameters. This problem becomes more serious when a higher 

dimension of covariates is involved. Thus, appropriate k values need to be determined. 

Determining the control limits: In applying Monte Carlo simulation to find the 

control limit, we need to simulate observations from the null hypothesis. This is easy in 

regular models without covariates. However our simulated data should mimic the real 

data and hence in the presence of covariates, this is complex as we need to simulate 

data of both the response and covariates. The simulated data should follow similar 

patterns as the observed data. 

These two issues need to be addressed in this study.  

4.3 The Proposed Approach 

The proposed Phase I monitoring approach for readmission data has two critical 

components, the GLR statistic and the procedure to find the Upper Control Limit (UCL). 

Details of these two components are given as follows. 

4.3.1 GLR statistic 

To solve the issue (1) mentioned in Section 4.2, we will apply a window strategy 

for possible values of k, that is kϵ[Lk, Uk], where Lk and Uk, 1< Lk < Uk < m, are the lower 

and upper bound of the window, respectively. The two bounds can be specified according 

to the dimension of covariates in the model. For a higher dimension of covariates, a 

larger Lk and a smaller Uk should be used. Under this strategy, the GLR statistics for the 

GLR statistics for the LR model and the LRT model are derived in the following. 

When the logistic regression model is used for the data, let β be the parameter 

vector of the model, and Xi = [1 xi], where 1 = [1,…..,1]΄ is a column vector of length m. 

The LR model is  
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Derivation of the above is as follows: 
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Since Binary variable can have only two values “0” and “1”,  
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Accordingly, the change point model is  
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Assuming that the events are independent of each other, the likelihood under the 

null model (i.e. no change) is  
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Assuming the events are independent, the likelihood under the change point 

model is  
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The maximum likelihood estimates (MLE) of the parameters in each model will 

be used to calculate the above likelihoods, that is 
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The log likelihood ratio is 
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And the GLR statistic is  
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When the logistic regression tree model is used for the data, the GLR statistic for 

two subspaces will be derived as an example. Let the LRT model be with two subspaces. 

As an example this is shown in the schematic representation in Figure 4.6. 

 

Figure 4-6 LRT Model Schematic Representations Under Null Hypothesis (No Change) 
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The schematic representation for the change – point model in LRT is shown in Figure 

4.7.  
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Figure 4-7 LRT Model Schematic Representation Under Alternate Hypothesis (Change 

Point k) 
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The likelihood under the null model (i.e. no change) is  
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There is a double multiplication because we have assumed that the events as 

well as the subspaces are independent of each other. The likelihood under the change–

point model is 
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Similarly, we can obtain the log-likelihood  
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And the GLR statistic is  
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4.3.2 Procedure to find UCL 

To address issue (2) described in Section 4.2, bootstrap sampling techniques 

(Efron and Tibshirani, 1993; Phaladiganon et al., 2011) will be applied in the simulation 

for finding the UCL. The bootstrap method will be used to generate the values of the 
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covariates from the observed data, thus making the simulated data follow the same 

pattern of the observed data. The procedure to find UCL is illustrated in Figure 4.8. It 

consists of four steps: 

 

Figure 4-8 The Proposed Simulation Procedure to Find the Upper Control Limit 

Step 1: Generate sample of covariates: Using bootstrap sampling techniques, a sample 

of the covariates involved in the model,   1  ,......, mzz , is generated from the observations 

  1  x,......, x m . Note that we only need to simulate the values of the main effects of risk 

factors in the model. For covariates that are interactions of risk factors, their values can 

be obtained from the simulated values of the main effects. Also, when there is more than 

one covariate in the model, multivariate bootstrap sampling needs to be used. 



102 

Step 2: Generate response values. The response values corresponding to the simulated 

covariate values,   1 y ,......,y m , are generated based on LR or LRT model estimated 

using the whole historical dataset. The model should have been established in the 

modeling task described in Chapter 3. 

Step 3: Calculate GLR statistic. Let B=  1 ;  1 y ,......, ,......, mm yzz  be the bootstrap sample 

generated in Step 1 and 2. Calculate the GLR statistic “c” for this sample. 

Step 4: Obtain UCL. Repeating the above steps for b times will lead to b values of the 

GLR statistic:  1 c ,......, 
b

c . The UCL is the upper 100(1-α)% percentile of these values. 

4.4 Simulation Study 

Simulations have been done to validate the effectiveness of the proposed 

approach. Two base-line models are considered in this study: a LR model with a single 

covariate (Study 1) and a LRT with two covariates (Study 2). Under each model, a 

dataset without change and a dataset with change are simulated and the proposed 

approach is applied to the data for change detection. Parameter settings and the results 

of analysis are given as follows. 

4.4.1 Study 1 

Assume the data follow a LR model with a single covariate 
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This model has been used in many existing literature on surgical performance monitoring 

(e.g., Steiner et al., 2000) where the response represents the 30 day mortality 

(death/survival) of patients. Here the covariate is the patient risk score (e.g., parsonnet 

score), which measures the combined effect of patient risk factors. A dataset with m=500 
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observations, and x~uniform [0,71] are generated. Two cases are considered for the 

model parameter setting: 

CASE I: The process is in control following the base line parameters a0= -4, and 

b0 = 0.07. 

CASE II: The process changes at K=250, with a0=-4, b0=0.07 and a1=-4, b1=0.1. 

 

Figure 4-9 Simulated Data from the LR Model Without Change 
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Figure 4-10 Simulated Data from the LR Model with Change (K=250) 

Figure 4.9 and 4.10 show the simulated datasets under these two cases. The y 

axis in the figure denotes the risk score of each patient, and patients with y=1 are marked 

by solid dots. We can see that there seem no considerable change in Figure 4.9 as the 

distribution of solid dots is similar throughout the whole data set. In contrast, in Figure 

4.10, the solid dots in the later segment of data have an apparently denser distribution 

than the earlier segment, indicating that there might be a significant change in the model 

parameters. 
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0661.0ˆ,8784.3ˆ  ba  

In calculating the GLR statistic, the window boundaries are set to be Lk=50 and 

Uk=N−50=450 to ensure adequate samples for model estimation. In implementing the 

procedure in Section 4.3.2 to find the UCL, 5000 simulations are done. In each 

simulation, a sample of m=500 x values is generated from the observed x values, and 

then the corresponding y values are generated from the LR model with parameters being 

estimated values. The histogram of the calculated GLR statistics of the simulated 

samples is shown in Figure 4.11. Clearly, the distribution of GLR statistic is not normal, 

but right skewed. Given 05.0 , the UCL = 6.0157. 

The log-likelihood ratio of the simulated dataset in Case I is calculated for each 

possible value of k. The results are shown in Figure 4.12. Note that no results exists for 

[1,50] and [451,500] due to the specified window. We can see that the likelihood ratios 

are all smaller than the UCL, meaning that the process is in control, which is consistent 

with the truth. 

 

Figure 4-11 Histogram of GLR statistics in Case I of Study I 
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Figure 4-12 Log-likelihood Ratios of Simulated Dataset in Case I of Study I. 

Results of Case II: The parameter estimates based on the whole dataset in Case II are 
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Like in Case I, 5000 simulations are done and the histogram of the resulting GLR 

statistics is shown in Figure 4.13. The UCL given 05.0  is 6.1916, which is similar to 

the UCL in Case I. Figure 4.14 shows the log likelihood ratios of the simulated data for 

each possible value of k. We can see that a large portion of the likelihood ratios are 

beyond the UCL, indicating that there is a significant change in the data. The maximum 

value of the likelihood rations (i.e., the GLR statistic) is 22.3218, which is achieved when 

k=228. Thus, the estimate of the change point is 228, which is very close to the true 

change point K=250. 
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Figure 4-13 Histogram of the GLR Statistic in Case II of Study I 

 

Figure 4-14 Log-likelihood Ratios of the Simulated Dataset in Case II of Study I 
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Distribution of change-point estimates: One important performance measure of 

the proposed approach is accuracy of change point estimates. Simulation has been done 

to obtain the distribution of change point estimates in Case II. Specifically, a dataset 

under Case II is generated and the proposed approach is applied to the data for change 

detection. If the change is detected, the change point estimates are obtained and saved. 

By repeating this 5000 times, a set of estimates are obtained. Figure 4.15 shows this 

distribution. Clearly, the change point estimates center at the true change point K =250, 

which suggest that when there are adequate observations, the change point can be 

accurately identified.  

 

Figure 4-15 Distribution of Change Point Estimates with 5000 Simulations in 

Case II of Study I 
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4.4.2 Study 2 

Assume the data follows a logistic regression tree model with two covariates, one 

of which is the patient risk score, and the other is the gender of patient (male=0, female 

=1). The male patients and female patients show different patterns in their surgical 

outcomes, i.e., the covariate “gender” is a splitting variable. Assume male/female patients 

account for 60% and 40% of the patient population, and their risk scores follow uniform 

[0,71] as in Study 1. Let the model for the two subspaces be 

Subspace I (male): 
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Subspace II (female): 
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Two cases of the parameter setting are considered: 

Case I: The process is in control following the base line parameters a10=-4, 

b10=0.07, aII0=-3.6, bII0=0.06. 

Case II: The process changes at K=250, with aI0=-4, bI0=0.07, aII0=-3.6, bII0=0.06 

and aI1=-4, bI1=0.1, aII1=-3.6, bII1=0.06. 
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Figure 4-16 Simulated Data from the LRT Model Without Change 

 

Figure 4-17 Simulated Data from the LRT Model with Change (K=250) 
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Figure 4.16 and Figure 4.17 show the simulated datasets under the two cases. 

The data in Case I show no evidence of change. The data in Case II show some 

evidence of change between the earlier segment and the later segment. Note that the 

change here is the same as that in Case II of study 1 (i.e., b0=0.07 vs b1=0.1). However, 

the evidence of change in Figure 4.17 is weaker than in Figure 4.4. This is due to the tree 

structure in Study 2 in which the change only happens to the model of male patients. 

Considering the complexity of model structure in Study 2, a wider window Lk=80 and 

Uk=420 is applied in calculating the GLR statistics. 

Results of Case I 

 

Figure 4-18 Figure 4.18 Histogram of the GLR Statistic in Case I of the Study 2 
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Then the procedure in Section 4.3.2 is applied to find the control limit using the above 

estimates. Figure 4.18 shows the histogram of the GLR statistics obtained in 5000 

simulations. Given α=0.05, the UCL=8.5143. Finally, change detection is conducted to 

the simulated dataset. The log-likelihood ratios for different possible values of K are 

shown in Figure 4.19. Clearly, all the statistics are below the control limit, indicating that 

there is no change in the process. 

 

Figure 4-19 Log-likelihood Ratios of the Simulated Dataset in Case I of Study 2 
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Results of Case II 

 

Figure 4-20 Histograms of the GLR statistic in Case II of Study 2 

The parameter estimates of the LRT model based on the whole dataset are 
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which are used in the procedure to find the control limit. Figure 4.20 shows the 

GLR statistics obtained in 5000 simulations. Given α=0.05, the UCL=8.514. Figure 4.21 

shows the log likelihood ratios for different possible values of k. The evidence of change 

is very strong based on the result in the figure. The highest point is 12.8561 and achieved 

when k=250, which is exactly the true change point. Again, note that the evidence of 

change in Figure 4.20 is weaker than in Figure 4.14 due to the tree structure of the model 

in Study 2. 
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Figure 4-21 Log-likelihood Ratios of the Simulated Dataset in Case II of Study 2 

Distribution of change point estimates: 5000 simulations are done to evaluate the 

performance of the proposed approach in change point estimation. In each simulation, a 

dataset following Case II is generated and change detection is concluded on the data. 

Figure 4.22 shows the histogram of the resulting change point estimates. We can see 

that just like in Study 1, the change point estimates center at the true change point 

K=250. However, the variance of these estimates seems to be larger than in Study 1, 

which, again, shows the effect of the tree structure. 
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Figure 4-22 Distribution of Change Point Estimates in Case II of Study 2 

4.5 Case Study 
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in chapter 3 for phase I monitoring. The two models established in Chapter 3 are 
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Logit (30-DAY READMISSION PROBABILITY) = -3.82 + 1.93  ER_VISITS + 

0.63  HOSPITALIZATIONS_COPD 

When OXYGEN = 1 and DRUG_USE =0 

Logit = (30-DAY READMISSION PROBABILITY) = -3.17 + 1.81 ER_VISITS + 

0.33HOSPITALIZATIONS – 0.33HOSPITALIZATIONS_COPD 

When OXYGEN=1 and DRUG_USE = 1 

Logit (30-DAY READMISSION PROBABILITY) = -14.67 + 0.94RDW 

Since there are multiple covariates, we use a wider window than in the simulation study: 

Lk = 100 and Uk = 183. This means that if the true change point occurs<100 or >183, it 

cannot be identified. Change detection under each of the above models is conducted, 

and the results are reported in the following. 

 

Figure 4-23 Histogram of the GLR statistic in Case Study under the LR model 
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below the control limit, which indicates that there is no change in the care provider’s 

performance during the considered period. Similar things are done under the under LRT 

model. Figure 4.25 shows the histogram in the simulation to find UCL and Figure 26 

shows the GLR statistic for all possible k. The same conclusion is drawn, that is, there is 

no change during the considered period. 

 

Figure 4-24 Log-likelihood Ratios of the Data Under the LR Model 
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Figure 4-25 Histogram of the GLR statistics in Case Study under the LRT model 

 

Figure 4-26 Log-likelihood Ratios of the Data Under the LRT model 
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  Chapter 5

Summary and Future Work 

In this research quality improvement and process control methods are developed 

to monitor complex systems. Two application areas are considered, complex 

manufacturing processes and healthcare delivery processes. Quality monitoring typically 

consists of two phases called Phase I analysis (or offline monitoring) and Phase II 

analysis (or online monitoring) (Sullivan, 2002). This research has focused on Phase I 

quality monitoring.  Our findings are and future work are summarized as follows. 

5.1 Quality Monitoring of Optical Profiles in Low-E Glass Manufacturing 

The quality data generated in Low-E glass manufacturing are optical profiles 

which are one type of profile data. A profile, or a curve, represents the relationship of a 

response variable on an explanatory variable such as time and distance. This study is 

focused on the Phase I monitoring of optical profiles. A robust Phase I monitoring 

strategy for the optical profile data is developed. The proposed strategy has three steps. 

The first step is to fit an appropriate statistical model to the data to obtain estimates of the 

coefficients. The second step is to transform correlated multivariate coefficient estimates 

into univariate independent components using Independent Component Analysis (ICA), 

and the third step is to monitor selected Independent Components (IC) using univariate 

nonparametric control charts. We considered two methods to detect multiple change 

points: binary segmentation and sequential segmentation. Two numerical studies are 

done to understand the performance of this proposed strategy. In the first simulation 

study, performance of the two data segmentation methods for multiple change point 

detection is studied. In the second simulation study, properties of the proposed strategy 

for phase-I monitoring of profile data is studied. Finally, the proposed strategy was 

applied to the real world data obtained from a glass manufacturing company. Using this 
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strategy, two groups of profiles were identified. The root causes of these changes were 

identified and investigated.      

5.2 Risk-adjusted Readmission Monitoring in COPD Care 

There are 3 components in this research: hospital readmission, chronic 

obstructive pulmonary diseases (COPD), and risk-adjustment. The existing quality 

monitoring work in healthcare is limited in the following aspects: 

Firstly, they mostly focus on patient mortality in surgical/intensive unit care and 

no work has been done on the monitoring of patient readmission in chronic disease 

applications like COPD care. Secondly, the existing work only considers one covariate in 

the monitoring. Finally, most existing work on risk-adjusted monitoring focuses on Phase 

II analysis, and there is little work on Phase I analysis. In this research a systematic 

approach for Phase I monitoring of patient readmission is proposed. It consists of two 

tasks: building an appropriate statistical model and monitoring the change detection 

based on the established model in the first task. In the first task, two types of models 

were studied, Logistic regression model and the logistic regression tree model. Using 

cross validation technique the best model was found. In this case Logistic regression tree 

model worked better than the logistic regression model in predicting the 30 day 

readmission. Once the best model was found then control charts based on Generalized 

Likelihood Ratio method were applied to monitor the historical data. Two numerical 

simulation studies were conducted to understand the performance of the proposed 

strategy. In the first study the proposed strategy was applied to a simulated logistic 

regression model and change was detected. In the second study, the proposed strategy 

was applied to a simulated logistic regression tree model and the change was detected. 

Finally, this method was applied to the real data obtained from the UTMB for 30 day 
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readmission of COPD patients. It is found that no change occurred during the considered 

period. 

5.3 Future Work 

This research will be continued in the future in two directions: First, it is very 

difficult to obtain health care data. UTMB was gathering the information regarding COPD 

patients for more than 2 years. This research started with 400 data points but, after 

cleaning the data, only 283 data points were available. This is not enough data for 

reliable detection of changes in patient readmission. In the case study, since there are 

multiple covariates, we used a very wider window (Lk = 100 and Uk = 183). That means 

only changes occurring during this period can be detected. The proposed approach will 

be done when larger dataset become available to generate more reliable findings. 

Second, although the proposed approach is demonstrated using readmission data in 

COPD care in this research, it actually has broad applicability across various healthcare 

applications. For example, the Phase I risk-adjusted monitoring can also be applied to 

patient mortality data in surgical care. New applications of the proposed approach will be 

considered in our future research. 
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