
ADAPTIVE DIALOGUE SYSTEMS FOR ASSISTIVE LIVING ENVIRONMENTS

by

ALEXANDROS PAPANGELIS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington, in the context of the joint PhD programme

with the National Center for Scientific Research “Demokritos”, in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright c© by ALEXANDROS PAPANGELIS 2013

All Rights Reserved

To my parents, Eleni and Vassilis, my sister Irinna and brother Nasos and to my

soulmate Myrna, for their continuous love and support throughout these hard but

rewarding years.

ACKNOWLEDGEMENTS

I would like to thank my supervising professors Dr. Fillia Makedon and Dr.

Vangelis Karkaletsis, for their guidance, patience and support. I would also like

to thank my Ph.D. Committee Members, Dr. Heng Huang, Dr. Constantine Spy-

ropoulos and Dr. Chris Ding. Last, I would also like to thank my colleagues and

collaborators, without whose a great portion of this thesis would not have been pos-

sible.

November 15, 2013

iv

ABSTRACT

ADAPTIVE DIALOGUE SYSTEMS FOR ASSISTIVE LIVING ENVIRONMENTS

ALEXANDROS PAPANGELIS, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Fillia Makedon

Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with

users via multiple modalities, such as speech, gestures, facial expressions and others.

Such systems are able to make conversation with their users, usually on a specific,

narrow topic. Assistive Living Environments are environments where the users are

by definition not competent with technology, due to various factors, such as mental

or physical disabilities, age and others. While technology that helps improve these

people’s quality of life exists, many times they cannot access it due to inflexible

interfaces. ADS, therefore, have the potential to bridge users and technology by

acting as a mediator between them. There are several unique challenges posed by

this problem, in addition to the challenges faced by a generic ADS. Our contributions

to the state of the art focus on Online Dialogue Policy learning which, coupled with

other methods we proposed, can lead to an ADS able to exhibit complex behaviour

and appear more intelligent. As a consequence, users trust the system more and it

becomes more functional as it is able to elicit behavioural information and use it, for

example, to make basic diagnoses.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . x

LIST OF TABLES . xiv

Chapter Page

1. Introduction . 1

1.1 Recent Advances in Assistive Living Environments 3

1.1.1 Users’ Perception of ALE . 4

1.1.2 Assistive Technology . 7

1.1.3 Other Approaches, Frameworks and Systems 9

1.2 Recent Advances in Adaptive Dialogue Systems 10

1.2.1 Adaptive Dialogue Systems 12

1.2.2 Dialogue Management . 24

1.2.3 User Simulation . 39

1.2.4 Evaluation . 42

1.3 Discussion . 47

2. Assistive Living Technologies . 49

2.1 Sensor Placement in Assistive Living Environments 49

2.2 Max-Sum Decentralised Coordination Algorithm 50

2.3 The Extended Max-Sum Decentralised Coordination Algorithm . . . 52

2.3.1 Experimental Setup . 54

2.3.2 Results . 55

vi

2.3.3 System response to environmental changes 56

2.3.4 Fault Tolerance . 57

2.4 EMSDC Web Tool . 59

2.4.1 Environment Design . 61

2.4.2 System Monitoring . 63

2.4.3 Evaluation . 63

2.5 Recommender System for Assistive Living Environments 65

2.5.1 Introduction to Recommender Systems 66

2.5.2 Related Work . 68

2.5.3 A Recommender System for ALE 69

2.5.4 Conclusions . 76

2.6 Discussion . 77

3. Online Dialogue Policy Learning . 78

3.1 Background Knowledge . 78

3.1.1 Reinforcement Learning . 79

3.1.2 Modeling the Dialogue Problem 84

3.1.3 Information Seeking Paradigm 86

3.2 Evaluation of Reinforcement Learning Methods 90

3.2.1 Experimental Setup . 93

3.2.2 User Simulator . 93

3.2.3 Results . 93

3.3 Discussion . 95

4. Towards Complex Behaving Adaptive Dialogue Systems 96

4.1 Motivation . 96

4.2 Related Work . 98

4.2.1 Hierarchical Reinforcement Learning 101

vii

4.2.2 Complex Actions . 102

4.3 Complex action learning . 103

4.4 Goal Achievement . 106

4.5 Evaluation . 112

4.5.1 User simulator . 113

4.5.2 Experimental setup . 116

4.5.3 Results . 119

4.6 Impact of AWL and USE on the interaction 127

4.6.1 Navigation ADS . 127

4.6.2 Object Manipulation ADS . 131

4.7 Discussion . 134

5. Applications of Adaptive Dialogue Systems

in Assistive Living Environments . 138

5.1 Museum Guide . 138

5.1.1 System Overview . 139

5.1.2 Evaluation . 143

5.2 Navigation . 146

5.3 Object Manipulation . 146

5.3.1 System Overview . 147

5.3.2 Adaptive Dialogue System . 149

5.3.3 Discussion . 153

5.4 Adaptive Dialogue Management Development Framework 154

5.4.1 State transitions or updates 156

5.4.2 Adaptive Dialogue Management 157

5.4.3 Learning dialogue strategies 158

5.4.4 Transformation to Dialogue Models 159

viii

5.5 Discussion . 162

6. Assessing Post Traumatic Stress Disorder 164

6.1 Post Traumatic Stress Disorder . 165

6.2 Modelling the Interaction . 172

6.3 PTSD Assessment ADS Overview . 178

6.4 Usability Inspection and Evaluation 186

6.5 Evaluation . 188

6.6 Discussion . 189

7. Discussion . 191

7.1 Open Problems . 191

7.2 Future Directions . 192

7.2.1 Dialogue Management . 193

7.2.2 Automatic Feedback Estimation 194

7.2.3 Complex Action Learning . 195

7.2.4 User and System goal achievement 197

7.2.5 Socially Intelligent Systems 198

7.2.6 User Simulators and Evaluation 199

7.3 Conclusion . 201

7.4 Impact On Society . 202

REFERENCES . 203

BIOGRAPHICAL STATEMENT . 230

ix

LIST OF FIGURES

Figure Page

1.1 Example architecture of a Dialogue System 2

1.2 Proposed architecture for robotic assistant [1] 48

2.1 Percentage of coverage versus number of agents when using a Gaussian

map . 56

2.2 The top image shows a random starting state of the system when using

a Gaussian map. The middle image shows the state of the system after

the execution of the EMSDC algorithm. The bottom image shows the

final state of the system after a change in the Gaussian map has taken

place and the system has converged to a new solution 57

2.3 Percentage of coverage versus percentage of agents failed, for a static

and dynamic system. We can see that the dynamic system adapts well

to failures . 58

2.4 The various modes of operation of our EMSDC web-based tool 62

2.5 The three phases of the proposed System Monitoring Tool 65

2.6 The proposed architecture for item recommendation. 68

2.7 The proposed architecture for weighted tagging and rating 70

2.8 Sense Graph of a tag. The tag is at the bottom leaf of the graph and

the most abstract sense (Entity in most cases) is the root 74

2.9 The Tag Sense Graph for a small database 77

x

3.1 A Reinforcement Learning agent, interacting with its environment through

actuators and sensors. The policy dictates the agent’s actions, while

taking into account input from the sensors. 80

3.2 Results of our evaluation. In all figures we show the two best performing

and two worst performing algorithms. 94

4.1 A Dialogue System sample architecture. 97

4.2 A sample complex action (a) and the procedure of complex action

learning (b) . 104

4.3 USE will attempt to find a policy that satisfies both hard and soft

constraints, as in the case when the soft constraints are satisfied by the

policies enclosed by Goal 1, where the algorithm would converge to a

policy such as S1. When no such policy exists, as in the case where the

soft constraints are satisfied by Goal 2, the algorithm will find a policy

such as S2 that satisfies the hard constraints and is as close as possible

to also satisfying the soft ones . 109

4.4 The learning architecture of our Adaptive Dialogue System 112

4.5 (a) Average Reward for various problem dimensions, with confirmation

actions (ASRn = 0, ec = 0.75). Optimal is achieved by an already

trained system. (b) Percentage of the available rewards achieved for

various problem dimensions . 120

4.6 Learning curves on a SFP with confirmation actions (7 slots and 4,782,968

complex actions), averaged over 100 runs 121

4.7 Average reward of HSARSA, HSARSA-h and AWL-HSARSA with

varying confirmation probabilities (a), varying ASR error level (b) and

varying both parameters (c) . 122

xi

4.8 Results of USE with one goal (a) and two goals (b) for various changing

independent goals . 123

4.9 Results of USE with two variables. Figure (a) depicts part of the policy

space, where the rectangle is a projection of the optimal policy space

onto the goal space, where variables A and B are realised. Goals are

marked as g1, g2, g3 and g4 and final system states are marked as s1,

s2, s3 and s4, respectively. Goals are represented as crosses and final

states as circles. Figure (b) depicts the learning curve and the yielded

values of A and B as episodes progress 125

4.10 (a): The grid world, where ‘S’ represents the starting state, ‘F’ rep-

resents the goal state, ‘R’ represents states that offer rewards and ‘T’

represents states with traps. (b): Depiction of paths that evoke certain

emotional states . 128

4.11 Complex actions that can be generated by AWL for the object manip-

ulation system . 133

4.12 Simulation of PR2 manipulating an object 134

5.1 Screenshot of the Museum Guide ADS 139

5.2 Architecture of the proposed Museum Guide System 140

5.3 The architecture of our system . 149

5.4 Sample complex actions our system is able to learn. Squares denote

physical actions, hexagons denote verbal actions and circles denote com-

plex actions. Rhombuses are only used in this figure in favour of com-

pactness . 152

5.5 The architecture of the dialogue manager 153

6.1 Screenshot of the PTSD Assessment ADS 165

6.2 Example complex actions . 176

xii

6.3 The architecture of our Adaptive Dialogue System, for assessing PTSD

score. Spoken input is captured by the Automatic Speech Recognition

module, which transforms it in textual form, which is then intercepted

by the Natural Language Understanding and Emotion Recognition mod-

ules, which extract useful information. This information is passed on to

the Dialogue Manager, which decides how the system should respond,

and this response is translated into spoken output by the Natural Lan-

guage Generation and Text To Speech modules 179

xiii

LIST OF TABLES

Table Page

3.1 Online RL algorithms we selected for evaluation in the dialogue policy

learning problem. 92

4.1 Update rules of our user simulation model, from [2] 115

4.2 Parameter settings for experiments with varying user simulator behaviour.117

4.3 Target emotional states and associated dialogue policies, where “L”

stands for moveLeft, “R” stands for moveRight, “F” stands for move-

Forward and “E” stands for informEnd 129

4.4 Basic verbal and physical actions, available for our system 132

5.1 Average learning speed . 144

5.2 Statistical significance, where ? denotes p < 0.0001 145

5.3 Basic actions available for our ADS, out of which complex actions will

be generated. 150

6.1 A list of the most prominent PTSD symptoms [3] 166

6.2 System and user actions, defined in our system 173

6.3 Usability inspection of our system . 187

xiv

CHAPTER 1

Introduction

While extremely beneficial and important, recent medical and technological ad-

vances inevitably lead to an increased population of wounded warriors, injured people,

people with mental or physical disabilities and elderly. Many of these groups might

require cognitive or physical rehabilitation and all groups require assistive technology

to perform their daily activities. While such technology exists and undoubtedly im-

proves their quality of life, interfacing with or tuning it is often cumbersome. Adaptive

Dialogue Systems (ADS), which are intelligent systems that employ multiple modali-

ties to communicate with the user, can, therefore, provide an ideal interface between

people and technology. Moreover, ADS may be adapted and not use speech as the

primary means of communication but use other channels, such as gestures or input

from various assistive devices. In the rest of this section we elaborate on ADS, we

present the unique challenges faced by an ADS deployed in an ALE and we discuss

why we believe ADS can benefit ALE users.

As mentioned before, Dialogue Systems (DS) can be seen as multimodal intelli-

gent systems, able to have a conversation with their users. A typical DS is composed

of many modules, such as Automatic Speech Recognition (ASR), Natural Language

Understanding (NLU), Dialogue Management (DM), Natural Language Generation

(NLG), Text To Speech (TTS) and others, as shown in Figure 1.1. Such systems are

becoming increasingly popular in the industry, by acting as service providers, mostly

because they are efficient in terms of cost and maintenance. Typical applications in-

clude customer support, providing information or movie and flight booking. Adaptive

1

Figure 1.1. Example architecture of a Dialogue System.

DS (ADS) are systems that can adapt to different users, by learning about and re-

membering their preferences, needs, etc. and can react in real time to environmental

changes. Researchers have focused on achieving adaptation in the several modules of

an ADS, such as achieving adaptive Referring Expression Generation [4], achieving

adaptive NLG [5], adaptive TTS [6] and, last, a large part of the research community

has focused on achieving adaptive DM.

Assistive Living Environments (ALE) are environments where the users are,

by definition, not competent with technology. Assistive Technologies, therefore, have

been developed to aid them in their daily tasks and improve the quality of their lives.

While in some cases interfaces for such technologies are designed to be relatively easy

for ALE users, tuning them to each user’s changing needs may prove really hard.

ADS can bridge this gap and provide an intuitive interface that allows easy access

to assistive technology. The user would only need to express his / her needs in a

natural manner and the system will be able to understand and meet those needs.

Moreover, ADS can make technology not designed for ALE available to ALE users,

by automatically controlling it as well as handling parameter tuning.

2

There has been a lot of work in Human Robot Interfaces (HRI) designed for

robots operating in ALE, but not much from the ADS perspective. Regarding ADS

applied to ALE, the majority of the research community either uses simple and static

DS, or just apply speech recognition for vocal commands. While there has been work

on the requirements of ADS for ALE [7], in most research efforts ADS or DS are simply

another component of the system, rather than its driving force. In the following

chapters we propose methods to fill this gap and focus on adaptation techniques

specifically tailored to the needs of ALE. Before proceeding, however, to present our

approach, we review recent work in both ALE and ADS.

1.1 Recent Advances in Assistive Living Environments

Assistive Technologies is a rapidly rising field, with many branches, such as as-

sistive robotics, intelligent interfaces (such as ADS targeted for ALE), novel rehabili-

tation and monitoring methods (including purpose-build hardware), and many others.

As mentioned before, ADS have the potential to act as mediators between ALE users

and novel technology, necessary to improve the quality of their lives. Moreover, ADS

can enable those users (which by definition are less competent with technology) to use

existing technology, by providing a natural interface (for example spoken or written

natural language). This can have a large positive impact on people’s lives, as it can

greatly reduce the cost of living, as, for example, instead of designing bespoke equip-

ment, an ADS with appropriate interface capabilities can interact with the user’s

preferred modality (e.g. speech, gestures, etc.) and control existing technology. In

the following Sections, we present recent advances regarding ALE users’ perception

of technology and its role in their lives, how robots are currently used in ALE, sensor

networks for ALE and, last, other state of the art approaches and ALE frameworks.

3

1.1.1 Users’ Perception of ALE

Due to the increased interest in ALE, from various disciplines, many studies

have been conducted to either determine the needs of various types of ALE users

(such as elderly, disabled, injured) or their perspective on having assistive technology

in their lives. Sun et al. [8] focus their study on elderly people and try to determine

some of the challenges and open problems in ALE. They identify a lack, in current

approaches, of fully expressing the power of human users as well as not taking into

account the users’ social activities and existing connections. Greenhalgh et al. [9]

performed a study to address three main questions, namely what elderly ALE users

consider important, what effects does illness have on the user’s ability to interact

with technology and attempt to measure the current presence and penetration of

ALE technologies in our society. The authors interviewed 40 elderly people (between

the ages of 60 and 98), in order to create a detailed account of their everyday lives as

well as determine the extend of technology use. They analysed their data and con-

cluded that most users suffered from co-morbidities, which were gradually worsening

and their needs needs were, in general, diverse. More than this, the users expressed

negative feelings, regarding their future prospects. Perhaps the most important con-

clusion of this study is that assistive technology was not able to meet the users’ needs,

except in very few cases, where, it should be noted, technology was customized to

those specific users.

Harrefors et al. [10], on the other hand, examine how healthy elderly people

perceive assistive technology, as its use has increased due to the increase in at-home

care services. The authors performed their study by conducting interviews on 12

elderly couples, with ages above 70 years. Their results showed that, in general,

assistive technologies are regarded as an opportunity, although with unpredictable

consequences. The authors emphasize the fact that ALE researchers and professionals

4

need to focus on building trust between assistive technology and its users (especially

those with severe medical conditions) and keep human caregivers in the loop.

Alwan et al. [11], also conducted a study, regarding user’s perception of moni-

toring technology as well as its impact on a psychological and social level. The authors

installed assistive monitoring devices in 22 homes, to track the daily activities of resi-

dents and identify critical conditions. The authors’ system was able to produce alerts

and activity reports, which were forwarded to caregivers, who also participated in

the study. Their input was helpful in assessing how well the collected data could be

used by medical health professionals for diagnosis. The results of this study show

that residents were willing to accept such technology, which would benefit their daily

living. In another study, conducted by Alwan et al. [12] on 15 assistive living homes,

the authors again aimed at understanding the psychological and social effects such

technology can have on users. The residents’ daily activities were monitored con-

stantly and alerts where raised when abnormal behaviour was detected. Reports and

alerts were forwarded to professionals, who had agreed to participate in the study

and the results were consistent with the previously mentioned study.

Fuchsberger et al. [13], focus on the needs of elderly people and how assistive

technology can be used to meet them, while taking into account technological ad-

vances (such as media and communications) that can have a great impact on their

quality of life. The authors investigate opportunities and challenges of adopting as-

sistive technology, as well as how the actual users (the elderly in this case) should

the involved in designing such technology. Agree et al. [14] also conducted a study

to measure the effects of assistive technology on the elderly, suffering from chronic

diseases. The authors propose an indicator that can capture the effects of assistive

technology on the users (specifically the elderly) daily lives. They also found that

ALE can have a greater potential benefit for users with greater physical disabilities.

5

Aloulou et al. [15, 16] conducted similar studies, by deploying assistive tech-

nology in a nursing home, using three rooms for a period of 14 months. The authors

focused mainly on elderly patients suffering from dementia, while also including pro-

fessional caregivers in their study. More specifically, 8 elderly patients and 2 caregivers

were recruited for this effort, which resulted in a list of requirements identified by the

subjects or observed by the authors. The authors’ findings include observing increased

amount of time being spent by the subjects in the bedroom and washroom, which

includes cases where they showered repeatedly throughout the day, the necessity for

caregivers to adapt to the different habits and preferences of each subject (in order

to provide appropriate encouragement or instructions) and the fact that the subjects’

level of dementia affects their suitability to use assistive technology. From a technical

perspective, the authors found that before being deployed to ALE, a system should

guarantee privacy and security, should facilitate management for multiple people with

different roles and should be able to handle failure and adapt to each user’s behaviour

and preferences.

In order to better understand monitoring data, and especially activity recogni-

tion, Virone et al. [17] propose twelve behavioural patterns, derived from the daily

activities of 22 ALE users. These patterns can be used in automatic activity recog-

nition monitoring systems, which would raise alerts to professional caregivers upon

detecting abnormal behaviour. Last, Kleinberger et al. [18] describe an assistive liv-

ing laboratory, which can be used by elderly people in order to train and familiarize

them with assistive technology and novel interfaces. Such facilities have the poten-

tial to be used by both users and professional caregivers to evaluate how fitting and

usable specific assistive devices are for specific users or groups of people. In the next

Section, we present current advances relating to assistive technology.

6

1.1.2 Assistive Technology

Due to significant advances in the related fields, as well as their unprecedented

commercial availability, robots have been increasingly used in ALE, mostly due to

their ability provide assistance through intelligent manipulation of their environment

and also because of their potential to engage people in various activities (for exam-

ple physical or cognitive rehabilitative exercises). One of the greatest challenges a

robot faces in a household environment is perception of its surroundings as well as

understanding what it is required to do, for example, pour a glass of water, open

a door or operate an elevator. To address the challenge of understanding spoken

commands from users who are not experts, Fasola and Mataric [19] propose a system

that uses Spatial Language Understanding to dynamically infer the spatial relation-

ships between objects in the environment. Lazewatsky et al. [20] propose a Human -

Robot Interface (HRI), where an ALE user can guide a robot for table-top manipu-

lation tasks only by movements of his / her head. Fukazawa et al. [21] evaluate and

compare multimodal interfaces for ALE, concluding that multimodal interaction using

gestures or head movement is equivalent to using a mouse, albeit slower. Autonomous

manipulation, however, in a household environment is not yet a commercially viable

option, and to address the risks involved, Deegan et al. [22] propose a methodology

for designing new technologies for ALE, specifically mobile manipulators. These ma-

nipulators would be operated by remotely located professional caregivers, thus greatly

reducing the probability of accidents and increasing the users’ trust in the system.

Another technology that has penetrated the ALE market, is tele-presence (or

mobile remote presence) robots [23, 24, 25, 26, 27, 28, 29]. Such technologies not only

allow ALE users to socially interact with their peers, without having to leave their

home, but also allow professional caregivers to gain a better perspective of the users’

condition. Other assistive devices include eye-trackers [30], designed to aid users

7

mainly in operating personal computers but also other devices (such as wheelchairs

[30]).

Perhaps the most important aspect of assistive technology is monitoring and

communication through sensor networks. Challenges here include data security, as

information stored or transmitted most often refers to monitoring or health data,

but also include robustly managing a wide variety of sensors, fusing and storing the

available information as well as managing mobile and battery-powered sensors. Virone

et al. [31] describe the Alarm Net, a context-aware wireless sensor network specifically

designed to handle medical health information in ALE. According to [32, 33], Alarm

Net involves various types of sensors, including psychosocial as well as environmental

and facilitates real-time streaming and processing of the data gathered. This network

is able to identify daily activities, for example events such as feeding frequency or

general activity levels of the users and operates under secure communication protocols

to address the heightened need for data privacy. Last, Alarm Net performs smart

power management to account for battery-powered mobile sensors.

Eklund et al. [34], also propose a wireless network designed for ALE, able to

handle heterogeneous sensors. The authors designed their system mainly for elderly

ALE users and opted for local data processing, to promote privacy and security.

Singh et al. [35], approach this problem from the dynamic trust domain perspective.

They investigate the potential of integrating services with an ALE system, while

guaranteeing data privacy and attempt to measure trust. Dagtas et al. [36] leverage

the extensive use of cellphones as well as inexpensive sensors and well established

communication protocols, such as ZigBee or Bluetoth, to facilitate a wireless sensor

network for assistive living applications. Their architecture allows for processing data

and raising alerts in real-time when critical situations are detected. Last, ALLADIN

[37] and INHOME [38] are two other monitoring framework for ALE, utilizing sensor

8

networks. ALLADIN targets elderly users suffering from dementia, and especially

the Alzheimer’s disease. INHOME focuses more on providing services to ALE users,

in a personalised, more efficient manner, and again targets elderly ALE users. In

the following section we present other studies and approaches to integration and

deployment of assistive living technology.

1.1.3 Other Approaches, Frameworks and Systems

Wigfield et al. [39] investigate the impact of ALE and related technologies

in the social care and health sectors workforce. The authors conducted interviews

with 32 workers, at various posts, while also collecting relevant reports from each

facility. The authors found that the assistive technology used was fairly similar, with

differences only in customizing some aspects to each facility’s needs. Through this

study, Wigfield et al. [39] also identified some challenges, regarding the design of the

equipment, its effectiveness and use to its full potential as well as fees imposed by the

facilities. Regarding delivery of care within the context of ALE, the authors found

that new job roles have arisen, requiring special skills and current roles have been

expanded with new tasks and responsibilities. Examples of new job roles include

tele-health engineers, installers, evaluators and others, while new skills in existing

roles include technical knowledge and better social skills. The authors stress the need

for further research in this area as well as the need for a framework dictating the

necessary skills that health and social care professionals need to have, in order to

seamlessly function within ALE.

Nehmer et al. [40] review some of the challenges posed by ALE, from an engi-

neering point of view and specifically identify the following requirements for assistive

technology: robustness, availability, extensibility, safety, security, timeliness, resource

efficiency, natural Human - Machine Interaction (HMI) and adaptivity. To meet

9

these requirements, the authors propose that systems designed for ALE should be

able to perform self-optimization, self-configuration and self-maintenance. Doukas et

al. [41], propose an assistive living framework, able to detect falls through human

activity recognition and issue alerts. Their approach collects and analyzes data from

audio, video and motion sensors, which are used to track the users of the system.

The authors pay attention to the events following a user falling, which indicate the

severity of the incident and through advanced methods they are able to determine

whether an event should be classified as an emergency or not. An interesting open

architecture for addressing some of the engineering challenges of ALE, is I-Living,

proposed by Wang et al. [42], according to which an assisted living service provider is

responsible for collecting and maintaining data in a secure manner. Such an approach

has the advantage of guaranteeing predictable properties and dependable services for

ALE integrated systems.

Jara et al. [43] propose an assistive device, targeted for diabetes patients, able

to calculate insulin therapy dosage by taking into account many factors, for example

illness, physical activity, drug intake and others. Their approach is based on the

semantic web to support user profile management through RFID and also to help

connect the users with their respective physicians. Kasugai et al. [44] investigate

how state of the art display technology can affect the role of HMI, architecture and

design of ALE. In particular, they propose to use wall-sized displays to facilitate

the illusion of spatial extension and to complement social interactions, such as more

realistic representation in video conferences.

1.2 Recent Advances in Adaptive Dialogue Systems

Adaptive Dialogue Systems are DS that are moreover able to adapt to varying

circumstances and different environments. DS and ADS have been used for many

10

purposes, such as travel planning, customer support, acting as companions or tutors,

and have been increasingly successful for a variety of reasons, such as low associated

cost and high efficiency. The research community has been using Machine Learning

(ML) methods to achieve adaptation in the various components of an ADS, for many

years. Reinforcement Learning (RL) has also been increasingly used, as the RL

paradigm fits the interaction very well, and there are many mature and optimal

methods we can readily use. Levin et al. [45] were the first who viewed dialogue as

an optimisation problem and proposed to model it using a Markov Decision Process

(MDP) and apply RL techniques to learn good dialogue policies. Recently, a great

part of the research community has been using RL methods to learn dialogue policies

online, while interacting with the user, to learn policies for NLG, TTS, and other

modules. Before presenting the current trends in ADS research, we first describe how

an intelligent ADS should behave, and what are some requirements in order to be

perceived as intelligent by its users. The first characteristic of an intelligent system is

its ability to fully grasp the meaning of what the user is trying to communicate, not

only looking at the utterance, but also at social signals, the interaction so far, shared

experience, general knowledge etc. Another important skill is the ability to detect

humour, metaphors, irony, sarcasm, etc., as well as knowing when it is appropriate to

speak, depending on the system’s artificial personality. Of course, an intelligent ADS

should understand when it has lack of knowledge and should know how and when

to ask for more information. Last, important aspects of intelligent behaviour include

common sense, knowledge of important historical and recent events, as well as the

ability to lead a conversation and guide it so as to achieve the system’s and the user’s

goals.

11

In this section, we present notable recent advances in ADS, focusing on state of

the art DM and adaptive DM techniques, methods for User Simulation and Evaluation

of SDS.

1.2.1 Adaptive Dialogue Systems

An example of the impact of DS in the way people interact with computers are

the many spoken dialogue systems serving for customer support. Another example,

showcasing how far DS have come, is is Watson [46]. A milestone in Question An-

swering systems, similar to Deep Blue which won the famous chess player Kasparov,

Watson [46] is a DS that won the Jeopardy! challenge.

To make such a system successful, there were many complicated subtasks that

needed to be performed, such as parsing, question classification and decomposition,

knowledge representation, reasoning and others. The authors also needed to ac-

curately compute Watson’s confidence scores, in order to choose the correct answer

(among several candidates). To achieve this, each component of their system produces

a confidence score, along with its output and these confidence scores are combined

by a hierarchical machine learning method to produce the overall confidence score

for a specific answer. A score above a pre-defined threshold means Watson will risk

answering the question [46]. Other great examples of DS or ADS include Ada and

Grace [47], the virtual human twins, which currently reside in the Boston Museum

of Science, and can answer questions posed by the public. In the rest of this section,

we explore how researchers currently achieve adaptation and personalization in ADS,

focusing on one component at a time. We begin by presenting existing ADS architec-

tures or frameworks and proceed with reviewing methods proposed in the literature,

for adapting each individual component.

12

NIMITEK [48] is another example of SDS and specifically is a system designed

to help users achieve a task using a graphical interface. An example task is the

Tower of Hanoi problem, which the user tries to solve by verbally addressing the

system (i.e. without using a mouse/keyboard etc). According to the authors, in

order for the interaction to be natural, the system must take into account the user’s

emotional state. The user must also be convinced that s/he is taking part in the

conversation and must not have to think how to phrase sentences in order for the

system to understand her/him. A dialogue system targeted to help users, therefore,

must not assume that the user will explicitly request help, as users frequently omit

information they believe is known by the system. According to [48], there are three

important interaction features to better understand users: state of the task, history

of interaction and focus-of-attention information. The authors use a focus tree to

represent attentional information, where each node (except from the root) represents

a sub-focus of its parent. The decision making process addresses three problems:

when to provide support, what kind of support and how to provide support to the

user.

Cuayahuitl et al. [49] provide an evaluation of a spoken dialogue system, mod-

elled using Semi Markov Decision Process (SMDP) and trained using Reinforcement

Learning. They also propose a heuristic dialogue simulator, where the simulated user

employs knowledge-rich states and the machine employs knowledge-compact states.

A hierarchical sequential decision making approach is followed to dialogue strategy,

where dialogue states can be described at various levels of granularity and an action

can execute a behaviour using either a single act or a composite sub-dialogue. This is

beneficial because a big problem can be decomposed to easier to solve sub-problems,

which may only include relevant knowledge and are thus easier (and faster) to solve.

Another benefit is that solutions to sub-problems might be reusable in other, larger,

13

problems. The dialogue simulator, proposed by the authors, is able to produce co-

herent and distorted dialogue acts to be used for training. Their approach assumes

action selection is done on dialogue act types rather than dialogue acts, to reduce the

space. The authors treat each composite dialogue action as a separate SMDP (an

MDP can be decomposed to SMDPs hierarchically). Hierarchical Abstract Machines

(HAM) control dialogue behaviour in deterministic state transitions and Reinforce-

ment Learning optimizes decision making. In their evaluation, the authors model

ASR errors by distorting dialogue acts with probability 0.2 and randomly assigning

confidence levels. They also distort machine acts with probability 0.1 to model user

confusion. The results showed that the fully learnt policy could induce infinite loops,

but other than that it outperformed semi-learnt and deterministic policies. Fully

learnt behaviour was the worst in terms of task success (due to the infinite loops).

Another model for ADS, that extends the Information State model [50], is the

Hidden Information State (HIS) model [51], designed primarily for information re-

trieval tasks. According to the authors, a real-world SDS implemented using MDPs

is intractable, as dialogue optimisation requires forward planning, which is almost

impossible in a deterministic framework. Moreover, the dialogue manager should

have some (complex) error recovery procedures, in order for the system to appear

realistic. The authors, therefore, opt for Partially Observable Markov Decision Pro-

cesses (POMDP), which are able to account for uncertainty during the interaction.

POMDPs maintain a distribution across all possible states, rather than estimates of

the most likely states, thus allowing multiple competing hypotheses to be considered.

This ensures the dialogue manager tracks all possible paths instead of the most likely

one. Also, error recovery is simplified since we only need to shift focus to another

hypothesis. One solution to this problem would be to use slot-filling approaches,

where the complete dialogue state is reduced to the state of a small number of slots

14

that need to be filled. This approach can allow some dependence between slots using

dynamic Bayesian Networks. Another interesting approach is to retain a full state

representation but only maintain probability estimates over the most likely states

[52]. We can see this as having multiple dialogue managers and at each turn selecting

the one with the highest likelihood to be representing the true dialogue state. HIS

groups similar states into partitions and maintains a single belief state for each parti-

tion. To obtain the optimal policy, we can discretise the belief space and then apply

standard MDP optimisation methods. Grid points can be concentrated on regions

likely to be visited. At any arbitrary state, the closest belief state is selected and

its action is used. This could, however, lead to errors and thus the distribution of

grid points on the belief space is very important. The main idea of the HIS model is

that at any point in the dialogue, we have no evidence for most (of the possible) user

goals and therefore these states have identical beliefs. HIS therefore groups these

states into equivalence classes, where members of each class are indistinguishable.

These classes are called partitions. Initially there is one partition and as the dialogue

progresses this root partition is repeatedly split into smaller partitions, in a binary

fashion p → {p′, p − p′}. Multiple splits can occur at each time step and beliefs are

computed on the partitions rather than individual states of Su. Whenever a parti-

tion is split, its belief mass is reallocated accordingly (initially the root partition has

belief b0(p0) = 1). HIS also assumes that changes in the user’s goal will be explicitly

signalled by the policy decision process P (s′u|su) = δ(s′u, su).

More specifically, HIS represents dialogue states as triples < p, au, sd > that

model a hypothesis regarding the true (hidden) state of the dialogue system and

maintains a list of M most likely hypotheses to approximate the distribution. A

hypothesis in HIS is composed of a specific user goal partition, the last user act and

specific dialogue history. It should be noted here, that there may be several distinct

15

dialogue history states, corresponding to different interpretations of the user’s input.

HIS uses a partially instantiated tree to efficiently represent partitions and, thus,

partitions of the user’s goal space are represented by a forest. Splitting a partition,

therefore, means selecting an uninstantiated leaf node and splitting it so that once

copy is unchanged and the other is expanded according to ontology rules. Probability

and belief masses are allocated accordingly. In the case of non-terminal nodes, P (p′|p)

is specified as a prior in the node expansion rules. The authors stress the fact that

this belief refinement is distinct from belief monitoring and that the probability of

each hypothesised user act plays no part in the splitting process. The quality of

the N-best list of hypotheses (generated by ASR) is crucial to robust performance of

the observation model. HIS represents policies by a set of grid points in summary

belief space. Beliefs in master space are mapped in summary space and then into a

summary action via a dialogue policy. This summary action is then mapped back

into master space and output to the user. Machine acts are also mapped to summary

space and the necessary items are then inferred (when mapping back) by inspecting

the most likely dialogue hypothesis. The dialogue policy can therefore be represented

by a set of grid points and an action at each point. We do need to define a distance

metric between grid points though [51].

In the following sections we present recent advances in some important ADS

categories, such as affective DS, companion DS, robot DS and socially intelligent DS.

1.2.1.1 Affective Dialogue Systems

Affective DS (AfDS) are DS that have the additional ability to model emo-

tion (of the user and the system) and can adapt their behaviour accordingly and in

this Section, we present research efforts aimed at creating such systems. An AfADS

typically is a multi-modal system, where the user’s affective state is monitored via

16

multiple modalities and on the other hand the system employs multiple modalities

to express its own affective state (emotion). We cannot really claim that comput-

ers will become intelligent without emotions. While this has been backed by many

researchers, a more realistic goal of AfDS is to appear more human-like by under-

standing and simulating emotions and being able to form of long term relationships

with their users.

Bui et al. [53], propose a model based on POMDPs (factored POMDPs) for

an AfDS. In such systems the main challenge is how to infer the user’s affective

(emotional) state and adapt to it while taking into account the system’s goals. Au-

tomatically assessing the user’s affective state has many benefits, however, affective

state recognition results are typically ambiguous or uncertain so in a real application

it is very difficult to assess the user’s affective state. Moreover, this state changes over

time and the model must take this into account. The authors’ proposed system uses

POMDP for an affective dialogue model, as POMDPs can incorporate the affective

state, intention and other hidden components of the user’s state, they can deal with

uncertainty and last we can use this framework to (“easily”) create simulated users

and train and evaluate a system. The authors believe that a model that factorizes

states and observations is a good way of describing the dialogue state, which, in the

proposed model, consists of a user goal, a user affective state, a user action and a

user grounding state. The observed user action an observed user affective state form

the observation state set of the model. The authors’ transition model consists of a

user goal model, a user emotion model and a grounding state model.

Bui et al., [54] employ real-time belief update and online action selection meth-

ods to create a tractable AfDS. They follow the Dynamic Decision Network (DDN)

- POMDP approach, where each slot is modelled as a POMDP and then approxi-

mated by a DDN [55]. The authors split the dialogue manager into two parts, the

17

slot-level, where a slot is modelled as a factored POMDP and the global dialogue

manager which is hand-crafted. To represent the emotional state of the user one can

either have a discrete variable, for example Eu = {stress, frustration, hapiness, ...},

or a sub-network of two continuous variables, valence and arousal (according to psy-

chology). The flexibility in the modelling of complex user emotions is one of the

advantages of this proposed system. The observed emotional state of the user, Eu,

can be modelled by features like speech pitch and volume, body posture, gestures,

facial expressions and others. The authors approximate each POMDP (corresponding

to a slot) with a kDDN (DDN with k slices) and tractability is achieved by limiting

the number of look-ahead steps. The authors also propose a model for user simu-

lations. This model is goal-driven and each user action (although selected based on

a distribution) is generally consistent with those goals, except in case the simulated

user is stressed and makes a mistake. Apart from robustness to recognition errors the

authors stress the need of an AfDS to be robust to user mistakes as well, for example

in emergency situations when the users are stressed. They evaluate their system in

a tunnel evacuation scenario where the system needs to navigate trapped users to

safety. It should be noted here that the authors assume that when a user is under

great stress he/she is more likely to make a mistake in response to an ask action from

the system rather than a confirm. Moreover, they have tuned their model so that

the simulated user’s stress level changes gradually as he/she interacts with the AfDS.

The authors tested and evaluated the proposed model’s belief update time using a

system with 1000 slots and 10 values per slot. The number of slots does not affect

the complexity of the kDDNs (which does depend on the number of values though)

and this is the reason why the system can cope with many slots. Last, the proposed

model cannot perform online belief updates online, since time increases exponentially

with the number of look-ahead steps. In many-valued slot problems (slots with thou-

18

sands of values) the authors propose to use a list of numbers plus previous and next:

{one, two, ..., ten, previous, next} and let the mapping between those values and real

values (with meaning) happen real time during the dialogue.

1.2.1.2 Companion Dialogue Systems

A very important and upcoming branch of dialogue systems are Companion

dialogue systems. According to [56], these are systems acting as collaborative and

conversational partners that employ novel HMI models to allow the user a higher

degree of initiative. Companion DS should be able to perform a broad range of tasks,

rather than being purpose-built, and some of those tasks may be perpetual (such

as maintaining a relationship with the user). Webb et al. [56], propose a Wizard

of Oz system that generates companionable dialogues. Companionable dialogues

are conversations where the system responds to the user’s utterance according to

his/her emotional state, and follows certain types of strategies such as “positivity” or

“empathy”. Using such data, collaborative dialogue models can be built. The authors

propose this system to generate some examples and later be able to evaluate such

conversations resulting from a real dialogue system. The evaluation of a companion

dialogue system, however, requires new metrics, as, for example user satisfaction

or task completion are not enough (a task may never be completed - “maintain a

relationship with the user”). It has been shown that people tend to form relationships

with technology, especially if there is some sort of character or avatar assisting them

in the use of technology [57]. Relationships take some time to build and are personal,

persistent and emotional. The authors use three strategies for their experiments,

empathy, positivity and adaptive. Empathy means the system tries to mirror the

user’s mood (eg ignore any negative input when the user’s overall mood is positive),

positivity means the system tries to make the user’s mood more positive and adaptive

19

is a combination of the two. The system also needs to evaluate the user’s mood and,

in this respect, it estimates the sentiment of the user’s utterance, on a coarse scale and

subsequently calculates a score. It then sums up all scores and gets an estimate of the

overall mood of the utterance. The system then will choose a technique (independent

of the dialogue policy) to respond to the user, such as by temporal order, by recency

order, target a particular utterance or prioritise the utterances and address them in

that order.

Sieber et al. [58], propose a model for episodic memory, that can be used

as a module of a companion dialogue system and is able to remember long term

user preferences and interests and comment on past interactions. In order to create

long term relationships with users, the system needs to remember past interactions

(and other history). The authors propose a system with short-term memory (current

user utterance and currently important things) and two types of long-term memory,

semantic (elements of the ontology the user is interested in) and episodic (agent

experiences, utterances-actions-evaluation of those actions). To retrieve episodes from

its memory, however, the system needs a similarity measure. Wilks et al. [59] present

a companion DS, designed to interact with elderly users. This system is designed

to elicit information from the users, through conversation, regarding photographs

depicting events in the user’s lives, aiming to compile a life narrative of each user. The

authors use ML techniques to detect emotion, from lexical content as well as speech

features and employ a DM that allows mixed initiative during the conversation.

Adam et al. [60], present toy companion (or a virtual agent [61]), designed

to interact with children and propose a framework to elicit, represent and later use

information gathered from the child, during the interaction. The authors achieve

personalisation of the conversation by first analyzing dialogues between adults and

children to retrieve the strategies for personalisation adults use and subsequently

20

creating personalisation strategies. More specifically, they identified the following

strategies, used by the adults: relation to self, personal questions, child control, reci-

procity, recalling shared activities, child’s preferences and child’s agenda. Based on

those, the authors split the interaction in two phases, information gathering and in-

formation exploitation, and created several strategies for each phase. In the following

section, we describe a rising sub-field of DS, which uses robots as embodied agents to

engage users in conversation.

1.2.1.3 Robot Dialogue Systems

As robots become safer and more accessible to people, an increasing number

of researchers are focusing on developing the necessary technology that will render

robots safe and usable enough to be used as household appliances. A very important

aspect of this effort is HRI, which largely depends on DS, giving rise to the field of

Robot Dialogue Systems (RDS), i.e. DS (or ADS) specifically engineered to interact

with users in the physical world. There are numerous challenges in this task, besides

safety, such as perceiving the environment and interpreting it as well as coordinating

verbal actions with physical ones (e.g. move the arms while talking).

Cuayahuitl and Kruijff-Korbayova [62], take a multi-agent approach to HRI,

using hierarchically structured RL agents. The authors use the NAO robot, from

Aldebaran [63] to create an embodied agent that will interact with children by playing

a game of quizzes. They employ flexible hierarchical dialogue control [49] to handle the

interaction and express both verbal and non-verbal behaviour. The same authors, in

another work [64], present their approach to dialogue policy learning, which takes into

account uncertainty deriving from speech as well as gestures. To achieve this, they

distinguish the user’s input in to categories: verbal and non-verbal. The system, then,

updates its belief state based on both types of user input, and the DM subsequently

21

decides makes a decision based on the updated belief state. This approach, to jointly

optimize speech and visual beliefs outperformed dialogue policies that were separately

trained.

Kruijff et al. [65], use a factored MDP to try to determine at runtime how much

(speech) input needs to be processed. The goal is to decide online which procedure (for

analysis) to apply to which part of the input. The controller may select a combination

of procedures as well. It decides based on the expected value of running a process

and the potential cost it incurs. The authors provide an example of a robot learning

colours by example (“this is blue”, etc) and making the connection.

Meena et al. [66], propose a chunking parser designed for semantic interpreta-

tion of spoken navigation instructions, in English. Their approach outperforms the

baseline and is robust to speech recognition errors. Tellex et al. [67], attempt to

address some RDS challenges, such as ambiguity in natural language input or lim-

ited perception of the environment, by proposing an information-theoretic approach,

which enables the robot to ask for clarification, and subsequently exploit information

from the user’s answer to perform disambiguation. Azhar et al. [68] address a similar

problem, specifically of using dialogue to recover from errors due to miscommuni-

cation, using an argumentation framework that allows the robot to maintain belief

states while providing reasoning functionality using those beliefs as well as conflict-

resolution. The latter compares the robot’s belief states with the (estimated) human

user’s belief states to detect conflicts, and attempt to resolve them.

Guiliani et al. [69], describe a robot, able to communicate with human users

and collaboratively build wooden toys. The authors use a system to infer the users’

goals as well as detect their errors, by exploiting verbal and non-verbal input. The

system then uses situated references methods to explain the errors to the users and

22

provide them with possible solutions. Foster et al. [70], evaluate this RDS, with

promising results.

1.2.1.4 Socially Intelligent Systems

As the fields of ADS, Robotics and other related research areas progress and,

equally importantly, as the cost of hardware decreases while its performance increases,

social skills in intelligent systems become more and more important. Robots, as

discussed in the previous Section add another dimension to the interaction, creating

an even more pressing need for social skills in intelligent systems. Social skills have

many aspects, such as emotion recognition or expression, artificial personalities, how

a robot should approach a group of people or an individual, how polite should an

intelligent agent be, whether to use formal or informal language, and many others.

In this section, we present the state of the art in socially intelligent systems, which

use ADS to handle the interaction.

Kruijff [71] proposed a model to manage trust between teams composed of

robots and humans, taking into account social sentience, i.e. each member’s percep-

tion of its social role, and the social dynamics of the group. Ochs and Pelachaud

[72], conducted a study to assess the impact that two types of a virtual agent’s smiles

(polite and amusing) have on the user. The authors subsequently propose a model

to predict the effect a smile might have on the user. Bevacqua et al. [73], present

a model to influence interlocutors through conveying information via audio-visual

communication back-channels (such as nodding, saying “ah-uh”, etc.). De Sevin et

al. [74], propose an online algorithm to select which back-channel signals a virtual

agent should express, based on its personality. Prepin and Pelachaud [75] model in-

terlocutors as dynamic agents, that are coupled according to the oscillator model, a

trend in dialogue management, where turn taking is an emerging phenomenon rather

23

than happening due to the model itself. The authors assess the effects of time delays

on the interaction, either between human-human or human-agent and attempt to

quantify the maximum acceptable delays, as well as parameters that influence that

maximum. Konstantopoulos and Karkaletsis [76], propose a method for controlling

how the system’s personality is perceived by its users. They use a personality module

to regulate how system actions are realised, based on various parameters, such as

the current user model, the estimate of the user’s emotional state, the goals of the

system, and others.

Bergmann et al. [77] present results of a study, attempting to identify how

people use gestures to regulate dialogue. Such a research has the potential to enable

social robots or avatars, controlled by DS, to be more active in the conversation and

convey meaningful messages through gestures, for example acknowledgement of the

user’s input or indication that the system does not understand. Another interesting

study on gestural alignment in natural dialogue, meaning the interlocutor mimicking a

gesture as a means of acknowledging, was performed by Bergmann and Kopp [78]. The

authors were also aiming to assess whether gestures are influenced by interlocutors,

as well as how they are aligned with speech and communication in general. Last,

a related field that has recently emerged, is social signal processing, whose purpose

is to model and interpret communication signals, as well as define ways to express

them, aiming to create socially intelligent agents [79].

1.2.2 Dialogue Management

In this Section, we present what we have identified as the current trends in ADS

research, from the perspective of DM. In the following Sections we elaborate on state

of the art methods for dialogue policy learning, modelling complex system actions,

24

automatically estimating environmental feedback, exhibiting social intelligence and

modelling simulated users, applied for training and evaluation of ADS.

According to Bohus et al. [80], the most widely used models for DM are fi-

nite state machines, slot-filling, information state update and plan based and propose

RavenClaw DM, which belongs to the last class of dialogue managers. It is a hier-

archical plan based DM and separates domain dependent from domain independent

parts of the dialogue management procedure. Concerning dialogue policy learning

methods, there is a rapidly increasing number of DS and ADS that employ POMDP

to account for uncertainty and apply (belief) state tracking methods to estimate the

user’s goals or the current dialogue state. Such systems are frequently referred to as

Statistical Spoken Dialogue Systems (SSDS), and usually apply online RL methods

to learn optimal dialogue policies, while the system interacts with users, and function

approximation techniques to account for the state-action space scalability problem,

pertinent in RL methods. Examples include [51, 81, 82, 83, 84, 5, 85, 86, 87, 88] and

we will elaborate on these efforts in the following Sections. Models that usually do not

use Markovian structures to represent the interaction, include the Information State

Update (ISU). A mixed-initiative DM, which employs a forward looking method for

inference and adheres to the ISU paradigm was proposed by Morbini et al. [89].

Thomson et al. [90] propose a novel framework based on loopy belief propaga-

tion, called Bayesian Update of the Dialogue State (BUDS) for updating the dialogue

state and learning dialogue policies. The authors extend the Loopy Belief Propa-

gation (or Sum - Product) algorithm [91] by grouping concept values and assuming

little changes in the user goal. They also do policy learning with the episodic Natural

Actor Critic (NAC) [92] algorithm, over a factorised state space. While the user goals

can also be factored into sub-goals, dependencies on these sub-goals must be limited

to ensure tractability. The authors build on the HIS [51] idea of grouping states into

25

partitions and apply it to Bayesian Networks and factor graphs. They use a two-

time-slice approximation to make the system tractable, meaning they do not keep

history that is more than two time slices old, which has been proven to be a good

approximation. While HIS gives the exact update for the belief state, this approach

yields an approximated update. The authors also use Summary Actions, to reduce

the complexity and the system then maps these actions to normal actions. They

use a softmax function for policy learning and factor policy π parameters by using a

basis function for each concept. This system was evaluated through simulations and

user trials and outperformed MDP and Finite State systems. However, the effects of

policy learning using BUDS were inconclusive.

According to Crook et al. [87], there are several restrictions imposed by POMDP

independence assumptions, more specifically current POMDP Statistical SDS (SSDS)

with state approximation make it impossible to have sets of goals, which may possi-

bly negating one another. Goal sets, for example, may represent trade-offs that the

users are interested in. Moreover, POMDP systems treat any spread of probability

mass as uncertainty that needs to be resolved and thus force the user into one specific

goal (eg one type of food only). To address the first challenge, the authors propose a

method, named Automatic Belief Compression (ABC) and relax those independence

assumptions and introduce user goal sets. The users’ goals are not directly observ-

able, so there is need to model uncertainty in the model and this is one of the reasons

why researchers use POMDPs. The authors assume that there is a single fully con-

strained user goal and that the only uncertainty is that of speech recognition errors.

Another challenge is that POMDP state spaces can grow very quickly, as POMDP

belief state is an N -dimensional real valued variable, where N is the number of di-

alogue states (i.e. the belief state is a probability distribution). Current techniques

use hand-crafted rules to compress the state space, assuming several independencies

26

(e.g. the user is interested in one type of food only). The authors suggest to use ABC

to reduce belief state dimensionality, while preserving useful distributions within the

space.

Another trend in this area is incremental dialogue, where the smallest conver-

sation unit is defined as the smallest part of an utterance that can be translated into

a dialogue act. This, therefore, defines micro-turns, allowing many of the aforemen-

tioned problems to be viewed from a completely different perspective. Among other

benefits, the DM can begin processing the user’s input, while the user is still speaking

and take action if necessary (interrupt, provide information through back-channels,

etc.). A combination of various modalities can inform the users of how their inten-

tions are perceived by the system, giving them a chance to correct the system early,

and allow for more natural interaction [93]. Dethlefs et al. [94], apply RL to learn

how to combine multiple output modalities and investigate how verbal and non-verbal

actions can be combined to achieve more natural interaction and fewer system self-

corrections. Incremental speech and natural language understanding is also trending

[95] and will be discussed later in this Section.

One great challenge of RL methods is designing a good model of the environ-

ment, able to provide meaningful feedback to the learning algorithm, as the perfor-

mance of RL methods, including those described in the following sections, heavily

depend on this aspect. There have been efforts to tackle this problem, mainly by

applying Inverse RL, whose objective is to learn a good function than models envi-

ronmental feedback. Asri et al. [96] propose a methodology that uses reward shaping

to learn a reward function, from dialogue data.

Aiming to provide flexible and adaptive DM, we have developed an adaptive DM

framework, which supports the most prominent DM found in the literature, namely

Finite State Automata, Slot Filling / Information Seeking, Plan Based and Informa-

27

tion State Update. We use a universal structure, Partially Observable Semi Markov

Decision Process, able to transparently transform to any other Markovian process, al-

lowing the designer the flexibility and support to implement DM techniques proposed

in recent literature. One of the benefits of our approach is that it allows modular DM,

where designers and non-experts in ADS development can select components that fit

their needs and easily create effective DM. We present this framework in detail in

Section 5.4. In the following Section, we will present recent advances in dialogue

policy learning, complex action learning, estimating the dialogue model’s parameters

and representing goals.

1.2.2.1 Dialogue Policy Learning

In this Section, we review in detail recent work in dialogue policy learning, since

this thesis is largely focused on novel online dialogue policy learning methods. The

current trend is to apply Reinforcement Learning (RL) methods to learn good (or even

optimal) dialogue policies. The first work that proposed a framework to model dia-

logue as a Markov Decision Process (MDP) was that of Levin et al. [45]. The authors

propose a stochastic model (MDP) for human computer interaction, that formally

describes a dialogue system in terms of its state space, action set and strategy. The

system’s state describes all knowledge the system has about its internal and external

resources. The authors propose to state the problem of dialogue strategy design as

an optimization problem. The objective function could be a linear combination of

several terms representing the cost of particular dialogue dimensions. The state space

(in a slot filling dialogue system) is composed N binary variables (one for each slot)

that are 1 if the slot is filled or 0 if not. The action set, similarly, has N variables

where each variable represents a question about a specific slot. This model allows

for quantifying policies. The paper includes two example dialogue systems (one slot

28

filling and one mixed-initiative database retrieval) modelled as MDPs. According to

[90], recent research in dialogue policy learning follows two main avenues: one that

models dialogue as a conversational game and the system tries to find the optimal

action; and one that tries to model uncertainty in the dialogue. Bayesian Networks

are often used in the second approach and researchers have also tried to combine the

both research directions by using POMDPs.

Following this model, researchers have been applying RL to automatically learn

optimal dialogue policies, either from data or online. RL rewards model environmental

feedback (i.e. measure the policy’s success) and are most often associated with dia-

logue length and task completion. There are two main learning approaches, namely

the model-based approach and the simulation-based approach. The first estimates

the state transition probabilities from a corpus of dialogues and then via Dynamic

Programming computes an analytical solution. The second approach uses a stochas-

tic user simulation, trained on dialogue corpus data and a RL algorithm that learns

from sample rewards. User simulations represent utterances in an abstract manner,

as dialogue acts, which makes it easier to simulate errors [97].

Lemon et al. [84] were some of the first to propose a system (or framework

/ development platform) for developing and optimizing spoken adaptive dialogue

systems that apply hierarchical reinforcement learning. Cuayahuitl et al. [98], later

use SMDP to model the dialogue problem and a hierarchical reinforcement learning

approach to find optimal dialogue policies in a spatially aware SDS. Their approach

is to learn low level policies off line and high level policies on line. They point out

three main challenges in the way-finding domain where their system operates. First,

decide which route to present, second, decide level of detail in which the route will

be presented and third, decide how to present the results, in textual form, using

schematics or something in between. The authors argue that due to the very large

29

space, offline learning is infeasible and so they apply on line learning to find the

best route. They model the problem as an MDP and then decompose it to several

SMDPs in a hierarchical structure. They then apply a recursive learning algorithm,

named HSMQ-Learning with policy reuse, that is able to solve hierarchical SMDPs

in an online fashion. The authors conclude that the system learns better policies if

dialogue and spatial behaviours are simultaneously trained than in the two modules

are trained individually. Note that hierarchical learning is an alternative scaling

technique to function approximation.

Lemon [5], attempts to jointly optimise Dialogue Management and Natural

Language Generation in a single statistical model, using RL. In DS, rewards typically

are not immediate but delayed, upon successful (or not) completion of a task. The

author applies function approximation to reduce state space size, learning realistic

user simulations from small data sets, regression techniques for data-driven discovery

of reward functions and hierarchical RL, allowing hand-coded and learnt decisions.

Function approximation allows a learned policy to generalise to similar unseen states.

His results show a statistically significant 27% increase over a baseline policy, derived

without joint optimisation. According to Lemon [5], however, RL with a hand-coded

reward function is not much different than hand coded rules. A solution to this

problem is regression analysis to discover a linear combination of objective measur-

able features that are predictive of subjective user ratings. Hierarchical MDPs allow

a mixture of hand coded and learnt decisions, reduce the state space size and can

also be reusable. The author, thus, proposes to model optimisation and planning

of sequences of actions in context with RL techniques. The author provides an ex-

ample (restaurant) of NLG and dialogue policy optimising, where the top levels of

the hierarchy represent DM choices and the bottom levels represent NLG choices.

This model allows conflicting DM goals, such as having small dialogues but reliable

30

search results. The author used real users and trained the reward function using

a PARADISE-like [99] scheme. For policy exploration he uses a bigram stochastic

user simulation and used a hierarchical SARSA with linear function approximation

to learn optimal dialogue policies.

Hof er al. [100], propose a strategy to optimize driver’s options by adaptation

that takes preferences and knowledge into account. The authors propose two “learn-

ing” and four “forgetting” models which are then fused and a result in a new model

that describes the driver’s knowledge and is then used to control the in-car system pa-

rameters. To evaluate their approach, the authors asked subjects to drive for an hour

in moderate traffic and accomplish 10 tasks. They had to learn the voice commands,

and no help was given apart from the ’Options’ command that lists available options

in each menu. These options are structured in layers, depending on usage, and the

system is able to learn commonly used commands. The authors measured the time

to complete each task and used power law to describe learning in their environment.

It should be noted here, that the authors identify two user categories: Novice and

Expert.

Rieser et al. [85], train a RL policy aiming to address the problem of how many

database results to present to the user and when to present them. The authors also

learn optimal solutions for confirming noisy input, such as voice from a mobile device.

The proposed system presents at most 100 items to the user and if it retrieves more

it keeps asking for additional constraints. The authors assume that the requested

item exists in the database, i.e. do not apply constraint relaxation when zero results

are retrieved. To narrow down results, they apply monotonic retrieval, meaning that

additional constraints are perceived as ”AND” or random retrieval, meaning that

additional constraints can be perceived either as ”AND” or as ”OR”. To evaluate

their approach, the authors employ simulated users for and an objective function

31

which takes into account task completion, dialogue length and number of presented

items. Their results show that RL-based policies are robust under various conditions.

Henderson et al. [101], propose a hybrid model for dialogue policy learning

that combines reinforcement (SARSA(λ)) and supervised learning (SL), where the

latter is used to restrict the learnt policy to parts of the dialogue space for which

we have data. According to the authors, adding contextual features (also including

domain information) leads to better dialogue policies, and therefore they use linear

function approximation to achieve generalization to states that were not present in

the training data. They also note that policy exploration with simulated users is

intractable, cannot replace human users and does not solve the sparsity problem, due

to the huge policy space and thus, train their system using fixed data sets without

policy exploration. The data they use come from the COMMUNICATOR project,

where users booked flights and sometimes a hotel and/or a car. The authors define

the reward function through user questionnaires and task completion metrics. The

approximation method they use treats dialogue states that share features as similar

(this measure for similarity is known as linear kernel). One of the challenges Hender-

son et al. [101] faced, due to the fixed dataset they used, is that there is not enough

information about some states and this leads RL algorithms to unreliable estimates.

More than this, policy exploration in large state spaces (in this case 7410386) is a huge

problem, where RL algorithms cannot scale easily and the vast majority of policies

are very bad (i.e. only a small subset of the huge policy space contains optimal or

even acceptable dialogue policies). One way to deal with this problem is to begin

with a policy known to perform well, and try to adapt or update it. The authors try

to tackle the problem of insufficient data through SL, to determine which actions to

take when the system is in a portion of the state space for which there is not much

32

information. Their evaluation showed that the proposed hybrid model outperformed

purely supervised or purely RL models.

Henderson et al. [52], propose a Mixture Model of POMDPs to represent un-

certainty in DS. Each MDP state corresponds to a distribution over POMDP states

(belief states). Their system, evaluated by human users, outperformed MDP or hand-

crafted systems. Lison et al. [102], use a POMDP to represent the interaction and

dynamically constrain the action space, based on prior knowledge over locally rele-

vant dialogue structures. The authors opted for POMDP, to address the challenge

(mostly for open ended spoken dialogue systems) of the very large and sparsely pop-

ulated state space, necessary to model the dynamics of the environment. POMDPs

provide an explicit account for a wide range of uncertainties, related to partial ob-

servability and stochastic action effects. The authors propose a hybrid approach that

simultaneously addresses uncertainty and complexity in dialogue management. More

specifically, they propose a pruning mechanism that restricts the action space at a

given time, aiming to make the planning problem tractable. Their approach has two

steps. In the first step they structure the state space using a Markov Logic Network

and then use prior knowledge to derive admissible and inadmissible actions, which

are then pruned. The second step is to choose the optimal action from the reduced

action set. Prior knowledge, in that work, is described by a set of rules defining

admissible dialogue moves in a particular situation. Weights of these Markov Logic

rules (deciding whether an action is relevant, given the current state and previous

action) can be either hand coded or learned from data. The relevant action space

is created by estimating each action’s probability and selecting those above a given

threshold. The authors, extract for each belief state a set of most likely states and

compute relevant actions for those only.

33

Gasic et al. [81], attempt to tackle the problem of tractability in POMDP pol-

icy learning and propose to apply Gaussian Processes (GP) and RL. This approach,

named Gaussian Process SARSA, not only makes learning (in an online fashion)

faster but also provides an estimate of the uncertainty. They estimate the optimal

hyper-parameters (i.e. the GP kernel parameters) by maximizing the marginal like-

lihood and show that this approach greatly outperforms a grid based Monte Carlo

control algorithm in terms of convergence speed, but they both converge to the same

performance levels in terms of dialogue policy quality. They also provide insight on

how kernel parameters can be trained using dialogue data. Gasic et al. [103, 104]

evaluated dialogue policies learnt by this method, when using the BUDS [90] DM and

trained on a few hundred dialogues, using human subjects and achieved promising

results. Gasic et atl. [105] use Gaussian Process SARSA and POMDPs to address the

challenge of porting a SDS into a new domain. In such a case, the system typically

needs to be re-trained, from scratch. The authors, however, propose to adapt existing

(good) dialogue policies to handle concepts of the new domain. Their approach in

this proof-of-concept work is to extend the domain by one concept, and adapt their

dialogue policy using only a few training episodes. The authors achieve good results

and effectively take the first step in addressing this challenge.

Rieser et al. [85, 106], explore several machine learning methods for dialogue

policy learning using multi-modal wizard of oz data. They find a uniform multi-

modal policy across wizards, and their model outperforms the majority baseline. The

authors point out that in such multi-modal human computer interaction interfaces of

interest is the human wizards’ behaviour as well and not only the users’. According to

Rieser et al. [85], such data have the potential to help in understanding how humans

react when facing certain situations (requests by users etc) and create a model of hu-

man behaviour in multi-modal environments. The authors conduct experiments and

34

investigate when human wizards ask for clarifications using speech or other modal-

ities. They then use machine learning techniques to evaluate these strategies and

conclude that they are suboptimal. According to the authors, in such multi-modal

environments, one should take into account context and user preferences. It should be

noted here, that the authors are only interested whether the human wizard used an-

other modality (instead of speech) but not in the specific parameters (table contents,

rows etc). During these experiments it is not always clear what caused a clarification

request by the human wizards, so the authors asked the wizards to indicate what the

problem was. The authors conclude by stating that Reinforcement Learning trained

policies significantly outperform policies that mimick human wizard behaviour.

Pietquin et al. [82], claim that online off-policy learning algorithms are better

for dialogue policy learning since they alleviate the need for user simulations (used

to train online on-policy systems). They apply a sample efficient online and off-

policy learning algorithm called Kalman Temporal Differences (KTD) [107], where

they have modelled function approximation (used to solve large dialogue problems)

as a filtering problem and then applied Kalman filtering techniques. Their results

show that KTD can achieve similar performance to Q-learning, FVI or LSPI using

very few samples, much fewer than those the other algorithms require. The authors

claim that as the user population of a dialogue system evolves, so does the optimal

policy π∗ and consequently the optimal parameters θ∗. The authors also add centered

white noise to their estimation of Q∗ to reduce (inductive) bias. They test their

algorithm on a slot filling dialogue system, with three slots (too few!!) location,

cousine and price and 13 available actions. Off policy learning requires a hand-

crafted initial policy, but it does not need to be a good one. Not much work has been

done focusing on sample-efficient algorithms (algorithms that need small number of

dialogues to converge). The authors also note that their results are more reproducible

35

since they exhibit smaller variance. In a different approach, Kimura et al. [108],

propose a Weighted Finite-State Transducer based Dialogue Manager (WFSTDM),

typically used in speech processing or natural language processing, that is able to

handle multiple ASR hypotheses.

1.2.2.2 Complex System Actions

Complex (or composite / hybrid) actions refer to combinations of basic system

actions. These may be categorised into Verbal, which refer to the system speaking,

Computational, which refer, for example, to querying a database, and Physical, which

could refer to controlling the motors of a robot. Cuayahuitl et al. [109] employ

SMDPs to represent complex (composite) actions and hierarchical RL to learn dia-

logue policies. Other approaches include the work of Pietquin et al. [82], where the

authors use an online batch RL algorithm to select basic or complex (hybrid) actions,

from a pre-defined set of available actions. Complex Action Learning (CAL) refers to

learning how to combine basic system actions into complicated ones, aiming to solve

more difficult tasks.

An important aspect of executing a complex action is coordination and parallel

execution of Physical and Verbal actions, in a more general sense than lip-speech

synchronisation in avatars or robotic heads. Anh and Pelachaud [110, 111], use a

repertoire of non-verbal behaviours the agent may execute and, combined with verbal

output, the authors aim to achieve expressive story-telling behaviour with Aldebaran’s

NAO robot. Cuayahuitl et al. [62], use multi agent RL to achieve a similar task,

using Multi-Agent SMDPs (MSMDPs) to model Physical (non-verbal) and Verbal

actions, which may be single- or multi-step, and a hierarchy of MSMDPs to model

the interaction.

36

Chandramohan et al. [112], apply the Fitted Q Iteration algorithm to approx-

imate the continuous state space of SDS. Their approach significantly outperforms

hand-crafted dialogue policies and a similar system using the Least Square Policy

Iteration [113] algorithm for training. Chandramohan et al. [114] identify the the

unavailability of dialogue corpora ad one of the major challenges in hybrid action

(i.e. complex action) policy learning. The authors advise using simple actions in the

presence of noise in ASR as, for example, if a user responds negatively in a 2-slot

confirmation action, there is no way of inferring which slot the user is referring to.

The authors also note that hybrid actions are more suitable for experienced users

and, according to their evaluation, they perform better than simple ones.

1.2.2.3 Model Parameters Estimation for Dialogue Systems

A new way of viewing the dialogue problem is as a parameter estimation prob-

lem. In such a setting, one does not care about the specific effects of each parameter,

as long as they are tuned to yield the best possible outcome (which is to yield the

maximum expected reward in the case of RL). In this Section, we will present an

algorithm designed to do just that, to showcase this different approach to training

DS.

In the Natural Actor-Critic (NAC) algorithm [92], updates are performed ac-

cording to the natural policy gradient, which is the steepest ascend according to the

Fisher information metric ∇̃θJ(θ) = F−1(θ)∇θJ(θ), where J(θ) is the expected re-

turn with respect to some parameters θ and F is the Fisher information matrix. The

authors prove that ∇θJ(θ) = F (θ)w, so ∇̃θJ(θ) = w which is the only thing we need

to estimate (and not the Fisher information matrix). The policy improvement step

therefore is θi+1 = θi + αw where α is the learning rate.

37

Jurcicek et al. [115] take advantage of the great properties of NAC, and pro-

pose a novel algorithm, called Natural Actor - Belief Critic (NABC), which, based on

observed rewards, estimates the natural gradient of the expected cumulative reward

and then performs gradient ascend. Dialogue model parameters (i.e. the prior dis-

tribution of the dialogue model parameters) and policy parameters are then updated

accordingly. Moreover, NABC does not require the user goal to remain constant

or the model to be generative. Information about interaction history in the BUDS

system is represented as a sequence of actions and observations, which are imple-

mented as dialogue acts. The proposed system deals with uncertainty by providing

alternative dialogue acts, each associated with a confidence score. It represents the

underlying POMDP using a Bayesian Network, where nodes are slots in the dialogue

system. This model can be used for real applications, provided that each slot has

few dependencies (and that we use 2-best hypotheses for possible dialogue acts). The

BUDS system [90] uses Gibbs policies to reduce complexity:

π(at|b(·|ht; τ); θ) ≈ eθ
T Φat(b(·|ht;τ))∑

a e
θT Φat(b(·|ht;τ))

(1.1)

The proposed system uses summary actions to further reduce complexity. The

summary actions available are: ”request”, ”confirm” most likely value, ”select” be-

tween the two most likely values. There are also some global actions: ”inform”,

”repeat”, ”bye”. The authors tackle the problem that arises when using policy gradi-

ent methods for estimating the parameters of the dialogue model with a hand-crafted

function Φ. This function is typically not differentiable with respect to the model

parameters τ . The authors then assume that τ come from a prior distribution p(τ ;α)

that is differentiable with respect to α and try to learn the parameters α. These

parameters will provide an estimate of the prior distribution and then the expected

38

values for τ given the distribution will yield the new estimates for τ . In short, they

incorporate dialogue parameters α into the objective function J and estimate the nat-

ural gradient ∇J(α, θ) ≈ [wθ, wa]
T . This way policy and dialogue model parameters

are trained jointly. They then use wa and wθ to update the parameters accordingly:

θ′ ← θ+βθwθ and α′ ← α+βαwα. If, for some reason, one wants to train the param-

eters separately, Jurcicek et al. [83] propose the Natural Belief Critic (NBC), that

assumes a fixed policy. NBC, a generalization of NAC, tackles the problem of estimat-

ing the parameters of the POMDP model underlying a Statistical Spoken Dialogue

System. The authors believe that in most current spoken DS, modelled as POMDPs,

the parameters of the dialogue model are set by the designer. Another approach to

this challenge, is to apply Expectation Maximisation or Expectation Propagation al-

gorithms, but unlike NBC, they typically require the user goal to remain fixed and the

extend to which maximum likelihood correlates with expected reward in a dialogue

system. The authors point out that NAC is the most robust algorithm that has been

tested with BUDS [90], a fact that implies that natural gradient w of the expected

reward is critical. Their evaluation shows that the proposed algorithm converges re-

liably, but the maximum reward that can be achieved depends on the initialization.

Thus, this algorithm works best if one wants to improve an existing set of parameters.

1.2.3 User Simulation

An important part of ADS training and evaluation is creating good user simu-

lators. These can be specifically designed for certain ADS components, for example

DM, Referring Expression Generation or NLG, to evaluate how good the system’s rea-

soning and output is. User simulators make training much easier, faster and accurate

(by improving generality). There are a number of disadvantages as well though, such

as difficulty in assessing the quality of a user simulator or in achieving specific be-

39

haviours. Most simulators model the interaction at the signal level or at the intention

level. Intentions usually refer to dialogue acts while signals refer to output generated

by the simulator, that the ADS needs to process before deriving the intentions.

Moller et al. [116], propose a user simulation model that attempts to simulate

user errors. These can be either system driven, conceptual or just user slips. The

authors, therefore, classify possible errors into five categories: no input errors, vo-

cabulary and grammatical errors, dialogue state errors (unacceptable input from the

user, i.e. a valid input but for another state), system capability errors (unsupported

request) and finally model errors (valid input for the current ”problem” but wrong

system model). The authors show that most errors fall in the second category (vo-

cabulary or grammatical) but 20%− 40% fall in the rest except no input errors. This

reinforces the need to take errors into account, when modelling user simulations.

Engelbrecht et al. [117], propose an automated DS evaluation framework based

on probabilistic simulated user behaviour, which is influenced by interface and user

features. Rossignol et al [118], apply Bayesian Networks in an effort to detect ground-

ing problems, which occur when the system requests confirmation of a slot value (in a

slot-filling DS), while the user has not provided any value for that slot. Chandramo-

han et al. [119], create a user simulation model using Inverse RL. The authors train

their simulator on data collected from human-human dialogues, and learn a reward

function that can be subsequently used for dialogue policy learning. The authors of

[120] model user behaviour as MDP policies and apply a clustering method to form

groups of users that exhibit specific behaviours, aiming to train dialogue managers

in a more varied corpus. Chandramohan et al. [121], propose a framework where

both the dialogue manager and the user simulator adapt their behaviours during the

interaction.

40

Keizer et al. [122] propose a user simulation model that is based on an agenda

and can be trained using real dialogue data. It is hand-crafted for the most part,

but can be trained to estimate the optimal parameter values for the model. The

authors use a set of decision points to simulate user behaviour and these can either

be deterministic or probabilistic. These points then form a network of decision points

with weights representing probabilities on the probabilistic nodes. The authors use

EM to train those weights, using data from real interactions. Schatzmann and Young

[123], present an agenda based user simulation model, in an attempt to address some

challenges of this field, such as to create a model that combines conflicting goals.

Their approach is robust to noise and errors because it allows simulated users a

certain degree of initiative. Goals in the agenda are ordered with respect to priority,

therefore this method supports changes in user goals.

Chandramohan et al. [119], approach user simulator training as a learning by

imitation problem, and create a user simulation model using Inverse RL (IRL). The

authors model the user as an MDP, and, through IRL, train this model to yield

similar behaviour as real users exhibit, in a dialogue corpus. Their results seem

promising, although this approach was not tested on large data sets. In another

work, Chandramohan et al. [120] also model user behaviour as MDP policies and

apply a clustering method to form groups of users that exhibit specific behaviours.

This approach helps at training dialogue managers in a more varied corpus.

Schatzmann et al. [124, 123] present an agenda-based user simulation model,

in an attempt to address some challenges of this field, such as the fact that it is non

trivial to create a user simulation model that combines conflicting goals. The authors

use a stack or a tree-like representation of user goals, called the user’s agenda. A

simulated user response is generated by removing items from the agenda (or popping

from the stack). This approach is more robust to noise and errors because it allows

41

simulated users a certain degree of initiative. Goals in the agenda are ordered with

respect to priority, therefore this model supports changes in user goals. If a new goal

arrives with high priority, it will be put higher on the stack (or in the appropriate

position in the tree-like representation). The authors also use two summary spaces,

where they map dialogue acts and user actions, respectively, in an effort to downsize

the vast amount of possible combinations.

Schatzmann et al. [125], provide a systematic approach to user simulation

model evaluation. The authors set the goals of a user simulator, which must be able to

produce human like dialogue and reproduce the variety of behaviours that a real user

exhibits. They propose to evaluate user models by measuring how much the simulated

response resembles a real user response and, to quantify this, they use Precision and

Recall. The authors also define a set of measures that can be used for dialogue

evaluation (and consequently user simulation model evaluation). These include high

level feature measures, such as length and amount of information, dialogue style

measures such as frequency of different acts and analysis of how many are goal directed

or not, degree of user cooperativeness and measures such as success rate and efficiency

which help us understand how well misunderstandings are modelled. The authors

point out some of the challenges in evaluating dialogue managers when comparing

the generated dialogues to real corpora. In the following Section, we review recent

advances in evaluating DS, as a whole.

1.2.4 Evaluation

In order to assess the performance of user simulators or ADS in general, a robust

and realistic evaluation methodology is needed. Researchers have therefore been

trying to measure dialogue systems’ performance and possibly develop a universal and

objective evaluation framework. The challenge here is that the ultimate measure is

42

user satisfaction, which is subjective and therefore not easily quantified. According to

[80], comparing two dialogue systems is like comparing two programming languages.

Each has advantages and drawbacks on specific tasks but we cannot exactly claim

that one is better than the other in a specific task since the task can be remodelled

in a way that both systems perform equally. Before reviewing recent advances in

DS evaluation, we describe one of the first generic SDS evaluation frameworks to be

proposed, namely PARADISE [99].

The main idea behind PARADISE is that it decouples goals from how they are

achieved by the agents. The authors propose the use of Attribute-Value Matrices

(AVM) instead of keys, as a way of modelling the expected outcome of a dialogue.

These matrices contain attributes such as “Departure City” and all possible values for

each attribute, such as “Milan, New York, ...”. For task evaluation, the authors use

the Kappa coefficient and regarding dialogue cost, they represent each cost measure as

a function ci that can be applied to any sub-dialogue. PARADISE tags the dialogue

with task attributes and thus links information goals of the task to any dialogue

behaviour (making use of AVM), which makes it possible to evaluate different dialogue

strategies. It should be noted here, that this tagging may also be used to create a

hierarchical discourse structure. All scores are normalized to their standard z-scores

to account for different scales (seconds, turns, k etc) and to estimate the Performance

function one needs to explicitly ask users for their level of satisfaction and use linear

regression to estimate the weight on k and the weights of each cost function. We can

also eliminate insignificant cost functions and apply linear regression again. After

evaluating two agents, t-tests need to be run, for statistical significance (this can also

be done at sub-dialogue level). While there are several other, well known evaluation

frameworks for DS, such as SERVQUAL [126], no framework has been unquestionably

43

accepted by the community as able to reliably provide a quantified measure of user

satisfaction, across systems and applications.

Moller et al. [116, 127], propose an evaluation framework for SDS that consists

of three parts. The first one is a behaviour model that tries to compute interaction

parameters, such as system or user errors, confusion, silence and others. The second

part is composed of a perception and a judgement model. Both models try to capture

the user’s perception of the quality of interaction with the system. The last part is

the value model, which models environmental parameters such as the system’s goal,

the environment in which the system operates and others.

Mizukami et al. [128], have developed a prototype SDS on a smart phone, to

provide tourist information in Kyoto. The main system is on a server, implementing

the Weighted Finite State Transducer Dialog Manager (Hori et al, 2009) while the

client application only is on the smart phone. The authors conducted experiments

with real users (80) in an office environment, where the users had to interact with the

system in a practical scenario (retrieve information about something) and in a free

scenario in order to colledt more data on natural language and expressions. After

the interaction, each user completed a questionnaire to rate their satisfaction. The

authors also measure word error rates, ratio of correct system responses, average

system and user delays and utterance length and average user turns per task. They

also analysed the subjective evaluations and computed maximum likelihood scores

and grouped some questions (from the questionnaire), thus forming the following

categories: Acceptability, System Transparency, System Potential and User Comfort.

Acceptability was found to have high (positive) correlation with correct responses,

meaning users that got correct answers rated those questions highly. The authors

also present some of the practical difficulties when dealing with real users.

44

Pietquin and Hastie [129], provide a comprehensive review of user simulation

evaluation for dialogue systems. The authors describe a good metric for simulation

evaluation and use its features to assess other metrics proposed in the literature. In

short, those features are:

1. Consistency : how well the simulation fits the original data statistics

2. Quality of learnt strategy : good RL policies

3. Performance prediction: how well can it predict an SDS’s performance during

real user interaction

4. Generalisation: ability to generate new (unseen) dialogues

5. Scalar value: ability to produce a scalar value to compare with other evaluation

metrics or be used as an optimization criterion

6. Consistent sequences : assess the simulation’s ability to produce (reproduce)

dialogue structures and their statistical distribution

7. Independence: of task, domain and SDS (or dialogue management system)

8. Automation: computed automatically

The authors categorise evaluation methods in two classes, local methods and

global methods. The first ones calculate statistics in turn level and the latter calculate

statistics in dialogue level. Local methods, according to the authors, are either distri-

butions or collections of scalar measures and all suffer from inconsistency according

to the desired features. To summarize, local methods identified by the authors are:

• Dialogue act statistics: relative frequency of acts, user/ system act ratio, ratio

of goal-directed vd grounding vs misunderstanding acts, slot values provided

upon request (cooperativeness).

• Precision, Recall, Accuracy (event that occurred was predicted with highest

probability), Expected Accuracy(average of probabilities the event was pre-

dicted with): These methods do not predict generalisation well.

45

• Kullback-Leibler divergence and dissimilarity: DS(p||q) = DKL(p||q)+DKL(q||p)
2

,

this metric is not bounded so it cannot be used easily as an evaluation metric.

Also it gives more weight to the means of the distributions rather than the

variances and it does not predict generalisation well either.

The authors suggest that the above methods cannot measure the quality of dia-

logue act sequences produced by the user simulation model. Dialogue-level evaluation

methods identified by the authors are:

• Task completion: κ coefficient (based on a confusion matrix), number of turns

(task completion time), ratio of successful dialogues. The authors believe each

of these measures is indirect and none can be used alone.

• Perplexity, Log likelihood: scalar values that can be used for ranking, but not for

generalisation since they measure how well a model predicts data (and therefore

penalise unseen items).

• HMM similarity: KL dissimilarity between an HMM trained on real data and

one trained on artificial data produced by the first. This model can account for

unseen dialogues but cannot adapt to new dialogue policies.

• Cramer-von Mises divergence: does not need to know the distributions, repre-

sents how well a user simulation behaves with respect to real users. Unseen

dialogues do not affect this metric. It can predict the system’s performance but

does not compute dialogue similarity (meaning that high scores do not mean

realistic dialogues).

• BLEU, Discourse BLEU: Taken from machine translation community, it mea-

sures the similarity of semantically equivalent sentences. This metric is able

to compute how realistic a generated sentence is. D-BLEU is able to compute

46

how realistic a dialogue is. This method cannot predict the simulation model’s

generalization as well.

• SUPER: Is a combination of several other metrics. Its goal is to compute how

realistic produced dialogues are and their variety. This metric has similarities

with Word Error Rate. It cannot predict the system’s performance though.

• Human evaluation: Use human judges to evaluate the user simulation model.

It is similar to PARADISE [99].

• Absolute performance: Expected cumulative rewards (or return), when the sys-

tem has been trained using RL. Requires testing with real users.

• Strategy evaluation: Again for systems trained with RL. Compares learnt poli-

cies with known already policies and for this it requires a similarity measure.

The metric then computes the correlation coefficient between Sim(π∗, πold). A

high value means the model behaved well (behaved as a real user would have).

It should be noted here, that De Vault et al. [130] also propose an automated

dialogue policy evaluation framework, based on human critics (external referees).

Pietquin and Hastie [129] conclude that Cramer-von Mises and SUPER score have

most of the desired features they proposed and advise to use KL divergence on ad-

vanced n-gram models. This metric will not penalise unseen dialogues. The authors

also propose to use IRL to learn the underlying reward function that (real) users try

to maximise (their satisfaction). They argue that a user simulation model should

change its behaviour when the SDS changes policy, to reflect the real users’ efforts to

maximise their satisfaction.

1.3 Discussion

Having presented relevant related work, in the following Chapters if this thesis,

we present our work towards a robotic assistant targeted for ALE, able to talk with

47

Figure 1.2. Proposed architecture for robotic assistant [1].

the user, understand the user’s intentions and act accordingly, either by responding

or by acting on the environment. The robotic assistant will be controlled by a state of

the art ADS, and will be able to detect behavioural cues and assess severity levels of

disorders (such as Post Traumatic Stress Disorder). Figure 1.2 depicts the proposed

architecture [1].

To conclude, we propose a Hierarchical Adaptive Dialogue System, able to

express complex behaviour, by learning how to solve complicated tasks and how to

achieve its goals. In the next Chapter, we present our contribution to Assistive Living

technologies; in Chapter 3 we describe our extensive evaluation of RL techniques on

DM; in Chapter 4 we present our contributions to ADS; in Chapter 5 we present

some applications of the proposed system; in Chapter 6 we present in detail our Post

Traumatic Stress Disorder assessment ADS and in Chapter 7 we conclude and present

our plans for future work.

48

CHAPTER 2

Assistive Living Technologies

In this chapter, our contributions to the field of ALE are presented. We focus

mainly on two aspects, dynamic optimal sensor placement, in order to position mobile

sensors (such as robotic assistants) in real-time in response to changing needs and on

recommender systems, specifically designed to operate in ALE. Both aspects can be

regarded as integral parts of a robotic assistant, which is our overarching goal and

can also be applied to many other applications.

2.1 Sensor Placement in Assistive Living Environments

Sensors play a very important role in ALE, as this is how the system receives

input and makes inference on the various aspects of the user’s life. Placing sensors op-

timally, thus, is of great importance, as it can lead to increased coverage of the space,

reduced costs and better response to critical situations or environmental changes in

general. To address this issue, we proposed an extension of the Max Sum Decen-

tralised Coordination (MSDC) algorithm [46], presented in the next Section, named

Extended MSDC (EMSDC) [131]. Our aim was, for a given environment layout, to

find a placement solution for multi-tasking static sensors, while also allowing mobile

multi-tasking sensors in the environment.

In our model, sensors belong in three categories: static sensors; mobile sensors

that we can control, such as sensing robots; and mobile sensors that we cannot control,

such as wearable sensors. Sensors can also be characterised according to the number of

tasks they can perform (whether simultaneously or switching between tasks): single-

49

tasking sensors, such as microphones; and multi-tasking sensors, such as audio-visual

(cameras), Microsoft’s kinect, robots and other, custom-built, sensors.

We address the placement problem by utilising a decentralised message passing

framework, where each sensor is modelled by an agent in a multi agent system. In

short, each agent exchanges location and task preferences, allowing such information

to flow through the agent network, resulting in an equilibrium that achieves the

overlap and coverage constraints. Each sensor can make decisions based on local

information and affect its neighbours’ decisions through message passing. MSDC is

presented in detail in [46], and we reproduce the main attributes in the following

Section for the reader’s easy reference.

2.2 Max-Sum Decentralised Coordination Algorithm

In this section we briefly present MSDC, where sensors are modelled as agents,

which are in composed of a variable and a utility function. More specifically, utility

functions are represented as factors, and task/location of each agent is represented

as a variable. The agent network, thus, forms a factor graph. We now describe the

messages exchanged between one agent’s variable and another agent’s factor, and vice

versa. The interested reader is referred to [46] for a full description of the algorithm.

Initialisation: Each variable node is randomly initialized, as are all outgoing

messages. According to [46], the algorithm is guaranteed to converge to a solution.

Variable to Factor Message: Messages from a variable n to a factor m are

computed by calculating the sum of incoming messages from all neighbouring factors

except for factor m, plus a normalisation constant α. The message is calculated as

follows:

Qn→m(xn) = αnm +
∑

m′∈ne(n)\m

Rm′→n(xn) (2.1)

50

αnm is a scalar such that: ∑
xn

Qn→m(xn) = 0 (2.2)

Factor to Variable Message: Messages from a factor m to a variable n

are computed essentially by a local blind search combined with information from

incoming messages from the rest of the graph. To calculate the message, we need

to find a combination of states for m’s neighbouring variables, except for n, that

maximize the utility (i.e. the factor’s value) plus the sum of all incoming messages

except the one that came from n. The message is calculated as follows:

Rm→n(xn) = max
Xm\n

(U(Xm) +
∑

n′∈ne(m)\n

Qn′→m(xn′)) (2.3)

where Xm is a set of variables that are the neighbours of m.

Marginal: To compute the probability that a variable x is in a specific state,

we have to sum all incoming messages to x:

Zn(xn) =
∑

m∈ne(n)

Rm→n(xn) (2.4)

In acyclic factor graphs these Zn represent a solution to the utility maximization prob-

lem (or social welfare maximization problem). If however the factor graph contains

cycles, Zn represent an approximate solution:

Zn ≈ max
Xm\n

M∑
m=1

Um(Xm) (2.5)

To compute the optimal state for a variable x, we simply have to calculate:

arg max
xn

Zn(xn) (2.6)

In order to gain better intuition of the meaning of the exchanged messages, we

present a non-mathematical explanation:

51

- When a factor M sends an R message to a variable N , it is as if the factor

says: “N , I prefer that you are in state S”.

- When a variable N sends a Q message to a factor M , it is as if the variable

says: “M , my neighbours prefer my state to be T”.

- When a variable n calculates Z, it is as if the variable says: “I am choosing a

state based on which state my neighbours mostly prefer for me”.

2.3 The Extended Max-Sum Decentralised Coordination Algorithm

To deal with the problem of optimal placement, we created an extended version

of the Max-Sum Decentralised Coordination (MSDC) algorithm. This version, unlike

MSDC, takes into account not only the state of the agents but also the location of the

agents (represented by utility - factor pairs). The main idea is that each agent has

two types of states, task and location. This means that instead of having one factor

graph, we have two, where at the second one variables represent agents’ locations and

utilities measure how good these locations are for each agent (typically a measure of

the overlap with its neighbours multiplied by a Gaussian function). We then run the

MSDC two times, once for each factor graph, i.e. once for task selection and once

for placement. As is the case with task selection, the agents exchange preferences on

each other’s location instead of their own actual location. Each agent then tries to

push its neighbours away, to the direction that maximises each neighbour’s utility.

MSDC’s performance has already been proven in [46]. Our algorithm’s running time

is twice the running time of MSDC, but asymptotically the complexities are the same.

The agents exchange messages in order to maximise that utility. The extra

messages exchanged are:

52

From Factor to Variable:

Tm→n(xn) = max
d∈D

(Um(pn, d)) (2.7)

where D are all possible directions (e.g. Up, Down, Left, Right) and pn is the location

of the nth agent.

Marginal: The marginal is similar to Zn(xn):

Wn(pn) =
∑

m∈M(n)

Tm→n(pn) (2.8)

To compute the optimal position for a variable p, we calculate:

arg max
pn

Wn(pn) (2.9)

In practice, however, agents exchange Q messages as defined in [46] and a unified

RTm→n(xn, pn) message:

RTm→n(xn, pn) = [Rm→n(xn), Tm→n(pn)] (2.10)

The marginal becomes:

ZWn(xn, pn) = [Zn(zn),Wn(pn)] (2.11)

Each agent then computes its optimal state and position by maximising:

arg max
xn,pn

ZWn(xn, pn) (2.12)

which means that finally each agent selects the pair (state, location) with the greatest

gain. The distance that the agents will move towards their selected direction is a

tuneable parameter of the algorithm.

53

2.3.1 Experimental Setup

We evaluated several aspects of the proposed algorithm, such as optimal place-

ment of single or multi tasking agents, fault tolerance, and response to environmental

changes. For our evaluation we made the assumption that we have a relatively large

area to cover (compared to the agents’ ranges) and that each sensor’s range is circu-

lar. Note that these assumptions were alleviated in later work [132]. Critical areas

are represented by a three dimensional Gaussian Map. We used the graph colouring

metric (each task is modeled as a colour) to solve the optimal placement of multi

tasking agents, to make sure that agents do not overlap (w.r.t the task each sensor

performs). It should be noted here that sensors can alternate tasks as circumstances

change.

We use the graph colouring utility from [46]:

Um(Xm) = γm(xm)−
∑

i∈ne(m)

∑
j∈C(i,m)

xi ⊕ xj (2.13)

where xi ⊕ xj is 1 if xi = xj and 0 otherwise, and C is defined as:

C(i,m) = {k ∈ ne(m)|k > i ∧ (i ∈ ne(k) ∨ k ∈ ne(i))} (2.14)

For the placement part we used the following utility:

U ′m(Xm) =
∑

i∈ne(m)

√
(pm − pi)2 (2.15)

where pi is the position of the ith agent.

When we have a Gaussian Map we simply multiply U ′m with the Gaussian:

U ′m(Xm) =
∑

i∈ne(m)

(
√

(pm − pi)2G(pi)) (2.16)

In order to calculate the total coverage, we need to first calculate the total

overlap between the agents. The calculation of the overlap however can be very

54

hard in the general case. We tackle this problem using an approximate Monte Carlo

technique. We randomly choose 50,000 points, which is like throwing 50,000 darts

at the area to cover, and we count the number of hits for each dart. If there are no

hits that point is not covered, whereas, if there are more than one, there is overlap at

that point. We can then measure the hits per dart and name that ratio reward. We

increment the reward by one for each dart with exactly one hit, and by 1
hits

if there

are more that one hits. The optimal would be 1 hit per dart, thus optimal = 50, 000.

Another way would be to increment reward by one for each dart with more

than one hit, and then use the following formula to calculate the area covered by the

agents (which is
∑N

i=1 πρ
2
i − overlap):

area =

reward
optimal

areaToCover

min{areaToCover,
∑N

i=1 πρ
2
i }

(2.17)

We consider that a cycle has passed when all agents have had the opportunity

to change their state. We run each experiment for 250 cycles. Each agent’s range was

set to 30 units. The dimensions of the environment are 460 x 980 = 450800 units, so

each agent alone can cover 0.6% of the area. Each experiment was run 10 times for

each dimension, and we calculated the average.

2.3.2 Results

For our experiments we used the Gaussian map and run the algorithm for 10 to

150 agents. Figure 3 shows the percentage of the covered area versus the number of

agents. We can see that the total area covered rises rapidly in the lower dimensions

and slower in the higher dimensions. This is because the agents are trying to cover

the high interest areas (red) first, leaving others (blue) less covered. This might be

a desirable feature, since we may have some overlap in the red areas, but this also

means redundancy and increased fault tolerance. It is possible to tune the algorithm

55

Figure 2.1. Percentage of coverage versus number of agents when using a Gaussian
map.

and put more weight on the overlap between the agents and less on the effect of the

Gaussian map. This way we will have less overlap in the red areas and the agents

will spread more.

2.3.3 System response to environmental changes

An interesting problem is how the system will respond to a change in the en-

vironment. To model this, we use two different Gaussian maps, depicted in figure 4,

where the second map (bottom image) has one more “important” region. This could

be an event like a fire in the kitchen or a person falling in the bathroom. The first im-

age shows the initial random placement of the sensors, before the EMSDC algorithm

has been run. The percentage of coverage in this case is 39.1% The second (middle)

image shows the coverage of the area after the execution of the EMSDC algorithm

but before the occurrence of the critical event. The coverage in that case is 68.5%.

We then changed the map, at which point the coverage suddenly became 60.7% since

an important area was not covered. After the algorithm ran for 100 cycles the new

resulting coverage increased to 64.2%. Figure 2.2 - bottom, shows the final position of

the agents. We can clearly see that the agents adapt very well to the change in their

environment. Note that it is not possible to achieve the initial percentage of coverage

56

Figure 2.2. The top image shows a random starting state of the system when using a
Gaussian map. The middle image shows the state of the system after the execution of
the EMSDC algorithm. The bottom image shows the final state of the system after a
change in the Gaussian map has taken place and the system has converged to a new
solution.

with the same number of sensors, since after the map change there is a bigger amount

of “important” regions to be covered.

2.3.4 Fault Tolerance

The two main benefits of using multi agent systems are decentralised control,

meaning that each agent performs small tasks that can be performed by low cost

devices, and fault tolerance. Here we prove that EMSDC performs very well in the

presence of failures. To test the fault tolerance of the system, we compared it to a

static system, i.e. a system where the sensors cannot move to compensate for failures.

We run EMSDC using 100 agents, calculated the coverage after 0% to 40% agents

have failed randomly and compared the results with the coverage of EMSDC in the

presence of failures. To simulate failures, we use a model where each sensor has a

probability p to fail at each cycle. After that point the sensor becomes useless either

because it cannot take measurements or because it cannot transmit/receive data. We

can see the results in figure 2.3. The very small decrease in coverage for EMSDC

means that as the agents in important sections fail, others come and take their place.

Contrary if the placement of the sensors could not be re-organized after some sensors

have failed, important regions could remain uncovered and that would result in a

57

Figure 2.3. Percentage of coverage versus percentage of agents failed, for a static and
dynamic system. We can see that the dynamic system adapts well to failures.

rapid decrease in percentage of coverage. As we can see from the graph, with 10%

of sensors failed we already have a 13% difference in the coverage between the static

approach and our dynamic system.

Although not shown here, the system is also very tolerant to lossy communica-

tion, since messages sent at time t are not very different from messages sent at time

t− 1. Each agent stores in memory the received Q and R messages, so at each cycle,

if an incoming message is lost the agent will use the previously stored one. Also,

messages are exchanged constantly and rapidly, so the agent will most likely receive

within reasonable time an updated message coming through a lossy link. Lossy com-

munication can slow down the convergence of the system into an optimal state but

does not significantly affect the final outcome.

So far we have discussed optimal placement of single-tasking agents. A multi

tasking agent is an agent that can perform more than one tasks, e.g. capturing

of video, sound and temperature. It is not necessary that all agents are capable

of performing the exact same tasks or that the agents can perform multiple tasks

simultaneously or one at a time. Generalising our model to handle multi-tasking

agents is straightforward, as we only need to do the following. Assume that we have

58

K unique tasks the agents are capable of performing (in the general case, each agent

can perform a subset of K). We can then apply MSDC with each agent having 2K

states, where each state, converted to a binary number, represents the tasks that are

“on” or “off”, depending on whether the corresponding bit is 1 or 0.

The effect of EMSDC on our system is that we can derive patrolling routs

for mobile robots, including our robot assistant, as well as raise alerts when critical

events occur, that our robot can intercept and navigate to the critical area. Con-

tinuing our work on sensor placement in ALE, we developed a web-based tool that

employs EMSDC and provides various features [132]. It is targeted at the designer or

supporting technician of an ALE rather than the users themselves and is presented

in the following Section. A description of another application of EMSDC for assistive

robot placement can be found in [133].

2.4 EMSDC Web Tool

In this Section, we present a web-based tool that we developed, which applies

EMSDC. This tool is part of a larger system (zScope) and is targeted to the techni-

cian responsible for installing and maintaining the sensor network. Our tool has two

main modes, Drawing mode and Monitoring mode. In the first mode, also depicted

in Figure 2.4(a), the user designs the layout of the space to be monitored. We pro-

vide functionality to define walls, tweaking their length and thickness and also define

critical areas. After the design is complete, the user defines the type and number of

sensors to be installed, and the system runs EMSDC to propose an installation solu-

tion. The user then has the option to fine tune the placement solution, to account

for unforeseen issues, such as the inability to install a sensor due to physical con-

straints. When the placement phase (Figure 2.4(b)) is complete, the system goes into

Monitoring mode (Figure 2.4(c)), where it constantly checks for faulty sensors. The

59

system can issue warnings and alerts, depending on the health of the sensor network,

and if enough sensors have failed to have a significant impact on system coverage, the

system runs EMSDC again, attempting to reconfigure the healthy sensors and achieve

as much coverage as possible. The new solution is then presented to the technician,

who can decide whether it makes sense to relocate several sensors or replace the faulty

ones. Our approach can have a great impact on cost, as the technician may not ac-

tually need to replace every faulty sensor, or, in an emergency, the reconfiguration of

existing sensors may be much faster than purchasing replacements. Last, for research

and evaluation purposes, the tool can go in a Simulation mode (Figure 2.4(d)), where

failures and system responses are simulated.

The tool is able to recommend sensor placements and the user can adapt that

recommendation to account for unforeseen issues (power cables, surfaces where we

cannot mount specific sensors etc). After the placement is complete the tool goes

into System Monitoring Mode and monitors the devices for any failures. When a

failure occurs the system can respond in several ways:

• Adjust the recommended sensor placement to compensate for the failures and

increase coverage as much as possible.

• Move mobile sensors to compensate for the lack of coverage. We may have some

robots standing by.

• Raise an alert to the technician.

• Raise a warning to the technician.

The proposed tool has two modes. The Environment Design mode, where the

user designs the environment layout, selects the sensor set and defines critical areas

for each sensor type. The system can then recommend near optimal positions for

each sensor, using a Max Sum Message Passing algorithm, as discussed in Section

2.3. From the user defined critical areas we are able to create a 3-dimensional map

60

(similar to the Gaussian maps of [1]) that will be the utility function U(Xm). The

only problem with this approach is that different types of sensors (eg smoke sensor

at the kitchen, motion sensor at door frames) might have different critical areas, so

we ask the user to define them separately and run the algorithm for every sensor

type. In the future we will have a heuristic that will combine all critical areas and

the algorithm will run only once.

2.4.1 Environment Design

The tool provides a way of drawing an environment layout and specifying the

critical areas. The user can draw walls and adjust their thickness from the corre-

sponding slider. The user can also define the critical areas by using the brush to

paint the area of interest, as depicted in Figure 1 - top. Brush intensity and size can

be adjusted. There is also an option for brush smoothing where higher values will be

assigned towards the center of the brush and lower as we move away. The user can

also load a layout and the corresponding critical areas from a file.

From the defined critical areas we create a 3-dimensional map that corresponds

to agent rewards (Gaussian Maps in [1]) and will be used in the automatic sensor

placement process. During this process, in short, the sensors will try to cover the

critical areas as much as possible and reduce the overlap as much as possible (this

is a tunable parameter of the algorithm [1]). This is achieved through the Extended

Max Sum Decentralised Coordination algorithm [1].

There is also a map smoothing option, where we find the peak of the 3-

dimensional map and create a small inclination towards it according to the following

formula:

61

(a) Layout Drawing (b) Sensor Placement

(c) System Monitoring (d) Monitoring Simulation

Figure 2.4. The various modes of operation of our EMSDC web-based tool.

mapx,y =
smoothV alue√

(x− xMAX)2 + (y − yMAX)2
(2.18)

where (xMAX , yMAX) are the coordinates of the highest peak in the map and

smoothV alue ∈ [0, 1], selected by the user.

This does not work if we have several peaks, and the user should exercise cau-

tion when selecting this option. In the final version of the tool, however, this is not

expected to be a problem. This option is provided to eliminate flat areas in the

maps, where the sensors have no incentive to move. The maps can be saved using

either a default name or one defined by the user. When the user has finished drawing

the layout and defining the critical areas and the sensor set he can either place the

sensors himself by pressing the Update Sensors button or let the system recommend

a placement by clicking the Run button, as depicted in Figure 2.4(c). Automatic

62

sensor placement is done by Extended Max Sum Decentralised Coordination [1] al-

gorithm, which was described in section 3.3. After the placement is complete, either

automatically or manually, the user may select to switch to Monitoring Mode from

the Mode menu.

2.4.2 System Monitoring

In this mode critical areas are not visible and the user can only see the envi-

ronment layout and the sensors in their final positions, as depicted in Figure 2.5 -

top. From the Settings menu the user may choose how he wishes to receive alerts,

for example via email, via message boxes or appearing in the text box. Alerts and

warnings can also be deactivated, but will appear in the system’s log.

To monitor the sensors’ health the system checks to see if all sensors are active,

at regular time intervals. When the system fails to receive signal from a sensor,

that sensor’s colour will turn yellow. If the system does not receive signal from that

sensor for a predefined period of time that sensor will be considered to have failed, its

colour will turn red. If a sensor is inactive or has failed, a warning or alert is raised

accordingly. Before raising an alert the system attempts to automatically provide a

solution, i.e. run the placement algorithm again excluding the failed/inactive sensors.

This can be used as a recommendation in the event where we immediately need to

restore coverage and repairs might be time consuming.

2.4.3 Evaluation

The system was evaluated using real data from the HERACLEIA Assistive

Living apartment and also using synthetic data. Real data came from SunSPOT

sensors and Pressure Mats installed in the HERACLEIA apartment and were used

mainly to evaluate System Monitoring Mode. We measured the system’s time to

63

respond (detect a failure, raise an alert or warning, recommend new placement) and

the percentage of failed sensors it was able to detect. The system’s average response

time was 3.22 sec and the system was able to detect 100% of sensor failures.

To evaluate sensor placement (which includes sensor re-positioning when plan-

ning a new placement after a failure) we used simulations, as depicted in Figure 2.4(d).

We modelled two types of failures, signal and hardware failures and incorporated this

model in each sensor. The system has no knowledge of the type of failure and has

a tolerance parameter, measured in time steps, to account for signal failures. If a

sensor fails for more than the predefined time step threshold it is considered to have

a hardware failure. Signal failures are depicted with yellow (warnings) and hardware

failures with red (alerts). We measured the system’s total coverage percentage before

a failure and after the system responded and re-positioned the sensors. Results of

sensor re-positioning (i.e. system’s response) are very promising and clearly show a

very small loss in coverage of critical areas, as we can see in Figure 2.5 where 50 %

of 100 sensors fail.

The proposed tool is able to provide robust recommendations on sensor place-

ment and monitor the system’s health. It raises alerts and warnings but it first

attempts to solve the problem automatically. It is web based, easy to use and can be

easily extended to provide data analysis and inference on human behaviour.

We plan to integrate this tool into a web interface called zScope. zScope’s pur-

pose is to monitor human behaviour and analyze monitoring data in order to provide

more interesting information. A straightforward extension for this tool therefore is

to collect data from the sensors (not just monitor system’s health) and perform be-

havioural analysis using various Machine Learning techniques. Another extension is

to take into account multi tasking sensors and find a heuristic that creates a com-

mon critical area map which could be a linear combination of all critical area maps.

64

(a) Steady state

(b) Re-positioning phase

(c) After response

Figure 2.5. The three phases of the proposed System Monitoring Tool.

Last, we plan to incorporate battery and time constraints, add a feature to optimise

cost of devices against total coverage and perform extensive evaluation using real and

simulated data.

2.5 Recommender System for Assistive Living Environments

In this section, we present a recommender system that was designed to take

into account the special needs of ALE users, such as the fact that they may not be

65

able to communicate keywords of items they are interested in [134]. The main idea of

our approach is to apply Natural Language Processing (NLP) methods and weighted

tagging of keywords, to label, rate, cluster and finally recommend items of interest to

the user. Clustering occurs in an online hierarchical way. Our system also provides

functionality to extract tags and ratings automatically from descriptions of items,

provided by the users.

2.5.1 Introduction to Recommender Systems

Recommender Systems have been widely used over the past years trying to help

users navigate through the overwhelming amount of information available. A good

Recommender System can prove very profitable in businesses such as www.amazon.com

or www.net flix.com by recommending products the users can buy (or products that

other users have bought to take advantage of peer pressure). The greatest challenge

for a Recommender System is to recommend items from clusters that the user has

never seen and might like. Apart from these known advantages, Recommender Sys-

tems are also very useful in Assistive Environments. In this setting users normally

are less able than typical computer users, either physically or mentally. In any case

their ability to efficiently search for information is limited and here is where a Rec-

ommender System can prove extremely helpful. Recommender Systems targeted for

Assistive Environments therefore should take this user inability into account, be more

flexible and provide more natural and intuitive ways of using them, specifically at the

point where users are describing what they are looking for. We propose a content

based Recommender System that uses Natural Language Processing techniques, such

as Automatic Summarization or Sentiment Analysis, to analyze (automatically tag

and rate) and dynamically cluster items. Motivation to build our system came from

the fact that using tags, ratings or historical data is sometimes not enough for a Rec-

66

ommender System and more than this, in Assistive Environments typical users are

less efficient in searching for items using pre-defined tags. It is a rather mathematical

approach that fails to capture the meaning of tags or item descriptions. In order to

correctly identify the meaning, we need to take into account the context in which it

was expressed. Context, as defined in [7], is information that describes an entity’s

situation or environment. Context Aware is any application that exploits context. In

this work, the meaning of context awareness is two fold. First it means understanding

item descriptions by assuming tags are not independent of each other, and second it

means recommending items to users taking into account their environment, which

could be their item browsing history, their website browsing history, the contents and

opinions in a forum they are participating in and many others, depending mainly

on the application. All these could be defined as current context, versus long term

context that would be predefined user preferences. In this work however we only use

current context. Apart from Assistive Environments our system could easily be used

for database population by automatically tagging and rating items from reviews or

descriptions found on the web, for advertising in chat rooms or forums or an applica-

tion that uses browsing history, chat history (with a focus on questions) etc to create

a query through Natural Language Generation techniques and then ask the recom-

mender system for similar items. Last, the proposed system does not store users’

ratings for each item, but rather a collective ”opinion” which is updated with each

new rating or description of the item. Although there has been substantial work in

Recommender Systems, there has been little to no work in adapting a Recommender

System to meet Assistive Environment requirements. These requirements include

the ability of a system to provide companionship and to understand a user that is

not trained to use technology. Our system not only applies novel algorithms for

recommendation tagging and rating but is also targeted for assistive environments.

67

Figure 2.6. The proposed architecture for item recommendation..

Through natural language understanding and semantic analysis techniques it is able

to understand what the user exactly needs. The user does not need to provide tags,

just a description in natural language of what he is looking for.

2.5.2 Related Work

In this section we will present a brief overview of recent work that is related

to ours, focusing on Recommender Systems since there is no work on Recommender

Systems in Assistive Environments. In [6] the authors propose a wearable context

aware assistant that is able to adapt to user context. Context is defined here as activ-

ity, location, identity and time. [5] evaluates a model that personalizes the order in

which news articles are presented to the user according to his long term interest profile

or according to the current semantic context of interest or both, using News@hand

Recommender System [11]. [4] proposes a context aware personal assistant (Personal

Digital Secretary) that combines user modelling and context awareness techniques.

In [3] the authors propose a context aware Recommender System that exploits the

semantic web. [2] presents a context aware recommender system that deploys per-

68

sonalized services (such as context discovery service, contextualization service and

others) to provide context aware recommendation. The authors use both user con-

text and preferences to make recommendations. [1] is an interesting and effective

approach to the difficult problem of recommending citations for a given article, at

specific locations in that article (citation placeholders). In [10] the authors propose

a new algorithm for content based image retrieval that uses dynamic clustering, and

their aim is to eliminate irrelevant images from the results, as is the case in many

image retrieval systems. [9] presents techniques that incorporate user context (loca-

tion, time, affiliation) in information requests such as request expansion, ordering as

a feature of query language, context templates as an automation mechanism, com-

bining contextual attributes. [8] takes into account user context, in the sense that a

user might be in a different mood at different times of day, in order to recommend

music.

2.5.3 A Recommender System for ALE

In this section we will present our novel content-based Recommender System,

which offers an easy and intuitive way for item tagging and rating, without using

historical data as most traditional Recommender Systems do. A user can describe

an item (including his opinion) as he would to his friends. Users of our system can

tag an item using any word they like and the system will convert them to either tags

or ratings. They can also provide a short description of the item instead and the

system will extract tags via Automatic Summarization techniques and ratings via

Sentiment Analysis. Last, we provide the option of explicit item rating. The system

then uses inferred and explicit tags and ratings to select the top-k items that will be

recommended to the user. Figures 2.6 and 2.7 describe our proposed system. Figure

69

Figure 2.7. The proposed architecture for weighted tagging and rating.

1 depicts the tagging and rating process and Figure 2.6 depicts the recommendation

(and dynamic clustering) process.

2.5.3.1 WordNet

WordNet is a publicly available database for the English language that was

first developed by Princeton University in 1985 (wordnet.princeton.edu). It contains

adjectives nouns and verbs grouped into synonyms called synsets. These synsets are

linked together by lexical or semantic relations and form a network of conceptually

related words. WordNet is a very useful tool for natural language processing tasks

and has been used extensively in research.

2.5.3.2 Weighted Tagging

Each item in the Database is represented by a vector where each dimension

corresponds to a tag. The value of each dimension reflects the ratio of users that have

used this specific tag to describe the item. There are two ways to tag an item, either

70

explicitly or through the item’s description. While the first case is straightforward,

the second requires some analysis. To achieve automatic tag extraction, we first get

words that refer to the item (assuming we know or are able to infer the item’s name).

An example tool for this is www.opencalais.com that offers Named Entity Recogni-

tion. We also use Automatic Statistical Summarization techniques to get the most

important words of the text, and through some final processing using Natural Lan-

guage Understanding techniques we are able to extract words (tags) that describe the

item. Note here that the aforementioned techniques are able to distinguish between

verbs, adjectives etc. We also try to infer the WordNet sense (meaning) of each tag

based on the other tags in the list. If we cannot get an answer with enough confidence

we do not resolve the sense of the tag and leave it for further analysis at the recom-

mendation stage (if results are not satisfactory we will cluster tags based on other

senses through dynamic clustering). Algorithm 1 presents the Tag Sense Inference

algorithm. Note here that we get the senses of each tag by asking WordNet. The

algorithm receives as input a tag t and a list of tags, which is all other tags used by

the user. We then get all unique synonyms of each sense of each tag in the list, as well

as all synonyms of all senses of t. We assign t the sense for which it has the highest

number of synonyms with the tags in the list. If there is a tie the most frequently used

sense wins (it will be higher in the list returned by WordNet). Enough confidence

roughly means a threshold on Count.

2.5.3.3 Rating

The proposed system offers three ways for a user to rate an item. First by

providing an explicit rating score (for example 3 out of 5 stars), second by tagging it

with words such as ”fantastic”, ”terrible” etc, and last by providing an opinion (either

explicitly or implied) in the item description text. Through Natural Language Un-

71

Algorithm 1: Tag Sense Inference(tag, tagList)

tagListSynonyms← Empty

for all tags in tagList do

tagListSynonyms← WNSynonyms(tag)

end for

tagSynonyms← WNSynonyms(tag)

for all synonym of tag do

Count matching synonyms with tagListSynonyms

end for

if Sense found with enough confidence then

Assign sense corresponding to maximum count

else

Return 0

end if

derstanding techniques whenever we find a tag that expresses emotion/opinion such

as ”fantastic” we convert it to a rating score. This score is then used to calculate the

item’s average rating. Through Sentiment Analysis and Automatic Summarization

techniques it is possible to extract rating scores (showing how positive or negative

the author’s opinion is) and tags respectively from the description of the item. It

is also possible to calculate a general consensus by summarizing all descriptions and

analyzing the sentiment. The whole process of tagging and rating an item is depicted

in Figure 2.7.

72

Algorithm 2: Item Sense Graph(weightedTagVector)

for all tags in weightedTagVector do

hypernyms← WNHypernyms(tag, sense)

end for

Combine all hypernyms graphs to a single hypGraph

Return hypGraph

2.5.3.4 Clustering

Our system dynamically clusters the items enabling user (or query) specific rec-

ommendation. This is achieved by structuring abstract senses of tags in a hierarchical

fashion and then selecting the level of abstraction we need for clustering. Before we

can talk about clustering though, we need to define some similarity measures. Tag

similarity is computed by counting how many synonyms two tags have in common

according to WordNet. Weighted tag vector similarity is computed by calculating the

Pearson correlation score on the common dimensions of the two vectors. We might

also need to penalize vectors that have too few dimensions in common, but more

experiments are needed to support this. A word in WordNet can have several senses

(meanings) and according to those senses it can have different synonyms. We can

take advantage of this fact to find other synonyms of a tag when the recommendation

results are not satisfactory to the user. Word sense disambiguation however is not

explored in this work but will be part of our future work. In order to enable dynamic

hierarchical clustering we need to be able to somehow group tags in clusters that cor-

respond to a concept (more abstract than the tags that belong to that cluster). This

is captured by a Sense Graph, which is a layered graph where each layer corresponds

to an abstraction level, as defined by WordNet. Nodes in this graph are abstract

concepts and leaves are tags.

73

Figure 2.8. Sense Graph of a tag. The tag is at the bottom leaf of the graph and the
most abstract sense (Entity in most cases) is the root.

To generate the Sense Graph of an item, we get the hypernyms for each tag

through WordNet and represent them as a small graph (it is a graph since children

can have many parents), as depicted in Figure 2.9. These graphs always have a root,

and that would be the node Entity, and a single leaf node (or tail) which would be

the tag itself. As we move towards the root of the graph we find more abstract senses

such as Physical Entity or Measure, while towards the tail we find concepts closer to

the tag. We then combine these graphs into one, eliminating any duplicate nodes.

This combined graph represents an item. The weight of a non-leaf node is the sum of

weights of its children. We then combine these Sense Graphs to a single Sense Graph

that represents the whole Database (Figure 4). This is a one time processing step and

once completed we only need to update the graph with any new item rating/tagging.

After having created the Sense Graph we can cluster the items by ”cutting” the graph

at an abstraction level of our choice (a form of feature selection) and if the results are

not satisfactory we can move to lower or higher levels of the graph. Generally lower

levels provide more detail (more clusters of fewer items each) and higher levels provide

less detail (fewer clusters with more items each). Algorithm 2 presents the generation

of the Sense Graph for a single item and Algorithm 4 presents the combination of

many Sense Graphs into one. Each cluster is represented by a ”mean” vector, the

74

centroid. At each iteration of the recommendation process these centroids need to

be updated (the system is re-clustering the items). This centroid, is composed of

the unique tags of all weighted vectors that belong to that cluster, and the value at

each dimension is the corresponding mean. Algorithm 3 presents how the centroid is

calculated.

Algorithm 3: Centroid Calculation(Cluster)

Centroid← Empty

Count[sizeOf [Cluster]]← Empty

for all weightedV ector ∈ Cluster do

for all tag ∈ weightedV ector do

if tag /∈ Centroid then

Add tag to Centroid

Centroidtag ← 0

Add tag to Count

end if

Counttag ← Counttag + 1

Centroidtag ← Centroidtag+tagWeight

Counttag

end for

end for

2.5.3.5 Recommendation

The system first recommends the top-k most similar items from the cluster

where the item of interest belongs. If the user is not satisfied, we re-cluster the items

using more detail by cutting the Sense Graph at a lower layer. This way smaller and

75

more meaningful (of a ”meaning” closer to the query item) clusters are formed and

again we recommend the top-k items. We sort these top-k items in order of decreasing

rating scores. The process of dynamic clustering and recommendation is depicted in

Figure 1.

Algorithm 4: Sense Graph(Database)

for all items in Database do

hypernymGraph← ItemSenseGraph(item)

end for

Combine all hypernymGraphs to a single Graph

Return Graph

2.5.4 Conclusions

We proposed a Recommender System targeted for Assistive Environments that

is able to capture the meaning of each item’s description, thus providing a more

meaningful way to cluster and an intuitive way of searching for items. The system

is also able to re-cluster using more information if the results are not satisfactory.

This is a novel approach using Natural Language techniques to exploit the several

meanings of words used to describe an item.

As future work, we plan to apply deeper linguistic analysis to extract more

meaningful information and assess the trade-off between gain in information quality

and processing time. A faster approach would be to map tags that the user enters

to a pre-defined list of well performing tags, using Natural Language Understanding

techniques. Last, we will apply word sense disambiguation techniques to better infer

the sense of each tag.

76

Figure 2.9. The Tag Sense Graph for a small database.

2.6 Discussion

In this Chapter, we have presented our contributions to the state of the art in

Assistive Living Technology and, specifically, we proposed a decentralised message

passing algorithm able to jointly coordinate agents with respect to the task they are

performing and their location, we presented a tool that implements this algorithm us-

ing a web interface and last, we proposed a novel content-based recommender system.

In the next Chapter, we present some necessary background knowledge in the field

of online dialogue management as well as our extensive evaluation of several online

reinforcement learning algorithms, applied to that problem.

77

CHAPTER 3

Online Dialogue Policy Learning

In this Chapter, we present background knowledge regarding online dialogue

policy learning. We specifically focus on Reinforcement Learning (RL) and the

paradigm we follow to model the dialogue problem. We then present in detail our

extensive evaluation of several standard and state of the art online RL methods, our

methodology, experimental setup and results.

3.1 Background Knowledge

In this Section, background knowledge, necessary to follow the rest of this work,

is presented. Markov Decision Processes (MDP) are presented first, followed by the

basics of RL, which is used by the majority of the research community to achieve

adaptation in Dialogue Systems. We then proceed to describe the most prominent

dialogue management models and how we can apply RL techniques to solve the

dialogue problem.

A MDP is defined as a triplet M = {X,A, P}, where X is a non empty set of

states, A is a non empty set of actions and P is a transition probability kernel that

assigns probability measures over X×R for each state-action pair (x, a) ∈ X×A. We

can also define the state transition probability kernel that, for each triplet (x1, a, x2) ∈

X×A×X, would give us the probability of moving from state x1 to state x2 by taking

action a. Each transition from a state to another is associated with an immediate

reward, as dictated by the reward function R : X × A → R. More specifically, R

78

is defined as the expected immediate reward after a transition: R(x, a) = E[r(x, a)],

where r(x, a) is the actual immediate reward.

Of interest now is to calculate the cumulative rewards, as collected during the

transitions from state to state, until a terminal state is reached. We therefore need

to select an action for each state that will (in the future) maximize the rewards.

An MDP policy is a mapping that dictates which action to take at each state. An

optimal policy is a policy that maximizes the cumulative discounted expected rewards

[135]. Semi Markov Decision Processes (SMDP) introduce the concept of continuous

time. They allow the system to remain in a state for an arbitrary amount of time,

defined by a probability distribution. MDPs and SMDPs, however, make the strong

assumption that the system’s state is directly observable. This is not always true and

this is the problem addressed by Partially Observable Decision Processes (POMDP),

where states are replaced by a distributions b(s) (i.e. beliefs) over states.

3.1.1 Reinforcement Learning

Motivation to use RL in the dialogue problem came from the fact that it can

easily tackle some of the challenges regarding real-world DS, one of which being error

recovery. Hand-crafted error recovery cannot scale, so there is need for automated

processes, to learn good error-recovery strategies. More than this, using RL we can

automatically learn near optimal dialogue policies and thus maximize user satisfac-

tion. Another important benefit is that such algorithms can be trained using either

real or simulated users and continue to learn and adapt with each interaction (online

learning). To use RL, we need to model the dialogue system using MDPs, POMDPs

or SMDPs. POMDPs have the advantage of modelling uncertainty, and can moreover

be transformed to continuous state MDP meaning that the policy optimization prob-

lem can be solved with the guarantee that the solution also optimizes the original

79

Figure 3.1. A Reinforcement Learning agent, interacting with its environment through
actuators and sensors. The policy dictates the agent’s actions, while taking into
account input from the sensors..

POMDP [115]. SMDPs add temporal abstraction to the model and using them we

can, for example model time consuming operations, such as database retrieval.

RL tries to maximize an objective function by learning how to control the

actions of a system, as depicted in Figure 3.1, which, in this setting, is typically

formulated as an MDP. For every MDP we can define a policy π, which is a mapping

from states s ∈ S and actions α ∈ A to a distribution π(s, α) that represents the

probability of taking action α when the system is in state s. This policy dictates the

behaviour of the system and the return of a policy π is defined as:

Jπ =
∞∑
t=0

γtRt(xt, π(xt)) (3.1)

A policy π is optimal if Jπ(x) = V π(x),∀x ∈ X. To estimate how good a policy

is we define the value function V :

80

V π(x) = E[
∞∑
t=0

γtRt+1|X0 = x], x ∈ X (3.2)

which yields the expected cumulative rewards when beginning from state x and

following policy π, discounted by a factor γ ∈ [0, 1] that represents the importance of

future rewards. We can also define the action-value function Q:

Qπ(x, α) = E[
∞∑
t=0

γtRt+1|X0 = x,A0 = α], x ∈ X,α ∈ A (3.3)

which yields the expected cumulative discounted rewards when beginning from

state x and taking action α, again following policy π. Note that Vmax = rmax

1−γ , where

R(x) ∈ [rmin, rmax]. The goal of RL therefore is to find the optimal policy, which

maximizes either of these functions [135].

3.1.1.1 Online Reinforcement Learning

The advantage of online methods for RL is that at each turn we only need to

take into account (belief) states that can be reached from the current (belief) state.

We thus have to compute the maximum value of the current (belief) state and not

for every one. Another advantage is that online algorithms are applicable to dynamic

environments as learning never stops and the system is able to adapt to changes.

Many researchers use (inexpensive) approximate offline methods to find upper

and lower bounds on the optimal value function and then try to estimate it using an

online technique. An example method for estimating the lower bound is to follow the

blind policy, which selects the same action at every turn. This method is fast but

the bound is not very tight. Another way of estimating the bounds is to use point

based algorithms such as Point Based Value Iteration (PBVI) [136], Perseus [137] or

Heuristic Search Value Iteration (HSVI) [138]. These methods have the advantage of

providing tighter lower bounds when we increase the number of sampled belief points

81

(and thus their complexity). Similarly, there are many approaches to estimating the

upper bound of the optimal value function, such as using the value function of the

underlying MDP or assuming that there is no uncertainty (partial observability) after

one turn. A method that can deal with uncertainty is Fast Informed Bound (FIB)

[139].

Online reinforcement learning algorithms generally have two stages, the plan-

ning (or learning) stage and the execution stage. There are many ways to make an

online algorithm faster or more efficient, such as pruning the set of belief states to

consider at each turn (e.g. by selecting the most relevant ones) [140].

3.1.1.2 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) can be seen as RL with macro

operators, where a macro can call other macros. A macro is a set of primitive operators

and in HRL can be seen itself as a primitive operator (like sub-routine calling). From

a control point of view a macro is a partial policy, also known as temporally extended

action, option, skill, behaviour, mode or activity. Options consist of an input set

(set of states) I a policy π and a termination condition β (probability distribution):

< I, π, β >. The option is available only if s ∈ I, where s is the current state.

If the next state is s′ according to π(s, a) for some action a, the option terminates

with probability β(s′). Any primitive action can be seen as a one step option (with

β(s) = 1,∀s ∈ S). We can have Markov options and semi Markov options. The first

depend solely on the current state of the core MDP while the latter on the entire

history of states, actions and rewards since the option was initiated. We can define

hierarchical options as triples < I, µ, β >, where µ is a semi Markov policy over

options. An interesting fact (and drawback) is that when an option is invoked we

must follow its policy.

82

The update of Q-Learning [141], one of the standard RL algorithms, regarding

options, does nothing until the option terminates and moreover it only applies to one

option at a time. This means it is not applicable to non-terminating options. This

is the motivation behind intra-option learning methods, such as the one-step intra-

option Q-learning. Techniques have also been developed to allow interruption of an

option in favour of another more highly valued, or adjusting an option’s terminating

condition to allow the longest expected execution without sacrificing performance. In

most cases, the system designer typically provides prior knowledge, in the form of a

specific set of options. Option policies can be seen as policies for efficiently achieving

subgoals. Subgoals consist of either one state or a region of the state space and

reaching those states facilitates reaching the overall goal. This can be achieved by

subgoal values or pseudo-reward functions and one can automatically determine which

subgoals are useful, by detecting regions the agent frequently visits on a successful

trajectory and infrequently in unsuccessful trajectories (also known as macro-operator

discovery).

A Hierarchy of Abstract Machines (HAM) is an approach to structuring MDP

policies. It resembles multi layer control of large Markov chains or hybrid control

methods. HAMs extend these ideas, by allowing policies to be specified as hierarchies

of stochastic abstract finite state machines Hi. Each Hi has four types of states:

action, call, choice and stop. One may also combine a HAM H and an MDP M ,

denoted as HoM , which can be seen as a way of restricting the set of policies for

M . The only relevant states in determining HoM ′s optimal policy are choice points

and the rest may be discarded. An extension of HAMs are Programmable HAMs

(PHAMs) that add interruptions, aborts, local state variables and the ability to pass

parameters.

83

MAXQ [142] is another approach to HRL which does not reduce the entire

MDP to a single SMDP but to a hierarchy of SMDPs that can be solved simultane-

ously. Each SMDP can be seen as a node, representing a task, in a graph. Non-leaf

nodes represent subtasks and leaf nodes represent primitive actions. The graph only

restricts the action choices whose suitability (whether the task should be executed)

or execution order is defined by the parent node’s policy. Each subtask has a subtask

policy πi, a set of termination states (the rest are called active states) and a pseudo-

reward function that assigns rewards to termination states. Subtasks are very like

the aforementioned options, with the addition of pseudo-reward functions. MAXQ

explicitly adds a component to each state that is able to return the current contents

of a stack that contains parameter names and values of the hierarchy of calling sut-

basks, much like programming languages. Consequently, a policy must assign actions

to every combination of state and stack contents. A hierarchical policy is defined

as π = {π0, ..., πn}, where πi is the policy of Mi. The hierarchical value function

gives the expected return for each state-stack pair. The advantage of pseudo-reward

functions is that they enable the system designer to define subgoals that must be

achieved, without defining a policy to achieve them. AXQ may also be generalised to

to multi options, for problems involving multiple agents [142]. All these approaches,

however, assume that the states are fully observable, that the agent acts alone in the

environment and that policies are restricted to sequential activities.

3.1.2 Modeling the Dialogue Problem

Various models have been proposed in the literature, that try to effectively

capture all aspects of managing the interaction in ADS. In this Section, we review

the most prominent ones, which are Finite State Automaton (FSA), Slot Filling /

Information Seeking (SF/IS) [85] and Information State Update (ISU) [50]. The FSA

84

is essentially the simplest state machine regarding state representation, since the FSA

only stores information about the current state’s identifier. Each state may be linked

to other states, forming a directed graph, where edges are labeled and cannot change

during execution. Transiting to a new state might trigger a system action, such as an

utterance or movement of some motors. The benefit of this model is that it is easy

to use and understand, but the drawback is that it lacks versatility and cannot be

maintained when applied to non-trivial tasks. According to the ISU model, the DM

retains a single state, which is updated according to a set of rules, the application order

of which is dictated by a control strategy. These rules are triggered by events, such as

the user providing input or confirming something. There are no state transitions in

this model, which alleviates the state space problem, but on the other hand makes it

difficult to predict the effects of rule application, when the rule set grows large. Plan

Based systems have a set of goals the DM needs to achieve, and a planner responsible

for making the appropriate decisions in order to achieve them. Goals can be ordered

as a hierarchy, and the system would need to satisfy all sub-goals of a given goal

before considering it satisfied. A benefit of this model is that it allows the system

to separate domain dependent from domain independent parts of the discourse, thus

allowing the domain independent parts of a DM to be re-used in other applications.

The SF/IF model the dialogue problem as a form which contains information that the

user needs to fill. Systems adhering to SF/IS, therefore, prompt the user for pieces

of information and when enough information is gathered, the system performs the

task it was designed for (e.g. hotel booking). Two very interesting variations of this

model have been proposed, targeted at addressing the state space problem. Bayesian

Update of Dialogue State (BUDS) [90], which is based on Loopy Belief Propagation

[91] and the Hidden Information State (HIS) [51] which further develops this idea.

85

In order to apply machine learning and other techniques it is necessary first

to formally define the dialogue problem. A nice point of view is to see it as an

optimization problem and model using MDP, as in [45]. The state space in their

formulation corresponds to the knowledge the system has about its environment.

The action space consists of the actions the system is able to perform, for example

interact with the user or search a database. A dialogue session (or episode in other

works) is a path through the state space, from the initial state to a terminal state

(goal or not). Last, a dialogue policy defines the next action to take, given the current

state of the system. In the next section we briefly define the dialogue problem, using

the Information Seeking paradigm, as this is what we will follow in the rest of this

work.

3.1.3 Information Seeking Paradigm

Many researchers, when using RL to train their DS, model the dialogue problem

using the slot filling problem paradigm. Before delving into the details, we present

an example to showcase the main idea. Consider a flight booking ADS, where users

need to provide information such as dates of travel, price range, destination etc. The

user’s goal in this case could be summarized as: “I need to book a flight from Chicago

to New York , in business class, on August 17th and return on September 1st”. Out

of this sentence the system only needs the underlined words in order to perform

the booking. We can generalise this user’s goal and create a template, such as: “I

need to book a flight from [] to [], in [] class, on [] and return

on []”. These blanks are therefore called slots and the user needs to provide a

(usually discrete) value for each one, i.e. fill the slots. The system on the other hand

needs to provide incentive to the user, by asking questions and requesting slot values,

for example “When do you plan to return?”.

86

A slot filling problem has a set of slots Z = {z1, ..., zN}, where each slot zi can

take values from Mi, i = 1, ..., N and a set of (system) actions A ∈ {1, ..., N} that

are used to represent requests for slot values, greetings, database retrieval, etc. In

this formulation we let ai request the value of slot zi, where if the action is “database

retrieval”, the corresponding slot would mean that the item has been retrieved from

the database. For our experiments we always let the last action aN to mean “present

the results to the user”, which terminates the episode. The state of the dialogue

system is represented by a dialogue state d ∈ D, where D is the set of all possible

dialogue states. The dialogue state is a vector of dimension N , where each dimension

i holds the value of slot zi: d =< z1, ..., zN >∈ M1 × ... ×MN . We can also define

which actions will be available in each dialogue state. To this end we define a subset of

actions ãi ⊂ A to be the set of available actions for dialogue state di. An Availability

Matrix, that shows which actions are available in every dialogue state, is defined as:

Definition 1 (Availability Matrix) The Availability Matrix Ã ∈ {0, 1}|D|×|A| rep-

resents available actions at each dialogue state and is defined as:

Ãij =

1, if aj ∈ ãi

0, if aj 6∈ ãi

where aj ∈ A and ãi ⊂ A.

In order to have a rough measure of how many actions are available at each

dialogue state and therefore a measure of how difficult the problem is, for our exper-

iments, we define the following metric:

Definition 2 (Density) Density is defined as the ratio of the number of available

actions to the total number of actions:

|{(i, j)/Ãij = 1}|
|D| × |A|

87

As we mentioned before, in this work we are actually solving the information

seeking problem. In such a setting there typically is an optimal set of slots whose

values are necessary in order to meet the user’s goals. For example the set of slots

could represent fields in a database that are necessary to retrieve an item with good

accuracy (not too many items or a wrong item). We therefore define this optimal

subset as the user’s query q ⊂ Z, which is hidden from the system. It thus needs to

learn to exactly ask for the value of the slots in q.

If, while designing Ã, we end up with a slot filling problem where one or more

dialogue states have no available actions, or one or more actions are not available in

any dialogue state, we would practically have a disconnected MDP and a problem

that cannot be solved (at least not for all possible q). An availability matrix Ã is

called admissible if it the MDP derived from it is not disconnected and it is called

inadmissible in the opposite case. To make sure we do not create an unsolvable slot

filling problem we should let each dialogue state have at least one available action

and let each action be available from at least one dialogue state, as stated by the

following rules (or guidelines):

∃Ãij = 1, 1 ≤ i < |D|,∀j (3.4)

∃Ãij = 1, 1 < j < |A|, ∀i (3.5)

where j > 1 since we begin from d1. In our modelling we also allow Show Results to

be available from any state:

Ãi|A| = 1, 1 ≤ i ≤ |D| (3.6)

To model errors, such as misunderstandings, we let the system transit from

state to state according to a probability distribution Pt, that is defined as:

88

Pt(dk|di, am) =

pj, k = j

1−pj
|D|−1

, k 6= j

(3.7)

Assuming that with no noise and errors, the system would move from state di

to state dj by taking action am. To model noise and errors the designer defines the

probability of a correct transition, pj and the remaining probability mass is uniformly

distributed across the rest of the dialogue states. In our model we also add a small

noise ν to Pt(dk|di, am) at the end of each episode, to take into account unexpected

events.

In the present work we have extended this model with confirmation actions,

meaning that for each slot the system can either ask for its value or confirm its value.

We therefore have 2|Z|−1 actions in total, and zi ∈ {0, 1, 2} to model the status of the

slot as empty, filled with high confidence and filled with low confidence, respectively.

This simple extension, for a system with 7 slots, leads to (314−1−1)37 ' 1.08e+13, 565

possible policies for a system with the simplest form of complex actions (composed

only of basic actions), versus (27− 1)27 ' 1.9e+ 269 for the same system without the

confirmation actions.

We also replace the confidence model presented in [Papangelis et al. 2012d] and

use the following updates:

C(zi)←

1, initialization

1− ec, ai is ‘askSlot’

1− (1− C(zi))
2, ai is ‘confirmSlot’

(3.8)

Where ec ∈ [0, 1] is the margin by which we are not confident that slot zi

has been filled correctly (recognition error). C(zi) represents our confidence that

89

zi has been filled correctly. It should be noted that C(zi) is initialized as 1, as we

are confident that in the beginning all slots are empty. ai is the action that was

taken and led to slot zi being filled or confirmed. The optimal reward that can be

achieved then is −|q|, assuming we have no recognition errors (so that the system

will only use askSlot actions). When we have understanding errors (i.e. ec > 0) the

optimal reward depends on the probability that the understanding error for each slot

is lower or higher than the threshold of confidence set by the designer (above which

a slot is considered filled correctly). Please note that when we have complex actions

that are composed of more than one confirmation actions we assume that the user

correctly confirms / rejects each slot separately (or that the system has a mechanism

of inferring it). Otherwise, if the system, for example, requires confirmation for two

slots simultaneously and the user simply replies “No”, the system would have no way

of knowing to which slot the user was referring to. In this case the system could

either reject both slot values or require more information.

3.2 Evaluation of Reinforcement Learning Methods

In our ADS, we apply a Hierarchical Incremental Actor Critic (HIAC) [143]

algorithm for dialogue policy learning, which effectively is a Natural Actor Critic

(NAC) [92]. Before concluding, however, to use NAC for our system, we conducted

extensive evaluations of the most frequently used RL techniques in DM literature,

which include basic RL algorithms, such as SARSA and state of the art algorithms,

such as NAC. In the following section we present our efforts to gain intuition on the

strengths and weaknesses of RL algorithms applied to online dialogue policy learning.

For our evaluation, we designed and used the following reward function:

90

R(d, ai) =

−1, if ai 6= aN

−10|{di|di = 2}| − 100, if ai = aN ,∃j|qj = ∅

−10|{di|di = 2}|, if ai = aN ,¬∃j|qj = ∅

(3.9)

This reward function assigns a penalty of −1, for every system action except

for presenting results, in order to penalize long dialogues. It assigns a penalty of −10

for each slot that has low confidence plus a penalty of −100 if the system attempts

to present results without having filled all the necessary slots in q. Last, it assigns a

penalty of −10 for each slot that has low confidence at the end of the episode. One

could also divide the rewards by C(zi) ∈ [0, 1] to provide incentive to the system to

confirm slot values that currently have low confidence.

When the system requests the value of a slot, it is filled with high confidence

with some probability, according to the user model or the system designer, to model

misinterpretations. When a slot is filled with low confidence, the system must learn

to confirm its value. Once a confirmation action is taken on such a slot, its confidence

value is re-estimated according to (9), and if it is above a threshold, it is considered

filled with high confidence. One way to remove this manual threshold is to incorporate

C(zi) into the dialogue state, so that the algorithms will learn to select confirmation

actions from states where C(zi) values are low, and learn to ask for new slots from

states where C(zi) values are high.

The algorithms we chose to implement and evaluate on the SF/IS problem,

along with some of their characteristics, are the presented in Table 3.1, where LS-

SARSA(λ) stands for Least Squares SARSA(λ), i.e. a version of SARSA(λ) with

function approximation and IAC stands for Incremental Actor Critic.

91

Table 3.1. Online RL algorithms we selected for evaluation in the dialogue policy
learning problem.

Algorithm Model Policy Iteration
SARSA(λ) No On Value

LS-SARSA(λ) No On Policy
Q Learning No Off Value

Q(λ) No Off Value
Actor Critic - QV No On Policy

IAC No On Policy
NAC No On Policy

DynaSARSA(λ) Yes On Value
DynaQ Yes Off Value

DynaQ(λ) Yes Off Value
DynaAC-QV Yes On Policy

All the above algorithms are online and can be categorized into model-free

and model-based. Model-based algorithms use a model that simulates the world

and alternate real and simulated interactions during the learning process. Model-free

algorithms, as the name suggests, rely on real interactions only. To implement model-

based algorithms we applied the Dyna framework, described in [144]. RL algorithms

can also be categorised based on the way they learn good policies. On-policy algo-

rithms follow the policy they are trying to learn, while off-policy algorithms follow

one policy while learning about another. RL algorithms can also be characterized

as value-iteration or policy-iteration, depending on the way train and evaluate their

policy. It should be noted here that IAC is an Actor-Critic algorithm following the

gradient of expected rewards, while NAC follows the natural gradient. In the follow-

ing sections we present our experimental setup and results. This setup will also be

used for future evaluations.

92

3.2.1 Experimental Setup

For our evaluations, we used the information seeking paradigm. We used a noise

free setting, a noisy setting and one where there was a change in the environment

(modelled by a change in the reward function) and the system needed to adapt again.

To simulate interactions with real users we developed a user simulator, which we

describe in the following section.

3.2.2 User Simulator

For this series of experiments we developed a user simulator able to interact

with a slot filling or information seeking ADS. The goal of the simulator is to provide

values to specific slots, that describe its intent. These slots can be varied by the

system to model interaction with multiple users. Specific slot values are irrelevant

at this point we only care to simulate the fact that users provide information or

not. This set of slots is called the user’s query q, and is hidden from the learning

algorithm. The algorithm, thus, must learn which slot values to ask for, in order to

get the necessary information (contained in q), and perform the task that meets the

(simulated) user’s needs. Later versions of this simulator include ASR errors, slot

value confidence and other features, that will be discussed in the next Chapter.

3.2.3 Results

Results of our experiments are shown in Figure 3.2, from which we conclude

that, for this problem, model-free algorithms perform better than model-based al-

gorithms following the Dyna framework. In terms of absolute time, ActorCritic-QV

proved to be significantly faster than the rest, a trait that can prove useful in various

cases, such as when operating with limited resources. IAC and NAC were by far

the best performing algorithms, although the most computationally expensive ones.

93

Figure 3.2. Results of our evaluation. In all figures we show the two best performing
and two worst performing algorithms..

NAC was consistently better than any other algorithm and our final verdict is that

if resources are unlimited, NAC should be the algorithm of choice.

This work resulted in a publication in the 8th Language Resources and Evalu-

ation Conference (LREC) [145] and a publication in the 13th European Chapter for

the Association of Computational Linguistics (EACL) [146]. Both works presented

in this section resulted in the development of a SF/IS ADS, based on the Olympus

[80] platform, which was published in the 7th Hellenic Conference on Artificial Intel-

ligence (SETN) [2] and acts as a guide in a virtual museum. The system interacts

with the users and prompts them for exhibit features they are interested in, such as

era, geographical location, etc., and when it has enough information (i.e. when the

number of hits in the database is below a certain small number) it presents matching

exhibit descriptions to the users. The system was implemented using the Olympus

[80] platform, which is an open source DS development framework. To learn good

dialogue policies, we implemented various learning algorithms, which are interchange-

able to accommodate changing needs of the system, for example amount of available

resources.

94

3.3 Discussion

In this chapter, we presented necessary background knowledge, as well as how

we model the interaction. We also presented an extensive evaluation of online RL

techniques (model free or model based) and described in detail our findings and

intuition.

In the following chapter, we present our contribution to the state of the art

in online dialogue management. More specifically, we present two novel algorithms

for combining solutions to simple tasks into solutions to more complicated ones and

for estimating the user’s reaction to system actions in order to be able to guide the

conversation and achieve the system’s goals.

95

CHAPTER 4

Towards Complex Behaving Adaptive Dialogue Systems

In this chapter we present our approach on achieving complex behaviour in

ADS and our contributions to the field of Adaptive Dialogue Management [147]. We

describe in detail our proposed ADS, which employs HRL techniques for learning and

adaptation. More specifically, we propose two novel online methods, able to combine

system actions and solve complicated tasks and able to estimate the effects of those

actions on the user and the environment (or the dialogue state in general). Our

system is able to learn a dialogue policy that achieves its mandatory goals and also

achieves as many of the optional goals as possible, and is also able to learn how to

combine basic or complex system actions into more complex ones, in order to solve

very complicated tasks.

4.1 Motivation

Dialogue Systems (DS) have attracted the research community’s and the in-

dustry’s interest, during the last years, as they exhibit a number of benefits, such

as being cost effective, providing an easy way to collect statistical data and many

others. A typical DS is used for providing a service, such as customer support or

flight booking. Such a system can greatly cut costs for industry and waiting times

for customers. Trying to make DS more natural and human-like, researchers have

developed techniques that enable them to adapt to specific users or user groups, cir-

cumstances, environmental changes etc. As shown in Figure 1, a DS is composed

of modules such as Automatic Speech Recognition (ASR), Natural Language Un-

96

Figure 4.1. A Dialogue System sample architecture..

derstanding (NLU), Dialogue Management (DM), Referring Expression Generation

(REG), Natural Language Generation (NLG), Text To Speech (TTS) and others (not

shown). During the last two decades DS have matured significantly, from simply

responding with canned text, to intelligently processing the user’s input and respond-

ing appropriately. Industry has also begun to trust these systems more and we can

see many commercially available DS being offered and many that are already being

applied in a variety of fields, such as customer support or providing information.

These systems, however, are somewhat rigid and inflexible to a great extend,

meaning that once the design phase is finished, not much can be done to alter their

behaviour without disturbing the service. Even most of the systems that use Ma-

chine Learning (ML) techniques cannot easily adapt to changes in their environment,

as they are trained before being put to use and follow static behaviours from that

point on. Moreover, the interaction is not very natural or human-like, as the system

follows a predefined dialogue policy and cannot adapt to each individual user or to

unexpected events, that are not described by the system’s dialogue policy, which is

97

responsible for realising the system’s behaviour. Trying to overcome the limitations

of DS, researchers have been very actively working on achieving adaptation in sev-

eral components of a DS, such as ASR, NLG or DM. Adaptive Dialogue Systems

(ADS) are therefore DS which are able to adapt to environmental conditions, adapt

to specific users and to their changing needs. The main focus of this paper is on

achieving adaptation in the DM, by combining online learning algorithms (i.e. which

perform their updates after each dialogue move), such as SARSA or Actor-Critic,

with batch learning algorithms (i.e. which perform their updates after each episode).

More specifically we present two batch learning algorithms, one that is able to learn

how to combine basic and complex system actions into more complex ones, allowing

it to solve complicated problems. For example, in an assistive robot, in order to serve

the user, the system can combine the basic actions “greetUser”, “navigateToFridge”,

“graspWater”, “navigateToUser” into “fetchWater” that is composed of all of them.

Another benefit of this approach is that the algorithm can learn different ways to

achieve the same task, depending on the feedback it receives (e.g., user preferences).

The second technique we present, is able to estimate the effects of those actions on

the user and the environment, therefore enabling the system to guide the learning

algorithm towards achieving its goals. Both techniques, thus, help the system ex-

hibit more complicated and intelligent behaviour, taking a step towards better user

experience.

4.2 Related Work

Complex actions in this setting are combinations of basic or other complex

actions, i.e. sub dialogues or tasks. A complex action thus could be represented as

a tree, where basic actions are at the leaf nodes and each parent node is a complex

action composed of its children. For example, in the system proposed by [49], a

98

travel planning DS, the user can book flights, hotels and rent cars. A basic system

action in such a system would be asking for departure and arrival dates, pricing

range, rental car specifications, etc. The user, on the other hand, can perform actions

such as provide flight departure and arrival dates, ask about the availability of a

specific car for specific dates, or provide information that the system has requested.

A complex action then would combine basic and other complex actions to solve more

complicated tasks, such as travel planning. Flight booking, hotel booking and renting

a car would then be complex actions, which could be combined to solve the travel

planning task. This ability to combine actions into more complex ones is a huge

benefit, as it allows the system to reuse previous knowledge. For example, a complex

action that requests dates could be re-used in flight booking, hotel booking and car

rental. Using complex action learning, the system can learn which is the best way

to plan a journey for specific groups of people, such as tourists, students, sports fans

or business men. A businessman, for example, would most likely want to rent a car,

while a student would probably not. Being online, the system can also adapt to each

user’s specific needs and goals. More formally, the goal of complex action learning is

to find the optimal set of complex actions that will lead to the highest possible user

satisfaction. Another example is an ADS that controls a robot’s actuators [148]. In

this setting, basic actions can be Verbal, Computational or Physical, corresponding to

the robot saying something, deliberating about something (e.g., plan an arm motion)

or moving a motor to control an actuator. Assuming the robot can manipulate

objects, a complex action could be “buildTower”, which would be composed of a

Verbal action “askColour”, many Physical “pick” and “place” actions and many

Computational actions to plan the motions. There have been efforts in the literature

to learn complex (or hybrid) actions, such as [114, 62] but to the best of our knowledge

99

only [2] present a complex action learning algorithm, able learn in a batch learning

fashion.

Chandramohan and Pietquin [114] propose a Spoken Dialogue System (SDS)

with complex actions that provides information about restaurants. The authors pre-

define which complex actions will be available to the system and conclude that their

system performs better with complex actions compared to using only basic ones.

They advise using basic actions in the presence of noise in ASR and also state that

complex actions are more suitable for experienced users. Our approach is different in

that our system is able to learn how to combine basic actions into complex actions

(or combine basic and complex actions into “larger” complex actions etc).

Cuayahuitl et al. [49], model the dialogue problem using hierarchical structures

and apply hierarchical reinforcement learning (HRL) techniques to solve it. They

are able to represent the dialogue state at various levels of detail and actions can

be either basic or complex. The authors model complex actions using Semi Markov

Decision Processes (SMDP) and use HRL to find an optimal dialogue policy. They

also use Hierarchical Abstract Machines which control deterministic transitions of the

system and may therefore model prior knowledge. In another work of Cuayahuitl et

al. [62], the authors use multi-agent HRL methods, aiming to align verbal and non-

verbal actions in a robot DS. They use a hierarchical statistical model to represent

the interaction, that uses joint verbal and non-verbal actions. The difference with our

approach is that we learn how to combine actions, with no restriction of simultaneous

execution of one Verbal and one Physical action. Lemon [5] proposes to use HRL to

find optimal dialogue policies and optimise NLG output simultaneously. He tackles

the state space scalability problem with function approximation, which also allows

policies to be generalised to new states.

100

Achieving the system’s goals has been traditionally handled by the research

community by either incorporating the goals in the environmental feedback procedure

or by designing the DS according to the goals. Another method proposed in the past

by [2] is User State Estimation (USE), that is able to predict the effects of system

actions on the environment and, therefore, make a more informed decision on the

best way to react to the user’s input, in order to achieve the system’s goals. Using

these methods, the system is able to make an estimate on the user’s short-term and

long-term reaction to its actions. In this paper we present this method in detail, as

well as results from extensive evaluations.

In the following Section, we provide some necessary background knowledge and

in Section 3 we describe how we modelled the dialogue management problem. In Sec-

tion 4 we present our complex action learning algorithm and in Section 5 we present

our action effect estimation algorithm. In Section 6 we describe the experimental

setup and the results of our evaluation, and in Section 7 we present the implementa-

tion of an ADS where our techniques are applied. Last, in Section 8 we conclude this

paper and briefly discuss our future plans.

4.2.1 Hierarchical Reinforcement Learning

A way to better understand how HRL works is to see it as RL with macro

actions. A macro action can call simple actions or other macro actions. Macro

actions are also called options, and consist of an input set of states I, a termination

condition β, which is a probability distribution and a policy π. For the rest of the

paper we will refer to macro actions as complex actions, to be consistent with DS

terminology. If the current state st belongs to the input set Ik of a complex action

k, then that complex action is available from st. Once a complex action has been

evoked, it receives focus and starts executing its actions, according to its policy πk. At

101

each time step t′, the complex action will terminate with probability β(st′). A simple

action, then, can be seen as a complex action with β(s) = 1,∀s ∈ I. Note here that

once the system selects a complex action, it must follow its policy until it terminates.

Techniques, however, have been developed to allow interruption of a complex action

in favour of another, more highly valued, or to allow adjusting a complex action’s

terminating condition. [142]

The system designer, in such a setting, typically provides prior knowledge in

the form of a specific set of complex actions (semi-learnt policies, etc.). We propose

an algorithm that is able to rank all possible complex actions and select the top-

k performing ones, without the need to explicitly provide prior knowledge. This

technique will be better described in Section 4.

4.2.2 Complex Actions

In order to gain intuition on how complex actions and complex action learning

can be applied to DS, consider the object manipulation ADS, that we mentioned in

Section 1, and suppose the environment consists of a table and several blocks that

can be stacked on top of each other. The Build complex action is composed of the

following actions:

• Ask Shape

• Ask Colour

• Stack { Pick { Plan, Grasp }, Place { Plan, Put } }

This would be represented in our system as sets of basic and complex actions, for

example:

a0 = {a1, a2, {{a3, a4}, {a5, a6}}}

102

where action a0 is composed of two basic actions, a1 and a2, and one complex action,

that is in turn composed of two complex actions, who are composed of two basic

actions each. It should be noted here, that there is no limit on the ways to combine

complex and basic actions, and we can also re-use the same basic action in several

complex ones that are within a bigger complex action. This representation of Build

could be visually interpreted as a tree, as shown in Figure 4.2(a). It is important

to stress again that complex actions are re-usable. The Pick complex action, for

instance, could be re-used for selecting objects of the same colour or sorting objects

according to their colour, etc. One can imagine that this benefit is even greater when

many complex actions are being re-used to create complicated system behaviours.

To summarize, we model the dialogue problem with complex actions, we used

a hierarchical MDP where Pt corresponds to transition probabilities, the dialogue

states D correspond to the MDP’s states S and the system’s actions (requests for

slot values, greetings, etc), basic or complex, correspond to the MDP’s actions A.

Having defined the slot filling problem and complex actions, we can now see how we

can learn optimal dialogue policies.

4.3 Complex action learning

In this section, we describe a complex action learning algorithm, called Action

Weights Learning (AWL) which was first proposed in [2] and is here extend and

evaluated on a harder problem, as presented in Section 3.1. In a real world ADS, that

we wish to be as human-like as possible, learning complex actions is an important

part of dialogue policy learning. Without complex actions, the system would appear

simplistic and not very intelligent. Manually creating dialogue policies with complex

actions, without a learning mechanism, is as well unfeasible, as the amount of effort

required to create and maintain such hand-crafted dialogue policies is prohibitive. The

103

(a) A complex action (b) Complex action learning

Figure 4.2. A sample complex action (a) and the procedure of complex action learning
(b).

presented algorithm is, to the best of our knowledge, the first online batch complex

action learning algorithm applied in ADS. Being online has the benefit that the system

does not follow a static policy when interacting with users, but is able to adapt to

events that occur in its environment, adapt to specific users as well as their current

needs. AWL uses a ranking scheme to evaluate complex actions that are used by

the system and assess their contribution to the total reward achieved for a specific

episode. Each complex action, then, has a score (or weight) that shows how likely it

is to achieve good rewards if the system uses it. It should be noted here that each

action is evaluated at the end of each episode, as an action may incur bad immediate

rewards but lead to a state from which the optimal reward can be achieved. This

algorithm does not make decisions on which action the system should perform next,

it only assesses the performance of each action and therefore can be used along with

any HRL algorithm.

Having assessed each action’s performance, in a new episode we can select the

top-k performing actions and let the system choose the next action from that set only.

104

The designer, however, also has the option of allowing the selection of actions outside

the top-k set, with a small probability, so as not to overfit (that action will have the

chance to increase its performance score and may thus be selected in the top-k in a

later episode). This algorithm can thus tackle the problem of dealing with very large

action spaces, when allowing complex actions. If we only consider the simplest form

of complex actions, which means complex actions composed of basic actions only (and

not other complex actions - one can view them as a trees of height 2), the possible

complex actions derived from 8 basic ones is 28 − 1 = 255, excluding the “empty”

action. One can imagine that for more complex actions or when we have more basic

actions available, the number of possible complex actions grows rapidly. The policy

space also grows very fast; consider that for a DS with 8 binary slots and basic actions

only, we have 28 = 256 dialogue states and 727 ' 1.5 · 10108 possible policies, versus

(27 − 1)27 ' 1.9 · 10269 possible policies when we allow the simplest form of complex

actions.

In the present work we extended AWL in order to automatically compute k after

each episode, i.e. to estimate how many actions will be necessary in the next episode.

The way to achieve this is to sort the action weights in a descending order and then

try to find a cluster that contains the highest weights. This is done by comparing

the difference of two consecutive weights with the average (so far) difference between

weights of actions in the top-k set. The initial value for k may be equal to |A| or

any other value the designer finds appropriate. Algorithm 5 describes AWL, where

AT ∈ {0, 1}|A| are the action traces, meaning that AT (j) = 1 for every action aj that

was used in the ith episode and AT (k) = 0 for every action ak that was not used. The

sum of AT is in the SAT
matrix, where SAT

(j) gives us the number of times action aj

has been used so far. The parameter k is used to select the top-k performing actions.

The weights are updated according to the equation in line 8. This automatic update

105

procedure incurs some computational cost, so the resulting complexity of AWL is

increased a little but still remains linear in the number of actions |A|.

It is important to note here that setting a very low value for k may lead to an

inadmissible action set. This is because the system may need the value of certain

slots for which there are no actions, because only the top-k were available, and k was

too low. If the designer does not wish to automatically tune k, from our experience

it is good practice to begin with a relatively high k (for example |A|/2) and decay it

as the episodes progress, down to a certain limit (e.g. until k = |Z|). AWL seems

to perform well this way, although it exhibits highly negative rewards in the first few

episodes, as too many complex actions are available and must be used in order to

be assessed and complex actions generally have greater impact on the accumulated

rewards than basic actions. Last, it is also important to note that AWL is sensitive

to initialization of w, as if it is initialized randomly, for example, the algorithm will

need many more iterations, where random actions will be selected for the action set,

before it can converge to the optimal w and therefore to the optimal action set.

4.4 Goal Achievement

In this section we will describe a technique, that has also been proposed in [2]

and in this work is extensively evaluated in a more realistic and challenging scenario,

which allows us to estimate the effects of system actions on the user and the en-

vironment, called User State Estimation (USE). This technique essentially provides

us with an estimate of how the user might react if we select a certain action. We

can thus make a better decision, depending on which goals we want the system to

achieve (e.g. cheer the user up, teach the user something new etc.) or even adapt

to its environment or to user’s preferences and so on. This method can also prove

106

very useful in forming long-term relationships between the system and its users, by

knowing how to react to certain user behaviours.

The main idea behind this algorithm is that we can predict what the next state

of the environment will be, depending on which action we take and create a probability

distribution of the next environmental state ut+1, given the last system action at and

the current dialogue state dt: P̃ (ut+1 = g|dt, at). The state of the environment (or the

next input to the system) is defined as a discrete vector: u ∈ U = U1×U2× ...×UL,

where each dimension u(i) can take values from Ui and can model anything of interest,

for example NLU output, the user’s emotional state or facial expression, his/her

preferences, information about the environment that is not directly related to the

user and so on. g represents a desired state that we want the environment to be in,

for example a desired emotional state (happy), a desired facial expression (smiling)

and so on. Having calculated P̃ , we can use the estimates to choose those actions

that have the highest probability to achieve the desired state (or goal) g that we are

interested in. We can think of this as guiding the algorithm through the policy space,

in order to find a solution that would achieve our goals, i.e. a desirable instantiation

of u, that would represent that the system’s goals have been fulfilled.

As with AWL, USE also works in conjunction with a HRL algorithm. In our

experiments we used a Hierarchical Incremental Actor Critic (HIAC) algorithm, as

described in [143]. This algorithm maximizes the cumulative expected rewards J and

USE extends it to achieve g as well, when possible. This is done by selecting an

optimal system action, at each turn, which has the highest probability, according to

P̃ to achieve g. USE then will maximise J and thus meet the goals set by the reward

function R(d, a) and will also try to find a dialogue policy that will eventually lead

the environmental state to g. If we think of R(d, a) as modelling hard constraints

and g as modelling soft constraints, we can think of USE as trying to satisfy the

107

hard constraints and at the same time as having a bias towards satisfying the soft

constraints. USE will therefore find an optimal dialogue policy w.r.t R(d, a) that

also satisfies the goal g, i.e. it will look for a policy that satisfies g within a set of

optimal dialogue policies. Figure 4.3 depicts this schematically, where Goal 1 and

Goal 2 represent dialogue policies that lead to desirable environmental states and

the S1 and S2 represent the policies that the system converged to. For Goal 1, the

system is able to find an optimal dialogue policy w.r.t R(d, a) that also achieves

g while for Goal 2 no such policy exists and the system converges to the optimal

dialogue policy that is closest to also achieving Goal 2. USE will keep looking for

such an optimal policy and if it appears it will converge to it. An algorithm that

optimizes the dialogue policy together with model parameters (various parameters of

the ADS) is the Natural Actor-Belief Critic [Peters et al. 2005]. USE, however, does

not optimize parameters, but estimates what the user’s state will be next, given that

the system is in a certain state and chooses a certain action and USE is also able

to guide the system to an optimal dialogue policy that will also achieve a desirable

environmental state.

We can now describe USE more formally and present some of the details. As

mentioned before, USE samples a probability distribution P̃ (ut+1|dt, at), which gives

us the probability of the next state of the environment, given the current dialogue

state and the last system action. In effect, USE observes the next environmental

state ut+1, while knowing the current dialogue state dt and the last system action at.

It therefore updates its estimate for P̃ , after each system action. The distribution

P̃ is initialized as: P̃ (u
(i)
1 |d0, a0) ← 1

|Vi| ,∀i. USE also assumes that the values of the

environment state vector are normalized so that u(i) ∈ [0, 1], ∀i. The required modi-

fication of HIAC, for example, in order to incorporate USE, is at the action selection

108

Figure 4.3. USE will attempt to find a policy that satisfies both hard and soft
constraints, as in the case when the soft constraints are satisfied by the policies
enclosed by Goal 1, where the algorithm would converge to a policy such as S1.
When no such policy exists, as in the case where the soft constraints are satisfied by
Goal 2, the algorithm will find a policy such as S2 that satisfies the hard constraints
and is as close as possible to also satisfying the soft ones.

step, and is the following:

at+1 ← maxα{π(α|dt+1)P̃ (u
(i)
t+1 = g|dt, α)} (4.1)

With this formulation we can express complex goals, for example:

P̃ (u
(1)
t+1 = tense ∩ u(2)

t+1 = low ∩ u(3)
t+1 = neutral|dt, at)

or express more complex goals:

P̃ (u
(1)
t+1 > 0.19 ∩ u(2)

t+1 ≤ 0.45 ∩ 0.64 ≤ u
(3)
t+1 ≤ 0.1|dt, at).

It should be noted here that it is up to the designer to assign weights to each

sub-goal, to model their significance. USE is also able to handle changing goals, as in

109

that case and assuming g′ is the new goal, the algorithm will update P̃ (u
(i)
t = g′|dt, at),

instead of updating P̃ for the old goal. This however would require several episodes

in order to have good enough estimates and guide the learning algorithm towards the

new goal. Trying to eliminate this, we can store optimal policies that USE found

for previous goals and when a new goal is requested we retrieve the policy that is

closest to achieving it. For example, if the new goal is g = happy and no optimal

policy exists yet for it, we would retrieve a policy that achieves elated versus a policy

that achieves sad. This way USE does not begin from scratch every time g changes

(assuming there is an available policy in storage).

The distribution P̃ is updated according to the following rule:

P̃ (u
(i)
t+1|dt, at)←

G(filter(u
(i)
t+1), σ2) + P̃ (u

(i)
t+1|dt, at)i

i+ 1
(4.2)

where filter(·) is a function that takes as input u
(i)
t and outputs a discrete value, for

example filter(0.53) = frowning. Function G takes as input the discretised state of

the environment, u
(i)
t , and a variance value σ2. It is defined as:

G(µ, σ2) =< N(v1, µ, σ
2), ..., N(vk, µ, σ

2) >, v ∈ Ui (4.3)

where Ui are the possible values of u(i) and N(v, µ, σ2) is the value of the normal

distribution with mean µ and variance σ2 at v. G is used to disseminate the update

on u(i) across the rest values of that dimension. This allows us to also update en-

vironmental states that are similar (close by) to u(i) and this is useful for a number

of reasons. Imagine for example that we want to achieve g = halfSmile, and our

system also recognises smiling and neutral (among other facial expressions) which

are the closest to halfSmile. When the system then finds an optimal policy that

yields u(i) = smiling and it updates P̃ for state-actions that lead to that policy, it

makes sense to tell the system that halfSmile is very close to smiling. The way to do

110

so is by updating P̃ (u
(i)
t = halfSmile|dt, at) as well, but with a smaller “weight” as

halfSmile is not exactly what we are looking for. This “weight” is controlled by σ2.

The system then will be able to find an optimal policy that yields u(i) = halfSmile

much faster. Another benefit is that if no such (optimal) policy exists, the system

will converge to the closest one w.r.t. g, much faster. The parameter σ2 then is a tun-

able parameter of USE and may be increased or decreased as the episodes progress.

For example if no optimal policy that achieves g has been found for some episodes,

the system could increase σ2, or if the goal g changes over time, σ2 should also be

changed. Note here that σ2 can be hard to tune, especially if we have no similarity

or distance function to provide some measure and USE is somewhat sensitive to the

value of σ2. A rule of thumb is that when switching to a very similar goal the designer

should set a small σ2, as the new goal is “nearby” and therefore we do not need much

exploration. On the other hand, for goals that are farther away, the designer should

set a larger σ2 value and for goals that might be suboptimal w.r.t R(s, a) the designer

should set an even higher σ2 value so that the algorithm will explore the policy space

more and find a policy that is as close to achieving g as possible. In our experiments

we decay σ2 as the episodes progress, as we need the algorithm to gradually focus on

a specific part of the policy space, where the optimal policy we are looking for lies.

Also, as mentioned before, the system stores previously found policies for each goal

g that was set, in order not to begin from scratch when g is requested again. In the

same sense, σ2 values can also be stored for each goal, and are retrieved when that

goal is requested again.

Before discussing our experimental setup and the evaluation of AWL and USE,

we present the learning architecture of our system. The resulting algorithm, named

111

Figure 4.4. The learning architecture of our Adaptive Dialogue System.

AWL-USE is able to rank complex actions, select the top-k performing and use them

to guide the algorithm towards an optimal policy that also achieves the goal g.

The architecture is presented in Figure 5.3, where d′ is the new dialogue state,

a′ is the new action, d and a are the old dialogue state and old action respectively, r is

the immediate reward received after taking action a from d and uu is the resulting user

state. SRN is the Slot Relativity Network, that contains information about which

slots makes sense to be requested together, without confusing the user and will be

presented in the following section.

4.5 Evaluation

In order to evaluate the proposed algorithms, we modified the Agenda-based

User Simulator [124] and added some tunable parameters (user expertise level, con-

firmation probabilities and ASR), aiming to avoid overfitting. User simulators have

many advantages, such as being fast (RL algorithms require many iterations to con-

verge, especially for high dimensional problems), cost-efficient and many more. We

used the same user simulator, with different settings, to evaluate both algorithms.

112

4.5.1 User simulator

In this section, we describe some modifications we applied to the Agenda-based

User Simulator, proposed by [124], that we used to train and evaluate our system.

More specifically, this simulator was modified to also keep track of some extra vari-

ables, such as user’s emotional state, ASR errors and user attendance level, for eval-

uation purposes only. We chose to incorporate ASR errors in the user simulator to

model the fact that some users may or may not speak clearly. This was modelled

with the recognition error ec and the confidence model that we presented in Section

2. In general, it is desirable to have as realistic a model as possible, in order for

the learnt dialogue policies to apply as well as possible to real users. The simulator

interacts with the system at the intention level, bypassing ASR and NLU, NLG and

TTS and assuming that the simulator directly passes its intentions to the system.

To model ASR errors, therefore, we assign low confidence scores on the slots where

an error should have occurred. The modified simulator also has some extra internal

variables, that represent valence and arousal to model the simulated user’s emotional

state and expertise to model the fact that a user may be an expert or a novice. A

user state is thus a three dimensional vector: u =< valence, arousal, expertise >,

where valence ∈ [0, 1], arousal ∈ [0, 1] and expertise = {Novice, Expert} and can be

thought of as an extension to the simulator’s dialogue state. The reason we wanted

the simulator to have an emotional state was simply to use as a proof of concept, for

the experiments of USE, showing that it can select the appropriate dialogue policy

that achieves the specified goals. As in [2], we classify (through the filter function)

valence and arousal values into 16 emotional states, as proposed by [149]. A simu-

lated user may therefore be in one of the following emotional states: happy, elated,

excited, alert, tense, nervous, stressed, upset, sad, depressed, bored, sleepy, calm, re-

laxed, serene and contented. The simulator’s expertise level is used by the system to

113

penalise actions, according to their complexity. Intuition behind this is the fact that

an experienced user may prefer complex actions (not overly complex though) in order

to finish his/her task faster and easier, while a novice user probably would prefer

simpler actions. To model confirmation or rejection of slot values (when requested by

the system) we define a static probability, according to which the system will confirm

or reject the slot value.

In the present work we modified the user simulator to also model attention lev-

els, to show how USE can simultaneously achieve two independent goals. Again the

attention level is just an example of what the system’s goals might correspond to. The

environment’s state thus becomes a four dimensional vector: u = <valence, arousal,

attention, expertise>, where attencance ∈ {payingAtt, notPayingAtt}. From now

on, for the emotional state which is defined by valence and arousal (i.e. u
(1)
t+1 and

u
(2)
t+1), we will use u

(1)
t+1 =< emotion > instead of (u

(1)
t+1, u

(2)
t+1) =< emotion >, abusing

notation, for the sake of brevity and readability. We will also use u
(2)
t+1 for attention.

Another aspect added to the simulator, is that a user, whether experienced or novice,

would not tolerate complex actions (requests for multiple slots) if the slots requested

are irrelevant to each other, for example “What is your age and preferred drop-off lo-

cation for your rental car?”, as the system would seem unnatural. According to each

user type then, the simulator has different probabilities of tolerating complex actions

or not (for more details see [2]). Valence and arousal values are updated according to

the rules presented in Table 4.1, taken from [2] and attention is updated according

to a very simple model that yields high attention values for certain emotional states

(happy, elated, excited, alert, tense) and low attention values for the remaining emo-

tional states (nervous, stressed, upset, sad, depressed, bored, sleepy, calm, relaxed,

serene and contented).

114

Table 4.1. Update rules of our user simulation model, from [2]

User Model Update Rules
Update Valence Arousal

↑
us is relative system asks questions

no system repetitions
accurate results

↓
us is not relative system is idle

system repetitions too many dialogue turns
inaccurate results

As mentioned before, the user simulator has a probability of tolerating complex

actions according to the slots requested. In order to define which slots make sense to

be requested together by the system, we create a graph (or network) where vertices

represent slots and arcs represent their relationship. Weights on the arcs model how

significant that relationship is. The way this network, called the Slot Relativity

Network (SRN), is created is quite simple. We just mark which slots have been

mentioned in the same user utterance and update the weights on the arcs accordingly.

More formally, the updates are as follows:

wi,j =
|{zi, zj} ⊂ q,∀q ∈ W |

|W |
∈ [0, 1] (4.4)

where the user query q was defined in Section 2, and we let W be the set of all queries

made so far. We can now give the following definition, according to [2]: “If the Slot

Relativity Network that is created by the slots qi ∈ q of a user query q is connected,

then q is called relative. Otherwise q is called non relative.”

In order not to overfit the simulator, we varied its parameters before each

episode, to model different users interacting with the system. More specifically, we

varied the user’s expertise level, ASR errors and confirmation probabilities.The prob-

ability of an ASR error was, for each episode, a random number in [0.25, 0.75] and the

115

confirmation probability for each episode, a random number in [0.25, 0.75]. Dialogue

policies trained on high ASR noise have been proven to work on low ASR noise con-

ditions, but not vice versa [150]. We therefore trained the system using a simulator

with fairly high ASR noise and tested it on a simulator with lower ASR noise. We

opted for a large group of novice users and a small group of experts, as in [125] and

thus the simulated user is novice with probability 0.75 and expert with probability

0.25.

4.5.2 Experimental setup

In this section, we describe our experimental setup. To assess AWL’s per-

formance, we paired it with a hierarchical SARSA algorithm (AWL-HSARSA) and

compared against a simple hierarchical SARSA (HSARSA) and a hierarchical SARSA

(HSARSA-h) with a preselected handcrafted set of complex actions (i.e. the optimal

complex action set along with the basic actions). We run each algorithm 100 times

on a slot filling problem of 3 slots and 6 basic, i.e. 728 complex, actions (3x6) up

to 7 slots and 14 basic, i.e. 4,782,968 complex, actions (7x14), due to hardware con-

straints, allowing for each dimension an increasing number of episodes. It should be

noted that we did not allow complex actions composed of other complex actions, so

from 6 basic actions, for example, we have 36 − 1 possible complex actions. Since we

used hierarchical algorithms, however, this extension is straightforward. Note that a

slot filling problem with 8 slots and (316 − 1) = 43, 046, 720 actions has 38 = 6, 561

dialogue states and (316 − 1)316 ' 1.34e + 328, 616, 088 possible policies. For our

HSARSA-h, we used a handcrafted complex action set similar to the actions that

[114] used, which are:

• Ask for the value of two slots

• Ask for the value of three slots

116

Table 4.2. Parameter settings for experiments with varying user simulator behaviour.

Experiments ec ASRn

E1 1 to 0.9 0 to 0.25
E2 0.95 to 0.8 0.1 to 0.3
E3 0.9 to 0.7 0.15 to 0.35
E4 0.85 to 0.6 0.2 to 0.4
E5 0.8 to 0.5 0.25 to 0.45
E6 0.75 to 0.4 0.3 to 0.5
E7 0.7 to 0.3 0.35 to 0.55
E8 0.65 to 0.2 0.4 to 0.6

• Confirm the value of two slots

• Confirm the value of three slots

• Confirm the value of two slots and ask for the value of another slot

• Confirm the value of one slot and ask for the value of two others

It should be noted that our system does not distinguish between implicit and explicit

confirmation actions, as is the case in [114]. Instead, an implicit confirmation would

be a complex action composed of a confirmation for the value of a slot and a request

for the value of another and an explicit confirmation would be a basic confirmation

action. We also let all basic actions be available in the handcrafted set, thus we allow

all combinations of basic actions which result in complex actions that are composed of

up to three basic ones. For the experiments where we varied both ASR error level (ec)

and the confirmation probability, we evaluated the algorithms in 8 settings, shown in

Table 4.2.

To assess the performance of USE, we tested the achievement of a single goal,

that varies over time (episodes) and the achievement of two independent goals that

also vary over time. Last, we assessed its performance on the achievement of two

117

intertwined goals and two competing goals. More specifically, for a single goal we

tested the achievement of:

1. P̃ (u
(1)
t = happy|dt, at)

2. P̃ (u
(1)
t = upset|dt, at)

3. P̃ (u
(1)
t = happy|dt, at)

4. P̃ (u
(1)
t = excited|dt, at)

5. P̃ (u
(1)
t = tense|dt, at)

For this experiment we used a 5x5 slot filling problem, without confirmation

actions and allowed 150 episodes for each goal to be achieved. For two independent

goals we tested the achievement of certain emotional state and attention levels:

1. P̃ (u
(1)
t = happy, u

(2)
t = payingAtt|dt, at)

2. P̃ (u
(1)
t = upset, u

(2)
t = notPayingAtt|dt, at)

3. P̃ (u
(1)
t = happy, u

(2)
t = payingAtt|dt, at)

4. P̃ (u
(1)
t = excited, u

(2)
t = notPayingAtt|dt, at)

Again we allowed 150 episodes in this experiment, for a 5x5 slot filling problem,

for each goal to be achieved. In order to perform these experiments, we paired

optimal dialogue policies with most possible combinations of goals for emotional states

and attention levels. We deliberately did not model all possible cases, in fact some

combinations were suboptimal w.r.t R(s, a), that the system had to avoid. We also

set some suboptimal policies that achieved the same goals as optimal ones, to see if

the system would converge to an optimal policy or not.

A similar experiment was conducted to assess USE’s performance, when asked

to satisfy competing goals. In this case we assume we have two variables, A and B,

where A ∈ {1, ..., 10}, B ∈ {1, ..., 5} for which we have that A = 2B. We will try to

satisfy the following goals:

1. g1 : A = 6, B = 3

118

2. g2 : A = 8, B = 2

3. g3 : A = 4, B = 3

4. g4 : A = 4, B = 1

4.5.3 Results

In this section we present the results of our evaluation and attempt to explain

them. Figure 4.5(a) shows the average reward each algorithm (HSARSA, HSARSA-h

and AWL-HSARSA) achieved, during 100 runs, on slot filling problems of dimension

3x6 (3 askSlot and 3 confSlot actions) to 7x14, with confirmation actions. We could

not test our setup with problems of higher dimensions, because even with application

of function approximation techniques, the size of the action space grows exponentially

with the number of slots. For specific problems one may find efficient feature sets,

but we wanted to test the algorithms on the generic slot filling problem, without any

extra domain-related knowledge. Figure 4.5(b) shows the percentage of the available

rewards each algorithm achieved on the same problems. In this case the average

reward was calculated as:

AvgRew + | −NEpisodes− 99|
−|q|(2− ec) + | −NEpisodes− 99|

Where AvgRew is the average rewards achieved by the algorithms during the test runs

and NEpisodes is the number of episodes each algorithm was allowed to run at each

test. Note that we cannot really say what the optimal percentage of rewards achieved

would be in the scenario with confirmation actions, as we only know the probability

of a slot value to be accepted or rejected. In order to calculate the percentage of

available rewards then, we estimate the available rewards as −|q|(1 + (1 − ec)), i.e.

the number of slots to be filled plus the number of confirmation actions that will

be required. This is an approximation, as it only captures the case where roughly

119

(a) Average Rewards (b) Percentage of Rewards Achieved

Figure 4.5. (a) Average Reward for various problem dimensions, with confirmation
actions (ASRn = 0, ec = 0.75). Optimal is achieved by an already trained system.
(b) Percentage of the available rewards achieved for various problem dimensions.

(1 − ec)% of the slots need to be confirmed and where one confirmation action is

enough for each slot. In reality there is also a probability of (1− ec)2 that the system

will need another confirmation action and so on, but this approximation is enough

for our purposes.

In Figure 4.5(a), HSARSA-h seems to perform a little better than simple

HSARSA, but AWL-HSARSA again outperforms both algorithms. After dimension

4x8, AWL-HSARSA seems to perform better, possibly due to the fact that it can

handle ASR errors well. It should be noted that wherever there is a learning curve,

no algorithm can achieve the optimal average reward, which we define in this case

as the optimal reward yielded by an already trained system, since during learning,

the algorithm will definitely yield some suboptimal rewards. The difference in per-

formance between HSARSA and HSARSA-h in Figure 4.5(a) is that HSARSA needs

to learn an optimal set of complex actions and therefore has a longer learning time,

yielding lower rewards than HSARSA-h, while learning. AWL-HSARSA on the other

hand learns much faster, thus yielding higher rewards earlier on. The average reward

achieved is a rough measure of performance, as it provides no way of telling when the

120

(a) HSARSA (b) HSARSA-h (c) AWL-HSARSA

Figure 4.6. Learning curves on a SFP with confirmation actions (7 slots and 4,782,968
complex actions), averaged over 100 runs.

algorithm actually converged. For example, as in the case of AWL-HSARSA, an al-

gorithm may yield very bad rewards for a very few initial episodes and then converge

to the optimal and another may be slower to converge while yielding moderate re-

wards. Another aspect that affects the average reward plots is the number of allowed

episodes, as after the algorithms converge, the average reward achieved can only go

towards the optimal. Having a very high number of episodes, though, would prevent

a good comparison between the evaluated algorithms. We thus allowed about 30%

more episodes than necessary for convergence (for the slowest algorithm), to focus

in the interesting part of the learning curves. Figure 4.5(b) shows the percentage of

available rewards each algorithm achieved, for each slot filling problem, reflecting the

same results.

Figure 4.6 shows the learning curves of each algorithm, on a 7x14 slot filling

problem with confirmation actions. We can see that AWL-HSARSA clearly outper-

forms the other two algorithms, with statistically significant differences.

Figure 4.7(a) shows the average reward each algorithm achieved against varying

confirmation probabilities, while ASR error was constantly set at 0.3. It is evident that

AWL-HSARSA outperforms the other algorithms by a fair margin, as is the case in

Figure 4.7(b), which shows average rewards versus ASR error, while the confirmation

121

(a) Varying conf. probabilities (b) Varying ASR error (c) Varying both parameters

Figure 4.7. Average reward of HSARSA, HSARSA-h and AWL-HSARSA with vary-
ing confirmation probabilities (a), varying ASR error level (b) and varying both pa-
rameters (c).

probability was fixed at 0.9. It should be noted here that the drop in performance after

ASRn = 0.25 is due to the fact that our threshold of accepting the user’s utterance

was set to 0.75. This means that for lower ASRn values the system always accepts

the utterance and therefore the error does not affect its performance at all. AWL-

HSARSA, however, seems unaffected by the increasing ASR error rate and performs

almost the same. Figure 4.7(c) shows the average reward each algorithm achieved in

various settings of ec and ASRn, according to Table 4.2. In this plot the conditions

get worse as the experiments go from E1 to E8. Note here that an ASRn equal to 1

does not mean that there is 100% chance of an ASR error, it just means that there is

up to 100% chance of an ASR error, each time an “askSlot” action is chosen. Also,

according to (9), an ec of 0 means that there is up to 100% chance of an understanding

error, i.e. the user rejects the slot value. We can also see that HSARSA and HSARSA-

h have a significant drop in performance after E4. AWL-HSARSA again performs

better with only a small drop in performance as environmental conditions worsen.

In Figure 4.8(a) we can see the results of the experiments from [2], where USE

needs to find an optimal policy that also achieves a single goal (or target). We can

clearly see that USE manages to achieve the goals set, when corresponding optimal

122

(a) USE with a single goal, taken from (Papan-
gelis et al. 2012d)

(b) USE with two independent goals

Figure 4.8. Results of USE with one goal (a) and two goals (b) for various changing
independent goals.

policies exist, and it finds a policy as close to the goal as possible when not, as in the

case when the target emotional state is tense. In this case, no optimal policy exists

to satisfy this goal, so USE converges to an optimal policy that satisfies a goal which

is as close as possible to tense and in our modelling this would be upset.

Figure 4.8(b) shows similar experiments, but with two independent goals that

need to be achieved simultaneously. Note here that we do not make any assumption

on the importance of each goal, but the designer of the system may assign appropriate

weights to each goal and model their significance. We can see here that USE has no

problem achieving both goals, when that is possible. In Figure 4.8(b), we can see

that, similarly to Figure 4.8(a), USE manages to achieve both goals, as they change

over time. In the first episodes, there is a small learning period before the algorithm

converges to an optimal policy that also satisfies the target emotion and attention

levels. After episode 80, where the change occurs, there is another learning period and

the algorithm again manages to converge to an optimal policy, that also satisfies both

targets. After episode 160, there is no learning period as the policy that was learnt

123

in the first 80 episodes has been saved and is now reused. After episode 240, we can

see that USE converges to a sleepy optimal policy (wrt R(s, a)) that also satisfies the

attention goal. Notice the slight divergence from the optimal rewards after episode

320, which is due to USE attempting to find an optimal solution that will also satisfy

the emotion constraint. The fact that the algorithm finds suboptimal policies that

achieve emotion=sleepy and attention=high is attributed to the fact that these are

the respective default values, as is also the case during the learning period of every

target.

It is also interesting to observe USE’s behaviour when asked to satisfy competing

goals. Of course, the designer may assign weights to convey the importance of each

goal, but in our experiments we will consider all weights equal because our purpose is

to see if the algorithm will satisfy as many goals as possible. Figure 4.9(a) depicts a

schematic projection of a part of the policy space where variables A and B are realised

and all goals are marked. The shaded area is the area of that part of the policy space

where policies, optimal wrt R(s, a), reside. In order to achieve g1, therefore, the

system need only converge to the corresponding optimal policy. In order to satisfy g2

as best as possible (as the combination is impossible due to the constraint A = 2B),

the system must violate B = 2, while satisfying A = 8 and A = 2B. On the other

hand, in order to satisfy g3 as best as possible it needs to violate A = 4 and find an

optimal policy that satisfies B = 3 and A = 2B (i.e. converge to the same policy

that satisfies g1). Last, in order to satisfy g4 as best as possible, the algorithm needs

to violate at least two constraints, either A = 2B and B = 1 or A = 4 and B = 1

while finding an optimal policy that is as close as possible to g4. As with the previous

experiment, we hard coded several policies (optimal and suboptimal) to yield various

combinations of A and B. We assigned default values of A = 7, B = 2 to the rest of

the policies.

124

(a) Part of the policy space (b) Variables A, B and USE learning curve

Figure 4.9. Results of USE with two variables. Figure (a) depicts part of the policy
space, where the rectangle is a projection of the optimal policy space onto the goal
space, where variables A and B are realised. Goals are marked as g1, g2, g3 and
g4 and final system states are marked as s1, s2, s3 and s4, respectively. Goals are
represented as crosses and final states as circles. Figure (b) depicts the learning curve
and the yielded values of A and B as episodes progress.

The results are shown in Figure 4.9(a), where we can see that USE guides the

system as best as possible. For the first goal, it quickly converges at A = 6, B = 3,

or (6,3) as is also shown in Figure 4.9(b), where we can see that there is a very short

learning period (suboptimal rewards). For the second goal, the system converges to

(8,4) and satisfies A = 8 and A = 2B, while violating B = 2. Here, Figure 4.9(b)

shows a longer learning period, as no policy exists to satisfy g2, and the algorithm

must look for an alternative. The policy found is the best possible solution, given the

circumstances and having in mind that the hard constraints must be met at all costs,

i.e. the system must converge somewhere inside the Optimal Policies square. For the

third goal, the system again converges to (6,3), after a relatively long learning period,

therefore satisfying the hard constraints (which g3 violates), B = 3 and A = 2B while

violating the soft constraint A = 4. For the last goal, similarly, the system converges

to (5,1) thus satisfying the hard constraints plus the soft constraint B = 1 while

125

violating the soft constraints A = 4 and A = 2B. This is again the best solution, as

it is not possible to satisfy more than one soft constraint. Notice, in Figure 4.9(b),

that for goals g2, g3 and g4 (which by definition cannot be satisfied) USE yields

suboptimal rewards every now and then, while it tries t find a policy that does satisfy

the goals. This exploration can be controlled by tuning σ2. A rule of thumb is that

higher σ2 values lead to less exploration while lower values lead to more attempts to

find alternative policies, as also explained in Section 5.

It should be noted here that we tried to achieve the same results using only the

HIAC algorithm, with the soft goals incorporated in the reward function:

R′(d, ai) =

−1, if ai 6= aN

−10|{di|di = 2}| − 100, if ai = aN ,∃j|qj = ∅

−10|{di|di = 2}| − np, if ai = aN ,¬∃j|qj = ∅

(4.5)

Where n is the number of unachieved optional goals and p is a constant penalty.

What we found was that the algorithm is very sensitive to p, as small variations affect

the importance of the goals, i.e. the algorithm may converge to dialogue policies

that achieve the optional goals and disregard the mandatory ones. Variations in the

value of p also greatly affect the number of episodes required for convergence. In

short, although one could design a better reward function, we found this approach

cumbersome for our purposes, which are to separate mandatory and optional system

goals and to be able to switch optional goals in real time, without disturbing the

system too much.

126

4.6 Impact of AWL and USE on the interaction

In this section, we present two example ADS that utilise AWL and USE, aiming

to showcase their importance and impact on the interaction experience. The first

system is able to provide navigational directions in order to guide the user from a

starting point to a desired location, in a world that consists of cells, where at each cell

there might be a reward or a trap. The system applies AWL in order to learn how to

combine basic direction-giving actions into more complicated ones and USE in order

to achieve the hard and soft goals of the system, which are to use the shortest path and

retrieve as many rewards as possible, while avoiding traps, respectively. The second

example [145], showcases the impact of AWL and is a table top manipulation system,

controlled by the ADS, that can perform simple tasks such as picking up objects and

placing them somewhere on the table. For this system, we used the Personal Robot

2 (PR2) platform, which has, between others, two robotic arm actuators, cameras, a

kinect and a laser sensor that allow us to interpret the scene and identify objects on

the table as well as manipulate them. Basic system actions in this case are categorised

into Verbal and Physical, as shown in Table IV. The system can then combine these

basic actions into complex ones, able to solve more difficult tasks such as building

towers or sorting the objects according to colour. We give a brief overview of the

technology we used and we present some example interactions with real users, to

showcase the impact and usefulness of the proposed learning algorithms.

4.6.1 Navigation ADS

The ADS for providing navigation instructions is implemented on the Olympus

[80] platform, which is a publicly available platform for building dialogue systems.

All learning algorithms are implemented in Octave [Octave Community 2012] and

communicate with the system via TCP/IP. The architecture of this system is depicted

127

(a) Grid world with rewards and
traps

(b) Paths that evoke specific emotions

Figure 4.10. (a): The grid world, where ‘S’ represents the starting state, ‘F’ represents
the goal state, ‘R’ represents states that offer rewards and ‘T’ represents states with
traps. (b): Depiction of paths that evoke certain emotional states.

in Figure 5.3, where the AWL and USE modules are implemented in Octave and the

links represent TCP/IP connections.

To better showcase the proposed algorithms, we used a scenario where the ADS

helps the user navigate from a starting point to a final destination. In our example

the world consists of a 5 × 5 grid where the user can be in any of the cells formed

(see Figure 4.10). In this world the user can move left, right, forward or backward

according to the system’s instructions. Every transition is penalised to encourage

navigating the user via the fastest route, but there are cells that offer extra rewards

and cells that incur higher penalties. The available system actions are utterances that

ask the user to move to some direction or inform the user that s/he has reached his/her

destination: moveLeft, moveRigt, moveForward, moveBackward and informEnd. If

the system selects informEnd from the destination cell then no reward or penalty is

incurred. We can now assume that when the user is guided through cells with extra

rewards, his/her emotional state “improves” and when the user is guided through

128

Table 4.3. Target emotional states and associated dialogue policies, where “L” stands
for moveLeft, “R” stands for moveRight, “F” stands for moveForward and “E” stands
for informEnd

Emotional State Dialogue policy
excited F F F F R R R E
happy R R R F F F F E
calm F F F R R F R E

serene F F F R R R F E
upset L R F F R R F F R E

stressed F F R R F F R E
depressed F R R F F F R E

sleepy all other

cells with extra penalty (traps) his/her emotional state “worsens”. The system can

thus evoke specific emotional states by guiding the user through the appropriate

cells. We let reaching the goal state via the shortest path to be a hard constraint

for our system and evoking emotional states to be soft constraints. Extra rewards

and penalties therefore only affect the soft goals, which represent evoking specific

emotional states. More specifically, Table 4.3 shows the emotional states we wish to

evoke and the dialogue policies (navigation instructions) that achieve them. It should

be noted here that there are more policies yielding shortest paths (i.e. optimal w.r.t

hard goals) and that some of the policies in Table 4.3 do not. This means that those

emotional states (e.g. “upset”) cannot be achieved and the system will have to evoke

a similar emotional state while guiding the user through a shortest path. It should

be noted also that there are may be multiple ways of achieving the same emotion

(e.g. both “FFFRFRRE” and “RRRFFFFE” include one Reward and thus evoke

“happy”) and the system may have to choose between them. In Table 4.3 we only list

emotions evoked through specific dialogue policies that we are interested in following.

129

The role of AWL in this system is to decide whether to use simple instructions,

such as “move forward” or more complex instructions (resulting from complex ac-

tions), such as “move forward, then move left and then move forward”. It should be

noted here that a system action could represent Physical actions, such as “pick up re-

ward” or “disable trap” and not just navigation instructions that could alternatively

be generated using a path finding algorithm and an NLG component. We, however,

wish to show how USE can be applied in various settings and learn an optimal dia-

logue policy that achieves the system’s goals. Moreover, in favour of simplicity, we

have not used confirmation actions. In this example ADS there is no real interaction,

as the user’s only available action is to acknowledge that s/he has moved to the cell,

as instructed. This should not be a concern, however, as this example only aims to

better illustrate how USE and AWL can impact the performance and behaviour of

an ADS.

In the Appendix we present some sample interactions with the navigation ADS,

indicating how USE is able to learn dialogue policies that satisfy our hard constraints,

i.e. provide navigation instructions so the user can follow the shortest path, and also

satisfy our soft constraints, i.e. evoke a specific emotion. It should be noted that the

user’s emotional state is assessed in our simulation after the system has taken the

next action, and this is why in the HRL-ADS the first emotional state is “happy”

and in USE-ADS it is “calm”. When the system first receives the extra reward, the

emotional state of the user changes to “happy” and when it receives another extra

reward, it changes to “excited”. The system with USE exhibits similar behaviour

with the rest emotional states, as expected, as we can see in Dialogue 3 and 4 in

the Appendix. Dialogues 5 and 6 present the output of an interaction with the ADS

trained with a simple HRL algorithm and an interaction with the system trained using

AWL. In this occasion, AWL was tuned to favour basic actions and complex actions

130

composed of two basic ones. We see that the HRL-ADS uses only simple actions

to guide the user, thus requiring more turns. Both systems were trained using the

same user simulator, described in Section 6.1, that models expert or novice users and

penalises complex actions accordingly. It is evident here that AWL has re-used the

complex action {moveRight, moveForward}. While in this simple scenario this ability

does not impact the system’s performance much, we can imagine that when actions

represent physical interactions with the environment, database queries, calculations,

etc and not just utterances, AWL can speed up the system greatly. In such a case,

AWL would combine actions in the most efficient way, and when a task is required

again (such as “fetch water from fridge”) the system would not need to learn how

to achieve it. Moreover, during the interaction, many abstract actions are created

leading to the achievement of very complex tasks, such as “take care of patient.”

4.6.2 Object Manipulation ADS

The object manipulating ADS is written in C++, using the Robot Operating

System (ROS) [151] framework and a Personal Robot 2 (PR2), which was used as

our robotic platform. In this ADS we only applied AWL, which was ported into C++

and implemented as a ROS node. The resulting ADS is therefore modular and can

be installed in any robotic or other platform that supports ROS. To recognise spo-

ken input, we used the open source pocketSphinx [152] ASR module and to generate

speech we used the tts server package. In this ADS, system actions fall in two cate-

gories, Verbal and Physical, where the first refer to spoken output and the latter to

controlling the actuators. The system can, therefore combine basic Verbal or Physical

actions, such as “askColour” or “pickUp” into complex ones, such as “getRedItems”.

Table 6.2 presents the basic Verbal and Physical actions available to the system.

Combining these, the system can learn at run time how to solve complex tasks such

131

Table 4.4. Basic verbal and physical actions, available for our system

Physical Actions Verbal Actions
PICK GREET

PLACE INTRODUCE
OFFER ASKNAME

CONFIRM
ASKTASK
REPEAT

END

as stacking, building, sorting, etc. An advantage of using AWL is that the system

will learn how to achieve a task, taking into account the user’s preferences, meaning

that for different users it will learn different ways to achieve the same task. This, of

course, assumes that the user is somehow involved in the rewarding process (providing

feedback to the system), which can be done, for example, by having a vocabulary of

positive and negative expressions, that are used appropriately to express desired or

undesired actions taken by the ADS.

More specifically, we define the SFP in this case as follows. The slots to be

filled are defined as Z =< object, colour, au >, where object is a unique identifier

of the object that the user needs to manipulate, colour is the colour of that ob-

ject and au is the action the users want to perform with/on that object. Slots can

take the following values: object ∈ N0, where 0 denotes any object (the user may

want any red block instead of a particular red block), colour ∈ {red, yellow, blue}

and au ∈ {GREET, PROVIDE-NAME, PROVIDE-COLOUR, PROVIDE-OBJECT,

PICK, PLACE, OFFER, SELECT, SORT, STACK, BUILD, END}. The system

actions, as mentioned before, are presented in Table IV and can be either Verbal,

Physical or complex actions formed by combinations of the basic ones. We define the

dialogue state as a vector that contains all the necessary information for this system

132

Figure 4.11. Complex actions that can be generated by AWL for the object manipu-
lation system.

to operate: ds =< history, object, colour, as >, where history = {ds,i−1, au,i−1} con-

tains the previous dialogue state and user action. To learn the best way to achieve a

task such as sorting the objects according to colour, we apply AWL which is able to

learn actions similar to those presented in Figure 4.11. A complex action need not

comprise solely of Physical or Verbal actions, but can be a combination of both. We

represent complex actions as trees, which are generated and modified at runtime by

the system.

The advantage of using an automated complex action learning technique is that

the system will figure out the best way (according to the reward function) to combine

basic or complex actions into more complex ones and solve complicated tasks, such as

sort objects according to colour. Such a task could, for example, include greeting the

user, retrieving the user’s intentions, and executing a “sort” action, for each available

colour. A “sort” action, in turn, would comprise many “select” actions, that pick

up an object of a specified colour and place it in a specified location. The designer,

therefore, does not need to manually create complex actions, which are not only hard

to design but also to maintain. Moreover, adaptation is easy to achieve if we use a

complex action learning technique, as the system will not only select which action

is appropriate to use, depending on the circumstances, but also change the way to

achieve a task, by altering an existing complex action or generating new ones. Figure

133

Figure 4.12. Simulation of PR2 manipulating an object.

4.12 depicts a simulation of our system running on a PR2 in Gazebo, having picked

up an object.

4.7 Discussion

We have presented two batch learning algorithms for achieving adaptation in

DS, specifically for learning how to combine simple actions into more complex ones

and for learning how to guide the system towards achieving its goals. Both algorithms

have been introduced in [2] and were extended, thoroughly evaluated and presented

in detail in the present work. These extensions include automatically estimating how

many complex actions are necessary for the ADS. We also presented two real ADS

where those algorithms were applied and discussed the algorithms’ impact through

extensive evaluation and example interactions. In order to better evaluate AWL and

USE, we also extended our user simulation model to be able to model ASR errors, slot

value confirmation and to yield multiple metrics (such as emotional state or attention

level) and we also allowed some parameters, such as ASR, confirmation probabilities

134

or user expertise, to vary randomly but within specified bounds, to avoid overfitting

the system to the user simulator (or to a specific setting of its parameters).

These algorithms are a step in the direction of making natural conversation

with a DS a reality, as they enable the system to take part in more complicated

dialogues, with experienced users and also make it flexible in achieving its own or

the user’s goals, despite changes in the environment. An obvious step forward would

be to apply these algorithms in order to estimate the user’s behaviour, response or

reaction to certain circumstances. This will help the system plan its own actions

better and appear as an intelligent interlocutor. We are currently in the process

of evaluating the system using two robotic platforms (PR2 and PeopleBot). This

will allow us to get a better understanding of the weaknesses and strengths of the

presented algorithms, when applied in a real world environment. This will also allow

us, in the future, to evaluate the capabilities of the system when operating in an

assistive living environment.

In the future we plan to apply the proposed algorithms to error handling and

recovery in ADS. We will examine the case where we measure success by assigning a

reward after each episode depending on how many errors (from those occurred) were

resolved and how many turns it took: errors · (AvgTurns)−1. An error handler could

be triggered when our confidence about something (such as a slot value or the user’s

intentions) is low. Moreover, we plan to focus on continuous reinforcement learning

techniques as a possible way to handle the scalability problem and see how the pre-

sented algorithms deal with continuous space problems. We also plan to implement a

stochastic reward function to model the different perception of the system by different

users and also other unforeseen aspects of the environment. In the same context we

will evaluate the performance of our system when it is trained using stochastic poli-

cies. Last, we wish to extend AWL to further prune the action space and remove or

135

group actions that have similar effects [153, 90], as they will probably receive similar

ranking.

In the next Chapter, we present several ADS that implement algorithms and

models presented in this thesis, for various applications.

136

Algorithm 5: Action Weights Learning with automatic k estimation

Input: Z, A, Number of episodes, k.

Output: A, sorted according to actions’ performance.

Initialize k, W, HRL parameters

for i = episode to NEpisodes do

{AT , reward} ← HRL(W,k,...);

SAT
← SAT

+ AT ;

forall {t|AT (t) = 1} do

W (t)← (SAT
(t)−1)W (t)+|reward|

SAT
(t)

end

Pa(a|s)← 1− W
max{W} + 0.001

end

Wsort ← sort(W, “descending”);

Ind← indexOf(Wsort);

//Automatically estimate k:

AvgDiff ← |Wsort(1)−Wsort(2)|;

for i = 2 to |W | − 1 do

diff ← |Wsort(i)−Wsort(i+ 1)|;

if diff > 2 · AvgDiff then

k ← i;

break; ;
end

AvgDiff ← i·AvgDiff+diff
i+1

end

return A(Ind(i)), i ≤ k

137

CHAPTER 5

Applications of Adaptive Dialogue Systems

in Assistive Living Environments

In this Chapter, we present some applications of our proposed algorithms, to

showcase their impact on each application and to emphasize the broad potential

of ADS, especially in ALE. Combined, these systems form the core components of

our Robotic Assistant for ALE. Last, we present an ADS development framework,

targeted for fast and easy development of ADS, even from non-experts, and supports

the most prominent DM theories.

5.1 Museum Guide

This system was the product of our evaluation studies on online RL methods

for dialogue policy learning. We created a virtual museum guide ADS, based on the

IS formulation, that prompts the user for item characteristics (such as era, exhibit

type, etc.) and responds accordingly. If there are less than 3 hits in the database of

items, the system automatically retrieves their description, otherwise it keeps asking

for more information. It should be noted here, that knowing when an item is not

found and informing the user, is also a correct system action. This system was

developed in C++ and Octave, using the Olympus / RavenClaw [80] framework, and

has interchangeable learning modules. To achieve interchangeability, we developed

a common data structure to represent dialogue policies, so a policy learned by an

algorithm can be used and modified by another. Figure 5.1 depicts a screen-shot of

this system.

138

Figure 5.1. Screenshot of the Museum Guide ADS.

Our main contribution with this system, is that we propose an architecture for

ADS that applies several online RL algorithms for dialogue policy learning that are

simple to implement and of low cost to run. Such a system is able to learn policies

from simulated users for several user categories and these policies are then used as

initial policies when the system interacts with a real user. One can also provide

handcrafted policies when expert knowledge is available. The system is therefore able

to rapidly adapt to a new user since it exploits prior knowledge and continues to learn

throughout the interaction. In the next sections we review the design of our system,

present our evaluation and discuss the results.

5.1.1 System Overview

Our system is designed to act as a museum guide and provide descriptions of

exhibits in a virtual museum. It is based on the INDIGO [154] system and was imple-

mented using the Olympus [80] platform, which is a platform for developing dialogue

systems for research purposes. INDIGO is an affective museum guide dialogue sys-

tem, able to adapt to different user personalities and user expertise levels. It can

139

Figure 5.2. Architecture of the proposed Museum Guide System.

assess the user’s mood and emotional state and adapt its output accordingly. For

dialogue management we used Olympus’ RavenClaw Dialogue Manager (DM) and

extended it with online RL modules.

Figure 5.2 depicts the architecture of the proposed Museum Guide dialogue

system, where s, a, r are the current state, previous action and reward received re-

spectively and s′, a′ are the new state and new action. ũu and ũs are the noisy user

and system utterances while uu and us are the interpreted user utterance and actual

system utterance respectively. The system uses Olympus’ NLU and NLG components

and also has a learning component, where all learning algorithms are implemented.

The DM receives uu which contains the reward of the last action r. It then sends s, a

and r to the learning component and receives back the new system state s′ and the

new action a′ it should take. It then takes action a′ and sends a description of the

system’s utterance us to the NLG component. Last, it has an ontology that is based

on INDIGO’s ontology, which describes museum artefacts, time periods, persons and

more and contains information about many exhibits. Museum Guide currently sup-

ports one type of query and that is requesting for a description of an exhibit. Search

in the ontology is performed by providing values for the exhibit’s type, construction

time, or time period if it is a person and its physical location.

140

To achieve adaptation in ADS researchers should carefully select methods that

are able to tackle the many challenges of this field. RL can successfully handle many

of those, such as error recovery and robustness to environmental changes. More specif-

ically, RL can be applied in Dialogue Management (DM) in order to find an optimal

dialogue policy that will yield the best action the system should take, depending on

the state it is in. Using online RL techniques, the system is able to learn continuously

and adapt to changes or different users.

We have implemented a variety of online RL algorithms covering a broad range

of the available methods. Our system therefore is able to continue learning as it

interacts with real users as well as switch learning methods at will, depending on

the problem at hand. Each algorithm’s output is in a standardized form and so

policies are interchangeable, meaning we can learn a policy using one algorithm and

apply it using another. This gives the designer the option of providing a handcrafted

policy (modeling prior knowledge) to the system and the system will then optimize

that policy according to its current needs. One can also have several user categories

and provide handcrafted policies or policies learned through simulations, for each

category. The system will be able to use them as initial policies when interacting

with appropriate users and refine them to adapt to the specific users’ needs. We will

now briefly describe the algorithms implemented in our system.

SARSA(λ) (S(λ)) is a very popular RL algorithm, often used in ADS. It

applies temporal difference methods for learning and produces an estimate of Qπ(s, a),

represented as a matrix [144]. λ is a parameter thar controls how much effect will

past experience have in future updates. SARSA(λ) is a model-free algorithm, but we

also have a model-based version implemented, called DynaSARSA(λ) (DS(λ)).

Q-Learning (Q) was proposed by Watkins [141] and it also learns an estimate

of Qπ(s, a). The major differences with SARSA(λ) are that it calculates the difference

141

between Qπ(s′, a∗) and Qπ(s, a), where s′ is the new state and a∗ is the greedily

optimal action, that it only updates a single entry of the matrix representing Qπ(s, a)

at each iteration and does not use eligibility traces, which is a matrix that keeps track

of states visited and actions taken. We also have a Dyna version implemented for

this algorithm (DQ).

Q(λ) is similar to Q-Learning in the sense that it uses the temporal difference

between Qπ(s′, a∗) and Qπ(s, a) and similar to SARSA(λ) in the sense that it updates

the whole Qπ(s, a) matrix at each iteration and uses eligibility traces [141, 155]. There

is a Dyna version for Q(λ) as well (DQ(λ)).

Actor Critic QV (AC) is an algorithm that uses an actor to follow the policy

that is being learned and a critic to evaluate it. This algorithm uses the temporal

difference between Qπ(s, a) and V π(s) to compute updates for the actor and the critic

[156]. We have also implemented a model-based version for this algorithm (DAC).

Our system can operate in two modes. Either in simulation mode, where the

learning algorithms are trained using simulated users, or in real user mode where the

system interacts with real users while continuing to learn at a lower pace. A policy

learnt using either mode can be saved and loaded for later use again in either mode.

During training the system interacts with a real or simulated user and receives a

reward after each action (i.e. system utterance). Through this process the system

learns which actions bring higher rewards and in what order they should be taken.

At the initial stages of training, RL algorithms explore the state-action space and,

therefore, make many mistakes. Below we can see example dialogues before training,

where actions are taken in a near random way and after training with SARSA(λ):

142

Dialogue 1: Untrained System

S: Welcome to Museum Guide!

S: What is the location you are looking for?

U: In Athens

S: What is it you’d like to learn about?

U: An altar

S: What is the time period you are looking for?

U: Around 100bc

S: What is the time period you are looking for?

U: Around 100bc

S: What is the location you are looking for?

U: In Athens

S: What is the time period you are looking for?

U: Around 100bc

S: What is the location you are looking for?

U: In Athens

S: Welcome to Museum Guide!... (omitted)

S: [ITEM DESCRIPTION]

S: You can say, start a new query, or goodbye.

U: bye!

S: Thank you for using Museum Guide, goodbye!

Dialogue 2: Trained System

S: Welcome to Museum Guide!

S: What is it you’d like to learn about?

U: An altar

S: What is the time period you are looking for?

U: Around 100bc

S: What is the location you are looking for?

U: In Athens

S: [ITEM DESCRIPTION]

S: You can say, start a new query, or goodbye.

U: bye!

S: Thank you for using Museum Guide, goodbye!

5.1.2 Evaluation

Evaluation of ADS or DS in general is still an open question. Many approaches

and methods have been proposed as listed in detail in [157]. When researchers use

RL methods the most common approach is to use the reward function R(s, a) as a

metric of performance, since it is explicitly defined to minimize or maximize standard

metrics such as dialogue length or goal achievement. In our experiments we evaluated

each algorithm’s speed of convergence, using the reward function R(d, a) as defined

later in equation (1). In the rest of this section we will formally model the dialogue

problem, describe our experimental setup and present the results of our evaluation,

143

Table 5.1. Average learning speed

Alg. Conv. Ep.
S(λ) 8.52

Q 13.8
Q(λ) 12.24
AC 11.6

DS(λ) 31.32
DQ 12.16

DQ(λ) 26.6
DAC 29.04

where we focused on the comparison of the different techniques. For simplicity, we

opted for a noise free scenario.

The dialogue problem can be formulated as a slot filling problem. In our evalua-

tion our problem had 3 slots, Type, TimePeriod and Location, and typically 6 actions,

Welcome, AskType, AskTimePeriod, AskLocation, GreetGoodbye and GiveAnswer,

out of which we hardcoded the first action to always be Welcome and the last to

be GreetGoodbye. The system then needed to learn how to retrieve the three slots

in the most efficient way. We evaluated the system using a simple noise-free user

simulator that always responds correctly to any system request. An episode in this

problem is over when the system presents the results to the user (which may or may

not be the right thing to do). For each algorithm we counted the number of episodes

it took to learn the optimal policy and averaged it over 25 runs. Note here that

convergence speed is correlated with the average total reward, since the sooner the

algorithm converges the higher the reward (it will be performing optimally from the

point of convergence and after). The results are shown in Table 1, below.

As we can see in Table 5.1, SARSA(λ) outperforms all algorithms while enjoy-

ing statistically significant differences, as shown in Table 5.2, and DynaQ Learning

144

Table 5.2. Statistical significance, where ? denotes p < 0.0001

Alg. S(λ) Q Q(λ) AC DS DQ DQ(λ) DAC
S(λ) 1

Q ? 1
Q(λ) ? 0.0486 1
AC 0.0028 0.0352 0.4961 1

DS(λ) ? ? ? ? 1
DQ 0.0032 0.1804 0.9443 0.6724 ? 1

DQ(λ) ? ? ? ? 0.1950 ? 1
DAC ? ? ? ? 0.6120 ? 0.5355 1

outperforms the rest model based algorithms. SARSA(λ)’s performance can be in

part explained by the eligibility traces that allow past experience to aid the learn-

ing process. Model based algorithms evidently do not perform that well, with the

statistically insignificant differences (with p > 0.05) explained by the fact that these

algorithms (including AC) are highly unstable and therefore have very high variance

in terms of number of episodes required to converge. We implemented all algorithms

in our system to allow the designer freedom of choice (each algorithm is representative

of an RL class of methods) and flexibility in unforeseen issues.

As we can see from Dialogue 1 and 2, there is a clear improvement on the

system’s behaviour during learning and the optimal dialogue policy resembles one

that a human designer would use. While this is a very simple scenario, one can

imagine that in a system with many more slots and admissible queries, handcrafted

policies are very hard or even impossible to create and inflexible when coming to

adapting to users’ needs and to abrupt changes in their goals. Online RL can deal

with such problems and scale to real world applications thus alleviating the need of

huge and complicated handcrafted policies. As mentioned before, our system provides

145

the option of importing a handcrafted policy, that represents prior knowledge that

the system may refine to its current needs.

In the future we plan to implement state of the art online RL algorithms, such as

Natural Actor Belief Critic [158]. We also plan to apply hierarchical RL to achieve a

more natural representation of the system’s available actions and the users’ goals and

also apply techniques such as Complex Action Learning. To this aim we will need

to formulate the slot filling problem as a Semi Markov Decision Process (SMDP).

SMDPs allow for temporal abstraction in the model, meaning an action can take an

arbitrary amount of time to complete and so we can model complex actions. Last we

plan to test the Museum Guide system with real users to gain valuable feedback and

intuition.

5.2 Navigation

This system was developed for evaluation purposes, and specifically to evaluate

AWL and USE. It builds on top of the museum guide system, so it has interchangeable

learning modules, with the addition of IAC, NAC, AWL and USE. The system is

designed to operate on a grid world, where, for example, a system utterance ‘please

move forward’ means move to the next ‘block’. This system is also implemented using

C++ and Octave on the Olympus / RavenClaw platform. This system currently has

an interface similar to the Museum Guide ADS and was presented in more details in

the previous Chapter, Section 4.5.1.

5.3 Object Manipulation

The greatest challenge of ALE is that each case (user and environment) is differ-

ent and therefore it is hard to develop a system that works in every possible scenario

146

(elderly, disabled, injured patients, wounded warriors, etc). If we want assistive tech-

nology to be widely accepted, therefore, it is imperative to be able to seamlessly

adapt to different users and possibly dynamic environments. To this end we incor-

porate complex action learning in an ADS, which enables the system to learn, in an

online fashion, different solutions to the same problems, depending on the feedback

it receives from the user and the environment. The system interacts with users using

spoken natural language, instead of simple vocal commands, and can store user pro-

files, containing information about previous interactions as well as user preferences,

especially on specific ways to achieve certain tasks. Online learning guarantees that

the system will continue to adapt and therefore if a user’s preferences change, the

system will adapt quickly. While our use case is quite simple (manipulating objects

on a table) compared to real user needs (preparing meals, washing dishes, etc), one

can imagine the spectrum of possible applications. In the following section we present

some of the necessary background knowledge, in section 3 we present an overview of

our system, in section 4 we describe our ADS in detail and in section 5 we conclude

and present our plans for future work.

5.3.1 System Overview

Having in mind the challenges and the current state of the art, we present an as-

sistive object manipulation system that is controlled by an adaptive dialogue system

(ADS). ADS are systems that interact with their users in a natural manner, typically

accepting input from various modalities, such as speech, text, facial expressions, ges-

tures, etc, and responding again in a multimodal fashion. Such systems are usually

designed to perform a specific task, such as customer support or flight booking, and

in our case we designed an ADS to aid users in tabletop manipulation tasks. Our

system is able to understand the user’s intentions and control a robot that is able

147

to manipulate objects on a table, thus performing tasks such as building towers of

objects, sorting the objects according to colour, offering an object to the user etc.

The user interacts with the robot via an ADS that is able to adapt to each user and

to new environments and is also able to combine actions that solve simple tasks into

complex actions that solve more complicated tasks. Our system is, therefore, able to

appear more intelligent, by exhibit complex learning behaviour and the user can thus

trust the system more easily.

Figure 5.3 depicts the architecture of our system, which accepts input from the

environment and the user, and reacts accordingly. The user’s input in our case is

speech, that is captured by an Automatic Speech Recognition (ASR) module [152]

which produces a textual form of the user’s utterance. This is passed on to a Natural

Language Understanding (NLU) module that analyses it and identifies the user’s

intentions. The state of the environment (objects in the table, their colours, etc) is

captured by various sensors (stereo camera, kinect) and this information is passed

on to a Scene Interpretation module, that understands which objects are on the

table, what colors they have, if they are graspable, etc. Output from this module

and the NLU is then passed to the Dialogue Manager (DM), that is responsible for

fusing the information and making a decision on how to react. The system may

react in two forms, either say something or do something, i.e. take a Verbal action

or a Physical action. If the system decides to take a verbal action, it generates the

appropriate output, that conveys the system’s intentions (e.g., retrieve information

about placement location) and passes it to the Natural Language Generation (NLG)

component that translates it into text. The text is subsequently passed on to the

Text To Speech (TTS) component that generates spoken output. If the DM decides

to take a physical action, it generates the appropriate command that is sent to the

Motor Control module which controls the robot’s actuators. In the following sections

148

Figure 5.3. The architecture of our system.

we provide more details on the ADS and how we are able to successfully manipulate

objects.

5.3.2 Adaptive Dialogue System

In this section we describe our ADS, whose purpose is to interact with the user,

make sense of the information contained in the user’s input and react accordingly.

The system is not only able to understand the user’s needs but also to learn how

to meet them, by combining basic system actions, such as picking up an object and

placing an object somewhere, into more complex ones such as stacking objects or

sorting objects. It is therefore able to adapt to each user’s preferred way of achieving

a task. In the following sections we first provide some theoretical background, we

then present our ADS in detail and talk about how we achieve online complex action

learning.

To model the dialogue problem, we use the model proposed in [145], which is

based on the Slot Filling / Information Seeking paradigm. In our environment the

user may perform one of the following actions: ua ∈ {GREET, PROVIDE-NAME,

PROVIDE-COLOUR, PROVIDE-OBJECT, PROVIDE-ACTION}. We define the

following slots: <object, colour, ua > that fully grasp the intentions of the user.

149

Table 5.3. Basic actions available for our ADS, out of which complex actions will be
generated.

Physical Actions Verbal Actions
PICK GREET

PLACE INTRODUCE
OFFER ASKNAME

CONFIRM
ASKTASK
REPEAT

END

More specifically, object is an object identifier (an integer) and can take values from

N, colour can take values from {red, green, blue, yellow, white, black} and action

can take values from {pick, place, offer, select, sort, stack, build}. It should be noted

here that these correspond to actions that the user wants to be performed. The

dialogue state of our system is defined as a vector: d =<history, object, colour>,

where history comprises the previous dialogue state and the previous user action:

history = {si−1, ua,i−1}.

In our system, actions are split in two categories: Physical and Verbal. As the

names suggest, physical actions correspond to moving the robot’s actuators while

verbal actions correspond to the robot saying something. It should be noted that in

general other types of actions may be defined, such as database retrieval or compu-

tational actions that do not fall in the these two categories, but we will not deal with

those in this work.

Another characteristic of system actions is that they can be basic or complex.

Basic actions are simple actions that the robot can execute, such as “grasp”, “move”,

“greet”, “askColour”, etc. Complex actions correspond to more complicated tasks

and are composed of basic or other complex actions, for example the complex action

150

“sortItems” would comprise many pick and place actions, “getUserIntentions” would

comprise many verbal actions, etc. We use a hierarchical data structure to represent

complex actions and apply hierarchical RL algorithms to find an optimal dialogue

policy. In a typical SFP DS, most Verbal system actions correspond to prompts for

slot values (e.g. “Which object would you like?”) but in our case an action may be a

combination of several verbal actions and physical actions, such as “askColourStack-

Items”, which would stack the objects of a specific colour. While our scenario is quite

simple, one can imagine how Verbal and Physical actions can be intertwined when

the robot is, for example, asked to prepare lunch. Table 5.3 presents the basic actions

of our system, out of which complex actions can be automatically generated.

In order to learn how to combine basic actions into complex ones and solve

complicated tasks (such as to build a tower of blocks, or sort the blocks according to

colour), we use the Action Weights Learning (AWL) algorithm [2]. This algorithm is

able to learn complex actions such as the ones depicted in Figure 5.4, where SELECT

is composed of asking for a colour, and then picking and placing every object of that

colour. BUILD is composed of asking for a shape (e.g., a square), and then stacking

some objects, where STACK is composed of a PICK and a PLACE action. SORT

is composed of one SELECT action for each colour and WELCOME is composed

of greeting the user, introducing the robot and asking for the user’s name. Complex

actions are internally represented as trees, that are generated and modified at runtime.

Basic actions are located at the leaves of each tree and internal nodes represent

complex actions composed of their children. In order to execute a complex action,

therefore, the system must recursively execute its children actions.

The advantage of using an automated complex action learning technique is that

the system will figure out the best way, according to the reward function, to combine

basic or complex actions into more complex ones and solve complicated tasks. The

151

Figure 5.4. Sample complex actions our system is able to learn. Squares denote
physical actions, hexagons denote verbal actions and circles denote complex actions.
Rhombuses are only used in this figure in favour of compactness.

designer, therefore, does not need to manually define solutions to complicated tasks,

which are not only hard to design but also to maintain. Moreover, adaptation is

easy to achieve if we use an online complex action learning technique, as the system

will not only select an appropriate action, depending on the circumstances, but also

change the way to achieve a task, by altering an existing complex action or generating

new ones.

The Dialogue Manager, depicted in Figure 5.5, is the central component of

the ADS and is responsible for deciding how the system should react, depending on

the current user, the environment, the system’s goals, etc. It receives input from the

NLU component, which provides information about the user’s utterance and the Scene

Interpretation component which provides information about the objects in front of

the robot, such as colour or location. It then processes this information and computes

the current state of the dialogue d, taking into account the state of the world and

the progress of the interaction so far. The user action ua is derived from the user’s

utterance and passed on to the learning module, along with the current dialogue state.

The learning module implements the AWL and HSARSA algorithms and computes

152

Figure 5.5. The architecture of the dialogue manager.

the response of the system (i.e. the next system action). The learning module also

makes the necessary updates, as both algorithms are online. After receiving the next

system action, it either forwards it to the NLG component or to the Motor Control

component, depending on whether it is Verbal or Physical.

We used the Personal Robot 2 (PR2) as our evaluation platform, which is

a robot equipped, among others, with two arms and several sensors, such as kinect,

stereo cameras, laser, etc. In order to manipulate objects, therefore, we used some the

available open source modules [151] for scene interpretation and object manipulation.

To interpret the scene on the table and identify objects (colour, orientation, shape,

etc.), we use packages such as the tabletop-object-perception, which receives input

from the stereo camera and the kinect sensor and produces a list of graspable objects.

According to the user’s intentions then, we can manipulate these objects accordingly,

utilising the planning and control algorithms provided by the community.

5.3.3 Discussion

In the present work we present a system that is able to communicate with the

user in a natural and intuitive way, understand his/her intentions and successfully

manipulate objects on a table. To achieve this, we employ an ADS with online

153

complex action learning, that allows the system to learn how to achieve complicated

tasks by reusing previous knowledge. We implemented our system in Robot Operating

System [151] and used the PR2 as our robotic platform. The benefits of our approach

are that the system can easily adapt to various environments and different users

without the need of additional training and fine tuning. Moreover, being implemented

in ROS allows easy application on different robotic platforms with relatively little

effort.

In order to train the ADS for our application we developed user simulator that

produced synthetic data. It is important to have a realistic user simulator, as that

is what the system will be trained with, but it is as important to take care not to

over-fit the simulator. We attempt avoid this by adding some randomness in our

simulator. While there are concerns on using user simulators for training rather than

real dialogue data, there are some benefits such as the fact that we can generate a

virtually unlimited amount of training data, which we can regulate and parametrise.

Also, since our system will apply online RL techniques we only need to find a good

enough dialogue policy, where the system will start from, and then as users interact

with the system this policy will be fine tuned. In the future we plan to extensively

evaluate our system, to add spatial language understanding and experiment with

various other objects and more challenging settings. Last, we plan to investigate

simultaneous execution of multiple actions, in a manner similar to [62].

5.4 Adaptive Dialogue Management Development Framework

In this section we present our approach to an Adaptive Dialogue Management

development framework, in C++ and ROS. In order to capture the most prominent

DM models and theories, we propose a new data structure, a Partially Observable

Semi Markov Decision Process (POSMDP), out of which all other necessary models

154

can be derived, specifically POMDP, SMDP, HMDP, MDP and FSM, that have been

used in the literature. Our aim is to allow non-experts in dialogue management or

programming languages to be able to use our framework and, to this end, we will

develop a smart drag-and-drop interface, easy to use by novice users.

Dialogue managers (DM) play a central role in many human-computer interac-

tion applications of language technology, maintaining information about the current

dialogue state and orchestrating multiple interaction components so that user acts are

interpreted and reacted to. The complexity of the DM’s task varies greatly, from man-

aging relatively simple voice portals to deliberating about how to coordinate complex

cognitive systems capable of multi-modal sensing and actuation. Furthermore, and

besides their more practical applications, DMs are also vehicles upon which discourse

theories can be implemented. In this multi-dimensional situation, the information

structures and primitive operators defined in DMs are determined and conditioned

by the dialogue management framework that the DM adheres to; the discourse theory

that the DM implements; and the host of linguistic and other capabilities available

to the system for interacting with the environment. With the growing significance

of adaptive dialogue systems (ADS), and statistical and machine learning methods

in general in computational linguistics, a fourth dimension has become increasingly

relevant: the ways in which adaptivity methodologies interact with the underlying

frameworks, theories, and systems.

Reviewing the state of the art, however, reveals that there is no clear way to sep-

arate system behaviours that are specifically required by the application and should

not be subject to adaptivity and those behaviours (or aspects thereof) that should. In

this paper we present a dialogue management architecture and implementation infras-

tructure where the DM model explicitly comprises (a) application and usage-invariant

theories of interaction and of discourse; (b) usage-invariant behaviours required by

155

each application; and (c) behaviours that dynamically adapt as the system is used.

Our architecture allows developing general-purpose adaptable system behaviours and

capabilities that are not tied to a particular DM.

A Dialogue Manager (DM) is typically perceived as a state machine where at

each point in the interaction, the current state represents all information that needs

to be retained from the interaction history. An operator combines user input or other

stimuli from the environment with the current state, and computes the system’s

response and the next state. In this section we briefly review dialogue management

approaches from the perspective of the data structures maintained in their states and

the operators defined over them.

5.4.1 State transitions or updates

The finite state automaton (FSA) is the simplest state machine in terms of state

representation, as the machine retains no information beyond the state’s identifier.

States are linked into a directed graph with edges labeled from a pre-defined set

of inputs. Depending on the input received, the system follows an appropriately

labeled edge from the current state, to reach its new state; the new state might also

correspond to some action, e.g., making an utterance. While apparently simple, an

FSA lacks versatility and maintainability, as the number of states and the complexity

of the graph grows very quickly for any non-trivial task.

In the Information State Update (ISU) [159] model there is a single information

state that contains arbitrary data structures, specifically defined for each particular

DM. Update rules retrieve and update the information state in response to triggers,

so that the effect of rule application is to update the information state, rather than

to make a transition to another state. A control strategy dictates the order by which

trigger conditions are tested and rules are applied. According to the Plan Based

156

model, the designer sets the goals of the DM and a planner is employed to guide the

system towards achieving them. In hierarchical plan based dialogue managers, such

as RavenClaw [80], system goals are represented as a tree, where in order to achieve

a goal, the system needs to achieve the children-goals. The dialogue state is again

represented as a set of designer-defined structures. Such models have the advantage

of separating domain dependent and domain independent parts of the dialogue man-

agement procedure, thus making the DM more tractable and easier to port to new

domains, as the domain independent features could be reused. According to the slot

filling and information seeking models, the DM’s goal is to fill the blank slots in a

form that contains all information needed in order to carry out a task. Very well

suited for applications such as voice portals, the system will prompt the the user for

slot values until it has what is needed in order to, for example, make a booking. Both

models are typically represented using MDP, SMDP or POMDP. Bayesian update

of dialogue state (BUDS) [90] is a method based on Loopy Belief Propagation [91]

for updating the dialogue state in a POMDP slot filling DS and Hidden Information

State (HIS) [51] further develops the state-space reduction idea in BUDS. In particu-

lar, HIS groups user goals with equal beliefs into partitions (equivalence classes) and

maintains a single belief state for each partition.

5.4.2 Adaptive Dialogue Management

RL has been used for some time in dialogue management because if dialogue is

modeled as a conversational game (or an optimisation problem) the RL paradigm fits

the dialogue problem very well and the wealth of efficient and mature methods in the

RL literature are immediately applicable. Although MDP is a very good model for

dialogue management, it has several shortcomings when it comes to adaptive dialogue

management: it cannot handle uncertainty well and cannot model complex actions

157

very efficiently. Various models are aimed at overcoming these limitations, including

Hierarchical MDP (HMDP), SMDP and POMDP.

5.4.3 Learning dialogue strategies

Having in mind the different theories and methods of dialogue management,

we propose an ADS development framework (or cognitive system / architecture) that

implements the most prominent existing dialogue management theories. Our system

is developed in C++ and Robot Operating System (ROS) [160] and provides a friendly

and intuitive interface for ADS designers.

In order to allow the designer to use any of the dialogue models described in later

sections, we need a universal data structure that each model can use. We therefore use

Partially Observable Semi Markov Decision Processes (POSMDP) {S, T,O,Ω, R,O, µ},

where S is the state space, T is the transition probability distribution, O is the set

of observations (or system outputs), Ω is the observation probability distribution, O

is the set of options which are composed of < I, π, β > and µ is a policy over options

S ×O→ [0, 1]. I ⊂ S is the initiation set, i.e. a set of states that trigger the option,

π is the policy followed when the option is selected and β : I → [0, 1] is a termination

condition. Complex system actions can be modelled as options and basic system

actions a can be modelled as one-step options, if we set β(s) = 1, ∀s ∈ S and if we

only allow action a, i.e. π(s, a) = 1,∀s ∈ I. This model can be reduced to POMDP,

SMDP, HMDP, MDP and FSM. It can grow in a dynamic fashion, as the ADS tran-

sitions to new dialogue states, therefore reducing the amount of memory needed to

store the whole dialogue state space. The dialogue state will be a set of user defined

structs and automatically generated auxiliary variables, to cover the needs of all four

dialogue models. We will also provide any additional necessary infrastructure (data

structures, learning algorithms) for each dialogue model.

158

Moreover, the proposed framework provides mechanisms to define FSA, MDP,

HMDP, SMDP and POMDP, which are automatically mapped internally to our POS-

MDP structure, with the appropriate parameter settings. More specifically, we have a

POSMDP class, where classes representing the other Markov models will be inherited

from, with some parameters fixed and non-adjustable (e.g. β(s) = 1,∀s ∈ S, etc).

The system’s goals are incorporated into the reward function and the user’s goals are

represented as a tree, where necessary. The framework also provides the necessary

transformation functionality to make sure it adheres to the selected dialogue model.

We proceed to discuss what needs to be done in order to transform a POSMDP into

each of the aforementioned models.

5.4.4 Transformation to Dialogue Models

A FSM is defined as a tuple {S,A,O, T,R}, where S is a set of (dialogue)

states, A is a set of available actions, O is a set of possible outputs, T is a transition

function that yields the next state of the system, depending on the current state and

the action to be taken and R is a function that yields the output that the system

generates when it transitions to a state. The only difference of an FSM with an MDP

is that the output set of the MDP is the real numbers and that transition probabilities

have been assigned [161]. That is, in MDPs, T is a probability distribution instead

of a function. In order to represent FSM based dialogue systems, therefore, we will

reduce our POSMDP structure in to an FSM as follows. We will use a POSMDP

{S, T,O,Ω, R,O, µ}, where the transition function T will be a subset of S × O × S

instead of a mapping from S × O × S → [0, 1] (i.e. transitions are deterministic)

and Ω, in the same sense, will be a subset of S × O × O instead of a mapping from

S ×O×O → [0, 1] (i.e. the output is deterministic). Options will also be single step

159

options, to model basic actions only. The reward function R remains the same, but

is defined over states and single-step options.

Plan based models use a tree to represent the user’s goals. Similarly to the FSM

approach, a planner is used to traverse the tree and attempt to achieve the goals. In

order to achieve non-leaf goals the planner must first achieve their children goals, with

goals at the leaves of the tree representing basic actions. We therefore use SMDP to

model the goals of plan based DS and the policy µ to model the planner. The options

set will be automatically derived from the goal tree and will comprise both single and

multi step options (i.e. basic and complex actions). The dialogue state space will

be a set of designer defined structs. In plan based systems, the goal tree does not

necessarily dictate the order of goal achievement, as some user input may affect it.

Our model can take this into account by designing the appropriate dialogue policy

µ, which can yield the appropriate system actions according to the current dialogue

state (which is affected by the system’s actions as well as the user’s input). If the

designer wishes to build an adaptive plan based DS, we can “enable” the transition

probabilities of the POSMDP, as we also can in the FSM case. Moreover, we can

“enable” the observation probabilities to account for uncertainty in the interaction.

To model ISU DS, we use a SMDP (which is a POSMDP with “disabled” Ω)

to represent the dialogue state space and is generated dynamically, depending on

the interaction, as follows. At first there is only one node, the starting state. From

the starting node we calculate a set of rules that are applicable and create a multi

step option (a complex action). Each step in that option represents a rule, whose

conditions are met at the dialogue state the option is available from. According to

the control strategy (which in this case is the option’s policy π) a rule is selected at

each step and the dialogue state is updated. While such multi step options are being

executed, the system is in the dialogue state update phase. When a rule is executed a

160

new node is added to the SMDP to reflect the new dialogue state. The system again

computes the set of applicable rules (rules whose conditions are met at the current

state) and generates the corresponding multi step option. This is repeated until a

final state is reached. Apart from options that represent rules, we have single step

options to represent system actions (prompts etc). The dialogue policy µ will make

sure that “rule” options are taken first, and when none is available, a “traditional”

system action will be chosen. We thus make sure that after taking each action, the

system will update the dialogue state according to the rules.

To model SF or IS DS, we need to reduce our POSMDP model to either

POMDP, SMDP or MDP, according to the designer’s needs (i.e. uncertainty mod-

elling, complex actions, etc). Reducing to any of these models is done as described for

the previously mentioned models, by “enabling” or “disabling” features of the POS-

MDP. The dialogue state is represented typically as a vector where some dimensions

correspond to slot values and some contain auxiliary variables. In the next section

we describe how we construct dialogue strategies in an online fashion, using complex

or basic actions and how we are able to achieve the system’s goals even when they

change over time, or other events in the environment affect their achievement.

We can now present our novel development framework, able to represent the

most widely used DM models, namely FSA-based, plan-based, SF/IF and ISU, using a

“universal” data model that covers all of these approaches’ information structures. We

are now in the process of creating a POSMDP dialogue system, using this infrastruc-

ture, to assess the benefits and drawbacks of a POSMDP DM. This system combines

the advantages of the four dialogue models, i.e. an ADS that can model uncertainty,

support online complex action learning and multiple goal achievement, while also in-

corporating dialogue state space compression techniques similar to HIS/BUDS. The

application is a household assistant, able to understand the user’s intentions and ma-

161

nipulate objects. To achieve this, it combines basic “verbal”, “computational” and

“physical” actions, such as say something, search a database, pick or place an object,

into complex ones, such as report daily news or sort the objects according to colour.

Since different users have different needs, the system will have to learn how to meet

them by adapting the way complex tasks (e.g. breakfast) are achieved.

At the current state of development, we have used RobotOS [160] as our com-

munication protocol, as this fits our current use cases. We expect to develop similar

communication back-ends for other middleware as well in the near future. In fact,

we are planning to exploit data abstraction concepts and techniques from RobotOS

and other middleware and from Web Services architectures in order to abstract away

from the specific interaction capabilities (voice, terminal, multi-modal) that a par-

ticular system offers. As a further step, we envision that a comprehensive theory of

human-machine interaction will be developed, one that is able to circumscribe the

possible calculations and (kinds of) information involved in deliberating about state

transitions and actions. Such a theory will form the background for defining a concep-

tually and computationally simpler framework that is more amenable to both manual

authoring and machine learning/adaptation.

5.5 Discussion

In this chapter, we have discussed possible applications of AWL and USE,

mostly in an ALE context and discussed the impact such algorithms can have in DM.

We also presented an ADS serving as a Museum Guide, which supports interchange-

able learning modules and supports standard and state of the art learning algorithms.

Last, we presented an ADS development framework, targeted mostly for non-experts

in ADS development, to provide an intuitive and easy-to-use environment for devel-

oping systems for various applications.

162

In the following Chapter, an ADS targeted for Post Traumatic Stress Disorder

(PTSD) assessment is described in detail. This system employs both AWL and USE

algorithms, along with emotion recognition, in order to assess whether a person is

suffering from PTSD, through natural dialogue conversation. The goal of the system

is to make the user feel comfortable by not explicitly asking PTSD-related questions,

but rather by implicitly extracting the necessary information (e.g. PTSD symptom

identification) through seemingly casual conversation.

163

CHAPTER 6

Assessing Post Traumatic Stress Disorder

In this Chapter, we present an ADS targeted for Post Traumatic Stress Disor-

der (PTSD) assessment [148]. More specifically, the purpose of this ADS is to elicit

information necessary to make an assessment of whether the user may be suffering

from PTSD or not, through natural conversation with the user. It should be noted

that his work has been conducted in close collaboration with mental health profes-

sionals (specifically, from UTA’s Department of Psychology). This system is able to

continually track the user’s emotional state, based on a model proposed by [149].

When the user’s emotional state “worsens”, the system can adjust its encouragement

level, providing information such as statistical data, to encourage the patient. The

system (depicted in Figure 6.1) applies USE with a mandatory goal of eliciting PTSD-

related information and an optional goal of keeping the user calm. More specifically,

the present work describes our effort to meet the growing need for PTSD assessment

systems, which we address by utilizing an ADS to handle Human - Computer In-

teraction. The ADS will provide a natural language interface (in spoken or written

form) to users who potentially suffer from PTSD. Such systems have been proven to

help motivate PTSD patients seek professional help [162]. Our system applies online

reinforcement learning algorithms (HIAC) for adaptive dialogue management, paired

with AWL and USE, which allow it to exhibit complicated behaviour and guide the

course of the interaction in a way that achieves the system’s goals. The information

gathered is similar to the information contained in a self assessment test, and using

this information we are able to identify symptoms relevant to PTSD and calculate a

164

Figure 6.1. Screenshot of the PTSD Assessment ADS.

PTSD score [163]. Last, this system will be available in two modes of operation, one

that requires user registration and one that does not, to preserve anonymity. In the

following section we introduce PTSD and briefly present some symptoms that our

system attempts to identify.

6.1 Post Traumatic Stress Disorder

According to the National Institute of Mental Health (NIMH) [3], PTSD is de-

fined as an anxiety disorder which, as the name suggests, may occur after a traumatic

experience. According to statistical data provided by the Sidran Institute [164], about

5 percent of the population of the United States is currently diagnosed with PTSD,

which is roughly 13 million people, costing the society approximately 42.3 billion

dollars annually [3]. Moreover, 7 out of 10 people in the United States have been

diagnosed to suffer from PTSD one or more times during their lives, according ton

NIMH, with female patients being twice as many as male. There is a dire need, there-

fore, for efficient and affordable solutions to diagnosing and treating this disorder and

165

Table 6.1. A list of the most prominent PTSD symptoms [3]

Symptom Expression

Re-experiencing
Frequent, upsetting thoughts
Recurring nightmares
Acting as if the stressful experience is happening again
Strong feelings, physical reaction when reminded of the
stressful event

Avoidance
Avoid talking or thinking about the stressful event
Avoid visiting places or people related to the stressful event
Not remembering important aspects of the stressful event
Loss of interest, becoming distant
Having suicidal thoughts
Inability to express positive feelings

Hyperarousal
Having trouble falling asleep or staying asleep
Being irritable and feeling in danger
Not being able to concentrate for a long time
Being easily startled

the proposed system has the necessary potential of becoming a widely used PTSD

screening tool. There are, of course, other promising solutions to assessing PTSD,

but before presenting them and discussing their benefits and weaknesses, we briefly

discuss the most common symptoms related to PTSD. It should be noted here that

there are many causes to PTSD, for example a person or one s/he loves goes through

catastrophe, physical assault or experience war and that, in order to be diagnosed

with PTSD, an individual does not need to experience all those symptoms, but does

need to experience some of them (as described later in this Section) for at least one

month. Table 6.1 summarizes the most prominent PTSD symptoms, as defined by

the NIMH [3].

According to NIMH, the most prevalent symptoms of PTSD are to re-experience

the stressful event that caused it, to avoid anything that reminds the patient of it

and to exhibit hyperarousal. Re-experiencing the event may be expressed by frequent

166

and upsetting thoughts about it, by recurring nightmares, by acting or feeling as if

it were happening again, and by having strong feelings and physical reaction (such

as sweat or increased heartbeat) when reminded of it. Symptoms indicating that

the patient is avoiding reminders of the stressful event are expressed by making an

effort to avoid talking or thinking about it, as well as avoiding visiting places and

meeting people related to that event. Moreover, not remembering important aspects

of the stressful experience also belongs in this category of symptoms, as does the loss of

interest in activities, becoming distant, suicidal and unable to express positive feelings.

Hyperarousal symptoms are expressed by having trouble falling asleep or staying

asleep, by being irritable and feeling in danger, by not being able to concentrate for

a long time and being easily startled.

The most widely accepted treatment of PTSD is through cognitive-behavioural

therapy (CBT) or through medications (NIMH). CBT is conducted by a mental

healthcare professional and may involve stress inoculation therapy, exposure therapy

or cognitive restructuring. It should be noted here, that researchers have recently

proposed to use Virtual Reality as an alternative to deliver exposure therapy [165],

taking advantage of the wide acceptance of new technology. All these methods aim at

changing the way users respond to their feelings, thoughts or to everyday situations,

and can also help them deal with unhealthy situations that arise from their feelings or

thoughts. Treatment using medications involves antipsychotics, antidepressants and

medication that aids the users sleep or relax in general. Other treatment methods in-

clude acceptance and commitment therapy (ACT) and psychodynamic psychotherapy

(PP). ACT aims at making users understand and accept their experience based on

the idea that their suffering derives from their attempt to avoid their emotional pain,

while PP focuses on how the users subconscious affects their behaviour. It should

be noted that treatments are also available for cases of co-occurrence of PTSD and

167

substance abuse. However, there is little evidence for these approaches, so other thera-

peutic options are still greatly needed. Fortunately, there are now some more effective

treatments for PTSD that fall into the category of Cognitive-Behavioral Therapy, and

include exposure therapies, stress inoculation training, and cognitive therapies [166].

The two most researched and efficacious of the exposure therapies include Prolonged

Exposure (PE) and Cognitive Processing Therapy (CPT) [167, 168].

One of the first steps a person must take towards treating PTSD is admit he

/ she is experiencing a great deal of stress associated with a traumatic event. Apart

from visiting a mental healthcare professional who can make a diagnosis, there are

several other resources available, such as PTSD self-assessment tests. These can be

taken either at a designated facility, or online. Such tests are usually anonymous, are

typically based on the PTSD checklist (PCL) [163, 169], and provide an estimate of

the whether a person suffers from the disorder or not. Other online resources include

chat rooms, forums, blogs and portals, where users (or their friends and relatives)

can find valuable information and support. [170] proposed an Adaptive Dialogue

System (ADS), able to have natural conversation with PTSD users, generate output

in real-time and provide assessment and feedback regarding their condition. In the

present Chapter, we present in detail how we are able to assess and monitor PTSD

through natural dialogue, as well as the complete implementation of this System.

At this point, it should be clearly pointed out that the use of this System requires

the involvement of a licensed mental health professional (e.g., clinical psychologist,

psychiatrist, etc.) in order to immediately deal with any mental health crisis which

may arise (e.g., suicidal thoughts/threats; threats to others; etc.). In the following

Section, we provide a detailed description of other assessment methods.

There are a plethora of resources on the web, containing information and sup-

port to people suffering from PTSD, the most technologically advanced of which being

168

SimCoach, developed by the Institute for Creative Technologies at the University of

Southern California [162, 171]. SimCoach currently targets military staff, suffering

from PTSD or depression, with the goal of providing information and motivation

to seek professional help. The system uses various embodied conversational agents

(ECA), each with its own avatar, in order to model various personalities, such as a

sergeant or a social worker. The main idea behind this project is that a user may feel

more comfortable talking to a virtual human, anonymously, rather than to a real per-

son. The U.S. government has also released more than 80 PTSD-related applications

for mobile devices (NextGov.com), developed by various agencies. Video games have

also been used to help treat PTSD (MilitaryMentalHealth.org; VentureBeat.com).

Other PTSD assessment systems include on-line tests (Online PTSD Tests), where

the user must answer a series of questions, typically derived from PCL. A score is

then calculated, and the user receives feedback concerning his / her condition, as well

as information on available resources.

While these methods are able to successfully assess users PTSD score [163],

the systems behaviour is static throughout the interaction, without taking into ac-

count needs and preferences the current user may have. Another disadvantage of

current approaches (such as online tests or forums) is the fact that users may feel

stigmatized if they use them and refrain from visiting a mental health professional,

whereas evidence exists [171] supporting the fact that if they interact with an arti-

ficial agent, in natural language, they are more likely to seek professional help. Our

system mainly aims at implicitly detecting symptoms consistent with PTSD symp-

toms, without having the user directly answer a questionnaire. For this purpose, we

opted for natural interaction through an ADS, whose potential as a digital medium

has been demonstrated (Konstantopoulos 2010, Rizzo et al., 2012b) to not distract

users (as new and exciting technology) but rather help convey useful information as

169

well as derive useful conclusions (i.e. detect symptoms possibly related to PTSD).

More specifically, Rizzo et al. (2011) and Buckwalter et al. [171], support the fact

that interacting with virtual agents helps people feel more comfortable with their

condition and about seeking help from health professionals. According to the au-

thors, such systems help users overcome barriers such as availability, acceptability

and accessibility (as defined by [172]). Konstantopoulos [154] provides evidence that

ADS and ECA do not distract users but have a positive influence in achieving their

goals. Based on such evidence, we use an ADS, the core of a virtual agent, to inter-

act with users and not only assess PTSD but also monitor their progress over time

(e.g. while they are undergoing therapy). Moreover, while other approaches focus

on solely on assessing PTSD, we additionally monitor the users progress over time

(both during a session and across sessions). It should be noted that our approach

is different from a tele-health application in that our system automatically detects

possible symptoms that may be related to PTSD and forwards this information to a

mental health professional (provided the user consents). To summarize, we propose

a real-time adaptive system, able to derive a PTSD score [163] through natural con-

versation with the user, in a manner similar to SimCoach, but different in that we

continuously monitor the users emotional state and generate output in real-time. Our

system can also be incorporated in a larger system, which may, for example serve as a

companion. In the following Section, we introduce the concept of Adaptive Dialogue

Systems (ADS), which we employ to handle the interaction between the user and the

assessment system (which may be supervised by a licensed mental health professional,

if necessary).

ADS are intelligent systems that offer a natural and intuitive interface when

interacting with people. Such systems typically interact through spoken or written

natural language, but are also capable of interacting through various other modali-

170

ties, such as text, speech, video, gestures and others. This is what makes ADS ideal

for our application, which is to automatically assess PTSD score through conversa-

tion with the user. Moreover, there is a lot of evidence supporting the fact that a

trusting relationship between PTSD patients and their therapists is helpful to their

treatment [173]. We therefore wish to investigate if convincing the user to believe

he/she is interacting with an intelligent agent helps create a sense of trust between

them, and subsequently makes the user more willing to share information. However,

there are several challenges that need to be met before we can claim to have a Sys-

tem that appears intelligent, one of them being the Systems ability to lead or guide

the conversation, and another being the ability to remember previous conversations

with that specific user, as well as facts about him / her (such as family members,

general preferences and special needs). To address the first challenge, we employ an

algorithm that is able to influence the progress of conversation, thus helping achieve

the Systems goals (which could be, for example, to get the user to elaborate on a

specific PTSD symptom) in real time. For example, if the user keeps talking about

topics irrelevant to PTSD, the algorithm could change the subject of the conversation

and focus on a specific identified PTSD symptom by asking appropriate questions.

To address the second challenge, we take the standard approach of creating a profile

for each user, containing all the necessary information. Again, in addressing both of

these aforementioned challenges, we need to again emphasize that a mental health

professional will need to be integrated into the system in order to achieve maximum

benefit. Details of how this will be worked are still being worked out.

The System described so far, as mentioned before, may be stand-alone or part

of a larger system, acting as a companion, possibly installed on a robotic platform.

To allow users who do not wish to register with the System, or to have private

information stored as part of their user profile, we had initially considered having

171

an online version of the System that would not require registration, similar to that

of Rizzo et al [162]. However, because of the ethical issues discussed earlier, our

System will need to be different because we continuously monitor the users emotional

state, automatically generate output in natural language, and continuously adapt and

improve its behaviour by learning from the interactions with registered users. In the

following Section, we present some background knowledge concerning the ADS and

how we are able to assess a users PTSD score [163]. We then proceed with a detailed

System description, followed by our plans for evaluation.

6.2 Modelling the Interaction

To model the dialogue problem, we take the Information State Update (ISU)

approach [50], which enables us to keep track of specific attributes, related to PTSD,

as well as information regarding the progress of the current interaction. In more detail,

according to the ISU approach, we have a dialogue state, which models anything of

interest, such as identified symptoms, emotional state, name, age, gender, occupation

and so on. The values of these variables are updated by a set of rules that are triggered

by specific events, such as a new symptom being identified. The rules are typically set

by the designer of the System but, in our case, we allow them to be updated during

the interaction, in order to achieve adaptation to each user, as we describe later in

this Section.

In order to adapt, the System needs to learn how to behave (i.e., how to respond

to user utterances, taking into account information contained in the dialogue state).

Before applying learning methods, however, we need to model the interaction as

an optimization problem. To achieve this, we follow the Information Seeking [150]

paradigm, according to which we have a set of possible user actions, a set of possible

System actions, a set of slots representing pieces of information the System needs

172

Table 6.2. System and user actions, defined in our system

User Actions System Actions
GREET GREET

ANSWER(PCL) INTRODUCE
ANSWER(Casual) ASK-YES-NO

ASK(PTSD) ASK(PTSD, Explicit)
ASK(Casual) ASK(PTSD, Implicit)

END ASK(Casual)
SAY-NOTHING ANSWER(Casual)

ENCOURAGE
CONFIRM
REPEAT

GIVE-FEEDBACK
END

from the user and a dialogue state, representing how the dialogue is progressing so

far. Slots, in the PTSD assessment system case, may represent, for example, identified

symptoms, their perceived severity, current emotional state of the user, and any other

piece of information that is relevant to the application. The System will attempt to fill

the slots, by asking the appropriate questions. For example, to fill a slot regarding the

users current mood, it could ask: How are you feeling today? It should be noted that

not all slots need to be filled before the System can make a reliable assessment.For

this application, we define the user and System actions summarized in Table 6.2.

The users actions are derived by processing their input (spoken or written nat-

ural language) and classifying it in one of the seven available actions. In favour of

simplicity, we classify all information-providing user utterances as ANSWER actions,

which generally refer to answering a Systems question, such as: How are you feeling

today? We only make one distinction, whether the answer refers to a casual ques-

tion or to a PCL-related question. Similarly, ASK refers to the user asking either

a casual or a PTSD-related question, for example: Where is the nearest treatment

173

center? DESCRIBE refers to the user elaborating on something, such as a symptom

or experience, and END refers to the user ending the interaction. SAY-NOTHING

refers to absence of user input, for a predefined amount of time after the last Sys-

tem action. The Systems actions, on the other hand, are translated into natural

language, as described in the following Section. GREET refers to greeting the user,

INTRODUCE refers to the System introducing itself (as a virtual being), ASK-YES-

NO refers to asking a question that requires a yes or no answer, such as: Do you

have trouble sleeping? and ASK refers to asking casual questions, implicit or explicit

PTSD-related questions (e.g., Why are you so angry?) ANSWER refers to the System

answering casual questions posed by the user and ENCOURAGE refers to providing

encouragement to the user, in an attempt to make him / her feel better. CONFIRM

refers to an attempt to confirm something the user has previously said (e.g., “So

you said you recently returned from the battlefield?). REPEAT refers to asking the

user to repeat what he / she said last, GIVE-FEEDBACK refers to providing PTSD-

related information, either regarding the user, general facts, treatment options, local

available resources, etc, and END refers to the System ending the interaction. We

define the dialogue state to contain the following information: d={ Answers PCL,

Symptoms, Encouragement, Score PTSD, EmotionalState}, where refers to answers

the user has given on (explicit or implicit) PCL questions; refers to identified PTSD

symptoms; refers to the current estimate of the amount of encouragement the user

needs; refers to the current estimate of the users PTSD score; and refers to the users

current emotional state. As we mentioned before, the dialogue state is updated by

a set of rules, for example if the user has provided an answer, we update and, if

necessary, and . A dialogue policy, then, would dictate which of the available System

actions the System should choose, taking into account the current dialogue state, in

order to get the necessary information from the user and assess the severity of his /

174

her disorder. Being adaptive means that the System changes its dialogue policy (i.e.,

its behaviour) in response to changing circumstances or to current user preferences /

special needs. This can be achieved by using standard real-time RL methods, such

as SARSA [174], Q-Learning [141], Natural Actor Critic [92], which we used in our

implementation, and others. Here, we want to emphasize once again that a trained

licensed mental health professional is involved in this sequence at all times. If certain

symptoms or answers are in the significantly abnormal level (previously determined),

then they will be flagged and will alert the mental health professional about making

immediate contact with the participant and possibly intervening.

As we have mentioned before, the goal of our system is to guide the conversation

in a way that allows it to elicit from the user important information regarding PTSD.

To achieve this, we need to be able to adapt the way we elicit this information, de-

pending on each users personality, special needs and also depending on environmental

changes. We also need to formally define the Systems goals, which may be charac-

terized as mandatory or optional. In this case, we define one mandatory goal: elicit

enough information to perform PTSD assessment (i.e., identify at least one symptom

regarding re-experiencing a stressful event, three or more symptoms regarding avoid-

ance, and two hyper-arousal related symptoms, as well as their intensity). It should

also be noted that the user should be experiencing PTSD symptoms for at least one

month (US Dept. of Veteran Affairs). Identifying the symptoms intensity can be

achieved in a variety of ways but, in this version of the System, we only take into ac-

count the words the user chooses to use and assess the emotional state by comparing

the emotional weight they convey. Optional goals may vary during the interaction,

and can be defined as keeping the user calm and eliciting additional information about

an event (for example, making the user elaborate on an experience), in an attempt

to assess whether it can be classified as a PTSD symptom or not. In order to make

175

Figure 6.2. Example complex actions.

the System appear intelligent, besides real-time System behaviour adaptation, we use

a method which allows the System to combine multiple simple actions into complex

ones, thus making more complicated utterances. Such methods have been proven to

have a positive effect on the interaction [175, 147] and we wish to investigate the fact

that our method will be a step towards making the System appear intelligent. In the

following Section, we provide more details on how this technique works, and how it

affects the conversation.

To achieve more natural interactions, we use AWL, to allow the System to

combine (basic) actions into complicated ones, thus learning how to achieve more

difficult tasks, such as identify symptoms and also learning multiple ways to achieve a

given task (for example, asking indirect versus direct questions, or providing feedback

in various ways, according to what is more likely to be accepted by the user). This

allows the System to exhibit complicated behaviour, and therefore the user perceives

the System as intelligent and is possibly more willing to share useful information.

More formally, instead of having System actions such as GREET or ASK-OPEN, we

allow combinations of actions, represented as trees and forming complex actions.

176

A complex action, therefore, corresponds to a complicated system utterance

(or to solving a task), by combining basic or other complex actions. Figure 6.2 de-

picts some example combinations of actions, where circles denote complex actions,

and rectangles denote basic System actions. ASK-C corresponds to asking a yes/no

question and then confirming the answer. Such an action can be useful, for example,

in noisy environments. IDENTIFY SYMPTOM is composed of greeting the user and

subsequently retrieving an event, analyzing it and providing appropriate feedback.

ANALYSE EVENT comprises retrieving an event and providing appropriate feed-

back, according to the analysis and the current users profile. RETRIEVE EVENT

is composed of asking an open-ended question and subsequently confirming it. In

more detail, AWL assesses the performance of complex System actions, on previous

interactions, and provides a prediction of successful outcome, if the System selects

a complex action at a given time during the interaction. This allows learning how

to combine basic and complex actions into more complicated actions, in order to

solve specific tasks, as well as allowing learning different ways to achieve the same

task. The action predictions may change during the interaction, and the System will

adapt by selecting a different complex action, in response to the users utterance. The

chosen complex action is subsequently passed on to the appropriate output gener-

ation modules, which can then create more intricate sentences. Another benefit of

using complex actions is the ability to design more abstract behaviours, as well as to

transfer knowledge of how to achieve certain tasks from one system to another.

In order to be able to guide the conversation with the user, and elicit information

regarding PTSD, we employ USE, which provides us with the estimated effect a

System action may have on the user and the environment. Using these estimates,

we (including the licensed mental health professional) can make informed decisions

on how to proceed with the dialogue, taking into account the interaction so far, as

177

well as other information we already know about the user (e.g., through his / her

profile). Having presented the methods we employ to handle the interaction at a

low, decision-making level, we now proceed to discuss the overall architecture of the

System, and present other modules we employed or developed, necessary to process

the users input and the Systems output.

6.3 PTSD Assessment ADS Overview

In this Chapter, we have presented an ADS able to interact with PTSD users

through natural language dialogue, and provide a basic assessment of their PTSD

score [163]. To achieve this, we opted for a modular system design, where each mod-

ule is responsible for a specific task, such as deciding how to respond, generating

output in natural language or keeping track of the users emotional state. In the rest

of this Section, we present the architecture of our System, describe each module in

detail, discuss how we are able to assess PTSD, as well as how we generate feed-

back to the user. Lastly, we present some example interactions between our System

and a real user (not a PTSD patient). In this Section, we describe in detail the

architecture of our System (depicted in Figure 2), where ASR stands for Automatic

Speech Recognition, NLU corresponds to Natural Language Understanding, Emotion

Recognition (ER) refers to emotional state estimation, NLG corresponds to Natural

Language Generation, and TTS stands for to Text To Speech. The input modules

are responsible for parsing and processing the users input, which may be in spoken

or written natural language. In the first case, speech is intercepted by the ASR

module, which converts it into text. This is then passed on to the NLU component,

responsible for understanding the meaning of the users utterance. This information

is subsequently passed on to the ER module, which provides an estimate of the users

current emotional state.

178

Figure 6.3. The architecture of our Adaptive Dialogue System, for assessing PTSD
score. Spoken input is captured by the Automatic Speech Recognition module, which
transforms it in textual form, which is then intercepted by the Natural Language
Understanding and Emotion Recognition modules, which extract useful information.
This information is passed on to the Dialogue Manager, which decides how the system
should respond, and this response is translated into spoken output by the Natural
Language Generation and Text To Speech modules.

Output from both the NLU and ER modules is then processed by the dialogue

manager, which is responsible for deciding how to respond to the users utterance, as

described in the previous Section. All learning and adaptation modules are imple-

mented within the dialogue manager, which also interacts with a database containing

information about the current user and previous sessions. It is at this level that the

mental health professional can intervene if any suggestion of harm by the user to him-

self/herself. The dialogue manager produces a System action, which is received by the

NLG module which, in turn, generates the Systems output in natural language, also

using information contained in the dialogue state. This output is then passed on to

the TTS module, which generates spoken output. It should be noted that a dialogue

179

System may generate output in other forms, such as graphs, playing videos, moving

a robots actuators, etc, which will be included in future versions of our System.

In the following Sections, we present in detail the most important modules

that comprise our PTSD assessment system, namely Natural Language Understand-

ing, Emotion Recognition, Goal Achievement, Natural Language Generation and the

User Profile System. The NLU module is responsible for parsing the users utter-

ance, derived from the ASR component, for which we use a well-known open-source

recognizer, named pocket sphinx [152]. In our NLU implementation, we parse the

user’s utterance, aiming to retrieve various kinds of information (depending on the

state of the dialogue), such as emotional state, assessing user’s response (positive

or negative), or identifying symptoms. To estimate the user’s emotional state, we

mainly look for certain keywords indicating an emotion and its intensity. To assess

the user’s response to the System’s direct or indirect question, we attempt to match

the response against positive, neutral or negative patterns, such as Yes, very often

or I don’t know, that will also provide us with an indication of a Likert-scale-like

response, that we can use in the PTSD score calculation. To identify a symptom, we

again look for certain patterns, and we make the strong assumption that the user is

still referring to the same topic and is not trying to divert / avoid the subject or talk

about another symptom or experience.

Because we are dealing with potential patients, suffering from a psychosocial

disorder, it is important to reliably track their emotional state throughout their in-

teraction with our System. To achieve this, we model the users emotional state using

the model proposed by Chuang and colleagues [176], and track their emotional state

by looking for relevant keywords or phrases, defined by Drummond [177]. When we

detect a deteriorating emotional state, we raise the encouragement level the System

provides, in an attempt to keep the user in a calm state. If this does not seem to

180

work, the System will make only casual talk for some time and, if even this does not

work, the System will raise an alert to the administrator (i.e., the licensed mental

health professional) for immediate intervention. According to the model we used,

we have the following emotions the user can express: happiness, caring, depression,

inadequateness, fear, confusion, hurt, anger, loneliness, remorse. Before we can make

an update on the users emotional state, according to that model, we need to assess

the emotions expressed by the most recent user utterance. To achieve this, we use

an emotion vocabulary [177], according to which several words are tied to expressing

light, medium or strong emotions, and by also taking into account words or phrases,

such as not really, extremely, a little bit, etc., that can modify the strength of each

emotion. We are able to make an estimate of the emotions conveyed in the users

utterance. It should be noted that each emotion has a pre-defined positive or nega-

tive effect, which we also take into account before estimating the overall change of the

emotional state. The NLG module is responsible for translating the Systems response

into natural language, in spoken and textual form. We used simpleNLG [178] for this

purpose, which is a publicly available, open-source framework for NLG. The Systems

response can be categorized into information requests, feedback, encouragement and

casual talk. Information requests refer to attempts to elicit PTSD-related information

from the user, and can vary from straightforward questions (similar to PCL questions)

to utterances which implicitly try to get the user to admit or reject something. Feed-

back refers to providing a verdict, summarizing the results the System calculated,

based on the interaction with the user and PTSD assessment methods, as well as any

information that could be useful to the user, such as locally available resources. En-

couragement refers to providing statistical facts or other types of information, aiming

to make the user feel better. Casual talk refers to output with no apparent purpose,

other than to relax the user and subsequently attempt to elicit information.

181

The User Profile System is responsible for storing and maintaining useful infor-

mation about each user. To promote anonymity, we allow the user to set a nickname

of his / her choice, to be used by the System during the interaction. Other informa-

tion stored includes data about the user’s emotional state, as it evolved during each

session, data about the user’s PTSD score after each session and symptoms identified

and/or discussed at each session. Location information is also stored, when available,

to provide better information about PTSD-related resources that might be available

in the users vicinity. Using this information, the System is able to form a sense of

trust with the user, by creating the illusion that it remembers facts mentioned by

the user, thus appearing more intelligent and not just a question-answering dialogue

system.

In this Section, we describe the methods we use to calculate a PTSD score,

based on PCL (civilian or military). The process we follow is standard, and com-

prises identifying important events that lead to PTSD, calculating a score using PCL

guidelines [163], and generating appropriate feedback. More specifically, we need to

identify a minimum number of symptoms from each category, during the interaction

with the user. As we have mentioned in previous Sections, when identifying an event,

we assume the user’s response remains on topic (i.e., he / she does not attempt to

avoid or change the subject). While this is not an unreasonable assumption to make,

we plan to dismiss it in future versions of the System, by using more sophisticated

NLU methods. When the ADS, therefore, directly or indirectly asks the user to elabo-

rate on a certain answer (or on a previously identified significant event), we search for

emotional keywords and assess the emotion conveyed by the users description. When

a certain threshold is surpassed (for example, regarding fear or anxiety), we consider it

a significant event. It should be noted here that these thresholds are defined manually

and some trial and error may be necessary, before deploying the System. To calculate

182

the users’ PTSD score, we assess their responses to System questions, and classify

them into Likert scale scores: Not at all (1), A little bit (2), Moderately (3), Quite a

bit (4), and Extremely (5). Combined with significant events we have identified, we

are subsequently able to calculate an overall PTSD score, following suggestions found

in the literature [163, 164, 3]. An estimate of this score is dynamically calculated and,

as the System gathers more information, the estimate reflects the true PTSD score.

This estimate, in addition to information about the user’s current emotional state,

is essential for deciding whether to provide encouragement and which arguments to

use. If the System detects a PTSD score greater than a cut-off value of 45 [163], it

will provide feedback to the user, suggesting available PTSD resources (i.e., online

resources, telephone numbers, health professionals and institutions near the users

location, etc.). The System will then forward the conversation to a mental health

provider, along with any available historical data regarding the particular user (e.g.,

previous PTSD scores, previously identified symptoms, and other relevant data). It

should be noted here that the mental health professional will have the opportunity

to change the cut-off value, depending on each users special needs.

As mentioned in the previous Section, the System uses a variety of information

in order to generate appropriate, meaningful and helpful feedback. One general rule

that we follow when generating feedback is making it clear that the System cannot

really understand what the users have been through, but it is here to provide as-

sistance by allowing them the chance to share their traumatic experience with an

artificial human agent. Besides the core conversation, there are two types of feedback

the System provides: information related to PTSD diagnosis and treatment, provided

at the end of each session; and encouraging facts or tips that will help the user and

keep him / her in a relatively calm state throughout the interaction. In order to be

able to provide appropriate feedback (e.g., we state that the user possibly exhibits

183

symptoms consistent with PTSD symptoms), we provide useful information (avail-

able resources, taking into account the users location if available) and present it in an

appropriate way (for example we may use different wording according to age). Even if

we do not detect PTSD, we provide some information to the user, pointing to helpful

resources, because maybe we have been unable to detect PTSD or the user may have

another disorder that our System cannot detect. In any case, since the user took the

time and effort to interact with a PTSD assessment tool, we feel obligated to provide

assistance. Again, our mental health professional is included at each stage of this pro-

cess. As noted earlier, our System is able to calculate the amount of encouragement

the user needs in order to remain calm during the interaction, and adjust its output

accordingly. More specifically, we have five levels of encouragement, ranging from no

encouragement to only providing encouragement (and not trying to elicit information

or talk about other subjects). In order to estimate the amount of encouragement the

user needs in order to become calm, we classified the recognized emotions into a scale

ranging from 0 to 1, with 0 representing an emotion far from calm and 1 representing

an emotional state very close to calm. We also need the last estimate of the user’s

emotional state, to assess its progress (whether it is decreasing or increasing). The

level of encouragement is calculated as follows:

encouragement =
10∑
i=10

wiei (6.1)

where the weights represent the negative or positive effect an expressed emotion

has on the user’s overall emotional state.

We now provide some example interactions between our System and a human

user (not a real PTSD user). After each turn, the System updates its estimates of

the user’s emotional state, PTSD score and encouragement level, as shown below.

184

User: hello [Emotional State: [Happiness 0.5, Caring 0.5, Depression 0.5, Inade-

quateness 0.5, Fear 0.5, Confusion 0.5, Hurt 0.5, Anger 0.5, Loneliness 0.5, Remorse

0.5]PTSD Score: 0, Encouragement: 0]

System: Hi, how was your day so far?

U: just the usual, nothing much [Emotional State: [Happiness 0.25, Caring 0.1, De-

pression 0.15, Inadequateness 0.1, Fear 0.1, Confusion 0.1, Hurt 0.1, Anger 0.1, Lone-

liness 0.1, Remorse 0.1] PTSD Score: 0, Encouragement: 0] S: I see. Was the weather

nice in Dallas today?

U: yeah, it was kind of sunny [Emotional State: [Happiness 0.25, Caring 0.1, De-

pression 0.05, Inadequateness 0.05, Fear 0.05, Confusion 0.01, Hurt 0.01, Anger 0.01,

Loneliness 0.1, Remorse 0.05] PTSD Score: 0, Encouragement: 0] S: Im happy to

hear that. So is there something that has been troubling you today, or did you just

want to chat?

U: I dont know, I dont feel very good I guess [Emotional State: [Happiness 0.05,

Caring 0.05, Depression 0.15, Inadequateness 0.15, Fear 0.01, Confusion 0.05, Hurt

0.15, Anger 0.15, Loneliness 0.15, Remorse 0.15] PTSD Score: 0, Encouragement: 1]

S: I see. Its good that you want to talk about it. Have you been having enough sleep

lately?

U: Well, sometimes i have nightmares. It always makes me so angry that I can’t sleep

well. [Emotional State: [Happiness 0.05, Caring 0.05, Depression 0.25, Inadequate-

ness 0.05, Fear 0.01, Confusion 0.25, Hurt 0.15, Anger 0.5, Loneliness 0.05, Remorse

0.05] PTSD Score: 1, Encouragement: 2] S: I can understand your frustration, its

really bad when you cant sleep well, but I know there are a few things that can help

you sleep. Are your dreams always about something specific?

According to [152], the pocketSphinx ASR system had a reported word error

rate of 9.73%, meaning that 90.27% of the time the system was able to correctly

185

recognize the users spoken input. It should be noted here, that this greatly depends

on the language model used, which defines words and phrases that typically occur

in a given domain, each with a probability of occurrence. For the purposes of our

system we have developed, in collaboration with medical health professionals and the

literature, a custom language model which we hope captures most key phrases and

words (i.e. PTSD-related as well as casual talk) that will occur during interactions

with our System. Regarding emotion recognition, the model proposed by [176] was

reportedly able to correctly recognize emotion 81.49% of the time. We pair this

system with an emotional vocabulary [177] and thus expect to at least maintain that

level of accuracy. While this does not directly affect the calculation of the PTSD

score, it does affect the identification of symptoms and we therefore include it in our

reliability analysis. Last, for calculating PTSD score, as mentioned before, we use the

PCL questionnaire [163]. Based on these facts, we expect our Systems reliability to

be at least 0.98199. At each dialogue turn we only need to recognize some keywords.

The system may also attempt to recover if recognition confidence is low.

6.4 Usability Inspection and Evaluation

Here we present the results of the usability inspection we performed, in order to

evaluate the interface and usefulness of our system. We opted for heuristic usability

inspection, using some of the heuristics proposed in [179, 180, 181, 182], which are

relevant to our application. Our assessment showed that our system satisfactorily

addresses these issues, as summarized in Table 6.3, below.

In the future we also plan to evaluate the Systems usability and performance

with human users, suffering and not suffering from PTSD. In the next Section we

describe in detail our plans for evaluation.

186

Table 6.3. Usability inspection of our system

Usability Heuristics System

Visibility of system status The user reads and / or listens to the
systems output. The health profes-
sional views metrics, such as estimated
emotional state and identified symp-
toms.

Match between system and real world The system uses natural language as
an interface, including common terms
and only uses technical terms where
necessary (e.g. when providing PTSD-
related information).

User control and freedom The user is able take the initiative at
any point during the interaction.

Consistency and standards The learning algorithms used guar-
antee consistency in the systems be-
haviour.

Provide clearly marked exits The user is always able to type or tell
the system to quit, navigate the sys-
tems menu and select quit, or can click
an ‘X’ button.

Recognition rather than recall The user does not need to remember
how the system works.

Flexibility and efficiency of use The user interacts with the system
through natural language and may
take initiative at any point in the dia-
logue.

Speak the users language The language used by the system is
plain enough to convey useful informa-
tion and does not contain difficult to
understand terms.

Minimize users memory load The user does not need to remember
how the system works.

Provide feedback The system constantly provides feed-
back to the user and the health pro-
fessional.

187

6.5 Evaluation

In this Section, we present our planned experimental setup. We will initially

conduct Wizard of Oz experiments with real users, not suffering from PTSD. More

specifically, this type of experiments involve having a human user (operator) playing

the role of the System, and interacting with other users, who believe they are inter-

acting with the System. This allows us to collect dialogue interaction data, which

we can later use to train our System and learn a dialogue policy (system behaviour)

which is able to correctly assess PTSD score (Weathers et al., 1993). It will also allow

us to collect control data, i.e. responses from non-PTSD users, which we can later use

to compare against potential users. Each user will be given a story containing one or

more stressful experiences, and will be asked to interact with the system. Each story

will be correlated with a PTSD score that the System (operated by a human user

in this experiment) will need to correctly estimate. The System operator (a mental

health professional) will have clinical guidelines on how to respond, taking into ac-

count his / her perception of the users emotional state. We will then use the dialogue

corpus collected to develop user simulators that will, in turn, be used to train our

System. In order to evaluate the performance of our System, we will compare its be-

haviour against a handcrafted dialogue policy. This policy will have three phases: a

casual, introductory phase, where the System will ask questions including known facts

about the user (such as age / gender) and perhaps asking for more (for example if the

user likes where he / she lives); a PTSD information phase, where the System will

implicitly or explicitly request PTSD-related information; and another casual phase,

where the System will attempt to end the conversation in a way that invites the user

to interact with the System in the future while also providing feedback concerning

PTSD. The first phase will end after a pre-defined maximum number of dialogue

turns, while the second phase may alternate while the system tries to get the user to

188

relax (e.g., by providing encouragement). The final transition from second to third

phase occurs when the System has enough information, when the user becomes too

frustrated, or when the user decides to end the interaction. Since most ADS which

apply RL methods are evaluated against user simulators, we will subsequently train

our System with agenda-based user simulators [123], specifically designed for this

problem, following a model of a PTSD user, with various personalities, experiences

and PTSD score that needs to be correctly estimated. This design will be carefully

tailored by the mental health professional.

The next phase of the evaluation will be to: test both systems on PTSD-

suffering users; assess them; and compare their performance with other methods,

such as PTSD self-assessment tests either online or not. Two groups of users will

be formed randomly, one of which will use our System and the other will use other

methods. Questionnaires will be completed by the users at the end of the experiment

to assess their interaction experience.

6.6 Discussion

In this Chapter, an ADS was presented, which is able to interact with users

suffering from PTSD, using natural language, and by guiding the conversation in an

appropriate way. It is able to retrieve information from the users, which is necessary to

assess PTSD. The purpose of our System is to reach out to users who are unwilling to

talk to a trained mental health professional in person about their condition, but may

be more open to interacting with a virtual artificial agent. The System will attempt

to assess users PTSD score [163], provide them with useful information regarding

PTSD and encourage them to take the next step towards treatment. Another benefit

is the generation of large amounts of data that therapists may search and analyze.

As technology advances, we have more survivors of war, natural disasters and other

189

stressful experiences, thus an increased probability for PTSD in any given society. On

the other hand, we have an array of tools available to detect abnormal behaviors and

help people in need, such as our ADS PTSD Assessment System. Furthermore, the

proposed System can easily be adapted to target other populations, such as people

suffering from depression. In the future, we plan to enhance the speech and emotion

recognition accuracy by using more modalities, such as audio, video or depth and

apply Discriminant Laplacian Embedding [183] and audio-visual speech recognition.

Finally, we plan to have an online version of the System available for testing.

190

CHAPTER 7

Discussion

Throughout this thesis, our contributions to the fields of Assistive Living Envi-

ronments and Adaptive Dialogue Systems have been presented. While we are still far

from self-aware artificial agents, the proposed algorithms are a step closer to creating

an agent able to make casual conversation with people. In this Chapter, we present

our concluding remarks, we briefly discuss some of the still open problems we chose

not to address, we present our immediate plans for future work and, last, we discuss

the potential impact of our contributions on the society.

7.1 Open Problems

As technology advances, new research fields are born, which frequently are

amalgam of various sub-fields. It is unrealistic, therefore, to claim that we can address

all the open problems in a research field as broad as ADS in a single PhD dissertation.

In this section we present issues (existing or discovered along the way) that we opted

not to address. One of the most critical, in our opinion, is that an ADS should be

able to adapt within the duration of an episode, i.e. before the current interaction

terminates. While there is related work in the literature, such efforts are very limited

in scope and applicability. It might be useful to examine methods from other fields,

such as tracking techniques, specifically designed to adapt to changing targets or

changing target locations. Something related to this problem is rapid learning of

good dialogue policies, in an online fashion.

191

While significant advances have been made during the past few years in action-

state space approximation for ADS, we still need radically different techniques, that

completely alleviate this problem rather than try to address it, in order to create

truly intelligent ADS. Realistic user simulators are also of great importance, if we

are to train robust and complex behaving ADS. Such simulators should model errors,

error recovery strategies (from the user’s point of view) and have variation in order

to avoid overfitting. Another very important open problem is that of DS evaluation.

A significant amount of work [99, 157, 126, 184, 130] has been done towards this

direction, but it remains open as if is really difficult to assess user’s satisfaction,

especially while they are interacting with the system rather than post-evaluation

studies (questionnaires etc.).

7.2 Future Directions

While there are a lot of open problems regarding DM, such as intra-episode

adaptation, initiative taking, interruption handling and others, they can be tackled

to a good extend by a change in paradigm, whose need has been suggested in the

literature [62]. In this Section, we present our thoughts and ideas concerning the

future of ADS, focusing on adaptive DM as the core technology. It is our belief that,

before aiming for fully autonomous ADS, capable of lifelong learning, it is necessary to

go through a semi-autonomous phase, where the user and the ADS will collaboratively

accomplish tedious, dangerous and other tasks and learn from each other. With such

systems, we can get the society interested and allow ADS to be widely adopted.

As more people are drawn to ADS, both users and researchers, new problems and

creative solutions will arise. We believe the first step towards semi-automation is to

focus on methods where the user can teach the ADS (or robot), to some extend, how

to perform a task. The paradigm should not be that the system is brilliant and can

192

accomplish everything, but rather that it collaborates with the user and they both

learn how to solve a task. The human should be kept in the task-accomplishing loop,

and we should spend some time developing methods that take this into account. Up

to date, this has been done mainly due to necessity, but we argue, here, that such

systems should be deliberately designed this way. Following application, acceptance

and success, we can shift focus to more automated methods, and we will have much

more experience and intuition to do so. We envision a robot, controlled by a DS,

able to navigate through obstacles and manipulate objects in its environment, that

will work collaboratively with (i.e. will not replace) the user, to achieve a complex,

dangerous or tedious task, while also being able to adjust or allocate its resources

accordingly, in response to changing circumstances. Tractable methods should be

designed, not only regarding the problem size (i.e. the system’s ability to reason

about many things) but also regarding length of interaction, as a lifelong virtual

companion. Data should be stored (and possibly compressed) in appropriate formats

according to frequency of use. In the rest of this Section, we focus on certain ADS

aspects and attempt to envision possible directions of research that will lead to the

next generation of ADS. We view each aspect as capabilities that can be built on top

of a modular, adaptive DM.

7.2.1 Dialogue Management

We believe that dialogue managers should be decoupled from specific applica-

tions and their design should be modular, aiming to re-use modules across managers

and platforms. The modules that compose a dialogue manager should have very well

defined interfaces, to promote re-usability and facilitate seamless communication be-

tween them and other components. A module could, for example, handle user input

from a specific modality, or model various behaviours that a certain artificial person-

193

ality is expected to exhibit. Designers would then select the appropriate modules that

fit their needs and save time and effort when building a new ADS. Modules would

not even need to run on the same system, but generic DM components or those which

require heavy computational power, could be implemented on the cloud or on secure

remote servers.

Another, more practical aspect of DM (and DS in general) is the lack of a com-

mon infrastructure, accepted by the majority of the community, where researchers can

develop and evaluate new methods, share knowledge and code. Despite various great

efforts, such as [80], possibly due to hardware or operating systems constraints and

preferences, they have not been fully adopted. We believe that a framework on such a

shared infrastructure would allow other communities to easily develop ADS for their

research, thus not only helping disseminate this technology and helping address exist-

ing issues, but also helping identify issues that our community was unable to predict.

Such an infrastructure would moreover provide researchers with the ability to directly

compare their novel methods with the current state of the art, or with well accepted

benchmark problems (challenges), implemented using the common infrastructure.

7.2.2 Automatic Feedback Estimation

Since the goal of ADS is to interact successfully with humans, ideally the sys-

tem should be able to pick up most of the communication signals produced by its

interlocutors. Following the human paradigm in the semi-automation framework, an

intelligent DS should be able learn from its instructor. To achieve this, we should have

mechanisms to quantify positive and negative feedback, that the learning algorithms

will utilise and learn how to react to similar situations. To reduce exploration while

learning, we could develop acceptable hand-crafted policies (behaviours) to be used

as starting points. At first we can have yes / no feedback, either from verbal cues or

194

from gestures, facial expression, estimated user emotional state and body language.

In the realm of semi-automation, we can define special training protocols, where in-

structors will use a predefined set of gestures or words in order to train their system.

This process can then mature and become more intuitive to the human nature. In

short, we need to teach intelligent systems how to learn, and then let them learn.

Receiving feedback from common knowledge as well as from humour or sarcasm is

also very important, but, it is our opinion that this is something to be looked at after

ADS have mastered basic social skills. An important issue, raised by ADS researchers

as well as by other research communities, is identifying whether it is the system that

adapted to the user or vice versa, and if they reach some equilibrium, how can we

quantify the amount of adaptation of each side.

Again looking at the human learning paradigm, humans are taught how to

behave and identify what is good or bad. They associate certain words such as “No”

with negative rewards, due to “pre-defined behaviours”, i.e. instincts, which make

them afraid to yelling, or feel good in the opposite case. Another way humans learn

is by observing the consequences of their actions, i.e. they are deprived of a desired

(sometimes essential) resource, or they simply do not achieve their goals. Based on

this paradigm, we can design methods and systems that employ statistical techniques

to learn how to estimate feedback, beginning from some basic ground truth and

building on it. One way to jump-start automatic feedback estimation is to begin with

well known and unquestionably positive, neutral and negative human behaviours, and

form this ground truth.

7.2.3 Complex Action Learning

Taking into account recent progress in this sub-field of ADS, we believe the next

step is to develop robust mechanisms for learning from demonstration. The system

195

must be able to map user actions into internal structures representing complex system

actions. For example, when the user demonstrates how to use a tool to open a can,

the system must understand which basic actions the user is performing, that are

generalisable to the can opening problem. This can also apply to Verbal actions,

where the user, for example, demonstrates how the robot should behave in a given

situation (which questions to ask, how to ask them, which gestures to use, etc.).

The system moreover needs optimisation mechanisms that will select the optimal

way of achieving a task, if more than one ways exist. In our framework of semi-

automation, the user should use a well defined and structured language or set of

gestures to demonstrate the solution to a task. Definition of the task should be

implicitly defined by this procedure. If a mapping from specific user directions to

system actions does not exist, the system should first attempt to construct complex

actions by combining available actions and if that fails as well, it should ask the user

for simpler directions.

Knowledge should be transferable across tasks, as has also been suggested [93],

and the system should be able to infer how to achieve similar tasks to the ones it

already knows. Two other aspects of CAL, besides synchronization, are learning

which actions should be executed in parallel, as well as adaptively managing the

system’s resources, when necessary. If, for example, resources are limited either due

to design restrictions or due to unexpected events, the system should be able to

prioritize actions and modalities to be used for input processing or for output. Such

methods would have a great impact not only on the perceived intelligence of the

system but on scalability as well.

196

7.2.4 User and System goal achievement

To achieve seamless and natural interaction, it is important to have an efficient

and flexible model to represent user and system goals, as well as support mechanisms,

able to detect goal dependencies, conflicts and assign priorities. Goals should be struc-

tured and ordered in a hierarchical or in a parallel fashion, depending on resources and

on the nature of the goals. Moreover, the system should be able to predict the effects

of a goal’s achievement on the progress or feasibility of other goals. ADS should also

incorporate techniques for goal learning, meaning automatically generating goals per

user request, whether explicit or implicit. Papangelis et al. [2], proposed a method

for modeling mandatory and optional system goals, that can guide the policy learning

algorithm to specific dialogue policies which have high probability of achieving the

system’s goals. This approach also supports independent or conflicting goals, making

sure that mandatory goals are reached, while optional goals are reached when pos-

sible. Such a method can complement state of the art goal modelling and inference

methods found in the literature, and provide a DM with the aforementioned desired

capabilities.

Moreover, goals should be transferable across modules, systems and platforms.

They should be expressed in a common language that other intelligent systems can

understand and process requests. For example, a museum can have several virtual

agents or robots controlled by ADS, that can outsource computationally heavy tasks

to a central museum server. Another example can be a set of lightweight (in terms

of computational power and storage) agents with various personalities, who share a

common computational resource.

197

7.2.5 Socially Intelligent Systems

One of the most important social skills an ADS should have, is to understand

when and which people are talking to it rather than to each other (or on their phone).

Another equally important skill, when it comes to robot DS is maintaining eye contact

with a person or a group, or being able to identify that person again and remember

their interaction, at least for a short period of time (similar to human short-term

memory). Related methods exist in the literature of other fields (maintaining eye-

contact, face recognition, etc.), but need to be seamlessly integrated in the context

of an ADS. We also need to take into account the number of people the system is

simultaneously interacting with and the social dynamics thereof. For example, it may

be enough to only interact with the “leader” of the group or it may be necessary to

interact with everyone, as a teacher does in a classroom. Such dynamics, of course,

do not only apply to eye-contact or face recognition, but to all aspects of interaction.

Such skills would greatly compliment efforts mentioned in previous Chapters, which

include handling back-channels and gestures to provide information and control the

dialogue as well as interpreting the users’ back-channel signals and gestures (e.g. un-

derstand when a group of people becomes bored or nervous). All of these social skills

can be crucial when training specialized ADS, such as question-answering, negotiation

or other tactical systems.

An ADS or RDS should moreover know how to begin a conversation, or ap-

proach a person or group of people, respectively, as well as how to end the interaction.

Understanding humour, sarcasm, distinguishing metaphors and fixed expressions from

linguistic or semantic errors that are often left uncorrected in spoken language, are

also important traits of a social ADS, the next step being a system able to express

humour, irony and other complicated human communication intricacies when it is

socially appropriate. Depending on the application, general social rules or behaviour

198

can be expressed using mandatory and optional goals, that can change while the sys-

tem operates, depending on the dynamics of the environment. Coupled with online

complex action learning methods, which can provide the system with multiple ways

of achieving a task (e.g. multiple ways to greet culturally different groups), such a

system would have great potential in being perceived as socially intelligent.

7.2.6 User Simulators and Evaluation

User simulators have been a subject of debate regarding ADS training and

evaluation. Creating realistic simulators is of paramount importance, as this is what

the ADS’s learning modules will adapt to. Given our current understanding of human

cognition, we can neither perfectly simulate it at the signal level nor perfectly model

it at the intention level. What would, however, be interesting to investigate is ways

to transfer the strengths of each approach across to the other. Application-specific

simulators are also necessary, for example, we need complex behaving simulators in

order to train negotiation systems, where the simulator would attempt to deceive the

system, provide false arguments, deliberately not reveal information or mislead the

system against common sense.

Evaluation of ADS is also an open problem, despite the great efforts by the com-

munity, that have produced remarkable results. This has mainly to do with human

nature, as we wish to measure user satisfaction, which is really hard to quantify, as

each person is different, views himself and the system from a different point of view,

and has different expectations, than any other person. The best way to evaluate ADS,

in our opinion, is by measuring their acceptance by society. We should, therefore,

strive to penetrate various markets, such as gaming, healthcare, manufacturing, etc.,

using open source systems or ADS development frameworks, that are easy to use by

non-experts. As we have mentioned before, a major challenge regarding evaluation

199

of adaptive systems is to detect whether the users have adapted to the system or

the system to the users. Moreover, if both have adapted to each other, we should

develop techniques that measure the degree of each side’s adaptation. In an ADS

that is in the everyday life of a person, it may be more likely that the person will

learn how to use the it, viewing it as equipment, rather than the ADS adapting to

the person. According to [80], comparing two dialogue systems is like comparing two

programming languages. Each has advantages and drawbacks on specific tasks but

we cannot exactly claim that one is better than the other, in a specific task, since

the task can be re-modelled in a way that both systems perform equally. It is hard,

therefore, to create benchmark ADS that other systems will compare to, as we would

need a very wide range of application-specific systems.

A standardized evaluation methodology could include the following tasks, after

the users have interacted with the system. First, the designers could set up a task

for the ADS and evaluate the result. If, for example, the purpose of the ADS is to

book tickets, we can measure the accuracy of the bookings versus time (or number

of interactions) needed to get the relevant data from the human. As this scenario

probably involves a trade-off, Receiver Operating Characteristic curves should be

useful. As also mentioned earlier, an external observer may be present to evaluate

the interaction. The designers should ask the users how much they enjoyed the

interaction, breaking satisfaction down into several features. Likert scales would be

an appropriate way of obtaining a numerical estimate from the users, as they have

proven work very well for this purpose. A structured interview, between the observer

and the user would be useful, where the observer asks the user a standard set of

questions, using both the user’s response and his / her own observation to answer the

questions. If the purpose of the system is to relay (rather than extract) information to

the human, then we could assign tests to assess whether the users remember what they

200

were supposed to have learned. In an informal education scenario (e.g., a museum

visit), we could plot these results against use satisfaction, so that the user experience

is evaluated positively if it is both interesting/pleasant and educational. Another way

could be to set up a task/game for the user, where in order to win it would be crucial

to use information that only the ADS has. Then, we can evaluate the ADS based on

it having successfully relayed the critical information to the human.

7.3 Conclusion

In this chapter, we have presented recent advances in the field of ADS, focusing

mainly on adaptive DM. We also presented our thoughts on attributes we believe

are missing from intelligent DS and some initial ideas on how we can achieve them.

We view automatic feedback estimation, complex action learning, goal achievement,

artificial social intelligence as well as user simulators as capabilities or affordances that

can be built on top of an adaptive DM, that acts as the core technology. Moreover,

we attempted to present ways that adaptive DM techniques can help push the state

of the art in the aforementioned areas.

Artificial social intelligence, cooperative task completion, learning from demon-

stration are, in our opinion, essential attributes of the next generation ADS. As

researchers have developed mature, robust and reliable methods for DM, NLG, ASR,

NLU, etc., we can now afford to focus on higher level behaviour of ADS, such as

automatically inferring what the task is, abstractly planning how to achieve it, or

engaging in intricate discourse while exhibiting humour, sarcasm, laughter etc. at

socially appropriate moments.

201

7.4 Impact On Society

We conclude this Ph.D. thesis with a note on the possible impact ADS and ALE,

and specifically the work presented here, can have on our society. This can be best

highlighted by possible applications, such as the ones presented in the Chapters 5 and

6, but in this section we attempt to provide some insight on how our contributions

can be applied. One of the greatest benefits of adopting ADS in ALE is allowing

technology not designed for ALE, to be accessible by ALE users, through an ADS.

The proposed techniques are also a step towards robotic household assistants, as they

make the system appear intelligent, by exhibiting complex behaviour, and, therefore,

the user trusts it more and we are able to get much more information. This can lead

to increased acceptance of ADS by the society, which in turn can also have a great

impact on industry, as such systems are extremely cost effective.

202

REFERENCES

[1] A. Papangelis and F. Makedon, “Achieving complex behaviour in adaptive di-

alogue systems,” in 7th Metroplex Day, 2013.

[2] A. Papangelis, N. Kouroupas, V. Karkaletsis, and F. Makedon, “An adaptive

dialogue system with online dialogue policy learning,” in Proceedings of the

7th Hellenic conference on Artificial Intelligence: theories and applications, ser.

SETN’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 323–330.

[3] NIMH. National institute of mental health. [Online]. Available:

http://www.nimh.nih.gov/index.shtml

[4] S. Janarthanam and O. Lemon, “A two-tier user simulation model for reinforce-

ment learning of adaptive referring expression generation policies.” in SIGDIAL

Conference’09, 2009, pp. 120–123.

[5] O. Lemon, “Learning what to say and how to say it: Joint optimisation of spo-

ken dialogue management and natural language generation,” Computer Speech

& Language, vol. 25, no. 2, pp. 210 – 221, 2011, language and speech issues in

the engineering of companionable dialogue systems.

[6] C. Boidin, V. Rieser, L. Van Der Plas, L. Oliver, and J. Chevelu, Predicting

how it sounds: Re-ranking dialogue prompts based on TTS quality for adaptive

Spoken Dialogue Systems. ISCA, 2009, pp. 2487–2490. [Online]. Available:

http://www.interspeech2009.org/conference/programme/session.php?id=6510

[7] M. Vacher, F. Portet, A. Fleury, and N. Noury, “Development of audio sensing

technology for ambient assisted living: Applications and challenges,” Interna-

203

tional Journal of E-Health and Medical Communications, vol. 2, no. 1, pp. 35 –

54, march 2011.

[8] H. Sun, V. D. Florio, N. Gui, and C. Blondia, “Promises and challenges of

ambient assisted living systems,” in Proceedings of the 2009 Sixth Interna-

tional Conference on Information Technology: New Generations, ser. ITNG

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1201–1207.

[9] T. Greenhalgh, J. Wherton, P. Sugarhood, S. Hinder, R. Procter, and R. Stones,

“What matters to older people with assisted living needs? a phenomenological

analysis of the use and non-use of telehealth and telecare,” Social Science &

Medicine, vol. 93, no. 0, pp. 86 – 94, 2013.

[10] C. Harrefors, K. Axelsson, and S. Sävenstedt, “Using assistive technology ser-

vices at differing levels of care: healthy older couples perceptions,” Journal of

advanced nursing, vol. 66, no. 7, pp. 1523–1532, 2010.

[11] M. Alwan, S. Dalal, D. Mack, S. Kell, B. Turner, J. Leachtenauer, and R. Felder,

“Impact of monitoring technology in assisted living: outcome pilot,” Informa-

tion Technology in Biomedicine, IEEE Transactions on, vol. 10, no. 1, pp.

192–198, 2006.

[12] M. Alwan, J. Leachtenauer, S. Dalal, D. Mack, S. Kell, B. Turner, and R. Felder,

“Psychosocial impact of monitoring technology in assisted living: A pilot

study,” in Information and Communication Technologies, 2006. ICTTA’06.

2nd, vol. 1. IEEE, 2006, pp. 998–1002.

[13] V. Fuchsberger, “Ambient assisted living: elderly people’s needs and how to

face them,” in Proceedings of the 1st ACM international workshop on Semantic

ambient media experiences. ACM, 2008, pp. 21–24.

204

[14] E. M. Agree and V. A. Freedman, “A quality-of-life scale for assistive technol-

ogy: results of a pilot study of aging and technology,” Physical Therapy, vol. 91,

no. 12, pp. 1780–1788, 2011.

[15] H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, and P. Yap, “An adaptable

and flexible framework for assistive living of cognitively impaired people,” 2013.

[16] H. Aloulou, M. Mokhtari, T. Tiberghien, J. Biswas, C. Phua, J. H. K. Lin, and

P. Yap, “Deployment of assistive living technology in a nursing home environ-

ment: methods and lessons learned,” BMC medical informatics and decision

making, vol. 13, no. 1, p. 42, 2013.

[17] G. Virone, M. Alwan, S. Dalal, S. W. Kell, B. Turner, J. A. Stankovic, and

R. Felder, “Behavioral patterns of older adults in assisted living,” Information

Technology in Biomedicine, IEEE Transactions on, vol. 12, no. 3, pp. 387–398,

2008.

[18] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, and P. Müller, “Ambient

intelligence in assisted living: enable elderly people to handle future inter-

faces,” in Universal access in human-computer interaction. Ambient interaction.

Springer, 2007, pp. 103–112.

[19] J. Fasola and M. J. Matarić, “Using spatial language to guide and instruct

robots in household environments,” in 2012 AAAI Fall Symposium Series, 2012.

[20] D. A. Lazewatsky and W. D. Smart, “Context-sensitive in-the-world interfaces

for mobile manipulation robots,” in RO-MAN, 2012 IEEE. IEEE, 2012, pp.

989–994.

[21] R. Fukazawa, K. Takashima, G. Shoemaker, Y. Kitamura, Y. Itoh, and

F. Kishino, “Comparison of multimodal interactions in perspective-corrected

multi-display environment,” in 3D User Interfaces (3DUI), 2010 IEEE Sympo-

sium on. IEEE, 2010, pp. 103–110.

205

[22] P. Deegan, R. Grupen, A. Hanson, E. Horrell, S. Ou, E. Riseman, S. Sen,

B. Thibodeau, A. Williams, and D. Xie, “Mobile manipulators for assisted

living in residential settings,” Autonomous Robots, vol. 24, no. 2, pp. 179–192,

2008.

[23] J. M. Beer and L. Takayama, “Mobile remote presence systems for

older adults: acceptance, benefits, and concerns,” in Proceedings of

the 6th international conference on Human-robot interaction, ser. HRI

’11. New York, NY, USA: ACM, 2011, pp. 19–26. [Online]. Available:

http://doi.acm.org/10.1145/1957656.1957665

[24] A. Cesta, S. Coradeschi, G. Cortellessa, J. Gonzalez, L. Tiberio, and

S. Von Rump, “Enabling social interaction through embodiment in excite,”

in ForItAAL. Second Italian forum on ambient assisted living, Trento, October,

2010, pp. 5–7.

[25] S. Coradeschi, A. Kristoffersson, A. Loutfi, S. Von Rump, A. Cesta, G. Cortel-

lessa, and J. Gonzalez, “Towards a methodology for longitudinal evaluation

of social robotic telepresence for elderly,” in 1st Workshop on Social Robotic

Telepresence at HRI 2011, 2011.

[26] D. Labonte, F. Michaud, P. Boissy, H. Corriveau, R. Cloutier, and M.-A. Roux,

“A pilot study on teleoperated mobile robots in home environments,” in Intelli-

gent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE,

2006, pp. 4466–4471.

[27] L. Tiberio, L. Padua, A. R. Pellegrino, I. Aprile, G. Cortellessa, and A. Cesta,

“Assessing the tolerance of a telepresence robot in users with mild cognitive

impairment,” in HRI 2011 Workshop, vol. 2, 2011, p. 23.

[28] P. Boissy, H. Corriveau, F. Michaud, D. Labonté, and M.-P. Royer, “A quali-

tative study of in-home robotic telepresence for home care of community-living

206

elderly subjects,” Journal of Telemedicine and Telecare, vol. 13, no. 2, pp. 79–

84, 2007.

[29] V. Faucounau, Y.-H. Wu, M. Boulay, M. Maestrutti, and A.-S. Rigaud, “Care-

givers’ requirements for in-home robotic agent for supporting community-

living elderly subjects with cognitive impairment,” Technology and Health Care,

vol. 17, no. 1, pp. 33–40, 2009.

[30] C. McMurrough, I. Ranatunga, A. Papangelis, D. O. Popa, and F. Makedon, “A

development and evaluation platform for non-tactile power wheelchair controls,”

in Proceedings of the 6th International Conference on PErvasive Technologies

Related to Assistive Environments. ACM, 2013, p. 4.

[31] G. Virone, A. Wood, L. Selavo, Q. Cao, L. Fang, T. Doan, Z. He, R. Stoleru,

S. Lin, and J. Stankovic, “An assisted living oriented information system based

on a residential wireless sensor network,” in Distributed Diagnosis and Home

Healthcare, 2006. D2H2. 1st Transdisciplinary Conference on. IEEE, 2006,

pp. 95–100.

[32] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin,

and J. Stankovic, “Alarm-net: Wireless sensor networks for assisted-living and

residential monitoring,” University of Virginia Computer Science Department

Technical Report, vol. 2, 2006.

[33] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu,

L. Fang, and R. Stoleru, “Context-aware wireless sensor networks for assisted

living and residential monitoring,” Network, IEEE, vol. 22, no. 4, pp. 26–33,

2008.

[34] J. M. Eklund, T. R. Hansen, J. Sprinkle, and S. Sastry, “Information technology

for assisted living at home: building a wireless infrastructure for assisted living,”

207

in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th

Annual International Conference of the. IEEE, 2006, pp. 3931–3934.

[35] J. Singh, J. Bacon, and K. Moody, “Dynamic trust domains for secure, pri-

vate, technology-assisted living,” in Availability, Reliability and Security, 2007.

ARES 2007. The Second International Conference on. IEEE, 2007, pp. 27–34.

[36] S. Dagtas, Y. Natchetoi, and H. Wu, “An integrated wireless sensing and mo-

bile processing architecture for assisted living and healthcare applications,” in

Proceedings of the 1st ACM SIGMOBILE international workshop on Systems

and networking support for healthcare and assisted living environments. ACM,

2007, pp. 70–72.

[37] K. Perakis, M. Haritou, and D. Koutsouris, “Aladdin, a technology platform

for the assisted living of dementia elderly individuals and their carers,” in

Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing,

and Ambient Assisted Living. Springer, 2009, pp. 878–881.

[38] D. D. Vergados, “Service personalization for assistive living in a mobile ambi-

ent healthcare-networked environment,” Personal and Ubiquitous Computing,

vol. 14, no. 6, pp. 575–590, 2010.

[39] A. Wigfield, S. Moore, C. Buse, and G. Fry, “Workforce development for assisted

living technology: understanding roles, delivery and workforce needs,” 2012.

[40] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm, “Living assistance systems:

an ambient intelligence approach,” in Proceedings of the 28th international con-

ference on Software engineering. ACM, 2006, pp. 43–50.

[41] C. N. Doukas and I. Maglogiannis, “Emergency fall incidents detection in

assisted living environments utilizing motion, sound, and visual perceptual

components,” Information Technology in Biomedicine, IEEE Transactions on,

vol. 15, no. 2, pp. 277–289, 2011.

208

[42] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. K. AlShebli, M. Caccamo,

C. A. Gunter, E. Gunter, J. Hou, et al., “I-living: An open system architecture

for assisted living,” in Systems, Man and Cybernetics, 2006. SMC’06. IEEE

International Conference on, vol. 5. IEEE, 2006, pp. 4268–4275.

[43] A. J. Jara, M. A. Zamora, and A. F. Skarmeta, “An internet of things—based

personal device for diabetes therapy management in ambient assisted living

(aal),” Personal and Ubiquitous Computing, vol. 15, no. 4, pp. 431–440, 2011.

[44] K. Kasugai, M. Ziefle, C. Röcker, and P. Russell, “Creating spatio-temporal

contiguities between real and virtual rooms in an assistive living environment,”

Proceedings of CREATE, vol. 10, pp. 62–67, 2010.

[45] E. Levin, R. Pieraccini, and W. Eckert, “Learning dialogue strategies within

the markov decision process framework,” in Automatic Speech Recognition and

Understanding, 1997. Proceedings., 1997 IEEE Workshop on, Dec. 1997, pp. 72

–79.

[46] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised coor-

dination of low-power embedded devices using the max-sum algorithm,” in

Proceedings of the 7th international joint conference on Autonomous agents

and multiagent systems-Volume 2. International Foundation for Autonomous

Agents and Multiagent Systems, 2008, pp. 639–646.

[47] W. Swartout, D. Traum, R. Artstein, D. Noren, P. Debevec, K. Bronnenkant,

J. Williams, A. Leuski, S. Narayanan, D. Piepol, C. Lane, J. Morie,

P. Aggarwal, M. Liewer, J.-Y. Chiang, J. Gerten, S. Chu, and K. White,

“Ada and grace: toward realistic and engaging virtual museum guides,” in

Proceedings of the 10th international conference on Intelligent virtual agents,

ser. IVA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 286–300. [Online].

Available: http://dl.acm.org/citation.cfm?id=1889075.1889110

209

[48] R. D. F. Gnjatovic, Milan, “On the role of the nimitek corpus in developing an

emotion adaptive spoken dialogue system,” ser. LREC, 2008.

[49] H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira, “Evaluation of a

hierarchical reinforcement learning spoken dialogue system,” Comput. Speech

Lang., vol. 24, pp. 395–429, April 2010.

[50] D. Traum and S. Larsson, “The information state approach to dialogue man-

agement,” in Current and New Directions in Discourse and Dialogue, J. van

Kuppevelt and R. Smith, Eds. Dordrecht, the Netherlands: Kluwer Academic

Publishers, 2003.

[51] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and

K. Yu, “The hidden information state model: A practical framework for pomdp-

based spoken dialogue management,” Computer Speech & Language, vol. 24,

no. 2, pp. 150 – 174, 2010.

[52] J. Henderson and O. Lemon, “Mixture model pomdps for efficient handling

of uncertainty in dialogue management,” in Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics on Human Language

Technologies: Short Papers, ser. HLT-Short ’08. Stroudsburg, PA, USA:

Association for Computational Linguistics, 2008, pp. 73–76. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1557690.1557710

[53] T. H. Bui, J. Zwiers, M. Poel, and A. Nijholt, “Affective dialogue management

using factored pomdps,” in Interactive Collaborative Information Systems, 2010,

pp. 207–236.

[54] T. Bui, M. Poel, A. Nijholt, and J. Zwiers, “A tractable hybrid ddn-pomdp

approach to affective dialogue modeling for probabilistic frame-based dialogue

systems,” in BNAIC 2008, Proceedings 20th Belgian-Netherlands Conference

on Artificial Intelligence, A. Nijholt, M. Pantic, M. Poel, and G. Hondorp, Eds.

210

Enschede: University of Twente, October 2008, pp. 289–290, this is an extended

abstract of a paper that has been acepted for publication in Journal of Natural

Language Engineering.

[55] K. Kanazawa and T. L. Dean, “A model for projection and action.” in IJCAI,

vol. 89, 1989, pp. 985–990.

[56] N. Webb, D. Benyon, J. Bradley, P. Hansen, and O. Mival, “Wizard of oz experi-

ments for a companion dialogue system: Eliciting companionable conversation,”

in Proceedings of the Seventh conference on International Language Resources

and Evaluation (LREC’10), N. C. C. Chair), K. Choukri, B. Maegaard, J. Mar-

iani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, Eds. Valletta, Malta:

European Language Resources Association (ELRA), may 2010.

[57] B. Reeves and C. Nass, The Media equation: how people treat computers, tele-

vision, and new media. Cambridge University Press, 1997.

[58] G. Sieber and B. Krenn, “Towards an Episodic Memory for Companion

Dialogue,” in Intelligent Virtual Agents, ser. Lecture Notes in Computer

Science, J. Allbeck, N. Badler, T. Bickmore, C. Pelachaud, and A. Safonova,

Eds. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2010, vol. 6356,

ch. 33, pp. 322–328–328. [Online]. Available: http://dx.doi.org/10.1007/978-3-

642-15892-6 33

[59] Y. Wilks, R. Catizone, S. Worgan, A. Dingli, R. Moore, D. Field, and W. Cheng,

“A prototype for a conversational companion for reminiscing about images.”

Computer Speech & Language.

[60] C. Adam, L. Cavedon, and L. Padgham, “”hello emily, how are you today?”:

personalised dialogue in a toy to engage children,” in Proceedings of the 2010

Workshop on Companionable Dialogue Systems, ser. CDS ’10. Stroudsburg,

211

PA, USA: Association for Computational Linguistics, 2010, pp. 19–24. [Online].

Available: http://dl.acm.org/citation.cfm?id=1870559.1870563

[61] ——, “Flexible conversation management in an engaging virtual character,”

International Workshop on Interacting with ECAs as Virtual Characters, p. 1,

2010.

[62] H. Cuayáhuitl and N. Dethlefs, “Hierarchical multiagent reinforcement learning

for coordinating verbal and non-verbal actions in robots,” Machine Learning for

Interactive Systems: Bridging the Gap Between Language, Motor, p. 27, 2012.

[63] A. Robotics. (2013, Nov.) Nao robot. [Online]. Available:

http://www.aldebaran-robotics.com/en/

[64] I. Kruijff-Korbayová, H. Cuayáhuitl, B. Kiefer, M. Schröder, P. Csi, G. Paci,

G. Sommavilla, F. Tesser, H. Sahli, G. Athanasopoulos, et al., “A conversational

system for multi-session child-robot interaction with several games,” in German

Conference on Artificial Intelligence (KI), Saarbruecken, Germany, 2012.

[65] G.-J. Kruijff and H.-U. Krieger, “Learnable controllers for adaptive dialogue

processing management,” in Proceedings of the AAAI 2010 Fall Symposium

”Dialogue with Robots”, November 2010.

[66] R. Meena, G. Skantze, and J. Gustafson, “A data-driven approach to under-

standing spoken route directions in human-robot dialogue.” in INTERSPEECH,

2012.

[67] S. Tellex, P. Thaker, R. Deits, T. Kollar, and N. Roy, “Toward information

theoretic human-robot dialog.” in Robotics: Science and Systems, 2012.

[68] M. Q. Azhar, S. Parsons, and E. Sklar, “An argumentation-based dialogue

system for human-robot collaboration,” in Proceedings of the 2013 interna-

tional conference on Autonomous agents and multi-agent systems. Interna-

212

tional Foundation for Autonomous Agents and Multiagent Systems, 2013, pp.

1353–1354.

[69] M. Giuliani, M. E. Foster, A. Isard, C. Matheson, J. Oberlander,

and A. Knoll, “Situated reference in a hybrid human-robot interac-

tion system,” in Proceedings of the 6th International Natural Language

Generation Conference, ser. INLG ’10. Stroudsburg, PA, USA: Associa-

tion for Computational Linguistics, 2010, pp. 67–75. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1873738.1873749

[70] M. E. Foster, M. Giuliani, A. Isard, C. Matheson, J. Oberlander, and A. Knoll,

“Evaluating description and reference strategies in a cooperative human-robot

dialogue system.” in IJCAI, 2009, pp. 1818–1823.

[71] G.-J. Kruijff, “Trusting in human-robot teams given asymmetric agency and

social sentience,” in Proceedings of the 2013 AAAI Spring Symposium on Trust

and Autonomous Systems, AAAI. Stanford University: AAAI Press, 3 2013.

[72] M. Ochs and C. Pelachaud, “Model of the perception of smiling virtual charac-

ter,” in Proceedings of the 11th International Conference on Autonomous Agents

and Multiagent Systems - Volume 1, ser. AAMAS ’12. Richland, SC: Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2012, pp.

87–94.

[73] E. Bevacqua, S. Pammi, S. J. Hyniewska, M. Schröder, and C. Pelachaud,

“Multimodal backchannels for embodied conversational agents,” in Proceedings

of the 10th international conference on Intelligent virtual agents, ser. IVA’10.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 194–200.

[74] E. De Sevin, S. J. Hyniewska, and C. Pelachaud, “Influence of personality traits

on backchannel selection,” in Proceedings of the 10th international conference

213

on Intelligent virtual agents, ser. IVA’10. Berlin, Heidelberg: Springer-Verlag,

2010, pp. 187–193.

[75] K. Prepin and C. Pelachaud, “Effect of time delays on agents’ interaction dy-

namics,” in The 10th International Conference on Autonomous Agents and

Multiagent Systems - Volume 3, ser. AAMAS ’11. Richland, SC: Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2011, pp.

1055–1062.

[76] S. Konstantopoulos and V. Karkaletsis, “System personality and adaptivity

in affective human-computer interaction,” International Journal on Artificial

Intelligence Tools, vol. 22, no. 02, p. 1350014, 2013.

[77] K. Bergmann, H. Rieser, and S. Kopp, “Regulating dialogue with gestures—

towards an empirically grounded simulation with conversational agents,” ser.

Proceedings of the SIGdial 2011 Conference, J. Chai, J. Moore, R. Passonneau,

and D. Traum, Eds. Association for Computational Linguistics, 2011, pp.

88–97.

[78] K. Bergmann and S. Kopp, “Gestural alignment in natural dialogue,” ser. Pro-

ceedings of the 34th Annual Conference of the Cognitive Science Society (CogSci

2012), R. P. Cooper, D. Peebles, and N. Miyake, Eds. Cognitive Sciece Society,

2012, pp. 1326–1331.

[79] A. Vinciarelli, M. Pantic, D. Heylen, C. Pelachaud, I. Poggi, F. D’Errico, and

M. Schroeder, “Bridging the gap between social animal and unsocial machine:

A survey of social signal processing,” Affective Computing, IEEE Transactions

on, vol. 3, no. 1, pp. 69–87, 2012.

[80] D. Bohus and A. I. Rudnicky, “The ravenclaw dialog management framework:

Architecture and systems,” Computer Speech & Language, vol. 23, no. 3, pp.

332 – 361, 2009.

214

[81] M. Gasic, F. Jurcicek, S. Keizer, F. Mairesse, B. Thomson, K. Yu, and

S. Young, “Gaussian processes for fast policy optimisation of pomdp-based

dialogue managers,” in Proceedings of the SIGDIAL 2010 Conference,

Association for Computational Linguistics. Tokyo, Japan: Association for

Computational Linguistics, September 2010, p. 201–204. [Online]. Available:

http://www.aclweb.org/anthology/W/W10/W10-4334

[82] O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet, “Sample-

Efficient Batch Reinforcement Learning for Dialogue Management Optimiza-

tion,” ACM Transactions on Speech and Language Processing, vol. 7, no. 3, pp.

7:1–7:21, May 2011.

[83] F. Jurč́ıček, B. Thomson, S. Keizer, F. Mairesse, M. Gašić, K. Yu, and S. Young,

“Natural belief-critic: A reinforcement algorithm for parameter estimation in

statistical spoken dialogue systems,” in Eleventh Annual Conference of the In-

ternational Speech Communication Association, 2010.

[84] D. S. Oliver Lemon, Xingkun Liu and C. Tollander, “Hierarchical reinforce-

ment learning of dialogue policies in a development environment for dialogue

systems: Reall-dude,” ser. SemDial Workshop on the Semantics and Pragmatics

of Dialogue, 2006.

[85] V. Rieser and O. Lemon, “Does this list contain what you were searching for?

learning adaptive dialogue strategies for interactive question answering,” Nat.

Lang. Eng., vol. 15, pp. 55–72, January 2009.

[86] P. A. Crook and O. Lemon, “Accurate probability estimation of hypothesised

user acts for POMDP approaches to dialogue management,” in Proceedings

of the Twelfth Annual Research Colloquium of the Special-Interest Group for

Computational Linguistics in the UK and Ireland (CLUKI), 2009.

215

[87] ——, “Representing uncertainty about complex user goals in statistical

dialogue systems,” in Proceedings of the 11th Annual Meeting of the Special

Interest Group on Discourse and Dialogue, ser. SIGDIAL ’10. Stroudsburg,

PA, USA: Association for Computational Linguistics, 2010, pp. 209–212.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1944506.1944541

[88] ——, “Lossless Value Directed Compression of Complex User Goal States

for Statistical Spoken Dialogue Systems,” in Proceedings of the Twelfth An-

nual Conference of the International Speech Communication Association (In-

terspeech), August 2011.

[89] F. Morbini, D. DeVault, K. Sagae, J. Gerten, A. Nazarian, and D. Traum, “FLo-

ReS: a forward looking, reward seeking, dialogue manager,” in 4th International

Workshop on Spoken Dialog Systems, Paris, France, Nov. 2012.

[90] B. Thomson and S. Young, “Bayesian update of dialogue state: A pomdp frame-

work for spoken dialogue systems,” Computer Speech & Language, vol. 24, no. 4,

pp. 562 – 588, 2010.

[91] C. Bishop et al., Pattern recognition and machine learning. springer New York,

2006.

[92] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” Machine Learn-

ing: ECML 2005, pp. 280–291, 2005.

[93] H. Cuayáhuitl and N. Dethlefs, “Dialogue systems using online learning: Be-

yond empirical methods,” in NAACL-HLT Workshop on Future directions

and needs in the Spoken Dialog Community: Tools and Data (SDCTD 2012).

Montréal, Canada: Association for Computational Linguistics, June 2012, pp.

7–8.

[94] N. Dethlefs, H. Hastie, V. Rieser, and O. Lemon, “Optimising incremental di-

alogue decisions using information density for interactive systems,” in Proceed-

216

ings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning. Association for

Computational Linguistics, 2012, pp. 82–93.

[95] D. Traum, D. DeVault, J. Lee, Z. Wang, and S. Marsella, “Incremental dia-

logue understanding and feedback for multiparty, multimodal conversation,” in

Proceedings of the 12th international conference on Intelligent Virtual Agents,

ser. IVA’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 275–288.

[96] L. E. Asri, R. Laroche, and O. Pietquin, “Reward Function Learning for Dia-

logue Management,” in Proceedings of the sixth Starting Artificial Intelligence

Research Symposium (STAIRS 2012), Montpellier (France), August 2012, pp.

95 – 106.

[97] M. Frampton and O. Lemon, “Recent research advances in reinforcement learn-

ing in spoken dialogue systems,” The Knowledge Engineering Review, vol. 24,

no. 04, pp. 375–408, 2009.

[98] H. Cuayáhuitl and N. Dethlefs, “Spatially-aware dialogue control us-

ing hierarchical reinforcement learning,” ACM Trans. Speech Lang.

Process., vol. 7, pp. 5:1–5:26, June 2011. [Online]. Available:

http://doi.acm.org/10.1145/1966407.1966410

[99] M. A. Walker, D. J. Litman, C. A. Kamm, A. A. Kamm, and A. Abella, “Par-

adise: A framework for evaluating spoken dialogue agents,” 1997, pp. 271–280.

[100] A. Hof, E. Hagen, and A. Huber, “Adaptive help for speech dialogue systems

based on learning and forgetting of speech commands,” in Proceedings of the 7th

SIGdial Workshop on Discourse and Dialogue, ser. SigDIAL ’06. Stroudsburg,

PA, USA: Association for Computational Linguistics, 2006, pp. 1–8. [Online].

Available: http://portal.acm.org/citation.cfm?id=1654595.1654597

217

[101] J. Henderson, O. Lemon, and K. Georgila, “Hybrid reinforcement/supervised

learning of dialogue policies from fixed data sets,” Comput. Lin-

guist., vol. 34, pp. 487–511, December 2008. [Online]. Available:

http://dx.doi.org/10.1162/coli.2008.07-028-R2-05-82

[102] P. Lison, “Towards relational pomdps for adaptive dialogue manage-

ment,” in Proceedings of the ACL 2010 Student Research Work-

shop, ser. ACLstudent ’10. Stroudsburg, PA, USA: Association

for Computational Linguistics, 2010, pp. 7–12. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1858913.1858915

[103] M. Gasic, F. Jurćıcek, B. Thomson, K. Yu, and S. Young, “On-line pol-

icy optimisation of spoken dialogue systems via live interaction with human

subjects,” in Automatic Speech Recognition and Understanding (ASRU), 2011

IEEE Workshop on. IEEE, 2011, pp. 312–317.

[104] M. Gašic, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thomson, P. Tsi-

akoulis, and S. Young, “On-line policy optimisation of bayesian spoken dialogue

systems via human interaction.”

[105] ——, “Pomdp-based dialogue manager adaptation to extended domains.”

[106] V. Rieser and O. Lemon, “Using machine learning to explore human

multimodal clarification strategies,” in Proceedings of the COLING/ACL on

Main conference poster sessions, ser. COLING-ACL ’06. Stroudsburg, PA,

USA: Association for Computational Linguistics, 2006, pp. 659–666. [Online].

Available: http://dl.acm.org/citation.cfm?id=1273073.1273158

[107] M. Geist and O. Pietquin, “Kalman temporal differences,” J. Artif.

Int. Res., vol. 39, pp. 483–532, September 2010. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1946417.1946428

218

[108] N. Kimura, C. Hori, T. Misu, K. Ohtake, H. Kawai, and S. Naka-

mura, “Expansion of wfst-based dialog management for handling multiple

asr hypotheses,” in Proceedings of the Second international conference

on Spoken dialogue systems for ambient environments, ser. IWSDS’10.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 61–72. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1925948.1925955

[109] H. Cuayhuitl, S. Renals, O. Lemon, and H. Shimodaira, “Hierarchical dialogue

optimization using semi-markov decision processes,” in In Proceedings of the Eu-

ropean Conference on Speech Communication and Technologies (Interspeech07),

Anvers, 2007.

[110] L. Q. Anh and C. Pelachaud, “Expressive gesture model for humanoid robot,”

in Proceedings of the 4th international conference on Affective computing and

intelligent interaction - Volume Part II, ser. ACII’11. Berlin, Heidelberg:

Springer-Verlag, 2011, pp. 224–231.

[111] ——, “Generating co-speech gestures for the humanoid robot nao through bml,”

in Proceedings of the 9th international conference on Gesture and Sign Language

in Human-Computer Interaction and Embodied Communication, ser. GW’11.

Berlin, Heidelberg: Springer-Verlag, 2012, pp. 228–237.

[112] S. Chandramohan, M. Geist, and O. Pietquin, “Optimizing Spoken Dialogue

Management with Fitted Value Iteration,” in Proceedings of the International

Conference on Speech Communication and Technologies (Interspeech 2010).

Makuhari (Japan): ISCA, September 2010, pp. 86–89.

[113] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The Journal

of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[114] S. Chandramohan and O. Pietquin, “User and noise adaptive dialogue

management using hybrid system actions,” in Proceedings of the Second

219

international conference on Spoken dialogue systems for ambient environments,

ser. IWSDS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 13–24. [Online].

Available: http://portal.acm.org/citation.cfm?id=1925948.1925951

[115] F. Jurvč́ıček, B. Thomson, and S. Young, “Natural actor and belief critic: Re-

inforcement algorithm for learning parameters of dialogue systems modelled

as pomdps,” ACM Transactions on Speech and Language Processing (TSLP),

vol. 7, no. 3, p. 6, 2011.

[116] S. Moller, R. Englert, K. Engelbrecht, V. Hafner, A. Jameson, A. Oulasvirta,

E. Raake, and N. Reithinger, “Memo: Towards automatic usability evaluation

of spoken dialogue services by user error simulations,” in InterSpeech, 2006, pp.

1786–1789.

[117] K.-P. Engelbrecht, F. Godde, F. Hartard, H. Ketabdar, and S. Moller,

“Modeling user satisfaction with hidden markov model,” in Proceedings of the

SIGDIAL 2009 Conference: The 10th Annual Meeting of the Special Interest

Group on Discourse and Dialogue, ser. SIGDIAL ’09. Stroudsburg, PA,

USA: Association for Computational Linguistics, 2009, pp. 170–177. [Online].

Available: http://portal.acm.org/citation.cfm?id=1708376.1708402

[118] S. Rossignol, O. Pietquin, and M. Ianotto, “Simulation of the grounding process

in spoken dialog systems with bayesian networks,” in Proceedings of the Second

international conference on Spoken dialogue systems for ambient environments,

ser. IWSDS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 110–121.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1925948.1925959

[119] S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin, “User Simulation in

Dialogue Systems using Inverse Reinforcement Learning,” in Proceedings of the

12th Annual Conference of the International Speech Communication Associa-

tion (Interspeech 2011), Florence (Italy), August 2011, pp. 1025–1028.

220

[120] S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin, “Behavior specific

user simulation in spoken dialogue systems,” in Speech Communication; 10.

ITG Symposium; Proceedings of. VDE, 2012, pp. 1–4.

[121] S. Chandramohan, M. Geist, F. Lefevre, O. Pietquin, M.-I. Supelec, and

F. Metz, “Co-adaptation in spoken dialogue systems,” Proceedings of the Fourth

International Workshop on Spoken Dialog Systems, 2012.

[122] S. Keizer, M. Gašić, F. Jurč́ıček, F. Mairesse, B. Thomson, K. Yu,

and S. Young, “Parameter estimation for agenda-based user simulation,”

in Proceedings of the 11th Annual Meeting of the Special Interest Group

on Discourse and Dialogue, ser. SIGDIAL ’10. Stroudsburg, PA, USA:

Association for Computational Linguistics, 2010, pp. 116–123. [Online].

Available: http://dl.acm.org/citation.cfm?id=1944506.1944529

[123] J. Schatzmann and S. Young, “The hidden agenda user simulation model,”

Audio, Speech, and Language Processing, IEEE Transactions on, vol. 17, no. 4,

pp. 733 –747, may 2009.

[124] J. Schatzmann, B. Thomson, and S. Young, “Statistical User Simulation with

a Hidden Agenda,” in 8th SIGDial Workshop on Discourse and Dialogue,

Antwerp, Belgium, Sept. 2007.

[125] J. Schatzmann, K. Georgila, and S. Young, “Quantitative evaluation of user

simulation techniques for spoken dialogue systems,” in IN PROC. OF 6TH

SIGDIAL, 2005, pp. 45–54.

[126] M. Hartikainen, E. pekka Salonen, and M. Turunen, “Subjective evaluation of

spoken dialogue systems using servqual method,” in Proceedings of the Eighth

International Conference on Spoken Language Processing (INTERSPEECH

2004-ICSLP), Jeju Island, Korea, 2004.

221

[127] S. Moller, P. Smeele, H. Boland, and J. Krebber, “Evaluating spoken dialogue

systems according to de-facto standards: A case study,” Computer Speech &

Language, vol. 21, no. 1, pp. 26 – 53, 2007.

[128] E. Mizukami, H. Kashioka, H. Kawai, and S. Nakamura, “A study

toward an evaluation method for spoken dialogue systems considering

user criteria,” in Proceedings of the Second international conference

on Spoken dialogue systems for ambient environments, ser. IWSDS’10.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 176–181. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1925948.1925968

[129] O. Pietquin and H. Hastie, “A survey on metrics for the evaluation of user

simulations,” The Knowledge Engineering Review, vol. 28, pp. 59–73, 2 2013.

[130] D. DeVault, A. Leuski, and K. Sagae, “Toward learning and eval-

uation of dialogue policies with text examples,” in Proceedings of

the SIGDIAL 2011 Conference. Portland, Oregon: Association for

Computational Linguistics, June 2011, pp. 39–48. [Online]. Available:

http://www.aclweb.org/anthology/W/W11/W11-2006

[131] A. Papangelis, V. Metsis, J. Shawe-Taylor, and F. Makedon, “Sensor placement

and coordination via distributed multi-agent cooperative control,” in Proceed-

ings of the 3rd PETRAE. ACM, 2010, pp. 14:1–14:8.

[132] A. Papangelis and F. Makedon, “A tool for sensor placement and system mon-

itoring in assistive environments,” in Proceedings of the 4th International Con-

ference on PErvasive Technologies Related to Assistive Environments, ser. PE-

TRA ’11. New York, NY, USA: ACM, 2011, pp. 31:1–31:4.

[133] G. Galatas, A. Papangelis, and F. Makedon, “A framework for optimal assistive

robot placement for event recognition,” in ICNC, 2013.

222

[134] A. Papangelis, G. Galatas, and F. Makedon, “A recommender system for

assistive environments,” in Proceedings of the 4th International Conference

on PErvasive Technologies Related to Assistive Environments, ser. PETRA

’11. New York, NY, USA: ACM, 2011, pp. 6:1–6:4. [Online]. Available:

http://doi.acm.org/10.1145/2141622.2141630

[135] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis Lectures on

Artificial Intelligence and Machine Learning, vol. 4, no. 1, pp. 1–103, 2010.

[136] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An any-

time algorithm for pomdps,” in IJCAI, vol. 3, 2003, pp. 1025–1032.

[137] M. T. Spaan and N. A. Vlassis, “Perseus: Randomized point-based value iter-

ation for pomdps.” J. Artif. Intell. Res.(JAIR), vol. 24, pp. 195–220, 2005.

[138] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,”

in Proceedings of the 20th conference on Uncertainty in artificial intelligence.

AUAI Press, 2004, pp. 520–527.

[139] M. Hauskrecht, “Incremental methods for computing bounds in partially ob-

servable markov decision processes,” in AAAI/IAAI. Citeseer, 1997, pp. 734–

739.

[140] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning algorithms

for pomdps,” J. Artif. Int. Res., vol. 32, pp. 663–704, July 2008. [Online].

Available: http://dl.acm.org/citation.cfm?id=1622673.1622690

[141] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[142] A. G. Barto, “Recent advances in hierarchical reinforcement learning,” vol. 13,

p. 2003, 2003.

[143] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Incremental natural

actor-critic algorithms,” 2007.

223

[144] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” The

MIT Press, Cambridge, MA, 1998.

[145] A. Papangelis, V. Karkaletsis, and F. Makedon, “Evaluation of online dialogue

policy learning techniques,” in Proceedings of the Eight International Con-

ference on Language Resources and Evaluation (LREC’12), N. C. C. Chair),

K. Choukri, T. Declerck, M. U. Doan, B. Maegaard, J. Mariani, J. Odijk, and

S. Piperidis, Eds. Istanbul, Turkey: European Language Resources Association

(ELRA), may 2012.

[146] A. Papangelis, “A comparative study of reinforcement learning techniques

on dialogue management,” in Proceedings of the Student Research Workshop

at the 13th Conference of the European Chapter of the Association

for Computational Linguistics, ser. EACL ’12. Stroudsburg, PA, USA:

Association for Computational Linguistics, 2012, pp. 22–31. [Online].

Available: http://dl.acm.org/citation.cfm?id=2380943.2380946

[147] A. Papangelis, V. Karkaletsis, and F. Makedon, “Online complex action learning

and user state estimation for adaptive dialogue systems,” in Proc. ICTAI-12

24th IEEE International Conference On Tools With Artificial Intelligence, 2012.

[148] A. Papangelis, I. Ranatunga, C. McMurrough, and F. Makedon, “An assistive

object manipulation system,” in Proceedings of the 3rd Workshop on Robotics

for Assistive Environments (RasEnv), 2013, p. to appear.

[149] J. A. Russell, “A circumplex model of affect.” Journal of Personality and Social

Psychology, vol. 39, no. 6, pp. 1161–1178, Dec. 1980.

[150] V. Rieser, Reinforcement learning for adaptive dialogue systems. Springerverlag

Berlin Heidelberg, 2011.

224

[151] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng, “ROS: an open-source Robot Operating System,” in Proc. ICRA-

09 Workshop on Open Source Software (ICRAOSS-09), 2009.

[152] D. Huggins-Daines, M. Kumar, A. Chan, A. Black, M. Ravishankar, and

A. Rudnicky, “Pocketsphinx: A free, real-time continuous speech recognition

system for hand-held devices,” in Acoustics, Speech and Signal Processing, 2006.

ICASSP 2006 Proceedings. 2006 IEEE International Conference on, vol. 1,

2006, pp. I–I.

[153] M. Pickett and A. G. Barto, “Policyblocks: An algorithm for creating useful

macro-actions in reinforcement learning,” in ICML, 2002, pp. 506–513.

[154] S. Konstantopoulos, “An embodied dialogue system with personality

and emotions,” in Proceedings of the 2010 Workshop on Companionable

Dialogue Systems, ser. CDS ’10. Stroudsburg, PA, USA: Association

for Computational Linguistics, 2010, pp. 31–36. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1870559.1870565

[155] J. Peng and R. J. Williams, “Incremental multi-step q-learning,” Machine

Learning, vol. 22, no. 1-3, pp. 283–290, 1996.

[156] M. A. Wiering and H. Van Hasselt, “The qv family compared to other rein-

forcement learning algorithms,” 2009 IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, p. 8, 2009.

[157] O. Pietquin and H. Hastie, “A survey on metrics for the evaluation of user

simulations,” The Knowledge Engineering Review, vol. 28, pp. 59–73, 2 2013.

[158] F. Jurvč́ıček, B. Thomson, and S. Young, “Natural actor and belief critic: Re-

inforcement algorithm for learning parameters of dialogue systems modelled as

pomdps,” vol. 7, no. 3. ACM, 2011, p. 6.

225

[159] D. Traum and S. Larsson, “The information state approach to dialogue man-

agement,” in Current and New Directions in Discourse and Dialogue, J. van

Kuppevelt and R. Smith, Eds. Dordrecht, the Netherlands: Kluwer Academic

Publishers, 2003.

[160] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng, “ROS: an open-source Robot Operating System,” in Proc. ICRA-

09 Workshop on Open Source Software (ICRAOSS-09), 2009.

[161] R. Givan, T. Dean, and M. Greig, “Equivalence notions and model minimization

in markov decision processes,” Artif. Intell., vol. 147, no. 1-2, pp. 163–223, July

2003.

[162] A. Rizzo, K. Sagae, E. Forbell, J. Kim, B. Lange, J. Buckwalter, J. Williams,

T. Parsons, P. Kenny, D. R. Traum, J. Difede, and B. Rothbaum, “Simcoach:

An intelligent virtual human system for providing healthcare information and

support,” in I/ITSEC 2011, Orlando, Florida, November 2011 2011.

[163] F. W. Weathers, B. T. Litz, D. S. Herman, J. A. Huska, T. M. Keane, et al.,

“The ptsd checklist (pcl): Reliability, validity, and diagnostic utility,” in annual

meeting of the international society for traumatic stress studies, San Antonio,

TX, vol. 141, no. 7, 1993.

[164] S. Institute. [Online]. Available: http://www.sidran.org

[165] A. Rizzo, B. John, B. Newman, J. Williams, A. Hartholt, C. Lethin, and J. G.

Buckwalter, “Virtual reality as a tool for delivering ptsd exposure therapy and

stress resilience training,” Military Behavioral Health, vol. 1, no. 1, pp. 52–58,

2013.

[166] I. of Medicine, “Treatment for posttraumatic stress disorder in military and

veteran populations: Initial assessment,” 2012.

226

[167] E. Foa, E. Hembree, and B. O. Rothbaum, Prolonged exposure therapy for

PTSD: Emotional processing of traumatic experiences therapist guide. Oxford

University Press, 2007.

[168] P. A. Resick, L. F. Williams, M. K. Suvak, C. M. Monson, and J. L. Gradus,

“Long-term outcomes of cognitive–behavioral treatments for posttraumatic

stress disorder among female rape survivors.” Journal of consulting and clinical

psychology, vol. 80, no. 2, p. 201, 2012.

[169] K. Kuch, B. J. Cox, and D. M. Direnfeld, “A brief self-rating scale for ptsd after

road vehicle accident,” Journal of Anxiety Disorders, vol. 9, no. 6, pp. 503–514,

1995.

[170] A. Papangelis, R. Gatchel, V. Metsis, and F. Makedon, “An adaptive dialogue

system for assessing post traumatic stress disorder,” in Proceedings of the 6th

International Conference on PErvasive Technologies Related to Assistive Envi-

ronments. ACM, 2013, p. 49.

[171] J. G. Buckwalter, J. Williams, K. Sagae, and D. Traum, “Simcoach an online

intelligent virtual human agent system for breaking down barriers to care for

service members and veterans,” Healing War Trauma: A Handbook of Creative

Approaches, vol. 44, p. 238, 2013.

[172] A. M. COOPER and R. Michels, “Diagnostic and statistical manual of mental

disorders,” American Journal of Psychiatry, vol. 138, no. 1, pp. 128–129, 1981.

[173] R. J. Kohlenberg and M. Tsai, “Healing interpersonal trauma with the intimacy

of the therapeutic relationship.” 1998.

[174] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist sys-

tems. University of Cambridge, Department of Engineering, 1994.

227

[175] H. Cuayhuitl, “Hierarchical reinforcement learning for spoken dialogue

systems,” Ph.D. dissertation, The University of Edinburgh, 2009. [Online].

Available: http://hdl.handle.net/1842/3852

[176] W. C. Chuang, Z.J, “Multi-modal emotion recognition from speech and text,”

Computational Linguistics and Chinese Language Processing, vol. 9, no. 2, pp.

45–623, 2004.

[177] T. Drummond, “Vocabulary of emotions.”

[178] A. Gatt and E. Reiter, “Simplenlg: A realisation engine for practical appli-

cations,” in Proceedings of the 12th European Workshop on Natural Language

Generation. Association for Computational Linguistics, 2009, pp. 90–93.

[179] R. Molich and J. Nielsen, “Improving a human-computer dialogue,” Communi-

cations of the ACM, vol. 33, no. 3, pp. 338–348, 1990.

[180] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceed-

ings of the SIGCHI conference on Human factors in computing systems. ACM,

1990, pp. 249–256.

[181] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in Pro-

ceedings of the SIGCHI conference on Human Factors in Computing Systems.

ACM, 1994, pp. 152–158.

[182] ——, “Heuristic evaluation,” Usability inspection methods, vol. 17, pp. 25–62,

1994.

[183] H. Wang, H. Huang, and F. Makedon, “Emotion detection via discriminant

laplacian embedding,” Universal Access in the Information Society, pp. 1–9.

[184] T. Paek, “Toward evaluation that leads to best practices: reconciling dialog

evaluation in research and industry,” in Proceedings of the Workshop on Bridg-

ing the Gap: Academic and Industrial Research in Dialog Technologies, ser.

228

NAACL-HLT-Dialog ’07. Stroudsburg, PA, USA: Association for Computa-

tional Linguistics, 2007, pp. 40–47.

229

BIOGRAPHICAL STATEMENT

Alexandros Papangelis was born in Athens, Greece in 1986. He received his

B.Sc. degree from the National and Kapodistrian University of Athens, in 2003,

in Informatics and Telecommunications. He received, his M.Sc. from University

College London, in 2009, in Machine Learning. His current research interest is in the

area of adaptive dialogue management, robot dialogue systems and assistive living

applications.

230

