EXISTENCE AND COMPARISON RESULTS FOR DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE

by

A. S. Vatsala
Department of Mathematics
University of Texas at Arlington

and

R. L. Vaughn*
Department of Mathematics
Texas Christian University
Fort Worth, Texas

Technical Report No. 100
December, 1978

*Research partially supported by U.S. Army Research Grant DAAG29-77-G0062.
1. *INTRODUCTION*

Recently a new class of differential equations, called differential equations of Sobolev type was studied in [4] in which an existence theorem of Picard type was investigated as well as a variation of constants formula. In [5], existence and comparison results for a class of Volterra integral equation of Sobolev-type were discussed.

In this paper we recall the Peano type existence result from [5] for Sobolev-differential equations and show that solutions can be extended to the entire square under consideration. This result extends results found in [1] for nonlinear Volterra integral equations. Our results include a comparison result in addition to the usual type of differential inequalities, and a differential inequality theorem such as Müller's [6]. This in turn proves the existence of extremal solutions. For special cases of the above results see [2,3,7].
2. LOCAL EXISTENCE

We consider equations of the form

\[u'(t, x) = f(t, x, u(t, x), u(x, t)), \quad u(t_0, x) = u_0(x), \quad \frac{d}{dt}, \quad \text{(2.1)} \]

where \(u_0 \in C[J, \mathbb{R}^n] \), \(J = [t_0, t_0 + \alpha] \) and \(f \in C[J \times J \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n] \).

We need the following assumptions and definitions:

\((A_1)\) \[|f(t, x, u, v)| \leq M \quad \text{for all} \quad (t, x, u, v) \in J \times J \times \mathbb{R}^n \times \mathbb{R}^n. \]

\((A_2)\) \[\lim_{x_1 \to x_2} \sup_{\phi \in C[J \times J \times \mathbb{R}^n]} \int_I \left| f(s, x_1, \phi(s, x_1), \phi(x_1, s)) - f(s, x_2, \phi(s, x_2), \phi(x_2, s)) \right| ds = 0. \]

\((A_3)\) \[\lim_{x_1 \to x_2} \sup_{\psi \in C[J \times J \times \mathbb{R}^n]} \left\{ \sup_{\phi \in C[J \times J \times \mathbb{R}^n]} \int_I \left| f(s, x_1, \phi(s, x_1), \psi(x_1, s)) - f(s, x_2, \phi(s, x_2), \psi(x_2, s)) \right| ds \right\} = 0. \]

\((A_4)\) \[|f(t, x, u, v) - f(t, x, u, \bar{v})| \leq D|u - \bar{u}|. \]

We now prove the following existence result.

Theorem 2.1. Suppose that \(u_0 \in C[J, \mathbb{R}^n], f \in C[J \times J \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n] \) satisfying the assumptions \((A_1)\) and \((A_2)\). Then a solution to (2.1) exists on \([t_0, t_0 + \alpha]\) for some \(\alpha > 0 \).

Proof: Since \(u_0 \) is continuous on \(J \), \(u_0(J) \) is bounded and uniformly continuous. Thus \(\exists \ N > 0 \) so that

\[|u_0(x) - u_0(\bar{x})| < N \quad \text{for every} \quad x, \bar{x} \in J. \]
Let \(\alpha = \min\{\alpha, \frac{N}{M} \} \) and let \(J_\alpha = [t_0, t_0 + \alpha] \).

Define \(A \subseteq C[J_0 \times J_\alpha, R^n] \) by

\[
A = \{ \phi \in C[J_\alpha \times J_\alpha, R^n] : \sup_{t, x \in J_\alpha} ||\phi(t, x) - u_0(x)|| \leq N \}.
\]

Clearly \(A \) is closed, bounded and convex.

For any \(\phi \in A \), define the function \(T\phi \) by

\[
(T\phi)(t, x) = u_0(x) + \int_{t_0}^{t} ||f(s, x, \phi(s, x), \phi(s, \cdot))|| ds.
\]

Then \(\int_{t_0}^{t} ||f(s, x, \phi(s, x), \phi(s, \cdot))|| ds \leq \alpha M \leq N \).

Thus \(TA \subseteq A \).

Also \(\int_{t_0}^{t} ||f(s, x, \phi(s, x), \phi(s, \cdot))|| ds \leq \sup_{x \in J_\alpha} ||u_0(x)|| + N \). Thus \(TA \) is uniformly bounded.

We now show that \(TA \) is equicontinuous. Let \(\varepsilon > 0 \) be given and let \(t_1, x_1, t_2, x_2 \in J_\alpha \), then

\[
||T\phi(t_1, x_1) - T\phi(t_2, x_2)|| \leq ||u_0(x_1) - u_0(x_2)|| + \int_{t_1}^{t_2} ||f(s, x_2, \phi(s, x_2), \phi(s, \cdot))|| ds.
\]
\[+ \int_{t_0}^{t_1} \left| f(e, x_2, \phi(e, x_2), \psi(x, e)) - f(e, x_1, \phi(e, x_1), \psi(x, e)) \right| ds \]
\[= I_1 + I_2 + I_3. \]

Since \(u_0(x) \) is uniformly continuous, we can choose \(\delta_1 \), so that \(|x_1 - x_2| < \delta_1 \Rightarrow I_1 < \epsilon/\delta \). Also \(I_2 < (t_2 - t_1)M \), thus if \(|t_2 - t_1| < \frac{\epsilon}{\delta M} = \delta_2 \), \(I_2 < \epsilon/\delta \). Now using \((A_2') \) we can choose \(\delta_3 \) so that \(|x_1 - x_2| < \delta_3 \Rightarrow I_3 < \epsilon/\delta \).

Thus if \(\max\{|t_1 - t_2|, |x_1 - x_2|\} < \min\{\delta_1, \delta_2, \delta_3\} = \delta \)
\[|\left| (T\psi)(t_1, x_1) - (T\psi)(t_2, x_2) \right| | < \epsilon. \]

Thus \(TA \) is equicontinuous, and \(\overline{TA} \) is compact.

Now let \(\{\phi_n\} \in A \) be a sequence converging to \(\psi \). Since \(f \) is continuous
\[\int_{t_0}^{t} f(e, x, \phi_n(e, x), \phi_n(x, e)) ds = \int_{t_0}^{t} f(e, x, \psi(e, x), \psi(x, e)) ds. \]

Thus \(T\phi_n \rightarrow T\psi \) and therefore \(T \) is continuous. Now applying the Schauder fixed point Theorem, the proof is complete.

Our next result provides conditions for the extension of solutions to equation (2.1).

Theorem 2.2. Let \(u_0 \in C[J, \mathbb{R}^n] \), and \(f \in C[J \times J \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n] \), and suppose that assumptions \((A_1)\), \((A_3)\) and \((A_4)\) hold. Then any solution,
\(u \), of (2.1) which exists on \(J_\alpha \times J_\alpha \) can be extended to \(J_\beta \times J_\beta \)
where \(\beta = \min(2\alpha,\alpha) \).

Proof: Let \(u \) be a solution of (1.1). Let \(\gamma = \min(\alpha/2,\alpha) \). Restrict \(u \) to \(J_{\gamma} \times J_{\gamma} \).

Consider the equation

\[
U'(t,x) = F(t,x,u(t,x),U(x,t)) , \quad U(t_0,x) = U_0(x) ,
\]

(2.2)

where \(U_0(x) = (u(t_0+\gamma,x), u_0(x+\gamma)) \),

and \(F(t,x,V,W) = (f(t+\gamma,x,u_1(x),w_1), f(t,x+\gamma,w_1,u_2)) \)

where \(U = (u_1,u_2) \), \(W = (w_1,w_2) \) with \(u_i, w_i \in \mathbb{R}^n \) for \(i = 1,2 \).

It is clear that \(U_0 \in C[J_{\gamma,R_{2n}}] \) and that \(F \in C[J_{\gamma} \times J_{\gamma} \times \mathbb{R}_{2n} \times \mathbb{R}_{2n}, \mathbb{R}_{2n}] \)
and it is easy to verify that

\[
|U_0(x) - U_0(\bar{x})| \leq \sqrt{10} N \quad \text{and} \quad |F(t,x,V,W)| \leq \sqrt{5} M \quad \text{for}
\]

\(t,x,\bar{x} \in J_{\gamma} \).

Thus there exists a solution \(U(t,x) = (u_1(t,x),u_2(t,x)) \) to (2.2) on \(J_{\beta} \times J_{\beta} \) where \(\beta = \min(\gamma,\sqrt{5} N/M) = \gamma \).

Note that \(u_1'(t,x) = f(t+\gamma,x,u_1(t,x),u_2(x,t)) , u_2'(t,x) \)

\(= f(t,x+\gamma,u_2(t,x),u_1(x,t)) \), and \(u_1(x_0,s) \equiv u(x_0+t,\gamma,s) \).

Now let \(m(t) = |u_2(t,x_0) - u(t,x_0+\gamma)| \), then \(m(0) = 0 \), and by assumption (\(A_4 \)) \(m'(t) \leq \left| f(t,x_0+\gamma,u_2(t,x_0),u_1(x_0,t)) \right| \)

\(- f(t,x_0+\gamma, u(t,x_0+\gamma), u(x_0+\gamma,t)) \) \leq \(\ell m(t) \). Thus \(m(t) \equiv 0 \), and so \(u_2(t,x_0) \equiv u(t,x_0+\gamma) \).

Now consider the equation
\[\tilde{u}'(t,x) = \tilde{f}(t,x,\tilde{u}(t,x),\tilde{u}(x, t)), \tilde{u}(t_0,x) = u_2(t_0+\gamma,x), \]
\hspace{1cm} (2.3)

where \(\tilde{f} \) is defined by \(\tilde{f}(t,x,u,w) = f(t+\gamma,x+\gamma,u,w) \).

Using Theorem 2.1 we conclude that there exists a solution \(\tilde{u}(t,x) \) to (2.3) on \(J_\gamma \times J_\gamma \), and using (A_4), as above we find that \(\tilde{u}(t,x_0) \equiv u_1(t,x_0+\gamma) \).

Now define the function \(\bar{u}(t,x) \) on \(J_\beta \times J_\beta \) as follows:

\[
\bar{u}(t,x) = \begin{cases}
 u(t,x) & t,x \in J_\gamma \\
 u_1(t-\gamma,x) & t \in [t_0+\gamma, t_0+\beta], \ x \in J_\gamma \\
 u_2(t,x-\gamma) & t \in [t_0+\gamma, t_0+\beta], \ x \in J_\gamma \\
 \tilde{u}(t-\gamma,x-\gamma) & t,x \in [t_0+\gamma, t_0+\beta].
\end{cases}
\]

We need only establish that \(\bar{u} \) is an extension of \(u \). We verify one case, suppose that \(t \in [t_0+\gamma, t_0+\beta], \ x \in J_\gamma \), then

\[
\bar{u}_1'(t,x) = u_1'(t-\gamma,x) = f(t,x,u_1(t-\gamma,x),u_2(x,t-\gamma)) \\
= f(t,x,\bar{u}(t,x),\bar{u}(x,t)).
\]

The other cases are similar. Thus \(\bar{u} \) extends the solution \(u \) to \(J_\beta \times J_\beta \).

Remark: The above theorem can be used to extend solution of (2.1) to \(J \times J \) as long as \(\alpha < +\infty \). One can easily see that if \(\alpha \geq \alpha/2 \) that the value of \(\beta \) in Theorem 2.2 is \(\alpha \). For values of \(\alpha < \alpha/2 \) one needs only to repeat the above argument a finite number of times to extend \(u \) to \(J \times J \).
Corollary 2.3. Let \(u_0 \) and \(f \) be as in Theorem 2.2. Then solutions to (2.1) can be extended to \([t_0, t_0 + \alpha] \times [t_0, t_0 + \alpha]\) as long as \(\alpha \) is finite.

3. DIFFERENTIAL INEQUALITIES

In this section, we develop the theory of differential inequalities.

Consider the following system of differential inequalities

\[
D^- u(t, x) \leq f(t, x, u(t, x), u(x, t)) \tag{3.1}
\]

\[
D^- v(t, x) \geq f(t, x, v(t, x), v(x, t)) \tag{3.2}
\]

where \(D^- v(t, x) = \lim_{h \to 0} \inf \frac{v(t+h, x) - v(t, x)}{h} \)

Definition 3.1. A function \(f(t, x, u, v) \in C([J \times J \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n]) \) is said to be quasimonotone nondecreasing where \(u, v \in C([J \times J, \mathbb{R}^n]) \) whenever

\[
f_j(t, x, u_j, v) \leq f_j(t, x, \bar{u}_j, v) \quad \text{where} \quad u_j \leq \bar{u}_j \quad \text{and} \quad u_j = \bar{u}_j \quad \text{for every} \quad j, \quad j = 1, 2, \ldots, n.
\]

Theorem 3.1. Let \(f \) be (i) quasimonotone nondecreasing in \(u(t, x) \) and non-decreasing in \(u(x, t) \) on \(J \times J \), then if further if one of the inequalities above is strict and \(u(t_0, x) < v(t_0, x) \), then \(u(t, x) < v(t, x) \) on \(J \times J \).

Proof: If the conclusion is not true, consider the set

\[
Z(t, x) = \{(t, x) \mid u(t, x) \geq v(t, x), u(x, t) \geq v(x, t)\}
\]

which is nonempty.

Let \(Z_t \) be the projection of \(Z \) on the \(t \) axis. Let \(t_1 = \inf Z_t \).
Certainly $t_1 > t_0$. It then follows that there is an index j, $1 \leq j \leq n$ and for $i = 1, 2, \ldots, n$

$$u_i(s, x) < v_i(s, x) \quad \text{for } s, x \in [t_0, t_1] \times [t_0, t_0 + a]$$

$$u_i(x, s) < v_i(x, s) \quad \text{for } x, s \in [t_0, t_0 + a] \times [t_0, t_1].$$

and either

$$u_j(t_1, x) \leq v_j(t_1, x)$$

or

$$u_j(x, t_1) \leq v_j(x, t_1) \quad \forall x \in J.$$

Consequently there is an $x_1 \in J$ such that either

$$u_j(t_1, x_1) = v_j(t_1, x_1) \tag{3.3}$$

or

$$u_j(x_1, t_1) = v_j(x_1, t_1) \tag{3.4}.$$

Let x_1 be the minimum value of x for which (3.3) or (3.4) happens.

Certainly $x_1 > t_0$.

If (3.3) happens, then

$$D_- u_j(t_1, x_1) = \liminf_{h \to 0^-} \frac{u_j(t_1 + h, x_1) - u_j(t_1, x_1)}{h}$$

$$> \liminf_{h \to 0^-} \frac{v_j(t_1 + h, x_1) - v_j(t_1, x_1)}{h} = D_- v_j(t_1, x_1).$$
But by hypothesis

\[D_u(t_1, x_1) \leq f_j(t_1, x_1, u(t_1, x_1), u(x_1, t_1)) \]
\[\leq f_j(t_1, x_1, v(t_1, x_1), v(x_1, t_1)) \leq D_v(t_1, x_1) \]

which leads to a contradiction.

If (3.4) happens we have \(u_j(x_1, t_1) = v_j(x_1, t_1) \). Let \(x_1 = \bar{x}, \ t_1 = \bar{t} \) ie \(u_j(\bar{x}, \bar{x}) = v_j(\bar{x}, \bar{x}) \) and \(u_j(\bar{x} + h, \bar{x}) < v_j(\bar{x} + h, \bar{x}) \),

for \(h < 0 \) by definition of \(x_1 \) and \(t_1 \). Therefore

\[D_u(\bar{x}, \bar{x}) = \liminf_{h \to 0^-} \frac{u_j(\bar{x} + h, \bar{x}) - u_j(\bar{x}, \bar{x})}{h} \]
\[> \liminf_{h \to 0^-} v_j(\bar{x} + h, \bar{x}) - v_j(\bar{x}, \bar{x}) = D_v(t_1, x_1) \]

but by hypothesis

\[D_u(\bar{x}, \bar{x}) \leq f_j(\bar{x}, \bar{x}, u(\bar{x}, \bar{x}), u(\bar{x}, \bar{x})) \]
\[\leq f_j(\bar{x}, \bar{x}, v(\bar{x}, \bar{x}), v(\bar{x}, \bar{x})) < D_v(\bar{x}, \bar{x}) \]

hence a contradiction and the theorem is complete.

Remark 3.1. The above theorem is true if the Dini derivative is replaced by any fixed Dini derivative. See for details [3].

If one of the inequalities (3.1), (3.2) is not assumed strict, the conclusion of theorem (3.1) fails to hold. However if \(f \) satisfies
a onesided Lipschitz condition, we get the following result.

Theorem 3.2. Let the assumption (i) of Theorem (3.1) hold. Suppose further that

\[
f(t, x, v_1, w_1) - f(t, x, v_2, w_2) \leq L[(v_1 - v_2) + (w_1 - w_2)] .
\] \hspace{1cm} (3.5)

Whenever \(v_1 \geq v_2, \, w_1 \geq w_2 \). Then \(u(t_0, x) \leq v(t_0, x) \) for \(x \in J \)
implies \(u(t, x) \leq v(t, x) \) on \(J \times J \).

Proof: Let \(\tilde{v}(t, x) = v(t, x) + \varepsilon e^{3L(t+x)} \) where \(\varepsilon > 0 \) is sufficient-
ly small vector in \(H^n \).

Then \(\tilde{v}'(t, x) = v'(t, x) + 3 \in L e^{3L(t+x)} \). That is

\[
\tilde{v}'(t, x) = f(t, x, v(t, x), v(x, t)) + 3 \in L e^{3L(t+x)} .
\]

\[\geq f(t, x, \tilde{v}(t, x), \tilde{v}(x, t) + \varepsilon e^{3L(t+x)} .
\]

consequently we have

\[
\tilde{v}'(t, x) > f(t, x, \tilde{v}(t, x), \tilde{v}(x, t)) .
\] \hspace{1cm} (3.6)

By Remark 3.1 we now get \(u(t, x) < \tilde{v}(t, x) \) on \(J \times J \). Taking the limit as
\(\varepsilon \to 0 \) we conclude \(u(t, x) \leq v(t, x) \) on \(J \times J \) which proves the stated
result. We now obtain bounds for solutions of (2.1) based on the
classical result of Müller's [6].

Theorem 3.2. Let \(v, \omega \in C^1[J \times J, H^n] \) satisfy the following inequalities
\[v^l(t, x) < f^l(t, x, z(t, x), z'(x, t)) \quad \text{whenever} \quad v(t, x) < z(t, x) < w(t, x) \]

and \[v^l(t, x) = z(t, x) \quad (3.7) \]

\[w^l(t, x) > f^l(t, x, z(t, x), z'(x, t)) \quad \text{whenever} \quad v(t, x) < z(t, x) < w(t, x) \]

and \[z(t, x) = w^l(t, x) \quad (3.8) \]

Then if \(v(t_0, x) < u(t_0, x) < w(t_0, x) \) then \(v(t, x) < u(t, x) < w(t, x) \)

where \(u(t, x) \) is the solution to (2.1).

Proof: If not, consider the set

\[P(t, x) = \bigcup_{i=1}^n \{(t, x) \mid v^i(t, x) \geq u^i(t, x) \geq \omega^i(t, x) \quad \text{or} \quad v^i(x, t) \geq u^i(x, t) \geq \omega^i(x, t) \} \]

Let \(P_t \) be the projection of \(P \) on the \(t \) axis. Let \(t_1 = \inf P_t \).

Certainly \(t_1 > t_0 \) then there exists a \(j \) and an \(x_1 \) such that

\[v^j(t_1, x) < u^j(t_1, x) < \omega^j(t_1, x) \]

\[v^j(x, t_1) < u^j(x, t_1) < \omega^j(x, t_1) \quad \text{for} \quad i \neq j \]

and either \[v^j(t_1, x) < u^j(t_1, x) < \omega^j(t_1, x) \quad \text{for all} \quad x \]

or

\[v^j(x, t_1) < u^j(x, t_1) < \omega^j(x, t_1) \quad \text{for all} \quad x \]

Let \(x \) be the minimum value of \(x \) for which either \(v^j(t_1, x_1) = u^j(t_1, x_1) \)
or
\[v_j(t_1, x_1) = u_j(t_1, x_1) \]
or
\[u_j(t_1, x_1) = w_j(t_1, x_1) \]
or
\[v_j(x_1, t_1) = u_j(x_1, t_1) \]
or
\[v_j(x_1, t_1) = w_j(x_1, t_1) \].

If \(v_j(t_1, x_1) = u_j(t_1, x_1) \) then by (3.7) \(v_j'(t_1, x_1) \)
\[< f_j(t_1, x_1, u(t_1, x_1), u(x_1, t_1)) = u_j'(t_1, x_1) \]
but \(v_j(t_1 - h, x_1) < u_j(t_1 - h, x_1) \)
hence \(v_j'(t_1, x_1) \geq u_j'(t_1, x_1) \). This implies \(u_j'(t_1, x_1) \leq v_j'(t_1, x_1) \)
\[< u_j(t_1, x_1) \] which is absurd. Similarly we can arrive at a contradiction when \(u_j(t_1, x_1) = w_j(t_1, x_1) \).

Suppose \(v_j(x_1, t_1) = u_j(x_1, t_1) \). Let \(x_1 = \tilde{x}, \tilde{t}_1 = \tilde{x} \). Then
\[v_j(\tilde{x}, \tilde{x}) = u_j(\tilde{x}, \tilde{x}) \] also \(v_j(\tilde{x} - h, \tilde{x}) < u_j(\tilde{x} - h, \tilde{x}) \) by the definition of \(x_1 \).
\[u_j(\tilde{x}, \tilde{x}) \leq v_j(\tilde{x}, \tilde{x}) < f_j(\tilde{x}, \tilde{x}, u(\tilde{x}, \tilde{x}), u(\tilde{x}, \tilde{x})) = u_j(\tilde{x}, \tilde{x}) \]
because \(v(\tilde{x}, \tilde{x}) \leq u(\tilde{x}, \tilde{x}) \) and \(v_j(\tilde{x}, \tilde{x}) = u_j(\tilde{x}, \tilde{x}) \)
which leads to a contradiction. In a similar way we can arrive at a contradiction when \(v_j(x_1, t_1) = w_j(x_1, t_1) \).

Remark 3.2. The conclusion of the above theorem is not true if the inequalities (3.7), (3.8) are not strict. However if \(f \) satisfies a one-sided Lipschitz condition, of the following type

\[f(t, x, (w_1(t, x), \ldots, w_n(t, x)), (w_1(x, t), \ldots, w_n(x, t))) \]
\[- f(t, x, (w_1(t, x), \ldots, w_n(t, x)), w_1(x, t), \ldots, w_n(x, t)) \]
\[\leq L \left[(w_i(t, x) - v_i(t, x)) + (w_i(x, t) - v_i(x, t)) \right] \]
(3.9)
Whenever \(v_i'(t,x) \geq u_i'(t,x) \) on \(J \times J \) for \(i = 1, \ldots, n \) the conclusion is valid.

Proof: Consider \(v_i'(t,x) = v_i^+(t,x) - \varepsilon e^{3L_i(t+x)} \)
and \(\omega_i'(t,x) = u_i^+(t,x) + \varepsilon e^{3L_i(t+x)} \)
where \(\varepsilon > 0 \) is arbitrarily small vector

now \(\tilde{v}_i'(t,x) = v_i'(t,x) - 3L_i e^{L_i(t+x)} \)
\[\leq f_i(t,x, a_1(t,x), \ldots, v_i(t,x), \ldots, a_n(t,x)), (a_1(x,t), \ldots, v_i(x,t), \ldots, a_n(x,t)) \]
\[- 3 \in L_i e^{L_i(t+x)} \]
\[\leq f_i(t,x, a_1(t,x), \ldots, \tilde{v}_i(t,x), \ldots, a_n(t,x)), (a_1(x,t), \ldots, \tilde{v}_i(x,t), \ldots, a_n(x,t)) \]
\[- \varepsilon L_i e^{L_i(t+x)} \]

That is
\[\tilde{v}_i(t,x) < f_i(t,x, a_1(t,x), \ldots, \tilde{v}_i(t,x), \ldots, a_n(t,x)) \]
\[\leq f_i(t,x, a(t,x), a(x,t)) \] whenever \(\tilde{v}_i(t,x) \leq a(t,x) \leq \tilde{u}_i(t,x) \) and
\[\tilde{v}_i(t,x) = a_i(t,x). \]

Similarly we can prove
\[\tilde{w}_i'(t,x) > f_i(t,x, a(t,x), a(x,t)) \] whenever \(\tilde{w}_i(t,x) \leq a_i(t,x) \leq \tilde{w}_i(t,x) \) and
\[\tilde{w}_i(t,x) = a_i(t,x). \]

Now from Theorem 3.2 it follows that
\[\bar{V}_\epsilon(t,x) < u_\epsilon(t,x) < \bar{V}_\epsilon(t,x) \]

Taking the limit as \(\epsilon \to 0 \) it follows that

\[v_\epsilon(t,x) \leq u_\epsilon(t,x) \leq \omega_\epsilon(t,x) \quad \text{on } J \times J. \]

Remark: The existence of extremal solutions for (2.1) can be proved by using the results of Theorem 2.1, 2.2 and by Remark 3.1. The proof follows the same lines as in [3,5].
REFERENCES

