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ABSTRACT

HIGH ORDER NUMERICAL SCHEMES FOR PDES

AND APPLICATIONS TO CFD

HUANKUN FU, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Chaoqun Liu

In the past two decades, many efforts have been made in developing high-order

schemes with high resolution, such as compact scheme, essentially non-oscillatory

scheme (ENO), weighted essentially non-oscillatory scheme (WENO).

The present dissertation comprises the analysis and numerical testing of two

high order methods. The first one refers to the modification of pseudo spectral method

which can be used to partial differential equations(PDEs) with non-periodic boundary

conditions. The second one is in high order finite difference class and is the mixing

of weighted non-oscillatory scheme and compact scheme (MWCS) with using global

weights instead of local ones. Numerical tests are performed for one dimensional and

two dimensional cases and results are compared with some well-established numerical

schemes.
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CHAPTER 1

INTRODUCTION

It is desirable for a numerical scheme to attain high-order accuracy and high

resolution with limited computational resources. In the past few decades, many efforts

have been made in developing high-order schemes. Examples include the compact

difference schemes [1, 2, 3], essentially non-oscillatory (ENO) schemes [4, 5, 6], and

their weighted ENO scheme (WENO) [7, 8, 9], discontinuous Gelerkin (DG) methods

[10, 11, 12], pseudo-spectral method [13], spectral element (SE) methods [14], spectral

volume methods (SVM) [15, 16], spectral difference methods (SDM) [17, 18], low

dissipative high-order schemes [19], group velocity control schemes [20], and hybrid

schemes [21, 22], etc.

Physical processes usually have various different length scales. In the case of

flow transition and turbulence, for example, small length scales are of great interest

and very sensitive to any artificial numerical dissipation. The pseudo-spectral method

[13] and high order central compact scheme [1, 2] (Lele, 1992; Visbal, et al., 2002)

are non-dissipative and of high-order and high-resolution, and thus are appropriate

for the solution of flow transition and turbulence simulation. However, the pseudo-

spectral method is neither applicable when the boundary conditions are not periodic

nor when the shock is met, and the compact scheme is not feasible in many engineer-

ing applications such as shock-boundary layer interaction, shock-acoustic interaction,

image process, flow in porous media, multiphase flow and detonation wave, where

there is a presence of both different length scales and shocks or discontinuities.
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The first problem comes for the periodic boundary conditions of PDEs when us-

ing the pseudo-spectral method. It is well known that spectral methods are a class of

techniques used in applied mathematics and scientific computing to numerically solve

certain PDEs. The pseudo-Spectral Method which utilizes the efficient algorithm of

fast Fourier transform (FFT) to solve differential and pseudo-differential equations in

spatially periodic domains. It has emerged as a powerful computational technique for

the simulation of complex smooth physical phenomena, and its exponential conver-

gence rate depends on the smoothness and periodicity of the function in the domain

of interest. As is known, Fourier spectral method is a high order method and can be

used to resolve the small length scales, which is particularly important for simulation

of turbulence and acoustic problems because of its high resolution. Since its inception

in the early 1970’s, spectral methods have been extensively used to solve a lot of prob-

lems including turbulence. However, the classical pseudo-spectral method imposes a

restriction on boundary conditions which must be periodic. Such a restriction cannot

be applied to practical flows that usually have non-periodic boundary conditions. To

overcome this problem, people did a lot of work, for example, changing the basis

functions to be Chebyshev polynomials or other polynomials. In that way, one can

get Chebyshev spectral method and so on, refer to [23], but they have lower resolu-

tion than the original trigonometry polynomials. Also, windows can be used to treat

the boundary conditions, then the physical solution near the boundaries is obtained

by a regularized dewindowing operation, and meanwhile, on the inner domain, the

unmodified equations are solved, refer to [24]. There are other works which also deal

with parts of the problems, like [25] through [26].

As is known, even though the function value itself (not derivative) is periodic

on the boundary, the classical pseudo-spectral method may still not work. Therefore,

modifying the function and making some orders of derivatives of the function to be
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periodic on the boundary is very important, then this method can be used to solve

PDEs with non-periodic boundary conditions with smooth solutions, which will lead

to a successful expanding usage of pseudo-spectral methods. While, if the shock

is met, pseudo-spectral is not applicable even when the boundary conditions are

periodic, making further research is necessary. However, some compromises can still

be made, which leads to another topic of this paper.

The shock can be considered as a discontinuity or a mathematical singularity. In

fact, there is no classical unique solution and the derivatives are not bounded. In the

near-shock region, continuity and differentiability of the governing Euler equations

are lost and only the weak solution can be obtained. In fluid dynamics, it is possible

to have a shock solution when considering, for instance, the supersonic regime of the

Euler equations, which are hyperbolic. Hyperbolic systems can be solved taking ad-

vantage of the characteristic lines and Riemann invariants. The physics of the shock

indicate that the derivative across the shock is not finite, and that the downstream

region cannot influence the upstream one. In the framework of finite differences it

makes no sense to use, for instance, a high order compact scheme, which takes all

grid points on both sides of a shock into account for the numerical approximation

of the derivatives. Apparently, the upwind strategies are more suitable than com-

pact schemes in dealing with shocks, and indeed history has shown a great success of

upwind technologies applied to hyperbolic systems. Among upwind or bias upwind

schemes that are capable to capture a shock sharply, there are Godunov [27], Roe

[28], MUSCL [29], TVD [35], ENO [4, 5, 6] and WENO [7, 8]. All mentioned schemes

above are based on upwinding or biased upwinding technology and are well suited for

hyperbolic systems. On the other hand, upwinding strategies are not desirable for

solving Navier-Stokes systems, which present a parabolic behavior, and are very sensi-
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tive to any numerical dissipation especially when tackling the problem of transitional

and turbulent flow, where small length scales are important.

Efforts have been made in developing high-order numerical schemes with high

resolution for small length scales and capability of sharply capturing the shock or dis-

continuity without generating visible numerical oscillations. A combination of WENO

and standard central scheme is proposed in references [30, 31]. Additionally, a combi-

nation of WENO and upwinding compact scheme (UCS) is proposed by reference [33],

but the mixing function is still complex and has a number of case related adjustable

coefficients, which is not convenient to use.

A weighted compact scheme (WCS) is developed by reference [32]. WCS is

based on the WENO [7] weighting method for evaluating several stencil candidates.

However, the building block for each candidate is a Lagrange polynomial in WENO,

but is a Hermite in WCS aiming to obtain higher order of accuracy with the same sten-

cil width. In shock regions, the WCS controls the contributions of different candidate

stencils to minimize the influence of candidates containing a shock or discontinuity.

On the other hand, in regions with smooth solution, WCS recovers the standard

compact scheme [1] to achieve high accuracy and high resolution. Numerical tests

reveal that the original WCS works well in some cases such as Burgers’ equation,

but is not suitable for solving the Euler equations with shocks. However, the usage

of derivatives calculated by compact schemes results in global dependency which is

not allowed for shocks. WCS minimizes the influence of a shock-containing candidate

stencil by assigning a smaller weight, but still uses all of the candidates, resulting in

global dependency.

This dissertation mainly focuses on two kinds of numerical schemes. For the

first one, it mainly focuses on modifying the classical Fourier spectral method to get

the accurate derivative of a function which is not periodic on boundary. Instead

4



of using the classical Fourier spectral method directly for the problems immediate-

ly, it is necessary, by professor Chaoqun Liu’s idea, to first modify and extend the

original function to get a new extended function (which is probably very different

from the origin function), for which classical Fourier spectral method can be easily

used. After getting the derivatives of the new function, it is now easy to recover

the derivative of the original function. For another one, it is necessary to overcome

the drawback of the WCS, hence local dependency has to be achieved in shock areas

while recovering global dependency in smooth regions. This fundamental idea leads

naturally to the combination of compact and non-compact schemes, that is, to the

mixed weighted compact and non-compact scheme (MWCS). The proposed scheme

is to add WENO schemes to WCS so that the oscillations, which can be produced by

global dependency, can be obviously prevented. Moreover, one important change is

that the commonly used WENO weights and WCS weights are relocated outside the

subroutine for derivatives, which was first stated by professor Chaoqun Liu, and only

the weights calculated for pressure and density are used for all parameters. In such a

case, the scheme is no longer a black box, the cost is reduced considerably, and the

oscillations are further reduced due to the consistency of weights for all variables.

The structure of this dissertation is as follows, in Chapter 2, buffered Fourier

spectral method will be introduced; In Chapter 3, details about modified weighted

compact scheme will be discussed, and Chapter 4 includes conclusion for this disser-

tation.
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CHAPTER 2

BUFFERED FOURIER SPECTRAL METHOD

2.1 Pseudo-spectral Method (PSM)

2.1.1 Fourier Interpolation

For a periodic sequence {xn = 2πn/N, n = 0, 1, · · · , N}, the function f(x) can

be approximated by the following Fourier interpolation as

INf =
∑N/2

k=−N/2

f̃k
c̄k
eikx, (2.1)

here, c̄k =

 1, k = −N/2 + 1, ..., N/2− 1;

2, k = ±N/2,
and f̃k = 1

N

∑N−1
j=0 fje

−ikxj , k = −N/2,

..., N/2.

2.1.2 Discrete Fourier Transform (DFT)

For a sequence {f(xi)}, i = 0, 1, · · · , N − 1, the discrete Fourier transform

(DFT) is defined as

f̃k =
1

N

∑N−1

j=0
f(xj)e

−2πijk/N , k = −N/2, ..., N/2− 1. (2.2)

The inverse transform is

f(xj) =
∑N/2−1

k=−N/2
f̃ke

2πijk/N , j = 0, 1, ..., N − 1. (2.3)

2.1.3 PSM for Derivatives

Traditional Fourier spectral method for derivatives is based on the Fourier in-

terpolation and use DFT/FFT to get coefficients of the DFT and then the original

6



function derivatives. The original function is approximated by 2.1, and hence the

derivative is

f ′ = (INf)
′ =
∑N/2

k=−N/2

f̃k
c̄k
(ik)eikx. (2.4)

Therefore, if we want to get f ′, we first use FFT to get the coefficients of DFT of f ,

and then multiply each of them with the corresponding number ik. After we perform

the inverse DFT by FFT, the derivative is available.

2.2 Buffered Fourier Spectral Method (BFSM)

2.2.1 Introduction

The periodic boundary condition is necessary when applying standard Fouri-

er spectral method, which is too restrictive. Even for a simple function like y =

x2, (−1 ≤ x ≤ 1), with periodic boundary values but non-periodic boundary deriva-

tives, results a disaster. However, most practical engineering problems have non-

periodic boundary conditions. Therefore, it is very important to modify the Fourier

spectral method so that it can be adopted for problems with non-periodic boundary

conditions. This is the major purpose of the current part. This modified Fourier

spectral method, called buffered Fourier spectral method or briefly BFSM, can be

described by two steps: 1. normalization(by Huankun Fu); 2. smooth buffer exten-

sion(by Dr. Liu).

2.2.2 Smooth Buffer Extension

2.2.2.1 Problems with standard PST

Take a look at a simple example(Figure 2.1(a)), y = x2, (−1 ≤ x ≤ 1), to

illustrate how to develop a smooth buffer extension. This simple function can be

artificially extended as a periodic function with T = 2 as shown in Figure 2.1(b) which

7



uses Fourier transform. However, it is not difficult to find that the derivatives on the

boundaries, i.e., at x = −1 and 1, the derivatives do not exist. If the traditional

FFT is used to calculate the derivatives, it will present serious oscillations (Gibbs

Phenomenon) (Figure 2.1(c)), but the exact derivative is y′ = 2x (Figure 2.1(d)).

 

(a) (b)

(c) (d)

Figure 2.1. Sample figures (a) graphic for y = x2, x ∈ [−1, 1]; (b) extended periodic
function; (c) traditional FFT results for y′; (d) exact results for y′.
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2.2.2.2 Extended smooth buffer functions

In order to solve the above problem (Gibbs phenomena), first split the original

function with gaps (Figure 2.2(a)). Next use a smooth polynomial to fill the gaps as

a buffer zone (Figure 2.2(b)). Note that the function is periodic and it is possible to

use 8 points, 4 points from left end and 4 points from right end to construct the buffer

polynomial. Assume a and b are the left and right ends of the domain of interest, one

can have the following 8 points to construct the buffer polynomial (Figure 2.2(c)):

f(b−3∆x), f(b−2∆x), f(b−∆x), f(b) and f(a), f(a+∆x), f(a+2∆x), f(a+3∆x),

hence, f(b+δ) = f(a), f(b+δ+∆x) = f(a+∆x), f(b+δ+2∆x) = f(a+2∆x), f(b+

δ+3∆x) = f(a+3∆x), according to the periodic boundary condition. Here, δ is the

length of the buffer zone. The buffer polynomial then can be written as

P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,

where, a0 − a7 can be determined by the given 8 points. Apparently, the buffer

polynomial is determined by left and right ending 8 points and the length of δ which

determines the number of buffer points. Here we use δ = 25% ∗ (b − a). Actually,

one obtains a new function as shown in Figure 2.2(d), which is periodic both value

and 1st to 7th order derivatives. The extended function with buffer is very easy for

applying FFT to find the interpolation and the derivatives.
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(a) (b)

(c) (d)

Figure 2.2. Buffer procedure (a) split periodic function; (b) buffered periodic function;
(c) buffer polynomial construction; (d) new extended function.

The idea to construct an extended periodic function with high order polyno-

mial as a buffer zone is the key of this BFSM method. Of course, the cost will be

increased by 25% and the derivative obtained in buffer zone is non-physical and will

be abandoned. However, the resolution will be much higher in comparison with reg-
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ular finite difference for derivatives. Note here that the penalty of 25% is reasonable

and meets the needs of most of the problems, and the using of 4 points at each end of

the domain just keeps high order of accuracy, but these numbers can vary according

to one’s needs and the optimization could be case-related. However, the penalty of

25% is reasonable.

In the case that a function is not periodic with boundary values, serious oscilla-

tions (Gibbs phenomena) may still exist with the derivativ even we use the buffered

domain and apply FFT, and the results is not acceptable. Therefore, we still need

to do some recoverable modification of the boundary conditions first, that is called

“normalization”.

2.2.2.3 Normalization of the original function

In order to normalize the original function, we first shift the function up so that

the values at the two ends of the function are positive. Note that shifting up has no

affect on the derivative of the original function, since (f + c)′ = f ′. Second, we divide

the function by a linear function g(x), which links the two end points of the new

function by a straight line, i.e., F (x) = (f(x) + c)/g(x). Here, we use linear function

because it is easy to be constructed and the derivative of a linear function is simple.

By this procedure, the new function will be periodic with the function values on the

boundary. The last step is to add a buffer domain (see section 2.2.2.2) to make the two

ends of the function periodic not only the function boundary values but also the first,

second, or even higher order derivatives. After doing all of these, we can use standard

Fourier spectral method to get the derivative for the new extended function F (x),

which is periodic with function, first, second, and higher order derivatives. Then we

can cut the added buffer part, and recover the derivative of the original function.

11



For FFT, we have to set up grids with point number to be 2N and we use 1/4

points of the whole number as the buffer. For example, if we set the number of all

points to be 65 (with the right end point of the domain), the physical domain [a, b]

occupies 48 points, and the number of buffer points is 16. One can change this if

necessary. Note that the second step, normalization, is also important since the large

difference between two end point values will cause serious oscillations which are not

acceptable, and it cannot be removed even more points are used to do the periodic

interpolation.

The following is an example to introduce our method. The function we choose

here is f(x) = x3, x ∈ [−1, 1], which has large difference between two end points.

Figure 2.3. Example function f(x) = x3.
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(a) (b)

(c) (d)

Figure 2.4. Example of steps (a) up-moved function f(x) + c; (b) linear function
g(x); (c) normalized function F (x) = (f(x) + c)/g(x); (d) extended function with a
polynomial buffer zone.

2.2.2.4 The chart of BFSM

The whole procedure can be described by the following chart:
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Figure 2.5. The sketch of buffered Fourier spectral method (BFSM).

2.3 Computational Results by BFSM

2.3.1 Numerical Derivative

2.3.1.1 Basic point of view on the new scheme development

Let us take an example, the 3-D time dependent Navier-Stokes equations in a

general curvilinear coordinate can be written as

1

J

∂Q

∂t
+

∂ (E − Ev)

∂ξ
+

∂ (F − Fv)

∂η
+

∂ (F − Fv)

∂ζ
= 0, (4.1)

For 1-D conservation law, it will be

∂Q

∂t
+

∂E

∂ξ
= 0. (4.2)

The critical issue for high order CFD is to find an accurate approximation of

derivatives for a given discrete data set. The computer does not know any physical

process but accepts a discrete data set as the input. The output is derivatives which

are also a discrete data set. Therefore, it is critical to develop a high order scheme to

achieve accurate derivative for a discrete data set.
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2.3.1.2 BFSM for numerical derivatives

The numerical derivatives approximated by BFSM are very accurate (see Fig-

ures 2.6-2.11). Following are several non-periodic functions we tested. One can see

that the main error only appears on the boundary points, which are caused by the

Lagrange interpolation of the function at the buffer points. However, they are locat-

ed outside the domain [a, b]. And we can see these errors do not propagate into the

domain [a, b].

(a) (b)

Figure 2.6. f(x) = x, x ∈ [−1, 1] (a) distribution of derivative of the function; (b)
error by using BFSM.
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(a) (b)

Figure 2.7. f(x) = x2, x ∈ [−1, 1] (a) distribution of derivative of the function; (b)
error by using BFSM.

(a) (b)

Figure 2.8. f(x) = x3, x ∈ [−1, 1] (a) distribution of derivative of the function; (b)
error by using BFSM.
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(a) (b)

Figure 2.9. f(x) = sin(10x), x ∈ [0, 1] (a) distribution of derivative of the function;
(b) error by using BFSM.

(a) (b)

Figure 2.10. f(x) = 1
30
sin(30x), x ∈ [0, 1] (a) distribution of derivative of the function;

(b) error by using BFSM.
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(a) (b)

Figure 2.11. f(x) = ex
2
+ x3 + tan(x), x ∈ [−1, 1] (a) distribution of derivative of the

function; (b) error by using BFSM.

2.3.1.3 Comparison between our BFSM and the standard spectral method

The following figures give us a picture that accurate derivatives can be obtained

by applying our new method for those functions which are non-periodic (see Figures

2.12 and Figures 2.14 - 2.15). For standard Fourier spectral method, the approxima-

tion of derivatives contains a lot of oscillations, even for the function which is periodic

on the boundary, such as f(x) = x2, x ∈ [−1, 1] (see Figure 2.12). For the functions

which are non-periodic on the boundary, the standard Fourier spectral approximation

of the derivatives are very oscillatory and cannot be accepted (see Figure 2.15). Note

that our comparisons use different grids here for two different methods because for

our new scheme we discard 25% of 64 points, but we do not need to cut 25% for the

standard method. Since the grids used for standard Fourier spectral method is finer,

the comparison is acceptable.
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(a) (b)

Figure 2.12. Comparison between two methods for derivatives of f(x) = x, x ∈ [−1, 1]
(a) BFSM; (b) standard spectral method.

(a) (b)

Figure 2.13. Comparison between two methods for derivatives of f(x) = x2, x ∈
[−1, 1] (a) BFSM; (b) standard spectral method.
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(a) (b)

Figure 2.14. Comparison between two methods for derivatives of f(x) = x3, x ∈
[−1, 1] (a) BFSM; (b) standard spectral method.

(a) (b)

Figure 2.15. Comparison between two methods for derivatives of f(x) = sin(8x), x ∈
[0, 1] (a) BFSM; (b) standard spectral method.
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2.3.1.4 Comparison between BFSM and the 2nd order central difference method

In the following figures, we compare our new method with the central finite

difference scheme. We try to approximate the derivative of f(x) = sin(8x)/8, x ∈

[0, 6] and f(x) = sin(20x)/20, x ∈ [0, 6]. These are high frequency waves and we

want to compare the capability for high resolution between BFSM and the central

finite difference method. From Figure 2.16, we see that the central difference does

not work well and has visible large errors even for f(x) = sin(8x)/8, x ∈ [0, 6], but

Buffered Fourier Spectral Method works very well except for the boundary points

due to the artificial interpolation polynomial. For the higher frequency function

f(x) = sin(20x)/20, x ∈ [0, 6], the central difference loses accuracy and the results

are completely unacceptable, but our new method works very well. From these two

graphs, we see that although we use only 48 points in [0, 6], our results are nearly

the same as the exact solution (the blue one and the black one overlap each other),

which means our new method has high order accuracy and high resolution. But

the results approximated by central difference are not acceptable and even worse for

higher frequencies (Figure 2.17). This clearly shows that BFSM has much higher

resolution than standard central finite difference schemes.
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Figure 2.16. Comparison between BFSM and central difference for derivatives, N =
48, f(x) = sin(8x)/8, x ∈ [0, 6].

Figure 2.17. Comparison between BFSM and central difference for derivatives, N =
48, f(x) = sin(20x)/20, x ∈ [0, 6].
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2.3.2 Wave Equation

For a wave equation ut + cux = 0, u(0, x) = f(x), we solve the equation un-

der different initial boundary conditions and different grids. The exact solution is

u(t, x) = f(x − ct). In addition, we perform comparisons between our new method

and second order central difference scheme. For time marching, both methods use

the 4-th order Runge-Kutta method and both central and BFSM methods are con-

ditionally stable. We use a Courant number 0.5 for all following calculations. One

should note that all boundary conditions are not periodic here. Figures 2.18 - 2.21

give us a picture that our method is of fourth order, which is determined by the

interpolation on the boundary. And these figures also show us that the Buffered

Fourier Spectral Method can obtain high resolution. By the comparisons in Figure

2.19 and Figure 2.20, one can easily see that the 2nd-order central difference results

are just simply not acceptable after some time steps, but our new method still works

very well. For the initial boundary condition f(x) = sin(20x), x ∈ [0, 6], our new

method still can resolve the high frequency waves and obtain nearly same results as

the exact solution. On the other hand, the second order central difference scheme can

work for the initial boundary condition of f(x) = sin(x), x ∈ [0, 1] with large errors,

but completely fail for the initial boundary conditions of f(x) = sin(8x), x ∈ [0, 6]

and f(x) = sin(20x), x ∈ [0, 6]. We also tested up-winding schemes (1st order) for the

boundary condition f(x) = sin(8x), x ∈ [0, 6], the results of which are not acceptable.

a). Initial condition: f(x) = sin(x), x ∈ [0, 1], N = 96.
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(a) (b)

(c) (d)

(e)

Figure 2.18. Solution of wave equation with initial condition f(x) = sin(x), x ∈ [0, 1],
N = 96 (a) exact solution; (b) BFSM; (c) central difference; (d) distribution of u at
t = 50 by BFSM; (e) error contour by BFSM.
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b). Initial condition: f(x) = sin(8x), x ∈ [0, 6], N = 48.

(a) (b)

(c) (d)

(e) (f)

Figure 2.19. Solution of wave equation with initial condition f(x) = sin(8x), x ∈
[0, 6], N = 48 (a) exact solution; (b) BFSM; (c) central difference; (d) 1st order
upwinding; (e) distribution of u at t = 50 by BFSM; (f) error contour by BFSM.
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c). Initial condition: f(x) = sin(8x), x ∈ [0, 6], N = 96.

(a) (b)

(c) (d)

(e) (f)

Figure 2.20. Solution of wave equation with initial condition f(x) = sin(8x), x ∈
[0, 6], N = 96 (a) exact solution; (b) BFSM; (c) central difference; (d) 1st order
upwinding; (e) distribution of u at t = 100 by BFSM; (f) error contour by BFSM.
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d). Initial condition: f(x) = sin(20x), x ∈ [0, 6], N = 96.

(a) (b)

Figure 2.21. Solution of wave equation with initial condition f(x) = sin(20x), x ∈
[0, 6], N = 96 (a) exact solution; (b) BFSM.

2.3.3 Poisson’s Equation

2.3.3.1 Governing equations

Poisson’s equation is of elliptic type with broad utility in electrostatics, mechan-

ical engineering and theoretical physics, and it is commonly used to model diffusion.

The definition of Poisson’s equation is as following,

∆ϕ = f,

where ∆ is the Laplace operator, and ϕ and f are real or complex functions.

In three-dimensional Cartesian coordinates, it takes the form

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+)ϕ(x, y, z) = f(x, y, z).

For f = 0, the equation reduces to Laplace’s equation.
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2.3.3.2 Numerical results

We now use our new method for Poisson’s equation with non-periodic boundary

conditions. The problem is defined as following,
∆u = 0, (x, y) ∈ [0, 1]× [0, 1];

u(x, 0) = ex sin(x); u(0, y) = e−y sin(y);

u(1, y) = e1−y sin(1 + y); u(x, 1) = ex−1 sin(x+ 1).

The exact solution is u(x, y) = ex−ysin(x + y), (x, y) ∈ [0, 1] × [0, 1]. We solve the

equation by using following equation for iteration,

ut+1 = ut +∆t(uxx + uyy).

The convergence tolerance was set to be |ut+1−ut| ≤ 10−12, and we use 6 points

at each end of the boundary to do the interpolation.

The following figures are our results.
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(a) (b)

(c) (d)

Figure 2.22. Solution and error contour, grids: 96×96 (a) 2D solution contour; (b) 3D
solution contour; (c) error contour by BFSM; (d) error contour by 2nd order central
difference.
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(a) (b)

(c) (d)

Figure 2.23. Solution and error contour, grids: 192 × 192 (a) 2D solution contour;
(b) 3D solution contour; (c) error contour by BFSM; (d) error contour by 2nd order
central difference.
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Table 2.1. Maximum error comparison

GRids BFSM 2nd-order central difference
96× 96 3.5847E − 6 4.8255E − 6
192× 192 1.1874E − 7 1.1971E − 6

From the above table, we can see the order of accuracy for BFSM is 5, which

is partially determined by the boundary treatment. However, the 2nd order central

difference has only order 2 of accuracy. From those Figures, we can get a picture

that for BFSM, the largest error primarily appears on the boundary, and is related

to the function value differences between two end points, while the error for central

difference occupies most of the middle area. From the error figures, we can see that

near the bottom of the left and right sides, the errors are larger than other area.

This is because the differences of function (or solution) values between those two end

points in the x direction is large. However, near both top and bottom sides, the

errors are not large since the differences between these two end points in y direction

are smaller. In the interior area, the BFSM solution is very accurate, almost same

as the exact solution. In general, we say that the large errors happen only near the

boundary which is caused by the manually extending the function and doing the

polynomial interpolation. However, this is acceptable because of the non-periodicity

of the function.

2.3.4 2D Lid Driven Cavity Flow

2.3.4.1 Governing equations

For 2-D lid driven cavity flow, the system in stream function and vorticity

function is
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

∂2Ψ

∂x2
+

∂2Ψ

∂y2
= −ω;

1

Re
(
∂2ω

∂x2
+

∂2ω

∂y2
) =

∂Ψ

∂y

∂ω

∂x
− ∂Ψ

∂x

∂ω

∂y

= u
∂ω

∂x
+ v

∂ω

∂y
,

where u(x, y) =
∂Ψ

∂y
, v(x, y) = −∂Ψ

∂x
, ω =

∂v

∂x
− ∂u

∂y
. In our computation, the domain

is chosen as [0, 1] × [0, 1], and the boundary conditions are u = 0 on the wall and

bottom except on the lid at the top, and v = 0 for all boundaries. The Reynolds

number Re here we choose as 100 and 400, respectively. To use our numerical scheme,

we modify the equations to be the following time related equations,

∂Ψ

∂t
=

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+ ω;

∂ω

∂t
=

1

Re
(
∂2ω

∂x2
+

∂2ω

∂y2
)− ∂Ψ

∂y

∂ω

∂x
+

∂Ψ

∂x

∂ω

∂y

=
1

Re
(
∂2ω

∂x2
+

∂2ω

∂y2
)− u

∂ω

∂x
− v

∂ω

∂y
,

and then apply forth order Runge-Kutta time marching method to get the results.

2.3.4.2 Numerical results

Numerical results are calculated under two different Reynolds numbers, 100 and

400, respectively. And both of the calculations use the grids 47× 47.

(1). Re = 100, grids: 47× 47.
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(a)

 

(b)

 

(c)

Figure 2.24. Solution with Re = 100 (a) stream contour and stream line; (b) u
distribution at x = 0.5; (c) v distribution at y = 0.5.
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Table 2.2. Properties of the center of primary vortex, Re = 100.

Primary votex Our results (47× 47) Ghia (129× 129)
center (0.619565,0.728261) (0.6172,0.7344)
ω 3.16872 3.16646
Ψ -0.103491 -0.103423

(2). Re = 400, grids: 47× 47.

 

(a)

 

(b)

 

(c)

Figure 2.25. Solution with Re = 400 (a) stream contour and stream line; (b) u
distribution at x=0.5; (c) v distribution at y = 0.5.
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Table 2.3. Properties of the center of primary vortex, Re = 400

Primary votex Our results (47× 47) Ghia (257× 257)
center (0.554348,0.597826) (0.5547,0.6055)
ω 2.33164 2.29469
Ψ -0.111896 -0.113909

2.4 Concluding Remarks

1. Using smooth buffer and normalization, the non-periodic smooth function

can be extended to a periodic function which is smooth in functions and derivatives,

and therefore the standard Fourier spectral method can be used to such a new buffered

function.

2. The Buffered Fourier Spectral Method (BFSM) can get very accurate nu-

merical derivatives for non-periodic functions. Large errors only happen near the

boundary because of the non-periodicity of the function or solution and polynomial

interpolation.

3. The Buffered Fourier Spectral Method keeps high resolution and high order

accuracy for smooth PDEs, and the order of accuracy is determined by the interpo-

lation on the boundary. Non-smooth PDEs are still open for further research.

4. With some penalty over the standard FSM method, BFSM still keeps high

order of accuracy and high resolution for non-periodic PDEs.
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CHAPTER 3

MODIFIED WEIGHTED COMPACT SCHEME

Although BFSM can be applied to solve PDEs with non-periodic boundary

condition, for shocks or large gradient, it is not feasible, this comes this chapter,

Modified Weighted Compact Scheme.

3.1 Numerical Formula

The MWCS combines the WENO scheme and WCS where the mixing function

relies on the weights of WCS. In the present section, a description of the three high

order schemes is provided. To get started, we need to review some basic notations

about Flux and Derivatives.

3.1.1 Flux and Derivative

To review the different schemes starting from a common framework, it is con-

venient to consider the scalar conservation equation in the one-dimensional case,

qt(x, t) + Fx(u(x, t)) = 0. (3.1)

Discretizing the domain, we define a grid (cell interfaces) as

a = x1/2 < x3/2 < ... < xN−1/2 < xN+1/2 = b. (3.2)

The cell center and cell sizes are defined by

xj ≡
1

2

(
xj−1/2 + xj+1/2

)
, hj ≡ xj+1/2 − xj−1/2, j = 1, 2, ..., N.

The grid described above is shown in Figure 3.1, where the dots denote cell

centers, and triangles denote the cell interfaces (3.2).
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Figure 3.1. Grid for the one-dimensional case.

A semi-discrete conservative form of (3.1) reads as

d qj
d t

= − 1

hj

(
F̂j+1/2 − F̂j−1/2

)
, (3.3)

where F̂ is the numerical flux associated to the original function F , defined implicitly

by Fj = F (q(xj, t)) ≡
∫ xj+1/2

xj−1/2
F̂ (ξ)dξ. With the given implicit definition of the

numerical flux F̂ , equation (3.3) constitutes as an exact expression of (3.1).

We denote H as the primitive function of F̂ξ, which can be calculated by

Hj+1/2 = H(xj+1/2) =

∫ xj+1/2

−∞
F̂ (ξ)dξ =

j∑
i=−∞

∫ xj+1/2

xj−1/2

F̂ (ξ)dξ =

j∑
I=−∞

Fihi. (3.4)

So the primitive function H is calculated from the discrete data set of the original

function F . Note that the derivative of the primitive function at the cell interfaces

coincides with the numerical flux, i.e.,

H ′
j+1/2 = F̂j+1/2.

It is clear that

Fx(xj) = F ′
j =

F̂j+1/2 − F̂j−1/2

hj

=
H ′

j+1/2 −H ′
j−1/2

hj

. (3.5)

In the described procedure F → H → F̂ → F ′ which is introduced by [4],

the only approximation involved is the calculation of the derivative of the primitive

function H ′, whereas all other calculations are exact. The intermediate step through

the primitive function H is of crucial importance for the WENO and WCS schemes

which is reviewed in the next a few paragraphs.
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3.1.2 The 5th Order Weighted Essentially Non-Oscillatory (WENO) Scheme

For integrity, the 5th order WENO will be described as following. Considering

the one dimensional hyperbolic equation

∂u

∂t
+

∂F (u)

∂x
= 0. (3.6)

The semi-discretized equation by the conservative scheme can be expressed as

(
∂u

∂t
)j = −

Hj+1/2 −Hj−1/2

∆x
, (3.7)

where Hj+1/2 = H
(
Fj+1/2

)
and for second order scheme, Hj+1/2 = Fj+1/2.

The basic ideas of the weighted schemes like WENO are as follows,

(1). Apply basic grid stencils and difference schemes on them;

(2). Combine these schemes on different stencils and get linear weights to obtain

higher order;

(3). Obtain nonlinear weights to make the scheme adaptive to discontinuity like shock

waves.

Figure 3.2 shows the basic grid stencils for standard 5th order WENO scheme.
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Figure 3.2. Grid for the one-dimensional case.

i.e.,

E0 = {xj−2, xj−1, xj}, E0 = {xj−1, xj, xj+1}, E0 = {xj, xj+1, xj+2}. (3.8)
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Considering the positive flux, the three upwind-biased schemes on three candi-

dates E0, E1 and E2 can be given as

E0 : F̂
(E0)
j+1/2 ≈ 1

3
Fj−2 −

7

6
Fj−1 +

11

6
Fj;

E1 : F̂
(E1)
j+1/2 ≈ −1

6
Fj−1 +

5

6
Fj +

1

3
Fj+1;

E2 : F̂
(E2)
j+1/2 ≈ 1

3
Fj +

5

6
Fj+1 −

1

6
Fj+2.

If we take the weighted average of the three low-order approximations above, with

the constant optimal weights

C0 =
1

10
, C1 =

6

10
, C2 =

3

10
, (3.9)

then we obtain

F̂j+1/2 ≈
2∑

i=0

CiF̂
(Ei)
j+1/2 =

1

30
Fj−2 −

13

60
Fj−1 +

47

60
Fj +

9

20
Fj+1 −

1

20
Fj+2.

Note that the constant weights in (3.9) sum up to 1 for consistency, i.e.,
2∑

i=0

Ci = 1. After the expression of the approximation for F̂j−1/2 = F̂(j−1)+1/2 is ob-

tained in analogous fashion as above, we can calculate the discrete approximation to

the derivative of the original function as (see the semi-discrete equation (3.7))

F ′
j =

F̂j+1/2 − F̂j−1/2

hj

≈
− 1

30
Fj−3 +

1

4
Fj−2 − Fj−1 +

1

3
Fj +

1

2
Fj+1 −

1

20
Fj+2

hj

.

(3.10)

It is easy to verify by a Taylor series expansion that equation (3.10) is a 5th

order approximation to the discrete derivative F ′
j(see reference [58]).
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Instead of using the constant weights (3.9), the WENO scheme [8] adaptively

selects the weights in relation to the “smoothness” of the stencils. The non-linear

weights are introduced as

ωi,j±1/2 =
γi,j±1/2

2∑
k=0

γk,j±1/2

, γi,j±1/2 =
Ci

(ε+ ISi,j±1/2)
p , i = 0, 1, 2, (3.11)

where ε is a small parameter which prevents the division by zero, p is an integer

(set equal to 2 in [8]), Cj are those given in (3.9), and ISi,j±1/2 are the “smooth-

ness” indicators given in [8]. In general, ISi,j−1/2 ̸= ISi,j+1/2, implying that also

ωi,j−1/2 ̸= ωi,j+1/2. Note that the non-linear weights need to satisfy
2∑

k=0

ωk,j±1/2 = 1

for consistency of the scheme. Using the non-linear weights (3.11) for the combination

if the candidates, the final form of the WENO scheme reads as

F ′
j =

F̂j+1/2 − F̂j−1/2

hj

≈
[
−1

3
ω0,j−1/2Fj−3 +

(
7

6
ω0,j−1/2 +

1

3
ω0,j+1/2 +

1

6
ω1,j−1/2

)
Fj−2

+

(
−11

6
ω0,j−1/2 −

7

6
ω0,j+1/2 −

5

6
ω1,j−1/2 −

1

6
ω1,j+1/2 −

1

3
ω2,j−1/2

)
Fj−1

+

(
11

6
ω0,j+1/2 −

1

3
ω1,j−1/2 +

5

6
ω1,j+1/2 −

5

6
ω2,j−1/2 +

1

3
ω2,j+1/2

)
Fj

+

(
1

3
ω1,j+1/2 +

1

6
ω2,j−1/2

5

6
ω2,j+1/2

)
Fj+1 −

1

6
ω2,j+1/2Fj+2

]
1

hj

.

From a computational point of view, the WENO scheme produces a diagonal

matrix of size N + 1, where the j-th row contains the (j − 1/2)-th numerical flux

F̂j−1/2. The final value of the derivative F ′
j is then obtained using Equation (2.5).

Following this idea, we can derive the following weighted compact scheme.
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3.1.3 The Weighted Compact Scheme (WCS)

The basic idea of WCS [32] is to take a weighted average (convex combination)

of two third-order and one fourth-order approximations of the numerical flux F̂j+1/2 =

H ′
j+1/2, each approximation involving the primitive function H and its derivative H ′.

Similar to the WENO scheme, three candidate stencils of WCS are defined as

E0 : F̂
(E0)
j+1/2 ≈ 1

3
Fj−2 −

7

6
Fj−1 +

11

6
Fj;

E1 : F̂
(E1)
j+1/2 ≈ −1

6
Fj−1 +

5

6
Fj +

1

3
Fj+1;

E2 : F̂
(E2)
j+1/2 ≈ 1

3
Fj +

5

6
Fj+1 −

1

6
Fj+2.

The approximations for the numerical flux H ′
j+1/2 = F̂j+1/2 are obtained making

use of compact schemes [1] for the three stencils E0 and E1 and E2 respectively, as

E0 : 2H ′
j−1/2 +H ′

j+1/2 ≈
(
−1

2
Hj−3/2 − 2Hj−1/2 +

5

2
Hj+1/2

)
1

hj

;

E1 :
1

4
H ′

j−1/2 +H ′
j+1/2 +

1

4
H ′

j+3/2 ≈
3(Hj+3/2 −Hj−1/2)

4hj

;

E2 : H ′
j+1/2 + 2H ′

j+3/2 ≈
(
−5

2
Hj+1/2 + 2Hj+3/2 +

1

2
Hj+5/2

)
1

hj

.

(3.12)

By a Taylor expansion of Equation (3.12), it can be verified that the candidates and

give a third-order approximation of H ′
j+1/2, while the candidate E1 is of fourth-order

accuracy [58]. Similar to WENO, if the following constant weights are chosen,

C0 =
1

18
, C1 =

8

9
, C2 =

1

18
, (3.13)

the weighted average of the three candidate approximations in (3.12) gives the fol-

lowing approximation for H ′
j+1/2,

1

3
H ′

j−1/2 +H ′
j+1/2 +

1

3
H ′

j+3/2

≈
(
− 1

36
Hj−3/2 −

7

9
Hj−1/2 +

7

9
Hj+3/2 +

1

36
Hj+5/2

)
1

hj

.

(3.14)
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By using equations (3.4 and 3.5), it can be easily shown [58] that equation

(3.14) recovers exactly the standard sixth order compact scheme [1]. An analogous

procedure leads to the expression for H ′
j−1/2 = F̂j−1/2. Instead of the constant weights

(3.13), we use the non-linear weights form (3.11) setting the parameter p = 1, and

apply (3.5) to obtain the expression for the final form of the WCS scheme, which

reads as

−[3(ω0,j−1/2 − ω0,j+1/2) +
3

2
(ω1,j−1/2 − ω1,j+1/2) + 3(ω2,j−1/2 − ω2,j+1/2)]

H ′
j+1/2

hj

+

(
2ω0,j−1/2 +

1
4
ω1,j−1/2

)
F ′

j−1 +

(
3ω0,j−1/2 +

5

4
ω1,j−1/2 + ω2,j−1/2 − 2ω0,j+1/2

−1

4
ω1,j+1/2

)
F ′

j +

(
1

4
ω1,j+1/2 + 2ω2,j+1/2

)
F ′

j+1 ≈[
−1

2
ω0,j−1/2Fj−2 +

(
−5

2
ω0,j−1/2 −

3

4
ω1,j−1/2 +

1

2
ω0,j+1/2

)
Fj−1+(

−3

4
ω1,j−1/2 −

5

2
ω2,j−1/2 +

5

2
ω0,j+1/2 +

3

4
ω1,j+1/2

)
Fj+(

−1

2
ω2,j−1/2 +

3

4
ω1,j+1/2 +

5

2
ω2,j+1/2

)
Fj+1 +

1

2
ω2,j+1/2Fj+2

]
1

hj

.

(3.15)

For the WCS (3.15), a tri-diagonal matrix of size N + 1 has to be solved. The

j-th row contains the j − 1/2-th numerical flux H ′
j−1/2 = F̂j−1/2 and the final value

of the derivative F ′
j is obtained using equation (3.5). The WCS (3.15) involves also

the derivatives at different points, F ′
j−1 and F ′

j+1, thus results in a compact scheme,

i.e., the WCS has global dependency.

3.1.4 WENO Scheme with Global Weights

a). CPU comparison

When the original WENO scheme is used in solving the problems, for example,

2D Euler equations, we need to calculate the weights of each stencil at each iteration

step for each variable, which has a high cost. To reduce the cost and get better results,

42



we only calculate the weights of some variables, say, pressure and density, only once,

and combine them to be the global weights before carrying out Runge-Kutta time

marching method at each time step. Application of global weights will reduce the

cost of the computation. We have some comparison of CPU time in solving 2D Euler

equations by using original WENO and the new one with global weights as following,

Table 3.1. Comparison of CPU time usage of the two WENO schemes

Grids: Original WENO New WENO
33× 33 248 s 168 s
65× 65 1921 s 1312 s

Here, the mean of the weights for pressure and density is used to be the global

weights (proposed by Dr. Chaoqun Liu). Table 3.1 shows us that the global one will

reduce CPU time 32% for our 2D code, which accelerates our computation. Although

WENO and WENO with global weights capture the shock in a good manner, they

are too dissipative in the smooth area. To improve the resolution, WENO with

global weights can be combined with the WCS (Weighted Compact Scheme) to be

the following Modified Weighted Compact Scheme (MWCS).

b). Convergence rate

The following two figures show that for 2D Euler equation, the WENO scheme

with global weights converges faster than WENO scheme with local weights.
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Figure 3.3. Convergence rate comparison (a) WENO with global weights; (b) WENO
with local weights.

3.1.5 The Modified Weighted Compact Scheme (MWCS)

The MWCS combines the two schemes described in the previous sections,

WENO and WCS, and it includes the following aspects, first, we move the weights

for WENO and WCS outside the derivative subroutine, i.e., using global weights.

Second, we use the mean value of the WENO and WCS weights calculated from pres-

sure and density as the weights of the whole scheme for all variables. The weights

here only need to be calculated once before carrying out the Runge-Kutta method.

Finally, for combining WENO scheme and WCS scheme, a mixing function is used

for the mean value of the weights of those four fluxes (two for pressure and two for

density).

The mixing function aims to linearly combine the two schemes in order to

ensure numerical stability on one hand, and to obtain a sharp shock-capturing and
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good resolution for small length scales on the other. The resulting formulation of the

MWCS numerical flux reads as

F̂
(MWCS)
j−1/2 = (1−αj)F̂

(WCS)
j−1/2 + αjF̂

(WENO)
j−1/2 . (3.16)

For consistency of the scheme, it is required that 0 ≤ α ≤ 1. Virtually, with α = 1

the WENO scheme is recovered. Here we choose α as following(proposed by Huankun

Fu),

α = 1− 0.5 ∗

(
1− (IS0− IS1)2 + (IS1− IS2)2 + (IS2− IS0)2

2 ∗ (IS02 + IS12 + IS22)

)
, (3.17)

where IS0, IS1 and IS2 are the smoothness indicators obtained from WENO scheme.

3.1.6 Dispersion and Dissipation Analysis

Fourier analysis of dispersion error and dissipation error in the two publications

[53] and [59] provides us an effective insight into resolution and diffusion properties of

numerical schemes, hence for MWCS, and possibly can be used to do further research

in improving the mixing function proposed in equation (3.17).

Following Vichnevetsky and Bowles [59], the effective wavenumber [59] ik̂e for

WENO, WCS and MWCS need to be calculated, where i is the imaginary unit

i =
√
−1. Practically, we suppose ωi,j−1/2 = ωi,j+1/2 = ωi in WENO, WCS and

MWCS. For MWCS, the linear combination weight function α in equation (3.17) is

not constant, which is not suitable for performing dispersion and dissipation analysis,

hence it is assumed to be constant for references.

45



The effective wavenumber ik̂e of WENO scheme, following Vichnevetsky and

Bowles [59], can be calculated as

i k̂(WENO)
e =

11

6
ω0 +

1

2
ω1 −

1

2
ω2 +

(
−3ω0 −

2

3
ω1 +

2

3
ω2

)
cos k̂+(

3

2
ω0 −

1

6
ω1 −

1

6
ω2

)
cos 2k̂ − 1

3
ω0 cos 3k̂+

i

[(
3ω0 +

4

3
ω1 +

4

3
ω2

)
sin k̂+(

−3

2
ω0 −

1

6
ω1 −

1

6
ω2

)
sin 2k̂ +

1

3
ω0 sin 3k̂

]
.

(3.18)

Similarly, the effective wavenumber of WCS is

i k̂(WCS)
e =

[
(ω0 − ω2)

(
5− 4 cos k̂ − cos 2k̂

)
+

i
(
(4ω0 + 3ω1 + 4ω2) sin k̂ + (ω0 + ω2) sin 2k̂

)]/
[
(4ω0 + ω1 + 4ω2) cos k̂ + 2 (ω0 + ω1 + ω2)− 4i (ω0 − ω2) sin k̂

]
.

(3.19)

The dispersion error, or the resolution of the scheme, may be quantified by the

imaginary part of the effective wavenumber Im(ik̂e), while the real part Re(ik̂e) is re-

lated to dissipation. Dispersion errors are waves, corresponding to different wavenum-

bers, which travel at different velocity. The imaginary part of the effective wavenum-

ber Im(ik̂e) represents dispersion, i.e., the phase error in representing the different

wavenumbers of the spectrum. Dissipation or diffusion errors, associated to the nega-

tive of the real part of the effective wavenumber Re(ik̂e), constitute the amplification

error, either positive or negative, which is introduced by the numerical scheme.

The following subsections discuss the Fourier analysis of the dispersion and

dissipation in smooth region and shock region when using WENO, WCS and MWCS,

the linear combination function is assumed to be 0.1, 0.4 and 0.8 for references.
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3.1.6.1 Smooth regions

For smooth region, we only need to consider optimal weights in WENO, WCS

and MWCS, that is (3.9), (3.13) or both of them, respectively. Put these weights into

the expressions of effective wavenumbers (3.18) and (3.19).

For the dispersion error, the imaginary parts of the resulting effective wavenum-

bers have to be considered, i.e.,

Im
(
i k̂(WENO)

e

)
=

3

2
sin k̂ − 3

10
sin 2k̂ +

1

30
sin 3k̂; (3.20a)

Im
(
i k̂(WCS)

e

)
=

(
14 + cos k̂

)
sin k̂

9 + 6 cos k̂
. (3.20b)

Figures 3.4(a) shows that

• MWCS is of higher resolution than WENO on smooth region;

• WCS achieves the highest resolution of the three.

Similarly, dissipation error can be derived by considering real parts of (3.18)

and (3.19), which read as

Re
(
i k̂(WENO)

e

)
=

1

3
− 1

2
cos k̂ +

1

5
cos 2k̂ − 1

30
cos 3k̂; (3.21a)

Re
(
i k̂(WCS)

e

)
= 0. (3.21b)

Figures 3.4(b) presents the comparison of dissipation error, and it can be con-

cluded that

• WCS is characterized by absence of dissipation error;

• WENO scheme if of highest dissipation error of high range of wavenumber k̂;

• MWCS is of low dissipation error over the middle and high wavenumber range.
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Figure 3.4. Error analysis in smooth region (a) dispersion; (b) dissipation.

3.1.6.2 Shock region: using only stencil E0

We assume that the stencils E1 and E2 defined in section 3.8 contain shocks,

therefore we substitute the following values of the linear weights

ω0 = 1, ω1 = ω2 = 0 (3.22)

into the expressions of effective wavenumbers (3.19) and (3.19) for WENO and WCS,

respectively.

The dispersion errors are

Im
(
i k̂(WENO)

e

)
= 3 sin k̂ − 3

2
sin 2k̂ +

1

3
sin 3k̂; (3.23a)

Im
(
i k̂(WCS)

e

)
=

(
8 + cos k̂

)
sin k̂

5 + 4 cos k̂
. (3.23b)
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And the dissipation errors become

Re
(
i k̂(WENO)

e

)
=

11

6
− 3 cos k̂ +

3

2
cos 2k̂ − 1

3
cos 3k̂; (3.24a)

Re
(
i k̂(WCS)

e

)
= −

4 sin
(
k̂/2
)4

5 + 4 cos k̂
. (3.24b)

The following two figures 3.5(a) and 3.5(b) show us that

• WENO is of lowest resolution, while MWCS is better and better as α decreasing,

and WCS is of highest resolution;

• WENO scheme is dissipative predominantly over high wavenumber range, but

WCS is negatively dissipative at high wavenumber range, MWCS, on other

hand, tends to have lower dissipative error than WENO scheme.
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Figure 3.5. Error analysis in in stencil E0 (a) dispersion; (b) dissipation.
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3.1.6.3 Shock region: using only stencil E1

In this case, we assume that the stencils E0 and E2 contain shocks, therefore

assume the weights,

ω0 = 0, ω1 = 1, ω2 = 0, (3.25)

which induce the following dispersion errors

Im
(
i k̂(WENO)

e

)
=

4

3
sin k̂ − 1

6
sin 2k̂; (3.26a)

Im
(
i k̂(WCS)

e

)
=

3 sin k̂

2 + cos k̂
, (3.26b)

and the following dissipation errors

Re
(
i k̂(WENO)

e

)
=

1

2
− 2

3
cos k̂ +

1

6
cos 2k̂; (3.27a)

Re
(
i k̂(WCS)

e

)
= 0. (3.27b)

The next two figures 3.6(a) and 3.6(b) demonstrate the conclusions that

• On stencil E1, the resolution of WENO scheme is confined to the low wavenum-

ber range;

• MWCS is better than WENO in resolution, while WCS is the best;

• WCS assumes no dissipative error which is better than MWCS, while WENO

scheme is of the most dissipative one.
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Figure 3.6. Error analysis in in stencil E1 (a) dispersion; (b) dissipation.

3.1.6.4 Shock region: using only stencil E2

This last case deals with the stencil E2, i.e., considering the case that E0 and

E1 contain shocks. Hence the following weights should be assumed,

ω0 = ω1 = 0, ω2 = 1. (3.28)

The corresponding dispersion errors become

Im
(
i k̂(WENO)

e

)
=

4

3
sin k̂ − 1

6
sin 2k̂; (3.29a)

Im
(
i k̂(WCS)

e

)
=

(
8 + cos k̂

)
sin k̂

5 + 4 cos k̂
, (3.29b)
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and the dissipative errors are

Re
(
i k̂(WENO)

e

)
= − 1

2
+

2

3
cos k̂ − 1

6
cos 2k̂; (3.30a)

Re
(
i k̂(WCS)

e

)
=

4 sin
(
k̂/2
)4

5 + 4 cos k̂
. (3.30b)

The following two figures 3.7(a) and 3.7(b) show us that

• MWCS has improved the resolution with respect to WENO scheme, as α de-

creases, while WCS achieves the highest resolution;

• On stencils E1 and E2, WENO scheme has the same resolution. Meanwhile, on

stencils E0 and E2, MWCS has the same resolution;

• WENO shceme is negatively dissipated at middle and high wavenumber range,

while WCS is positively dissipated. The combination of them, MWCS, achieves

smaller dissipation error with respect to both WENO and WCS;

• On stencils E1 and E2, WENO scheme has the equal dissipation error, but

with opposite signs. Meanwhile, on stenicls E0 and E2, WCS achieves the same

property.
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Figure 3.7. Error analysis in in stencil E2 (a) dispersion; (b) dissipation.

3.2 Numerical Results

The Euler equations for selected one- and two-dimensional test cases are solved

by the proposed MWCS and compared with using WENO [8].

3.2.1 One-dimensional Case

The one-dimensional Euler equations in vector and conservative form read as

∂U

∂t
+

∂F

∂x
= 0,

U = (ρ, ρu, Et)
T ,

F = (ρu, ρu2 + p, u(Et + p))T ,

(3.31)

where x ∈ (−5, 5), and the grid is uniform with size h = 0.05 (201 grid points).

Steger-Warming [54] flux-splitting is used, and the time marching uses third-order

Runge-Kutta scheme.
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3.2.1.1 Sod shock-tube problem

The shock-capturing capability of the MWCS is tested by the Sod shock-tube

problem [45]. Equations (3.31) are solved coupled with the following initial conditions,

(ρ, u, p) =

 (1, 0, 1), t = 0, x ≤ 0;

(0.125, 0, 0.1), t = 0, x > 0.
(3.32)

Figure 3.8(a) to Figure 3.8(d) show the plots of the solved velocity u, at time

t = 2. Figure 3.8(a) and Figure 3.8(b) report the solution in the whole domain for

MWCS and WENO schemes, respectively. The reference solution is regarded as the

one obtained by the fifth - order WENO scheme using a mesh of 1601 points, labeled

as WENO 1601. All the other simulations are carried out on a coarser mesh of

201 points. The solutions using MWCS (labeled as MWCS 201) and WENO scheme

(labeled as WENO 201) are free from visible oscillations, which is different from using

WCS. Figure 3.8(c) and Figure 3.8(d) report the enlargements of the shock areas,

comparing the three different schemes. Using MWCS scheme, the discontinuity is

captured more sharply and is less smeared compared to using the fifth-order WENO,

and the solution does not have visible oscillations.
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Figure 3.8. Solution to shock tube problem (a) MWCS; (b) WENO; (c) enlarged
comparison; (d) enlarged comparison.

3.2.1.2 Shu-Osher Problem

The shock-entropy wave interaction problem (Shu and Osher, Efficient imple-

mentation of essentially non-oscillatory shock-capturing schemes II 1989) is solved
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in order to test the proposed method’s capability on shock-capturing and shock-

turbulence interaction. The entropy waves are very sensitive to numerical dissipation

introduced by a numerical scheme, and can be excessively damped. Equations (3.31)

are solved, coupled with the following initial condition,

(ρ, u, p) =

 (3.857143, 2.629369, 10.33333), t = 0, x < −4;

(1 + 0.2 sin(5x), 0, 1), t = 0, x ≥ −4.
(3.33)

Figure 3.9 shows the result for the solved pressure distribution p at time t = 18 by

using MWCS and WENO respectively. Figures 3.10 - 3.12 are the comparisons of the

results for the solved density distribution ρ. The reference solution is regarded as the

one obtained by the fifth-order WENO scheme using a mesh of 1601 points, labeled

as WENO 1601. All the other calculations are made on a coarser mesh of 201 points.

The MWCS scheme (labeled MWCS 201) shows higher resolution and sharper shock

capturing compared with WENO (labeled WENO 201). Figures 3.11 and 3.12 report

detailed enlargements of discontinuity areas in the shock region, comparing the two

different schemes. The results obtained by using WCS has numerical oscillations.

However, it can be observed that the MWCS solution is free from numerical oscilla-

tions, able to sharply capture the shock and has better resolution properties than the

solution obtained by using WENO.
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(a)

 

(b)

Figure 3.9. Solution of pressure to Shu-Osher problem (a) MWCS; (b) WENO.

 

(a)

 

(b)

Figure 3.10. Solution of density to Shu-Osher problem (a) MWCS; (b) WENO.
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(a)

 

(b)

Figure 3.11. Enlarged solution of pressure to Shu-Osher problem (a) MWCS; (b)
WENO.

 

(a)

 

(b)

Figure 3.12. Enlarged solution of pressure to Shu-Osher problem (a) MWCS; (b)
WENO.

58



3.2.1.3 Two Interacting Blast Waves

The interaction of two blast waves was considered in [4] and [68], and is con-

sidered here using WENO and MWCS. The initial data are

u(x, 0) =


uL, 0 ≤ x ≤ 0.1;

uM , 0.1 < x ≤ 0.9;

uR, 0.9 < x ≤ 1.

where,

ρL = ρM = ρR = 1, uL = uM = uR = 0, ρL = 103, ρM = 10−2, ρR = 102.

In the following solution figures, the reference solution is obtained by using

WENO scheme with grid number 2400, and the other use grid 200, 400 respectively.

The solution is examined at t=0.038. It is observed that the solution obtained by

using MWCS are better than by applying WENO, and the former one is sharper than

the later one.

 

(a)

 

(b)

Figure 3.13. Density solution comparison, 2 interacting blast waves (a) grids: 200;
(b) grids: 400.
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3.2.2 Two-dimensional Case

The two-dimensional Euler equations in vector and conservative form read as,

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0,

U = (ρ, ρu, ρv, Et)
T ,

F = (ρu, ρu2 + p, ρuv, u (Et + p))
T
,

G = (ρv, ρuv, ρv2 + p, v (Et + p))
T
,

(3.34)

where x ∈ (0, 2), y ∈ (0, 1.1), and a uniform grid of 65× 65 points is used. The Lax-

Friedrichs flux-splitting is used, and the time marching is a third-order TVD Runge-

Kutta scheme. The test case is set up as an oblique shock reflection on an inviscid

wall, with shock angle of 35.24o and the Mach 2 freestream. The non-reflecting upper

boundary conditions and the slip-wall conditions at the lower boundary are imposed,

the inflow conditions are specified to the freestream and the outflow conditions are

calculated by extrapolation. Figures 3.16(a) to 3.17(b) show the distribution of the

pressure p, for the analytical, MWCS and WENO solutions respectively (the WCS

excessive numerical oscillations prevent from getting a solution in this test case).

Comparing the two schemes, it is observed that the MWCS captures the shock more

sharply than WENO scheme, and it does not present visible numerical oscillations.
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(a)

 

(b)

 

(c)

Figure 3.14. Solution contour pressure of oblique shock reflection (a) analytic solution;
(b) by MWCS; (c) by WENO.
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(a)

 

(b)

Figure 3.15. α distribution on 2D grids (a) x direction; (b) y direction.

Figures 3.16(a) and 3.16(b) report the pressure distribution for the Mach 2

oblique shock reflection for y = 0 and y = 0.34, respectively, for the analytical

solution, MWCS and WENO. We can observe that the MWCS can capture the shock

sharper than WENO, without generating visible numerical oscillations. Enlargements

of shock regions for the pressure distribution at y = 0.34 are reported in Figures

3.17(a) and 3.17(b), confirming that MWCS smears the shock less than WENO,

without generating visible numerical oscillations.
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(a)

 

(b)

Figure 3.16. Pressure distribution (a) y = 0; (b) y = 0.34.

 

(a)

 

(b)

Figure 3.17. Enlarged pressure distribution (a) y = 0; (b) y = 0.34.
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3.3 Conclusion Remarks

The introduction of so-called “global WENO weights” which uses the mean

value of the weights calculated for density and pressure, is found able to reduce the

CPU cost largely and make the computation converge fast due to the consistency.

The basic formulation of the MWCS, which is a linear combination of the WCS and

WENO schemes, is found capable to capture shock and small length scales better than

standard WENO. A new formulation of the mixing function based on the smoothness

is used, showing that the proposed MWCS has higher resolution and lower dissipation

compared to the well established WENO scheme. More important, the new scheme

reduced the computation cost dramatically. Numerical tests carried out for inviscid

flow problems in one- and two-dimensional cases demonstrates that the proposed

method is capable to capture the shock sharply without the generation of visible

numerical oscillations.
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CHAPTER 4

CONCLUSION AND DISCUSSION

Two high-order algorithms, buffered Fourier spectral method (BFSM) and mod-

ified weighted compact scheme (MWCS) are consided for applications in solving

PDEs, especially in CFD.

BFSM has been introduced in this dissertation, and it is used to solve the

tough problem of using Fourier spectral method to get derivative of a non-periodic

function and further applications in solving partial differential equations with non-

periodic boundary condition. From this dissertation, it is concluded that BFSM is

a scheme with high order accuracy and high resolution. The main idea is to add a

periodic orienting buffer region to the non periodic boundary, and then use Fourier

spectral method which is of high order accuracy and high resolution, that’s why

BFSM preserves the same property.

BFSM now only can be used to smooth or nearly smooth function, while MWCS

introduced in this dissertation can be applied to problems with shock or large gradient.

From Chapter 3, MWCS is a linear combination of WENO and WCS by a mixing

function accompanies with using the global weights within the scheme. Dispersion

and dissipation analysis of WENO, WCS and MWCS is carried out in Chapter 3,

which shows us that MWCS combines the merits of WENO and WCS, that is less

dissipative, less dispersive and shock friendly.

The future problems encountered here are the following,

• How to adjust BFSM so that it can be applied to problems with shock or large

gradient;

65



• Further study about how to set a mixing function according the the dispersion

and dissipation analysis to make MWCS much more efficient, i.e., with better

resolution and less dissipation.
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