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ABSTRACT 
 
 
 

EVALUATING THE PERFORMANCE OF  

CONTROLLED LOW STRENGTH MATERIALS (CLSMs) 

PREPARED USING SULFATE SPIKED  

HIGH PLASTICITY CLAYS 

 

Sadikshya Poudel, M.S. 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Anand J. Puppala 

When large scale civil engineering projects such as Integrated PipeLine (IPL) are to be 

constructed, several factors play a significant role in the successful completion of the project on 

time and on budget.  With pipeline construction, one of the important tasks is excavation, with 

excavation comes the hauling of the excess excavated trench material to the disposal site. The 

hauling of unwanted excavated dirt from the site and bringing in select backfill material that 

meets the project requirements not only adds to the overall cost of the project but also raises 

concerns about sustainability. Transport of unwanted excavated materials require landfill space, 

contribute to air pollution by carbon emission from transport vehicles and also cause damage to 

pavements by the heavy loads being hauled.  

In order to account for cost as well as sustainability, Tarrant Regional Water District 

(TRWD) initiated a research study involving the reusability of in-situ native soil as bedding, 

haunch and backfill material for the IPL project. One part of the study involved the use of native 

soil treated with a stabilizer, cement, to prepare a flowable fill or Controlled Low Strength 
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Material (CLSM). CLSM mix design using native soil not only cuts down cost of the hauling and 

bringing in select fill, it is also very effective when used as a utility bedding material. 

The proposed alignment of the IPL project underlines certain areas that contain 

expansive soil with elevated levels of sulfate concentration such as the Eagle Ford geological 

formation. Expansive soils with high levels of sulfates have been reported to be problematic all 

around Dallas/Fort Worth (DFW) metropolis. Sulfate induced heave has been a growing 

concern in the civil engineering projects employing calcium based stabilizers for soil treatment. 

 This study focuses on the effects of using high sulfate expansive soil treated with 

cement in CLSM sample preparation. In order to achieve this goal, short term strength and long 

term durability studies were conducted on the samples which comprised of strength, volumetric 

and weight change and leachate studies. For the study, soil from Eagle Ford geological 

formation was selected and treated with Portland Cement (Type I/II). The five sulfate 

concentrations studied were 100 or less ppm (control soil), 2500 ppm, 5000 ppm, 10000 ppm 

and 20000 ppm.   

From the study, several significant conclusions were drawn. The analysis showed that 

soluble sulfates present in soil used for CLSM preparation do not have adverse effect on the     

28-day cured unconfined compressive strength of the CLSM sample. This is in agreement with 

another study reported by the Japanese researchers who utilized recycled gypsum recycled to 

stabilize the soft clay soil and achieved acceptable Unconfined Compressive Strength (UCS) 

values (Kamei et al., 2011). The CLSM samples with elevated levels of soluble sulfate in the 

form of gypsum under short term strength exhibited higher UCS values. However, for the 

durability studies, the strength decreased significantly with increase in durability wetting-drying 

cycles.  

In addition, the increase in swell-shrink behavior of expansive soil with elevated levels 

of soluble sulfates was also distinctly reflected from the study when the same samples are 

subjected to durability cycles. Higher the concentration of soluble sulfates, higher the         
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swell-shrink behavior exhibited by the CLSM which was evident by the samples failing before 

reaching 14 complete durability cycles. This confirms the effects of sulfates on the volume 

change and strength loss behavior of CLSM mixes. Furthermore, the study also showed 

increase in calcium ion leached out with the increase in sulfate concentration in the CLSM 

sample. This increase in cement loss could be the reason for the loss of strength of CLSM 

samples during durability studies.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 General 

 Per the population clock developed by the United States Census Bureau (USCB) based 

on the 2010 Census data, United States (US) has a net gain of one person every twelve 

seconds (United States Census Bureau, 2010). Texas being one of the largest states in the US, 

it is not immune to this trend in population growth. In fact, the population of Dallas/ Fort Worth 

metropolis is likely to surpass 13 million by the year 2060 (IPL Project). With gradual but steady 

population growth, the demand for increased water supply is inevitable. In order to prevent the 

shortage of water supply to the growing DFW population, Tarrant Regional Water District 

(TRWD) and Dallas Water Utilities (DWU) ventured together to design and build a pipeline, 

approximately 150 miles long and about 9 feet in diameter which is going to bring in additional 

water from Lake Palestine, Cedar Creek Reservoir and Richland-Chambers Reservoir to avoid 

future water scarcity in the metropolis. This pipeline construction project is known as the 

Integrated Pipeline (IPL) Project.  

 When large scale civil engineering projects such as IPL are to be constructed, cost 

among other factors plays an important role in the successful completion of the project on time 

and on budget.  Pipeline construction involves excavation and, with excavation comes the 

hauling of the excess excavated trench material to the disposal site. The transport of unwanted 

excavated dirt from the site and bringing in select backfill material that meets the project 

requirements adds to the overall cost of the project. Moreover, the transport of unwanted 

excavated materials require landfill space, contribute to air pollution by carbon emission from 

transport vehicles and also cause damage to pavements by the heavy loads being hauled. 

These issues raise serious concerns about sustainability. 
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 In order to account for cost as well as sustainability, TRWD initiated a research study 

involving the reusability of in-situ native soil as bedding, haunch and backfill material for the IPL 

project. One part of the study involved the use of native soil treated with a stabilizer, cement, to 

prepare a flowable fill or Controlled Low Strength Material (CLSM).  

 CLSM mix design using native soil not only cuts down cost of the hauling and bringing 

in select fill, it is also very effective when used as a utility bedding material. Some of the 

advantages of CLSMs outlined by Trejo et al. (2004) include solid, uniform pipe support, 

reduced labor costs, reduced trench preparation time, and reduction of water entrance to the 

bedding-pipe interface. Karduri (2011) performed a cost analysis study that showed that cost 

increase to $6,003.18 when imported fill material was used instead of using native chemically 

treated soil for construction purposes. A cost savings of more than 100% was observed when a 

combination of cement and fly ash or lime was used in lieu of the imported select fill material. 

Appendix B shows the CLSM being used as bedding material in the IPL project. 

 Previous research at the University of Texas at Arlington (UTA) has not only 

established the CLSM mix design using native soils with selective dosages of cement as a 

stabilizer but also have conducted long term durability studies using soil from four different 

geological formations along the IPL alignment.  

 Furthermore, the research performed by Thomey (2013) on sulfate mapping for the 

pipeline alignment showed the presence of elevated levels of soluble sulfates in the Eagle Ford 

(EF) formation ranging from 40 parts per million (ppm) to approximately 20,000 ppm.  In 

construction practices, calcium based stabilizers are typically added to the CLSM mix design to 

increase their shear strength, reduce compressibility and volume changes (Cerato and Miller, 

2009). However, when soils containing soluble sulfates are stabilized using calcium based 

stabilizers such as lime or cement, the sulfates and alumina/silica present in the soil react with 

calcium resulting in  highly expansive minerals such as Ettringite (Ca6.[Al(OH)6]2.(SO4)3.26H2O) 

and Thaumasite (Ca6.[Si(OH)6]2.(SO4).(CO3)2.24H2O). This mechanism is termed as sulfate 
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heaving and was first observed by Sherwood in 1962 but only gained serious attention when it 

was reported by Mitchell in the mid-1980s. Ettringite contains 26 molecules of water enabling it 

to swell more than 137% of its volume (Little et al., 2010). Many cases of sulfate-induced heave 

were reported in Texas in and around DFW metropolis (Perrin, 1992; Puppala et al., 2010). 

 Due to the concerns relating to sulfate-heaving, the need for research on long term 

durability performance of CLSM mix designs prepared using native high plasticity clay with 

various sulfate concentrations is crucial. This thesis summarizes the results of performing 

durability test on the above mentioned scenario.  This will conclude whether CLSM mix design 

with expansive clay rich in soluble sulfates stabilized with cement is a feasible, durable, 

economical and sustainable alternative. 

1.2 Research Objectives 

 The main objective of this research is to evaluate the performance of CLSMs prepared 

using native soil containing various concentrations of soluble sulfates by performing durability 

studies.  For this purpose, the following tasks were executed: 

1. Select native high plasticity clay underlining any section of the IPL pipeline 

alignment.  

2. Determine the sulfate concentration in the selected soil. 

3. Treat the selected soil with four different sulfate concentration levels to cover the 

range (0 to 20,000 ppm) of sulfates identified in the EF formation. 

4. Conduct mix-design and verify 28-day strength requirement as per the 

specifications. 

5. Conduct durability studies per standards specified in the laboratory testing section.  

The durability studies will include the evaluation of long term performance of the 

CLSM samples considering several parameters such as volume change, calcium 

loss and strength. 

Figure 1.1 below provides a visual representation of the research tasks. 
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1.3 Thesis Organization 

 In order to accomplish the above mentioned objectives, the following tasks will be 

performed on a chapter basis. There are five chapters outlined in this thesis namely: 

 Chapter 1 provides a brief introduction on the research task outlined in this paper. This 

involves background on the IPL project along with the sustainability and practicality of using 

native-soil CLSM mix design as a bedding material for pipeline construction projects. 

Furthermore, the concerns and issues related to construction on expansive soil with high 

concentration of sulfates is also a crucial part of this section. Among other things, a list of 

research objectives and scope of work including thesis organization are also roofed in here. 

 Chapter 2 starts with the literature review of historical background on CLSMs, the 

evolution of CLSM sample preparation techniques, the various ingredients, applications of 

Sulfate Study

Research

Soil Selection             
Stabilizer Dosage          

Sulfate Concentration  
(Sulfate Testing)

Short Term Strength 
Tests

UCS Test                                 
(1,3, 7, 28 Days 

Strength )

Long Term 
Durability Tests

UCS Test                                 
(1,3, 7, 14 Durability 

Cycles)

- Volumetric Change

- Weight Change

Leachate 
Testing

Figure 1.1 Flowchart Representing the Sulfate Study Research Tasks 
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CLSM mix design in engineering practices along with the effects of durability (heating/wetting 

and freezing/thawing) studies on CLSMs and sulfate induced heaving in expansive clay. 

Several case studies involving CLSM mix design as pipeline bedding material and sulfate 

heaving mechanism on expansive clay are also presented in this section. Chapter 2 provides an 

overview for the need of a research task involving CLSM mix design as a pipeline bedding 

material prepared by using native soil (expansive clay) with high concentration of sulfates.  

 Chapter 3 presents the various procedures and standards followed to perform 

laboratory tests to achieve the above outlined objectives. The procedures discussed include soil 

selection and sampling, various sulfate concentration selection, sulfate testing, CLSM specimen 

preparation, durability testing (wetting and drying cycles), leachate testing and strength testing. 

In brief, chapter 3 is a summary of the laboratory procedures and the equipment used for 

testing. 

 Chapter 4 gives an overview of the results obtained from the testing. The results will 

include initial and final sulfate concentration of native soil used in CLSM mix design, unconfined 

compressive strength (UCS), volumetric and weight changes and the loss of calcium 

concentration after each durability cycle.  

 Chapter 5 provides an analysis of the test results obtained. The analysis will be 

followed by recommendations on using CLSM mix design as a pipeline bedding material. Future 

research proposals for in depth studies linking expansive soils and CLSM mix designs are also 

presented in chapter 5. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Introduction 

 This chapter presents the theoretical background of CLSM’s history, its application tied 

in with an overview on expansive soil, sulfate heaving mechanism and case studies on both 

CLSMs and high sulfate soil stabilizations. The literature review presented here was collected 

from various sources such as the University of Texas at Arlington library, journal resources, 

electronic search engines and several technical reports.  

 The chapter starts with a historical background on CLSMs, its benefits, drawbacks and 

applications, followed by the effects of durability on CLSMs and a few case histories involving 

durability studies on CLSMs .A brief discussion on construction in expansive soils and the 

problems caused by the presence of soluble sulfates in these expansive soils is presented. 

Also, a brief review of practices in stabilization of expansive soils with high sulfate contents 

along with case studies showing CLSM used with high sulfate soils is discussed. 

 The main objective of the literature research on CLSMs and sulfate rich expansive soils 

is to access whether these soils are problematic or not. In case these types of soil which are 

abundant in DFW metropolis are problematic, further research needs to be done to find the 

general practices used in soil stabilization. Another important goal of this chapter is to bring into 

attention any studies or projects that have been undertaken with CLSM as a bedding material 

for pipeline construction on expansive soils rich in sulfate. The ultimate goal is to check if CLSM 

prepared using native soil and treated with a chemical stabilizer can be recommended as a 

pipeline bedding, haunch or backfill material. 
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2.2 CLSM Introduction 
 

2.2.1 CLSM Background 

 American Concrete Institute (ACI) Committee 229 reports CLSM as a self-compacted, 

cementitious material commonly used as a backfill material to replace conventional compacted 

fill. CLSM is not only a self-compacting material but also a self-leveling substance with several 

generic names such as flowable fill, unshrinkable fill, controlled density fill, flowable mortar, 

plastic soil-cement, soil-cement slurry and K-Krete (ACI, 2005). Earlier definition of CLSM 

included materials with a 28-day compressive strength of less than 1200 psi regardless of the 

materials used in the mix-design (Trejo et al. 2004). Other version of ACI report, ACI 116R 

defines CLSM as a material showing a compressive strength of 300 psi or less. However, the 

most practical application would be to limit the compressive strength of CLSM material to 300 

psi or less in order to ease future excavation if needed (ACI, 2005). 

2.2.2 CLSM History 

 Initially termed as the Controlled Density Fill (CDF), the very first use of materials 

similar to CLSMs that used soil-cement slurry was reported around 1960’s. Trejo et al. (2004) 

presented a thorough discussion on the birth and development of CLSM.  As per that study, the 

birth of CLSM can be credited to the engineers from the Detroit Edison Company (Detroit, 

Michigan) and the Kuhlman Corporation (Toledo, Ohio) involved in the Enrico Fermi II Nuclear 

Station project. The idea was to utilize the by-product of the nuclear plant, fly ash, with concrete 

to produce ready-mix concrete. Initial laboratory tests and research confirmed that low-strength 

materials could be used as backfill materials and were called K-Krete®. Later, CLSM was used 

over CDF to include wide range of fill materials with various applications. Furthermore in 1998, 

a book, “The Design and Application of Controlled Low-Strength Materials flowable fill,” was 

published by American Society for Testing and Materials (ASTM) which presented the state of 

art and practice of CLSM in the field as well as in laboratory. At present, there are five ASTM 

standards for CLSM (Trejo et al., 2004). 
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2.3 Advantages and Disadvantages of using CLSMs 

 Using CLSM mix design in construction has its own advantages as well as 

disadvantages. Most of the benefits of CLSM have been discussed in more detail in ACI 229R-

99 report. Table 2.1 below lists some of the benefits and drawbacks of using CLSMs.  

Table 2.1 Advantages and Disadvantages of CLSMs  
 

S.No. Items Advantages (ACI, 2005) Disadvantages 

 
1. 

 
Easy 

Excavation 

 
CLSMs have compressive strengths of 
0.3 to 0.7 MPa (50 to 100 psi). Hence, 
they can be easily excavated using 
conventional digging equipment.  
 

 
CLSMs have low strength 
compared to concrete and 
cannot be used in areas where 
high strengths are desirable. 
(ACI, 2005) 

 
2.  

 
Easy to 
place 

Depending on type and location of void 
to be filled, CLSM can be placed by 
chute, conveyor, pump or bucket, 
because CLSM is self-leveling, and 
flowable it needs little or no spreading or 
compacting. This enhances the 
construction rate and reduces the labor 
requirements.  

 

 
Need to anchor lightweight 
pipes: One of the concerns 
when using CLSM in 
construction is its flowable 
nature. While it is an 
advantage that CLSM can 
easily flow around pipes or 
tight areas, it may cause light-
weight pipes to float.        
(Najafi et al.,2004) 

 
3.  

 
Fast set up 

time 

 
CLSM sets fast allowing for quick return 
of traffic in case of road constructions 
 

 
Eventhough CLSM has a short 
setting time when compared to 
concrete; it requires 
confinement before setting due 
to its flowing nature. This can 
sometimes add to the cost of 
the project. (Najafi et al.,2004) 

4.    
Versatile 

The ingredients used in CLSM are 
project specific. Some of the common 
wastes used in CLSM are fly ash, quarry 
waste products, scrap tires, incinerated 
sewage sludge ash, crushed stone 
powder (Horiguchi et al., 2011), ground 
granulated blast furnace slag (GGBFS), 
crushed stone (Trejo et al., 2004) etc. 
The application of recycling by-products 
from construction and manufacturing 
makes CLSM mix design a sustainable, 
environmental friendly design. 

 
Since CLSM has a flowable 
nature, it exerts lateral 
pressure when in nearly liquid 
form. Hence the structure/ 
pipes where CLSM is being 
need to withstand the lateral 
pressure.                                 
(Schmitz et al., 2004) 
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2.4 Applications of CLSM and Case Studies 

 Since the dawn of CLSM mix design in construction industry in the 1960s, its 

application has been evolving and expanding gradually ever since. Traditionally, CLSM was 

used as a backfill material to replace compacted soil backfill (ACI, 2005). However, additional 

research studies on CLSM have opened additional applications of CLSM mix design. Both 

traditional and modern applications of CLSM with their case studies have been discussed 

below.  

2.4.1. Traditional CLSM Applications 

 Some of the traditional applications of CLSM mix design are backfilling, void filling, 

bridge approaches and utility bedding. 

 2.4.1.1 Backfilling 

 One of the most common applications of CLSM mix design is in backfilling in place of 

conventional backfill materials that need compaction. The application of CLSM as a backfill 

material generally involves backfilling in trenches or behind retaining walls. The use of CLSM as 

a backfill material has its own advantages one of them being the reduction of width and size of 

excavation contributed by its self-leveling and flowable property. Per ACI (2005), conventional 

granular or site excavated backfill, even when compacted properly in the required layer 

thickness, may not achieve the uniformity of CLSM.  

 The case study reported in WI-16-99 prepared by Wilson (1999) from Wisconsin 

Department of Transportation (WDOT) titled “Flowable Fill as Backfill for Bridge Abutments,” 

dates back to 1996 where CLSM was used as backfill for bridge abutments. Figure 2.1 shows 

CLSM placement on west abutment of bridge in Wisconsin. 
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2.5 Constituents and Properties of CLSM 

2.5.1. Constituents of CLSM  

The most common constituent materials used in CLSM are Portland cement, fly ash, 

aggregates such as foundry sand, chemical admixtures, and other by-product materials. A 

significant benefit of CLSM is the ability to use a wide range of local materials, including by-

product materials (Folliard, 2008). Recent studies show the use of scrap tire (Pierce and 

Blackwell, 1999) and recycled gypsum (Kamei et al., 2011) have also been used as constituents 

in preparing CLSM mix. 

2.5.2. Properties of CLSM  

 This section provides information on the properties of CLSM that most affect its 

performance in key applications. The properties of CLSM can be divided into two categories 

namely: Plastic properties and in-service properties. Plastic properties of CLSM per ACI (2005), 

include Flowability, segregation, subsidence, hardening time and pumping and the in-service 

properties include strength (unconfined compressive strength), density, settlement, thermal 

insulation/conductivity, permeability, shrinkage, excavatability, shear modulus and potential for 

corrosion. Table 2.2 shows the CLSM properties typically specified and measured by state 

DOTs (Department of Transportation). In case of pipeline application properties such as 

flowability and unconfined compressive strength are more important than the other properties. 

Hence, this literature search mainly focuses on these two properties. 
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Table 2.2 CLSM properties typically specified and measured by state DOTs                    

(Folliard, 1999) 

 

Property 
Number of  

Common Test Method  States 
Testing 

Flow 18 ASTM D 6103 (or similar) and ASTM C143 

Compressive Strength 17 AASHTO T22 and ASTM D 4832 

Unit Weight 14 AASHTO T 121 

Air Content 10 AASHTO T 152 

Set Time 7.2 ASTM C 403 

Durability 2 pH and resistivity 

Shrinkage 1 Visual 

Temperature 1 Modified ASTM C 1064 

Chlorides/sulfates 1 Determination of ion contents 

Permeability 0 None 
 

 2.5.2.1. Flowability 

 One of the most important properties of CLSM that distinguishes it from other fill 

material is its ability to flow easily into confined areas, without the need for conventional 

mechanical placing and compacting device. This self-leveling property of CLSM significantly 

reduces labor and increases construction speed (Folliard, 2008).  

 Depending on the project requirements, flowability of CLSM can be varied from stiff to 

fluid. There are various standard flowability test criteria namely the use of a 75 x 150 mm (3x6 

in.) open-ended cylinder modified flow test (ASTM D 6103), the standard concrete slump cone 

(ASTM C 143), and flow cone (ASTM C 939). When using the ASTM D 6103 method, a good 

flowability is achieved in the absence of noticeable segregation with the CLSM spread diameter 

of at least 200 mm (8 in.) (ACI, 2005). Per the slump cone test as mentioned in                        

ACI 229R-99 report, flowability ranges can be expressed as follows: 

Low flowability: Less than 150 mm (6 in.); 

Normal flowability: 150 to 200 mm (6 to 8 in.); 

High Flowability: greater than 200 mm (8 in.) 



 

 

meas

stren

exca

these

initia

exca

value

CLSM

capa

used

CLSM

show

2.5.2.2 Un

The unco

sured, and th

ngth values a

vation is nec

e strength va

lly within the 

vation difficul

es, changes o

M compressiv

acity of a we

d to excavate 

M with UCS l

ws the CLSM 

Figure 

nconfined Co

nfined compr

he one most c

are generally

cessary. Mate

alues are not 

acceptable s

lt. However, i

of infrastructu

ve strength o

ll-compacted 

CLSM with c

ess than 0.3 

mix being exc

2.3 Excavatin

mpressive St

ressive streng

commonly fou

y used as an

erials and m

exceeded in

strength range

f the strength

ure failure bec

of 0.3 to 0.7 M

soil (ACI, 20

compressive s

MPa (50 psi)

cavated. 

ng CLSM with

14 
 

trength 

gth of CLSM 

und in state D

n index for e

ixture propor

 the long ter

e continue to

h of the CLSM

comes high a

MPa (50 to 10

005).Mechan

strength of 0.

) can be exca

h a Backhoe (

is the most c

DOT specifica

excavatability

rtions must b

rm (Folliard, 2

o gain strengt

M mix is lowe

and can have

00 psi) resem

nical equipme

.7 to 1.4 MPa

avated manua

(Source: ACI 

ommon harde

ations. CLSM

y or digibility

be selected to

2008). Some 

th over time, 

r than the pro

e serious con

mbles an allow

ent such as b

a (100 to 200

ally (ACI, 200

229R-99, 200

ened property

M compressive

y when future

o ensure tha

CLSM mixes

making future

oject specified

sequences. A

wable bearing

backhoes are

0 psi) whereas

05). Figure 2.3

 
05) 

y 

e 

e 

at 

s 

e 

d 

A 

g 

e 

s 

3 



 

15 
 

2.6 Construction on Expansive Soil 

 Expansive soils are abundant in the United States as well as all over the world. 

Expansive unsaturated soils, found in every state, cover one-fourth of the United States 

(Puppala and Cerato, 2009), about one third of the earth’s surface (Chen, 1999) and are found 

in arid, semi-arid and underdeveloped areas. Many parts of south-western United States, 

United States, South America, Canada, Africa, Australia, Europe, India, China and the Middle 

East have reported great distresses while constructing on expansive soils (Chen, 1975). During 

alternate wetting and drying seasons, these soils exhibit swell-shrink behavior. Due to this 

periodic swelling and shrinkage, structures built above these soils undergo massive distress in 

the form of cracking or bulking. Numerous cases of civil infrastructure failures due to expansive 

soils have also been reported over the years. According to Nelson and Miller (1992), expansive 

soils are a worldwide problem, and they undergo considerable amounts of volume changes due 

to moisture content fluctuations. A recent study showed the cost of damage to homes due to 

expansive soil was approximately $13 billion per year (Puppala and Cerato, 2009). 

Furthermore, they also call expansive soil a natural hazard whose damage exceeds the 

average annual damage caused by floods, hurricanes, earthquakes, and tornadoes combined 

with the exception of Hurricane Katrina.  Figure 2.4 shows the location of Eagle Ford geological 

formation which is known for being problematic high plasticity clay (fat clay) in Texas. 

2.6.1 Introduction on Expansive Soil  

 Expansive soils are soils that inhibit substantial swelling in presence of moisture and 

significant shrinkage when dry. This swelling and shrinkage of expansive soils result in cracking 

and buckling of infrastructure built upon them (Puppala and Cerato, 2009). Expansive soils can 

typically be identified in the lab by their plastic properties. Inorganic clays of high plasticity, 

generally those with liquid limits exceeding 50 percent and plasticity index over 30, usually have 

high inherent swelling capacity and are termed as expansive clay or fat clay. Expansion of soils 

can also be measured in the lab directly, by immersing a remolded soil sample and measuring 
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 2.6.1.1 Swell-Shrink Behavior of Expansive Soils 

 The swelling and shrinking behavior exhibited by expansive soils is due to the presence 

of large portion of highly active clay mineral of the smectite group such as montmorillonite in the 

soil (Sridharan and Prakash, 2000). The minerals in this group have an expanding lattice. 

Hence, greater the amount of the montmorillonite clay mineral in the soil, greater its swell 

potential (volumetric change) and the more water it can absorb (Jones and Jefferson, 2012). 

Clayey soils absorb large amount of water during and after rainfall and become heavy and 

sticky. Contrariwise expansive soils harden up when dry causing cracking and shrinkage of the 

ground. This hardening and softening is known as ‘shrink-swell’ behavior. When supporting 

structures, the effects of significant changes in water content on soils with a high shrink–swell 

potential can be severe (Jones and Jefferson, 2012). For most expansive clays, an expansion 

of 10% of this original volume is not uncommon (Chen 1988; Nelson and Miller, 1992).  

 Both swell and shrink volume changes depend on several factors including type and 

amount of clay minerals, moisture content, dry density, soil structure, confining pressure and 

climate (Chen, 1988; Nelson and Miller, 1992). Examples of expansive clays are high plasticity 

index (high-PI) clays, over-consolidated clays rich with Montmorillonite mineral, and shales 

(Chittoori, 2008). 

 In many areas in Texas, due to dry weather conditions, initial shrinkage occurs in 

expansive soils that result in large tension cracks. Swelling and shrinkage are not fully 

reversible processes (Holtz and Kovacs, 1981). The cracks formed due to shrinkage in dry 

weather conditions upon re-wetting do not close-up completely. This allows the soil to bulk out 

slightly providing access to rainfall infiltration during wetting period. Swelling pressures can 

cause heaving, or lifting, of structures whilst shrinkage can cause differential settlement (Jones 

and Jefferson, 2012). As a result severe cracks and even structural failures are observed on 

civil infrastructure constructed over poorly treated (with chemical stabilizers) or untreated 
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expansive soils. Figure 2.5 shows the vertical movement of existing pavement measuring upto 

3.5 inches, caused by expansive soil in Frisco, Texas. 

 

Figure 2.5 Differential vertical movement caused by expansive soil measures 3.5 inches at a 
pavement joint failure in the Meadow Creek subdivision in Frisco, Texas 

(Source: Richard J. Hammerberg, P.E, www.cenews.com) 
 
 

2.6.2 Chemical Stabilization of Expansive Soil  

Since, expansive soils exhibit large amount of swell-shrink behavior, it is important to 

stabilize these types of soils before construction over these soils. One of the most common 

practices of stabilizing expansive soils is by using chemical stabilizers. Chemical stabilization 

methods are widely used in the field to control soil heaving (Nelson and Miller, 1992; Puppala et 

al. 2003). Calcium-based stabilizers such as lime and cement have been used in the past to 

increase strength and decrease plasticity index (PI), swell and shrinkage strain potentials of 

expansive soils and thereby extending the life of structures built on those soils (Hausmann, 

1990).  
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2.7 Background on Sulfate Heaving 

 Often expansive soils are stabilized with chemical stabilizers in order to reduce 

volumetric expansion due to moisture and salt influx, increase durability, or to achieve proper 

strength specifications for the particular design (Mitchell 1992; Dermatas 1995; Kota 1996; 

Azam 2003). The most commonly used chemical stabilizers are cement and lime. Literature 

shows that if the soil being stabilized is rich in soluble sulfate, it can be problematic. According 

to Puppala and Cerato (2009), when calcium-based stabilizers such as lime, cement or fly ash 

are added to sulfate-bearing soils, reactions cause the volume change potential to increase, 

creating a soil mixture that is more expansive than the soil alone. Also, several recent studies 

have shown that the calcium-based stabilizer treatments of natural expansive soils rich in 

sulfates would lead to a new heave distress problem instead of mitigating the problem (Mitchell, 

1986; Hunter, 1988; Mitchell and Dermatas, 1992; Petry, 1994; Kota et al., 1996; Rollings et al., 

1999; Puppala et al., 1999; Puppala and Cerato, 2009). This phenomenon has been termed 

“sulfate-induced heave” in the literature (Mitchell, 1986; Dermatas, 1988; Hawkins, 1988; 

Dermatas, 1995). 

 Texas soils are primarily made of clay or fine grain sedimentary deposits; therefore the 

most common primary sulfate source of sulfate in Texas soil is in the form of gypsum (Thomey, 

2013). Sulfates are present in natural soils as calcium sulfate (CaSO4), Thenordite or Sodium 

Sulfate (Na2SO4), and Epsomite or Magnesium Sulfate (MgSO4) (Puppala et al., 2003). 

Chemical stabilizers such as cement and lime contain significant amount of calcium. Clayey 

soils commonly consist of three minerals namely Kaolinite, Illite and Montmorillonite which 

contain alumina (Aluminum Oxide, Al2O3) naturally. When sulfate laden clayey soil is treated 

with calcium based stabilizers such as lime or cement, the pH of the system is elevated where 

naturally occurring minerals, alumina and silica, are released into the system. These minerals 

combine with the calcium from the stabilizers upon the availability of water to form highly 

expansive minerals such as  calcium – alumina – sulfate hydrate compound known as Ettringite 
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(Ca6Al2(SO4)3(OH)12·26H2O) or a calcium – silica – hydroxide – sulfate –hydrate compound 

known as Thaumasite (Ca3Si(OH)6(CO3)(SO4)·12H2O) (Sherwood, 1962; Mehta and Klein, 

1966; Mehta and Wang, 1982; Mitchell, 1986; Hunter 1988; Perrin, 1992; Petry, 1994; Burkhart 

et al., 1999). Ettringite contains 26 molecules of water enabling it to swell more than 137% of its 

volume (Little et al., 2010). Under desirable moisture, humidity and temperature conditions, 

these Ettringite and Thaumasite grow, causing further swell (Talluri 2013). Upon swelling or 

shrinking the soil exhibits buckling or cracking as opposed to stabilizing the expansive soil. This 

clearly shows how chemical stabilization can be a nuisance instead of a boon in stabilizing 

expansive soils rich in sulfates. 

 Many cases of sulfate-induced heave were reported in Texas in and around DFW 

metroplex (Perrin, 1992; Puppala et al., 2010). Researchers called lime treatment of expansive 

soils containing sulfate “man-made expansive soil” (Puppala et. al., 2012). Expansive soils 

stabilized with lime treatment undergo a chemical reaction which forms an interlocking get in 

between the clay particles. This phenomenon increases the strength, reduces plasticity, 

increases workability, and reduces in swell behavior of the treated soil (Dempsey and 

Thompson, 1968; Bell, 1989; Thomey, 2013). Similarly, stabilization with cement creates a 

pozzolanic reaction that lowers the plasticity of the soil and also produces gels that increase the 

strength of the soil and reduce swelling potential (Bugge and Bartlesmeyer, 1966; Nelson and 

Miller, 1992; Thomey, 2013). However, Mitchell (1986, 1992) has documented lime induced 

heave in expansive soils. Furthermore, cement based stabilizers also induce sulfate heave 

Kota, 1996; Ksaibati, 1996). Thomey (2013), Talluri (2013) have presented several case studies 

on sulfate induced heave distress in existing infrastructure around Texas as well as in various 

states in the United States. Figure 2.6 shows the severe pavement failure on Joe Pool Lake 

area, Texas caused by sulfate heaving.  

 However, TxDOT’s guidelines for treatment of sulfate-rich soils and bases in pavement 

structures report that failures have been documented in Texas due to sulfate heave in low 
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2.7.2 Methods to Measure Sulfate Concentrations in a Soil 

Since sulfate induced heaving can cause damage amounting to millions of dollars to 

infrastructure, it is important to determine the amount of sulfate present in the soil before 

stabilization. Sulfate detection prior to specifying and constructing calcium treated soils is the 

only means of prevention of sulfate-induced heave (TxDOT, 2005). Various DOTs (Department 

of Transportations) are mandating the sulfate concentration measurement in soils prior to 

chemical stabilization. There are various methods to determine the sulfate concentrations in 

soil. Sulfate concentration is soil is commonly expressed in parts per millions (ppm). Two basic 

categories to measure sulfate concentration is soils are gravimetric-based or turbidity-based 

methods. However, it was reported that these methods often fail to provide consistent and 

repeatable values (Viyanant, 2000). Furthermore, studies have shown that even under similar 

testing conditions for known sulfate concentrations, it is difficult to obtain accurate sulfate 

concentration measurements in the laboratory with only handful inexpensive pieces of 

equipment (Harris et al. 2003 and Puppala et al. 2002).  

 Gravimetric procedures determine the sulfate content based on the amount of sulfate 

precipitated upon the addition of Barium Chloride to soil-water solution. Turbidity-based 

procedures convert the turbidity caused by the presence of sulfates to sulfate concentration. 

Some of the techniques used to measure sulfate concentration in soils are: 

 Turbidity Based Method  ●     Gravimetric Method 

o TxDOT Method (Tex-145-E)         ○    Modified UTA Method 

o ASTM Method (C1580)          ○    AASHTO Method (T 290-95) 

 Talluri et al. 2012 conducted an experiment to verify the accuracy of the UTA method, 

the gravimetric AASHTO T 290 – 95, and TXDOT Tex – 145 – E. It was determined that the 

Modified UTA method resulted in the most accurate readings of sulfate concentrations. Puppala 

et al. (2002) and Thomey (2013) provide a detailed testing procedure for measuring the sulfate 

concentration of soil using Modified UTA Method. 
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2.7.3 Threshold Sulfate Levels 

 With the increasing number of infrastructure failures due to sulfate heaving mechanism, 

one of the most common answer researches sought is the sulfate concentration level safe for 

stabilization. This safe sulfate concentration level below which sulfate heaving is not 

problematic defines the sulfate threshold level.  

 Several studies have been conducted over the years to predict the threshold level of 

sulfates in soil but there has not been consensus on sulfate threshold levels.  According to 

Puppala and Cerato (2009), it is not appropriate to establish a sulfate concentration threshold 

based on database of several case studies conducted on different soil compositions and 

environmental conditions and at the same time the findings and observations from the studies 

may not be true or applicable at other locations.  

 The threshold levels in some cases have been reported to falling between 1,500 ppm to 

5,000 ppm and in other cases the threshold levels were set as high as 10,000 ppm (Harris et al 

2004; Puppala et al. 2005; Adams et al. 2008). According to TxDOT practices, sulfate 

concentrations of 3000 ppm or less pose minimal possibility for sulfate heave. Unfortunately, 

soil conditions such as plasticity, density, and void ratio coupled with stabilization techniques 

and environmental factors largely affect these threshold levels (Puppala 2005). Therefore, 

setting threshold levels “across the board” is nearly impossible (Adams et al. 2008). There are 

studies hoping to determine sulfate threshold levels based on mineralogy and geological 

depositional environments, but this will only address some of the issues associated with sulfate 

heave thresholds (Adams et al. 2008).  

 Overall it seems true that with varying site conditions, void ratios, site drainage and 

various soil compositions, it is impossible to draw a definitive sulfate level as a threshold level 

universally. Hence, a more practical approach would be to limit sulfate threshold to being case 

specific. 
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2.7.4 Sulfate Heave Mitigation Methods 

Researches indicate numerous methods and practices implemented to alleviate sulfate 

heaving mechanism. Several factors affect the sulfate heave mitigation methods such as sulfate 

concentrations in the soil, type of soil (expansive or no-expansive), and site drainage among 

others. However, the literature search in this section was limited to mitigation methods that 

indicate the sulfate levels the method worked for. This section mostly focuses on stabilization 

using cement and some lime since the research’s main focus is utilizing cement as a stabilizer. 

Some of the methods are discussed below: 

  
 2.7.4.1 Pre-Compaction Mellowing 

 As the name suggests, pre-compaction mellowing involves the stabilization of soils with 

lime, allowed to mellow before being compacted. Mellowing is the process of allowing the lime 

treated soil to remain in an uncompacted state for a period of time in order for the lime to react 

with the clay particles and sulfates (TxDOT, 2005). 

 Soils with sulfate levels around 7,000 ppm with a 3-day mellowing period resulted in 

acceptable swells in soil (Harris et al., 2004). However when the sulfate concentration in the 

same soil was spiked to 10,000 ppm, the results were not positive towards sulfate heave 

mitigation. On the basis of these findings, Texas Department of Transportation limits the use of 

lime treatment above 8,000 ppm sulfate levels.  

 In another study conducted by Berger et al., (2001), soils from South Orange County, 

California, containing 0, 5000 and 8,000 ppm sulfate  were treated with 4% lime and 4% 

lime+8% fly ash and allowed to mellow for periods of one, three and five days. After the 

mellowing period, samples were cast into cylinders and strength and swell tests were conducted 

to see the effectiveness of stabilization. All the test soils passed the strength and allowable 

swell criteria, showing the dominance of pozzolanic reactions. 

 The, a second set of samples were prepared using 6% lime and spiked with 14,000ppm 

(±1000ppm) sulfates to see the effect of a higher concentration of sulfates. All the samples were 
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mixed with 6% lime and 6% lime, 12% fly ash and allowed to mellow for periods of one, three 

and five days. After the mellowing period, the specimens were cast and moist cured for 60 days 

and tested for swelling in sulfate solution. All the soils exhibited positive effects of stabilization 

with negligible vertical swell. The pH of the test soils was observed to be higher than 10 in all 

cases, indicating the occurrence of both pozzolanic and sulfate reactions.  

 This successful stabilization of all the soils specimen adopting mellowing technique was 

attributed to the fact that all the expansion occurred during the mellowing period. Hence  the 

sulfates were consumed during the mellowing period leaving less or no sulfates available after 

compaction. Maximum effects of stabilization were achieved in this case. 

  
 2.7.4.2 Sulfate Resistant Cement 

 Portland cement has been used in numerous aspects of civil engineering projects. 

There are five different types of cement used in construction practices. The first, Type I, cement 

is the most commonly used cement in reinforced concrete applications. Type II is used when 

low to moderate sulfate ions are assumed to present before, during or after construction, Type 

III for projects that require high strength in early stages, Type IV for concrete applications that 

are in constant contact with water, such as dam structures and Type V cement for high sulfate 

soils. Cement treatment of soils provides strength enhancements and plasticity reductions 

through flocculation, cementation and pozzolanic reactions (Talluri, 2013). 

 In a study conducted by Puppala et al. (2004), the effects of sulfate resistant cement on 

UCS, plasticity, free swell and linear shrinkage were studied.  Four soil samples were treated 

with 5% and 10% Type I/II cement and the same four samples were treated with 5% and 10% 

Type V cement. The research concluded that Type V cement generated a larger UCS strength 

than Type I/II cement. Free swell of the treated samples was reduced to nearly no expansion in 

both cement treated samples, and linear shrinkage was reduced by the addition of cement. 

Overall the sulfate resistant cement treatment showed good results in increasing strength, 

reducing plasticity, and reducing swell and shrinkage.  
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 However, many practitioners are still skeptical of this method due to the large amounts 

of alumina present in clay soils. This natural alumina content can counteract the low alumina 

content of sulfate resistant cements; therefore, further studies must be conducted on the 

viability of sulfate resistant cements in soil stabilization. 

  
 2.7.4.3 Combination of Lime and Cement 

 It is well known that lime and cement treatment improves the workability and reduces 

volumetric changes of soils. Researchers from The University of Texas at Arlington used a 

combination of lime and cement to treat expansive soils from Arlington, Texas containing low to 

medium sulfates (Chakkrit et. al., 2008). As part of the laboratory studies, two high plasticity 

clay soils from Arlington were chosen and treated with 12% lime and a combination of 6%lime 

and 6% cement. Two curing periods, 2 days and 7 days, were considered in this study. 

Laboratory results indicated that the combination of lime and cement successfully provided 

strength enhancements and reduced swell and shrinkage characteristics. Also, the combination 

of lime and cement treatment proved to be more effective than the lime treatment alone. 

Findings from the laboratory study were implemented successfully in the field, and no issues of 

heaving were observed. 

  
 2.7.4.4 Recycled Gypsum in Wet Environment 

 Although most of the studies covered in this Chapter shows that sulfate induces 

heaving phenomenon on expansive soil, researchers in Japan have utilized recycled gypsum 

(CaSO4·2H2O, soluble sulfate), successfully to stabilize soft clay in a wet environment (Kamei et 

al., 2011).  

 This study investigates the influence of wet environment on the compressive strength, 

dry unit weight and durability performance of soft clay soil stabilized with recycled gypsum and 

Furnace cement under the wetting and drying cycles are referred to as wet environment in this 

study. Stabilized soils were prepared and stored in cylindrical tubes. The samples were cured 
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for 28 days in a controlled room with constant temperature and humidity. After the curing period, 

the specimen were subjected to various wetting-drying (w-d) cycles, and then tested for 

unconfined compressive strength (UCS), moisture content and volume change.  

 Results from the tests indicated that the UCS increased with the increase of recycled 

gypsum content during the w-d durability studies. The increase in recycled gypsum content is 

associated with the increase of dry unit weight, as well as decreases in moisture content of the 

stabilized specimens. The UCS of specimen stabilized with recycled gypsum and Furnace 

cement gradually decreased with an increase in the number of wetting and drying cycles, while 

the early cycles have the greatest effect on the durability compared to the effect of later cycles. 

Overall, the influence of durability studies (w-d cycles) were not significant when the UCS and 

volume change parameters were considered for soils stabilized with recycled gypsum and 

furnace cement. Hence, the study concluded that the use of recycled gypsum to stabilize soft 

clayey soil achieved acceptable durability. Furthermore, the study indicated that the effective 

use of recycled gypsum, which is derived from gypsum waste plasterboard, not only contributes 

towards a sustainable society but also acts as an economical alternative of waste disposal. 

  
 2.7.4.5 Several Other Techniques 

 The other methods of alleviating sulfate induced heave include stabilizing the top 

portion of select fill, compacting to lower densities and use of polymeric fibers with soil. Soils 

with no soluble Proper care should be taken to avoid migration of sulfates in to the select fill 

material, failure of which again leads to sulfate-induced heave. Compaction of the stabilizing 

layer to lower densities is another option available. Compacting at lower densities allows more 

void spaces in the soil matrix. This allows more room for the growth of Ettringite and its overall 

expansion. Overall, it seems like for reasons with high sulfate concentrations, mitigation of 

sulfate heaving can be achieved by using Type V Cement.  
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2.8 CLSM with High Sulfate Native Soil as Fine Aggregate 

 Previous research studies at the University of Texas at Arlington (UTA) by Raavi (2012) 

and Vanga (2013) has not only established the CLSM mix design using native soils with 

selective dosages of cement as a stabilizer but also have conducted long term durability studies 

using soil from four different geological formations along the IPL alignment.  

 Furthermore, the research performed by Thomey (2013) on sulfate mapping for the 

pipeline alignment showed the presence of elevated levels of soluble sulfates in the Eagle Ford 

formation ranging from 40 parts per million (ppm) to approximately 20,000 ppm. The soil from 

Eagle Ford is classified as high plasticity clay (Raavi, 2012). The study conducted by Vanga 

(2013) show that certain soil performed well even under long term durability testing and retained 

50 or close to 50% of their initial strengths. However, Eagle Ford soil that used the highest 

dosage of stabilizer (18%) than soils from other geological formation along IPL, exhibited the 

least strength retention (less than 20%) (Vanga, 2013) as shown in Figure 2.7.  It can be seen 

from the figure that the initial UCS strength of the Eagle Ford CLSM at 0-cycle durability study 

was 101.80 psi (701.6 kPa) which dropped significantly to 17.60 psi (121.30 kPa) at the end of 

14-cycle, a reduction in strength by 82.80%, with a strength retention of only 17.30% of its initial 

strength at 0-cycle. The study does not indicate the sulfate concentration of the Eagle Ford soil 

used for the preparation of CLSM mix. 
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 A report published by NCHRP (National Cooperative Highway Research Program), 

Report 597, points out that assessing the freezing and thawing resistance properties of CLSM is 

challenging. Previously, AASHTO T 161 method that is commonly used to test concrete was 

used for testing CLSM for freeze/thaw resistance. However, Nantung (1993) found that 

AASHTO T 161 was far too severe for testing CLSM. Hence, in order to replicate the site 

conditions in the laboratory to study the effects of freezing and thawing on compacted soil or 

CLSM, most used ASTM D 560, “Freezing and Thawing of Compacted Soil-Cement Mixtures” 

procedure (Folliard, 2008). This method provides procedures for determining the soil-cement 

loss, moisture and volume changes (swell and shrinkage) produced by repeated freezing and 

thawing of the specimen being tested.  

 In cold regions, CLSM is susceptible to seasonal freeze-thaw deteriorations (Nantung 

and Scholer, 1994). Though there have not been many researches relating to the durability 

studies involving freezing and thawing resistance on CLSMs. Some of the studies mentioned in 

NCHRP report 597 are the ones conducted by Bernard and Tansley, 1981; Krell, 1989; Burns, 

1990; Nantung, 1993; and Gress, 1996. Among these, the study conducted by Gress in 1996 

found that CLSM can survive freezing and thawing damage but proposed that the top 50 to 150 

mm of CLSM trenches be removed after set and backfilled with a frost heave compatible base 

material to ensure uniform heaving of pavement and trench (Folliard et al., 2008).In the same 

NCHRP Report 597, prepared by Folliard et al. (2008) titled “Development of a Recommended 

Practice for Use of Controlled Low-Strength Material in Highway Construction,” two studies 

conducted using various CLSM mix design with high air content and high compressive strength 

exhibited good freeze-thaw resistance. 

 Another study on durability of CLSM with used foundry sand, bottom ash, and fly ash in 

cold regions by Horiguchi et al. (2001) observed long-term strength developments of various 

types of mixtures, along with the frost heaving rate of less than 3%, a relatively smaller value as 
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compared to soil. The study recommended the need for further research to evaluate the long 

term durability CLSM against frost heaving actions. 

2.9.2. Wetting and Drying Studies  

 Similar to the durability studies based on freezing and thawing in cold regions, hot 

regions such as Texas call for durability studies based on wetting and drying cycles for 

chemically treated soil or even CLSM. During dry seasons, the water present in the soil dries 

out leaving cracks on the ground, a phenomenon of shrinkage. When it rains, water seeps into 

the ground through the cracks causing the soil to swell, a common phenomenon observed in 

expansive soils. This seasonal moisture fluctuation causing the soil to shrink and swell impacts 

the long term performance of the soil. 

 At present, ASTM D 559, “Standard Test Methods for Wetting and Drying Compacted 

Soil-Cement Mixtures,” provides a testing procedure to simulate the field conditions of severe 

wetting and drying in the laboratory in a short period of time. The ASTM standard also provides 

methods to determine the soil-cement losses, water content changes and volume changes 

(swell and shrinkage) due to repeated wetting and drying process. The procedure compacted 

soil samples treated with stabilizer (cement in this case) after 7 days curing are submerged in 

potable water at room temperature for 5 hours. At the end of the wetting period, after recording 

the volume and weight changes, the sample is placed in an oven at 160°F (71°C) for42 hours. 

Similarly at the end of the drying period, volume and weight changes are recorded to allow the 

evaluation of the performance of cement stabilized soil under repeated w-d cycles. 

 A study conducted by Rogers and Wright (1986) on Beaumont clay which had been 

used to construct road side embankments showed significant drop in shear strength of soil due 

to cyclic wetting and drying. As a part of the research, the clay was subjected to thirty w-d 

cycles, each wetting and drying period lasting to 24 hours taking 48 hours to complete one full 

w-d cycle. The results show that repeated wetting-drying not only produced significant reduction 

in shear strength parameters but also showed decline in the factor of safety of the failed 
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         Figure 2.10 Wetting and Leachate study device developed by Lad (2012) 

 
 Several studies have been conducted to evaluate the long term performance of 

chemically treated soil under severe w-d environments as opposed to only a handful studies on 

CLSMs under similar conditions. Vanga (2013) conducted durability studies on CLSM using 

native soil as fine aggregates. Native soils from four different geological formations around 

Texas namely Woodbine, Eagle Ford, Austin Chalk and Queen City were used to prepare 

CLSM mix along with varying dosages of cement and water. Long term performance of these 

CLSMs was studied by evaluating the influence of cyclic w-d process on unconfined 

compressive strength (UCS), volumetric and weight changes and additive loss of the specimen. 

The study concluded that CLSM prepared in the laboratory using Eagle Ford soil, high plasticity 

clay (CH), experienced the most volumetric and weight change and retained only about 17% of 

initial strength.  
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2.9.3. Leachate Studies  

 One of essential aspects of soil stabilization is to address the permanency of the 

chemical stabilizer used i.e. the duration the additive holds the soil particles together (Chittoori, 

2008). Soil stabilized using chemical stabilizers such as cement upon exposure to water tends 

to lose its strength over time. One of the factors causing the strength loss of soil is loss of 

stabilizer through leaching.  

 Only a handful researches have been conducted on the leachate studies of chemically-

treated soils to comprehend the leaching of chemicals from moisture flows (Barenberg, 1970; 

McCallister, 1990; and Thompson 1966). It was observed that soil leaching has a direct 

influence on the properties such as soil pH, percentage base saturation and 

calcium/magnesium ratios and is directly related to the permeability of the soil. He stated that 

soil-lime reactivity decreases in areas of high permeability. In soils with very low permeability 

i.e. fine grained soils the leaching effects are minimized thus maintaining the 

calcium/magnesium ratios and higher soil pH (Chittoori, 2008). Another study by McCallister 

(1990) reports that leaching through moisture flow cause variation in pH and calcium ions in 

chemically stabilized soils. 

 Chittoori (2008) used a modified version of McCallister (1990) test to study leaching 

behavior of chemically stabilized soil. Two series of moisture conditioning tests for leachate 

studies were conducted on highly expansive soils from various locations in Texas. The first test 

addressed issues correlating with rainfall infiltration whereas the second test observed the 

volumetric and strength changes of soil to evaluate the swell/shrink behavior. The study showed 

that changes in pH were minor and calcium ion concentrations were found to decrease over the 

course of 14 cycles of leaching.  

 Later on, Lad (2012) designed a wetting apparatus for durability studies which 

constituted both wetting process as well as leachate testing.  The apparatus designed by Lad 

(2012) tries to simulate the field condition of rainfall infiltration in soil during a heavy rainfall in 
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2.10 Summary 

 Based on the literature, we can understand that sulfate-induced heave is inevitable 

when soils containing considerable amounts of sulfates are treated with calcium-based 

stabilizers. Cement and lime treatments proved to be effective in treating soils with low sulfate 

levels; whereas, both the treatments failed in treating high sulfate soils. So far no study has 

been conducted to evaluate the effects of cyclic w-d on CLSM prepared with high plasticity clay 

with elevated sulfate concentrations.  

 Due to the concerns relating to sulfate-heaving, the need for research on long term 

durability performance of CLSM mix designs prepared using native high plasticity clay with 

various sulfate concentrations is crucial. This chapter summarizes the benefits of using CLSM 

mixtures and also addresses the performance under durability studies. The next chapter 

describes the methodology used in the current research to address the long term performance 

of sulfate bearing CLSM mixtures. 
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CHAPTER 3 

 
3 EXPERIMENTAL PROGRAM 

3.1 Introduction  

 The present research focuses on long-term performance of native soil CLSMs using 

high sulfate expansive soils. For this purpose, high plasticity clay (CH) from Eagle Ford 

formation, with elevated concentrations of sulfates was selected. This chapter presents the 

experimental program followed in this research including, sample preparation and the various 

laboratory tests and the testing procedures to meet the desired research objectives. Some of 

the procedures include sulfate testing, CLSM specimen preparation method, durability testing 

(wetting and drying cycles), leachate and strength testing. 

 The following sections describe background on soil selection, testing materials, types of 

laboratory tests performed and test equipment used for the durability and strength studies on 

CLSM using high plastic soil with elevated sulfate concentrations. 

3.2 IPL Project Background 

 As mentioned previously, this study is a part of the Integrated Pipeline (IPL) project, 

which is a joint effort between the Tarrant Regional Water District (TRWD) and Dallas Water 

Utilities (DWU). The project intends to bring additional water supplies to the Dallas/Fort Worth 

metropolis. As a part of the project, several studies were conducted by the University of Texas 

at Arlington to evaluate the reuse potential of the excavated materials along the IPL pipeline 

alignment. One of these studies involved using the excavated material as a constituent in 

Controlled Low Strength Material often known as CLSM or flowable fill. CLSM can be used as a 

bedding and backfill material during pipeline construction. The key objectives of this research 

study are assessing the long-term performance of various CLSMs using Eagle Ford soils with 
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elevated levels of soluble sulfates, as fine aggregate, by conducting the durability studies.  The 

sections below describe the procedures adopted to perform the sulfate studies. 

3.3 Soil Selection 

 For this study, soil from Eagle Ford geological formation was selected, as the soluble 

sulfate concentrations of this formation ranged from 40 ppm (at 5 ft. depth) to approximately 

20,000 ppm (at 20 ft. depth) along the IPL pipeline alignment (Thomey, 2013). Hence, soil from 

the lowest concentration along the IPL alignment was collected and spiked with different sulfate 

concentrations to include the range of sulfates observed by Thomey (2013) in this formation. 

Table 3.2 shows the various concentrations of soluble sulfates used for testing namely, the 

control soil (no sulfate, 0-100ppm), 2500, 5000, 10000, 20000 ppm based on the range of 

soluble sulfate concentrations observed on Eagle Ford formation. It should be noted that the 

CLSM samples prepared using control soil should have soluble sulfate concentrations less than 

or equal to 100 ppm symbolizing ‘no-sulfate’ scenario for analysis purposes. 

 Also, the classification details of the Eagle Ford soil being tested in this study are 

presented in Table 3.1. Sieve and hydrometer analysis were conducted per ASTM D 422 and 

Atterberg’s Limit Tests (Liquid Limit and Plastic Limit) were conducted per ASTM D 4318 to find 

the plasticity index of the soil. Soil classification was based on Unified Soil Classification System 

(USCS). Figure 3.1 shows pulverized Eagle Ford soil used for testing. Figure 3.2 shows the 

location of Eagle Ford formation along the proposed IPL project pipeline alignment. 
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Figure 3.1 Pulverized Eagle Ford (EF) Soil 
 

 

 
Table 3.1 Summary of Laboratory Testing on EF soil 

 

 
 

Soil 
Formation 

Standard Gradation 
 

Plasticity 
Index 
(%) 

 
Soil Type 
based on 

USCS 

Sieve Analysis Hydrometer 

Gravel (%) Sand (%) Silt (%) Clay (%)

Eagle Ford 0.5 6.5 43 50 32 CH 

 
Table 3.2 Test Soil Locations and Soluble Sulfate Contents of the Selected Soils 

 
 

 
* For EF soil with sulfates < desired sulfate concentration,  
Additional sulfate was added in the form of Gypsum (Calcium Sulfate Dihydrate, CaSO4·2H2O) 
 

 

Soil Type Soluble Sulfates, ppm *

Sulfate Soils

2,500 

5,000 

10,000 

20,000 

Control Soil < 100 
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3.4 Methodology 

 The main purpose of this part of the research is to evaluate the long term performance 

of CLSM samples using EF (high plasticity clay) soil with elevated sulfate concentrations. In 

other words, per TRWD’s requirements, the primary focus of sulfate research study involves 

short term strength and long term durability studies. The short term strength studies include      

1, 3, 7 and 28 days Unconfined Compressive Strength (UCS). The short term strength tests 

were performed to evaluate any significant change in strength over a 28 days curing period. It 

was also one of the requirements of TRWD. The long term durability studies involves 1, 3, 7 and 

14 cycles durability test followed by UCS test and leachate testing.  A stepwise testing 

procedures followed to conduct sulfate research study is shown in Figure 3.3. The long term 

durability test were performed to access the long term behavior of CLSM samples in terms of 

strength, weight loss, volume change and additive loss over time. 
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3.5 Testing Parameters 

The primary testing parameters or variables included soil, sulfate contents, stabilizer 

(binder) type, stabilizer dosage, curing conditions and duration. Among these sulfate 

concentrations, curing time and durability cycles were the testing variables. As mentioned 

before the soil selected for the sulfate research project was from Eagle Ford formation that was 

provided by TRWD. The soil was subjected to five different sulfate concentrations with one 

dosage of Portland cement (TY I/II) as a stabilizer. In most of the cases where sulfate 

concentrations in the soil fell below 100 ppm, sulfate was added in the form of gypsum (calcium 

sulfate dehydrate, CaSO4·2H2O) to meet the desired sulfate concentrations. Stabilizer dosage 

of 18% (by weight) was recommended by Fugro Consultants Inc. and was also used by Vanga 

(2013) for the durability studies on Eagle Ford soil with less than 100 ppm sulfate concentration. 

Table 3.3 lists the testing parameters applicable for the current research project. 

 

Table 3.3 Testing Parameters 

Description 
Variable 

Quantity Name 

Soil 
1 EF Soil 

 
Sulfate Content 

5 

- Less than 100 ppm (Control Soil) 

- 2500 ppm 

- 5000 ppm 

- 10000 ppm 

- 20000 ppm 

Stabilizer 
1 Portland Cement (TY I/II) 

Stabilizer Dosage 
1 18% (by weight) 

Distilled Water 
1 

(95)% (by weight)to reach flowability (8-12 inches) 

Curing Time 
2 

7 and 28 days 

Curing Conditions 
(for durability tests) 

1 
7 days counter top, 28 days: 100% relative humidity, 20±3 oC

Durability Cycles 
4 

0, 3, 7 and 14 Cycles (Alternate drying and wetting cycles) 
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3.7 CLSM Sample Preparation and Testing 

 The CLSM sample prepared using native excavated soil can be termed as native-

CLSM. Since every CLSM mix design is project specific and varies in its constituents depending 

on the application, there is no standardized sample preparation procedure available for native-

soil CLSM mix design in the literature. However, sample preparation technique discussed by 

Folliard et al. (2008) was adopted (with some modifications) for this study. Folliard’s procedure 

is most applicable for medium stiff to stiff clay.  

 

3.7.1 Specimen Preparation 

 The very first step in sample preparation was to oven dry the Eagle Ford soil provided 

at 60 °C. The oven died soil was then pulverized to ensure it passed through U.S. Sieve 40 

(0.425 mm). Desired amount of crushed soil was then mixed with the specified amount of 

Portland cement (TY I/II), 18% by weight, along with sulfate (in the form of gypsum). Once the 

soil is mixed with proposed amount of dry sulfate and cement, the mix is placed in a 

conventional dough mixer. The mixing rate of the outer and inner spindle was 60 rpm and 752 

rpm respectively. These rates were set by Raavi (2012) using trial and error method to allow 

sufficient mixing time without soil-binder lump formation. Water content in the CLSM mix design 

is determined by the flow test. Once the water content is set, the specified amount water of was 

slowly added to the mix. With the aid of a spatula, the water was mixed evenly preventing any 

soil from sticking at the bottom of the mixer. From previous practices of CLSM sample 

preparation, about 8 to 10 minutes were allocated for mixing the sample in the mixer after the 

addition of water. Then the mixer was turned off and the CLSM mix was poured to plastic 

storage cylinders with dimensions of 6 in. high and 3 in. diameter for curing.  
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3.7.1.1 Short Term Strength Test Sample Preparation and Testing 

 A short term strength study only involves the UCS test. For the strength tests, samples 

for all 1, 3, 7 and 28 days strength test were prepared for all sulfate concentrations. The 1, 3 

and 7 Day samples were left on countertop before UCS, however the 28-Day samples were left 

on countertop for the first 7 days and then transferred to the moist room for the remaining         

21 days before UCS test, making the total curing period to 28 days. Leaving the sample outside 

for 7 days was a typical method adopted by Folliard (2008) which allows surface water to 

evaporate maintaining the actual moisture content of the sample. This moist room curing allows 

for the moisture to be conserved in the sample instead of being dried out. After sample 

preparation, samples were directly subjected to UCS test upon completion of their curing/setting 

period. For instance, for a 3-day sample, UCS test is conducted on them at the end of 3 full 

days of setting from the time the samples are casted. A total of 40 samples for all the sulfate 

concentrations including the control soil were prepared for testing. The samples were left on 

countertop till their respective test date approached. The samples were then tested for strength 

using UCS test on 1, 3, 7 and 28 days of casting. Figure 3.8 shows the stepwise procedure for 

the laboratory preparation of CLSM samples using native Eagle Ford soil in which steps             

1 through 6 are followed for short term strength tests. 

 

3.7.1.2 Long Term Durability Test Sample Preparation 

For long term durability studies, a total of 20 samples were prepared for 0, 3, 7 and 14 

cycles for all sulfate concentrations. After the samples were filled in the cylindrical plastic 

storage tubes, they were left on countertop for 7 days and then transferred to the moisture room 

with 100% relative humidity for 21 days, with a total of 28 days curing. The samples for long 

term durability test were not directly subjected to humidity controlled curing but instead the 

samples were left on countertop at room temperature for 7 days setting period. The main 

reason for this curing method is that the CLSM samples are still in wet condition (flowable 
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condition) after casting. The samples were transferred in the moisture room without taking them 

out of the plastic storage tubes. It is important that the samples be wrapped air-tight with a 

plastic wrapper before being stored in the moisture room as shown in step 8 of Figure 3.8. This 

prevents free water present in the moisture room from entering the samples altering the 

moisture content of the sample. This curing process of 7 and 21 days is similar to the one 

presented in NCHRP Report 597 by Folliard et al. (2008). Once the samples are cured for 28 

days, the samples are subjected to durability tests of wetting and drying cycles. The Figure 3.8 

shows the stepwise procedure for the laboratory preparation of CLSM samples using native 

Eagle Ford soil in which steps 1 through 9 are followed for short term strength tests. 
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3.7.2 Flow Test 

 Step two includes the flow test which is performed to determine the amount of water 

required for the CLSM mix design to meet the ASTM flowability standard. Flow test was 

conducted per ASTM D 6103 to determine the workability of the CLSM mix design and its ability 

to flow in confined areas (Raavi, 2012). The criterion as outlined in the ASTM standard is to 

obtain a target CLSM circular spread diameter of 203 mm (8 in.) to 305 mm (12 in.) by 

preparing a flowable mix. 

 The apparatus used for the flow test have been listed below: 

 Flow Cylinder   -   150 mm (6 in.) high 

- 76 mm (3 in.) inside diameter 

 Square acrylic plate -  2 ft. X 2 ft. (non-porous) 

 Spatula (as straight edge) 

Measuring tape Firstly, to conduct a flow test, an acrylic plate was placed flat on a 

leveled surface followed by placing a slightly dampened flow cylinder at the center of the plate. 

Both ends of the flow cylinder were open to allow the passage of CLSM mix through it. The 

inside wall of the cylinder is smooth to minimize frictional resistance. As a second step, the 

CLSM mix prepared in the dough mixer was scooped and slowly poured into the flow cylinder 

avoiding as much air voids as possible. Once the cylinder was filled upto the top, spatula (as a 

straight edge) was used to remove the excess CLSM and maintain a level top surface. Then the 

flow cylinder was quickly raised in a vertical direction within 5 seconds allowing the CLSM to 

spread forming a circular patty. Using a measuring tape, two diameters of the patty, 

perpendicular to each other were measured. Once the patty diameters were between 8 in. to 12 

in., the total water added was recorded and was used as the standard water content to be used 

for the CLSM mix design. Figure 3.8 (steps 3 to 5) shows the visual representation of the flow 

test in the laboratory along with the apparatus used for the test.  
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3.7.3 Long Term Durability Study  

 For this research task, durability study constituted alternate drying and wetting cycles. 

The standard test method used for wetting and drying compacted soil-cement mixtures is given 

by ASTM D 559. This standard helps to stimulate field conditions of seasonal drying and wetting 

cycles and rainfall infiltration in the laboratory, in a relatively short amount of time. However, for 

this research purpose, a slightly modified test procedure using a new device devised by Lad 

(2012) was used. The study conducted by Lad (2012), shows that the new device constitutes 

both wetting and leachate studies into a single test instead of a traditional approach involving 

two separate tests. The study also showed that it would take as little as 4 to 5 hours to reach 

the pore volume saturation of the sample during wetting (saturation) as opposed to the 

traditional 24 hours wetting period for leachate studies.  

 Adopting Lad’s (2012) wetting and leachate study apparatus, the wetting and drying 

cycles for CLSM were carried out with the help of a conventional oven maintained at 140 F. At 

the end of 28 days curing period, the durability samples were exposed to wetting and drying 

cycles. For this research task, 0, 3, 7 and 14 durability cycles were studied. 

 

3.7.3.1 Wetting/Drying Procedure for Long Term Durability Studies 

The wetting process constituted of wetting the native CLSM samples in potable water 

for 5 hours at room temperature using the apparatus shown in Figure 3.9 (a). Water head was 

maintained on the test device at 5 ft. since that was the standard used for previous studies 

using the device. However, it is not necessary to use a 5 ft. water head for wetting process. It 

was strictly used for consistency in testing. The CLSM sample was encased with a latex 

membrane on the outside using vacuum suction and a hollow cylindrical tube. The latex 

membrane acted as a barrier between the water bath and the sample and held the sample 

intact during the wetting process. Once inside the membrane, the sample was then transferred 

to the wetting apparatus and fastened to the base of the apparatus using O-rings which kept the 
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soil specimen intact with the latex membrane. A plastic cap with two holes in it was placed on 

top of the sample with O-rings around it. This facilitates vertical movement of water through the 

holes of the plastic cap while still preventing radial water movement. Ultimately, the tall plastic 

casing was grooved around the base of the apparatus with the help of vacuum grease to 

prevent water leakage. Then the apparatus was filled with water through the upper outlet using 

a plastic tube. Upon reaching the 5 ft. tall water height marked on the tall plastic casing, the 

water tap was stopped and a plastic tube was used to connect the upper and lower outlets 

allowing vertical circulation of water through the sample. The sample was subjected to 5 hours 

of wetting process. Figure 3.10 shows a detailed illustration of the wetting process.  

 As for the drying process, ASTM D 559 calls for a drying period of 42 hours and a 

wetting period of 5 hours to constitute one complete wetting/drying cycle. However for this 

research task, a modified approach involving a drying period of only 24 hours in a conventional 

oven maintained at 140 F was considered as shown in Figure 3.9 (b). Because the ASTM’s         

42 hours drying were found to be too severe, the modified approach of 24 hours drying was 

found to be a more suitable approach. After the completion of each drying and wetting process, 

the volume and weight changes were recorded along with a photograph of the sample as shown 

in Figure 3.9 (c), (d) and (e).        

 As for the samples in the moist room, at the end of the curing period, the samples for 

Cycle-0 were submerged in water for 5 hours at room temperature. Followed by the wetting 

process, UCS tests were conducted on all the Cycle-0 samples. On the other hand, samples for 

Cycle-3, Cycle-7 and Cycle-14 after 28 days curing, were taken out of the moist room. Height, 

diameter and weight of the samples were measured and recorded, followed by a 24 hour drying 

process. Vernier caliper and weighing balance were used for measuring the volume and weight 

changes of the specimen. Durability cycles were carried out till all the cycles were completed or 

until the sample collapsed.        

 Furthermore, at the end of each cycle, for instance, at the end of cycle-0, cycle-3,     
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cycle 7 and cycle-14, UCS test was conducted to determine the strength at the end of that 

cycle. Since each cycle starts with 24 hours drying process followed by a 5 hour wetting, with 

the exception to cycle-0, one complete wetting/drying (w-d) cycle ended at a wetting cycle. 

Hence, for durability studies, all the UCS tests were performed at the end of a wetting cycle and 

not a drying cycle. Wetting cycle was considered as the cycle closure for several reasons. 

Creating a worst case scenario for testing and possibility of linking leachability studies to 

strength variation are some of the reasons for using wetting cycle as a cycle terminator. It 

should be noted that leachate is collected in a cylindrical tube at the end of cycle before 

conducting UCS test. 
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Figure 3.9  Long Term Durability Tests on CLSM Samples showing (a) Wetting Process, (b) 
Drying Process, (c) (d) Measurement of Volumetric Change using vernier caliper, (e) 

Measurement of Weight Changes using weighing Balance 

(a) (b) 

(c) (d) 

(e) 
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Figure 3.10 Detailed Illustrations of Steps for Wetting Process  

1. 2. 3. 4. 

5. 6. 7. 8. 

24 hr. oven dried sample Wrapping latex membrane around the 
sample using vacuum suction 

Using a spatula to transfer 
the sample to the wetting 

apparatus 

CLSM sample transferred     
to the wetting apparatus 

O-rings fastened at the top      
and bottom of the apparatus 

Sample enclosed in a tall 
plastic casing filled with    

Removing sample from 
wetting apparatus using  

Sample completed 
wetting process and 
ready for 24 hr. oven 

drying 
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3.7.4 Leachate Studies 

 One of the most important aspects of soil stabilization is to address the permanency of 

the chemical stabilizer used i.e. the duration the additive holds the soil particles together 

(Chittoori, 2008). Soil stabilized using chemical stabilizers such as cement upon exposure to 

water tends to lose its strength over time. One of the factors causing the strength loss of soil is 

loss of stabilizer through leaching. McAllister (1990) conducted leachate tests and Chittoori 

(2008) used a modified test to study leaching behavior of chemically stabilized soil. The wetting 

and leachate collection device designed by Lad (2012) was used for leachate tests. 

  3.7.4.1 Leachate Test Procedure  

 The apparatus designed by Lad (2012) tries to simulate the field condition of rainfall 

infiltration in soil during a heavy rainfall in laboratory. At the completion of each cycle such as 

cycle 0, cycle 3 or cycle 7, which always ends at a wetting cycle, before draining all the water 

out of the tall plastic casing, approximately 50 mL of leachate was collected from the bottom 

outlet as shown in Figure 3.11. McAllister (1990) indicates that previous studies on leaching 

report that leaching through moisture flow cause variation in pH and calcium ions in the 

chemically stabilized soils. In order to access the amount of calcium ions lost due to leaching, 

standard EDTA method was used. 

 
 

Figure 3.11 Leachate Collecting Apparatus 
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(ppm) as ordinate. Using the calibration chart, amount of additive loss can be assessed. Upon 

knowing the total calcium loss at the end of 14 cycles, the amount of cement% leach out from 

each specimen can be obtained, correspondingly from calibration graph. 

 

Figure 3.14 Calibration Chart Developed for Determination of Cement Loss (%) 

 
 

3.7.5 Unconfined Compressive Strength (UCS) Test 

 All the strength tests discussed in this research, both for short term strength 

determination and long term durability studies, were conducted using the Unconfined 

Compressive Strength (UCS) test per ASTM D 2166. As the name indicates the test was 

performed under unconfined conditions. The primary purpose of UCS test is to quickly obtain 

the approximate compressive strength of soils that have adequate cohesion to allow testing in 

unconfined conditions (ASTM D 2166) unlike direct shear or tri-axial test which are extremely 

time consuming. The UCS testing procedure is described below. 
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 The main components of a UCS test set up include compression device (hydraulic 

loading device), a load cell, a LVDT reader (to record displacement) and a data acquisition 

computer system. The CLSM test sample was placed on the loading flat platform of the UCS 

test set up and raised at a constant strain rate till it came in contact with the top plate. Both the 

load and deformation indicator should be zero before testing. Then the test sample was loaded 

at a constant strain rate. When the load reached the maximum value, cracks began to appear 

along the CLSM sample. Ultimately the sample failed and the values for all the deformations (δ) 

and load applied (Q) were recorded using the Data Acquisition System (DAS). Using the 

relationships shown in equation 1, the maximum unconfined compressive strength (qu) was 

determined. Figure 3.15 shows the UCS test setup. Figure 3.16 shows an example of a UCS 

test graph. 

ε ൌ 	 ∆ୌ
ୌ
	; 	σ ൌ 	 ୊

୅ౙ
	; 	Aୡ ൌ 	

୅

ଵିக
		and	q୳ ൌ 	σ୫ୟ୶                                         Eq. (1) 

 where, ε = Axial Strain 

 ∆H = change in length, 

 H = total length of specimen, 

 Aୡ = corrected area of cross section of the specimen, 

 A = initial area of cross section, (ܣ ൌ  (ଶݎߨ

 σ = Axial Stress , F= Force, q୳ ൌ Unconfined compressive strength 
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3.8 Summary 

 Chapter 3 summarized the various laboratory tests conducted to achieve the proposed 

research objectives. The sample preparation techniques for short term strength studies and 

long term durability studies are discussed above. Furthermore, some of the test procedures 

covered in this chapter includes sulfate testing, CLSM specimen preparation method, durability 

testing (w-d cycles), leachate testing and strength testing. The test apparatus described in this 

chapter included the ones used for CLSM sample preparation, flow test and UCS test. Test 

results obtained by following the above mentioned procedures along with a thorough analysis 

and discussion on these results is presented in the next chapter. 
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CHAPTER 4 

4 LABORATORY TEST RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter contains laboratory test results and analysis for the CLSM research study 

conducted on sulfate spiked expansive soil from Eagle Ford formation. The chapter has been 

divided into two sections: results and analysis and starts with the sample notation section. 

Thereafter, in the order the tests were conducted, the results section includes the results from 

the sulfate test and flow test followed by the UCS tests for short term strength analysis. The 

short term strength test results are followed by the long term durability test results obtained from 

the UCS test, volume change, weight change and leachate studies. A summary of results is 

presented at the end of each section. Subsequently, a thorough analysis based on the results 

obtained from all the laboratory tests ends the chapter.   

 

4.2 CLSM Sample Notation and Other Naming Conventions Used 

 Following the methodology and testing parameters mentioned in Chapter 3, CLSM 

samples were prepared for short term strength and long term durability tests. Table 3.3 in 

Chapter 3 provides the testing parameters for CLSM samples. Each CLSM sample contains 

oven dried Eagle Ford soil passing through U.S. sieve # 40, 18% Portland Cement (Type I/II), 

varying soluble sulfates added in the form of gypsum and distilled water. The amount of water 

added to the CLSM mix was determined from the flow test results presented in the upcoming 

section of this chapter. 

 For easy identification of different CLSM mixes, each mix was assigned a particular 

notation as shown in Table 4.1. The notation not only provided a shorter name to the sample 

but also delivered information on the variable constituent present in the sample. As mentioned 

in Chapter 3, sulfate concentration is the only variable constituent present in this study. The 
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other constituents remain fixed throughout the tests and have been excluded from sample 

symbolization.  

 Sample notations adopted are based on the CLSMs sulfate concentration. For instance, 

EF-2500S refers to Eagle Ford CLSM with 2,500 ppm sulfate concentrations. ‘EF’ stands for the 

Eagle Ford soil and ‘2500S’ stands for the sulfate concentration present in the sample. Table 

4.1 below provides the notations used for various samples. 

 Additionally, there are certain terminologies used throughout this chapter for 

convenience. All the ‘cement’ referred in this chapter represent Portland Cement (Type I/II) 

unless otherwise mentioned. When ‘four sulfate concentrations’ is mentioned, it refers to 2,500; 

5,000; 10,000 and 20,000 ppm sulfate concentrations throughout this chapter. Furthermore, one 

durability cycle constitutes 24 hours of drying and 5 hours of wetting which is also referred to as 

‘complete durability cycle’. Durability cycles refer to alternate wetting and drying process. Some 

samples are denoted as ‘0-CYCLE’ referring to samples that undergo only 5 hours of wetting 

after being cured for 28 days and then are subjected to UCS test. Similarly, ‘3-Cycle’ sample 

refers to samples that undergo 3 complete durability cycles before the UCS test. ‘w-d’ refers to 

cyclic wetting and drying process. 

 

Table 4.1 CLSM Sample Notations 
 

Designation Description 

EF Test Soil from Eagle Ford formation 

EF-NAT Eagle Ford Soil with natural Soluble Sulfate Concentration (100 ppm or less) 

EF-2500S Eagle Ford Soil with 2500 ppm Soluble Sulfate Concentration 

EF-5000S Eagle Ford Soil with 5000 ppm Soluble Sulfate Concentration 

EF-10000S Eagle Ford Soil with 10000 ppm Soluble Sulfate Concentration 

EF-20000S Eagle Ford Soil with 20000 ppm Soluble Sulfate Concentration 
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4.3 Sulfate Test Results using Modified UTA Method 

 The methodology described in Chapter 3 for sulfate testing by Modified UTA Method 

was followed before each batch of oven dried pulverized soil was used for CLSM sample 

preparation. During the preparation and testing of both the short term strength as well as long 

durability samples, a total of 4 batches of sulfate testing were conducted. In each batch, about 

10 kilograms of pulverized oven dried Eagle Ford soil provided by TRWD was considered. From 

the soil bulk, 3 test samples of soil were taken in a flask namely EF-1, EF-2 and EF-3. After 

conducting the sulfate test, the weights obtained from the tests were entered in the spreadsheet 

to obtain the concentration of sulfate present in each soil sample in ppm. The results from the 

three tests were averaged to get the sulfate concentration of that particular soil bulk. The results 

from the 4 different batches of sulfate tests conducted are presented in Table 4.2. It also shows 

the CLSM test samples prepared from each soil batch. Additionally, sulfate was added in the 

form of gypsum to the EF-2500S, EF-5000S, EF-10000S and EF-20000S samples to obtain the 

desired sulfate concentrations in them before CLSM preparation. 

 
Table 4.2 Eagle Ford Sulfate Test Results using UTA Modified Method 

 
Batch Sulfate Concentration (ppm) CLSM Samples Prepared 

1 91 

- Control Soil (4) 

- 2,500 ppm sulfate (4) 

- 5,000 ppm sulfate (4) 

2 
86 

- 10,000 ppm sulfate (4) 

- 20,000 ppm sulfate (4) 

3 156 

- Control Soil (0,3, 7 & 14 Cycles) 

- 2,500 ppm sulfate (0,3, 7 & 14 Cycles) 

- 5,000 ppm sulfate (0,3, 7 & 14 Cycles) 

4 
219 

- 10,000 ppm sulfate (0,3, 7 & 14 Cycles) 

- 20,000 ppm sulfate (0,3, 7 & 14 Cycles) 
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4.4 Flow Test Results 

 Flow tests were conducted in accordance to ASTM D 6103-97 testing procedure as 

mentioned in chapter 3. The test was conducted to determine the amount of water desired for 

the CLSM mix to meet the above mentioned standard. The standard requires the patty diameter 

to fall between 8 in. to 12 in. One flow test was conducted before EF-NAT, EF-2500S,            

EF-5000S, EF-10000S and EF-20000S samples were cast. After several trials, the water 

content to achieve a patty diameter between 8 in. to 12 in. with Eagle Ford native soil mixed 

with 18% cement was found between 93% to 97% of the total weight of soil and cement added. 

In other words, for 1000 grams of EF-NAT, with 180 grams cement (18% by weight); 970 mL to 

930 mL of water was required to meet the ASTM standard. The average value of 95% was set 

as the water content for all the sample preparation. In all the flow tests, 95% water was 

adequate to achieve the desired diameter. Table 4.3 shows the results of the flow test with the 

patty diameter observed for different CLSM samples. 

 

Table 4.3 Flow test Results for Eagle Ford CLSM 

Sample Water Content Trial 1  Trial 2 Average Diameter 

  (%) (in.) (in.) (in.) 

EF-NAT 95 9.00 10.00 9.50 

EF-2500S 95 9.50 9.00 9.25 

EF-5000S 95 10.00 9.00 9.50 

EF-10000S 95 9.00 10.50 9.75 

EF-20000S 95 11.00 9.00 10.00 
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4.5 Short Term Strength Tests  

 As mentioned in chapter 3, the short term strength test was conducted to evaluate the 

variation of strength over a period of 28 days. For the short term strength tests, UCS test was 

the only test conducted. Details of sample preparation and testing procedures are presented in                

Chapter 3. One of the primary benefits of a short term strength test is that it reflects upon any 

significant increase or decrease in the strength of the CLSM sample at different curing period. 

These samples are not subjected to any durability testing. The results from the UCS test on 

short term strength samples have been presented in the upcoming sub-sections. 

 

4.5.1 Sample EF-NAT  

 The 1, 3, 7, 28 days UCS tests were conducted on the CLSM samples prepared with 

the control soil, EF-NAT. The 28-day strength for the sample was noted as 483.4 kPa (70.1 psi) 

followed by 285.3 kPa (41.4 psi) for 7-day, 228.0 kPa (33.1 psi) for 3-day and 143.0 kPa                  

(20.8 psi) for 1-day. As expected, the strength increased with time; the longer the curing period 

the higher the strength. Figure 4.1 shows the UCS plot with time of the control soil based 

CLSM. 
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* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 

 
Figure 4.1 Variation of UCS Value with Time for Control Soil (EF-NAT) 
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4.5.2 Sample EF-2500S 

 The 1, 3, 7, 28 days UCS tests were conducted on EF-2500S samples. The 28-day 

UCS strength for the sample was noted as 569.0 kPa (82.5 psi) followed by 391.0 kPa         

(56.7 psi) for 7-day, 319.0 kPa (46.3 psi) for 3-day and 160.0 kPa (23.2 psi) for 1-day. As 

expected, the strength increased with time; the longer the curing period the higher the strength. 

Compared to EF-NAT, UCS value for the sample at 28-day strength was higher. Figure 4.2 

shows the UCS plot with time for EF-2500S sample. 

 
* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    

of the specimen in lb/in2 (psi). 
 

Figure 4.2 Variation of UCS Value with Time for EF-2500S Sample 
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4.5.3 Sample EF-5000S 

 The 1, 3, 7, 28 days UCS tests were conducted on EF-5000S samples. The 28-day 

UCS strength for the sample was noted as 783.5 kPa (113.6 psi) followed by 420.1 kPa                  

(60.9 psi) for 7-day, 348.1 kPa (50.5 psi) for 3-day and 229.1 kPa (33.2 psi) for 1-day. As 

expected, the strength increased with time; longer the curing period, higher the UCS strength. 

Compared to EF-NAT and 2500S samples, UCS value for the sample at 28-day strength was 

higher. Figure 4.3 shows the variation of UCS value with time for EF-5000S sample. 

 
* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    

of the specimen in lb/in2 (psi). 
 

Figure 4.3 Variation of UCS Value with Time for EF-5000S Sample 
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4.5.4 Sample EF-10000S 

 The 1, 3, 7, 28 days UCS tests were conducted on EF-10000S samples. The 28-day 

strength for the sample was noted as 1107.2 kPa (160.6 psi) followed by 663.7 kPa (96.2 psi) 

for 7-day, 529.1 kPa (76.7 psi) for 3-day and 299.1 kPa (43.4 psi) for 1-day. As expected, the 

strength increased with time; longer the curing period, higher the UCS strength. Compared to 

EF-NAT, 2500S and 5000S samples, UCS value for the sample at 28-day strength was the 

highest. Figure 4.4 shows the variation of UCS value with time for EF-10000S sample. 

 

* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 

 
Figure 4.4 Variation of UCS Value with Time for EF-10000S Sample 
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4.5.5 Sample EF-20000S 

 The 1, 3, 7, 28 days UCS tests were conducted on EF-20000S samples. The 28-day 

strength for the sample was noted as 1331.4 kPa (193.1 psi) followed by 859.3 kPa (124.6 psi) 

for 7-day, 761.7 kPa (110.5 psi) for 3-day and 298.0 kPa (43.2 psi) for 1-day. As expected, the 

strength of the sample increased with time; longer the curing period, higher the UCS strength. 

Compared to all the samples; EF-NAT, 2500S, 5000S and 10000S, UCS value for the sample 

at 28-day strength was the highest. Figure 4.5 shows the variation of UCS value with time for 

EF-20000S sample.  

 
* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    

of the specimen in lb/in2 (psi). 
 

Figure 4.5 Variation of UCS Value with Time for sample EF-20000S 
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4.5.6 Summary  

 Table 4.4 below summarizes the results of the short term strength tests. From the table 

it is observed that with the increase in setting time, the UCS strength also increased. Another 

remarkable observation is that with the increase in sulfate concentration, the UCS value also 

increased implying that EF-20000S sample exhibited the highest strength value compared to 

the rest of the samples. The highest UCS value observed was 193.1 psi and the lowest was 

20.8 psi. There was no UCS strength losses noticed during the short term strength tests. As 

expected, a gradual increase in strength was observed from 0-Day sample to 28-Day test 

samples.  

 One reason for no influence of sulfate effects is that the CLSM mixture is highly 

cementitious and as a result, cementing reactions at full hydration conditions are much larger 

than the disruptive Ettringite reactions which may have resulted in strength enhancements. 

 Additionally, Figure 4.6 shows the variation of the 28-Day UCS value with soluble 

sulfate concentration. From the graph, it is clear that the UCS value is the highest for the       

EF-20000S sample and the lowest for the control sample. 

 

Table 4.4 Summary of Short Term Test on all the Eagle Ford CLSM Samples 
 

Summary of Short Term Strength Tests 

Sample Name 

Sulfate  UCS Strength 
Concentration (psi) 

(ppm) 1-Day 3-Day 7-Day 28-Day 

EF-NAT 100 or less 20.8 33.1 41.4 70.1 

EF-2500S 2,500 23.2 46.3 56.7 82.5 

EF-5000S 5,000 33.2 50.5 60.9 113.6 

EF-10000S 10,000 43.4 76.7 96.2 160.6 

EF-20000S 20,000 43.2 110.5 124.6 193.1 
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* Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 

 
Figure 4.6 Variation of 28-Day UCS Test Result with Sulfate Concentration 
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4.6 Long Term Durability Test 

 This section presents the results obtained from the durability studies conducted on all 

the four different samples with sulfate concentrations of 2500, 5000, 10000 and 20000 ppm 

including the control soil in which each sample was subjected to 0, 3, 7 and 14 cycles of w-d 

process.   

 As mentioned in Chapter 3, one complete cycle constitutes of 24 hours of drying at 

140°F followed by 5 hours of wetting with an exception to 0-cycle samples. 0-cycle samples 

undergo 5 hours of wetting after the curing period and are subjected to UCS test. The long term 

durability studies included UCS testing, volume and weight change measurements and leachate 

studies. The tests were conducted on the CLSM samples for all the sulfate concentrations 

during or after completing the durability cycles. Samples were subjected to 0, 3, 7 and 14 

wetting and drying durability cycles. Hence, for each sulfate concentration, 4 samples were 

prepared for testing at each cyclic condition.  

 Volumetric strain changes were based on both the changes in diameter and height of 

the original compacted soil specimens. The maximum volumetric strain is a combination of the 

percent change for wetting and drying of one cycle of durability. The percent volumetric change 

for each of wetting and drying cycle is determined with respect to the initial compacted volume 

of the CLSM sample before durability studies. Then, the percent change in volume for the 

wetting and drying cycle for that particular cycle is added to determine the maximum volumetric 

change exhibited by the sample for that complete durability cycle due to moisture hydration. For 

volumetric strain plots, only the 14-Cycle sample for each sulfate concentration was considered. 

 Besides recording the height and diameter of the CLSM test samples, weight was also 

noted after each wetting and drying periods for each cycle. Weight change for each drying and 

wetting cycle was calculated with respect to the initial compact weight of the CLSM sample 

before durability testing. Then, the percent change in drying and wetting for that particular cycle 
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were added to obtain the maximum weight change exhibited by the sample during one complete 

wetting-drying durability cycle due to moisture hydration.   

 The main purpose of leachate collection is to perform calcium test using EDTA method 

which shows the amount of calcium present in the leachate sample tested. Ultimately the 

amount of cement leached out can also be determined. The procedure used for determining the 

calcium concentration of a prepared soil specimen by EDTA is provided in Chapter 3. The test 

results of the samples with all the sulfate concentrations (control soil, 2500, 5000, 10000 and 

20000 ppm) that were subjected to durability studies are presented in the following sections. A 

detailed testing procedure has been explained in Chapter 3. 

 

4.6.1 Sample EF-NAT 

 The control soil CLSM sample lasted all the 14 cycles of durability (w-d) process.    

Figure 4.7 shows the pictures after 28 days curing, 0, 3, 7 and 13 wetting cycles for the                     

14-Cycle EF-NAT sample. In this section, the results from the UCS test, volume and weight 

change characteristics along with leachate studies are presented. For all the volume change, 

weight change and leachate studies, only the 14-Cycle sample was considered. However for 

the UCS test separate identical samples were prepared in representation of each cycle. In this 

section, the results from the UCS test, volume and weight change characteristics along with 

leachate studies are presented. 
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 4.6.1.1 UCS Test 

 The UCS test was conducted on 0, 3, and 7 Cycle EF-NAT samples in accordance to 

ASTM 2166 procedure. The sample lasted 13 complete cycles and collapsed at the end of                 

13-Cycle wetting. Hence, no UCS test was conducted on the sample. Figure 4.8 shows the 0, 3, 

7, 14 cycles UCS test result for control soil CLSM. The peak UCS value was 349.4 kPa                      

(50.7 psi) for 0-Cycle sample. The strength decreased as the cycles increased. 3-Cycle and                 

7-Cycle samples exhibited a UCS value of 84.1 kPa (12.2 psi) and 73.2 kPa (10.6 psi) 

respectively.  

 
Values next to the bullets represent Unconfined Compressive Strength (UCS) of the 
specimen in lb/in2 (psi). 

 
            Figure 4.8 Variation of Unconfined Compressive Strength with Durability Cycles for                                  

Control Soil (EF-NAT) 
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 4.6.1.2 Volume Change Characteristics 

 Height and diameter of all the samples were measured after completion of each cycle. 

This information was used to determine the volumetric strain. The maximum volumetric change 

of 10.1% (represented with red ink in the figure) was observed on Cycle-6 of the total                          

14 durability cycles of wetting and drying as shown in Figure 4.9. The minimum value was 5.5% 

and an average volumetric strain of 9.0%. It can be seen that the volume change experienced 

by the control soil was low. It should be noted that the maximum value is based on the 

volumetric change per cycle during moisture hydration.  

 
 

          Figure 4.9 Variation of Volumetric Strain with Durability Cycles for Control Soil (EF-NAT) 
 

  

0 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 14
Number of Durability Cycles

-40

-20

0

20

40

V
o

lu
m

e
tr

ic
S

tr
a

in
,


V
/V

(%
)

0.0

-3.2

2.3

-5.3

4.1

-5.1

4.0

-5 .4

4.4

-5.3

4.2

-5.3

4 .8

-5.1

4.0

-5 .3

3.5

-5.0

3.2

-5.1

4.2

-5.1

4.2

-5.4

4.4

-4.9

4.2

W
e

tt
in

g
(S

w
e

ll)
D

ry
in

g
(S

h
ri

n
k

)

* Sample Collapsed at the end of 13-Cycle.

Maximum Volumetric Strain = 10.1 %

Volume Change Results
Specimen: EF-NAT
Additive Type: Cement
Additive Dosage: 18%

:Shrink
: Swell

*



 

83 
 

 

 

 4.6.1.3 Weight Change Characteristics 

 After each cycle the weight of the samples was recorded. Figure 4.10 shows the weight 

change in percent of the control soil for the 14-Cycle sample. The maximum weight change 

observed was 35.0% (represented with red ink in the figure) and the minimum was 30.4%. The 

average weight change for EF-NAT sample was reported to be 32.1%. It should be noted that 

the maximum value is based on the weight change per cycle during moisture hydration 

 

    Figure 4.10 Variation of Weight Change with Durability Cycles for Control Soil (EF-NAT) 
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4.6.1.4 Leachate Studies 

 Leachate samples were collected at the end of wetting of 1, 3 and 7 cycles from the          

14-Cycle sample. Table 4.5 shows the spreadsheet for the determination of calcium loss for the 

control soil. Figure 4.11 shows the variation of calcium loss with the durability cycles. The 

maximum and minimum calcium ion concentrations leached out were approximately 640 ppm 

and 380 ppm that were observed in 7-Cycle and 1-Cycle respectively. The average calcium loss 

for this sample was 547 ppm. Figure 4.10 presents the 7-Cycle average and totals.  

  

Table 4.5 Calculation of Calcium Ion Concentration Loss for EF-NAT Sample 

Cycle # Calcium Concentration (ppm) 

1 380 

3 640 

7 620 

Average Calcium Loss for only 7 cycles (ppm) = 547 

Total Calcium loss after 7 cycles (ppm) = 3,827 
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Figure 4.11 Variation of Calcium Concentration with Durability Cycles for Control Soil (EF-NAT) 
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4.6.2 Sample EF-2500S 

 In this section, the results from the UCS test, volume and weight change characteristics 

along with leachate studies are presented. For all the volume change, weight change and 

leachate studies only the 14-Cycle sample was considered. As mentioned previously, the             

EF-2500S sample lasted only upto the 13th cycle wetting period without collapsing. Hence, no 

UCS test was conducted on the 14-Cycle sample. Figure 4.12 shows the pictures after 0, 3, and 

7 wetting cycles for the 14-Cycle sample. 

   

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Pictures of EF-2500S 14-Cycle Sample showing Sample after                             
(a) 28-Day Curing, (b) 0-Cycle Wetting, (c) 3-Cycle Wetting,                              

(d) 7-Cycle Wetting and (e) 13-Cycle Wetting  

 

(e) (d) 

(a) (b) (c) 
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 4.6.2.1 Unconfined Compressive Strength Test Results 

 Figure 4.13 below shows the 0, 3, 7 cycles UCS test result for EF-2500S samples. The 

peak UCS value was 444.8 kPa (64.5 psi) for 0-Cycle sample. The strength decreased as the 

cycles increased. 3-Cycle and 7-Cycle samples exhibited a UCS value of 84.7 kPa (12.3 psi) 

and 73.2 kPa (10.6 psi) respectively. 
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Values next to the bullets represent Unconfined Compressive Strength (UCS) of the 
specimen in lb/in2 (psi). 
 

Figure 4.13 Variation of Unconfined Compressive Strength with Durability Cycles                                 
for EF-2500S Samples 
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 4.6.2.2 Volume Change Characteristics 

 Figure 4.14 shows the volumetric strain in percent of 14-Cycle EF-2500S sample at 

various wetting and drying cycles. The maximum volumetric change of 20.1% (represented with 

red ink in the figure) was observed on 1-Cycle of the total 14 cycles of the durability (wetting 

and drying test). The minimum value was 5.4% and an average volumetric strain for the sample 

was reported to be 14.1%. It should be noted that the maximum value is based on the 

volumetric change per cycle during moisture hydration. The durability cycle starts at drying and 

ends at wetting to complete one cycle. 

 
Figure 4.14 Variation of Volumetric Strain with Durability Cycles for EF-2500S Sample 
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 4.6.2.3 Weight Change Characteristics 

 The EF-2500S sample lasted a complete 12 cycles and collapsed at the end of the 13-

Cycle wetting period. Although the UCS test was not conducted on the sample, weight of the 

sample was recorded at the end of 13-Cycle wetting period.     Figure 4.15 shows the weight in 

percent of 14-Cycle EF-2500S sample at various wetting and drying cycles. The maximum 

weight change observed was 41.7% (represented with red ink in the figure) and the minimum 

was 33.7%. The average weight change for EF-2500S sample was reported to be 37.0%. It 

should be noted that the maximum value is based on the weight change per cycle during 

moisture hydration. 

 
 

Figure 4.15 Variation of Weight Change with Durability Cycles for EF-2500S Sample 
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 4.6.2.4 Leachate Studies 

 Since the EF-2500S-18C sample did not last a complete 14 cycles, leachate was 

collected from 1, 3 and 7 cycles of the 14-Cycle sample only. Table 4.6 shows the spreadsheet 

for the determination of calcium loss in ppm for EF-2500S sample. Furthermore, Figure 4.16 

shows the variation of calcium loss with the durability cycles. The maximum and minimum 

calcium ion concentrations leached out were approximately 790 ppm and 420 ppm that were 

observed in the 7-Cycle and 3-Cycle respectively. The average calcium loss for this sample was 

1,448 ppm over 14 cycles of durability testing. The average total calcium ion concentration loss 

was observed to be approximately 580 ppm and the average total calcium loss for this sample 

was 4,060 ppm. 

 
 

Table 4.6 Calculation of Calcium Ion Concentration Loss for EF-2500S Sample 

Cycle # Calcium Concentration (ppm) 

1 530 

3 420 

7 790 

Average Calcium Loss in 7 cycles (ppm) = 580 

Total Calcium loss after 7 cycles (ppm) = 4,060 
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Figure 4.16 Variation of Calcium Concentration with Durability Cycles for EF-2500S Sample 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8

Number of Durability Cycles

0

500

1,000

1,500

2,000

2,500

3,000

3,500
C

a
lc

iu
m

C
o

n
c

e
n

tr
at

io
n

L
ea

c
h

e
d

O
u

t
(p

p
m

)

530
420

790

Average Calcium Loss in 7 Cycles = 580 ppm
Total Calcium Loss after 7 Cycles = 4,060 ppm

Calcium Loss Results for Long Term Durability Studies
Specimen: EF-2500S
Additive Type: Cement
Additive Dosage: 18%

* Sample Collapsed at the end of 13-Cycle Wetting.

*



 

92 
 

 

 

4.6.3 Sample EF-5000S 

 The sample lasted a complete 12 cycles of wetting-drying process and collapsed at the 

end of 13-Cycle wetting. Hence, no UCS test was conducted on the 14-Cycle sample.                 

Figure 4.17 shows the pictures after 28 days curing, 0, 3, 7, 12 and 13 wetting cycles for the      

14-Cycle sample. In this section, the results from the UCS test, volume and weight change 

characteristics along with leachate studies are presented. For all the volume change, weight 

change and leachate studies only the 14-Cycle sample was considered. 

     

 

     

 
 

Figure 4.17 Pictures of EF-5000S 14-Cycle Sample showing Sample after (a) 28 days Curing,     
(b) 0-Cycle Wetting, (c) 3-Cycle Wetting, (d) 7-Cycle Wetting,                                          

(e) 12-Cycle Wetting and (f) 13-Cycle Wetting 

  

(a) (b) (c)

(d) (e) (f) 
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 4.6.3.1 Unconfined Compressive Strength Test Results 

 Figure 4.18 below shows the 0, 3, 7 cycles UCS test result for 5,000 ppm sulfate 

samples. The peak UCS value was 72.0 kPa (496.6 psi) for 0-Cycle sample. The strength 

decreased as the cycles increased. 3-Cycle and 7-Cycle samples exhibited a UCS value of 

397.2 kPa (57.6 psi) and 107.9 kPa (15.7 psi) respectively. 

 

 

Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 
 

Figure 4.18 Variation of Unconfined Compressive Strength with Durability Cycles                                      
for EF-5000S Samples 
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 4.6.3.2 Volume Change Characteristics 

 Figure 4.19 shows the volumetric strain in percent of 14-Cycle EF-5000S sample at 

various wetting and drying cycles. The maximum volumetric change of 22.7% (represented with 

red ink in the figure) was observed on 7-Cycle of the total 14 cycles of the durability (wetting 

and drying test). The minimum value was 11.3% and an average volumetric strain for the 

sample was reported to be 18.9%. It should be noted that the maximum value is based on the 

volumetric change per cycle during moisture hydration. The durability cycle starts at drying and 

ends at wetting to complete one cycle. 
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Figure 4.19 Variation of Volumetric Strain with Durability Cycles for EF-5000S Sample 
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 4.6.3.3 Weight Change Characteristics 

 The EF-5000S sample lasted a complete 12 cycles of wetting-drying process and 

collapsed at the end of 13-Cycle wetting. Hence no weight change data was available for the 

13-Cycle and 14-Cycle durability tests. Figure 4.20 shows the weight in percent of 14-Cycle     

EF-5000S sample at various wetting and drying cycles. The maximum weight change observed 

was 41.9% (represented with red ink in the figure) and the minimum was 39.0%. The average 

weight change for the sample was reported to be 40.2%. It should be noted that the maximum 

value is based on the weight change per cycle during moisture hydration. 
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Figure 4.20 Variation of Weight Change with Durability Cycles for EF-5000S Sample 
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 4.6.3.4 Leachate Studies 

 Since the EF-5000S sample did not last a complete 14 cycles, leachate was collected 

from 1, 3 and 7-Cycle samples only. Table 4.7 shows the spreadsheet for the determination of 

calcium loss in ppm for EF-5000S sample. Furthermore, Figure 4.21 shows the variation of 

calcium loss with the durability cycles. The maximum and minimum calcium ion concentrations 

leached out were approximately 1,040 ppm and 406 ppm that were observed in the 7-Cycle and 

1-Cycle respectively. The calcium loss seems to increase with the increase in durability cycles. 

The average calcium loss for this sample was 760 ppm. The average total calcium ion 

concentration loss over 7 cycles of durability testing was observed to be approximately                  

5,320 ppm. 

Table 4.7 Calculation of Calcium Ion Concentration Loss for EF-5000S Sample 

Cycle # Calcium Concentration (ppm) 

1 406 

3 834 

7 1,040 

Average Calcium Loss in 7 cycles (ppm) = 760 

Total Calcium loss after 7 cycles (ppm) = 5,320 
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Figure 4.21 Variation of Calcium Concentration with Durability Cycles for EF-5000S Sample 
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4.6.4 Sample EF-10000S 

 On the contrary, the EF-10000S sample lasted through all the 14 cycles of wetting and 

drying process. Figure 4.22 shows the pictures after 28 days curing, 0, 3, 7 and 14 wetting 

cycles for the 14-Cycle sample. In this section, the results from the UCS test, volume and 

weight change characteristics along with leachate studies are presented. For all the          

volume change, weight change and leachate studies, only the 14-Cycle sample was 

considered. 

   

 

   

 
Figure 4.22 Pictures of EF-10000S 14-Cycle Sample showing Sample after (a) 28 days 

Curing, (b) 0-Cycle Wetting, (c) 3-Cycle Wetting, (d) 7-Cycle Wetting                                  
and (e) 14-Cycle Wetting 

  

(a) (b) (c) 

(e) (d) 
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 4.6.4.1 Unconfined Compressive Strength Test Results 

 Figure 4.23 below shows the 0, 3, 7, 14 cycles UCS test result for EF-10000S sample. 

The peak UCS value was 842.1 kPa (122.1 psi) for 0-Cycle sample. The strength decreased as 

the cycles increased. 3-Cycle and 7-Cycle samples exhibited a UCS value of 436.3 kPa       

(63.3 psi) and 192.3 kPa (27.9 psi) respectively. The 14-Cycle sample had a UCS value of      

27.4 kPa (4.0 psi). 

 
Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 

 
Figure 4.23 Variation of Unconfined Compressive Strength with Durability Cycles                                      

for EF-10000S Samples 
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 4.6.4.2 Volume Change Characteristics 

 Figure 4.24 shows the volumetric strain in percent of 14-Cycle EF-10000S sample at 

various wetting and drying cycles. The maximum volumetric change of 35.5% (represented with 

red ink in the figure) was observed on 2-Cycle of the total 14 cycles of wetting and drying. The 

minimum value was 11.6% and an average value was 20.6%. The sample exhibited higher 

volumetric strain than the control soil, EF-2500S and EF-5000S CLSM samples. It should be 

noted that the maximum value is based on the volumetric change per cycle during moisture 

hydration. The durability cycle starts at drying and ends at wetting to complete one cycle. 

 
Figure 4.24 Variation of Volumetric Strain with Durability Cycles for EF-10000S Sample 

  

0 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 14
Number of Durability Cycles

-40

-20

0

20

40

V
o

lu
m

e
C

h
a

n
g

e
,


V
/V

(%
)

-14.7

13.6

-19.3

16.2

-17.9

10.8

-18.1

15.6

-17.2

7.6

-9.0

4.1

-17.2

4.4

-20.0

6.5

-10.1

4.7

-9.9

1.9

-6.4

5.2

-8.7

3.7

-1 0.3

2.1

-8.4

3.9

0 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 14

W
e

tt
in

g
(S

w
e

ll)
D

ry
in

g
(S

h
ri

n
k

)

Maximum Volume Change = 35.5 %

Volume Change Results
Specimen: EF-10000S
Additive Type: Cement
Additive Dosage: 18%

:Shrink
: Swell

3
5

.5
%



 

101 
 

 

 

 4.6.4.3 Weight Change Characteristics 

 The EF-10000S sample lasted a complete 14 cycles of wetting-drying process.                             

Figure 4.25 shows the weight change in percent of the sample. The maximum weight change 

observed was 42.1% (represented with red ink in the figure) and the minimum was 32.3%. The 

average weight change for EF-10000S sample was reported to be 37.7%. The weight change 

was higher than the previous samples. It should be noted that the maximum value is based on 

the weight change per cycle during moisture hydration. 

 

Figure 4.25 Variation of Weight Change with Durability Cycles for EF-10000S Sample 
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 4.6.4.4 Leachate Studies 

 Leachate samples were collected at the end of wetting of 1, 3, 7 and 14 cycles.                 

Table 4.8 shows the spreadsheet for the determination of calcium loss for EF-10000S sample. 

Furthermore, Figure 4.26 shows the variation of calcium loss with the durability cycles. The 

maximum and minimum calcium ion concentrations leached out were approximately 2,386 ppm 

and 660 ppm that were observed in 14-Cycle and 1-Cycle respectively. The average calcium 

loss for this sample was 1,448 ppm. The average total calcium ion concentration loss over               

14 cycles of durability testing was observed to be approximately 20,272 ppm. Considering 1, 3 

and 7 cycles only, the average calcium loss was 1,135 ppm. Figure 4.26 presents both the 7-

Cycle and 14-Cycle calcium ion leached average and totals. However, the analysis which is 

presented in the following sections only considers the 1, 3 and 7-cycle leachate collection due 

to the fact that none of the other durability samples such as 2500S, 5000S and 20000S survived 

all the 14 w-d cycles. 

 
Table 4.8 Calculation of Calcium Ion Concentration Loss for EF-10000S Sample 

 

Cycle # Calcium Concentration (ppm) 

1 660 

3 1,066 

7 1,680 

14 2,386 

Average Calcium Loss for all 14 cycles (ppm) = 1,448 

Average Calcium Loss for only 7 cycles (ppm) = 1,135 

Total Calcium loss after 14 cycles (ppm) = 20,272 

Total Calcium loss after 7 cycles (ppm) = 7,947 
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Figure 4.26 Variation of Calcium Concentration with Durability Cycles for EF-10000S Sample 
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4.6.5 Sample EF-20000S 

 The EF-20000S sample only lasted 8 cycles of wetting and drying cycles. The sample 

collapsed at the end of 8-Cycle wetting period. Hence, no UCS test was conducted on the                

14-Cycle sample. Figure 4.27 shows the pictures after 28 days curing, 0, 3, 7 and 8 wetting 

cycles for the 14-Cycle EF-20000S sample. In this section, the results from the UCS test, 

volume and weight change characteristics along with leachate studies are presented. For all the 

volume change, weight change and leachate studies only the 14-Cycle sample was considered.  

     

 

     

 

Figure 4.27 Pictures of EF-20000S 14-Cycle Sample showing Sample after (a) 28 days Curing, 
(b) 0-Cycle Wetting, (c) 3-Cycle Wetting, (d) 7-Cycle Wetting, (e) 8-Cycle                               

Wetting  and (f) 8-Cycle Wetting (Sample Collapse) 

  

(a) (b) (c)

(d) (e) (f) 
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 4.6.5.1 Unconfined Compressive Strength Test Results 

 Figure 4.28 below shows the 0, 3 and 7 cycles UCS test result for EF-20000S samples. 

The peak UCS value was 961.4 kPa (139.4 psi) for 0-Cycle sample. The strength decreased as 

the cycles increased. 3-Cycle and 7-Cycle samples exhibited a UCS value of 809.2 kPa     

(117.3 psi) and 324.5 kPa (47.1 psi) respectively. 

 

Values next to the bullets represent Unconfined Compressive Strength (UCS)                    
of the specimen in lb/in2 (psi). 

 

Figure 4.28 Variation of Unconfined Compressive Strength with Durability Cycles                               
for EF-20000S Samples 
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 4.6.5.2 Volume Change Characteristics 

 Compared to all the different sulfate concentration samples, the EF-20000 samples 

lasted the least number of durability cycles, 8 cycles. The 14-Cycle sample collapsed at the end 

of the eighth cycle. Figure 4.29 shows the volumetric strain in percent of 14-Cycle                             

EF-20000S sample at various w-d cycles. The maximum volumetric change of 36.0% 

(represented with red ink in the figure) was observed in 4-Cycle of the total 14 cycles of wetting 

and drying. The minimum value was 11.3% and an average value was 21.7%. It should be 

noted that the maximum value is based on the volumetric change per cycle during moisture 

hydration. The durability cycle starts at drying and ends at wetting to complete one cycle. 

 
 

Figure 4.29 Variation of Volumetric Strain with Durability Cycles for EF-20000S Sample 

0 11 22 33 44 55 66 77 88 99
Number of Durability Cycles

-40

-30

-20

-10

0

10

20

30

40

V
o

lu
m

e
tr

ic
S

tr
a

in
,


V
/V

(%
)

-15.3

9.9

-22.4

4.4

-22.6

3.0

-25.2

10.8

-12.4

8.2

-10.8

3.4

-8.6

2.7

-8.9

4.5

W
e

tt
in

g
(S

w
e

ll)
D

ry
in

g
(S

h
ri

n
k

)

* Sample Collapsed at the end of 8-Cycle.

Maximum Volume Change = 36.0 %

Volume Change Results
Specimen: EF-20000S
Additive Type: Cement
Additive Dosage: 18%

:Shrink
: Swell

*

3
6

.0
%



 

107 
 

 

 

 4.6.5.3 Weight Change Characteristics 

 The EF-20000S sample lasted a complete 7 cycles of wetting-drying process and 

collapsed at the end of the 8-Cycle wetting period. Although, the UCS test was not conducted 

on the sample, weight of the sample was recorded at the end of 8-Cycle wetting period with a 

total of 8 cycles of weight change data recorded. Figure 4.30 shows the weight change in 

percent of the sample. The maximum weight change observed was 53.0% (represented with 

red ink in the figure) and the minimum was 35.9%. The average weight change for the sample 

was reported to be 41.2%. It should be noted that the maximum value is based on the weight 

change per cycle during moisture hydration. 
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Figure 4.30 Variation of Weight Change with Durability Cycles for EF-20000S Sample 
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 4.6.5.4 Leachate Studies 

 Since the EF-20000S sample did not last a complete 14 cycles, leachate was collected 

from 1, 3 and 7-Cycle samples only. Table 4.9 shows the spreadsheet for the determination of 

calcium loss in ppm for EF-20000S sample. Furthermore, Figure 4.31 shows the variation of 

calcium loss with the durability cycles. The maximum and minimum calcium ion concentrations 

leached out were approximately 2,596 ppm and 620 ppm that were observed in the 7-Cycle and 

1-Cycle respectively. The calcium loss seems to increase with the increase in durability cycles. 

The average calcium loss for this sample was 1,621 ppm. The average total calcium ion 

concentration loss over 7 cycles of durability testing was observed to be approximately                 

11,345 ppm. 

Table 4.9 Calculation of Calcium Ion Concentration Loss for EF-20000S Sample 

Cycle # Calcium Concentration (ppm) 

1 620 

3 1,646 

7 2,596 

Average Calcium Loss in 7 cycles (ppm) = 1,621 

Total Calcium loss after 7 cycles (ppm) = 11,345 
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Figure 4.31 Variation of Calcium Concentration with Durability Cycles for EF-20000S Sample 
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4.6.6 Summary of Long Term Durability Studies Results 

 The long term durability studies tests included UCS tests, volumetric changes, weight 

changes and leachate studies on all the EF-2500S, EF-5000S, EF-10000S and EF-20000S 

samples for 0, 3, 7 and 14 durability cycles. As previously mentioned, for each sample category, 

4 identical samples namely 0-Cycle, 3-Cycle, 7-Cycle and 14-Cycle samples were prepared to 

monitor the changes in 0, 3, 7 and 14 cycles of wetting and drying. For instance, a 2500S 

sample had 0-Cycle, 3-Cycle, 7-Cycle and 14-Cycle samples. The summary of all the results 

obtained from the long term durability study are presented in the sections below. 

4.6.6.1 Unconfined Strength Test Summary 

 Table 4.10 provides a summary of the UCS test on all the durability samples. From the 

table, it is observed that the wetting and drying of durability tests seem to reduce the strength of 

the samples. The strength of the 0-Cycle samples also indicates that higher the sulfate 

concentration in the sample, the higher is the unconfined compressive strength. EF-20000S,         

0-Cycle exhibited the peak UCS value of 139.4 psi. As the number of durability cycles 

increased, the samples’ strength declined tremendously. EF-NAT, EF-2500S, EF-5000S and 

EF-20000S 14-Cycle collapsed before completing all the 14 durability cycles. A thorough 

analysis on the results is presented in the upcoming sections.  

 
Table 4.10 Summary of UCS Test Results for Eagle Ford CLSM Samples under Long Term 

Durability Studies 

Sample Name 

Sulfate  Unconfined Compressive Strength 
Concentration (psi) 

(ppm) 0-Cycle 3-Cycle 7-Cycle 14-Cycle 

EF-NAT 100 or less 50.7 12.2 10.0 0.0 (Sample Collapsed) 

EF-2500S 2,500 64.5 12.3 10.6 0.0 (Sample Collapsed) 

EF-5000S 5,000 72.0 57.6 15.7 0.0 (Sample Collapsed) 

EF-10000S 10,000 122.1 63.3 27.9 4.0 

EF-20000S 20,000 139.4 117.3 47.1 0.0 (Sample Collapsed) 
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 4.6.6.2 Volume and Weight Change Summary 

 Table 4.11 provides the volume change summary of durability studies conducted on 

Eagle Ford CLSMs. Table 4.12 provides the weight change summary observed during the 

durability cycles. For both the changes, a maximum, minimum and an average reported values 

are presented. The 20000S sample experienced the highest volumetric strain of 36.0%. The 

maximum weight change observed was 53.0% which was exhibited by the EF-20000S sample 

due to hydrating conditions. Overall, Eagle Ford CLSM exhibited high values of volumetric and 

weight changes. These high changes must be the characteristic of fat clay (CH Soil). 

Table 4.11  Summary of Volumetric Change for Eagle Ford CLSM Samples 

Summary of Volume Change under Long Term Durability Test 

Sample Name 

Sulfate  Volumetric Change  
Concentration (%) 

(ppm) Maximum Minimum Average 

EF-NAT 100 or less 10.4 5.5 9.1 

EF-2500S 2,500 20.2 5.4 14.1 

EF-5000S 5,000 22.7 11.3 18.9 

EF-10000S 10,000 35.5 11.6 20.6 

EF-20000S 20,000 36.0 11.3 21.7 
 

Table 4.12 Summary of Weight Change for Eagle Ford CLSM Samples 

Summary of Weight Change under Long Term Durability Test 

Sample Name 

Sulfate  Weight Change 
Concentration (%) 

(ppm) Maximum Minimum Average 

EF-NAT 100 or less 35.0 30.4 32.1 

EF-2500S 2,500 41.7 33.7 37.0 

EF-5000S 5,000 41.9 39.0 40.2 

EF-10000S 10,000 42.1 32.3 37.7 

EF-20000S 20,000 53.0 35.9 41.2 
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4.6.6.3 Leachate Studies Summary 

 The leachate study results, in terms of the amount of calcium concentration loss (ppm) 

at the completion of 14 durability cycles are shown in Table 4.13. The initial dosage of additive 

added to all CLSM samples was 18%. The table provides the total amount of calcium leached 

out during 7 cycles of alternate wetting and drying period. The 14-Cycle leachate data is 

presented above and are excluded in the summary section since not all the samples lasted all 

the 14 complete durability cycles which makes the comparison more reasonable. Also the total 

cement leached out value was obtained from the calibration chart as described in Chapter 3. It 

shows that the EF-20000S samples lose the most cement. This could be the reason for the 

strength loss on the samples over the 14 cycles of alternate drying and wetting. 

 
Table 4.13 Summary of Leachate Studies for Eagle Ford CLSM Samples 

Sample Name 
Sulfate  

Concentration
(ppm) 

Total 
Calcium  

Leached Out 
(ppm) 

Initial 
Cement 
Dosage 

(%) 

Total Cement  
Leached Out  

(%) 

EF-NAT 100 or less 3,850 18 2.10 

EF-2500S 2,500 4,060 18 2.30 

EF-5000S 5,000 5,320 18 2.90 

EF-10000S 10,000 7,947 18 4.30 

EF-20000S 20,000 11,345 18 6.20 
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4.7 Analysis of Results 

 The section presents a thorough analysis of the results obtained in both the short term 

strength studies and long term durability studies. The analysis part has been divided into two 

sections namely: The following aspects of this research should be addressed to analyze the test 

results obtained: 

 The effects of sulfate concentration on Short Term Strength Studies   

 The effects of sulfate concentration on Long Term Durability Studies   

The following sections explain the above two points in more detail. 

 

4.7.1 The effects of sulfate concentration on Short Term Strength Studies   

  The unconfined compressive strength test was performed for both short term strength 

samples and long term durability samples. Figure 4.32 shows the summary of UCS comparison 

between all the different sulfate concentrations tested under short term strength tests. The peak 

strength of approximately 193 psi was exhibited by EF-20000S sample. The UCS strength for 

all the four sulfate concentration samples is higher than that of the control soil. The graph also 

indicates the increase in UCS value with increase in sulfate concentration.  
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* Values above the bar represent Unconfined Compressive Strength (UCS) of the 
specimen   in lb/in2 (psi). 

 
 

Figure 4.32 Summaries of UCS Test on Eagle Ford CLSMs for Short Term Strength Studies 
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4.7.2 The effects of sulfate concentration on Long Term Durability Studies   

 Eagle Ford is classified as CH soil meaning it is high plasticity clay, also known as fat 

clay. When fat clay is rich with soluble sulfate, according to literature, it could be problematic. 

Hence, durability studies were conducted to analyze the long term performance of CLSM 

samples. The long term performance of CLSMs is best assessed by studying the effects of soil 

type on four engineering parameters: Unconfined Compressive Strength, Volumetric Strain, 

Weight Change and Calcium ion loss due to leaching. The sections below provide a detailed 

analysis of each of these parameters based on the results obtained on them. 

 4.7.2.1 Unconfined Compressive Strength Analysis 

 For the long term durability samples, the highest UCS value was exhibited by                          

EF-20000S sample. In this case, the strength values decreased significantly with the increase in 

the durability cycles.  Figure 4.33 shows the summary of the UCS test performed on long term 

durability samples. For all the sulfate concentrations, the 0-Cycle samples exhibited the highest 

UCS values as expected. When only the 0-Cycle samples are compared, the UCS value 

increases with the increase in sulfate concentration. The EF-NAT exhibited the least UCS value 

compared to all the other samples and the EF-20000S exhibited the highest UCS value of 

approximately 139.4 psi.  
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Figure 4.33 Summary of UCS Test on Eagle Ford CLSMs for Long Term Durability Studies 
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 4.7.2.3 Volume Change Analysis 

 Another important characteristic to analyze is the volume change data obtained from 

the results. Since, Eagle Ford is a CH soil, it has a high swelling potential when exposed to 

continuous supply of moisture. The swell and shrinkage of fat clay during wetting and drying 

process of durability cycles contributes in strength loss of the samples due to cracking.                

In addition, the presence of sulfate contributes to the swelling behavior of the soil due to the 

formation of Ettringite and Thaumasite as discussed in Chapter 2. Figure 4.34 shows the 

maximum volumetric strain percent exhibited by different CLSM samples. It is clear from the 

graph that the sample with the highest sulfate concentration exhibited the highest volumetric 

strain of 36% which was expected of CLSM with high sulfate concentrations. The study also 

shows that the volumetric strain percent increase with the increase in sulfate concentration in 

the CLSM samples.  
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Figure 4.34 Variation of Maximum Volumetric Strain with Different CLSM Samples 
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 4.7.2.4 Weight Change Analysis 

 Weight change is another parameter that needs to be analyzed during durability 

studies. Since, Eagle Ford is a CH soil, it has a high swelling potential when exposed to 

continuous supply of moisture. The swell and shrinkage of fat clay during cyclic w-d process of 

durability studies contributes in strength loss of the samples. In addition, the presence of sulfate 

contributes to the swelling behavior of the soil due to the formation of Ettringite and Thaumasite 

as discussed in Chapter 2.  

 Figure 4.35 shows the percent weight loss experienced by the samples during durability 

cycles. The weight loss parameter for this analysis considers the difference in weight between 

drying of 1-Cycle (initial value) and the drying of 7-Cycle (final value) for all the samples. The 

main reason for using the 7-Cycle drying as the ‘final value’ is due to the lack of samples that 

completed a full 14 cycles of cyclic w-d process. However, all the CLSM samples completed                

7 cycles of w-d process.  

 Furthermore, an oven dry sample can be considered a moisture free sample which 

provides a firm basis for weight loss studies than a saturated sample. The weight loss percent is 

obtained by deducting the lowest CLSM sample weight observed from 1-Cycle till 7-Cycle 

drying (final weight) from the weight of the sample at 1-Cycle drying (initial weight). The 

difference is divided by the weight of 1-Cycle drying (initial weight) and then multiplied by 100 to 

represent the result in percentage.  

 From the figure, it is clear that the samples experienced more weight loss as the 

concentration of soluble sulfates in them, increased. It can also be inferred that weight loss is an 

indication of additive loss by the sample. Over time, with the loss in additive, the strength of 

CLSM also declines.  
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Figure 4.35 Variation of Weight Loss of Different CLSM Samples from  1-Cycle Drying to 7-
Cycle Drying  

 
  

 Furthermore, Table 4.12 in the earlier sections of this chapter presents the summary of 

the results from the weight change studies. Maximum weight change is the summation of the 

percent changes in weight of wetting and drying process in one cyclic w-d cycle from the initial 

compacted CLSM weight before durability testing. For this analysis the maximum weight 

change values are considered instead of the average values. It is observed that the increase in 

sulfate concentration also triggers the increase in weight change for the cement treated CLSM 

samples. Higher the soluble sulfate concentration in a soil, the higher is the moisture absorption 
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capacity of the soil. This causes the soil to swell more. Figure 4.37 shows the pictures at the 

end of the last drying cycle of each sample before they completed the cyclic w-d period or 

before they collapsed. During laboratory testing, significant amount of weight loss and sample 

cracking were observed during the drying cycles as opposed to the wetting cycles as evident in 

Figure 4.36 below. However, significant amount of additive was lost due to leaching during 

wetting cycles which is discussed in the following sections. 

      

 

    

 

Figure 4.36 Pictures of (a) EF-NAT after 13-Cycle Drying, (b) EF-2500S after 13-Cycle 
Drying, (c) EF-5000S after 13-Cycle Drying, (d) EF-10000S after 14-Cycle 

Drying, and (e) EF-20000S after 8-Cycle Drying 

 
 

(a) (b) (c) 

(d) (e)
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 4.7.2.5 Effects of Calcium Concentration Loss on the Strength of CLSMs 

 Leachability of a CLSM is the parameter used to measure the permanency of the 

chemical additive. In actual site conditions, this permanency decreases with time due to 

environmental effects like surface runoff. Also rainfall infiltration can sometimes leach the 

additive and reduce the soil strength. In the laboratory, replication of rainfall infiltration can be 

achieved by conducting the leachate studies. 

 Figure 4.37 shows the variation of total calcium loss due to leaching from the various 

samples. It is clear that the calcium ion concentration loss is prominent for the EF-20000S 

sample. The control soil lost the least amount of calcium during wetting and drying cycles. It is 

evident from Figure 4.37 that higher the concentration of sulfate higher the amount of calcium 

ion concentration leached out during wetting process. It is also observed that with higher 

calcium leached out, the strength of the sample decreases compared to the previous cycle but 

considering each cycle, the strength increases with the increase in sulfate concentration i.e.            

EF-20000S exhibits higher strength values upto 7-Cycle of cyclic w-d compared to the rest of 

the samples. It can be argued that the reason behind this strength increase in CLSMs with 

elevated sulfate concentrations during earlier stages of w-d process is due to the higher values 

of calcium loss by leaching during the wetting process. Since cement is being leached out from 

the sample, not adequate calcium from cement is present in the sample to escalate the swelling 

behavior of the high sulfate samples. This in turn might have decelerated the formation of high 

swelling substance such as Ettringite which is attributed to expansive soil’s swelling behavior. 

However, all the samples failed to retain 50% or more of their initial UCS value after                           

14 w-d process.  
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Figure 4.37 Variation of Total Calcium Loss with Different CLSM Samples 
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Additionally, the amount of additive (cement) loss from the CLSM samples can be 

determined using a calibration chart as discussed in Chapter 3. The knowledge of the quantity 

of cement leached out during durability cycles helps in understanding the strength loss 

characteristics of CLSM samples under wetting and drying process. Table 4.14 shows the 

values for the total cement leached out, retained and percent cement loss. It is observed that 

high soluble sulfate concentration in CLSM mixes lead to binder loss up to 35% as exhibited by 

the EF-20000S sample. The total cement loss is obtained by dividing the total cement leached 

out by the CLSM sample divided by the initial additive content in the sample (i.e. 18% in this 

case) and multiplied by 100 to express the value in percent. Figure 4.38 shows the variation of 

total cement loss for various CLSM samples. EF-20000S experienced the most cement loss 

and the EF-NAT the least during the durability wetting-drying cycles. The result shows that the 

cement loss increases with the increase in sulfate concentration.  

 

Table 4.14 Results of Leachate Study showing Values for Additive (Cement) 
 

Sample Name 
Sulfate  

Concentration
(ppm) 

Total 
Calcium  
Leached 

Out  
(ppm) 

Initial 
Cement 
Dosage 

(%) 

Total 
Cement  
Leached 

Out  
(%) 

Total 
Cement  
Retained 

(%) 

Total 
Cement 
 Loss 
(%) 

EF-NAT 100 or less 3,850 18 2.10 15.90 11.7 

EF-2500S 2,500 4,060 18 2.30 15.70 12.8 

EF-5000S 5,000 5,320 18 2.90 15.10 16.1 

EF-10000S 10,000 7,947 18 4.30 13.70 23.9 

EF-20000S 20,000 11,345 18 6.20 11.80 34.4 
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Figure 4.38 Variation of Total Cement Leached Out with Different CLSM Samples 
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4.8 Summary 

 During the short term strength studies, it was observed that the increase in sulfate 

concentration did not seem to affect the UCS values negatively when initial testing cycles are 

considered. Instead the studies show that the increase in soluble sulfate concentration in a soil 

(in the form of gypsum) increases the short term strength of the soil. Even in the case of long 

term durability studies, initially, an increase in UCS value with the increase in sulfate 

concentration is observed. However, as the durability cycle progresses, the strength reduction is 

high and can be attributed to durability w-d cycles as well as presence of high concentration of 

soluble sulfates in the CLSM mix. The volume change, calcium loss and cement loss 

parameters were the highest for the EF-20000S sample. Therefore, it can be concluded that the 

presence of higher concentrations of soluble sulfate in soil causes strength reduction of CLSM 

during durability studies of the CLSM samples. The strength loss can also be attributed to the 

durability of the sample (i.e of wetting and drying cycles). Even though there is increase in 

strength of sample with increase in sulfate concentration for high sulfate CLSMs initially, the 

strength retention value still fell below 50% of their original strength before durability studies. 

Hence, additional studies need to be conducted to use Portland Cement (TY I/II) as an additive 

for CLSM prepared using Eagle Ford native soil in order to be used for pipeline bedding 

material. 
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CHAPTER 5 

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary and Findings 

This study focuses on the effects of utilizing high sulfate expansive soil treated with 

cement in CLSM sample preparation. In order to achieve this goal, short term strength and long 

term durability studies were conducted on the samples which comprised of strength, volumetric 

and weight change and leachate studies analysis. For the study, soil from Eagle Ford geological 

formation was selected and treated with Portland Cement (Type I/II). The five sulfate 

concentrations studied were 100 or less ppm (control soil), 2500 ppm, 5000 ppm, 10000 ppm 

and 20000 ppm.   

 From the study, several significant conclusions were drawn and are presented in the 

following sections. The analysis showed that soluble sulfates present in soil used for CLSM 

preparation do not have adverse effect on the short term strength of the sample. Also, the 

CLSM samples with elevated levels of soluble sulfate in the form of gypsum exhibited higher 

Unconfined Compressive Strength (UCS) values. The increase in swell-shrink behavior of 

expansive soil with elevated levels of soluble sulfates was also distinctly reflected from the 

study, where CLSMs with high sulfate concentration exhibited higher shrink-swell behavior. 

Higher the concentration of soluble sulfates, higher the swell-shrink behavior exhibited by the 

CLSM samples. However the loss of strength with durability cycles is higher with increase in 

sulfate concentrations.  

 Although low strength values were observed during durability w-d cycles, it should be 

noted that these tests conducted in laboratory were under much harsh conditions than that 

experienced by CLSMs in the field. Additionally, there are no specific design guidelines for 

preparation and testing of the CLSMs. Handling of samples during wetting and drying process 

also contributes to the strength loss during durability studies.  
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 From the test results and the analysis conducted, the conclusions are presented in the 

following sections. Below is the list of findings from the research: 

1. Unconfined Compressive Strength (UCS):  

 For short term strength analysis, the UCS value increased with the increase in sulfate 

 concentration. 

 For long term durability studies, initially the UCS value increased with the increase in 

 sulfate concentration when 0-Cycle samples were considered. The CLSM with highest 

 sulfate concentration exhibited the highest UCS value. However, with increase in the 

 durability cycles, the UCS value decreased significantly. At the end of 14 cycles of w-d, 

 the strength retained was close to zero for all the samples.  

 The UCS loss per cycle  increased with the increase in sulfate concentration for both 

 short term strength and  long term durability studies as indicated by Figure 4.34. 

2. Volume Change: 

 For long term durability studies, the volume change per w-d cycle increased with the 

 increase in sulfate concentration meaning, the sample with the highest sulfate 

 concentration exhibited highest volumetric change and the control soil exhibited the 

 least.  

3. Weight Change: 

 Similar to volume change analysis, for long term durability studies, the weight change 

 per cycle increased with the increase in sulfate concentration meaning, the sample with 

 the highest sulfate concentration exhibited highest weight change and the 

 control soil exhibited the least. For weight change analysis, the weight loss increased 

 with the increase in the sulfate concentration. 
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4. Leachate studies: 

 In leachate studies, calcium loss and cement loss were evaluated. The total calcium ion 

 leached out increase with the increase in sulfate concentration. Similarly, the total 

 cement loss also increased with the increase in sulfate concentration in the CLSM 

 sample. The analysis of these results showed that the increase in sulfate concentration 

 lead to binder loss upto 35% as exhibited by the EF-20000S sample. 

5.2 Conclusions of Testing 

  Based on the results obtained from the laboratory testing conducted on CLSM 

samples prepared using Eagle Ford soil with various sulfate concentrations and 18% cement as 

an additive, the following conclusions can be made: 

1. The strength of CLSM increases with the increase in sulfate concentration instead of 

decreasing for both short term strength tests and long term durability tests. Most studies 

indicated that presence of elevated levels of soluble sulfates in expansive soil is 

problematic and causes strength loss of treated soil over time. Literature shows that the 

use of recycled gypsum has helped in increasing the unconfined compressive strength 

of samples during durability studies (Kamei et al., 2011). 

2. During long term durability studies with alternate wetting-drying cycles, the UCS value 

decreased with the increase in durability cycles for all the 5 samples with different 

sulfate concentrations. However, the UCS value was the highest for the CLSM with the 

peak sulfate concentration (i.e. 20,000 ppm) for all the 0, 3 and 7 durability cycles 

represented in Table 4.10 in Chapter 4. This concludes that high concentration of 

soluble sulfates in CLSM mix does not cause short term strength reduction. However 

with seasonal wetting-drying cycles the deterioration in strength of the CLSM samples 

is very high. For most of the samples, by the end of 14 durability cycles, UCS value was 

close to zero as most of them collapsed before UCS test. Also it should be noted that 

the tests are conducted under harsh conditions in the laboratory when compared to the 
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field conditions. Hence it can be concluded that these results predict the worst case 

scenarios. 

3. When high plasticity, expansive soil such as the one from the Eagle Ford geological 

formation is used to prepare CLSM mix design, the test results showed that the 

increase in sulfate concentration in expansive soils also increases the volumetric 

change characteristics of the sample. 

4. When 18% Portland cement (Type I/II) was used as a chemical stabilizer in the 

expansive soil prepared CLSM mix design, the samples could not retain 50% or more of 

their original UCS after 14 w-d cycles.  This proves that using 18% by weight Portland 

Cement (TY I/II) as a binder material for CLSM prepared using Eagle Ford native soil is 

ineffective under harsh testing conditions as used in the laboratory which is not 

necessarily the field conditions. 

5. The leachate studies indicated that the increase in sulfate concentration in CLSM 

samples increased the calcium and cement loss during durability wetting-drying cycles. 

This increase in cement loss with the increase in sulfate concentration in CLSM 

samples could be the reason for the initial strength increase in the samples due to the 

lack of Ettringite formation in the sample. However, with the increase in durability 

cycles, it was observed that high sulfate concentration in CLSM mixes lead to binder 

loss upto 35% as exhibited by the EF sample with 20,000 ppm soluble sulfate. This 

clearly supports the loss of strength of these samples with durability w-d cycles.                                           
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5.3 Recommendations 

In order to enhance the knowledge and understanding of CLSM mixes with sulfate 

spiked expansive soils, and to develop a sustainable and long term durable CLSM mix design 

for civil engineering projects such as pipeline construction or utility bedding, the following 

recommendations are made: 

1. Studies with higher quantity of Portland cement (Type I/II) as a stabilizer for the Eagle 

Ford CLSM has to be conducted to establish an acceptable UCS value in order to use 

eagle Ford native soil CLSM for IPL project bedding or backfill purposes. An acceptable 

UCS value would be strength retention of 50% or more than the initial strength of the 

CLSM mix after durability cycles. 

2. It is recommended to conduct studies on Eagle Ford CLSM with other chemical 

stabilizing alternative besides Portland cement (Type I/II). Studies have shown that use 

of lime mellowing (Talluri, 2013) and Type V Cement (Puppala et al.,2004) have been 

used in stabilizing expansive soils with high soluble sulfate concentrations.  

3. It is recommended that further research studies be conducted on CL soil or lean clay 

such as that from Ozan formation in preparation of CLSM mixes. Ozan formation is one 

of the geological formations that falls under the IPL alignment and has elevated levels 

of soluble sulfate concentrations (Thomey, 2013). The study would help in 

understanding the effects of elevated levels of sulfates on CLSM from both fat and lean 

clay. 

4. It is recommended to perform chemical studies on tested CLSM samples to understand 

the formation of Ettringite in the CLSM samples or to understand the “increase in 

strength with increase in sulfate content” phenomenon exhibited by native expansive 

soil CLSMs.  
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APPENDIX A 
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Figure A Pipe Cross-Section using CLSM as bedding material (Boschert and Butler, 2013) 
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APPENDIX B 
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Figure B CLSM Mix Being Poured as Pipeline Bedding Material for IPL Project 
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