
VIEWPOINT INVARIANT GESTURE RECOGNITION AND 3D HAND POSE

ESTIMATION USING RGB-D

by

PAUL DOLIOTIS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington, in the context of the joint PhD programme

with the National Center for Scientific Research ”Demokritos”, in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright c© by PAUL DOLIOTIS 2013

All Rights Reserved

ACKNOWLEDGEMENTS

First of all I would like to express my gratitude to my supervisor Dr. Vassilis Athit-

sos for his invaluable support and guidance during the course of my PhD studies and es-

pecially for tolerating my idiosyncrasies and offering me the flexibility to follow my own

research agenda. His scientific ethos has been an inspiration from the very beginning and

was pivotal in forging my own scientific identity. I would also like to thank my committee

members, Dr. Stavros Perantonis, Dr. Gerasimos Potamianos, Dr. Farhad Kamangar and

Dr. Gian -Luca Mariottini, for their interest in my research, for participating in my defense

and for providing helpful comments and insights that improved the overall quality of this

dissertation.

I had the wonderful opportunity to be the first scholar of the joint PhD programme be-

tween the University of Texas at Arlington and the National Center for Scientific Research

“Demokritos”. During the last five years I had the privilege to collaborate with researchers

from UTA (VLM lab) and Demokritos (CIL lab), taking the best of both worlds. I wish to

thank all of my colleagues for creating such a fun and stimulating working/research envi-

ronment. Dr. Filia Makedon (from UTA) and Dr. Vangelis Karkaletsis (from Demokritos)

played an instrumental role in establishing this joint PhD programme and I thank both of

them. I would also like to thank my co-advisors, Dr. Stavros Perantonis and Dr. Dimitrios

Kosmopoulos, for being frequent research collaborators and for their support during the

time I spent as a research assistant at the CIL lab in Demokritos.

Finally, last but not least, I am grateful to my family for their unwavering moral

support for more than a decade of academic studies.

November 15, 2013

iii

ABSTRACT

VIEWPOINT INVARIANT GESTURE RECOGNITION AND 3D HAND POSE

ESTIMATION USING RGB-D

PAUL DOLIOTIS, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Vassilis Athitsos

The broad application domain of the work presented in this thesis is pattern classifi-

cation with a focus on gesture recognition and 3D hand pose estimation.

One of the main contributions of the proposed thesis is a novel method for 3D hand

pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval

problem. The proposed method investigates and introduces new similarity measures for

similarity search in a database of RGB-D hand images. At the same time, towards making

3D hand pose estimation methods more automatic, a novel handsegmentation method is

introduced which also relies on depth data. Experimental results demonstrate that the use

of depth data increases the discrimination power of the proposed method.

On the topic of gesture recognition, a novel method is proposed that combines a

well known similarity measure, namely the Dynamic Time Warping (DTW), with a new

hand tracking method which is based on depth frames capturedby Microsoft’s KinectTM

RGB-Depth sensor. When DTW is combined with the near perfecthand tracker gesture

recognition accuracy remains high even in very challengingdatasets, as demonstrated by

experimental results. Another main contribution of the current thesis is an extension of the

iv

proposed gesture recognition system in order to handle cases where the user is not standing

fronto-parallel with respect to the camera. Our method can recognize gestures captured

under various camera viewpoints.

At the same time our depth hand tracker is evaluated against one popular open source

user skeleton tracker by examining its performance on random signs from a dataset of

American Sign Language (ASL) signs. This evaluation can serve as a benchmark for the

assessment of more advanced detection and tracking methodsthat utilize RGB-D data.

The proposed structured motion dataset of (ASL) signs has been captured in both RGB

and depth format using a Microsoft KinectTM sensor and it will enable researchers to ex-

plore body part (i.e., hands) detection and tracking methods, as well as gesture recognition

algorithms.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xv

Chapter Page

1. INTRODUCTION . 1

2. 3D HAND POSE ESTIMATION USING RGB-D 5

2.1 Introduction . 5

2.2 Related Work . 6

2.3 Hand Segmentation . 9

2.3.1 Finding the Axis of Elongation .9

2.3.2 Creating the Sequence of Widths11

2.3.3 Moore-Neighbor Tracing Algorithm 13

2.3.4 Gradient Descent . 16

2.4 Framework for Hand Pose Estimation 17

2.4.1 Database . 19

2.4.2 Similarity Measures . 23

2.5 Experiments . 25

2.5.1 Definition of Retrieval Accuracy and Experimental Setup 25

2.5.2 Rendering and Pre-processing Training Images 26

2.5.3 Preliminary Results for Datasets with Clean Background 28

2.5.4 Preliminary Results for a Dataset with Clutter in the Background . . 30

vi

2.5.5 Results for the Proposed Depth Similarity Measure 31

2.5.6 Consolidated Results . 34

2.5.7 Qualitative Evaluation . 35

2.5.8 Results for Automatic Hand Segmentation Method 37

2.6 Conclusions and Future Work .. 39

3. HAND TRACKING USING DEPTH DATA . 40

3.1 Introduction . 40

3.2 Methodology . 41

3.3 Description of ASL Dataset .. 44

3.3.1 Discussion of Related Gesture Recognition Datasets 44

3.3.2 Size and Scope . 46

3.3.3 Technical Specifications . 46

3.3.4 Annotations . 47

3.4 Experimental Setup for the Evaluation of Hand Tracking Methods 48

3.5 Results for Hand Tracking .49

3.6 Conclusion and Future Work .52

4. GESTURE RECOGNITION USING DEPTH DATA 53

4.1 Introduction . 53

4.2 Related Work . 56

4.3 Application Overview .62

4.4 Detection and Normalization .. . 65

4.4.1 Detection . 65

4.4.2 Normalization . 67

4.5 Dynamic Time Warping . 73

4.6 Experiments and Results .78

4.6.1 Conclusion and Future Work . 80

vii

5. VIEWPOINT INVARIANT GESTURE RECOGNITION USING RGB-D 81

5.1 Introduction . 81

5.2 Related Work . 82

5.3 Methodology . 85

5.3.1 RANSAC . 92

5.4 Experimental Results .94

5.4.1 Testing Dataset . 94

5.5 Discussion and Future Work .96

6. DISCUSSION AND CONCLUSIONS . 98

6.1 Discussion of Contributions .. . 98

6.2 Future Work . 100

REFERENCES . 102

BIOGRAPHICAL STATEMENT . 111

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 System input and output. Given the input image, the system goes through the

database of synthetic images in order to identify the ones that are the most similar

to the input image. Eight examples of database images are shown here, and the most

similar one is enclosed in a red square. The database currently used contains more

than 100,000 images. 6

2.2 At the top image we can see the original depth image. At the bottom image we can

see the segmented arm after performing depth segmentation using a rough estima-

tion for an initial threshold. Original size for both imagesis 640× 480 10

2.3 On the top is an example of aMinimum Enclosing Ellipsoid (MEE)along with the

major axis. To the bottom we visually demonstrate the desired palm cutoff location

(blue line) . 12

2.4 This a plot of the sequence of widths. The desired local minimum is highlighted

indicating the position for the palm cutoff point. 13

2.5 At the top image we can see the2D contour before the smoothing operation. At the

bottom image we can see the2D contour after the smoothing operation. Original

size for both images is640× 480 . 14

2.6 This is theMoore Neighborhood for a given pixelPi 15

2.7 A demonstration of theMoore-Neighbor Tracingalgorithm. Red arrow denotes

from which direction we entered the start pixel (i.e.,1). Next blue arrow facing up

is backtracking. We search in theMoore-Neighborhoodfor the next non-zero pixel

(i.e.,2). The algorithm terminates when1 is visited for the second time. 17

ix

2.8 On the top row one can see two original edge images from our database. On

the bottom row one can see the respective edges images after applying the contour

following algorithm (Moore-Neighbor Tracing). Order of pixels is denoted with

color intensities starting from Red then Magenta, Blue, Cyan, Green, Yellow and

Orange. Note that for the bottom left image we have used anti-clockwise order and

for the bottom right image clockwise order. 18

2.9 The articulated hand model. The palm and 15 finger links are shown in different

colors. 19

2.10 The 20 basic shapes used to generate model images in our database. Each basic

shape is rendered from86 different viewpoints 20

2.11 Nine3D orientations of the same hand shape. 21

2.12 Four different type of textures for rendering the same hand shape. On the top left

we can see a ”cartoon”-like skin color texture. Top right is aphoto-realistic skin

color texture. Bottom left all different joints have been rendered with a different

color. Bottom right one can see a depthmap, where each pixel intensity encodes the

distance from the camera. 22

2.13 The two depth-maps at the left side are “database depth-maps” and have been

rendered with a 3D modeling software. The two depth-maps at the right side are

“test depth-maps” and they have been captured by the KinectTM device. 24

2.14 At the top row one can see original database images that have been synthetically

generated using a hand model and a computer graphics software [1]. At the bottom

row we show the respective edge images we are given as input toour method. . . . 27

2.15 Test images from our dataset of174 ASL handshapes images with clean back-

ground. On the top row one can see the original images. Bottomrow are the edge

images obtained after applying a Canny Edge Detector to the original images. . . . 28

x

2.16 To the left one can see the original test image which is a real hand image captured

with a clean background. To the right one can see the synthetically generated image

by using the same ground truth labels. 30

2.17 Test images from our dataset of248 ASL handshapes images within a highly clut-

tered background. To the left one can see the original imagesand to the right the

edge images obtained after applying a Canny Edge Detector tothe original images. 32

2.18 Query image and some of the retrieved model images. 36

2.19 top 10 results . 38

3.1 Hand detection in depth images: original image (top left), depth image (top right),

segmentation using depth (middle left), the connected component corresponding to

the gesturing human (middle right), scores based on multiplication of frame differ-

encing and depth (bottom left), single top candidate (bottom right). One can see

that the depth detector here successfully detects the hand of the gesturing person. . 42

3.2 Sample dataset sign frame. Top: color video frame; Bottom: depth video frame . . 45

3.3 Sample hands and face annotations of a single depth video frame 48

3.4 Comparison of the skeletal tracker and our method from [2] onone-handed signs. 50

3.5 Skeletal tracker and depth hand tracking method maximum pixel error on a per sign

basis. 50

3.6 Varying accuracy on one-handed signs. 51

4.1 KinectTM camera . 54

4.2 Detection of candidate hand regions based on skin color.Clearly, skin color

is not sufficient to unambiguously detect the gesturing handsince the face,

the non-gesturing hand, and other objects in the scene have similar color. On

the other hand, for this particular scene, the gesturing hand is consistently

among the top15 candidates identified by skin detection 55

xi

4.3 Example MHIs representing digits from0 to 9. MHIs have been computed based

on RGB information only. 58

4.4 Palm’s Graffiti digits . 63

4.5 Example model digits extracted using a colored glove. We reuse the figure and

actual videos from [3] . 63

4.6 Given a test video sequence, we classify it as one of our ten classes by computing

the 1NN . 64

4.7 A typical bottom-up gesture recognition approach. 65

4.8 Hand detection in color images: original image (top left), skin detection (top

right), frame differencing (middle left), multiplicationof skin and frame differenc-

ing scores (middle right), top 15 hand candidates (bottom left), single top candidate

(bottom right). One can see that the hand detector here failsto detect the hand of

the gesturing person. 66

4.9 On the top image we can see a trajectory representing the digit two. If the user

moves towards the camera this may result in a trajectory thatappears scaled up

(middle image). If the users changes his position with respect to the camera this

may result in a trajectory that appears to be translated (bottom image) 68

4.10 In this figure we depict the output of our normalization process. As input to the nor-

malization algorithm we gave the trajectories depicted an Figure 4.11. The actual

frame size for the normalized images depicted here is300 × 300 69

4.11 The trajectories represent all digits from0 to 9. Each red pixel represents the actual

hand location of the gesturing hand in each video frame. Frames are of size240× 320 71

xii

4.12 This figure depicts our normalization process. On the top image (actual frame

size is240 × 320) we can see the original 2D trajectory based on the actual hand

locations. Then (middle image) we compute the Minimum Enclosing Circle (in red)

and the corresponding bounding box (in green). Finally we resize the bounding box

to predefined size of300 × 300 (bottom image) 72

4.13 To the left image we can see a normalized trajectory. To the right image, is the

same trajectory normalized after adding some outliers. Clearly the trajectory has

been shifted with respect to the original position and has been scaled down. 73

4.14 To align the sequences, we construct a warping matrix and compute the optimal

warping path, shown with gray squares. 74

4.15 Note that the two sequences are quite similar but not alignedin the time axis.

Euclidean distance doesn’t take into account the fact that the two time series are

out of phase. Hence it will produce a pessimistic dissimilarity measure. DTW

alignment will provide a more intuitive distance measure. 76

4.16 Results . 79

5.1 This figure depicts a point cloud with a user performing a gesture. The origin of the

3D coordinate system coincides with the optical center of the KinectTM RGB sen-

sor. Unit of measurement is in meters. Red axis isx, green axis isy and finally blue

axis isz. PCL defines the3D coordinate system following the same conventions as

thepinhole camera model . 86

5.2 This figure depicts a user performing a gesture from a camera viewpoint such as

thatθ = 75◦ . 88

5.3 In this figure we depict2D trajectories that have been created by detecting hand

locations in2D RGB-D images. The original3D gestures represent hand-signed

digits from0 to 9. The user is not facing the camera from a frontal view but froma

viewpoint withθ = 75◦. The actual frame size for the depicted images is300 × 300 89

xiii

5.4 In this figure we demonstrate the effect of the3D transformation. The original

hand-signed digit3D gestures are the same as in previous figure 5.3. We apply

the transformation so as thegesturing planebecomes parallel to the image plane.

Finally we depict the2D trajectories created by projecting the3D points ontoXY

plane. The actual frame size for the depicted images is300 × 300 91

5.5 User performing gestures under various camera viewpoints. 95

5.6 Results for our view invariant gesture recognition method.For comparison we

tested our gesture recognition method from previous Chapter 4 96

xiv

LIST OF TABLES

Table Page

2.1 Preliminary results for a dataset of174 ASL handshape images, captured in

a rather clean background. For every method used, we show thepercentage

of test images for which the highest ranking correct match was within each

range.DCD stands for “image-to-model directed Chamfer distance”.UCD

is the undirected Chamfer distance. .. . 29

2.2 Preliminary results for a dataset of174 ASL handshape images. For every

method used, we show the percentage of test images for which the highest

ranking correct match was within each range.DCDgt stands for “image-

to-model directed Chamfer distance”.UCDgt is the undirected Chamfer

distance. Test images have been synthetically generated with a 3D modeling

software based on our estimations for ground truth labels ofthe original test

datasetASL-RGB(see Table 2.1) . 30

2.3 Preliminary results for a more challenging dataset of248 ASL handshape

images, which have been captured in a highly cluttered environment. For

every method used, we show the percentage of test images for which the

highest ranking correct match was within each range.DCDcf stands for

“image-to-model directed Chamfer distance”.UCDcf is the undirected

Chamfer distance . 31

2.4 Results forASL-KinectHandshapesdataset, usingweightedSM similarity

measure and a set of different pairs of weights. Optimized recognition rates

are reported whenl1 = 0.8 andl2 = 0.2. 33

xv

2.5 Results forASL-KinectHandshapesdataset. For every method used, we

show the percentage of test images for which the highest ranking correct

match was within each range.UCD depth contours, is undirected Cham-

fer distance between hand contours from depth images and full edges from

model images. InUCD color edges, skin color segmentation has been em-

ployed to extract the full edges.depthSM is our depth similarity measure,

with manual hand segmentation.depthSMauto is our depth similarity mea-

sure, with automatic hand segmentation.weightedSM similarity measure

has weightsl1 = 0.8 andl2 = 02. 33

2.6 Consolidated results. Best overall performance is achieved when using the

proposedweightedSM similarity measure with weightsl1 = 0.8 andl2 =

0.2. Our proposed method outperforms the state of the art methodpresented

in [4]. 34

2.7 Results for our Hand segmentation method 37

xvi

CHAPTER 1

INTRODUCTION

In human-computer interaction applications, gesture recognition has the potential to

provide a natural way of communication between humans and machines. The technology

is becoming mature enough to be widely available to the public and real-world computer

vision applications start to emerge. However human-computer interaction interfaces need

to be as intuitive and natural as possible. The user should ideally interact with machines

without the need of cumbersome devices (such as colored markers or gloves) or apparatus

like remote controls, mouse and keyboards. Hand gestures can provide an alternative and

easy means of communication with machines and could revolutionize the way we use tech-

nology in our daily activities. Successful applications ofhand gesture systems can be found

in various research and industry areas such as: game controlling, human-robot interaction,

virtual environments, smart homes and sign language recognition, to name a few.

The broad application domain of the work presented in the following chapters is

pattern classification with a focus on viewpoint invariant gesture recognition and 3D hand

pose estimation using RGB-D which are formulated as database retrieval problems. The

user provides to the gesture recognition system examples, and asks the system to retrieve

database items that are the most similar to those examples. The system achieves classifica-

tion of that example based on the class labels of the most similar database patterns.

The main contributions of this dissertation can be summarized as follows:

1. A viewpoint invariant hand pose estimation method using RGB-D (Chapter 2)

1

2. A hand tracking method based on depth data which is evaluated against one popular

user skeleton tracker by examining its performance on random signs from a dataset

of American Sign Language (ASL) signs. (Chapter 3)

3. An end-to-end gesture recognition system (see Chapter 4)that uses RGB-D and com-

bines a well known similarity measure, namely the Dynamic Time Warping (DTW),

with a new hand tracking method which is based on depth frames.

4. A viewpoint invariant gesture recognition method that can handle cases where the

user is not standing fronto-parallel with respect to the camera (Chapter 5).

More specifically, the first main contribution of the thesis is a viewpoint invariant

hand pose estimation method using RGB-D (see Chapter 2). It proposes an exemplar-

based method that relies on similarity measures employing depth information. Our system,

given an input image of a person signing a gesture in a cluttered scene, locates the gestur-

ing arm, automatically detects and segments the hand and finally creates a ranked list of

possible shape classes, 3D pose orientation and full hand configuration parameters. The

clutter-tolerant hand segmentation algorithm is based on depth data from a single image

captured with a commercially available depth sensor, namely the KinectTM. Shape and

3D pose estimation is formulated as an image database retrieval method where given a seg-

mented hand the best matches are extracted from a large database of synthetically generated

hand images. Contrary to previous approaches this clutter-tolerant method is all-together:

user-independent, automatically detects and segments thehand from a single image (no

multi-view or motion cues employed) and provides estimation not only for the 3D pose

orientation but also for the full hand articulation parameters. The performance of this ap-

proach is quantitatively and qualitatively evaluated on a dataset of real and synthetic images

of American Sign Language (ASL) handshapes.

Another main contribution, is an exemplar-based system forgesture recognition

which is presented at Chapter 4. A novel method is proposed that combines a well known

2

similarity measure, namely the Dynamic Time Warping (DTW),with a new hand track-

ing method which is based on depth frames captured by Microsoft’s KinectTM RGB-Depth

sensor. First we evaluate our depth hand tracker (see Chapter 3) against one popular user

skeleton tracker by examining its performance on random signs from a dataset of Ameri-

can Sign Language (ASL) signs. Our structured motion dataset of (ASL) signs has been

captured in both RGB and depth format using a Microsoft KinectTM sensor and it will en-

able researchers to explore body part (i.e., hands) detection and tracking methods, as well

as gesture recognition algorithms. The proposed gesture recognition system relies on the

accurate depth hand tracker and is one of the earliest ones that employed such depth infor-

mation from the KinectTM sensor. The underlying gesture recognition method is translation

and scale invariant which is a desirable property for many HCI systems. Performance has

been tested on a digits recognition dataset which has been captured in a rather challeng-

ing environment with clutter in the background as well as various moving distractors that

could make typical gesture recognition systems fail . All experimental datasets include

hand signed digits gestures but the framework can be generalized to recognize a wider

range of gestures.

At Chapter 5 we extend our recognition system in order to handle cases where the

user is not standing fronto-parallel with respect to the camera. Our viewpoint invariant

gesture recognition method can recognize gestures captured under various camera view-

points, in the range of[−75◦ · · ·+ 75◦]. A few interesting properties of our system are the

following:

1. It is trained from videos captured under one specific camera viewpoint but it can be

tested with gestures captured under arbitrary camera viewpoints. In our experiments

we opt to train our system with a camera viewpoint where the user is standing fronto-

parallel to the image plane. For testing the videos are captured under the following

set of viewpoints{±45◦,±75◦}.

3

2. It is all-together translation, scale and viewpoint invariant. To the best of our knowl-

edge few gesture recognition methods satisfy all these three properties at the same

time.

3. It employs an affordable, commercially available sensor(i.e., Microsoft KinectTM) as

opposed to an expensive laboratory sensor or a cumbersome calibrated multi-camera

set-up.

In the upcoming chapters we will further elaborate on the proposed contributions and

we will provide experimental results that demonstrate the usefulness and effectiveness for

all novel methods presented throughout this thesis.

4

CHAPTER 2

3D HAND POSE ESTIMATION USING RGB-D

2.1 Introduction

This chapter will investigate and propose novel similaritymethods that are integrated

in the general framework of 3D hand pose estimation. Hand pose estimation belongs to the

broader application domain of gesture recognition and has become an essential component

for many natural user interface (NUI) systems. It provides humans the ability to interact

with machines naturally without the use of any cumbersome mechanical devices. Hand

gestures are more commonly used and can be found in a wide range of applications such

as: sign language recognition, robot learning by demonstration and gaming environments,

just to name a few. Recognizing hand gestures is a very challenging task and requires

solving several sub-problems like automatic hand detection and segmentation, 3D hand

pose estimation, hand shape classification and in some casesestimation of the full hand

configuration parameters.

In this work we specifically address the problem of 3D hand pose and shape estimation.

Towards developing an effective solution several challenges may arise and some of the

main ones are listed bellow:

• High dimensionality of the problem

• Noisy hand segmentation due to cluttered backgrounds

• Increased pose variability and self-occlusions that frequently occur when a hand is

in motion

Hand pose estimation is formulated here as an image databaseretrieval problem. The clos-

est matches for an input hand image are retrieved from a largedatabase of synthetic hand

5

Figure 2.1.System input and output. Given the input image, the system goes through the database
of synthetic images in order to identify the ones that are themost similar to the input image. Eight
examples of database images are shown here, and the most similar one is enclosed in a red square.
The database currently used contains more than 100,000 images.

images. The ground truth labels of the retrieved matches areused as hand pose estimates

from the input (Figure 2.1). The approach described in this chapter is motivated by the

work presented in [4]. However, one limitation of that work was that it required manual

segmentation in order to define a bounding box for the gesturing hand. We propose an

automatic hand segmentation method that relies on depth data acquired from the Microsoft

KinectTM device [5]. Another contribution is that we achieve improved performance un-

der clutter by using a similarity measure which is also basedon the depth data. A main

assumption we make is that the gesturing arm is the closest object to the camera and so

it can easily be segmented from the rest of the body and other objects based on depth. To

measure the effectiveness of this new method we have collected a dataset of American Sign

Language (ASL) handshapes.

2.2 Related Work

Some successful early works require specialized hardware or the use of cumbersome

mechanical devices. In [6] Schneider and Stevens use a motion capture system while in [7]

6

Wang and Popović employ visual markers with a color glove. Unfortunately such methods

impede the user’s natural interaction in the scene and they require a costly and complex

experimental setup.

Nowadays research is more focused on purely vision-based methods that are non-invasive

and are more suitable for Natural User Interface (NUI) systems. The most recent review

on vision-based hand pose estimation methods has been published by Erolet al. [8]. They

define a taxonomy where initially these approaches are divided in two main categories:

“partial pose estimation” and “full DOF pose estimation”. “Partial pose estimation” meth-

ods can be viewed as extensions of appearance-based systems. They usually take as input

image features and map them a small discrete set of hand modelkinematic parameters. A

main disadvantage is that they require a large amount of training data and hence are not

scalable. Appearance-based methods for hand pose recognition, like [9, 10, 11, 12], can

tolerate clutter, but they are limited to estimating 2D handpose from a limited number of

viewpoints. Our method can handle arbitrary viewpoints.

“Full DOF pose estimation” approaches are not limited to a small, discrete set of

hand model configurations. They target all the kinematic parameters (i.e., joint angles,

hand position or orientation) of the skeleton of the hand, leading to a full reconstruction

of hand motion. These approaches can be further divided intotwo other categories: (1)

“Model-based tracking” and (2) “Single frame pose estimation”.

“Model-based methods” [13, 14, 15, 16] typically match visual observations to in-

stances of a predefined hand model. Formally this is expressed as an optimization problem

where an objective function is required in order to measure similarity between actual visual

observations and model hypotheses. The main drawback is increased computational com-

plexity due to the high dimensionality of the model’s parameter space. On the other hand

they require less training and are easily scalable.

7

“Single frame pose estimation methods” try to solve the handpose estimation prob-

lem without relying on temporal information. The lack of temporal information increases

the difficulty of the problem. However successful approaches can tackle the negative effect

of motion blur and can also be employed to initialize tracking-based systems. Athitsoset

al. [4] have proposed such a single pose estimation method by creating a large database

of synthetic hand poses using an articulated model and retrieve the best match from this

database. However they require manual segmentation of the test data.

Most recently, due to the advent of commercially available depth sensors, there is an

increased interest in methods relying on depth data [17, 18,13, 19]. Keskinet al. [17] train

Random Decision Forests (RDF) on depth images and then use them to perform per pixel

classification and assign each pixel a hand part. Then, they apply the mean shift algorithm

to estimate the centers of hand parts to form a hand skeleton.However they don’t explicitly

address the automatic hand segmentation problem.

Another highly cited method that relies on RGB-D data has been proposed by Oikono-

midis et al. [13]. This is a model-based method that treats 3Dhand pose recovery as a min-

imization problem. The objective function to be minimized is formulated as the difference

between a 3D parametric model and the actual instances of captured hand images. The ob-

jective function employs both RGB and depth information provided by a KinectTM sensor.

More specifically, the 3D hand model is defined as a set of assembled geometric primi-

tives and is expressed as a vector of 27 parameters. Hand poseestimation and tracking is

achieved by computing the optimal values for those 27 parameters that minimize the differ-

ence between hand hypotheses and the actual observations. To quantitatively measure that

difference a 3D rendering software is employed in order to produce RGB and depthmap

instances for given model parameters. The minimization is formulated with a variant of

Particle Swarm Optimization. Near real time performance isachieved by exploiting the

GPU’s parallel processing architecture. This technique requires temporal continuity as

8

opposed to our proposed hand pose estimation method that relies on information from a

single frame. Another main difference is the initialization of the system which is not a

requirement in our case.

According to the aforementioned taxonomy, this chapter describes an “appearance-

based method” aiming at 3D orientation estimation using features from a single frame. This

work builds on top of the work described in [4] and [20], wherehand pose is estimated from

a single cluttered image. The key advantages of the method described here over [4] are that

we integrate an automatic hand segmentation method and we use a similarity measure that

is based on depth data. A recent published version of this work can be found in [20].

2.3 Hand Segmentation

As a first step we need to perform a rough segmentation by thresholding the depth

data in order to obtain the gesturing arm. Given the assumption that the hand is the closest

object to the camera we can automatically find the lower depththreshold. As an upper

threshold we take an initial rough estimation, since at thispoint we are only interested at

segmenting the arm. A more precise thresholding is needed however if we need to further

segment the hand. To find the palm cutoff point we need to perform the following steps:

1. Compute the axis of elongation for the gesturing arm.

2. Create a sequence of widths.

3. Perform a gradient descent on the sequence of widths in order to identify the local

(or global) minimum, at which the palm cutoff point is located.

2.3.1 Finding the Axis of Elongation

The result of the initial rough segmentation is a blob representing the gesturing arm

(see Figure 2.2).

9

Figure 2.2.At the top image we can see the original depth image. At the bottom image we can
see the segmented arm after performing depth segmentation using a rough estimation for an initial
threshold. Original size for both images is640× 480.

The boundary of that blob is essentially a setS of m points in2 dimensional space:

Noisy smaller groups of pixels are usually part ofS. To remove them, we morphologically

10

open the binary image by eliminating all connected components (objects) that have fewer

than20 pixels, considering an 8-connected neighborhood. The remaining boundary pixels

will belong to a new setS ′ = {x′

1, x
′

2, . . . , x
′

k} ∈ R
2. In order to define the elongation

axis of the gesturing arm we will compute theMinimum Enclosing Ellipsoid (MEE)for

the boundary pixelsx′

i ∈ S ′. The major axis of theMEE coincides with the arm’s axis of

elongation (Figure 2.3).

An ellipsoid in center form can be given by the following equation:

E =
{

x′ ∈ R
2|(x′ − c)TE(x′ − c) ≤ 1

}

(2.1)

wherec ∈ R
2 is the center of the ellipseE andE is a 2 × 2 positive definite symmetric

matrix,E ∈ S
2
++.

So finding the Minimum Enclosing Ellipsoid can be formulatedas an optimization problem

as follows:

minimize
E,c

det(E−1)

subject to (x′

i − c)TE(x′

i − c) ≤ 1, i = 1, . . . , k

E ≻ 0

(2.2)

An implementation of a solver based on the Khachiyan Algorithm [21] can be found

at the web [22]. The major axis for the arm boundary pixels will coincide with the major

axis of the Minimum Enclosing Ellipsoid.

2.3.2 Creating the Sequence of Widths

After the major (or elongation) axis is obtained we can easily create a sequence of

widths. In the discrete domain, the elongation axis is comprised of a set of pixelsP =

{p1, p2, . . . , pm}. For eachpi we compute the maximum distance of arm pixels belonging

to the line that goes throughpi and it’s direction is perpendicular to the direction of the

11

Figure 2.3. On the top is an example of aMinimum Enclosing Ellipsoid (MEE)along with the
major axis. To the bottom we visually demonstrate the desired palm cutoff location (blue line).

elongation axis. The main idea is that at the palm cutoff point the sequence will reach a

global or local minimum. Since the contour of the segmented arm is rugged our method

could be prone to other local minima. To alleviate this effect we apply a smoothing on our

2D contour. In Figure 2.5 one can see the effect of smoothing on a 2D contour of a hand.

Smoothing 2D contoursis achieved by usingLocal Regression Lines. Because of the

linear nature of fitting it might be possible to loose important information in special cases

like corners (or fingertips). To tackle this issue we opt to fitlocally the line by employing

12

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

140

160

180

Global maximumDesired Local Minimum,
where palm cutoff point

is located

Figure 2.4. This a plot of the sequence of widths. The desired local minimum is highlighted
indicating the position for the palm cutoff point.

Weighted Orthogonal Least Squares. The weights are generated from a Gaussian distribu-

tion. An implementation of this smoothing technique can be found at the web [23]. To be

able to calculate the local regression lines we must define anorder for the all pixelsx′

i that

∈ S ′ = {x′

1, x
′

2, . . . , x
′

m}. Such an order can be defined with a boundary tracing algorithm.

We employ theMoore-Neighbor-Tracing Algorithm.

2.3.3 Moore-Neighbor Tracing Algorithm

For a given pixelPi we can define it’sMoore Neighborhoodas the setMi of 8 −

connected adjacent pixels, whereMi = {Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8} as seen in

Figure 2.6.

Given a binary image that consists of pixels that belong to the same connected com-

ponent we first need to define the start pixel for our tracing algorithm. We find our start

pixel by starting from the leftmost column and visiting pixels from top to down. The first

13

Figure 2.5.At the top image we can see the2D contour before the smoothing operation. At the
bottom image we can see the2D contour after the smoothing operation. Original size for both
images is640× 480.

non-zero pixel that we encounter is our start pixel. Next, wewill extract the contour by

going around the pattern in a clock-wise order. The algorithm also works if we choose

an anti-clockwise order. We can choose either order howeverwe need to follow the same

convention until the algorithm terminates. Every time we visit a non-zero pixelPi weback-

track, which means we go back to the zero pixel we were previously standing on. After

14

Figure 2.6.This is theMoore Neighborhood for a given pixelPi.

we backtrackwe go around pixelPi in a clock-wise (or anti-clockwise) order, visiting the

pixels inPi’s Moore Neighborhooduntil we find another non-zero pixel. The termination

criterion is to visit the start pixel twice. A more formal description of theMoore-Neighbor

Tracingtechnique is presented below at Algorithm 1.

Note that different termination criteria can change the final result of algorithm 1. For

more details we refer the reader to [24]. In our experiments the contour tracing method

terminates when the “second“ pixel in the loop is revisited,entered from the same direc-

tion as it was entered on its first visit. AMATLAB implementation of the method can be

downloaded from [25]. A demonstration of theMoore-Neighbor Tracingalgorithm can be

found in Figure 2.7. The red arrow denotes from which direction we entered the start pixel

(i.e.,1). Then we backtrack (blue arrow facing up) and search in theMoore-Neighborhood

of the start pixel. The first non-zero pixel we encounter is pixel 2. We follow the same

procedure until we visit the start pixel for the second time.

In Figure 2.8 we depict the result of the method when applied to some of the arm/hand

contours that we use in our experiments.

15

input : A set of pixelsP = {p1, p2, . . . pm}, belonging to a 8-connected compo-

nent
output : A sequence of ordered boundary pixelsO(O1, O2, . . . , Ok), 1 ≤ k ≤ m

SetO to be empty;

Find the start pixels, inserts in O;

Set current pixelp to s, p = s;

Backtrack and setc to be the next clockwise pixel inM(p);

// c is the current pixel under consideration, i.e.,c is in M(p)

// M(p) is theMoore-Neighborhoodof current pixelp

while (c 6= s) do

if c is non-zerothen

insertc in O;

setp = c;

backtrack (move the current pixelc to the pixel from whichp was entered);

else

current pixelc becomes the next clockwise pixel inM(p);

end
end

Algorithm 1: The Moore-Neighbor Tracing algorithm

2.3.4 Gradient Descent

After the original contour is smoothed the sequence of widths is further filtered with

a 1D horizontal mask of ones and of size 5. The original contour smoothing is needed in

order to reduce the total number of local minima that could becreated due to rugged hand

contours. Rugged contours are caused because of the low resolution of the depth data, as

can be seen in Figure 2.5. The next step is to perform a gradient descent in order to identify

the local minimum at which the palm cutoff point will lie. As astarting point we choose the

global maximum (i.e., the highest width) which will always reside in the hand area. Then

16

Figure 2.7.A demonstration of theMoore-Neighbor Tracingalgorithm. Red arrow denotes from
which direction we entered the start pixel (i.e.,1). Next blue arrow facing up isbacktracking. We
search in theMoore-Neighborhoodfor the next non-zero pixel (i.e.,2). The algorithm terminates
when1 is visited for the second time.

we move towards the end of the arm until we reach our local minimum. In Figure 2.4 we

can see a plot of the sequence of widths along with the desiredlocal minimum where the

palm cutoff point is located.

2.4 Framework for Hand Pose Estimation

We model the hand as an articulated object, consisting of 16 links: the palm and 15

links corresponding to finger parts. Each finger has three links (Figure 2.9). There are 15

joints, that have a total of 20 degrees of freedom (DOFs). Forthe 20-dimensional vector of

joint angles we use synonymously the terms “hand shape” and “hand configuration.”

The appearance of a hand shape also depends on the camera parameters. For sim-

plicity, we consider only the camera viewing direction (twoDOFs), and image plane ori-

entation. We use the terms “camera parameters,” “viewing parameters” and “3D orienta-

17

Figure 2.8. On the top row one can see two original edge images from our database. On the
bottom row one can see the respective edges images after applying the contour following algorithm
(Moore-Neighbor Tracing). Order of pixels is denoted with color intensities starting from Red then
Magenta, Blue, Cyan, Green, Yellow and Orange. Note that forthe bottom left image we have used
anti-clockwise order and for the bottom right image clockwise order.

tion” synonymously to denote the three-dimensional vectordescribing viewing direction

and camera orientation. Given a hand configuration vectorCh = (c1, ..., c20) and a view-

ing parameter vectorVh = (v1, v2, v3), we define the hand pose vectorPh to be the 23-

dimensional concatenation ofCh andVh: Ph = (c1, ..., c20, v1, v2, v3).

Using these definitions, our framework for hand pose estimation can be summarized

as follows:

1. Preprocessing step: create a database containing a uniform sampling of all possible

views of the hand shapes that we want to recognize. Label eachview with the hand

pose parameters that generated it.

18

Figure 2.9.The articulated hand model. The palm and 15 finger links are shown in different colors.
.

2. Given an input image, retrieve the database views that arethe most similar. Use the

parameters of the most similar views as estimates for the image. The most similar

views (Figure 2.1) are retrieved according to a similarity measure (e.g., Euclidean

distance, Chamfer distance)

2.4.1 Database

Our database contains right-hand images of20 hand shape prototypes (Figure 2.10).

Each prototype is rendered from84 different viewpoints (Figure 2.11), sampled ap-

proximately uniformly from the surface of the viewing sphere.

The rendering is done usingPOSER[1], a 3D rendering software package for the

posing, animating and rendering of 3D polymesh human figures. POSERincludes many

ready to use3D content items like hands, lights, cameras, materials, scenes etc. We specif-

ically used the hand library that includes hand poses of American Sign Language (ASL).

19

Figure 2.10.The20 basic shapes used to generate model images in our database. Each basic shape
is rendered from86 different viewpoints.

However the library contains hand poses of various types like hand signals, counting, action

poses and gestures. We found this library very useful as it helped us create a vast amount of

data for training and testing purposes in our experiments. Collecting such a huge database

of real hand images would have been extremely strenuous if not unrealistic.

Given a hand model and the3D rendering computer graphics software we can ren-

der images under various lighting conditions and by applying different type of “textures”.

20

Figure 2.11.Nine3D orientations of the same hand shape.

Depending on our experiments, we can for example render images with skin color texture

overlayed on top of the hand model. We can also simulate the effect of shadowing by

adding various light sources and appropriate “materials” and “textures”. In Figure 2.12 we

can see the same hand model rendered with different settings.

Every3D modeling scene in thePOSERenvironment has at least one viewing cam-

era that is fully customizable. We can control the camera’s orientation and position in3D

space as well as the focal length etc. For our experiments we consider only the camera

viewing direction (two DOFs), and image plane orientation.When rendering our images

the3D hand model can be seen as placed at the center of a sphere and the camera moving

21

Figure 2.12.Four different type of textures for rendering the same hand shape. On the top left
we can see a ”cartoon”-like skin color texture. Top right is aphoto-realistic skin color texture.
Bottom left all different joints have been rendered with a different color. Bottom right one can see
a depthmap, where each pixel intensity encodes the distancefrom the camera.

along the surface of that sphere always pointing at the center of it. The camera’s starting

position can be regarded as the “north pole” of the sphere. Any camera placement on the

surface of that sphere can be denoted with two parameters:latitudeandlongitude. We also

use one more parameter for the image plane rotation. In the end, our viewing parameter

vector can be modeled as:

Vh = (v1, v2, v3) = (latitude, longitude, image plane rotation) (2.3)

Each database image is associated with the viewing parameter vectorVh that has

been used during the rendering phase. For example, the imagethat has been generated

when camera is placed at the “north-pole” of the viewing sphere and has no image plane

rotation is associated with the viewing parameter vectorVh = (0, 0, 0). In order to create

our whole database of training images we sample the whole viewing sphere from84 differ-

22

ent viewpoints or pairs of(latitude, longitude). To accommodate rotation-variant similarity

measures (like the Chamfer distance),48 more images are generated from each viewpoint,

corresponding to48 uniformly sampled rotations of the image plane. Overall, the database

includes48× 84 = 4032 views of each hand shape prototype and4032× 20 = 80, 640 im-

ages overall. We refer to those images using the terms “database images”, “model images”,

or “synthetic images”.

2.4.2 Similarity Measures

2.4.2.1 Chamfer distance

The Chamfer distance [26] is a well-known method to measure the distance between

two edge images. Edge images are represented as sets of points, corresponding to edge

pixel locations. TheX-to-Y directed Chamfer distancec(X, Y) is defined as

c(X, Y) =
1

|X|
∑

x∈X

min
y∈Y

‖x− y‖ , (2.4)

where‖a − b‖ denotes the Euclidean distance between two pixel locationsa andb. The

undirected Chamfer distanceC(X, Y) is

C(X, Y) = c(X, Y) + c(Y,X) . (2.5)

We will use the abbreviationsDCD to stand for “directed Chamfer distance” and

UCD for “undirected Chamfer distance.”

2.4.2.2 Depth Matching

Test data have been captured via the KinectTM device which offers two synchronized

streams, one RGB and one depth stream. Frame resolution is640 × 480. A depth image

is a gray-scale image, where each pixel is assigned an intensity value according to how far

or close it is located from the camera. We have also managed tocreate depth-maps for our

23

synthetically generated database images using a 3D modeling and animation software [1].

Some examples of our depth-maps are depicted in Figure 2.13.Both, model and test depth

images are normalized in order to achieve translation invariance for the z-axis. All depth

values are in the range from 0 to 1. The depth similarity measure between two images is

defined as the total sum of their pixel-wise Euclidean distances. Through the rest of this

chapter we will refer to the depth matching similarity measure asdepthSM .

Figure 2.13.The two depth-maps at the left side are “database depth-maps” and have been rendered
with a 3D modeling software. The two depth-maps at the right side are “test depth-maps” and they
have been captured by the KinectTM device.

24

2.4.2.3 Weighted Depth Matching and Chamfer Distance

Another similarity measure is defined by combining the first two similarity measures.

In the following equation theWeightedSM is a weighted sum ofdepthSM andUCD:

WeightedSM = l1 × depthSM + l2 × UCD (2.6)

In our experiments we have optimized the weights and demonstrated that the pair

l1 = 0.8, l2 = 0.2 offers the best overall recognition accuracy. In Subsection 2.5.5, Table

2.4, one can see recognition results for a set of different pairs of weights.

2.5 Experiments

2.5.1 Definition of Retrieval Accuracy and Experimental Setup

Towards providing an experimental evaluation the first stepis to estimate ground

truth for the test data and defineretrieval accuracy. We have manually established pseudo-

ground truth for each test image, by labeling it with the corresponding shape prototype

and using the rendering software to find the viewing parameters under which the shape

prototype looked the most similar to the test image. This wayof estimating viewpoint

parameters is not very exact; we found that manual estimatesby different people varied

by 10-30 degrees. Model views cannot be aligned perfectly because the anthropometric

parameters (like finger lengths and widths) of hands in test images do not match those of

the model, and because the hand shapes in the real images are not exact replications of the

20 shape prototypes.

After estimating ground truth for test data we need to define what is acorrect match

and also define theretrieval accuracy. We consider a database viewV to be acorrect match

for a test imageI if the shape prototype with which we labelI is the one used in generating

V , and the manually estimated viewing parameters ofI are within 30 degrees of those of

25

V [27]. On average, there are 30.4 correct matches for each test image in the database. Our

measure ofretrieval accuracyfor a given test imageI is the rank of thehighest-ranking

correct matchthat was retrieved forI. 1 is the highest (best) possible rank. In the end we

show the percentage of test images for which the highest ranking correct match is within a

set of specific ranges (e.g.,1, 1− 4, 1− 16, 1− 32, 1− 64, 1− 128, 1− 256).

2.5.2 Rendering and Pre-processing Training Images

The original database images have been synthetically generated using a hand model

and a computer graphics software [1]. Depending on our experiments and on our similarity

measures we use database images with appropriate textures and rendering settings. For

example if we are running experiments for the depth similarity measure then our training

images are rendered as depthmaps. Another example is when wetest Chamfer distance

with edge images. In this case we choose to render our training images with a “cartoon”-

like texture. Furthermore we have to process these trainingimages and extract contour

edges in order to apply the Chamfer distance measure. After we extract edge information

a final processing step is required in order to achieve translation and scale invariance for

our proposed method. This final step is callednormalizationand is really critical for the

performance of our system.

In this short paragraph we will describe how we can achievenormalizationof our

data. Originally the rendered images are of size1200 × 942. We can easily segment the

foreground from the background since the latter has always the same uniform color. For

the set of all foreground pixels we calculate theMinimum Enclosing Circle (MEC). Then

we compute the bounding box of theMEC and crop the image so as to keep only pixels

inside the bounding box. Finally we re-size the cropped image to a fixed size of256× 256.

Our whole pipeline for generating the training database images can be summarized

as follows:

26

• Choose the appropriate texture / material and render all1680 images (20 handshapes

× 84 viewpoints)

• Further process the images if needed (e.g., Canny Edge Detection)

• Segment foreground pixels and compute theirMEC

• Crop the image and keep only pixels inside the bounding box oftheMEC

• Resize the cropped image to a fixed size of256× 256

We need to note that a similar processing pipeline is also required for the given test

images. All images need to have the same fixed size256 × 256. This way we ensure our

system will be translation and scale invariant. In Figure 2.14 we can see a few examples of

our normalized database images before and after extractingedges.

Figure 2.14. At the top row one can see original database images that have been synthetically
generated using a hand model and a computer graphics software [1]. At the bottom row we show
the respective edge images we are given as input to our method.

27

2.5.3 Preliminary Results for Datasets with Clean Background

As we further move on to our experimental evaluation the nextstep is to present

some preliminary results and provide the baseline performance of a well known similarity

measure for edge images, namely the Chamfer Distance [26]. We refer the reader back to

subsection 2.4.2.1 for a more detailed description on Chamfer Distance.

2.5.3.1 Results for theASL-RGBdataset

First we report results for a testing dataset consisting of174 images representing

American Sign Language (ASL) handshapes. Throughout the rest of this dissertation we

will refer to this dataset asASL-RGB. The handshapes are real hand images captured in a

rather clean background and no clutter is present, as one cansee in Figure 2.15).

Figure 2.15.Test images from our dataset of174 ASL handshapes images with clean background.
On the top row one can see the original images. Bottom row are the edge images obtained after
applying a Canny Edge Detector to the original images.

28

The training dataset for this first batch of experiments consists of images that have

been rendered with the “cartoon”-like texture. Finally we applied Canny edge image de-

tection in order to get the training images with edge pixels (see Figure 2.14). The results

for this dataset are presented in Table 2.1.

Table 2.1. Preliminary results for a dataset of174 ASL handshape images, captured in a
rather clean background. For every method used, we show the percentage of test images for
which the highest ranking correct match was within each range. DCD stands for “image-
to-model directed Chamfer distance”.UCD is the undirected Chamfer distance.

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCD 03.45 11.49 16.09 21.26 27.59 38.51 51.72
UCD 14.37 24.71 35.63 43.10 48.85 59.20 71.84

2.5.3.2 Results for theASL-Ground-TruthDataset

For our second round of experiments we have used the same training images but the

testing dataset is slightly different. We have used the ground truth labels from the original

test images (i.e.,ASL-RGB) and generated synthetic images using the corresponding class

labels and viewpoint parameters. This new set of test imagesis very similar to the original

dataset as one can see in Figure 2.16. However, it is evident that handshapes with the exact

same ground truth labels can have some minor differences that could affect the performance

of our hand pose estimation system. This is happening because anthropometric parameters

(like finger lengths and widths) vary between a human hand model and a synthetic hand

model. Of course the same applies for handshapes that have same ground truth labels but

are captured from different users. The purpose for this second round of experiments is to

provide an indicative measure of the influence of differences in anthropometric parameters

between the test images and training images, see Table 2.2 and Table 2.1. The similarity

29

measure used here is again the Chamfer distance (directed and undirected). Throughout

the rest of this dissertation we will refer to this dataset asASL-Ground-Truth.

Figure 2.16.To the left one can see the original test image which is a real hand image captured
with a clean background. To the right one can see the synthetically generated image by using the
same ground truth labels.

Table 2.2. Preliminary results for a dataset of174 ASL handshape images. For every
method used, we show the percentage of test images for which the highest ranking correct
match was within each range.DCDgt stands for “image-to-model directed Chamfer dis-
tance”. UCDgt is the undirected Chamfer distance. Test images have been synthetically
generated with a 3D modeling software based on our estimations for ground truth labels of
the original test datasetASL-RGB(see Table 2.1)

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCDgt 31.03 48.28 63.79 68.97 74.71 81.03 86.78
UCDgt 48.28 67.82 77.01 82.18 85.63 91.38 92.53

2.5.4 Preliminary Results for a Dataset with Clutter in the Background

We also report preliminary results (Table 2.3) for a more challenging dataset of248

ASL handshape images, which have been captured in a cluttered environment (see Figure

2.17). Throughout the rest of this dissertation we will refer to this dataset asASL-Clutter.

30

The training images remain the same as in subsection 2.5.3. The similarity measure used

is Chamfer distance (directed and undirected). The purposeof this round of experiments is

to measure the effect of clutter on our proposed system. Clearly, when comparing results

between Tables 2.3 and 2.1 we can see a decrease in the recognition accuracy of our system.

However we need to mention that the original test images, before segmenting the hand, are

of size340 × 240. This low resolution could be another factor causing a decrease in the

performance.

Table 2.3. Preliminary results for a more challenging dataset of 248 ASL handshape im-
ages, which have been captured in a highly cluttered environment. For every method
used, we show the percentage of test images for which the highest ranking correct match
was within each range.DCDcf stands for “image-to-model directed Chamfer distance”.
UCDcf is the undirected Chamfer distance

Method used 1 1-4 1-16 1-32 1-64 1-128 1-256

DCDcf 04.03 06.45 15.32 2137 27.42 37.10 48.39
UCDcf 07.26 15.73 32.66 37.90 46.37 54.03 66.53

2.5.5 Results for the Proposed Depth Similarity Measure

Finally we tested our system on a challenging dataset of 94 right hand images of

American Sign Language (ASL) handshapes. The images are captured with the KinectTM

device in a cluttered scene. We will refer to this dataset asASL-KinectHandshapes. These

94 test images are provided in both formats, RGB and depth. Whenusing the RGB test

images the training set remains the same as in previous subsections 2.5.4 and 2.5.3. Same

applies when testingUCD with depth contours. However in this case the test images have

been generated from the depth images after extracting the contour pixels of the hand.

31

Figure 2.17.Test images from our dataset of248 ASL handshapes images within a highly cluttered
background. To the left one can see the original images and tothe right the edge images obtained
after applying a Canny Edge Detector to the original images.

For the similarity measuredepthSM we employ a different set of training images.

This time database images are synthetically generated as depthmaps (see Figure 2.13). Test

images are also in the depth format (and not RGB).

Finally for weightedSM similarity measure we use a combination ofdepthSM

andUCD depth contours, using RGB and depth features for training and test images.

Table 2.4 reports results for a set of different pairs of weights l1 and l2, wherel1 is the

weight multiplied withdepthSM andl2 is the weight multiplied withUCD depth contours.

depthSMauto, contrary to the other similarity measures, uses input images that have been

generated using the automatic hand segmentation step.

From the experiments on theASL-KinectHandshapesdataset it is evident that using

depth information from the depth-maps enhances the discrimination power of our method,

32

Table 2.4. Results forASL-KinectHandshapesdataset, usingweightedSM similarity mea-
sure and a set of different pairs of weights. Optimized recognition rates are reported when
l1 = 0.8 andl2 = 0.2.

Weights used 1 1-4 1-16 1-64 1-256

l1 = 0.1, l2 = 0.9 12.77 23.40 36.17 52.13 71.28
l1 = 0.2, l2 = 0.9 18.08 26.59 44.68 61.70 77.65
l1 = 0.3, l2 = 0.7 23.40 37.23 52.12 69.14 79.78
l1 = 0.4, l2 = 0.6 24.46 42.55 56.38 73.40 82.97
l1 = 0.5, l2 = 0.5 30.85 42.55 65.59 76.59 85.10
l1 = 0.6, l2 = 0.4 30.85 44.68 68.08 78.72 86.17
l1 = 0.7, l2 = 0.3 36.17 50.00 69.14 80.85 86.17
l1 = 0.8, l2 = 0.2 37.23 50.00 70.21 80.85 88.29
l1 = 0.9, l2 = 0.1 34.04 48.93 68.08 79.78 87.23

Table 2.5. Results forASL-KinectHandshapesdataset. For every method used, we show
the percentage of test images for which the highest ranking correct match was within each
range.UCD depth contours, is undirected Chamfer distance between hand contours from
depth images and full edges from model images. InUCD color edges, skin color seg-
mentation has been employed to extract the full edges.depthSM is our depth similarity
measure, with manual hand segmentation.depthSMauto is our depth similarity measure,
with automatic hand segmentation.weightedSM similarity measure has weightsl1 = 0.8
andl2 = 02.

Method used 1 1-4 1-16 1-64 1-256

UCD depth contours 14.74 20.0 32.63 40.0 62.11
UCD color edges 9.57 14.89 21.28 32.98 55.32
depthSMauto 25.53 38.30 55.32 70.21 84.04
depthSM 34.04 44.68 61.70 76.60 87.23
weightedSM 37.23 50.00 70.21 80.85 88.29

even in uncontrolled and cluttered environments. We noticethat even when we only use

contours from depthmaps (i.e.,UCD depth contours) it outperforms the case “UCD color

edges” where full edges of the hand are available due to colorinformation. Best perfor-

mance is reported when using theweightedSM similarity measure.

33

2.5.6 Consolidated Results

Finally, in Table 2.6 one can see results from the previous subsections consolidated.

Additionally, we report results for another state of the artmethod presented in [4]. The

authors of that method used for their experiments a testing dataset of250 real images of

right hands. Since our proposed method is tested on very similar datasets (i.e., real hand

images in cluttered backgrounds) we believe that all comparisons in this dissertation are

fair and meaningful. The best overall performance, when testing against real hand images,

is achieved when using the proposedweightedSM similarity measure with weightsl1 =

0.8 and l2 = 0.2. Total processing time varies between different implementations of our

proposed framework. We provide an indicative measure of thecomputation time of our

method (usingdepthSM) which is about 33 seconds per input image, not including hand

segmentation, on a PC with a 2.00 GHz Intel(R) Xeon(R) E5406 processor. The code is

rather unoptimized and implemented in MATLAB R2012a.

Table 2.6. Consolidated results. Best overall performanceis achieved when using the
proposedweightedSM similarity measure with weightsl1 = 0.8 and l2 = 0.2. Our
proposed method outperforms the state of the art method presented in [4].

Method used 1 1-4 1-16 1-64 1-256

DCD 03.45 11.49 16.09 27.59 51.72
UCD 14.37 24.71 35.63 48.85 71.84
DCDcf 04.03 06.45 15.32 27.42 48.39
UCDcf 07.26 15.73 32.66 46.37 66.53
UCD depth contours 14.74 20.0 32.63 40.0 62.11
UCD color edges 9.57 14.89 21.28 32.98 55.32
depthSMauto 25.53 38.30 55.32 70.21 84.04
depthSM 34.04 44.68 61.70 76.60 87.23
weightedSM 37.23 50.00 70.21 80.85 88.29
method from [4] 13.60 26.40 45.20 67.60 84.0

34

2.5.7 Qualitative Evaluation

In this subsection we will provide a short qualitative evaluation for our similarity

measures and some of the experimental results. We will focuson two different cases of

query images from the datasetASL-RGB. For each query image we will demonstrate some

of the highest ranking database images that have been identified by our method based on

Chamfer distance. We need to stress that these highest ranking top matches don’t neces-

sarily have to be correct matches even though that is our goal. We would like to remind

to the reader that we consider a database viewV to be a correct match for a test (or query)

imageI if the shape prototype with which we labelI is the one used in generatingV , and

the manually estimated viewing parameters ofI are within 30 degrees of those ofV. For

each of the images in the following Figures 2.18 and 2.19 we provide the class labelL and

the viewing parameter vectorVh = (latitude, longitude, image plane rotation). First in

subsection 2.5.7.1 we demonstrate some of the retrieved model images where the rank of

the highest-ranking correct match is1. Then in subsection 2.5.7.2 we demonstrate some of

the retrieved model images where the rank of the highest-ranking correct match is5601.

2.5.7.1 Retrieved Model Images where Rank of the Highest-ranking Correct Match is1

In Figure 2.18 we depict a query image that has been given as input to our hand

pose estimation system and some of the retrieved model images based on our method. The

rank of the highest-ranking correct match is1, which is depicted in sub-figure 2.18(a).

In sub-figures 2.18(b), 2.18(c) and 2.18(e) we can see some more correct-matches with

respective ranks2, 3 and8. In sub-figures 2.18(d) and 2.18(f) one can see some retrieved

model images that are not correct-matches since they have different class labels than the

query image. However their rank is extremely high (7 and9) since our method has falsely

regarded them as a very good match for the query image.

35

(a) ranking = 1, L = 19,
Vh = (90, 22.5, 180)

(b) ranking = 2, L = 19,
Vh = (90, 22.5, 172.5)

(c) ranking = 3, L = 19,
Vh = (90, 22.5, 187.5)

(d) ranking = 7, L = 14,
Vh = (90, 67.5, 202.5)

(e) ranking = 8, L = 19,
Vh = (90, 22.5, 165)

(f) ranking = 9, L = 1,
Vh = (90, 112.5, 30)

(g) Query image, with L =
19 andVh = (99, 1, 184)

Figure 2.18.Query image and some of the retrieved model images.

2.5.7.2 Retrieved Model Images where the Rank of the Highest-ranking Correct Match is

5601

In this subsection and in Figure 2.19 we depict another queryimage that has been

given as input to our hand pose estimation system and some of the retrieved model images

based on our method. However in this case our method failed tosuccessfully identify a

correct match, since the rank of the highest-ranking correct match is5601. In sub-figures

36

2.19(a), 2.19(b), 2.19(c) and 2.19(d) we can the four highest ranking retrieved images.

However none of the is a correct match since their class labels are different than the query

class label. In sub-figure 2.19(e) one can see the model imagewith the highest ranking

(i.e., 11) that has a correct class label. However the angle difference between the query

and model viewing parameter vectors (Vquery = (97, 3, 158) andVmodel = (90, 67.5, 135)

respectively) isdiff(Vquery, Vmodel) = 67.0389. Since67.0389 > 30 we can not classify

this retrieved image as a correct match. In sub-figure 2.19(f) we can see the correct match

with the highest ranking which is5601. Clearly our method failed dramatically to identify

a correct match. An interesting observation for the database images depicted in sub-figures

2.19(e) and 2.19(f) is that visually they look very similar.When comparing the latter with

the query image (see sub-figure 2.19(g)) we notice as main difference the edge pixels close

to the carpus. This indicates that the segmentation of the hand is a critical factor for the

successful performance of our system.

2.5.8 Results for Automatic Hand Segmentation Method

We have also evaluated quantitatively our automatic hand segmentation method. To

this end we compared for all of our test images the distance between the automatically

generatedpalm cut-off pointsand the manually specified ones. For the80.85% of our

images the distance (measured in pixels) is negligible. Thedistance is less than 15 pixels

for the85.11% and less than 25 for the92.55% of the images (Table 2.7).

Table 2.7. Results for our Hand segmentation method

range (measured in pixels) 0 0-15 0-25 0-45 0-68

percentage of test images 80.85 85.11 92.55 96.81 100

37

(a) ranking = 1, L = 16,
Vh = (90, 45, 217.5)

(b) ranking = 2, L = 7,
Vh = (112.5, 72, 112.5)

(c) ranking = 3, L = 0,
Vh = (90, 67.5, 202.5)

(d) ranking = 4, L = 16,
Vh = (90, 45, 225)

(e) ranking = 11, L = 3,
Vh = (90, 67.5, 135)

(f) ranking = 5601, L = 3,
Vh = (90, 22.5, 142.5)

(g) Query image, with L =
3, andVh = (97, 3, 158)

Figure 2.19.top 10 results.

Total processing time for the segmentation algorithm, on a PC with a 2.00 GHz

Intel(R) Xeon(R) E5406 processor, is about 10 seconds. The code is rather unoptimized

and implemented in MATLAB R2012a.

38

2.6 Conclusions and Future Work

We have presented a new method for hand pose estimation from asingle depth im-

age. Our method combines a novel hand segmentation method and a similarity measure

(depthSM) based on depth information from depth images.The similarity measure is used

to retrieve the best matches from an image database, thus providing estimates for the 3D

hand pose and hand configuration. Depth information increases the discrimination power

of our method, according to the experiments conducted. At the same time, differences in

anthropometric parameters and clutter in background are two important factors influencing

recognition accuracy of our system. Experimental evaluation of these two factors has been

provided by quantitatively measuring their influence on theperformance of our proposed

similarity measures. Overall, retrieval accuracy is stilltoo low for the system to be used as

a stand-alone module for 3D hand pose estimation. However estimating hand pose from a

single image can be useful in automatically initializing hand trackers. Our system currently

doesn’t achieve real-time performance. In order to do so andsince our method is inherently

parallel, we are planning to take advantage of the GPU’s processing power. Additional fu-

ture work will be to define more sophisticated similarity measures further exploiting depth

information. At this point depth information and the way we have used it can be regarded

as2.5D. By using the KinectTM camera’s intrinsic and extrinsic parameters we can con-

struct3D point clouds and start exploiting this richer source of information. We could

experiment with features like surface normals and other3D feature descriptors. All the

aforementioned future directions address interesting research problems but implementing

them is out of the scope of the current dissertation.

39

CHAPTER 3

HAND TRACKING USING DEPTH DATA

3.1 Introduction

Accurate detection and localization of moving hands in unconstrained environments

without any elaborate experimental setup remains a challenging task. An accurate and ro-

bust hand tracking can be applied in sign language recognition, human-computer interfaces

and virtual reality environments. There is an extensive literature on hand detection/ track-

ing and part of it has been presented at previous Chapter 2. Inthis chapter we focus on

a hand detection/tracking module that is integrated withina more general framework for

gesture recognition, which is presented at Chapter 4. The main differences of our hand

tracking method presented here with respect to the hand detection method presented in the

previous Chapter 2 are the following:

1. Our hand tracking method assumes temporal continuity andhence employs motion

cues. We use additional information from multiple frames (i.e. previous, current and

next) as opposed to relying on a single frame (i.e. current frame).

2. Here we are not interested in articulated hand tracking. We are interested at locating

the hand but we don’t care about the details of motion of each finger and the palm

altogether.

3. Our hand detection module is integrated into a more general framework for gesture

recognition, which is presented at Chapter 4.

Our hand detector is based on motion from frame differencingwhich we combine

with a depth segmentation according to the depth information we have for each pixel. Our

detector can return a single best hand location or a list of the best candidate hand locations.

40

We evaluate our method on a Microsoft KinectTM based video dataset of American Sign

Language (ASL) signs. This dataset has been designed for body part detection and tracking

research as well as for ASL sign recognition. At the same timewe also report results on the

performance of a popular skeleton tracker which is providedby the not-for-profit OpenNI

consortium [28]. In this way we establish a benchmark for thefuture assessment of more

advanced detection and tracking methods that utilize RGB-Ddata. The contributions of

this chapter can be summarized as follows:

1. A new hand tracking method based on RGB-D information thatis an integral part of

the gesture recognition system proposed later in this dissertation (see Chapter 4)

2. A structured motion dataset of American Sign Language (ASL) signs captured in

RGB and depth format using a Microsoft KinectTM sensor, that will enable researchers

to explore body part (i.e. hands) detection and tracking methods, as well as gesture

recognition algorithms.

3. Experimental evaluation of our method against a popular skeleton-tracker that could

be used as a baseline performance when evaluating new state of the art tracking

methods.

In the next section 3.2 we describe in detail our new hand tracking method which

is based on depth data. Then in section 3.3 we introduce our new RGB-D dataset of ASL

signs. Experimental setup and results are presented in section 3.4. Finally we conclude and

discuss future work at section 3.6.

3.2 Methodology

In this subsection we describe our method in more detail. Each pixel in an image

taken from a KinectTM camera is assigned a value according to how close or far it is from

the plane defined by the camera lenses. For depth video, our proposed detector is based

41

Figure 3.1. Hand detection in depth images: original image (top left), depth image (top right),
segmentation using depth (middle left), the connected component corresponding to the gesturing
human (middle right), scores based on multiplication of frame differencing and depth (bottom left),
single top candidate (bottom right). One can see that the depth detector here successfully detects
the hand of the gesturing person.

42

on motion and depth information and is applied on depth images captured from a KinectTM

camera. The depth images are grayscale images with values ranging from [0-2046] and

value 2047 denotes an invalid depth pixel. First we find the connected component of the

person performing the ASL sign . To achieve this we calculatefor every pixel the absolute

value of the difference, in depth, between that pixel and thetop, bottom, left and right

neighboring pixels. If the absolute value is over a threshold (10 in our experiments) the

pixel is zero otherwise one. In this way we create a binary image where edges are depicted

on areas with abrupt changes in depth intensity. Now we have acleanly segmented image

compromising of connected components that have the following property: within each

component the depth intensity values of neighboring pixelsnever increase over 10. The

next step is to calculate the average depth for the 5 biggest connected components. The

component with the lowest mean depth value is assumed to be the person performing the

sign. Now that we know which pixels belong to the person we calculate their max and

median depth values.

Next, we calculate a score matrix based on frame differencing. Frame differencing

is the operation of computing, for every pixel, the minimum of two values; the absolute

value of the difference in intensity between the current frame and the previous frame and

the absolute value of the difference in intensity between the current and the next frame.

After frame differencing we compute another score matrix which is our depth image minus

the median depth value for the person. We multiply element byelement those two matrices

and we apply a mask over the final matrix. The mask has the following properties:

• all invalid pixels in the previous, current and next frame are zero. The reason we do

this is because the captured depth images have a lot of noise which can be regarded

as ”motion”.

• all pixels in the motion score matrix that have a value lower than 1 are zero

• all pixels that their intensity value is over the max depth value are zero.

43

After we have applied the mask on our score matrix we use a vertical 1D filter of ones with

some predefined size and finally on the new matrix we apply the same filter horizontally.

The min value of our final score matrix denotes where our hand is located. Figure 3.1

illustrates examples of input, output, and intermediate steps for this detector.

We evaluate our method on a dataset of ASL signs which is described in the following

section 3.3

3.3 Description of ASL Dataset

Our goal is to create a structured motion dataset that will enable researchers to ex-

plore body part (i.e. hands) detection and tracking methods, as well as gesture recognition

algorithms not possible with such datasets as the ASLLVD [29] by including scene depth

information. The dataset is being recorded with a MicrosoftKinectTM, which allows us to

capture both color video and frames that include scene depthinformation. Figure 3.2 shows

an example from one of the recording sessions. In this particular representation, the darker

gray areas of the image are located closer to the camera. The black regions are portions of

the scene for which depth information was not available.

3.3.1 Discussion of Related Gesture Recognition Datasets

One of the highest quality video datasets useful for gesturerecognition research is the

American Sign Language Lexicon Video Dataset (ASLLVD) [29]. It consists of a large set

of recordings from multiple camera angles of the signs contained in the Gallaudet Dictio-

nary of American Sign Language [30], performed by native signers. Each sign is annotated

with the gloss label (approximate English translation), start and end frames, hand shapes

at the start and end frames, and position of the hands and face, with multiple examples per

sign. Such datasets, while extremely useful, lack any information about scene depth, since

they were recorded with standard color video cameras. Thus,when using them, researchers

44

Figure 3.2.Sample dataset sign frame. Top: color video frame; Bottom: depth video frame.

suffer from the limitations of having to use conventional 2Dhand detection and tracking

algorithms. Hand tracking using standard video is particularly challenging because of oc-

clusions, shading variations, and the high dimensionalityof the motion.

Guyon, et al., present a 3D gesture dataset in [31] containing 50,000 gestures recorded

with the Microsoft Kinect by 20 different users that is organized into 500 batches of 100

gestures. There are several limitations of this dataset, however. First, the video is recorded

at only 10 frames per second and at a resolution of320 × 240. Secondly, only 400 frames

45

are manually annotated with any skeletal information, which makes it difficult to quantify

the efficacy of any body part tracker being developed. Finally, as the video is offered only

as AVI files, we cannot translate the pixels into x,y,z coordinates in a 3D world reference

frame. The dataset we are developing addresses these limitations by using640× 480 reso-

lution at 25 frames per second and providing access to the rawscene depth information.

3.3.2 Size and Scope

We hope that our final dataset will contain most of the 3,000 signs found in The

Gallaudet Dictionary of American Sign Language [30], whichwill offer an abundance of

complex movements of the hands and arms. Currently, 1113 signs—both one-handed and

two-handed—have been recorded with one fluent signer and 200with another fluent signer,

but in the future, we will add more signers, so that there are multiple examples of each

sign. A recent published work which offers a more detailed description of the proposed

ASL dataset can be found in [32].

As with [29], finger-spelled signs, loan signs, and classifiers are not included in the

dataset. A finger-spelled sign is a word that is spelled out byusing the manual alphabet.

When a signer has to use a letter that is part of the overall sign, that letter is known as

a loan sign. Classifiers provide additional information about the object being signed, but

since there are infinite variations of them, they are excluded. The ASLLVD paper [29]

contains more information about the motivations for excluding certain types of signs.

3.3.3 Technical Specifications

Both the KinectTM color frames and depth frames have a resolution of 640 x 480

pixels and are recorded at frame rate of 25 frames per second.The signers perform groups

of ten signs per video in front of a neutral backdrop in a lab with consistent lighting. The

signs are performed while standing, and the scene is framed so as to include the region

46

from about the knees to a few inches above the signer’s head. Each video begins with a

calibration pose that can be used to detect the signer and initialize tracking. After the pose,

between each sign, and after the last sign, the signer returns her hands to her side, creating

a clear separation of the signs in the video.

We currently use the OpenNI framework [28] to record the signs in the ONI for-

mat, but we may rerecord them in the future with the MicrosoftKinectTM SDK [33] so

that researchers can experiment with both platforms. OpenNI is an open source sensing

development framework used in many third party APIs. Its purpose is to standardize com-

patibility and interoperability of Natural Interactive devices and applications. It and third

party software developed around it are useful to researchers that want to develop their own

detection and tracking tools. Compressed and uncompressedAVIs of the videos are also

available.

3.3.4 Annotations

Each video in the dataset is annotated with the start and end frames of each sign so

that any sign can be quickly accessed. The first depth video frame of each sign is annotated

with a bounding box around the signer’s face to give an idea ofthe scale of the individual

in the video. With this information, the researcher has an idea of how to scale the query

sign to which it is being compared. Furthermore, every depthframe belonging to a sign

is also annotated with bounding boxes around the hands, which give an indication of the

hand’s location when the box’s centroid is calculated. In the future, we will annotate the

color video in the same manner.

For potential use in future gesture and sign language recognition research, the annota-

tions also include information about the signs themselves,such as signer ID, file locations,

sign type (two-handed/one-handed), and gloss, or rough English translation. The hand and

47

face annotations for an example sign frame are shown overlain on the depth frame image

in figure 3.3.

Figure 3.3.Sample hands and face annotations of a single depth video frame.

3.4 Experimental Setup for the Evaluation of Hand Tracking Methods

In order to establish the benchmark, we chose to use the hand location capabilities

of the user skeleton tracker included in the OpenNI 1.5 NiUserTracker sample program

[28], since it is freely available to anyone. Once it has found the signer via the standard

psi calibration pose, the program creates a skeletal model of the person and tracks joint

position movement. In particular, we were interested in thearms and defined the hand

locations to be the hand endpoints of the elbow-hand portions of the arms.

To evaluate the efficacy of using the skeleton tracker to approximate the positions of

the hands, we used 35 one-handed randomly selected signs from the dataset described in

section 3.3 and processed them with the tracker. For the one-handed signs, only the sign-

ing hand was considered. Once the hand positions were obtained, they were compared to

48

the ground truth positions from the manual annotations, andthe pixel Euclidean distance

between them was recorded as a score, so that a lower score would indicate a closer esti-

mation of the hand’s actual location. This operation was performed on each frame of the

signs, and the accuracy was calculated to serve as the benchmark for the evaluation of fu-

ture methods. We have also processed the one-handed signs with the proposed single hand

locator (described in Section 3.2) and calculated the results using the same pixel Euclidean

distance similarity measure.

3.5 Results for Hand Tracking

We calculated overall accuracy as a percentage of frames in which the automatically

generated hand locations fell within in various pixel distances (termed pixel error) of the

manual hand annotations. Figure 3.4 shows the accuracy of the OpenNI skeletal tracker

and our depth hand locator on one-handed signs. For the skeletal tracker 90% of the frames

have a pixel error of about 24 pixels or less. It can also be seen that our depth hand locator

does not perform as well on this dataset. It is understandable when we consider that it was

written for use in simple hand gestures in which the hand willlikely be the closest part of

the body to the camera. Indeed, after examination of the results, we determined that it tends

to fail when other body parts that are also in movement, such as the elbow, are closer to the

camera.

We also calculated the maximum pixel error for each sign. Figure 3.5 shows the

results for the skeletal tracker and its comparison to our depth hand detector. We can see

that50% of the signs had a maximum pixel error of about 22 pixels or less when our depth

hand tracker [2] was used to detect hands.

Figure 3.6 shows a visualization of three levels of skeletontracker accuracy from

good to poor on a single-handed sign, with the pixel error ranging from a few pixels to a

49

Figure 3.4.Comparison of the skeletal tracker and our method from [2] onone-handed signs.

Figure 3.5.Skeletal tracker and depth hand tracking method maximum pixel error on a per sign
basis.

few hundred pixels. The manual annotations are shown in green and the skeleton tracker

hand locations in red.

50

Figure 3.6.Varying accuracy on one-handed signs.

Total processing time for tracking the hand in a single frame, on a PC with a 2.00

GHz Intel(R) Xeon(R) E5406 processor, is about 0.673 seconds. The code is rather unopti-

mized and implemented in MATLAB R2012a. Processing time canbe drastically reduced

depending on our I/O and memory management strategy. In the current implementation, we

read each frame (saved as a separate file) from the disk, adding a significant computation

overhead for just reading and loading each single frame in memory.

51

3.6 Conclusion and Future Work

We have presented a new hand tracking method that relies depth data and that can

accurately identify the location of the gesturing hand in one-handed signs or gestures. The

method was compared against one popular skeleton tracking method on a RGB-D dataset

of ASL signs. Results show comparable performance while at the same time our method

doesn’t require an initialization pose like the OpenNI skeleton tracker does. Our exper-

imental evaluation of the readily available skeleton tracker and our depth hand tracking

method establish a benchmark for analysis of future detection and tracking algorithms.

Another contribution of this chapter is the introduction ofan ASL RGB-D video dataset

for use in the development and testing of hand detection and tracking methods, as well as

in 3D gesture and sign language recognition projects. The dataset provides a large number

of gestures that involve one or both hands with varying levels of movement and hand shape

complexity and presents an opportunity to develop algorithms that are viable in real world

scenarios.

Future work will be to expand the dataset described in section 3.3 until we have

multiple examples of all the signs found in [30].

52

CHAPTER 4

GESTURE RECOGNITION USING DEPTH DATA

4.1 Introduction

This chapter focuses on a specific application, namely a digits gesture recognition

system. In human-computer interaction applications, gesture recognition has the potential

to provide a natural way of communication between humans andmachines. The technology

is becoming mature enough to be widely available to the public and real-world computer

vision applications start to emerge. However human-computer interaction interfaces need

to be as intuitive and natural as possible. The user should ideally interact with machines

without the need of cumbersome devices (such as colored markers or gloves [10]) or appa-

ratus like remote controls, mouse and keyboards. Hand gestures can provide an alternative

and easy means of communication with machines and could revolutionize the way we use

technology in our daily activities. Successful applications of hand gesture systems can be

found in various research and industry areas such as: game controlling [34], human-robot

interaction [10], virtual environments, smart homes and sign language recognition [35],

to name a few. Moreover with the advent and success of Microsoft’s new camera, the

KinectTM (see Figure 4.1), it has been clear that computer vision methods and specifically

gesture recognition are becoming mature enough to be widelyavailable to the public.

However, in order to create such successful and robust applications there is still much

room for improvements. One key challenge for gesture recognition systems is that they

must perform in uncontrolled real-world environments. This means heavily cluttered back-

grounds with various moving objects and possibly harsh illumination conditions. Most

hand gesture recognition systems assume that the gesturinghand can be reliably located in

53

Figure 4.1.KinectTM camera.

every frame of the input sequence. Unfortunately, in many real life settings perfect hand

detection is hard to achieve, especially when we rely on a single source of information such

as RGB frames. For example, in Figure 4.2 skin detection yields multiple hand candidates,

and the top candidate is often not correct. Skin detection can be affected by varying or

harsh illumination. Other visual cues commonly used for hand detection such as motion,

edges, and background subtraction [36, 37] would also not perform well in backgrounds

with moving objects which could be wrongly classified as moving hands.

In previous Chapter 3 we proposed a method for building a robust hand detector that

detects the gesturing hand in a scene by using motion detection based on frame differencing

and depth segmentation. Depth segmentation is based on depth intensities for each pixel

54

Figure 4.2. Detection of candidate hand regions based on skin color. Clearly, skin color is
not sufficient to unambiguously detect the gesturing hand since the face, the non-gesturing
hand, and other objects in the scene have similar color. On the other hand, for this particular
scene, the gesturing hand is consistently among the top15 candidates identified by skin
detection.

in our images which have been captured with a KinectTM camera . This hand detector is

integrated to the proposed gesture recognition system described in this chapter.

After we compute the location of the hand at each frame of a given video, then we

create2D trajectories that represent our gestures. For training purposes, in our database we

have precomputed the trajectories for all our gestures thatfor our experiments correspond

to signed digits. Finally we resort to a dynamic programmingmethod, namely DTW [38],

in order to compare the test and model trajectories and recognize the gestures. The main

advantages of our method are:

• It performs very well even in very challenging environmentswith the presence of

multiple ”distractors” like moving objects, or skin colored objects (e.g., face, non-

gesturing hand, background objects).

55

• It is robust to overlaps between the gesturing hand and the face or the other hand.

• It is translation and scale invariant; the gesture can occurin any part of the image.

• Unlike HMMs and CONDENSATION-based gesture recognition our method re-

quires no knowledge of observation and transition densities, and therefore can be

applied even if we have a single example per class.

• Our method can be generalized and applied to recognize a wider range of gestures,

other than signs of digits.

The proposed gesture recognition system, to the best of our knowledge, is one of the

earliest works that employed depth data from the KinectTM sensor and provided compara-

tive results using color and depth information. The evaluation of our technique is carried

out on a vision-based digit recognition dataset. Each user can sign a digit ranging from 0 to

9 and the goal is to correctly classify the given digit. Similar evaluation frameworks have

been followed by other vision-based HCI systems (e.g., the virtual white board by Black

and Jepson [39], and the virtual drawing package by Isard [40]), to name a few).

4.2 Related Work

Gesture recognition is a broad research area and a vast amount of literature exists

covering all it’s different aspects like segmentation, feature extraction and recognition

strategies. Mitra and Acharya [41] have carried out a comprehensive survey on gesture

recognition covering all the aforementioned aspects. The next two paragraphs highlight

some of the most popular feature representation and recognition (or classification) tech-

niques.

Some interesting feature representations, proposed in [42, 43], are velocity histories

of tracked keypoints and ballistic dynamics (respectively) which aim to express human ges-

tures and actions. Other popular features used for gesture recognition are 3D Histograms

56

of Flow (3DHOFs) [44] and Histograms of Gradients (HOGs) [45]. Fanello et al. [46] em-

ployed 3DHOFs and Global Histograms of Oriented Gradients (GHOGs) but also added a

sparse codingfeature selection step in order to catch the relevant information inherently

underlying the data and in order to discard the redundant information like background or

body parts not involved in the gesturing action.Sparse representation[47, 46] can been

seen as a higher level feature representation. Another verypopular higher level feature rep-

resentation isbag-of-wordsoriginally proposed by the document classification community.

A bag-of-visual-wordsis a sparse vector of the amount of detected local image features of

a vocabulary. Csurka et al. [48] have introducedbag-of-wordsto the computer vision com-

munity as a novel method for generic visual categorization based on vector quantization of

affine invariant descriptors of image patches. Niebles et al. [49] have further exploitedbag-

of-wordsfeatures to propose a novel unsupervised learning method for action recognition

while Dardas and Georganas [50] proposed a real-time systemfor hand gesture detection

and recognition that is trained with SIFT [51] features followed by a vector quantization

technique which maps SIFT keypoints from every training image into a unified dimensional

histogram vector (bag-of-words) after K-means clustering.

At the recognition level many approaches employ Hidden Markov Models (HMMs)

[52, 53, 54] or Dynamic Bayesian Networks (DBNs) [55, 56]. Support Vector Machines

(SVMs) is another widely used machine learning technique successfully applied for gesture

recognition [46, 57, 50]. Most recently Conditional RandomField (CRF) approaches [58,

59, 60] have also become a standard.

Another popular category of methods for gesture and behavior recognition can be

characterized by the use Motion History Images (MHIs). Motion History Images (MHIs)

and Motion Energy Images (MEIs) are among the first holistic feature representation meth-

ods for behavior recognition [61]. In an MHIHτ , pixel intensity is a function of the tem-

poral history of motion at that point.

57

Figure 4.3.Example MHIs representing digits from0 to 9. MHIs have been computed based on
RGB information only.

58

HI
τ (x, y, t) =

τ, if |I(x, y, t)− I(x, y, t− 1)| > δIth

max(0, HI
τ (x, y, t− 1)− 1), else.

(4.1)

Hereτ is the longest time window we want the system to consider andδIth is the threshold

value for generating the mask for the region of motion. The result is a scalar-valued image

where more recently moving pixels are brighter. Note that the MEI can be generated by

thresholding the MHI above zero. The above mathematical formulation of a MHI and a

MEI is described by Davis and Bobick in their seminal paper [61]. They further proposed

a statistical description of those images using translation and scale invariant moment-based

features (7 Hu moments). For recognition a Mahalanobis distance is calculated between

the moment description of the input and each of the known actions. In Figure 4.3 one can

see some examples of MHIs for a set of gestures representing digits from0 to 9.

In [62] Xiang et al. have shown that pixel change history (PCH) images are able to

capture relevant duration information with better discrimination performance. The mathe-

matical formulation for a PCH image can be found at the following equation (Eq. 4.2):

Pς,τ (x, y, t) =

min(Pς,τ (x, y, t− 1) + 255
ς
, 255)

ifD(x, y, t) = 1

max(Pς,τ (x, y, t− 1)− 255
ς
, 0)

otherwise

(4.2)

wherePς,τ (x, y, t) is the PCH for a pixel at(x, y), D(x, y, t) is the binary image indicating

the foreground region,ς is an accumulation factor andτ is a decay factor. By setting

appropriate values toς andτ we are able to capture pixel-level changes over time.

However, using only RGB camera, MHIs can only encode the history of motion in-

duced by the lateral component of the scene motion parallel to the image plane. Ni et al.

[63] proposed the use of an additional depth sensor and they develop an extended frame-

59

work which is capable of encoding the motion history along the depth changing directions.

To encode the forward motion history (increase of depth) they introduced the forward-

DMHI (fDMHI):

HfD
τ (x, y, t) =

τ, if D(x, y, t)−D(x, y, t− 1) > δIth

max(0, HfD
τ (x, y, t− 1)− 1), else.

(4.3)

Here,HfD
t denotes the forward motion history image andD(x, y, t) denotes the depth

sequence.δth is the threshold value for generating the mask for the regionof forward mo-

tion. The backward-DMHI (i.e.,HbD
t) is generated in a similar way with the thresholding

function replaced by(D(x, y, t)− D(x, y, t − 1)) < −δth. In another similar work Kos-

mopoulos et al. [64] investigated the effects of fusing feature streams extracted from color

and depth videos, aiming to monitor the actions of people in an assistive environment. They

extracted Pixel Change History Images (PCHs) from RGB streams and backward/forward-

DMHI from depth streams. All images were finally representedby 6th order Zernike mo-

ments. For classification they reported results on Hidden Markov model classifiers and

fusion methods like early, late or state fusion. The use of KinectTM depthmaps has the main

disadvantage of the presence of a significant amount of noise. After frame differencing and

thresholding, motion is encoded even in areas where there are only still objects. To tackle

this problem one can use a median filtering at the spatial domain. In the temporal domain

each pixel value can be replaced by the minimum of its neighbors.

This chapter proposes a trajectory based gesture recognition method employing KinectTM

RGB-D data. Trajectory based methods are typically based onfeature vectors regarding

hand locations in consecutive frames. Based on this featurerepresentation another wide

category of gesture recognition approaches can be defined. Given a video sequence one

can define a gesture as the trajectory of the points that correspond to the hand locations

60

for each video frame. A gesture is therefore a sequence of2D points or a time series. A

popular method for comparing time series, that we employ in this chapter, is the Dynamic

Time Warping (DTW) [38]. We will describe in more detail the algorithm in section 4.5.

DTW has been applied to successfully recognize a small vocabulary of gestures [65, 66].

A main disadvantage of DTW when used in gesture recognition is that it requires a

perfect hand detector. For every frame we assume that we havethe exact hand location.

This assumption of course is hard to be satisfied in uncontrolled real-world environments,

as mentioned in the previous section. To address this limitation we need to either build a

really robust hand detector, like the one we propose in this chapter, or we need to relax the

assumption of a single candidate hand location per frame andallow for multiple detections

of candidate hand regions. If we allow for more than one candidates, then we can employ

Dynamic Space-Time Warping DSTW [3]. The dynamic space-time algorithm aligns a

pair of query and model gestures in time, while at the same time it identifies the best hand

location out of the multiple hypotheses available at each query frame.

Another similar approach is multiple hypothesis tracking (e.g., [67]) where multi-

ple hypotheses are associated with multiple observations.The CONDENSATION-based

framework can also be applied to gesture recognition [39]. Although in principle CON-

DENSATION can be used for both tracking and recognition, in [39] CONDENSATION

was only used for the recognition part, once the trajectory had been reliably estimated

using a color marker. Employing CONDENSATION requires the knowledge of observa-

tion and propagation densities for each state of each class model, whereas our proposed

method doesn’t require such knowledge. Trajectory based methods can be coupled with

a HMM framework, as proposed by Sato and Kobyashi [68]. In their method they extend

the Viterbi algorithm so that multiple candidate observations can be accommodated at each

query frame; the optimal state sequence is constrained to pass through the most likely can-

didate at every time step. However their approach is not translation invariant and it doesn’t

61

perform well in more challenging setting like the ones we usein our experiments. Next

section 4.3 describes our proposed method in more detail.

4.3 Application Overview

Our method is an appearance based and example based gesture recognition method.

In our experiments we define 10 classes representing the ten digits from 0 to 9, as shown

in Figure 4.4 and 4.5.

Each digit can be formed by a gesture that has been signed by a user and is stored

as a video sequence. For each digit class we have several training examples (videos) in

our database. More specifically we have 10 different users performing 3 times each gesture

digit, thus providing us 300 training examples. To make easier and automate the annotation

for the training examples the user wears a colored glove and the background is fairly static

and controlled. However we must stress that the same does notapply for the test sequences

where the environment is far more challenging.

Given a test video sequence we first need to find the hand location in each frame

and create a 2D trajectory. Then we must classify that trajectory as one of our ten classes

(Figure 4.6). In this chapter we compare the performance we obtain using a color video, vs.

the performance we obtain using a depth video, which provides, for every pixel, the depth.

For the color videos, we use a hand detector which combines two visual cues, i.e., color

and motion; both requiring only a few operations per pixel. Skin color detection is compu-

tationally efficient, since it involves only a histogram lookup per pixel. Similarly, motion

detection, which is based on frame differencing, involves asmall number of operations per

pixel.

For the depth video, we use a hand detector based on motion from frame differencing

which we combine with a depth segmentation according to the depth information we have

62

Figure 4.4.Palm’s Graffiti digits .

Figure 4.5.Example model digits extracted using a colored glove. We reuse the figure and actual
videos from [3].

for each pixel (see previous chapter 3). Our detector can return a single best hand location

that will be the input for DTW.

63

Figure 4.6.Given a test video sequence, we classify it as one of our ten classes by computing the
1NN.

Recognizing the input gesture is done using the nearest neighbor classification frame-

work. The gesture recognition we have just described is depicted in Figure 4.7. The sim-

ilarity measure that we use for the 1NN scheme (see Figure 4.6) is the score returned by

the DTW. The DTW algorithm temporally aligns two sequences,a query sequence and a

model sequence, and computes a matching score, which is usedfor classifying the query

sequence. The time complexity of the basic DTW algorithm is quadratic in the sequence

length, but more efficient variants have been proposed [69, 38]). In DTW, it is assumed that

a feature vector can be reliably extracted from each query frame. In the following sections

we describe in detail each module of our method.

64

Figure 4.7.A typical bottom-up gesture recognition approach.

4.4 Detection and Normalization

4.4.1 Detection

The first hand detector that we used in our experiments is applied on RGB color

images and is based on motion and skin detection. To build theskin color model we use

65

Figure 4.8.Hand detection in color images: original image (top left), skin detection (top right),
frame differencing (middle left), multiplication of skin and frame differencing scores (middle right),
top 15 hand candidates (bottom left), single top candidate (bottom right). One can see that the hand
detector here fails to detect the hand of the gesturing person.

66

a generic skin color histogram [70] to compute the skin likelihood image in which each

pixel in the frame gets assigned a value denoting the probability of being skin. The motion

detector computes a score matrix with the same size as the original image by using frame

differencing (frame differencing is the operation of computing, for every pixel, the mini-

mum of two values; the absolute value of the difference in intensity between the current

frame and the previous frame and the absolute value of the difference in intensity between

the current and the next frame). Then we multiply element by element the motion score

matrix with the skin likelihood image to obtain the hand likelihood image. Next we com-

pute for every subwindow of some predetermined size the sum of pixel likelihoods in that

subwindow. Then we extract the subwindow with the highest sum. The gesturing hand

is typically covered by one or more of these subwindows (See Figure 4.2). Figure 4.8

illustrates examples of input, output, and intermediate steps for this detector.

We use the detector based on RGB information to provide comparative results and a

baseline performance for our system. Our proposed gesture recognition however integrates

a hand detector based on depth data which has been presented at previous chapter 3. By

detecting hands in every frame we create our2D trajectories that are given as input to our

recognition algorithm. These trajectories are then normalized in order to achieve translation

and scale invariance for our system. The process of normalizing our trajectories is described

in more detail at the next subsection 4.4.2.

4.4.2 Normalization

Translation and scale invariance are highly desirable properties for any gesture recog-

nition system. Our method is based on DTW which doesn’t inherently satisfy these two

properties. Hence we need to pre-process our location features in order to account for dif-

ferences in translation and scale. When the hand detector isapplied, we can segment the

hand region. Then we extract our features that will be given as inputs to DTW. We use a ba-

67

Figure 4.9.On the top image we can see a trajectory representing the digit two. If the user moves
towards the camera this may result in a trajectory that appears scaled up (middle image). If the
users changes his position with respect to the camera this may result in a trajectory that appears to
be translated (bottom image).

sic feature which is the2D position(x, y) of the segmented region centroid. For any given

ith frame a2D feature vectorQi = (x, y) is extracted. However, the2D feature vector

representing position is translation and scale dependent.A user interacting with the gesture

recognition system doesn’t have to always be located in the same place with respect to the

68

Figure 4.10. In this figure we depict the output of our normalization process. As input to the
normalization algorithm we gave the trajectories depictedan Figure 4.11. The actual frame size for
the normalized images depicted here is300 × 300.

69

camera. Different placements of the user may result in trajectories with different scale and

translation as one can see in Figure 4.9.

In order to render out method scale and translation invariant we must use a normal-

ization step before we give our sequences of 2D vectors as input to DTW.

Normalization is achieved in the following way:

• After we have the set of all 2D points corresponding to hand locations, we can cal-

culate the Minimum Enclosing Circle (MEC) of that set.

• Then we find the bounding square box that has the same center asthe MEC and its

width length is twice the circle’s radius.

• Then we resize the square to a fixed size of300× 300.

By normalizing our features our system becomes translationand scale invariant and

increases our recognition rates. The whole normalization pipeline is depicted in Figure

4.12.

In Figure 4.11 we can see some images with the hand trajectories before normaliza-

tion. Each red pixel represents the actual hand location of the gesturing hand in each video

frame. In Figure 4.10 the same trajectories are depicted after the process of normalization.

Another normalization technique that has been proposed by Alon et al. [71] employs

a face-centric coordinate system. In order to detect the face of each user at the first frame

of the gesture the authors use the face detector of Rowley et al. [72]. The coordinate

system is defined so that the center of the face is at the origin, and the diagonal of the

face bounding box has length1. The same scaling factor is applied to both the x and the y

direction. However a major disadvantage of this technique is that the user’s hand needs to

always have the same relative position with respect to the face. This is a rather imposing

restriction that impedes the natural interaction between auser and the gesture recognition

system.

70

Figure 4.11.The trajectories represent all digits from0 to 9. Each red pixel represents the actual
hand location of the gesturing hand in each video frame. Frames are of size240× 320.

71

Figure 4.12.This figure depicts our normalization process. On the top image (actual frame size is
240 × 320) we can see the original 2D trajectory based on the actual hand locations. Then (middle
image) we compute the Minimum Enclosing Circle (in red) and the corresponding bounding box
(in green). Finally we resize the bounding box to predefined size of300 × 300 (bottom image).

The main disadvantage of our normalization technique is that it is sensitive to out-

liers as depicted in Figure 4.13. However the proposed hand tracking method based on

depth data manages to accurately define the hand location in each frame resulting in 2D

trajectories without outliers.

72

Figure 4.13.To the left image we can see a normalized trajectory. To the right image, is the same
trajectory normalized after adding some outliers. Clearlythe trajectory has been shifted with respect
to the original position and has been scaled down.

4.5 Dynamic Time Warping

In time series analysis, dynamic time warping (DTW) is a wellestablished algorithm

for comparing temporal sequences which may vary in time or speed. DTW addresses the

main problem of aligning two sequences in order to compute the most suitable distance

measure of their overall difference. Originally employed by the speech recognition com-

munity DTW can also be applied to temporal sequences of videodata or any type of data

that can be expressed as a liner sequence. DTW is a key algorithm for the gesture recog-

nition system described in this chapter. One of the several publications that describe the

DTW algorithm is [38]. In this section we briefly describe thealgorithm presented in that

paper.

Let M = (M1, . . . ,Mm) be a model video sequence in which eachMi is a feature

vector and letQ = (Q1, . . . , Qn) be a query video sequence in which eachQj is another

feature vector. In our experiments each feature vector containsx andy coordinates of the

2D hand location.M andQ have a length ofm andn, respectively corresponding to the

total number of frames of each video sequence. To align two sequences using DTW, we

construct ann-by-m matrix where the (ith, jth) element of the matrix contains the distance

73

(Mi, Qj) between the two feature vectorsMi andQj (i.e., d(Mi, Qj) = ‖Mi − Qj‖. For

our experimentsd is the Euclidean distance between two feature vectors. Eachmatrix

element (i, j) corresponds to the alignment between the feature vectorsMi andQj . This is

illustrated in Figure 4.14.

(a) A modelM and queryQ sequence

(b) Warping matrix defining the alignment forM andQ

Figure 4.14. To align the sequences, we construct a warping matrix and compute the optimal
warping path, shown with gray squares.

74

A warping pathW defines an alignment betweenM andQ. Formally,W = w1, . . . , wT ,

wheremax(m,n) ≤ T ≤ m + n− 1. Eachwt = (i, j) specifies that feature vectorMi of

the model is matched with query feature vectorQj . The warping path is typically subject

to several constraints:

• Boundary conditions:w1 = (1, 1) andwT = (m,n). This requires the warping path

to start by matching the first frame of the model with the first frame of the query, and

end by matching the last frame of the model with the last frameof the query.

• Temporal continuity: Givenwt = (a, b) thenwt−1 = (a′, b′), wherea − a′ ≤ 1 and

b − b′ ≤ 1. This restricts the allowable steps in the warping path to adjacent cells

along the two temporal dimensions.

• Temporal monotonicity: Givenwt = (a, b) thenwt−1 = (a′, b′) wherea − a′ ≥ 0

andb − b′ ≥ 0. This forces the warping path sequence to increase monotonically in

the two temporal dimensions.

An exponential number of warping paths can be found that adhere to the above re-

strictions. However DTW computes the optimal path that willminimize the following

warping cost:

DTW (M,Q) = min{ 2

√

√

√

√

T
∑

t=1

wk} (4.4)

This path can be found using dynamic programming (see Algorithm 2) which com-

putes the cumulative distanceγ(i, j) as the distanced(i, j) found in the current cell and the

minimum of the cumulative distances of the adjacent elements:

γ(i, j) = d(Mi, Qj) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (4.5)

The time and space complexity of DTW isO(nm).

The Euclidean distance between two sequences can be seen as aspecial case of DTW

where thekth element of W is constrained such thatwk = (i, j)k, i = j = k. Note that it is

75

(a) Euclidean distance

(b) DTW

Figure 4.15.Note that the two sequences are quite similar but not alignedin the time axis. Eu-
clidean distance doesn’t take into account the fact that thetwo time series are out of phase. Hence
it will produce a pessimistic dissimilarity measure. DTW alignment will provide a more intuitive
distance measure.

only defined in the special case where the two sequences have the same length (see Figure

4.15).

Given warping path elementwt = (i, j), we define the setN(i, j) to be the set of all

possible values ofwt−1 that satisfy the warping path constraints (in particular continuity

and monotonicity):

N(i, j) = {(i− 1, j), (i, j − 1), (i− 1, j − 1)} (4.6)

We assume that we have a cost measured(i, j) ≡ d(Mi, Qj) between two feature

vectorsMi andQj . In our experimentsd(i, j) is the Euclidean distance. DTW finds the

optimal pathW ∗ and the global matching scoreD∗ as described in Algorithm 2.

76

input : A sequence of model feature vectorsMi, 1 ≤ i ≤ m, and a sequence of

query feature vectorsQj , 1 ≤ j ≤ n.

output : A global matching costD∗, and an optimal warping pathW ∗ =

(w∗

1, . . . , w
∗

T).

D(1, 1) = d(1, 1) // Initialization

j = 1 for i = 2 : m do

D(i, 1) = D(i− 1, 1) + d(i, 1)

end

i = 1 for j = 2 : n do

D(1, j) = D(1, j − 1) + d(1, j)

end

for i = 2 : m do

// Iterationfor j = 2 : n do

w = (i, j)

for w′ ∈ N(w) do

C(w′, w) = D(w′),

end

D(w) = d(w) + minw′∈N(w)C(w′, w)

b(w) = argminw′∈N(w)C(w′, w)

end
end

k∗ = argmink{D(m,n)} // Termination

D∗ = D(m,n,)

w∗

T = (m,n,)

w∗

t−1 = b(w∗

t) // Backtrack

Algorithm 2: The DTW algorithm

77

4.6 Experiments and Results

To evaluate the performance of our method we have created a hand-signed digit

recognition system. The training videos that we use are publicly available, as described

in [71]. In that data, the trajectories can be easily found, since the persons signing the

digits are wearing a green colored glove. This is a convention that we allow only on our

training data which we then preprocess offline in order to create fine trajectories. However

this is not the case for the testing data. Our test video sequences have been captured in

some really challenging settings so as to measure the robustness of our proposed and previ-

ous methods. The test data have been collected with the KinectTM camera using an image

resolution of640× 480. In more detail our datasets have been organized as follows:

• Training examples:300 digit exemplars (30 per class) were stored in the database

(See Figure 4.5). A total number of10 users have been employed to collect all

training data

• Test gestures:40 digit exemplars (20 per class) were used as queries. For 20 ofthem

the users were wearing short-sleeve shirts contrary to mostgesture recognition meth-

ods. We will refer to this half of the test set as theeasy test set. For the remaining

20 exemplars, we have created even more challenging conditions, with people and

various objects moving constantly in the background. In this way we want to demon-

strate that most of the previous methods fail while our proposed method remains

robust even in the harshest conditions. We will refer to thishalf of the test set as the

hard test set. A total number of2 users have been employed to collect all test data.

It is important to note that recognition was performed in auser-independentmanner:

we never use a model video sequence as a test query. The test videos have been collected

from users that do not appear in the training videos. Using a hand detector we extract a

trajectory from a test query. Then we compare that trajectory with all the pre-computed

78

training trajectories and using 1-NN Nearest Neighbor Classification we classify our test

signed digit as one of the 10 classes, ranging from 0 to 9.

Figure 4.16.Results.

First we test the performance of DTW given that we have a perfect hand detector

for our test sequences. To extract the trajectories in this case we have resorted to manual

annotation. Naturally, the gesture recognition is 100% accurate and all digits are classified

correctly. Then we test DTW by employing another detector which uses motion and skin

color to locate the hand in each frame. This will also serve asa baseline performance for

our system. For theeasy test setwe achieve an accuracy of 85% while for thehard test

set the accuracy reduces drastically down to 20% emphasizing the weakness of previous

methods in such challenging environments. Finally, our method achieves an accuracy of

95% for both test sets. All results are depicted in Figure 4.16.

Total processing time for tracking the hand in a single frame, on a PC with a 2.00

GHz Intel(R) Xeon(R) E5406 processor, is about 0.673 seconds. The code is rather unopti-

mized and implemented in MATLAB R2012a. Processing time canbe drastically reduced

depending on our I/O and memory management strategy. In the current implementation, we

read each frame (saved as a separate file) from the disk, adding a significant computation

79

overhead for just reading and loading each single frame in memory. The computation time

for the recognition algorithm, including the normalization step, is about 19 seconds for a

random gesture containing 68 frames. The normalization step takes as input the whole set

of 2D gesturing points. This introduces a small latency to our recognition algorithm which

requires that the whole gesture has to be first captured.

4.6.1 Conclusion and Future Work

This thesis chapter has introduced a translation and scale invariant gesture recog-

nition method that can achieve high performance even in challenging environments with

backgrounds full of moving people and objects. The contribution of this chapter is a ges-

ture recognition system that integrates a hand detector based on motion detection and depth

segmentation that can accurately locate the hand at each frame. On top of the detector the

features are normalized and then the Dynamic Time Warping algorithm is employed in

order to recognize the gestures. Incorporating translation and scale invariance makes the

proposed system more user friendly since the user has fewer restrictions as to where exactly

he needs to be placed with respect to the camera. However somerestrictions remain and

one of them is viewpoint invariance. The current method assumes that the user always faces

the camera so as to capture a frontal view of the gesture. An extension of this approach that

can handle arbitrary camera viewpoints is presented in Chapter 5. Another open problem

that needs investigation is temporal segmentation. In the current approach the beginning

and end frame for each gesture is manually annotated. Automating this procedure (e.g., by

using a distinct pose for the non-gesturing hand) remains future work. Finally, we would

like to expand our gesture recognition system in order to accommodate more challenging

gestures from other domains such as the American Sign Language. All the aforementioned

future directions address interesting research problems but implementing them is out of the

scope of the current thesis.

80

CHAPTER 5

VIEWPOINT INVARIANT GESTURE RECOGNITION USING RGB-D

5.1 Introduction

Towards developing NUI systems the ultimate goal is to offerto the user a type of

interaction that is as natural and unconstrained as possible. Hence, two highly desirable

properties for any action/gesture recognition systems is scale and translation invariance.

The method we proposed at previous chapter 4 satisfies both properties. However another

essential property that needs to be addressed is viewpoint invariance. Typically, most ges-

ture recognition approaches assume that the gesturing plane is fronto-parallel to the cam-

era image plane. However this imposes a restriction to the user as he can not be placed

freely under an arbitrary viewpoint with respect to the camera. Even though there is a vast

amount of literature on gesture and action recognition, fewapproaches explicitly target the

viewpoint invariance property. At the same time traditional methods rely on2D and most

recently on2.5D data where there might be loss of information from the original 3D ges-

tures. Relying on2D information means that the analyzed trajectory is just a projection

onto the image plane of the actual3D gesture. Depending on the viewpoint and after the

projection we might loose useful information that was previously encoded in the3D data.

In this chapter we will extend our method to exploit3D point clouds and handle cases

where the user is not standing fronto-parallel to the camera. Instead we allow the user to

perform gestures in such a way that the gesturing plane mightbe rotated with respect to the

camera image plane. We consider rotations along the camera coordinate systemy axis but

our method can also handle differences along thex axis. To estimate these angles we use

the unit length normal vector of the gesturing plane. In our experiments we recorded videos

81

and we managed to recognize gestures from a set of different viewpoints:{±45◦,±75◦}.

Our system has some attractive properties which can be summarized as follows:

1. It is trained from videos captured under one specific camera viewpoint but it can be

tested with gestures captured under arbitrary camera viewpoints. In our experiments

we opt to train our system with a camera viewpoint where the user is standing fronto-

parallel to the image plane. For testing the videos are captured under the following

set of viewpoints{±45◦,±75◦}.

2. It is all-together translation, scale and viewpoint invariant. To the best of our knowl-

edge few gesture recognition methods satisfy all these three properties at the same

time

3. It employs an affordable, commercially available sensor(i.e.,Microsoft KinectTM) as

opposed to an expensive laboratory sensor or a cumbersome calibrated multi-camera

set-up

In the next section 5.2 we will present related work for view-invariant action/gesture

recognition.

5.2 Related Work

One of the earliest works on viewpoint invariant gesture recognition has been pro-

posed by Weinland et al. [73]. They introduced a free-viewpoint representation ofMo-

tion History Volumes(MHV) for human actions using an experimental setup of multiple-

calibrated and background-subtracted video cameras. Ultimately their goal was to build

free-viewpoint class models from view-invariant motion descriptors. To acquire the motion

descriptors the main assumption is that viewpoint variations are expressed with respect to

the vertical axis of the gesturing body. Then the motion templates (MHV) can be expressed

invariantly (translation and rotation) around the body axis by using Fourier-magnitudes and

82

cylindrical coordinates. After computing motion descriptors in a view-invariant way the fi-

nal task is to recognize or classify the actions. This is typically done by learning statistical

models of the temporal sequencing of the descriptors. Classification is achieved using di-

mensionality reduction (PCA) coupled with Mahalanobis distance and linear discriminant

analysis (LDA). Experimental results are reported on a set of 11 actions (IXMAS dataset)

captured in a laboratory environment with five Firewire cameras that were calibrated and

synchronized.

In [74] Souvenir and Babbs use the same dataset (i.e IXMAS) but for training pur-

poses they animate the visual hull of gesturing body and project the silhouette onto 64

evenly spaced virtual cameras located around the body’s vertical axis. They model ap-

pearance of actions as a function of the camera viewpoint. More specifically they formu-

late actions by learning a low-dimensional representationof high-dimensionalR transform

surfaces, which lie on or near a low-dimensional manifold. In other words,R transform

surfaces vary as a function of the viewpoint parameter whichis learned with manifold

learning.

All the above methods rely on a multi-camera experimental setup where all cameras

need to be calibrated and synchronized. Such an elaborate laboratory setting can not be

applied when we need to observe actions in scenarios within unconstrained real environ-

ments (e.g., smart homes or sign language recognition applications). At the same time the

training phase for many different viewpoints can be an extremely strenuous process.

More recently, Holte et al. [75] have proposed a method that doesn’t require a set

of multiple calibrated cameras. Instead they employ a Time-of-Flight (ToF) range camera,

namely the SwissRanger SR4000. This range camera can provide RGB-D synchronized

image frames similarly to the KinectTM device, as described in previous chapters. The au-

thors represent gestures as an ordered sequence of3D motion primitives. Since the focus of

that work is on hand gestures a segmentation based on motion is applied in order to isolate

83

arms from the rest of the body. More specifically the arms are extracted by using a3D

version of optical flow in order to compute velocity annotated point clouds that are finally

represented by theirmotion context. Motion context is an extended version of regular shape

context. The3D motion primitives can be expressed in an invariant way with respect to

rotation around the vertical axis. Towards this end the authors choose to use spherical har-

monic basis functions, yielding a harmonic motion context representation. In each video

frame, the observed data can be represented by a primitive (if any). After identifying prim-

itives from consecutive frames a discrete recognition problem can be constructed, since a

video sequence of range data will be converted into a string containing a sequence of sym-

bols, each representing a primitive. After pruning the string a probabilistic Edit Distance

classifier is applied in order to determine which gesture best represents the pruned string.

Our proposed method for view invariant gesture recognitionis trained with videos

from one camera viewpoint and tested with videos taken from completely different view-

points ranging from−75◦ to+75◦. The main advantages of our approach over [75] are the

following:

1. We use an affordable, commercially available sensor (i.e., Microsoft KinectTM) as

opposed to an expensive laboratory sensor like the SwissRanger SR4000.

2. We can recognize gestures captured from a wider set of viewpoints, ranging from

−75◦ to +75◦ as opposed to a smaller set of viewpoints (see [75]) ranging from

−45◦ to +45◦.

A more comprehensive survey regarding viewpoint invariantgesture/action recogni-

tion methods can be found at [76]. The remainder of this chapter is organized as follows.

In the next section 5.3 we describe in more detail our method and in section 5.4 we present

the experimental setup and results. Finally at section 5.5 we conclude and discuss possible

future work.

84

5.3 Methodology

We propose a viewpoint invariant gesture recognition system that can be seen as an

extension of our system presented at previous chapter 4. Themain advantage here is that

we can recognize gestures extracted from videos that have been captured under varying

viewpoint directions of the camera with respect to the user.For each video we employ

RGB and depth information in order to determine the2D hand locations of the gesturing

hand. Relying on2D information means that the analyzed trajectory is just a projection

onto the image plane of the actual3D gesture. Depending on the viewpoint and after the

projection we might loose useful information that was previously encoded in the3D data.

To address this issue we will define our trajectories in both2D and3D space. By combining

the registered and synchronized RGB and depth frames it is possible to construct3D point

clouds and thus estimate3D hand locations. The framework for capturing and processing

3D point clouds is offered by the Point Cloud Library (PCL) [77], which is a large scale,

open project for2D/3D image and point cloud processing. By using the RGB and depth

frame along with the camera’s (i.e., KinectTM) intrinsic and extrinsic parameters PCL offers

a fully 3D reconstructed point cloud. An interesting property of the new point cloud is that

for eachi, j pixel of the original VGA resolution image we can now have access to the

corresponding3D coordinatesx, y andz expressed in meters. So for any given pixelpi we

know all-together:

• 2D spatial information, i.e., row and column (i, j respectively)

• Color information (i.e., RGB value forpi)

• 3D spatial information based onx, y, z coordinates, expressed in a3D coordinate

system where the origin coincides with the optical center ofthe KinectTM RGB sen-

sor. In Figure 5.1 we can see a snapshot of a rendered point cloud along with the3D

coordinate system. Unit of measurement is in meters. Red axis isx, green axis isy

85

and finally blue axisz. PCL defines the3D coordinate system following the same

conventions as thepinhole camera model

Figure 5.1. This figure depicts a point cloud with a user performing a gesture. The origin of
the3D coordinate system coincides with the optical center of the KinectTM RGB sensor. Unit of
measurement is in meters. Red axis isx, green axis isy and finally blue axis isz. PCL defines the
3D coordinate system following the same conventions as thepinhole camera model.

By using PCL, any extracted2D trajectory can be also expressed as a3D trajectory

now. Towards quantifying the differences between various camera viewpoints we first need

to define thegesturing plane. This can be computed by fitting a plane for the points that

belong to the3D trajectory and correspond to the actual hand locations in each frame. This

imposes the restriction that all gesturing points need to beco-planar. Future work will be

to define thegesturing planeby fitting a plane for the points that belong to the torso of the

user. In this way our method could handle a wider set of gestures without requiring them

to be co-planar. We express3D planes in theirHessian Normal form(see Equation 5.1),

n̂ · x = −p (5.1)

86

wherep is the distance of the plane from the origin and vectorn̂ = (nz, ny, nz) is the

unit normal vector (normal to the surface of the plane) and it’s components are defined as

shown respectively at equations 5.3, 5.4, 5.5. The general equation of a3D plane is defined

at Eq. 5.2.

ax+ by + cz + d = 0 (5.2)

nx =
a

√
a2 + b2 + c2

(5.3)

ny =
b

√
a2 + b2 + c2

(5.4)

nz =
c

√
a2 + b2 + c2

(5.5)

p =
d

√
a2 + b2 + c2

(5.6)

By using the unit length normal vectorn̂ of thegesturing planewe can compute the

camera viewpoint angleθ with respect to the user. Let’s denote withn̂′ the projection of̂n

onto theXZ plane. We define asθ the rotation angle between̂n′ and the unit length normal

vector ẑ that lies onz axis. Rotation angleθ can quantify differences between various

camera viewpoints. But, most importantly we can useθ to apply a3D transformation for

the points comprising the3D trajectory. Towards that end we construct the3 × 3 rotation

matrixRy(θ) (see Eq. 5.7) as follows:

87

Ry(θ) =

cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

(5.7)

After multiplying to the left the transformation matrixRy(θ) with all 3D trajectory

points the angleθ between image plane and gesturing plane will get reduced to zero (θ =

0◦). Matrix Ry(θ) accounts for rotations with respect to the cameray-axis but in a similar

fashion we can also handle cases where we also have rotationswith respect to the camera

x-axis. After the transformation we can regard the3D gesture being captured as if the user

was standing fronto-parallel to the camera. We can extract the corresponding2D gesture

by projecting all points onto theXY plane. We illustrate the effect of that transformation

in Figures 5.3 and 5.4. First, in Figure 5.3 be show the2D trajectories that have been

generated by detecting hand locations in a video whereθ = 75◦ (see also Figure 5.2). It is

evident that useful information from the original3D gestures has been lost.

Figure 5.2.This figure depicts a user performing a gesture from a camera viewpoint such as that
θ = 75◦.

88

Figure 5.3. In this figure we depict2D trajectories that have been created by detecting hand
locations in2D RGB-D images. The original3D gestures represent hand-signed digits from0 to
9. The user is not facing the camera from a frontal view but froma viewpoint withθ = 75◦. The
actual frame size for the depicted images is300× 300.

89

In Figure 5.4 we demonstrate the effect of the3D transformation. The original3D

gestures here are the same as in previous figure 5.3. We apply the transformation so as the

gesturing planebecomes parallel to the image plane. Finally we depict the2D trajectories

created by projecting the3D points ontoXY plane.

Since our system is trained with fronto-parallel2D trajectories we can classify the

transformed2D gestures with Nearest Neighbor classification employing DTW as a simi-

larity measure. The general framework for the proposed viewinvariant gesture recognition

method can be summarized as follows with the following steps:

1. In each frame we compute the2D hand locations, manually or automatically with a

hand tracker. In the end we have a2D trajectory representing our gesture.

2. By using PCL we can express the2D trajectory in3D.

3. Fit a plane for the3D trajectory by using RANSAC. Gesturing plane is expressed in

Hessian Normal form.

4. Find the transformation matrix that aligns the unit length normal vector of the ges-

turing plane with thez unit length vector of the image coordinate system.

5. Apply that transformation to all3D points of the trajectory and then project to the

XY image plane.

6. Normalize the2D trajectory (see subsection 4.4.2 of chapter 4)

7. Classify the new transformed and normalized2D trajectory, by giving it as input to

the DTW algorithm and find the best match from our training database. The Near-

est Neighbor classification scheme we employ here is the sameas in the previous

Chapter 4.

The next subsection describes RANSAC algorithm which is used for computing the

parameters of thegesturing plane.

90

Figure 5.4.In this figure we demonstrate the effect of the3D transformation. The original hand-
signed digit3D gestures are the same as in previous figure 5.3. We apply the transformation so
as thegesturing planebecomes parallel to the image plane. Finally we depict the2D trajectories
created by projecting the3D points ontoXY plane. The actual frame size for the depicted images
is 300 × 300.

91

5.3.1 RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm proposed byFischler and

Bolles [78] is an iterative method for fitting of parametric models which is specifically de-

signed to be robust in the presence of many data outliers. It is a non-deterministic algorithm

in the sense that it produces a reasonable result only with a certain probability, with this

probability increasing as more iterations are allowed. RANSAC is a re-sampling technique

that generates model hypotheses by employing the minimum number of input data (data

points) required to estimate the underlying model parameters. So for example, when esti-

mating3D planes (as in our experiments) it requires only three data points to estimate the

plane parameters. This is in contrast with traditional sampling techniques that first require

a large set of input data for the initial parameters estimation and then prune out outliers.

RANSAC first uses the smallest possible set of input data and then expands it in a iterative

fashion with more data that are consistent with the initial model parameters. The basic

algorithm is formally described here:

Lets denote withp the probability that at least one set or random data items contains

only inliers. Typicallyp is set to0.99. Lets denote withpinlier the probability that any

selected data item is an inlier. Lets denote withpoutlier the probability that a selected data

item is an outlier. We know that:

poutlier = 1− pinlier (5.8)

Remember thatN is the number of minimum required data items in order to de-

fine the model parameters. The number of iterationsL can be determined based on the

following equation:

1− p = (1− (pinlier)
N)L (5.9)

92

input : A fitting problem with parameters~x, as set of totalM input points, the

numberN of minimum required points to define the model parameters,L

is the maximum number of iterations,τ andκ are predefined thresholds
output : The estimated model parameters and the set of inlier points
for i = 1 : L do

selectN minimum required data points randomly;

estimate~x (i.e., model parameters);

find numberD of all data items (out ofM) that are consistent with our model

parameters, given a toleranceκ;

if
D

M
> τ then

re-estimate the model parameters~x using allD data items;

exit and return~x along with theD data items;

end
end

fail if you get here;

Algorithm 3: The RANSAC algorithm

L =
log(1− p)

log(1− (1− poutlier)N)
(5.10)

One of the main advantages of RANSAC is that it can robustly estimate the model

parameters even in the presence of a large amount of outliersin the original data-set. On

the other hand because of the non-determinist nature of the algorithm there is no upper

bound for the computation time for estimating the correct model parameters. The more

iterations performed the higher the probability of an accurate model being estimated. At

the same RANSAC requires the setting of problem-specific thresholds. Contrary to many of

the common robust estimation techniques, such as M-estimators and least-median squares

that have been derived from the statistics literature, RANSAC was developed from within

93

the computer vision community. In our experiments we employRANSAC to compute3D

gesturing planes. Next section 5.4 presents experimental results assessing the performance

of the proposed method.

5.4 Experimental Results

One of the main advantages of our viewpoint invariant gesture recognition method is

that it can be trained from one camera viewpoint and tested under various different camera

viewpoints. In our experiments we choose to train our systemby using a camera viewpoint

where the user is standing fronto-parallel to the image plane. The training videos that we

use are the same as in previous Chapter 4. All gestures represent hand-signed digits from

0 to 9. Our training database consists of300 digit exemplars (30 per class) expressed as

normalized2D trajectories. A total number of10 users have been employed to collect all

training data.

5.4.1 Testing Dataset

For testing purposes we have captured videos under various camera viewpoints rang-

ing from−75◦ to +75◦. More specifically we have tested our system under the following

4 different viewpoint angles{±45◦,±75◦}. Figure 5.5 shows a user performing gestures

under some of the aforementioned viewpoint angles.

At total of 3 users participated in the creation of our test dataset. Eachuser has

performed gestures with4 different camera viewpoints. For each viewpoint and user we

have collected10 gestures representing hand-signed digits (from0 to 9). We have collected

a total of3×4×10 = 120 testing gestures and a total of6286 frames. Since the focus of this

Chapter is on the viewpoint invariant recognition algorithm we have manually identified the

original 2D hand locations in the test video sequences. Implementing anautomatic hand

tracker that can handle different camera viewpoint angles remains future work.

94

(a) User fronto-parallel to the image
plane.θ = 0◦

(b) viewpoint angleθ = −45◦

(c) viewpoint angleθ = −75◦ (d) viewpoint angleθ = +90◦

Figure 5.5.User performing gestures under various camera viewpoints.

Right now we have preliminary results for the cases whereθ ∈ {±45◦,±75◦}. First

we tested our gesture recognition system from Chapter 4. Recognition rates are reduced

drastically down to23.33% with a change in viewpoint of about+75◦. However when test-

ing our new view invariant method recognition rates remain very high93.33% proving that

our system is indeed viewpoint invariant. Results are depicted in Figure 5.6. Cumulative

recognition rate for our proposed method is98.33% while for our competitor recognition

accuracy is reduced down to41.66%.

Total processing time for the recognition algorithm, including fitting the plane, trans-

forming and normalizing the3D points, on a PC with a 2.00 GHz Intel(R) Xeon(R) E5406

processor, is about 19 seconds. Estimating the plane and transforming takes about 0.16

seconds and normalization takes about 0.15 seconds. The code is rather unoptimized and

95

Figure 5.6.Results for our view invariant gesture recognition method.For comparison we tested
our gesture recognition method from previous Chapter 4.

implemented in MATLAB R2012a. The plane estimation step takes as input the whole set

of 3D gesturing points. This introduces a small latency to our recognition algorithm which

requires that the whole gesture has to be first captured.

5.5 Discussion and Future Work

This chapter proposed a novel view invariant gesture recognition method that can

recognize gestures from videos captured under various camera viewpoints ranging from

−75◦ to +75◦. The proposed system can be trained with gestures captured from a specific

viewpoint and tested with gestures from various viewpoints. Our system is all-together

translation, scale and viewpoint invariant. To the best of our knowledge few gesture recog-

nition methods satisfy all these three properties at the same time.

Experimental results that the proposed method is indeed view invariant even in the

cases of extreme viewpoint angles likeθ = 75◦ or θ = −75◦. An open research problem

that needs investigation is automating temporal segmentation. In the current approach the

beginning and end frame for each gesture is manually annotated. Automating this pro-

96

cedure (e.g., by using a distinct pose for the non-gesturinghand) remains future work.

Automatic hand tracking in order to handle different cameraviewpoint angles also remains

future work. Finally, we would like to expand our gesture recognition system in order to

accommodate more challenging gestures from other domains such as the American Sign

Language.

97

CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion of Contributions

This thesis investigated methods for viewpoint invariant gesture recognition and3D

hand pose estimation. First, Chapter 2 proposed a viewpointinvariant hand pose estima-

tion method using RGB-D. It proposed an exemplar-based method that relies on similar-

ity measures employing depth information. At the same time,towards making 3D hand

pose estimation methods more automatic, a novel hand segmentation method has been in-

troduced which also relies on depth data. Contrary to previous approaches the proposed

clutter-tolerant method is all-together: user-independent, automatically detects and seg-

ments the hand from a single image (no multi-view or motion cues employed) and provides

estimation not only for the 3D pose orientation but also for the full hand articulation pa-

rameters. Depth information increases the discriminationpower of our method, according

to the experiments conducted. At the same time, differencesin anthropometric parameters

and clutter in background are two important factors influencing recognition accuracy of

our system. Experimental evaluation of these two factors has been provided by quantita-

tively measuring their influence on the performance of our proposed similarity measures.

Estimating hand pose from a single image can be useful in automatically initializing hand

trackers that can be integrated with gesture recognition systems.

On the topic of gesture recognition, a novel method is proposed that combines a

well known similarity measure, namely the Dynamic Time Warping (DTW), with a new

hand tracking method which on based on motion from frame differencing which we com-

bine with a depth segmentation according to the depth information we have for each pixel.

98

Depth frames have been captured using Microsoft’s KinectTM RGB-Depth sensor. First, at

Chapter 3 we evaluate our depth hand tracker against one popular open source user skele-

ton tracker by examining its performance on random signs from a dataset of American Sign

Language (ASL) signs. This evaluation can be seen as a contribution since it can serve as a

benchmark for the assessment of more advanced detection andtracking methods that utilize

RGB-D data. Another contribution of Chapter 3 is the introduction of a structured motion

dataset of (ASL) signs which has been captured in both RGB anddepth format using a

Microsoft KinectTM sensor and it will enable researchers to explore body part (i.e., hands)

detection and tracking methods, as well as gesture recognition algorithms.

Chapter 4 proposes a novel gesture recognition system that integrates the depth hand

tracker presented at chapter 3. The proposed method was one of the earliest ones that used

depth information from the KinectTM sensor. Some interesting properties of the proposed

system are the following:

• It performs very well even in very challenging environmentswith the presence of

multiple ”distractors” like moving objects, or skin colored objects (e.g., face, non-

gesturing hand, background objects).

• It is robust to overlaps between the gesturing hand and the face.

• It is translation and scale invariant; the gesture can occurin any part of the image.

• Unlike HMMs and CONDENSATION-based gesture recognition our method re-

quires no knowledge of observation and transition densities, and therefore can be

applied even if we have a single example per class.

• Our method can be generalized and applied to recognize a wider range of gestures,

other than signs of digits.

Finally, Chapter 5 contributes to the state of the art by extending the proposed gesture

recognition system in order to handle cases where the user isnot standing fronto-parallel

with respect to the camera. In our experiments we recorded videos and we managed to

99

recognize gestures from a set of different viewpoints:{±45◦,±75◦}. Our view invariant

gesture recognition method has some attractive propertieswhich can be summarized as

follows:

1. It is trained from videos captured under one specific camera viewpoint but it can be

tested with gestures captured under arbitrary camera viewpoints. In our experiments

we opt to train our system with a camera viewpoint where the user is standing fronto-

parallel to the image plane. For testing the videos are captured under the following

set of viewpoints{±45◦,±75◦}.

2. It is all-together translation, scale and viewpoint invariant. To the best of our knowl-

edge few gesture recognition methods satisfy all these three properties at the same

time

3. It employs an affordable, commercially available sensor(i.e., Microsoft KinectTM) as

opposed to an expensive laboratory sensor or a cumbersome calibrated multi-camera

set-up

6.2 Future Work

On the topic of3D hand pose estimation the retrieval accuracy for the proposed

system is still too low to be used as a stand-alone module for 3D hand pose estimation

and/or gesture recognition. Future work will be to define more sophisticated similarity

measures further exploiting depth information. At this point depth data and the way we

have used it can be regarded as a2.5D source of information. By using the KinectTM

camera’s intrinsic and extrinsic parameters we can construct 3D point clouds and start

exploiting this richer source of information. We could experiment with features like surface

normals and other3D feature descriptors. Our system currently doesn’t achievereal-time

100

performance. In order to do so and since our method is inherently parallel, additional future

work will be to take advantage of the GPU’s parallel processing power.

On the topic of view invariant gesture recognition an open problem that needs in-

vestigation is automating temporal segmentation. In the current approach the beginning

and end frame for each gesture is manually annotated. Automating this procedure (e.g.,

by using a distinct pose for the non-gesturing hand) remainsfuture work. Automatic hand

tracking in order to handle different camera viewpoint angles also remains future work.

Finally, we would like to expand our gesture recognition system in order to accommodate

more challenging gestures from other domains such as the American Sign Language.

101

REFERENCES

[1] Smith Micro, Aliso Viejo, CA, “Poser 8,” http://poser.smithmicro.com/poser.html.

[2] P. Doliotis, A. Stefan, C. McMurrough, D. Eckhard, and V.Athitsos, “Comparing ges-

ture recognition accuracy using color and depth information,” in International Con-

ference on PErvasive Technologies Related to Assistive Environments, 2011.

[3] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “Simultaneous localization and recog-

nition of dynamic hand gestures,” inIEEE Motion Workshop, 2005, pp. 254–260.

[4] V. Athitsos and S. Sclaroff, “Estimating 3d hand pose from a cluttered image,” in

IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, pp. II–

432–9 vol.2.

[5] Microsoft Corp. Redmond WA., “Kinect Xbox 360,” http://www.xbox.com/kinect.

[6] M. Schneider and C. Stevens, “Development and testing ofa new magnetic-tracking

device for image guidance,”Proceedings of SPIE, vol. 7035, no. 1, pp. 65 090I–

65 090I–11, 2007.

[7] R. Y. Wang and J. Popović, “Real-time hand-tracking with a color glove,”ACM Trans.

Graph., vol. 28, no. 3, pp. 63:1–63:8, July 2009.

[8] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “Vision-based hand

pose estimation: A review,”Computer Vision and Image Understanding, vol. 108, no.

1-2, pp. 52–73, 2007.

[9] B. Moghaddam and A. Pentland, “Probabilistic visual learning for object detection,”

MIT, Tech. Rep. 326, June 1995.

[10] J. Triesch and C. von der Malsburg, “Robotic gesture recognition,” in Gesture Work-

shop, 1997, pp. 233–244.

102

[11] W. Freeman and M. Roth, “Computer vision for computer games,” in IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition, 1996, pp. 100–105.

[12] Y. Wu and T. Huang, “View-independent recognition of hand postures,” inIEEE Con-

ference on Computer Vision and Pattern Recognition, vol. 2, 2000, pp. 88–94.

[13] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficientmodel-based 3d tracking of

hand articulations using kinect,” inBritish Machine Vision Conference, 2011.

[14] M. de La Gorce, D. J. Fleet, and N. Paragios, “Model-based 3d hand pose estima-

tion from monocular video,”IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 9, pp. 1793–1805, 2011.

[15] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Markerless and Efficient 26-DOF

Hand Pose Recovery,” inAsian Conference on Computer Vision, Queenstown, New

Zealand, 2010.

[16] J. Rehg and T. Kanade, “Model-based tracking of self-occluding articulated objects,”

IEEE Conference on Computer Vision and Pattern Recognition, vol. 0, p. 612, 1995.

[17] C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun, “Real time hand pose estimation using

depth sensors,” inIEEE International Conference on Computer Vision Workshops,

2011, pp. 1228–1234.

[18] N. Pugeault and R. Bowden, “Spelling it out: Real-time asl fingerspelling recogni-

tion,” in IEEE International Conference on Computer Vision Workshops, 2011, pp.

1114–1119.

[19] Z. Mo and U. Neumann, “Real-time hand pose recognition using low-resolution depth

images,” inIEEE Conference on Computer Vision and Pattern Recognition, vol. 2,

2006, pp. 1499–1505.

[20] P. Doliotis, V. Athitsos, D. I. Kosmopoulos, and S. J. Perantonis, “Hand shape and

3d pose estimation using depth data from a single cluttered frame.” in International

Symposium on Visual Computing, vol. 7431, 2012, pp. 148–158.

103

[21] L. G. Khachiyan, “Rounding of polytopes in the real number model of computation,”

Math. Oper. Res., vol. 21, no. 2, pp. 307–320, May 1996.

[22] Minimum Volume Enclosing Ellipsoid, “Matlab Central,” http://www.mathworks.

com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid.

[23] Smoothing 2D Contours Using Local Regression Lines, “Matlab Central,”

http://www.mathworks.com/matlabcentral/fileexchange/30793-smoothing-2d-

contours-using-local-regression-lines.

[24] Moore Neighbor Tracing Algorithm (description), http://www.imageprocessingplace.

com/downloadsV3/root downloads/tutorials/contourtracingAbeerGeorge

Ghuneim/alg.html.

[25] Moore Neighbor Tracing Algorithm (implementation), “Matlab Central,”

http://www.mathworks.com/matlabcentral/fileexchange/27639-boundary-tracing-

using-the-moore-neighbourhood.

[26] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Parametric cor-

respondence and chamfer matching: two new techniques for image matching,” in

In International Joint Conference on Artificial Intelligence, ser. IJCAI’77, 1977, pp.

659–663.

[27] V. Athitsos and S. Sclaroff, “An appearance-based framework for 3D hand shape clas-

sification and camera viewpoint estimation,” inIEEE International Conference on

Automatic Face and Gesture Recognition, 2002.

[28] OpenNI, “Openni website.” [Online]. Available: http://www.openni.org/

[29] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan,and A. Thangali, “The american

sign language lexicon video dataset,” inIEEE Workshop on Computer Vision and

Pattern Recognition for Human Communicative Behavior Analysis (CVPR4HB), June

2008, pp. 1–8.

104

[30] C. Valli, Ed.,The Gallaudet Dictionary of American Sign Language. Washington,

DC: Gallaudet U. Press, 2006.

[31] I. Guyon, V. Athitsos, P. Jangyodsuk, B. Hamner, and H. Escalante, “Chalearn gesture

challenge: Design and first results,” inIEEE Computer Vision and Pattern Recogni-

tion Workshops, 2012, pp. 1–6.

[32] C. Conly, P. Doliotis, P. Jangyodsuk, R. Alonzo, and V. Athitsos, “Toward a 3d body

part detection video dataset and hand tracking benchmark,”in International Confer-

ence on PErvasive Technologies Related to Assistive Environments, 2013, pp. 2:1–2:6.

[33] “Developer SDK, toolkit & documentation | kinect for windows,”

http://www.microsoft.com/en-us/kinectforwindows/develop/. [Online]. Available:

http://www.microsoft.com/en-us/kinectforwindows/develop/

[34] W. Freeman, “Computer vision for television and games,” in Recognition, Analysis

and Tracking of Faces and Gestures in Real-time Systems (RATFG-RTS), 1999, p.

118.

[35] T. Starner and A. Pentland, “Real-time american sign language recognition from

video using hidden markov models,” inIEEE International Symposium on Computer

Vision, 1995, pp. 265–270.

[36] F. Chen, C. Fu, and C. Huang, “Hand gesture recognition using a real-time tracking

method and Hidden Markov Models,”Image and Video Computing, vol. 21, no. 8, pp.

745–758, August 2003.

[37] J. Martin, V. Devin, and J. Crowley, “Active hand tracking,” in IEEE International

Conference on Automatic Face and Gesture Recognition, 1998, pp. 573–578.

[38] E. Keogh, “Exact indexing of dynamic time warping,” inInternational Conference on

Very Large Databases (VLDB), 2002, pp. 406–417.

105

[39] M. Black and A. Jepson, “Recognizing temporal trajectories using the condensation

algorithm,” inIEEE International Conference on Automatic Face and Gesture Recog-

nition, 1998, pp. 16–21.

[40] M. Isard and A. Blake, “ICONDENSATION: Unifying low-level and high-level track-

ing in a stochastic framework,” inEuropean Conference on Computer Vision (ECCV),

1998, pp. 893–908.

[41] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 3, pp.

311–324, 2007.

[42] S. N. P. Vitaladevuni, V. Kellokumpu, and L. S. Davis, “Action recognition using bal-

listic dynamics.” inIEEE Conference on Computer Vision and Pattern Recognition,

2008.

[43] R. Messing, C. Pal, and H. Kautz, “Activity recognitionusing the velocity histories of

tracked keypoints,” inIEEE International Conference on Computer Vision, 2009, pp.

104–111.

[44] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and D. Cremers, “Stereoscopic

scene flow computation for 3d motion understanding,”International Journal of Com-

puter Vision, vol. 95, no. 1, pp. 29–51–, 2011.

[45] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–

893 vol. 1.

[46] S. R. Fanello, I. Gori, G. Metta, and F. Odone, “Keep it simple and sparse: Real-time

action recognition,”Journal of Machine Learning Research, vol. 14, pp. 2617–2640,

2013.

106

[47] R. Fergus, P. Perona, and A. Zisserman, “A sparse objectcategory model for efficient

learning and exhaustive recognition,” inIEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, 2005, pp. 380–387 vol. 1.

[48] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization

with bags of keypoints,” inIn Workshop on Statistical Learning in Computer Vision,

ECCV, 2004, pp. 1–22.

[49] J. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of human action cat-

egories using spatial-temporal words,”International Journal of Computer Vision,

vol. 79, no. 3, pp. 299–318–, 2008.

[50] N. Dardas and N. D. Georganas, “Real-time hand gesture detection and recognition

using bag-of-features and support vector machine techniques,” IEEE Transactions on

Instrumentation and Measurements, vol. 60, no. 11, pp. 3592–3607, 2011.

[51] D. G. Lowe, “Object recognition from local scale-invariant features,” inInternational

Conference on Computer Vision, 1999, pp. 1150–1157 vol.2.

[52] M. Ahmad and S.-W. Lee, “Hmm-based human action recognition using multiview

image sequences,” inInternational Conference on Pattern Recognition, vol. 1, 2006,

pp. 263–266.

[53] P. Raamana, D. Grest, and V. Krueger, “Human action recognition in table-top scenar-

ios : An hmm-based analysis to optimize the performance,” inInternational Confer-

ence on Computer Analysis of Images and Patterns, 2007, vol. 4673, pp. 101–108–.

[54] Q. Shi, L. Wang, L. Cheng, and A. Smola, “Discriminativehuman action segmenta-

tion and recognition using semi-markov model,” inIEEE Conference on Computer

Vision and Pattern Recognition, 2008, pp. 1–8.

[55] L. E. S. Hctor Hugo Avils-Arriaga, “Dynamic bayesian networks for visual recogni-

tion of dynamic gestures,”Journal of Intelligent and Fuzzy Systems, vol. 12, no. 3,

pp. 243–250, Jan. 2002.

107

[56] W.-H. Wang and C.-L. Tung, “Dynamic hand gesture recognition using hierarchical

dynamic bayesian networks through low-level image processing,” in International

Conference on Machine Learning and Cybernetics, vol. 6, 2008, pp. 3247–3253.

[57] D.-Y. Huang, W.-C. Hu, and S.-H. Chang, “Vision-based hand gesture recognition

using pca+gabor filters and svm,” inInternational Conference on Intelligent Informa-

tion Hiding and Multimedia Signal Processing, 2009, pp. 1–4.

[58] D. L. Vail and C. Guestrin, “Conditional random fields for activity recognition,” in

International Joint Conference on Autonomous Agents and Multiagent Systems, 2007,

pp. 1–8.

[59] S. P. Chatzis, D. I. Kosmopoulos, and P. Doliotis, “A conditional random field-

based model for joint sequence segmentation and classification,” Pattern Recogntion,

vol. 46, no. 6, pp. 1569–1578, June 2013.

[60] S. B. Wang, A. Quattoni, L. Morency, D. Demirdjian, and T. Darrell, “Hidden condi-

tional random fields for gesture recognition,” inIEEE Conference on Computer Vision

and Pattern Recognition, vol. 2, 2006, pp. 1521–1527.

[61] J. W. Davis and A. F. Bobick, “The representation and recognition of human move-

ment using temporal templates,” inIEEE Conference on Computer Vision and Pattern

Recognition, 1997, pp. 928–934.

[62] T. Xiang and S. Gong, “Beyond tracking: modelling activity and understanding be-

haviour,” International Journal of Computer Vision, vol. 67, p. 2006, 2006.

[63] B. Ni, G. Wang, and P. Moulin, “Rgbd-hudaact: A color-depth video database for

human daily activity recognition,” inIEEE International Conference on Computer

Vision Workshops, 2011, pp. 1147–1153.

[64] D. Kosmopoulos, P. Doliotis, V. Athitsos, and I. Maglogiannis, “Fusion of color and

depth video for human behavior recognition in an assistive environment,” inInterna-

tional Conference on Human-Computer Interaction, 2013, vol. 8028, pp. 42–51.

108

[65] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture vo-

cabulary,” inRecognition, Analysis and Tracking of Faces and Gestures inReal-time

Systems (RATFG-RTS), 2001, pp. 82–89.

[66] T. Darrell and A. Pentland, “Space-time gestures,” inIEEE Conference on Computer

Vision and Pattern Recognition, 1993, pp. 335–340.

[67] C. Rasmussen and G. Hager, “Probabilistic data association methods for tracking

complex visual objects,”IEEE Transactions on Pattern Analysis and Machine In-

telligence (PAMI), vol. 23, no. 6, pp. 560–576, June 2001.

[68] Y. Sato and T. Kobayashi, “Extension of hidden markov models to deal with multiple

candidates of observations and its application to mobile-robot-oriented gesture recog-

nition,” in International Conference on Pattern Recognition (ICPR), vol. 2, 2002, pp.

515–519.

[69] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken

word recognition,” inIEEE Transactions on Acoustics, Speech, and Signal Process-

ing, vol. 34(1), 1978, pp. 43–49.

[70] M. Jones and J. Rehg, “Statistical color models with application to skin detection,”

International Journal of Computer Vision (IJCV), vol. 46, no. 1, pp. 81–96, January

2002.

[71] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unifiedframework for gesture recog-

nition and spatiotemporal gesture segmentation,”IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 31, no. 9, pp. 1685–1699, 2009.

[72] H. A. Rowley, S. Member, S. Baluja, and T. Kanade, “Neural network-based face

detection,”IEEE Transactions On Pattern Analysis and Machine intelligence, vol. 20,

pp. 23–38, 1998.

109

[73] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recognition using

motion history volumes,”Computer Vision and Image Understanding, vol. 104, pp.

249–257, Nov. 2006.

[74] R. Souvenir and J. Babbs, “Learning the viewpoint manifold for action recognition,”

in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–7.

[75] M. Holte, T. Moeslund, and P. Fihl, “View-invariant gesture recognition using 3d op-

tical flow and harmonic motion context,”Computer Vision and Image Understanding,

vol. 114, no. 12, pp. 1353–1361, Dec. 2010.

[76] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods for action

representation, segmentation and recognition,”Computer Vision and Image Under-

standing, vol. 115, no. 2, pp. 224–241, Feb. 2011.

[77] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE In-

ternational Conference on Robotics and Automation (ICRA), Shanghai, China, May

9-13 2011.

[78] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Commun.

ACM, vol. 24, no. 6, pp. 381–395, June 1981.

110

BIOGRAPHICAL STATEMENT

Paul Doliotis received his B.S. degree from the Department of Informatics at Athens

University of Economics and Business (AUEB), Greece, in 2004. He received his M.S.

from the Department of Cultural Technology and Communication at the University of the

Aegean, Greece, in 2008.

He received his Ph.D. degree in Computer Science from the Department of Computer

Science and Engineering at The University of Texas at Arlington, in 2013. Since February

2013 he has been working within the R&D team of Wynright Robotics as a Computer

Vision Engineer. His current research interests lie in the area of Computer Vision, Machine

Learning, American Sign Language/Gesture Recognition and3D Perception.

111

