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ABSTRACT

SPARSE AND LARGE-SCALE LEARNING MODELS AND ALGORITHMS FOR
MINING HETEROGENEOUS BIG DATA

XIAO CAl, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Heng Huang

With the development of PC, internet as well as mobile deyiege are facing a
data exploding era. On one hand, more and more features ceollbeted to describe
the data, making the size of the data descriptor larger agédaOn the other hand, the
number of data itself explodes and can be collected fromiphetesources. When the data
becomes large scale, the traditional data analysis mettaydfail, suffering the curse of
dimensionality and etc. In order to explore and analyzedlgelscale data more accurately
and more efficiently, based on the characteristic of the, de¢apropose several learning
algorithms to mine the Heterogeneous data. To be specifie feature dimension is large,
we propose several sparse learning based feature selgatibiods to select the key words
from the text or to find the bio-marker from the gene expressiata; if the number of
data itself is huge, we proposed multi-view K-Means mettmodd the clustering to avoid
the heavy graph construction burden; if the data is reptedeor collected by multiple
resources, we propose graph based multi-modality modeb teechi-supervised learning
and clustering. In addition, if the number of classes isdawge provides a global solution

to the low-rank regression and proves that the low-rankession is equivalent to doing

Vi



linear regression in LDA space. We empirically evaluatéheafoour proposed models on
several benchmark data sets and our methods can consgisteimiéve superior results with

the comparison of state-of-art methods.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

With the advent of modern high technologies, like PC, inteas well as mobile de-
vices, we are drowning in a sea of data. Much of the data wdadg@ncounter nowadays
is (1) high dimensional, i.e. the data descriptor has a latgeber of variables (features),
possibly much more than observations (data samples); éyamber of data samples is
huge and can be represented or collected by multiple ressuf8) the number of classes
is huge and there are some correlation between differesgeta Blindly fitting traditional
models to such data is prone to giving over-fitted or uselextets with heavy computation
burden posing great difficulty for further data analysis.

For the high dimensional data, although we can employ cdrveal dimension re-
duction method to reduce the number of features, for exafP@le, LDA, and so on [1],
we cannot tackle the problems where the features have hateemings and they cannot
be projected, such as text mining [2], DNA microarray [3]danass spectrometry [4].
Therefore, feature selection, the process of selectingoaesiof meaningful features, is
a key issue in building robust data mining models for latassification, clustering, and
other data analysis tasks since it can select text key wdrsispver biomarkers, speed up
the learning process, boost the model generalization dégand alleviate the effect of
the curse of dimensionalif$].

In addition, data can be collected from numerous resouncespoesented by many
representations. In image segmentation, an image can besegpied by many different

visual descriptors. In web grouping, a web can be charaety its content and anchor

1



texts of inbound hyperlink. In social network communityahsery, researchers discover
the hidden grouping relation (e.g. friend or knows) in théwmek via personal interest
or geographic information. In text mining, people study tineey to find out latent topic
from documents or corpus available in multiple languagebel\such heterogeneous data
becomes huge, for example, Facebook reports abbillion new photo every month and
72 hours of video are uploaded to YouTube every minute, how ooipervised clustering
or semi-supervised learning for such a huge heterogenedasstbecoming a challenging
problem.

What is more, when the number of classes becomes higher ghérhihere must be
some correlation between classes. How to incorporate sugtdaof correlation to boost
the classification performance is attracting more and mibeations in nowadays machine

learning research.

1.2 Notation

We summarize the notations and the definition of norms usdkisrpaper. Matri-
ces are written as uppercase letters and vectors are wast&old lowercase letters. For
matrix W = {w;;}, its i-th row, j-th column are denoted ag, w;, respectively. The
trace of the matriX¥l is denoted as T{IV). The ¢,-norm of the vector € R” is de-
fined as||v||, = (Zn:l |vi\p)i, for p # 0 and the/,-norm of the vectow, is defined as

the number of non-zero entries of The Frobenius norm of the matri¥ € R¥&>™ js

d m d
defined ag|W ||, = (/> S w? = /> |wi|l;. And thel,;-norm of matrixIV is de-
i=1j=1 i=1
d m
fined as|Wl,, = >, /> w;; and thel, o-norm of matrixW is defined ag|WW||y,0 =
i=1\/ j=1
d m
|| >- wi;llo, where for a scalar dla|lo = 11if a # 0, [[a]lo = 0if [Ja|| = 0. Please
=1 j=1

note that’s o-norm is not a valid norm because it does not satisfies theiyp®scalarbility:

[|aW |21 = |a|||W]||2,1 for any scalar. The term “norm” here is for convenience.
2



This paper is organized as follows. Chaper Il discussegaksarse learning mod-
els and how to use them to do feature selection on bio-daterthe number of features is
much larger than the number of data point. Chapter Il shaaplymodel to fuse multiple
modality data to do unsupervised clustering or semi-supetvearning. When the num-
ber of data point is large, Chapter IV gives an efficient arimisd multiple view K-Means
clustering algorithm to release the burden of graph coostm, clustering large-scale het-
erogeneous data. When the number of classes is large, €Nagiees a global solution
to low-rank linear regression and proves that the low-ragkession is equivalent to doing
linear regression in LDA space. Chapter VI proposes thaduteork and summarize the

thesis.



CHAPTER 2
SPARSE LEARNING BASED FEATURE SELECTION

2.1 Introduction

Generally speaking, feature ranking and feature seleatguorithms may roughly be
divided into three main types: filter, wrapper and embeddethods. These three basic
categories differ in how the learning algorithm is incomgted in evaluating and selecting
features. In filter methods, features are pre-selecteddynthinsic properties of the data
without running the learning algorithm. Therefore, filteetimods are independent of clas-
sifiers. Popular filter-type feature selection methods e1pass F-statistic [6], reliefF [7],
MRMR [3], t-test, Chi-square and information gain [8] and. 8] which all compute the
sensitivity (correlation or relevance) of a feature witkpect to ( w.r.t.) the class label
distribution of the data. These methods can be charactebyeitilizing the global statis-
tical information. In wrapper methods [10], feature seatatis wrapped around predictors
providing them subsets of features and receiving theirdaekl Wrapper-type feature s-
election methods are tightly coupled with a specific classiuch as correlation-based
feature selection (CFS) [11], support vector machine earfeature elimination (SVM-
RFE) [12]. In spite of expensive computational cost, thagmhave good performance.
In embedded methods, feature search and the learning talgoaire incorporated into a
single optimization problem, which is also specific to thassifier. For example, Random
multinomial logit (RMNL) [13].

With the development of sparsity regularization, dimenseduction has been wide-
ly investigated and applied into feature selection studesvell. For example/;-norm

SVM can perform variable selection via tlienorm regularization [14], which tends to

4



give sparse solution to the following optimization problefowever, it has some limi-
tations due to the fact that the number of selected featsrapper bounded by the data
sample size. What is more, since the sparsity natufg-abrm does not discovery data’s
intrinsic group structure, it tends to pick up features withconsidering all the classes.
In order to overcome thé-norm’s drawbacks, a method called Hybrid Huberized SVM
(HHSVM) [15] was proposed combining both-norm and/;-norm regularization with
the huberized hinge loss function to form a more flexibledsaselection method. Nev-
ertheless, it was designed only for binary case only. Inirtaskk learning, Obozinsky et
al. [16], Argyriouet. al.[17] have developed & ;-norm based feature selection method
that imposes the structure sparsity in feature selectienthe selected features have large
scores across all the tasks (classes) and the unselecteckfehave small scores (sparse)
over all tasks. However, due to the optimization difficuttynulti-class case, the approach
used least square loss function instead of the hinge lossidum

In this chapter, we will propose three sparse learning feagalection methods to se-
lect features w.r.t multiple classes. In the following aeph, we will introducé, ;-Norm
Support Vector Machine first and then we will propose anofinactical feature selection
approach called "Exact Top K Feature Selection Method WitiNorm Constraint”. At

last, if the number of classes is large, we propose anotlasspearning method to

2.2 Multi-Class Feature Selection vig;-Norm Support Vector Machine
2.2.1 Multi-Class Hinge Loss With, ;-Norm Regularization

As we know, hinge loss is usually better than the Least Sqoasain terms of clas-
sification tasks [18]. In this section, we propose the follayumulti-class feature selection

method based on hinge loss as well.

mmi/nf(WTX, Y) +a| Wy, (2.1)

5



where functionf is the multi-class hinge loss function as defined as follows,

n

fWTX,Y) = Z (1 =W X; +max WL X;)s (2.2)

iy
Y #Yi

and/, ;-norm regularization term is defined as

k D

P
HW||2,1 = Z szz,j - Z HWZ
i=1 \ j=1 i=1

Please note that as we defined in Chaptav’ denotes the i-th row vector of matri¥” ¢

(2.3)

2

RP**. Some other literatures called tiig,-norm as¢; ,-norm, or/,/¢;-norm, ort; /fs-
norm.

From the sparsity perspective, although thg-norm is more desirable, that is,
R(W) = ij HW"HS, we will use/, ;-norm based on the subsequent two reasons: On one
hand,égyl-lrjcl)rm regularization term is convex and can be easily ogthi[19]. On the
other hand, it was shown that the resultgg@horm is identical or approximately identical
to the/,-norm results under practical conditions [20]. So dégsnorm and/s ;-norm.

Here the key new development is the first time to combine ruldiss hinge loss
with ¢, ;-norm regularization term to do the feature selection acadisthe classes, which
has never been solved before due to its optimization difficuhlthough the hinge loss
with ¢, ; —norm regularization problem is a convex problem, completat®n path has
not been provided yet due to the complexity of multi-claggykiloss as well as the non-

smooth regularization term. In the next section, we willgmee an efficient algorithm to

tackle Eq. (2.1), with the proof of its convergence.



2.2.2 An Efficient Optimization Algorithm
Chih-Jen Lin et al. have solved the following“real” multass SVM problem with

the published code [21].

min 3 Z wlw,, —1—04251

Wi fz =1
S.t.W;XZ‘ — W%Xi > eim — &,
fori=1 .. nm=1, ..k (2.4)

n

Y &<

i=1

& >0, fori=1,...n

In other words, given X and Y, we have a function to obtin,
W* =argmin f(WTX,Y) +a ||W|; (2.5)
w

where the functiory is also defined in Eq. (2.2).
Let J(W) = f(WTX,Y) + a|[W||,,. We find that the result of taking derivative of

J(W) w.r.t.W is equivalent to the derivative of the following objectiwenttion w.r.tiV,
min fWTX,Y) 4 aTr (WTDW) (2.6)
where D is the diagonal matrix of W, and th¢h element on the diagonal is defined as

d;; = VZ =1,. (27)

a QHWZHQ
Note thatD is dependent tdl/. So it is also an unknown variable. We propose an iterative
algorithm to find out the global solutidi¥’, that is, in each iteratioil} is calculated with
the currentD and thenD is updated according to the currdmt. The iteration procedure
is repeated until the algorithm converges.

In order to do that, we need to change the variablesiiigt= D:W and X, =

D3 X.



Therefore,
mv[i/n fWTXY) +aTr (WEDW)
= min FOWTDID 2X Y) 4+ aTr (WTD2D2W) (2.8)
= r%/in FWEX Y)Y+ aTr (WEWY)

Note thatD is a diagnoal matrix. So far, we have bridged the new objedimction

Eq. (2.6) with the solvable objective function Eq. (2.5).

Algorithm 1 An efficient iterative algorithm to solve the optimizatioroplem in Eq. (2.8)
Input: dataX € RP*", labelY € R¥*", regularization parameter

Output: the coefficient matrixl’ ¢ Rr**

Procedure:

1: Initialize the coefficient matrix
WO ={w,; =1}, i=1,..p, j=1,..k

2: Initialize the diagonal matriXD®), where thei-th diagonal element is defined by E-
g. (2.7).

3: Initialize matrix W asw” = (D©)2 W ©

4: Sett =0

5: repeat

6: Relax the input data a§\” = (D®)~3 X

7. Calculate the coefficient matrid"™ = argmin f(WHTXY v) +

oTr (WIHTW ) by Crammer’s Algorithm using LIgLINEAR [21].

8: Update the diagonal matri“*+1 by Eq. (2.7).

9 t=t+1

10: until Converges

_1
11: Calculate the output/ = D™ 2y




Please note that whem = 0, thend;; = 0 is a subgradient of V[, ,, w.r.t. w’'.

However we cannot set; = 0 whenw’ = 0, otherwise the derived algorithm cannot be

B S
2 (Wi)TWi-i—g“’
where( is a very small number and in our experiment we will upe in matlab as the

guaranteed to converge. To solve this issue, we can repeilgfiasd; =

value for¢. The derived algorithm can be proved to minimize the regeeal’, ;-norm of
p

W (defined asy_ 1/ (wi)"wi + ¢) instead of/, ;-norm of W. It is easy to verified thta the
=1

regularized’s ;-norm of W approximates th& ;-norm of W when( — 0.

We summarize the proposed iterative method in Algorithm 6.

2.2.3 The Proof of The Convergence

We will utilize the following Theorem to prove the convergerof the Algorithm 1.
Theorem 1. The Algorithm 6 will monotonically decrease the objectiveéhe problem
Eqg. (2.8) in each iteration and converge to the global optimuaf the problem.
Proof. Since Crammer’s Algorithm gives the solution to problem E45), we will find

out the solution to the following problem by changing theiahle:
min fWTX,Y) 4 aTr (WTDW) (2.9)
whereD is a function ofiV satisfying Eq. (5.26). Therefore, in tieh iteration,
Wt — arg min (WX, Y) + oTr (W) DOW®) (2.10)

which indicates

FUWED)TX,Y) 4 aTr (WD) DO W D))

(2.11)
< f(WO)TXY) + aTr (WO)TDO(WH))
The above inequality can be extended as,
t i||2
f((W(t+1))TX Y) T . H(W( +l))_ 2
7 =2l
p H(Wm)i ° (2.12)
< NT | —
= f((W ) X? Y) + 0‘; 2||(W(t))2 )
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since(”(w(tH))i — H(w(“)i )2 > 0, we can obtain the next inequality
2 2
i 2 i 2
I () A ()
) (wtDy| - N2 H(w@) Y (2.13)
2 )y 2 )y
2o, 2o,
So the following inequality holds:
P ; WDy [*
042( (W(t+1)) 9 - ‘LH(W@))i 2)
=1 2 (2.14)
B i
N ai:l 2 2flw®)’,
Adding Eq. (2.12) and Eg. (2.14) together, we arrive at
P .
FIOVENTXY) 4+ a )2 | (wiHD)’
i=l e (2.15)
< AWOYXY) +a ) ||(wh)
i=1 2
By the definition of¢; ;-norm, we get
WENTX V) + o WD

< F(WONTXY) + af W

..
Thus the Algorithm 6 will monotonically decrease the ohpexdf the problem in Eq. (2.1)
in each iteration t. At last, it will converge ari@ ) and D® will satisfy the Eq. (5.26)
and Crammer’'s Algorithm. Furthermore, please note thatptioblem in Eq. (2.8) is a
convex problem, which indicates thlatf*) is a global optimum solution to the problem in
Eq. (2.8) and/V is the global optimum solution to the problem in Eq. (2.1).8A®sult, the
Algorithm 6 will converge to the global optimum of the proivid=q. (2.1).00

Empirical results show that the convergence is fast andllysualy a few iterations

(less than 10) are needed to converge.
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2.2.4 Experiments

2.2.4.1 Data Sets Description

To evaluate the performance of ofyr;-norm SVM, we applied our Algorithm into
five publicly available gene expression data sets and ones I8psctrometry (MS) data
set to do multi-class feature selection. All the data se¢sstandardized to be zero-mean
and normalized by the standard deviation. The gene expresisita sets are the malig-
nant glioma (GLIOMA) data set [22], the human lung carcineridJNG) data set [23],
ALLAML data set [24], Human Carcinomas (Carcinomas) data[28], mixed-lineage
leukaemia (MLL) data set [26]. MS data is the Prostate Cadata set. All of those data
sets have the characteristic that the number of the sangahesch less than the number of
the features.

We give a brief description of all the data sets used in oussgbent experiments
and summarize them in Table 2.1.

GLIOMA data set encompasses 50 samples of four classesain taincer glioblastomas
(CG), non-cancer glioblastomas (NG), cancer oligodendwogs (CO) and non-cancer
oligodendrogliomas (NO), which have 14, 14, 7, 15 samplespectively. Each sample
has 12625 genes. Genes with minimal variations across thplea were removed before
the experiment. Also, intensity thresholds were set at 20187000 units for this data set.
Genes whose expression levels varied less than 100 uniteéetsamples or varied less
than 3 folds between any two samples were excluded. Aft@rpoessing, we obtained a
data with 50 samples and 4433 genes.

LUNG data contains 203 samples of five classes, which have2320, 6, 17 samples,
respectively. Each sample has 12600 genes. In the prepiogethe genes with standard
deviations less than 50 expression units were removed amgbirsedata set with 203 sam-

ples and 3312 genes at last.
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Table 2.1. Data set summary.

data name # samples (n)| # features (p)| # classes (k)
GLIOMA 50 4433 4
LUNG 203 3312 5
ALLAML 72 7129 2
Carcinom 174 9182 11
MLL 72 12582 3
Pro-MS 89 15154 2

ALLAML data set contains 72 samples of two classes, that i4, and AML, which have
47 and 25 samples, respectively. Each sample contains gerzs.

Carcinomas data setis composed of 174 samples of eleveses|gsostate, bladder/ureter,
breast, colorectal, gastroesophagus, kidney, liver,ypymncreas, lung adenocarcinomas
and lung squamous cell carcinoma, which have 26, 8, 26, 23,117, 27, 6, 14, 14 sam-
ples, respectively. The raw data encompasses 12533 gethéseaafter preprocessing, the
data set has 174 samples and 9182 genes.

MLL data set contains 72 samples of three classes, acutenlybigstic leukaemia, acute
myeloid leukaemia and mixed-lineage leukaemia, which 24620 and 28 samples, re-
spectively. Each sample has 12582 genes.

Prostate-MS data set consists of 89 samples of two clasagsenpand normal people,
which have 26 and 63 samples, respectively. Each mass gpeircomposed of peak

amplitude measurements at 15154 points defined by a corréspm/z value.

2.2.5 Experiment Setup
We compare our Algorithmé( ;-norm SVM) with six naive multi-class feature se-
lection methods such as F-statistic [6] , reliefF [27], mR§8R t-test, Chi-square, infor-

mation gain [8]. What is more, in order to demonstrate thegyao¥ the combination of

12



multi-class hinge loss witld, ; regularization term to do feature selection, we also com-
pare three baseline methods. The famous multi-class SVMR&HIses hinge loss with
¢,-norm regularizationés ;-norm LS method which uses Least Square loss #ithnorm.
¢5,1-norm LR method which uses logistic loss wit}y, regularization term.

Because we concern the multi-class feature selection mett®don’t compare bi-
nary feature selection method, such as HHSVM [15]. Due tauthiger bound and small
number of samples data wiflafold cross validation in our experiment, we do not consider
¢1-SVM neither. Regarding to multi-class SVMRFE, since outhod resorts to Crammer
and Singer’s multi-class SVM (MSVMCS) with ;-norm regulation, we will use MSVM-
CS to do the recursive feature elimination as well for famgarison.

The Support Vector Machine (SVM) with linear kernel modeél= 1 and K nearest
neighbor (KNN) withK = 1 will be used as two popular classifiers to evaluate the perfor
mances of different multi-class feature selection algpong. In order to fixed number of
selected features (fromto 80 with the incremental step sizg, we sort the row index of
matrix W by the row summation value and features are seldntéde top ranked indices.
In addition, all the experiments are usitgold cross-validation and the average classifi-
cation accuracy based on the above two classifiers are egpofs we know, when the
penalty parameter is large enough, it tends to reduce the coefficients of moeéeiant
features to exactly zero [15]. Therefore, the larges, the more irrelevant features are
eliminated from the model and we will get a more sparse matfix We utilized 2-fold
cross validation inside the training data to decide theevalithe regularization parameter

empirically.

2.2.5.1 Classification Comparison Using Selected Features

Fig. 2.1 and Fig. 2.2 show the comparisons result of all ninétiralass feature s-

election methods in terms of classification accuracy on ata dets using SVM classifier
13
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Table 2.2. Classification Accuracy of SVM using 5-fold cressidation evaluated on top
20 selected features. RF: ReliefF, F-s: F-score, £$1G: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss With-norm regularization, LR21: logistic loss
with /5 ;-norm regularization and SVM2¥; ;-norm SVM (our method).

Average accuracy of top 20 features (%) SVM

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 50.0050.0058.0054.0058.00 56.00 54.0058.0070/2M0
LUNG 89.2481.7586.7390.1490.17 92.12 94.1291.2293381
ALLAMLS88.7591.7994.2993.3990.54 90.3¥.3291.9694.5897.32
Carcinom 76.9955.1139.6079.3281.06 73.63 86.2282.26889.09
MLL 87.6891.9687.6893.2192.14 93.24.6491.4293.46 93.39
Pro-MS 77.698.8995.5@8.8998.89 95.42 94.6493.2696.54 97.77
Average 78.3978.2576.9784.8385.13 83.49 81.5984.7083087

Table 2.3. Classification Accuracy of SVM using 5-fold cresfidation evaluated on top
80 selected features. RF: ReliefF, F-s: F-score, £$1G: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss With-norm regularization, LR21: logistic loss
with /5 ;-norm regularization and SVM2¥; ;-norm SVM (our method).

Average accuracy of top 80 features (%) SVM

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 60.0058.0068.0066.0066.012.00 72.0068.0072.00 72.00
LUNG 93.6391.6390.6695.5895.10 94.12 95.1093.6694&87
ALLAML95.8996.0794.2994.4695.71 94.46 95.8993.7595%332
Carcinom 90.2483.3268.9187.3389.65 87.92 94.2589.32884.82
MLL 93.3996.0798.7594.6495.89 94.08.7594.6494.5798.75
Pro-MS 89.9398.8994.4498.8998.89 93.14 95.8997.44981806
Average 86.1887.6784.5188.1590.21 88.38 91.9886.289883.6

and KNN classifier respectively. Table 2.2 and Table 2.3itate the detailed experimental
results for top 20 and top 80 features for all feature selaapproaches using SVM (linear
kernel,C' = 1) respectively. And Table 2.4 and Table 2.5 demonstrate ¢t&ldd experi-
mental results for top 20 and top 80 features for all featalecsion approaches using KNN
(K = 1) respectively. From them, we can obviously see that our atetdutperforms the
naive multi-class feature selection approaches and azlsewpetitive performance com-
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Table 2.4. Classification Accuracy of KNN using 5-fold cresdidation evaluated on top
20 selected features. RF: ReliefF, F-s: F-score, £$1G: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss With-norm regularization, LR21: logistic loss
with /5 ;-norm regularization and SVM2¥; ;-norm SVM (our method).

Average accuracy of top 20 features (%) KNN

RF F-s Ttest CS |G mRMRRFE LS21LR21SVM21
GLIOMA 42.0066.0060.00°2.00 58.00 56.00 68.0068.0068.0r2.00
LUNG 84.2780.7884.7587.7389.17 90.17 94.5391.869P5.96
ALLAML90.3690.3691.43 93.21 93.21 93.21 96.8892.40938241
Carcinom 77.6148.7641.34 75.85 83.92 74.22 86.3782.923888.65
MLL 89.1191.9689.11 88.93 90.54 91.79 94.4591.48920321
Pro-MS 86.5498.8297.7180.0098.89 97.78 94.6392.9795.08 97.51
Average 78.3179.4577.40 86.29 85.62 83.86 89.1584.968%K) (B4

Table 2.5. Classification Accuracy of KNN using 5-fold cresdidation evaluated on top
80 selected features. RF: ReliefF, F-s: F-score, £$1G: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss With-norm regularization, LR21: logistic loss
with /5 ;-norm regularization and SVM2¥; ;-norm SVM (our method).

Average accuracy of top 80 features (%) KNN

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 54.0066.0054.0062.0058.00 62.02.0070.0072.00 72.00
LUNG 92.1789.1784.7592.5895.10 94.12 95.0793.7894447
ALLAML91.7990.3691.4394.4695.71 94.46 95.7293.5593FX3
Carcinom 87.3681.5841.3485.3186.33 85.43 94.5589.80884.78
MLL 94.6490.5490.5492.6495.89 92.64 98.5194.82938383
Pro-MS 90.9896.5496.5498.8998.89 95.14 95.9597.90999%530
Average 85.1685.7081.1490.1290.25 87.74 91.9389.6983208

pared with multi-class SVMRFE especially if we only selentihe top20 features. Also,
compared with multi-class Least Square loss or multi-diagistic loss, multi-class hinge
loss with/, ;-norm usually achieves the best performance.

Fig. 2.3 demonstrates the learned matrix (the solutiolt@f Eq. (2.6)) of data

GLIOMA. Columns represent classes and rows represent arodd0 features. The
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Figure 2.3. The learned matriX of data GLIOMA.

brighter pixel means higher value entry. From it we can oleséne intrinsic structural

horizontal pattern of, ;-norm clearly, that is, selecting features for all the abass

2.2.5.2 Algorithm Time Complexity Analysis

In Alg.6, LIBLINEAR [21] provides the solver for Eq. (2.5) ung very efficient
coordinate descent method and usually we can obtain thé feswstep 7 in less than
1 second for large scale data (like our bio-data). And sibces a diagonal matrix, the
computational complexity in stepis also low. We report the average number of iteration
and the average feature selection time for multi-class S¥ERNnd our method using
fold cross validation in Table 2.6 for all the data used in expperiment, where we used
Matlab2009b and the configuration of our PC is Intel CoeeDuo CPUE7300 2.66G H z.
Choosing).001 as the stop criterion, we can see that the converge rate ofietnod is fast
and although our method can achieve competitive classditgterformance compared

with multi-class SVMRFE, the speed of our method is muchefast
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Table 2.6. Time comparison of our method and multi-class R

data| iter# our | iter# RFE | T our (sec)| T RFE (sec)
G 12 4433 14.91 1115.73
L 30 3312 51.92 1023.86
A 13 7129 34.83 2127.95
C 15 9182 91.42 3192.84
M 13 12582 77.64 4244.23
P 30 15154 239.74 5256.38

G:GLIOMA, L: LUNG, A: ALLAML, C: Carcinom, M: MLL, P: Pro-MS

2.3 Exact Top-K Multi-Class Feature Selection ¥4a-Norm Constraint

Since we are focusing on multi-class feature selectiomctiral sparsity regular-
ization is desired, which can select the features acrosbalilasses with jointly sparsity,
i.e. each feature has either small score or large score for alll#isses. From the sparsity
perspective, although, -norm is more desirable, due to its nonconvex and non-smooth
properties which will induce great difficulty in optimizat, people prefer the conveéx; -
norm as the regularization term [29] [19] [30]. As we knowglskind of approximation
is under the assumption that the effectd.gf-norm regularization is identical or approxi-
mately identical to thé, ;-norm. Nevertheless, the above assumption does not alvedys h
in the real application [31]. Moreover, since the regulatian parameter of, ;-norm does
not have explicit meaning, for different data, it may chadgamatically and people need
to carefully tune its value based on the training data, wkdhtake long time. Lots of
related work of sparse learning based feature selectiohadstadopt the model based on
convex problem due to the fact that convex problem has glstlaltion. However, is it
always true that the method based on convex problem is albetysr than that based on
non-convex problem?

In this section, we will propose an efficient, robust and pratic multi-class feature
selection model, which has the following advantages: (1)sWew that it is NOT true that

the feature selection method based on convex problem iyslbetter than its counterpart
19



based on non-convex problem. (2) We tackle the originalsspproblem withY, o-norm
constraint directly instead of its relaxation or approxiima problem. Therefore, we can
get a more accurate solution. (3) Since there is only one itethre objective function, we
avoid the computational burden of tuning the parameterdgularization term, which is
desired for solving the real problem. (4) We are the first tivjgte an efficient algorithm to
tackle the minimization problem df ;-norm loss with thée, ,-norm constraint. Extensive
experiments on four benchmark biological datasets shovotireapproach outperforms the
relaxed or approximate counterparts and state-of-amifeaselection methods evaluated in

terms of classification accuracy using two popular clagsifie

2.3.1 Sparse Learning Based Feature Selection Background
Typically, many sparse based supervised binary featueets@h methods that arise
in data mining and machine learning can be written as theoappation or relaxed version

of the following problem:

< W* b >=min|ly — XTw — b1||3

Wb (2.17)
s.t.l|wllo =k

wherey € B"*! is the binary labelX € R%*" s the training datay € R**! is the learned

model,bis the learned biased scalars R™*! is a column vector with all entries, and is

the number of the feature selected. Solving Eq. (2.17) tréas been approved NP-hard,

very difficult in optimization. In many practical situatisiit is convenient to allow for a

certain degree of error, and we can relax the optimizatiorstaint using the following

formulation,

<W*, b >= argmin{||w||o + Ally — X"w —b1|[3} (2.18)
w,b
which is equivalent to the following “fidelity loss plus rdguzation” format,

<W*, b >=argmin{|ly — X7w — b1||2 + \||w||o} (2.19)
w,b
20



where)\ € R* is the regularization parameter. Unfortunately, the watatkle Eq. (2.19)
is still challenging. To overcome this problem, the subseqalternative formulation using

¢1-norm regularization instead é§-norm has been proposed,
<W*, b >=argmin{|ly — XTw — b1||2 + X||w||,} (2.20)
w,b

After we getw*, we choose the feature indices corresponding toktdgrgest values of
the summation of absolute values along each row. In s@tople call Eq. (2.20) as the
regularized counterpart of LASSO problem, which has beeatelyistudied and proved to
have a closed form solution.

Although people can use heuristic strategy, i.e. one VI®ralne V.S. one to extend
the above binary sparse based feature selection methodnwildieclass feature selection,
some structural sparsity is preferred, if the goal is toddieatures across all the classes.
In multi-task learning, Obozinskgt al. and Argyriouet. al.[17] [32] have developed a

/5 1-norm square regularization term to couple feature seleetcross tasks.

2.3.2 Robust And pragmatic Multi-class Feature Selection

Given training datdx;, Xs, - - - , X, } € R¥! and its corresponding class labé€ls, v, - -+ , yn} €
R™*! traditional least square regression solves the followijstgmization problem to learn

the projection matri¥y € R and the biag € R™*!:
<W* b >=argmin» ||y, — W"x; — b|[3. (2.21)
Wb =1

Since there is inevitable noise existing in the trainingagat order to be robust to outliers,

our proposed method will use the robust loss function:

<W* b >=arg minz Iy, — WTx; — bll,, (2.22)
L —
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which has a rotational invariant property whereas the puieorm loss function does not
has such desirable property [33]. In addition, for the sakebtaining a more accurate
model, we usé; ,-norm constraint instead of impose it as the regularizatom.
Denotingn training dataX € R%*" as well as the associated class labéls R™*™
for m classes, in this paper, we propose the following objectinetion to seleck features

in multi-class problems

min |||V — XTW — 1b7||5,
Wb (2.23)
8.t.||W||270 = k,

where,1 € R™*! is a column vector with all its entries being

2.3.3 Optimization Algorithm

In this section, we will propose an efficient algorithm tokigcEq. (4.25) directly
followed by the proof of its convergence to local solution.
2.3.3.1 General Augmented Lagrangian Multiplier Method

In [34], the general method of augmented Lagrange multplie introduced for

solving constrained optimization problems of the kind:

m)}n f(X), st. Tr(h(X))=0, (2.24)

One may define the augmented lagrangian function:
LOX A, 1) = F(X) +Tr (ATh(X)) + S[R3 (2.25)

where matrixA is the Lagrange multiplier and is a positive scalar called the quadratic
penalty parameter and then Eq. (2.25) can be solved via thHieothef augmented Lagrange

multipliers, outlined as Alg. 2.
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2.3.3.2 Problem Reformulation

According to Augmented Lagrangian Multiplier (ALM) Methpde introduce two

slack variables.e. V andE. Eqg. (4.25) can be reformulated as

2
1By, + 4 W=V + 2]

min
W,b,V,HVHQ’O:k,E

) (2.26)
XTW+1bT—Y—E+5zH
F

+4

2.3.3.3 An Efficient Algorithm to Solve the Constrained Renb

We will introduce an efficient algorithm based on the genata¥ to tackle problem
Eqg. (2.26) alternatively and iteratively.

The first step is fixingV, V and E, solvingb. Then we need to solve the following

subproblem:
1 2
K HXTW+1bT—Y—E+—z (2.27)
2 ol g
Take derivative w.r.tb and set it to zero, we have
1 lawp, 1o
b=—-(Y+F--3)1--W'X1 (2.28)
n ol n

The second step is fixing, b and F, solvingWW. Then the objective function be-

comes,

1 2 1 2
min (W —V + —A|| + HXTW+1bT—(Y+E— —¥) (2.29)

w Hollp Ko le

Take derivative w.r.ti// and set it to zero, we have
T -1 1 1 T
W=(XX"+1)"(V-=A+XY+FE—--X-1b")) (2.30)
7 7

wherel € R4 is the identity matrix.

The third step is fixingV, b and E, solvingV'. The subproblem becomes,

2

(2.31)

min
||V||2,0:k

1
V —(W+—A)
il

F
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which can be solved by Alg. 3.

The fourth step is fixingV, b andV/, solving . The subproblem becomes,

2

1 1 1
min — HE—(XTWJrle—YJr—E) + =Bl (2.32)
E 2 N | P ’
Denote
1

G=X"W+1"-Y + ;z. (2.33)

Then Eq. (2.32) is equivalent to the following problem,
1 , 1

mEln§||E—GHF+;HEH2,1, (2.34)
which can be decoupled as,

win Y 2le — g3+ el .39

e Zad gl " 2 .

whereg’ andg' is the i-th row of matrix& andG respectively. And the solutionto Eq. (2.35)
is

(1—o)d, (gl > 1/p
0, 9]l < 1/n
We iteratively and alternatively updabe W, V, E according to the above four steps and

&= (2.36)

summarize the whole Algorithm in Alg. 4.

2.3.3.4 Algorithm Analysis

Since EqQ. (2.26) is not a convex problem, in each iteratiorergfixed A, 3, and
1, Alg. 4 will find its local solution. The convergence of ALMgarithm was proved and
discussed in previous papers. Please refer to the litertttarein [35] [36].

The overall computation complexity of our method is lowhaligh we solve it sepa-
rately and iteratively. In each iteration, the only compiotaburden is in Eq. (2.30), where
we need to calculate an invergex d matrix. However, since it is only related to the in-

put data, we can calculate it before we go to the loop. Whatdsemwhen the number
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Algorithm 2 General Method of Augmented Lagrange Multiplier
Initialization:

1. Sett =0
2. Initialize the Lagrangian multiplier matrix(®).
3. Initialize the quadratic penalty parametéf).
4. Initialize the incremental step size parameter 1.
repeat
1. UpdateX **+1) = arg min L(X®, A® u®)
2. UpdateA (*+1) = A<t>X+ pOR(X D)
3. Updatep“+t1) = pp®
4. Updatet =t + 1
until Converges

Output: X*

of feature is much larger than the number of data, we cantres®/oodbury formula to
transform it as a x n inverse matrix. Although its solution depends on the ihi#&tion,
in the following experiment section, we will conduct expeent to demonstrate that its
local solution is stable and its feature selection perforoeais better than that of some

state-of-art sparse feature selection methods based saxproblems.

2.3.4 Experiment
We denote our proposed method/ag-norm ALM. The performance of, ,-norm
ALM is evaluated on four biological gene expression dataséfe give a brief description

of all the datasets used in our subsequent experiments.

2.3.4.1 Datasets Descriptions

The gene expression datasets are the leukimia (LEU) dajaZethe human lung

carcinomas (IUNG) data set [23], ALLA data set [24] and Hun@arcinomas (Carcino-
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Algorithm 3 The algorithm to solve Eq. (2.31)
Input:

1. The projection matrixy’.

2. The Lagrangian multiplier matrix

3. The quadratic penalty parameter

4. The number of feature selectéd

Process:

1. CalculatelV = W + LA

2. Calculate the vectqr € R**!, where each entry defined as= Z @Q,W =1,2,---,d.

3. Sortp, find out the indices vectar = [q1, g2, - , qx]” corresporiding to top sorted entries.
4. Assigni-th row of WtoVifie a;

assign zero row vectd’ € R'™to V, if i ¢q.

Output: The slack variable matrik’.

mas) data set [25]. All these four datasets are standartizeero-mean and normalized
by the standard deviation, which are summarized in Table 2.7

LEU data set encompasses two classes sampildsukimia patient (Positive 7 healthy
patient (Negative). Each sample I#§1 genes. Genes with minimal variations across the
samples were removed before the experiment. Also, intetisi#sholds were set ap and

16, 000 units for this data set. After preprocessing, we obtaineata @ith72 samples and
3571 genes.

LUNG data contain203 samples of five classes, which haM, 21, 20, 6, 17 samples,
respectively. Each sample h&#2600 genes. In the preprocessing, the genes with standard
deviations less thabl expression units were removed and we got a data set@itlsam-
ples and3312 genes at last.

ALLA data set containg2 samples of two classes, that is, ALL and AML, which have
and25 samples, respectively. Each sample cont@ing9 genes.

Carcinomas (CAR)data set is composed ©f samples of eleven classes, prostate, blad-
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Table 2.7. Gene Expression data set summary.

data name| # samples| # features| # classes
LEU 72 3571 2
LUNG 203 3312 5

ALLAML 72 7129 2
CAR 174 9182 11

(a) LEU (b) LUNG (c) ALLA (d) CAR

Figure 2.4. The classification accuracy using selectedfesty KNN.

der/ureter, breast, colorectal, gastroesophagus, kidisey; ovary, pancreas, lung adeno-
carcinomas and lung squamous cell carcinoma, which bévg, 26, 23, 12, 11, 7, 27, 6,
14, 14 samples, respectively. The raw data encompaksels genes and the after prepro-

cessing, the data set h&sl samples and182 genes.

(a) LEU (b) LUNG (c) ALLA

Figure 2.5. The classification accuracy using selectedifeaty SVM.
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2.3.4.2 Experiment Setup

In our experiments, for each data, we will randomly sel#£t to do the training
and use the remaining part as testing. The reason we usessp@ition of training data is
because it is well known that when the number of training 8atzomes sufficiently large,
any feature selection method will work well. We select thenber of features ranging from
1 to 10 with the incremental step and the feature selection performance is evaluated by
average classification accuracy on two popular classifiersik’ nearest neighbor (KNN)
and support vector machine (SVM). Specifically, we set up Kihth X' = 1 and SVM
with linear kernelC' = 1 respectively for their intuitive meaning and simplicityeté we
assume that the better the feature selection algorithrhedhigher classification accuracy
we will get. We compare our feature selection method withftlewing two basic filter
methods:

Fisher Score [37] selects each feature independently diogpto the score under the Fisher
criterion.

Information Gain (IG) [8] computes the sensitivity (coatbn or relevance) of a feature
w.r.t the class label distribution of the data.

In addition, we also compare our approach with some simdature selection methods
based on sparse learning:

Multi-Task Feature Selection (MTFS) [38] selects featuaesoss multi-task (multi-class)

by solving a general loss function with ;-norm regularization. .

Robust Feature Selection (RFS) [19] selects featuresmuiti-class and can be robust to
the outlier data by solving a joirdt, ;-norm problem.

Sparse Feature Selection (SFS) [39] selects features ilnga smoothed general loss
function with a more sparsg ,-norm constraint.

We tune the regularization parameter in MTFS and RFS to éehtn-zero row number of
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Table 2.8. The mean and std of the converged objective fumealue of our method using

50 random initialization

data

k=1

k=5

k=8

k =10

LEU

1.72 + 1.80

0.68 + 0.49

0.58 + 0.43

0.66 + 0.37

LUNG

23.61 + 2.87

11.81 4+ 0.38

11.31 4+ 0.84

10.12 + 0.74

ALLA

6.06 & 2.26

2.45 +1.24

1.28 + 0.85

0.92 + 0.56

CAR

29.69 + 1.73

23.01 £1.70

19.81 +1.68

18.40 + 1.48

the optimum solutioV exactly equal to the number of selected features. BecaudeSMT
and RFS both solve a convex optimization problem, they vatl global solution finally.
However, SFS and our method are based,ganorm constraint and we can only find local
solution. In our experiment, we used the optimum solutioM®fS as the initialization for
SFS and used random initialization for our method. Sinceetisean explicit meaning of the
constraintt in our method or SFS, we can avoid the heavy burden of tuniggiaezation
parameter and just make them as the number of selecteddsatie use the following
parameterg = 0.01, p = 1.02 and choos&000 as the maximum number of iterations in

Alg. 4.

2.3.4.3 Feature Selection Results

Fig. 2.4 shows the classification accuracy V.S. the numbeselgicted feature using
KNN classifier. Similarly, Fig. 2.5 demonstrates the feataelection results by SVM.
From them, we can see that when the number of selected featsmeall, particularly the
one with less tham features, the classification result of our method can beafIMds
well as RFS consistently, since our method can find a moressganiution by’s ,-norm
constraint instead of the solution to the relaxed regudion problem. Because SFS finds
local solution, its performance depends on the initialrati.e. MTFS. When feature
selection result of MTFS is good, like LEU data, SFS can ashiery promising results.
However, for some data, like LUNG, when MTFS performs ba8i$ will stuck at the bad
local optimum. When the number of selected feature incseaddhe sparse learning based
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feature selection methods will tend to perform similarlyieh is within our expectation.
Next we will conduct experiment to show that our method cad table local solutions

under different random initializations.

2.4 Conclusion

In classification problem, the large number of features aedelatively small num-
ber of data samples pose great challenges for classificaimmackle these problems, in
this chapter, we proposed a novel and efficient multi-classuire selection method with
emphasizing the combination of multi-class hinge loss @nenorm regularization min-
imization (¢,;-norm SVM) or least square loss with,-norm constraint. Thé, ;-norm
or /1 p-norm can capture the joint sparse structure to selectriemacross all the classes,
which naturally solves the feature selection for multissl@roblem. An efficient algorithm
with proved convergence has been provided and broad emlpstiedies have been per-
formed on the bench mark data sets. Compared with some okibing the state-of-art
methods, our method can consistently achieves better-ola#is feature selection perfor-

mance evaluated on two popular classifiers.
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Algorithm 4 The algorithm to solve Eq. (2.26)

Input:
1. Training dataX;, € R®™ training labels;, € R™rx™
2. The number of feature selectéd
3. The initial projection matrixV,.
Output:
1. Thek selected feature indices vectpr
2. The objective function valueb;
3. The learned projection matri¥’ and biash.
Initialization:
1. Sett =0
2. Initialize the projection matrix ad” = Wj.
3. Initialize the Lagrangian multiplier matrix € 0™, & € Q»*™,
4. Initialize the quadratic penalty parametet 0.1.
5. Initialize the incremental step size parametet 1.02.
Process:
repeat
. Update the biab by Eq. (2.28).
. Update the projection matriX” by Eq. (2.30).
. Update the the slack variable matfixby Alg. 3.
. CalculateG by Eq.(2.33).

. UpdateA(t+D) = A®) 4 ;) (W (t+D) _ y(+1)

. Updatex(t+1) = 58 4, () (X Ty (t+1) 4 1T _y Et+1)

1
2
3
4
5. UpdateF by Eq. (2.36).
6
7
8

. Updateptt1) = pu®
9. Updatet =t +1

until Converges
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CHAPTER 3
MULTI-VIEW K-MEANS CLUSTERING ON BIG DATA

3.1 Introduction

With the rising of data sharing websites, such as FacebodkFokr, there is a
dramatic growth in the number of data. For example, Facelep&rts about 6 billion
new photo every month and 72 hours of video are uploaded td Mol every minute.
One of major data mining tasks is to unsupervised categtre&arge-scale data [40-43],
which is useful for many information retrieval and classifion applications. There are
two main computational challenges in large-scale datdeunsgy: (1) How to integrate the
heterogeneous data features to improve the performancgatdtegorizations? (2) How
to reduce the computational cost of clustering algorithmdme-scale applications?

Many scientific data have heterogeneous features, whiclyemerated from dif-
ferent data collection sources or feature constructionswayor example, in biological
data, each human gene can be measured by different technisueh as gene expres-
sion, Single-nucleotide polymorphism (SNP), Array-conapi@e genomic hybridization
(aCGH), methylation; in visual data, each image/video candpresented by different vi-
sual descriptors, such as SIFT [44], HOG [45], LBP [46], GI8T], CENTRIST [48],
CTM [49]. Each type of features can capture the specific médron in the data. For ex-
ample, in visual descriptors, CTM uses the color spectfakrmation and hence is good
for categorizing the images with large color variationsSGlachieves high accuracy in
recognizing natural scene images; CENTRIST is good fosdldag indoor environment
images; HOG can describe the shape information of the im8te€r is robust to image

rotation, noise, illumination changes; and LBP is a poweddxture feature. It is crucial to

32



integrate these heterogeneous features to create momacand more robust clustering
results than using each individual type of features.

Although several graph based multi-view clustering aldpons were presented with
good performance, they have the following two main drawba€k one hand, because all
of them are graph based clustering method, the construcfidata graph is a key issue.
Using different kernels to build the graph will affect thedirclustering performance a
lot. Moreover, for some specific kernels, we have to condideimpact of the choice of
parameters, such that the clustering results are sensitivee parameters tuning. On the
other hand, more important, due to the heavy computatidmedférnel construction as well
as eigen decomposition, these graph based methods canmidiZsel to tackle large-scale
data clustering problem.

The classical-means clustering is a centroid-based clustering methbahapar-
titions the data space into a structure known as Voronoirdiag Due to its low com-
putational cost and easily parallelized process,Ahmeans clustering method has often
been applied to solve large-scale data clustering problarstead of the spectral cluster-
ing. However, the{-means clustering was designed for solving single-view dhitstering
problem. In this section, we propose a new robust multi-viesneans clustering method
to integrate heterogeneous features for clustering. Coedgda related clustering methods,
our proposed method consistently achieves better clagt@erformances on six bench-
mark data sets. Our contributions in this paper are sumethitzthe following four folds:

(1) We propose a novel robust large-scale multi-viewneans clustering approach,
which can be easily parallelized and performed on multegocessors for big visual data
clustering;

(2) Using the structured sparsity-inducing nory;-norm, the proposed method is
robust to data outliers and can achieve more stable clogtezsults with different initial-

izations;
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(3) We derive an efficient algorithm to tackle the optimimatdifficulty introduced
by the non-smooth norm based loss function with proved ageree;

(4) Unlike the graph based algorithms, the computationadalexity of our method-
s is similar to the standarfl-means clustering algorithm. Because our method does not
require the graph construction as well as the eigen-decsitipo, it avoids the heavy com-

putational burden and can be used for solving large-scalt-wew clustering problems.

3.2 Robust Multi-ViewK -Means Clustering
As one of most efficient clustering algorithm&-means clustering algorithm has
been widely applied to large-scale data clustering. Thus|uster the large-scale multi-

view data, we propose a new robust multi-viGivmeans clustering (RMKMC) method.

3.2.1 Clustering Indicator Based Reformulation
Previous work showed that the G-orthogonal non-negativieixactorization (N-
MF) is equivalent to relaxed&’-means clustering [50]. Thus, we reformulate fieneans
clustering objective using the clustering indicators as:
min || X7 — GFT||%
F.G
K (3.1)
s.t. Gy, € {0,1}, Z Gp=1,Vi=1,2,---,n
k=1
whereX ¢ R?*" is the input data matrix with images and-dimensional visual features,
F € R™¥ js the cluster centroid matrix, ar@ € R**¥ is the cluster assignment matrix
and each row o satisfies thel-of-K coding scheme (if data poing is assigned t@-th

cluster therGGy, = 1, andGj;, = 0, otherwise).
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3.2.2 Robust Multi-ViewK -Means Clustering via Structured Sparsity-Inducing Norm

The original K-means clustering method only works for single-view datsiring.
To solve the large-scale multi-view clustering problem, prepose a new multi-viewk -
means clustering method. L&) ¢ R%*" denote the features inth view, F(*) ¢ R%*K
be the centroid matrix for the-th view, andG®) € R™*¥ be the clustering indicator matrix
for thewv-th view. Given)M types of heterogeneous featuress 1,2,--- , M.

The straightforward way to utilize all views of featuresoscbncatenate all features
together and perform the clustering algorithm. Howeversuoh method, the important
view of features and the less important view of features i@&ed equally such that the
clustering results are not optimal. It is ideal to simultaungy perform the clustering using
each view of features and unify their results based theiomamce to the clustering task.
To achieve this goal, we have to solve two challenging probkte 1) how to naturally
ensemble the multiple clustering results? 2) how to leagenriportance of feature views
to the clustering task? More important, we have to solvedlwsies simultaneously in the
clustering objective function, thus previous ensemble@g@ghes cannot be applied here.

When a multi-view clustering algorithm performs clustegrinsing heterogeneous
features, the clustering results in different views shdaddiniquej.e. the clustering indi-
cator matrice€; ™ of different views should share the same one. Therefore piltiview
clustering, we force the cluster assignment matrices th@same across different views,
that is, the consensus common cluster indicator matrig R™**, which should satisfy
the 1-of-K coding scheme as well.

Meanwhile, as we know, the data outliers greatly affect gmégumance of<-means
clustering, because th€-means solution algorithm is an iterative method and in each
eration we need to calculate the centroid vector. In ordéyatie a more stable clustering
performance with respect to a fixed initialization, the retfki-means clustering method is

desired. To tackle this problem, we use the sparsity-imdpoorm,/; ;-norm, to replace
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the /,-norm in the clustering objective functioa,g. Eq. (3.1). The/; ;-norm based clus-
tering objective enforces thig-norm along the data points direction of data mafixand

/5-norm along the features direction. Thus, the effect ofieutlata points in clustering are
reduced by thé;-norm. We propose a new robust multi-vigévmeans clustering method

by solving:

i - ()7 " ()"
ponin O (@)X = GE
IRl v=1 K M (3.2)
Stle € {0, 1}, Z le = 1, Z Oé(v) =
k=1 v=1

where o) is the weight factor for the-th view and~ is the parameter to control the
weights distribution. We learn the weights for differenpé&g of features, such that the

important features will get large weights during the mulaw clustering.

3.3 Optimization Algorithm

The difficulty of solving the proposed objective comes frdme following two as-
pects. First of all, the,;-norm is non-smooth. In addition, each entry of the cluster
indicator matrix is a binary integer and each row vector nsagisfy thel-of-K coding

scheme. We propose new algorithm to tackle them efficiently.

3.3.1 Algorithm Derivation

To derive the algorithm solving Eq. (3.2), we rewrite Eq2§3as

M
J = S (@)Y H®), (3.3)

F@) D<v> ®.G =1

where

H® = Tr (X® - FOGT) DO (x©) _ p0)GT)T (3.4)
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D ¢ R™ " s the diagonal matrix corresponding to theh view and thei-th entry on

the diagonal is defined as:

1
Dz(zv) = e
2 e

Vi=1,2,..n, (3.5)
wheree®) is thei-th row of the following matrix:
B® = x0" _gp®" (3.6)

The first step is fixing7, D™, o and updating the cluster centroid for each vig{ .

Taking derivative of/ with respect taF*), we get

oJ

_ (v) T
e = —2XDYG + 2PIGTDOG, (3.7)

where

DW — (@)D, (3.8)
Setting Eq. (3.7) a8, we can updaté™):
FO = X0 DpWGGTDWE) (3.9)

The second step is fixing ), D), o and updating the cluster indicator mateéix

We have

M
Z Tr(X® — FOGT)D(X®™ — FOGT)T

- SS BN - g

v=1 i=1

= Z ZD(”)HX F@g,|[2) (3.10)

=1 ov=1
We can solve the above problem by decoupling the data anghatb& cluster indicator for

them one by one independently, that is, we need to tackleadllening problem for the

fixed specifici, with respect to vectog = [g1, g2, - - - , gx]? € REX!
M _ K
min Y _dW|x® — FUg||3, st.g € {0,1}, > gi=1 (3.11)
g
_ k=1
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whered® = 55;’) is thei-th element on the diagonal of the matfiX*). Given the fact that
g satisfiesl-of-K coding scheme, there afe candidates to be the solution of Eq. (3.11),
each of which is thé-th column of matrix/x = [e, &, --- ,ex]. To be specific, we can

do an exhaustive search to find out the solution of Eq. (3.41) a

g = e, (3.12)
wherek is decided as follows,
M ~,
k = arg minz dV||x®) — Fg||3 . (3.13)
J v=1

The third step is fixing"™, G, o¥) and updatingD™ by Eq. (5.26) and Eq. (3.6).
The fourth step is fixing"™, G, D™ and updating:).

M M
121(%1; (™Y Tr H® | s.t. ;a(”) =1, o >0 (3.14)

whereH ™ is also defined in Eq. (3.4). Thus, the Lagrange function of(EQ6) is:

M M
> (@ H® - XD oW —1). (3.15)
v=1 v=1

In order to get the optimal solution of the above subprobkehthe derivative of Eq. (4.28)

with respect tav) to zero. We have:

A\t

M
Substitute the resultant”) in Eq. (4.29) into the constraint_ o) = 1, we get:

v=1

1

o) = (PYH(v)> -

(3.17)

1

% (YH®)™=

v=1
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By the above four steps, we alternatively update), G, D™ as well asa® and repeat
the process iteratively until the objective function beesnconverged. We summarize the

proposed algorithm in Alg. 5.

3.3.2 Discussion of The Parameter

We use one parameterto control the distribution of weight factors for different
views. From Eg. (4.30), we can see that wher> oo, we will get equal weight factors.
And wheny — 1, we will assignl to the weight factor of the view whosg™ value is
the smallest and assignto the weights of the other views. Using such a kind of strigteg
on one hand, we avoid the trivial solution to the weight disition of the different views,
that is, the solution whefm — 1. On the other hand, surprisingly, we can take advantage of
only one parametey to control the whole weights, reducing the parameters ofribdel

greatly.

3.3.3 Convergence Analysis

We can prove the convergence of the proposed Alg. 5 as folldes can divide
the Eqg. (3.2) into four subproblems and each of them is a copk@blem with respect to
one variable. Therefore, by solving the subproblems alterely, our proposed algorithm
will guarantee that we can find the optimal solution to eadbpsoblem and finally, the

algorithm will converge to local solution.

3.4 Time Complexity Analysis

As we know, graph based clustering methods, like spectrateting and etc., will in-
volve heavy computatiom,g. kernel/affinity matrix construction as well as eigen-deposition.

For the data set with images, the above two calculations will have the time comiple
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of O(n?) andO(n?) respectively, which makes them impractical for solvingltrge-scale
image clustering problem. Although some research worke baen proposed to to reduce
the computational cost of the eigen-decomposition of tlaplgiLaplacian [51] [52], they
are designed for two-way clustering and have to use therclaal scheme to tackle the
multi-way clustering problem.

However, our proposed method is centroid based clustergtgad with the similar
time complexity as traditiondl’-means. FoiK -means clustering, if the number of iteration
is P, then the time complexity i©)(P Knd) and the time complexity of our proposed
method isO(PKndM), where) is the number of views and usually < n, M < n
and K < n. In addition, in the real implementation, if the data is tog to store them
in memory, we can extend our algorithm as an external memnigoyithm that works on a
chunk of data at a time and iterate the proposed algorithmach data chunk in parallel
if multiple processors are available. Once all of the datank&ls have been processed, the
cluster centroid matrix will be updated. Therefore, ourgm®ed method can be used to
tackle the very large-scale clustering problem.

Because the graph based multi-view clustering methodsotdr applied to the
large-scale image clustering, we did not compare the pedoce of our method with

them in the experiments.

3.5 Experiments

In this section, we will evaluate the performance of the psgd RMKMC method
on six benchmark data sets: SensIT Vehicle [53], Caltech{®@], Microsoft Research
Cambridge Volumé(MSRC-v1) [55] Handwritten numerals [56], Animal with akiute [57]

and SUN397 [58]. Three standard clustering evaluation metrics arel ticaneasure the
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Table 3.1. Data set summary.

Data sets| # of data| # of views | # of cluster
SensIT 300 2 3
Caltech7 441 6 7
MSRC-v1 210 6 7
Digit 2000 6 10
AWA 30475 6 50
SUN 10000 7 100

multi-view clustering performance, that is, ClusteringcAacy (ACC), Normalized Mu-

tual Information(NMI) and Purity.

3.5.1 Data Set Descriptions

We summarize the six data sets that we will use in our expertisria Table 5.1.

SenslIT Vehicle data set is the one from wireless distribatstsor networks (WD-
SN). It utilizes two different sensors, that is, acoustid aaismic sensor to record different
signals and do classification for three types of vehicle imnaglligent transportation sys-
tem. We download the processed data from LIBSVM [59] and oang samplel 00 data
for each class. Therefore, we had@#) data sample< views and3 classes.

Caltech101 data set is an object recognition data set comgg8677 images, be-
longing to 101 categories. We chose the widely useédlassesj.e. Faces, Motorbikes,
Dolla-Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chaltollowing [42], we sample
the data and totally we havkell images. In order to get the different views, we extract
LBP [46] with dimensior256, HOG [45] with dimensiorl 00, GIST [47] with dimension
512 and color moment (CMT) [49] with dimensiot8, CENTRIST [48] with dimension
1302 and DoG-SIF [44] with dimensioh28 visual features from each image.

MSRC-v1 data set is a scene recognition data set contairstagses240 images in

total. Following [41], we selecT classes composed of tree, building, airplane, cow, face,
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car, bicycle and each class Hasimages. We also extract the safmeisual features from
each image with Caltech101 dataset.

Handwritten numerals data set consist8@f0 data points fof to 9 ten digit classes.
(Each class has 200 data points.) We use the publisfestures to do multi-view cluster-
ing. Specifically, these features ar&6 Fourier coefficients of the character shapes (FOU),
216 profile correlations (FAC)¢4 Karhunen-love coefficients (KARR40 pixel averages
in 2 x 3 windows (P1X),47 Zernike moment (ZER) an@ morphological (MOR) features.

Animal with attributes is a large-scale data set, which iasof 6 feature, 50
classes, 30475 samples. We utilize all the published featiar all the images, that is,
Color Histogram (CQ) features , Local Self-Similarity (DS8atures [60], PyramidHOG
(PHOG) features [61], SIFT features [44], colorSIFT (RGBIFeatures [62], and SURF
features [63].

SUN 397 dataset [58] is a published dataset to provide relsegsr in computer vi-
sion, human perception, cognition and neuroscience, madkarning and data mining,
with a comprehensive collection of annotated images cogeaailarge variety of environ-
mental scenes, places and the objects. It consisi8flasses with 00 images for each
class. We conduct the clustering experiment on tha éoyclasses via thé published fea-
tures for all thel0000 images.The visual features are color moment, dense SIFT, GIST,

HOG, LBP, MAP and TEXTON.

3.5.2 Experimental Setup

We will compare the multi-view clustering performance of owethod (RMKMC)
with their corresponding single-view counterpart. In didadi, we also compare the results
of our method with the baseline method naive multi-vigwmeans clustering (NKMC),
and affinity propagation (AP). In our method, when we igndre tveight learning for

each type of visual features, the method degenerates tophesumrsion, called as simple
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Table 3.2. SensIT Vehicle data set

Methods

ACC

NMI

Purity

acoustic

0.5049 £ 0.030

0.1018 = 0.023

0.5055 =+ 0.029

seismic

0.5122 £ 0.047

0.1149 + 0.046

0.5129 + 0.046

NKMC

0.5449 £+ 0.041

0.1375 £ 0.030

0.5465 £ 0.039

AP

0.3867 £ 0.000

0.0084 =+ 0.000

0.3867 £ 0.000

SMKMC

0.5490 + 0.040

0.1395 £ 0.032

0.5494 £+ 0.040

RMKMC

0.5504 + 0.049

0.1484 + 0.033

0.5542 + 0.044

MKMC (SMKMC). In order to see the importance of the weightrteag, we also compare
our method to this simple version method.

Before we do any clustering, for each type of features, wenatire the data first,
making all the values in the range1, 1]. When we implement naive multi-vie-means,
we simply use the concatenated normalized features asfimpiie classid<-means clus-
tering algorithm. As for affinity propagation methods, weeddo build the similarity
kernel first. Due to the fact that linear kernel is prefermethrge-scale problem, we use the

following way to construct linear kernel.

Vi, j=1,2,..,n, (3.18)

In addition, RMKMC has a parameterto control the weight factor distribution among
all views. We search the logarithm of the parametethat is,log,(, in the range from
0.1 to 2 with incremental step.2 to get the best parameteys. Since all the clustering
algorithms depend on the initializations, we repeat allttethods50 times using random

initialization and report the average performance.

3.5.3 Clustering Results Comparisons
Table 3.2 demonstrates the clustering results on Senslicleetiata set. From it,

we can see that although there are only two views (acousticaismic), compared with
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Table 3.3. Caltech)1-7 data set.

Methods

ACC

NMI

Purity

LBP

0.5236 £ 0.021

0.4319 £ 0.006

0.6005 =+ 0.008

HOG

0.5561 = 0.052

0.5020 =+ 0.035

0.6459 £ 0.038

GIST

0.5663 £ 0.032

0.4737 £ 0.024

0.6418 £+ 0.028

CMT

0.3809 £ 0.015

0.2706 = 0.021

0.4346 £+ 0.010

DoG-SIFT

0.6125 £ 0.037

0.5637 £ 0.018

0.6673 £ 0.028

CENTRIST]

0.6315 = 0.058

0.5981 £ 0.046

0.7035 £ 0.044

NKMC

0.6587 £ 0.063

0.6561 =+ 0.035

0.7458 £ 0.030

AP

0.5125 = 0.000

0.3611 £ 0.1054

0.5170 £ 0.1290

SMKMC

0.6723 £ 0.058

0.6775 £ 0.034

0.7561 £ 0.026

RMKMC

0.6797 £ 0.053

0.6892 £ 0.029

0.7595 £ 0.027

single-view K-means counterparts, our proposed RMKMC can boost theecingtper-
formance by more thah0%. Our RMKMC can also beat NKMC and AP. Table 3.3 and
Table 3.5 show the clustering results on regular size Gal@t-7, MSRC-v1 as well as
Handwritten numerals data set. From it, we can see that watle fieature views involved
in, our method can improve the clustering performance eughédr. Also, on large-scale
data set Animal with attribute, although doing clusteringad50 class data set is hard,
the performance of our method can still outperform that efather compared methods as
shown in Table 3.6.

We plot the confusion matrices of RMKMC and NKMC in terms aisfiering accu-
racy in Fig. 4.6. Because the clustering numbers of AWA antll 8dita sets are large, their
confusion matrices cannot be plotted within one page. We tlaese two figures. From
both tables and figures, we can see that our proposed metbodstently beat the base

line method on all the data sets.
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Figure 3.1. The calculated average clustering accuracfusmm matrix for Caltech101,

MSRCV1, SensIT Vehicle, and Handwritten numerals data.sets

Table 3.4. MSRC-v1 data set.

Methods ACC NMI Purity

LBP  ]0.4726 4+ 0.039]0.4156 £ 0.024|0.5087 £ 0.030
HOG ]0.6361 4+ 0.041{0.5669 + 0.032|0.6610 + 0.037
GIST |0.6283 £ 0.057]0.5523 4+ 0.039(0.6511 4+ 0.044
CMT  |0.5076 £ 0.043|0.4406 £ 0.037{0.5307 £ 0.037
DoG-SIFT|0.4341 £ 0.036{0.3026 £ 0.028]0.4558 4+ 0.030
CENTRIST|0.5977 £ 0.062|0.5301 £ 0.037[0.6205 £ 0.054
NKMC [0.7002 = 0.085|0.6405 £ 0.057|0.7207 £ 0.073
AP 0.1571 4+ 0.000]0.2890 +£ 0.000{0.1714 £ 0.000
SMKMC 0.7423 £ 0.093(0.6940 £ 0.070(0.7652 4+ 0.079

RMKMC |0.8142 + 0.087|0.7776 + 0.071/0.8341 + 0.073

3.6 Conclusion

In this chapter, we proposed a novel robust multi-vigwneans clustering methods
to tackle the large-scale multi-view clustering problemdtilizing the common cluster
indicator, we can search a consensus pattern and do chgséerioss multiple visual feature

views. Moreover, by imposing the structured sparéjty-norm on the objective function,
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Table 3.5. Handwritten numerals data set.

Methods

ACC

NMI

Purity

FOU

0.5560 = 0.062

0.5477 £ 0.028

0.5793 £ 0.048

FAC

0.7078 £ 0.065

0.6791 £ 0.032

0.7374 £ 0.051

KAR

0.6898 £ 0.051

0.6662 = 0.030

0.7149 £+ 0.044

MOR

0.6143 £ 0.058

0.6437 £ 0.034

0.6428 + 0.050

PIX

0.6945 £ 0.067

0.7030 £ 0.040

0.7235 £ 0.059

ZER

0.5348 £ 0.052

0.5123 £+ 0.025

0.5684 £ 0.043

NKMC

0.7282 £ 0.067

0.7393 £ 0.039

0.7609 £ 0.059

AP

0.6285 = 0.000

0.5940 £ 0.000

0.6600 = 0.000

SMKMC

0.7758 £ 0.079

0.7926 £ 0.039

0.8106 =+ 0.060

RMKMC

0.7889 £ 0.075

0.8070 £ 0.033

0.8247 + 0.052

Table 3.6. Animal with attribute data set.

Methods

ACC

NMI

Purity

CP

0.0675 £ 0.002

0.0773 £ 0.003

0.0874 £ 0.002

LSS

0.0719 £ 0.002

0.0819 = 0.005

0.0887 £ 0.002

PHOG

0.0690 £ 0.004

0.0691 + 0.003

0.0823 £ 0.004

RGSIFT

0.0725 £ 0.003

0.0862 £ 0.004

0.0889 + 0.003

SIFT

0.0732 £ 0.003

0.0944 + 0.005

0.0919 + 0.004

SURF

0.0764 £ 0.003

0.0885 £ 0.003

0.0978 £ 0.004

NKMC

0.0802 =+ 0.001

0.1075 £ 0.003

0.1007 £ 0.001

AP

0.0769 £ 0.001

0.0793 £ 0.003

0.0975 £ 0.001

SMKMC

0.0841 £ 0.005

0.1108 = 0.005

0.1039 = 0.005

RMKMC

0.0943 £ 0.005

0.1174 4+ 0.005

0.1140 £ 0.005

our method is robust to the outliers in input data. Our newhoetlearns the weights
of each view adaptively. We also introduce an optimizatitgoathm to iteratively and
efficiently solve the proposed non-smooth objective withvpd convergence. We evaluate

the performance of our methods on six multi-view clustedatp sets.
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Table 3.7. SUN data set.

Methods

ACC

NMI

Purity

COLOR

0.0507 £ 0.003

0.1417 £ 0.003

0.0544 £ 0.003

DSIFT

0.0661 £ 0.002

0.1717 £ 0.002

0.0710 £ 0.002

GIST

0.0740 £ 0.002

0.2008 £ 0.002

0.0812 £+ 0.004

HOG

0.0715 £ 0.003

0.1862 = 0.003

0.0772 £ 0.003

LBP

0.0599 =+ 0.002

0.1618 = 0.002

0.0644 £ 0.002

MAP

0.0656 = 0.003

0.1917 £ 0.003

0.0710 £ 0.004

TEXTON

0.0561 =+ 0.002

0.1682 = 0.002

0.0608 =+ 0.002

NKMC

0.0546 £ 0.001

0.1507 £ 0.003

0.0591 £ 0.001

AP

0.0667 £ 0.001

0.1693 £ 0.003

0.0765 £ 0.001

SMKMC

0.0834 £ 0.003

0.2106 £ 0.003

0.0839 £ 0.003

RMKMC

0.0927 £ 0.003

0.2154 + 0.003

0.0922 £ 0.003
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Algorithm 5 The algorithm of RMKMC
I nput:

1. Data forM views{X® ... X®)} andX® ¢ R&x,
2. The expected number of clusteks
3. The parametey.
Output:
1. The common cluster indicator matrix
2. The cluster centroid matrik{, for each view.
3. The learned weight™ for each view.
I nitialization:
1. Sett =0
2. Initialize the common cluster indicator matrgx € R"*% randomly, such tha6
satisfies thd.-of-K coding scheme.
3. Initialize the diagonal matrip™ = I, for each view, wheré, € R"*" is the identity
matrix.
4. Initialize the weight factor") = - for each view.
repeat
1. Calculate the diagonal matrix® by Eq. (3.8)
2. Update the centroid matrik,, for each view by Eq. (3.9)
3. Update the cluster indicator vectgifor each data one by one via Eqg. (3.12) and
Eqg. (3.13)
4. Update the diagonal matri(*) for each view by Eq. (5.26) and Eq. (3.6)
5. Update the weight facter(®) for each view by Eq. (4.30)
6. Updatet =t + 1

until Converges

48



CHAPTER 4
HETEROGENEOUS IMAGE FEATURE INTEGRATION

4.1 Introduction

As we know, scene categorization and visual recognitiorkayetasks in computer
vision research. However, due to images’ variability, agoliy and the wide range of
illumination, they are challenging. The most popular wayéaockle such problems is to
utilize the low-level image features such as global colxtture histograms, object shapes,
etc. In recent years, a variety of feature representation methad been proposed to solve
how to describe the visual objects in differentimages. Stmoes on the local information,
others are holistic descriptors. Among all local featurscdigtors, Scale-Invariant Feature
Transform (SIFT) [44], Speeded-up Robust Features (SURE), Histogram of Oriented
Gradients (HOG) [45] were most popularly used to overcomagiewvariability caused by
changing viewpoints, occlusions, and varying illuminatid_ocal Binary Patterns (LBP)
was proposed in [46] as a powerful texture feature based cur@nce histogram of local
binary patterns. GIST [47] and CENTRIST [48] are two repn¢gtve holistic descriptors.

Because different features describe different aspectseo¥isual characteristics, it
is true that one descriptor can be regarded as a better espa¢ion under certain circum-
stances than the others. If we integrate all the descriptiara proper machine learning
method, we could create a generally more accurate and mbuostrdescriptor than any
single descriptor, which is like the scenario that if we usmultiple view” to observe an
object, we can “see” its details more clearly.

How to combine heterogeneous features is becoming a chailgas well as attrac-

tive problem nowadays. As a multiple-kernel learning aildpon, the heterogeneous feature
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machine (HFM) [65] was recently proposed based on logisticassion loss function and
group LASSO regularization teuperviseduse the multiple types of features for visual
classifications. On the other hand, unsupervised categmmzof images or image parts
is needed for image and video collection or as a preproagssep for later supervised
classification. In addition, labeling image is a time conswgras well as biased task. Al-
though it is possible to label large amounts of images foeassh purposes, this is often
unrealistic in practice. Therefore, how to take advantdgbe heterogeneous features to
do unsupervised clustering or semi-supervised learnigglis changing problem.

In this chapter, we will propose two graph based methods tsp#wtral cluster-
ing and semi-supervised learning with the reasonable fiusidneterogeneous modalities ,

where each modality is a kind of intermediate image desaript

4.2 Multi-Modality Spectral Clustering

In recent computer vision research, many unsuperviseditepbased methods have
been proposed to classify scenes and recognize objectsrfrages. Fergust al.[66] and
Sivic et al.[67] discovered the latent visual building block in imaggataking use of the
generative topic models that were developed for text minsugh as probabilistic Latent
Semantic Analysis (pLSA) [68] and Latent Dirichlet Allogat (LDA) [69]. Instead of uti-
lizing the generative models, Graumeinal.[70] employed partially matching kernel [71]
to get the distinctive model and explored the image categdoymation by spectral clus-
tering. Dueck and Frey applied Affinity Propagation methodluster different scene and
objectimages [42]. Nevertheless, all these methods om®dgt aee image feature descriptor
without the help of other descriptors extracted from theesamage.

In this section, we unsupervised integrate five renownedrgesrs, including DoG-

SIFT [44], LBP [46], GIST [47], CENTRIST [48], and HOG [45]igfure 4.5 demonstrates
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Figure 4.1. The visual patterns of descriptors LBP, GISTNCRIST, DoG-SIFT, and
HOG of three sample images from Caltech101 data set..

the visual patterns of each descriptor for sample imagesh Eegpresentation corresponds

to a single modal, that is, a local descriptor or holisticotliggor.

4.2.1 Image Descriptors

DoG-SIFT is originally designed for recognizing the sam@obappearing under
different conditions and has been widely used in computgomiand image content re-
trieval. As a local descriptor, it is invariant to image ida as well as scale. It is also
robust across a substantial range of affine noise and chanljemination. There are sev-
eral variations of SIFT descriptors.¢. Dense SIFT [72]) in literature. In order to fairly
compare our method to existing unsupervised scene catagjon methods [42, 70], we
use DoG-SIFT to be consistent with their selection.

LBP is a powerful texture feature based on occurrence hiatogf local binary
patterns. It emphasizes the local structure and is famaussfoobustness to rotation and
non-uniform illumination.

HOG is a good local descriptor to describe the shape infoomatf the image. D-

iffering to SIFT which describes the feature at the candidatation (keypoint), HOG
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describes the feature over the given region. HOG was cordisé cell-structured LBP
as the human detector and achieves promising performaBte [7

GIST encodes rough geometry and spatial structures withimage and suppress
detailed texture focusing on the holistic information. d¢haeved high accuracy in recog-
nizing natural scene categoriesg. mountain and coast. But it often fails to recognize
images from indoor environments.

CENTRIST is a holistic descriptor to capture the the staphial structure within
images that reflects the functionality of the location, asgdeeially suitable for indoor

environment categorization classification.

4.2.2 Multi-Modal Spectral Clustering

Generally speaking, there are two main streams for seekmgalutions to multi-
modal unsupervised learning problem. One is based on thgngekcentralized algorithm-
s, making use of the multiple perspectives simultaneowslyntd out the hidden pattern
from the data. The other is to figure out the multi-modal uesuviged clustering problem
via a distributed way, that is, to learn the hidden pattenbvidually from each single
representation and then learn the optimal hidden pattesnsthose multiple patterns [74].

To naturally integrate heterogeneous image features, o@ope a unified objective
function to simultaneously optimize clustering resultseach individual descriptor and
their combinations. In other words, we minimize both sp@atiustering error of each
view and the distances between the multi-modal clustendgrator matrix and each single
modal spectral clustering indicator matrix. Thereforer, multi-modal spectral clustering

objective function is

G>o,é“#£:mi; (G, Gy) (4.1)
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where

where L; andG; are the corresponding Laplacian matrix and clusteringcatdr matrix

of each single modaty is the penalty parametef, is the multi-modal clustering indicator
matrix which we care about. Thus, given the Laplacian matfigach single modal, we
utilize Eq. (4.25) to learn the clustering indicator matidx each modal and clustering

indicator matrix for the multi-modal simultaneously.

4.2.3 Non-Negative Orthonormal Constaint

The traditional way to do spectral clustering results isrngkadvantage of spectral
relaxation. The main disadvantage of this approach is tlebbtained spectral solution
has mixed signs, which could severely deviate from the tolgtisn and have to resort to
other clustering methods, such as K-means or spectralaotst obtain the final cluster
indicators. In order to directly get the discrete clustelicator matrix without further dis-
cretization process, we add the non-negative constfaint). Compared to the traditional
spectral clustering method [75], although we still find tbedl solution, this relaxation is
guaranteed to be converged (will be proved later) and catttjrassign clusters to data

point. Moreover, it is more robust to the initial conditions

4.2.4 MMSC Algorithm
In order to get the optimal solution of EqQ. (4.25), we set teewdtive of the objective

function with respect t@-; to zero. We haveL;G; + 2a(G; — G) = 0. Thus,

GZ‘ = Oé(LZ + Oé])_lG. (43)
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We substitute Eq. (4.3) to Eg. (4.25) and the first term in tharmation can be rewritten
as:
TrGT LGy = o*Tr GT(L; + o) ' Li(L; + al)7'G (4.4)
Also, since
Gi—G
=a(L;+al)'G-G
= (a(L; + )7t = 1)G (4.5)
= (a(L; + o)™t — (L + o) (L; + o)1 G
= —L;(L; + o) 'G
the second term in the summation can be rewritten as:
aTr (G; — G (G — G)
=aTrGT(L; + o) ' L;Ly(L; + o) 7'G
= aTrGT(L; + al) " (L; + o) Li(L; + o) G “6)
—*Tr GT(L; + o) ' Ly(L; + o) 7'G
= aTr GTLi(L; + ol)'G
—a®Tr GT(L; + al) " Li(L; + al)'G.
We substitute Eq. (4.4) and Eq. (4.6) to Eq. (4.25), and sxau
Li(L; +al)™?
= (Li+al —al)(L;+ o)™ (4.7)
=I1—a(L;+al)™!

the optimization problem becomes:

min S aTrGTLy(L; + o) 'G
G>0,GTG=1,G; 5 (4.8)

= min > aTrGTG — o*TrGT(L; + ol)"'G.
G>0,GTG=I1,G;

Since there is the constraiit’ G = I, Eq. (4.8) is equivalent to maximize the following:

Tr T L N Ha. 4.9
pomax rGT() (Li+al) ™G (4.9)
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The above optimization problem can be solved using an iteratgorithm [76]:
Rrd ) 3=GTJG, (4.10)

whereJ = Z (L; + a[)‘l. We initialize G byG, + 0.2, whereG, is obtained by spectral
relaxation to Normalized Cut using spectral rotation in éxgenspace. Becausgg is a

cluster indicator matrix, 0.2 is added to makg+ 0.2 as a valid practical initialization to
avoid stucking at the same solution. We can use randomlinéteon as well. However, if

we use the above initialization, we can get a more robusterling) result.

Algorithm 6 The algorithm of MMSC
Input: Given V multi-modal affinity matrice$V;, Vi = 1,2,--- , V andc clusters

Output: Cluster indicator matrixy

Procedure:

1: Calculate the corresponding Laplacian matrices; D, — W;, Vi =1,2,---, V.

2: Calculate the inverse matri&,,,.ivi—modal = EV: (L; +al )*1.

3: Compute the first eigenvectorsi;, U, - - - ,ulc Of Lonuiti—modal -

4: LetU € R"*¢ be the matrixXJ = [u, Ug, - -, U,].

5: Calculate the matrif” € R"*¢ from U by normalizing each row of U to be norm 1.
6: Letg’ € R, Vi = 1,2, -- -, n, be the vector corresponding to theh row of T'.

7: Cluster the point$g’);—; ».... , With spectral rotation algorithm to gé,

8: Use G, + 0.2 as the input and perform the iterative algorithm with the -negative

relaxation, to get final assignment indicator matrix
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4.2.5 Convergence of Our Algorithm
It can be proved that the Eq. (4.10) is guaranteed to convefgst, we write the

Lagrangian function of Eq. (4.9) as:
L=TrGTJG — \Tr (GTG —I). (4.11)

Theorem 1 Given the update approach of Eq. (4.10), the lagrangian tioncC as in
Eqg. (4.11) increases monotonically, that is, nondecregasin
Proof. We use the auxiliary function [77]. An auxiliary fuien P(G,G) < L£(G) of

function £(G) satisfies

P(G,G) = L(G), P(G,G) < L(G). (4.12)
We define
GV = argmax P(G,GY). (4.13)
G
Thus,
L(GY) = P(GY, GY) < P(G"Y, W) < £(GHY). (4.14)

So far, we have shown tha(G®) is monotonically increasing. In the following
paragraph, we will prove two issues. First, we will provettive find an appropriate aux-
iliary function. After that, we will find the global maxima éfie auxiliary function. Note
that it is important that the maxima in the Eq. (4.13) are tlobg maxima. Otherwise, the

first inequality of Eq. (4.14) does not hold. We can show that

P(G,G) = X3 J;GiG (1 + log G:’Zgj:)

ko (4.15)
p G :
2 kz ( é zk
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is an auxiliary function ofZ(G) of Eq. (4.11) (the constant termis ignored). Using the

inequalityz > 1 + log z and set: = gigf: the first term in Eq. (4.15) is a lower bound of
ik

the first term in Eq. (4.11). Since there is a generic ineguali
ZZ (A5 ”’S’P > Tr (STASB), (4.16)
i=1 p=1
whereA > 0, B > 0,5 > 0,5 > 0, with A and B symmetric. Taking advantage of that
Generic Inequality Eq. (4.19), we can find the second terngi(£15) is a lower bound of
the second term in EqQ. (4.11). According to Eq. (4.13), walnedind the global maxima
of P(G, G) for G. The gradient is

OP(G, é) B 2(<]G)Zkézk B 2(é)‘>z‘kGik

— 7 417
9 G o (4.17)
The second derivative is
PP(G,G) (JG),. G (G)\) .
_ i i 4.1

Therefore,P(G, G) is a concave function in H and has a unique global maximums Thi
global maximum can be obtained by setting the first deriegtivzero, which yields

- (JG);
G?k = G?k'( = )Zk-
(GA)i

(4.19)

According to Eq. (4.13)7*) = G andG® = G. Thus, we proved the theorem. [

4.2.6 Experimental Results

In this section, we compare the performance of our multi-ahatustering and re-
lated methods via two benchmark data sets: Caltech-101Hgie2t al.2004) as well as
Microsoft Research Cambridge Volume 1 (MSRC-v1) (Winn é2@05). Three standard
metrics have been used to measure the image clusteringparioe, that is, Clustering

Accuracy (ACC), Normalized Mutual Information (NMI), andity.
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Table 4.1. Clustering Accuracy

7 classes

20 classes

MSRC-v1

0.4314 £ 0.0065

0.3040 £+ 0.0091

0.5613 + 0.0220

0.5439 £ 0.0416

0.0.4089 £ 0.0026

0.6615 £ 0.0051

0.60525 £ 0.0185

0.5080 £ 0.0026

0.7258 £ 0.0177

0.5766 £+ 0.0237

0.2744 £+ 0.0057

0.4210 £ 0.0221

0.581 £ 0.0542

0.3659 £ 0.0042

0.4966 £ 0.0040

0.5137 £ 0.0375

0.3694 £+ 0.0049

0.5085 £ 0.0052

0.5049 £+ 0.0277

0.3383 £ 0.0158

0.5667 £ 0.0518

0.5003 £ 0.0000

0.2881 £ 0.0000

0.4476 £+ 0.0000

0.6327 = 0.0000

0.2496 £ 0.0000

0.3381 £ 0.0000

Sn>XZII|O 00

0.6244 £ 0.0105

0.5237 £ 0.0047

0.801 + 0.0087

L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive sl clustering, K: K-means, A:
Affinity Propagation, S: Affnity Propagation with DoG-SIFW: MVSC

4.2.6.1 Data Set Descriptions

Caltech-101 Images

The Caltech101 image data set contains 8677 images of spgath with approx-
imately 0.1 mega pixel resolution, belonging to 101 categorWe follow [42] to choose
7 and 20 classes data set respectively from 101 classes. dlhssés include Faces, Mo-
torbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windgohair and have 441 images in
total. The 20 classes include Faces, Leopards, Motorbidesecular, Brain, Camera, Car-
Side, Dollar-Bill, Ferry, Garfield, Hedgehog, Pagoda, Rhi&noopy, Stapler, Stop-Sign,
Water-Lilly, Windsor-Chair, Wrench, Yin-Yang and have T2&ages all together.
MSRC-v1 Images

We follow Lee and Grauman’s approach [41] to refine the datagsting 7 classes
composed of tree, building, airplane, cow, face, car, b&yand each refined class has 30
images. Compared to the Caltech-101 data set, MSRC-v1 hesatutter and variability

in the objects appearances.
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Table 4.2. Normalized Mutual Information.

7 classes

20 classes

MSRC-v1

0.4177 £0.0104

0.3807 £ 0.0047

0.4411 £ 0.0129

0.5443 £ 0.0199

0.4846 £ 0.0041

0.6322 £ 0.0236

0.5284 £ 0.0136

0.5503 £ 0.0025

0.5966 = 0.0163

0.5930 £ 0.0110

0.2873 £ 0.0052

0.2613 £ 0.0160

0.4748 £ 0.0225

0.4326 £+ 0.0030

0.4318 £ 0.0023

0.4828 £+ 0.0027

0.4337 £ 0.0030

0.4560 = 0.0133

0.5298 £ 0.0463

0.4004 £ 0.0130

0.4803 £ 0.0384

0.4807 £= 0.0000

0.3766 £ 0.0000

0.5376 £+ 0.0000

0.5139 £ 0.0000

0.3242 £ 0.0000

0.4798 £ 0.0000

SnX>XRZIITIOOO™

0.6865 £ 0.0053

0.5915 + 0.0039

0.7405 £ 0.0127

L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive spgral clustering, K: K-means, A:
Affinity Propogation, S: Affnity Propagation with DoG-SIFWM: MVSC

4.2.6.2 Experimental Setup

We extract LBP, GIST, CENTRIST, DoG-SIFT, and HOG descriptespectively
from each image and use the Gaussian Kernel to get the simitzaitrices for LBP, GIST,
CENTRIST and HOG. In order to solve the inequality lengthijpean of the DoG-SIFT
feature, we resort to the pyramid match kernel [71] to buile similarity matrix, using
the LIBPMK toolkit. Thus, given an image, we have five simihar(affinity) matrices
calculated from five different features. Regarding the peetero for Gaussian Kernel, we
resort to the self tuning method [78].

We apply the spectral clustering algorithm [75] to do thestduing with each single
modal method. Within these five methods (corresponding figdals), the spectral clus-
tering plus DoG-SIFT is the method used in [70]. We also imq@at Affinity Propagation
plus DoG-SIFT method that was proposed in [42].

In order to further show the power of our MMSC method, we coercate these five
features to get a large feature vector and use GaussianlKercaculate a unified simi-

larity matrix. We also evaluate the clustering performanaieclassical spectral clustering,
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Table 4.3. Clustering Purity.

7 classes

20 classes

MSRC-v1

0.5727 £ 0.0049

0.3607 £ 0.0070

0.5622 £ 0.0195

0.6683 £+ 0.0237

0.4711 £ 0.0045

0.7084 £+ 0.0228

0.6942 £+ 0.0165

0.5554 £+ 0.0026

0.7258 £ 0.0177

0.7016 £+ 0.0203

0.3114 + 0.0067

0.4390 £+ 0.0209

0.5921 £0.0154

0.4227 £ 0.0031

0.5537 £ 0.0040

0.5968 £+ 0.0144

0.4248 £ 0.0028

0.5614 £ 0.0128

0.6507 £+ 0.0455

0.3713 £ 0.0167

0.5882 £ 0.0474

0.5941 £ 0.0000

0.3691 £ 0.0000

0.5857 = 0.0000

0.6372 £+ 0.0000

0.3967 £+ 0.0000

0.5619 £ 0.0000

SnZIXZIITO00Ir

0.7639 £ 0.0009

0.5777 £+ 0.0009

0.8048 £ 0.0085

L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive sl clustering, K: K-means, A:
Affinity Propogation, S: Affnity Propagation with DoG-SIFWM: MVSC
K-means and Affinity Propagation on this new similarity matrThus, we compare our
MMSC approach to total nine existing methods.
As we know, the results of all clustering algorithms dependhe initial conditions.
Therefore, we average 50 iterations to get the average andiad deviations of three
evaluation metrics for each method and fix the penalty pat@mhe), « in the range from

-2 to 2 with incremental step 0.2.

4.2.6.3 Clustering Results Comparison

The results are shown in Table 4.1, Table 4.2.6.1, Tabl&é4.2we can conclude
that utilizing our MVSC algorithm, we can always obtain atbetlustering quality at least
5 percent than the single view or other state-of-the-artipessised image categorization
methods.

For demonstration purpose, we randomly pickup the Garfralte class from Cal-
tech101 7-class data set and show top 28 nearest imagesdiusker centroid (gotten by

applying spectral clustering to each single view and our I@\fethod) in Fig. 4.4. Obvi-
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B Trece B Building M Airplane
B Cow M Face M Car
M Bicycle (MSRC-v1)

Figure 4.2. The randomly selected image samples for MSR@atd.

ously the integration of different views can cluster moref(@ll images into correct group
than each individual view.

From MSRC-v1 data, we randomly seléxt% images from each class, and Fig.
4.2 shows the selected images. We project them to the 2ndrdreld®nvectors of graph
Laplacian matrices of each individual view and multi-vidvig. 4.3 illustrates the projec-
tion results. Obviously the performance of feature fusigriMMSC method is the best.
Note that we use red arrows to point to the images which atealhsfar away from other
images in the same groupe. wrong clustering results. Because MSRC-v1 data have 7
classes and each class has 30 images, we cannot plot alhofoiin¢he figure (otherwise,

many of them will be overlapped each other).

4.2.6.4 \Visual Analysis

In MSRC-v1 data, because lots of tree (red frame), buildugdn frame), cow

(black frame), and airplane (dark blue) images have largesgpackground area, if we only
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(c) CENTRIST

]

(e) HOG (f) MMSC

Figure 4.3. The visual clustering performance of MMSC pxted to the 2nd and 3rd
eigen-vector plane for MSRC-v1 data set..
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use the local descriptors, lots of features are prone tmdpihto the background area and
these descriptors in the background area may “look” verylaiOur results have shown
that the clustering performance using local descriptoBR(LDoG-SIFT, HOG) for such
four categories images is worse than that using holisticrggsrs (GIST, CENTRIST)
as shown in Fig. 4.3. However, if we choose holistic desoriphly, we cannot achieve
good cluster performance neither. Because we will ignoreynuseful detail information,
which is like the case that we are prone to confusing car imagewn in cyan frame with
bicycle images shown in orange frame in Fig. 4.3(b) and Fig(c}. Another interesting
thing is that from our results, we observe if we combine theures not properly, the
performance of using one large feature vector can be woasehfat using only one feature,
even by classical clustering methods, like Naive spectusitering, K-means, and Affinity
propagation, which again demonstrates the power of our MMI§Grithm.

In Caltech 101 data, for both 7 classes and 20 classes, tlwityaf images have
varying degrees of background clutter, which will affea tlustering results. From Fig.
4.4, we can see that Garfield with uniform background will bistered with motorbike im-
ages with higher probability using holistic descriptord$® and CENTRIST). Moreover,
since the shape of Garfield’s face and human’s face are sinokand shape, two eyes, one
nose and one mouth, the descriptors focusing on local sinéprnation (LBP and HOG)

will cluster more face images with garfield images as well.

4.3 Heterogeneous Image Features Integration via Multiill&emi-Supervised Learn-
ing Model
As we know, in the traditional supervised learning paradigmoreasing the quantity
and diversity of labeled images enhances the performantedéarned classifier. Never-

theless, labeling image is a time consuming as well as bi@sid Although it is possible

63



o oo oo o i o5

(a) LBP (b) GIST

(e) HOG (f) MMSC

Figure 4.4. Clustering results of different methods on @#tfcluster in Caltech 101 data
set. The top 28 nearest images to the centroid are visualized

to label large amounts of images for research purposesstaften unrealistic in practice.
To solve the classification problem caused by the scarcepmmeskve labeled data, we re-
sort to semi-supervised learning, which takes advantatfeeafombination of both labeled
and unlabeled images.

The most popular way to do semi-supervised learning for er@degorization is to
use some low-level image descriptors. In order to overcdragrhage content represen-
tation issue, more and more visual descriptors have begropen. Some focus on the

local information, while others are holistic descriptolswe integrate all the descriptors
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via a proper learning method, we could create a generallyraocurate and more robust
descriptor than any single one.

In this section, we propose a novel semi-supervised legrapproach to integrate
heterogeneous features from both labeled and unlabele@laaswunsegmented images.
Considering each type of feature as one modality, takinguaidge of the large amount of
unlabeled data information, our new adaptive multi-mo@shissupervised classification
(AMMSS) algorithm propagates the class labels from labeteahes to unlabeled images
based on the integrated multi-modal feature similarity krain the weights for different
modalities (image features) simultaneously. We appliadAdMSS method to integrate
multiple popularly used image features, which describertiege content from different
perspectives, and evaluated the performance by four besr&hatasets. Compared with
the existing semi-supervised scene and object categonzatethods, our approach always

achieves superior performances in terms of both macro aamlassification accuracy.

4.3.1 Basic Framework of Graph Based Semi-Supervised lrgarn

Assume we have imagesX = {xi,---,X,}, where each image is abstracted as
a data poink; € R?. Each data point; belongs to one oA classes” = {c, -+ ,cx}
represented by, € {0, 1}, such thaty,(k) = 1 if x; is classified intd-th class, and
otherwise. Without loss of generality, we assume the fikgt n data are already labeled,
which are denoted d@& = {x;,y,}\_,. Our task is to learn a functiofi : X — {0, 1}¥
from T that is able to classify the given unlabeled datd + 1 < i < n) into one and
only one class ir”. For simplicity, we use: to denote the number of unlabeled data point.

that is,/ + u = n and split the label matri¥” = [y,,¥s,...,¥,,]*, y; € R¥ into 2 blocks:
Y,

Y =
Yy,
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Given the datasek, all the image data including the labeled and unlabeled ones
are abstracted as the vertices Bh— NN graph. To be specific, we connect X; if
one of them is among the others-nearest neighbor by Euclidean distance and define the

corresponding weight on the edge as the following,

= exp(—%), if x; andx; are connected (4.20)
0, otherwise
whereo is the bandwidth parameter. Therefoi®, = {w;;} is an(l + u) x (I + u)
symmetric undirected matrix with non-negative edge weidlet d;; = lf w;; and D be
the diagonal matrix by substituting;, i = 1,2, ...(l + «) on the diagonz]i?The normalized

graph Laplacian matrix is defined as

L=1-D WDz (4.21)

4.3.2 Label Propogation for Single Modality

According to graph theory, if the edge weight between twaoiees on affinity matrix
is large, then the class labels of these two instances shewdnilar. Based on the above
assumption, denot@ € R™*X as the class label matrix, for each feature modality, we use
the following way to propagate the class label informatienf labeled data to unlabeled
data,

ménGTLG st. o =Y, Vi=12 .1, (4.22)

wherelL is the normalized Laplacian matrix defined in Eq. (4.21).

Eqg. (4.22) can be rewritten as the following,
T
_ Y, Ly Ly Y,
min Tr ( ), (4.23)
G Gu Lul Luu Gu

since we know the labels for the first/ instances, which has the following unique solution,

66



4.3.3 Label Propogation by AMMSS

In order to properly and naturally integrate heterogen@oage features to do semi-
supervised learning, we need a co-regularization termaimla consensus class label ma-
trix and let the differences between that consensus labebnzand the class label matrix
of each feature modality as small as possible. With the ehdaf weight factor for each
feature modality, we adaptively learn the weight for eadtues modality, assigning the
more discriminative modality with higher weight. We summarthe proposed AMMSS

method as the following objective function,

v
min Y (a®)"Tr (G(”)TL(”)G(”))
G,G0) o) =1
\4
A Tr (G — GOHYT(G — GW))
v=1

1%
st. g =Y, Vi=12..1 > a¥=1,

v=1

(4.25)

a® > ()

Y

whereV is the number of image visual features? is the non-negative normalized weight
factor for thev-th modality, L") andG() are the normalized Laplacian matrix and class
label matrix for thev-th feature modality respectivelg is the shared consensus class label
matrix that we are interested. We use the scaltr control the distribution of different
weights for different feature modalities ands the regularization parameter to balance the
1st term and th@nd term. We want to solve faf, G anda(¥) simultaneously via the

proposed Eqg. (4.25).

4.3.4 Optimization Algorithms

4.3.4.1 The Optimization Algorithm of AMMSS

67



We decompose Eg. (4.25) as the following three subproblemsalve them alter-
natively and iteratively.

The first step is fixing7 andG™, solvinga(®). Then, the objective function becomes

Vv
min 3> (@) Tr (GO LOG®),
o o=l (4.26)
st.> a =1 a® >0

v=1

Letp® = Tr (G®' L®G®), then the Eq. (4.26) can be rewritten as

1% \%

D @) P, st YTa® =1 a2 (4.27)

v=1 v=1
Thus, the Lagrange function of Eq. (4.27) is

|4

1%
> (@) p® = B> el — 1) (4.28)

v=1 v=1
where/ is the Lagrange multiplier. In order to get the optimal smintof the above sub-
problem, set the derivative of Eq. (4.28) with respeattd to zero. We have

w_ (BT
o) — <rp(v)) (4.29)

Substitute the resultant™ in Eq. (4.29) into the constraidt, ¥ = 1, we get

|4

a® = (rp) e ) 3 (rp) T (4.30)

v=1

The second step is fixing™ andG, solvingG). We change the variable and ) =

(o))" L™ then the objective function becomes

- Tr (GOT [0 G
GI%&; ( )

+ AT (G — GG — GW)) (4.31)

st. g =Y, Vi=12 .1
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Set the derivative of Eq. (4.31) with respecid®) to zero. We have

G = \NLW + AI)7'G (4.32)

The third step is fixingy”) andG, solvingG. Substitute the resultaGt®) in Eq. (4.32)

into the Eqg. (4.31), we get (The proof is in Appendix)
S Tr (GO LG
A Tr (G — G (G — GW)) (4.33)

= \Tr (GT (X (I = ML®™ 4+ A1)™HG)

Let H = > (I — L™ + )J)—l). Therefore, Eq. (4.31) is equivalent to the following

optimization problem,
min Tr (GT HG)
G (4.34)
S.t. gZ:y’L7Z: 1,2,...,[
To compute class label matrix for the unlabeled image etiglion terms of matrix opera-

tions, we split the matrid{ into 4 blocks by the-th row andi-th column:

Hy, Hy,
H = (4.35)
Hul Huu
Therefore,
Tr (GTHG)
— — T — — — —
:TI’ Gl Hll Hlu Gl
Gu Hul Huu Gu
- T F - F S
Y; Hy Hy || v (4.36)
=Tr
Gu Hul Huu Gu

=Tr (YETHIIYZ + GZHulYE + YETHluGu + GgHuuGu)
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Thus optimization problem in Eq. (4.34) is equivalent to shbsequent problem,
min[2Tr (G HuY) + T (G4 Huu Gl (4.37)
Setting the derivative of Eq. (4.37) to zero with respedf{o we get
Gy = —Hy HyYy (4.38)

By the above three steps, we alternatively updéate, G*) andG and repeat them itera-
tively until the objective function converges. At last, wesort to the following decision

function to assign the single class label to the unlabeled)as,
y; =argmaxGy;, Vi=1+1,1+2,..,n.Vj=1,2,.. K. (4.39)
j

We summarize the algorithm in Alg. 7.

4.3.4.2 Convergence of The Algorithm

We will prove the convergence of the proposed Alg. 7 as falhgw\We divide the o-
riginal problem Eq. (7) into three subproblems and each@fntis convex problem. Since
the original problem is not a joint convex problem, by sotyihe subproblems alterna-
tively, Alg. 7 will converge to the local solution and we us&/ as the initial weight for
each modality. Later in our experiment we will demonstraie flast convergence of our

algorithm.

4.3.4.3 Discussion of The Parameter

In AMMSS, we use one parameteto control the distribution of weight factors for
different feature modalities. From Eq. (4.30), we can se¢ Whenr — oo, we will get
equal weight factors. And when— 1, we will assignl to the weight factor of the modality

whosep™ value is the smallest and assigto the weights of other modalities. Using such
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kind of strategy, on one hand, we avoid the trivial solutiortiie weight distribution of
the different modalities, that is, the solution when> 1. On the other hand, surprisingly,
we can take advantage of only one parametercontrol the whole weights, reducing the

parameters of the model greatly.

4.3.5 Experimental Results

Since our AMMSS is a kind of graph based semi-supervisedilegualgorithm, we
will compare the performance of our AMMSS and related grapbel state-of-art semi-
supervised methods on five benchmark datasets: Calteclsa)1Microsoft Research
Cambridge Volumé (MSRC-v1) [55], Handwritten numerals (HW) [56] and Animaitiv
Attributes(AwA) [57]. The image classification performanes evaluated in terms of aver-

age macro and micro classification accuracy.

4.3.5.1 Dataset Descriptions

Caltech-101 Imageshe Caltech101 image dataset conta&ifis7 images of objects,
each with approximatelg.1 mega pixel resolution, belonging i®1 categories. We fol-
low [42] to chooser and20 classes dataset respectively frafl classes. Th& classes
include Faces, Motorbikes, Dolla-Bill, Garfield, Snoopyp[&Sign, Windsor-Chair and
have441 images in total. Th&0 classes include Faces, Leopards, Motorbikes, Binocular,
Brain, Camera, Car-Side, Dollar-Bill, Ferry, Garfield, Kethog, Pagoda, Rhino, Snoopy,
Stapler, Stop-Sign, Water-Lilly, Windsor-Chair, Wrendtin-Yang and havd 230 images
all together.

MSRC-v1 Images
We follow Lee and Grauman’s approach [41] to refine the datastting7 classes com-
posed of tree, building, airplane, cow, face, car, bicyeled each refined class has 30

images. Compared to the Caltéoh dataset, MSRC-v1 has more clutter and variability in
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the objects appearances. Since there is no published ineagators for Caltech-101 and
MSRC-v1 datasets, we extract the following six popular &ideatures for each image: On
one hand, we extract three holistic visual features for eaclge,i.e. 45 dimension color
moment (CMT) [49];512 dimension GIST feature [47];302 dimension CENTRIST fea-
ture [48]. On the other hand, we collect three local desaorips well,i.e. 256 dimension
local binary pattern (LBP) [46]576 dimension HOG feature and famoi38 dimension
DoG-SIFT descriptor [44].

Handwritten numerals (HW)
Handwritten numerals dataset consist@@f0 data point foi0 to 9 ten digit classes. (Each
class has 200 data points.) We use the published six visaalrés [56] extracted from
each image. Specifically, the six visual features &ealimension Fourier coefficients
of the character shapes (FOW),6 dimension profile correlations (FAC§4 dimension
Karhunen-love coefficients (KARR40 dimension pixel averages ihx 3 windows (P1X),
47 dimension Zernike moment (ZER) afdlimension morphological (MOR) features.

Animal with attributes (AWA)
Animal with attributes data set is the largest data set, wiscalso an image data set
consisting of6 feature50 classes. We randomly samplé images for each class and
get 2500 images in total. We utilize all the published features, tlBaR688 dimension
Color Histogram (CQ) feature2000 dimension Local Self-Similarity (LSS) feature®52
dimension PyramidHOG (PHOG) featuresp0 dimension SIFT feature2)00 dimension
colorSIFT (RGSIFT) feature arh00 dimension SURF features.

4.3.5.2 Experimental Setup

We use the Gaussian Kernel in Eq. (4.20) withearest neighbor to get the affinity
matrices for different visual features. We utilize selfiittg method [78] to calculate the

bandwidth parameter. In order to solve the inequality length problem of the DolGIS
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Figure 4.5. The demonstration of different visual desonpfrom Caltechi01 dataset. The
final class label of the testing image is decided by the weibix different feature modal-
ities, where the weight for different feature modality iarkleed by the training images..

feature, we utilize the pyramid match kernel [71] to buileé gimilarity matrix, using the
LIBPMK toolkit. Thus, given an image, we have multiple siarity (affinity) matrices
calculated from different modalities. In our experimentdach dataset to mimic the “real”
situation in semi-supervised learning case« u), we randomly choose0% data for
training and use the rest for testing. We repeat the aboveedrwoel0 times and report
the average result.is the parameter to control the distribution of the weigbtsdifferent
feature modalities, which we will discuss in detail latere \8earch the logarithm of the
parameter, that is,log,or in the range from).1 to 2 with incremental step.2 and search

the regularization parametarin the range from 0 to 1 with incremental steép to get the
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best parameters as well as\* based on the-fold cross validation inside the training data

only.

4.3.5.3 Classification Results Comparison

First of all, in order to test the feature integration powkeoar method, we compare
classification performance using all the feature modalitiéh that using only one feature
modality. From Table 4.4 to Table 4.6, we can draw the commfuthat the performance of
our proposed AMMSS can beat the best of single modality, vtackles the problem of
Eq. (4.22).

We also compare our methods with some graph based state-@i+t semi-supervised
learning methods(a) the harmonic function (HF) approach [79}) learning with local
and global consistency approach (LGC) [80] &npdthe random walk approach (RW) [81].
For each of the above three methods, we use the kernel ad@®), that is, the simple
average of equal weighted Laplacian matrices or the grapihaten of the concatenat-
ed features of all modalities (FC) as the input for HF, LGC adl\as RW. Moreover,
for sake of completeness, we also compare the results obsinygrtor machine with the
pre-computed kernel Eq. (4.20) implemented by LIBSVM [58ince Multiple Kernel
Learning (MKL) approaches [82] can also realize featuregrdtion if we consider one
feature modality as one kernel, we report its classificatesult as well. Moreover, since
our method can learn the weight for each feature modalitptagey, we compare the re-
sults of our model using equal weight (MMSS). We adopt thenogitparameter settings
for the above methods empirically. As for performance eatadun, we utilize the widely-
used performance metrics, average macro classificatiamawcas well as average micro
classification accuracy for each class. Average macroifitzggn accuracy is shown in
Table 4.7 and micro accuracy for all the datasets are showigirt.7. We can see that our

method always achieves consistently better results thamtier state-of-art methods in
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Figure 4.6. Calculated confusion matrices by AMMSS methail MISRCV1 (b)
Caltech101-7 (c) Handwritten numerals..

terms of average macro classification accuracy and chodgfiegent weights for different
features can even boost the performance of multi modality-sepervised learning result-
s. As for average micro classification accuracy, the resfi®fdIMSS are the best for most
classes. The confusion matrices of MSRCV1, Caltech10ldHamdwritten numerals are
shown in Fig. 4.6.

Moreover, since our method can learn the weight for eactufeanodality after
convergence, we add the generalization ability of the divetunction Eq. (4.25). Fig. 4.8
shows the learned weight by our Alg. 7 on five benchmark degaBeom it, we can observe
that DoG-SIFT has the most discriminate power in Caltéth- 7 dataset, CENTRIST has
the highest weight for Calte¢hl — 20 dataset while for MSRCV1 dataset, GIST is the
best feature modality among the six which is consistent siitlgle modality’s performance
shown in Table 4.4. Instead of treating each feature mgoedjtially, our method can do
weighting each feature modality and classification siimdtausly.

At last, we test the convergency speed of our AMMSS algorijtivhich is shown in

Fig. 4.9. From it, we can observe that our AMMSS algorithmveages very fast on all the

datasets and usually the number of iteration is less than
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Figure 4.7. The Micro accuracy on two datasets (a) MSRCVZL@i)ech101-7. (c) Hand-
written number (d) Caltech101-20.

Table 4.4. The average macro classification accuracy cadpaith single view on
Caltech101-7, Caltech101-20 and MSRCV1 datasets.

Methods Caltech7| Caltech20] MSRCV1
CTM [49] 0.45 0.27 0.30
LBP [46] 0.66 0.39 0.71
GIST [47] 0.80 0.51 0.79
CENTRIST [48]| 0.79 0.70 0.77
DoG-SIFT [44] | 0.81 0.30 0.51
HOG [45] 0.89 0.27 0.69
AMMSS 0.91 0.74 0.94

Table 4.5. The average macro classification accuracy cadpeith single view on Hand-
written numerals dataset.

Datal FOU| FAC|KAR | PIX |ZER|MOR | AMMSS
HW | 0.92]0.82|0.93 [0.46/0.94| 0.82 | 0.98

Table 4.6. The average macro classification accuracy cadpdth single view on animal
with attribute dataset.

Data| CQ | LSS |PHOGRGISIFT| SIFT|SURHAMMSS
AWA 0.057{0.062] 0.050 | 0.054 ]0.065]0.072| 0.095
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Table 4.7. The average macro classification accuracy cadpaith baseline methods on
all datasets.

Methods |CaltechiCaltech2(MSRCV1 HW |AWA
SVM [59] 0.85 0.59 0.86 ]0.950.076
MKL [82] 0.89 0.68 0.89 10.96/0.079
HF(KA) [79] 0.84 0.70 0.92 10.97]0.079
HF(FC) [79] | 0.82 0.68 0.89 10.96/0.077
RW(KA) [81] | 0.89 0.72 0.88 10.97]0.080
RW(FC) [81]| 0.86 0.69 0.87 10.96/0.079
LGC(KA) [83]| 0.87 0.72 0.90 ]0.97/0.081
LGC(FC) [83]| 0.89 0.71 0.88 10.96/0.079
MMSS 0.89 0.72 0.92 10.97]0.086
AMMSS 0.91 0.74 0.94 0.98/0.095

4.4 Conclusion

In this chapter, we proposed two graph based methods to fteedgeneous im-
age features. One is to do unsupervised spectral clustanidghe other is to do semi-
supervised learning. Utilizing our algorithms, a commasel/class indicator matrix will
be learned. And by decomposing the original problem intesssubproblems, we can
solve the proposed model iteratively with the proof of cagesace to local/global solu-
tion. Empirical studies have been conducted on bench-matk skts. Compare with the
existing state-of-art methods, our proposed models ctamglg achieve better clustering or

classification performance.
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Figure 4.8. The learned weight factor for different modalities on fiveéaget. The feature index on x-
axis from1 to 6 stands for CMT, LBP, GIST, HOG, CENTRIST and DOG-SIFT respety for Caltech-7,
Caltech-20 and MSRCV1 datasets. And the index on x-axis fram6 stands for FOU, FAC, KAR, PIX,
ZER, MOR respectively for Handwritten numerals datasete iftldex on x-axis froni to 6 stands for CQ,
LSS, PHOG, RGSIFT, SIFT, SURF respectively for AWA dataset.

20

Figure 4.9. The convergency of five datasets (a) Calteci71®)-Caltech101-20 (c) MSR-
CV1 (d) Handwritten numerals (e) AWA.
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Algorithm 7 The algorithm of AMMSS
Input:

1. Affinity matrices{w®, ... W)} ¢ R

2. The labels for the firstimagesyY; = [y;, Yo, -, Y| T, y; € BEXY Vi=1,2, ..., 1.
3. The parametersand.

Output:

1. The predicted labels for the unlabeled imaggs Vi=1+ 1,1+ 2,...,n.

2. The weight scalan(¥), Vo = 1,2, ...,V for each modality.

Initialization:
1. Sett =0
2. Initialize the weight for each modalityzi“) =1L, w=12.,V
o . G, Y .
3. Initialize the common class label matri®, = = whereY, € R**¥ is a random
Gy, Y,
matrix and each entry; ; € {0, 1}.
4. Calculate the normalized Laplacian matrices for each ufeatmodality, LS’) = I -

(D)W (D))~

Procedure:

repeat
1. CaleulateL!”) = (a{")r L")
2. Calculate the class indicator matrix for each moda(lh‘y) = A(INJEU) +A)71Gy
3. Calculate, = 3° (I ML + AI)*l) and split thefl, by Eq. (4.35).

v=1

T
4. Caleulatep!”) = Tr (G\")" LW G)
5. Update the weight for each modality by Eq. (4.30)
Y,

Gu,

6. UpdateG,,, ., = —H,! H,,Y;. And update5,,, =

UL

7. Updatet =t +1
until Converges

Assign the single class label for the unlabeled images by489).
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CHAPTER 5

ON THE EQUIVALENT OF LOW-RANK LINEAR REGRESSIONS AND LINEAR
DISCRIMINANT ANALYSIS BASED REGRESSIONS

5.1 Introduction

As one of most important data mining and machine learningrtiee, multivari-
ate linear regression attempts to model the relationshipd®n predictors and responses
by fitting a linear equation to observed data. Such linearessgon models suffer from
two deficiencies when they are applied to the real-worldiappbns. First, the linear re-
gression models usually have low performance for analyteghigh-dimensional data.
In many data mining and machine learning applications, siscgene expression, docu-
ment classification, face recognition, the input data halsrge number of features. To
perform accurate regression or classification tasks ondatzh we have to collect an enor-
mous number of samples. However, due to the data and latketttoh difficulty, we often
cannot obtain enough samples and suffer from the curséstdrsionality problem [84].
To solve this problem, the dimensionality reduction methalich as linear discriminant
analysis (LDA) [85], were often used to reduce the featuneeshisionality first.

Second, the linear regression models don’t emphasize thelatons among differ-
ent responses. Standard least squares regression isleguiearegressing each response
on the predictors separately. To incorporate the respomsel@sses or tasks) correlations
into the regression model, Anderson introduced the redteneki regression method [86],
which is a multivariate regression model with a coefficieattmx with reduced rank. Later

many researchers worked on the low-rank (or reduced) reigresnodels [86—91], in which
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the classes/tasks correlation patterns are explored dgwheank structure and utilized to
enhance the regression/classification results.

In this chapter, we propose new and important theoreticaddations of the low-rank
regression. We first present the discriminant low-rankdimegression, which reformulates
the standard low-rank regression to a more interpretalpebbe. After that, we prove that
the low-rank regression model is indeed equivalent to dbivear regression in the LDA
subspacei.e. the learned low-rank classes/tasks correlation pattemsannected to the
LDA projection results. Our new theorem explains the undeg computational mecha-
nism of low-rank regression, which performs the LDA projectand the linear regression
on data points simultaneously. In our special case, wheloheank regression coefficient
matrix becomes a full-rank matrix, our result is connectedd’s work on the equivalence
between the multivariate linear regression and LDA [92].

Motivated by our new theoretical analysis, we propose tww diescriminant low-
rank regression models, including low-rank ridge regas$LRRR) and sparse low-rank
regression (SLRR). Both methods are equivalent to perfugrthie regularized regression
tasks in the regularized LDA subspace (two methods haverdift regularization terms).
Because the regularization term avoids the rank deficiermlyi@m in both regression and
LDA, our LRRR method outperforms the low-rank regressiobath theoretical analysis
and experimental results. Using the structured spamsdyging norm based regularization
term, our SLRR method can explore both classes/tasks abae$ and feature structures.
All our new discriminant low-rank regression models candtaneously analyze the high-
dimensional data in the discriminant subspace without aeyppocessing step and incor-
porate the classes/tasks correlations. We evaluate tippged methods on six benchmark
data sets. In all experimental results, our discriminantiank models consistently out-

perform their corresponding full-rank counterparts.
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5.2 Low-Rank Regression and LDA+LR
One of the main result of this paper is to prove that the lomkrignear regression
(LRLR) is equivalent to doing standard linear regressiobhA subspace (we call this as

“LDA+LR").

5.2.1 Low-Rank Linear Regression Revisit
Traditional Linear Regression model for classificatioroisdlve the following prob-
lem:

min [|Y = XTW[, (5.1)

whereX = [Xi,Xa, ...., X,] € R¥" is the centered training data matrix arde R"** is
the normalized class indicator matrix, i.%; = 1/,/n; if the i-th data point belongs to
the j-th class and’; ; = 0 otherwise ana; is the sample size of theth class. The model
outputs the parameter matrik ¢ R4**, which can be used to predict any test data point
X € R by WTx.

When the class or task number is large, there are often wmigdorrelation struc-
tures between classes or tasks. To explore these hiddetusas and utilize such patterns
to improve the learning model, in recent work [38], researstpresented to learn a low-

rank projectioniV in the regression model by imposing the trace norm reguton as:
min [[Y = XTWI[E + X[W]].. (5.2)

The trace norm regularization can discover the low-rankcstires existing between classes
ortasks. Using Eq. (5.2), the rank of coefficient maliixwhich is decided by the selection
of parameten, cannot be explicitly selected and tuned.

In related research work, the low-rank regression was atuh statistics and ma-

chine learning communities [86—91]. In the low-rank regres, the rank ofV’ is explicitly
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decided by constraining the rank1df to bes < min(n, k) and solving the following prob-
lem:

mmi/n )Y — XTW||%, s.t. rank(W) < s. (5.3)
Because the rank of coefficient matrix can be explicitly dateed, the low-rank regression
in Eq. (5.3) is better than the trace norm based objectivegin(i2) in practical applica-
tions. Although the general rank minimization is a non-anand NP-hard problem, the

objectives with rank constraints are solvalgey.the global solution was given in [87, 88].

5.2.2 Relation to LDA+LR

In this section, we will show that the low-rank linear regries (LRLR) is equiva-
lent to perform Linear Discriminant Analysis (LDA) and liaeregression simultaneously
(LDA+LR). In other words, the learned low-rank structuresl @atterns are induced by the
LDA projection (with regression). The low rankis indeed the projection dimension of
LDA.

Before introducing our main theorems, we first propose thieviang discriminant

Low-Rank Linear Regression formulation (LRLR):
: T 2
mip ||Y — X" AB||F, (5.4)

where A € R, B € ®>* s < min(d, k). ThusW = AB has low-ranks. The
above LRLR objective has the same solutions as Eq. (5.3)t bas clearer discriminant

projection interpretation. Eq. (5.4) can be written as
min|[Y — (A" X)"B|J3. (5.5)

This showsA can be viewed as a projection. Interestingly as we show iroidme 1,4 is
exactly the optimal subspace defined by the classic LDA.
Theorem 2 The low-rank linear regression method of Eq. (5.4)) is id=aitto doing stan-

dard linear regression in LDA subspace.
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Proof: Denoting/,(A, B) = ||Y — XT AB||3% and taking its derivative w.r.t3, we have,

0.J,(A, B)

58 = 2ATXY +2ATXXTAB. (5.6)

Setting Eq. (5.6) to zero, we obtain,
B=(ATXXTA)ATXY. (5.7)
Substituting Eq. (5.7) back into Eq. (5.4), we have,
min [y — XTAATXXTA)TATXY |3, (5.8)
which is equivalent to
max Tr (AT(X XD A)TTATXYYTXTA). (5.9)

Note that
S, =XXT S =XYY'XxT, (5.10)

where S; and S, are the total-class scatter matrix and the between-clagtesenatrix

defined in the LDA, respectively. Therefore, the solutioiegf (5.9) can be written as:

A* = argmax Tr [(ATS,A) L AT S, A], (5.11)
A

which is exactly the problem of LDA, and the global optimaldmn to Eq. (5.11) is the
top s eigenvectors of; 'S, corresponding to the nonzero eigenvaluesS(iis singular,
we compute the eigenvectorsgf S, corresponding to the nonzero eigenvalues, wisgre
denotes the pseudo-inverse®j. Now Eq. (5.5) implies that we do linear regression on
the projected datX = AT B. SinceA is the LDA projection, thus Eq. (5.5) implies we do
regression on the LDA subspace.
U

Note that in Eq. (5.4), the class indicator matyixis normalized, but not centered.

HoweverX is centered. The following Theorem 3 shows that we obtairofitenal solu-

tion whatever Y is centered or not.
84



Theorem 3 The optimal solutiofA*, B*) for the following problem
min |PY — XTAB||% (5.12)

is identical to those of Eq. (5.4); heré = I — ee’ /n € R is the centering matrix, and
e=(1---1)T.

For this reason, the bias (intercept) term are already awtinally incorporated in
Eq. (5.4).
Proof: The key point of the proof is the fact that in the saatior bothB andA of Eq. (5.7)

and Eqg. (5.9)Y always appears together with as combination
XY = (XP)Y = XP?Y = (XP)(PY),

becauseX is centered and? = P. In other words, as long a¥ is centeredY is auto-
matically centered. O
This results can be easily extended to the standard lingegssion. In fact we have
Remarkl As long asX is centered, the optimal solutidiv* for the standard linear re-
gression of Eq.(1) remains identical no matiéiis centered or not.
Our new results provide the theoretical foundation to @rplae mechanism behind the
low-rank regression methods. Meanwhile, the above pramfgss also indicates a concise
algorithm to achieve the global solution of LRLR in Eq. (5.4% well as Eq. (5.3). The
Algorithm to solve Eq. (5.4) is summarized in Alg. 8.
Moreover, we note that Theorem 2 also provides clarificaticanlong-standing puz-

zle in multi-class LDA, as explained below.
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Algorithm 8 The algorithm to solve LRLR
I nput:

1. The centralized training dats ¢ R4".

2. The normalized training indicator matrix € R"**.
3. The low-rank parametet.

Output:

1. The matricesA € R4 andB € R***,

Process:

1. CalculateA by Eq. (5.11)

2. CalculateB by Eq. (5.7)

5.2.3 LDA: Trace-of-Ratio or Ratio-of-Trace?
The original Fisher LDA is ork-class problem, where onlly — 1 = 1 projection

directionais needed. The Fisher objective is

a’ Sya
max —/m ——.
a al'S,a

The generalization to multi-class has two natural formatet [85], either the trace-of-ratio

formulation
AT S, A
max Tr ATS, A (5.13)
whereA = (a; - - -a,_1 ), or the ratio-of-trace formulatidn
T

P T ATS, A
Our Theorem 2 lends support to the trace-of-ratio objedtinetion because this formula-

tion arises directly from the linear regression.

1In Egs.(5.13,5.14), the optimal solution remains the satmens,, is replaced bys;.
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5.2.4 Full-Rank Linear Regression and LDA

Here we note an important connection. In the special casdpttrrank regression
coefficient matrixi¥ becomes a full-rank matrix. Without loss of generality welase
s = k < n, because the number of data pointis usually larger than the number of classes
k. The matrixB € RF** becomes a square matrix. Becausek(W) = rank(AB) = k
andk < n, rank(A) > k andrank(B) > k. Thus,rank(B) = k and B is a full rank
matrix, i.e. the matrixB is invertible.

The Theorem 2 is still correct for the special case. Moreavercan further conclude
the equivalence between the multivariate linear regrassml LDA results. We can simply
prove this conclusion. Because the matdixncludes the LDA subspaces and the matrix
B can be considered as an invertible rotational matrix, thissis also one of the infinite
number global solutions of LDA [93]. Thus, in the specialfnk case, the multivariate
linear regression is equivalent to the LDA result, which whewn in Ye’s work [92] with
the assumptions: the reduced dimensioh is 1 andrank(S,) + rank(S,) = rank(S;).

Our proof is more general and doesn’t need the rank assumptio

5.2.5 Low-Rank Ridge Regression (LRRR)

As we know, by adding a Frobenius norm based regularizatioitne linear regres-
sion loss, ridge regression can achieve better perforntaacdinear regression [94]. Thus,
it is important and necessary to add the ridge regulariaatito low-rank regression for-

mulation. We propose the following Low-Rank Ridge Regm@s$L. RRR) objective as,
min [[Y' — XTAB[}. + Al|ABI[ (5.15)

whereA € R, B € R**, s < min(n, k), X is the regularization parameter. Similarly,

we can see that the LRRR objective is equivalent to the fofigwbjective:

min Y = XTW|[|2 + \|W||%, st rank(W) <s. (5.16)
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Compared to Eq. (5.16), Eq. (5.15) provides better charoesfto understand the learning
mechanism of LRRR. We will show that our new LRRR objectiveenected to the
regularized discriminant analysis, which provides bgitejection results than the standard
LDA. We will also derive the global solution of the non-cory@oblems in Eq. (5.15) and
Eq. (5.16).

Theorem 4 The proposed Low-Rank Ridge Regression (LRRR) method Eoottb.15)
and Eg. (5.16)) is equivalent to doing the regularized regren in the regularized LDA
subspace.

Proof: Denoting/y(4, B) = ||[Y — XTAB||% + A||AB||%, and taking its derivative w.r.t.

B, we have,
0J5(A, B)

) B —2ATXY +2ATXXTAB 4 2)\AT AB. (5.17)

Setting Eq. (5.17) to zero, we get,
B=(A"(XX"+A)A)'ATXY, (5.18)

wherel ¢ R4 is the identity matrix. Substituting Eq. (5.18) back into.£§.15), we

have

min ||V — XTAATXXTA+ MATA) L ATXY |}

FAJAAT (X XT + M)A LATXY |2, (5.19)
which is equivalent to the following problem:
mjnx{(AT(XXT +ANA)TATXYYTXT A} (5.20)
Similarly, the solution of Eq. (5.20) can be written as:

A* = argmax{Tr((AT(S; + \)A) T AT S, A)}, (5.21)
A
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Algorithm 9 The algorithm to LRRR
I nput:

1. The centralized training dats € R%*",

2. The normalized training indicator matrix € R"**.
3. The low-rank parametet.

4. The regularization parametgr

Output:

1. The matricesA € R4 andB € R***,

Process:

1. CalculateA by Eq. (5.21)

2. CalculateB by Eq. (5.18)

which is exactly the problem in regularized LDA [95]. Afterevget the optimal solution

A, we can re-write Eq. (5.15) as:
min [[Y" — (A"X)" B[5 + M| AB||f, (5.22)

which is the regularized regression, and the optimal smius given by Eq. (5.18). Thus,
the LRRR of Eq. (5.15) is equivalent to performing ridge esgion in regularized-LDA
subspace. O
Similar to Theorem 3, we can show thatis automatically centered as long &sis
centered.
Another interest point is that although our LRRR model is a-nonvex problem,
Theorems 1 and 3 show that they have the global optimal solsitiThe Algorithm to solve

LRRR of Eq. (5.15) is described in Alg. 9.
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5.2.6 Full-Rank Ridge Regression and
Regularized LDA
In the special case, the low-rank regression coefficientirét becomes a full-rank
matrix. Similar t0§5.2.4, we have the following lemma:
Lemmal The full-rank ridge regression result is equivalent to tloéusion of regularized
LDA (S, is replaced by the regularized forf) + AI).
Similar to the proof ing5.2.4, we can easily prove the coefficient mattixin full-rank

ridge regression is one of the global solutions of LDA regakd by A /.

5.3 Sparse Low-Rank Regression for Feature Selection

Besides exploring and utilizing the class/task corretetiand structure information,
the learning models also prefer to select and use the imgddatures to avoid the “curse
of dimensionality” problem in high-dimensional data arsady Thus, it is important to
extend our discriminant low-rank regression formulatitmieature selection models.

Due to the intrinsic properties of real world data, the duited sparse learning mod-
els have shown superior feature selection results in pusviesearch [19, 30, 33,96-101].
One of the most effective ways for selecting features is fodse sparsity by inducing hy-
brid structured’, ;-norm on the coefficient matrik/ as the regularization term [16, 38].
Therefore, following our LRLR and LRRR methods, we proposewa Sparse Low-Rank
Regression (SLRR) method, which reserves the low-ranktains and adds the mixed
/5 1-norm regularization term to induce both desired low-rattkcture of classes/tasks
correlations and structured sparsity between featuresbeTspecific, “low-rank” means
rank(AB) = s < min(n, k) and “structured sparsity” means most rowsAd$ are zero to

help feature selection. Thus, we solve:

min[Y — XTABI[} + A|AB|Js, (5.23)

90



whereA € R, B € %, s < min(n, k). Similarly, we can see that the above SLRR

objective is equivalent to the following objective:
min|[Y" — XTW% + N[Wll21, st. rank(W) <s. (5.24)

Both Eq. (5.23) and Eq. (5.24) are new objectives to simelbasly learn low-rank classes

correlation patterns and features structured sparsity.

5.3.1 Connection to Discriminant Analysis

Interestingly our new SLRR method also connects to the egguald discriminant
analysis by the following theorem.
Theorem 5 The optimal solution of the proposed SLRR method (Eq. (WZBEq. (5.24))
has the same column space of a special regularized LDA.

Proof: Eq. (5.23) is equivalent to the following problem,
min |[Y" — XTAB|5 + A\Tr (BT ATDAB), (5.25)

where D € R%*? is a diagonal matrix and each element on the diagonal is defise

follows:
1

di; = EYIPEITE
2(1g'll2
whereg' is thei-th row of matrixG = A* B*. Denoting

—1,2,...,d, (5.26)

J3(A, B) = ||[Y — XTAB|J% + ATr (BT ATDAB) and taking its derivative w.r.tB, we

have,
8J3(A7 B)

p): B —2ATXY +2ATXXTAB 4+ 20ATDAB. (5.27)

Setting the above equation to be zero, we can get,

B = (AT(XX" +AD)A)'ATXY, (5.28)
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whereD € R%*? is the diagonal matrix defined in Eq. (5.26). Substituting @&28) back

into Eq. (5.25), then we need solve the following problemebdA,

max Tr (AT(XXT + AD)A) T ATXYYTXT A). (5.29)
The solution of Eq. (5.29) is:

A" = arginaX{Tr (AT (S, + AD)A) 1 AT S, A)}, (5.30)

Since the column space Gf* = A* B* is identical to the column space df, the proposed
SLRR has the same column space of a special regularized ISP ¢eplaced withS; +
AD). O
After we get the optimal solutiom, we can solve Eq. (5.23) through Eq. (5.25),
which is the regularized regression problem. Again, simdal heorm 3, we can prove that

if Y is centered or not will not affect the learnt mod&l and B*.

5.3.2 Algorithm to Solve SLRR

Solving SLRR objective in Eg. (5.23) is nontrivial, there &wo variablesd and B
needed to be optimized, and the non-smooth regularizatsenraakes the problem more
difficult to solve. Interestingly, a concise algorithm cam derived to solve this problem
based on the above proof. The detailed algorithm is destiibélgorithm 10. In next
subsection, we will prove that the algorithm converges. &gperimental results show that

the algorithm always converges in 5-20 iterations.

5.3.3 Algorithm Convergence Analysis
Because Alg. 10 is an iterative algorithm, we will prove itseergence.

Theorem 6 Alg. 10 decreases the objective function of Eq. (5.23) namcally.

92



Algorithm 10 The algorithm to SLRR
I nput:

1. The centralized training dats ¢ R4".
2. The normalized training indicator matrix € R"**.
3. The low-rank parametet.

4. The regularization parametgr
Output:

1. The matricesA € R¥** andB € R***,

I nitialization:

1. Sett =0

2. Initialize D® = | € R*9,

Repeat:

1. CalculateA®*1) by Eq. (5.30)

2. CalculateB*“*+Y by Eq. (5.28)

3. Update the diagonal matrio®t!) ¢ R¥*¢ where thei-th diagonal element is

1
2H(A<t+1)B(t+1))i||2 .

4. Updatet =t + 1

Until Converge.

Proof: In thet-th iteration, we have

< AW B+~ — argmin ||Y — XTABH%
AB (5.31)
FATr (BTATDWAB)

In other words,

|y — XTA(t+1)B(t+1)||% +ATY (B(t+1)TA(t+1)TD(t)A(t+1)B(t+1))
. (5.32)
)

< ||y = XAOBW|2, 4 ATr (B®" AO" DO A® B®)
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DenoteG") = AOB® and Gt = AW+ B+ - By the definition of matrixD in the

algorithm, Eq. (5.32) can be rewritten as,

||Y XTG(H—I)HQ )\zd: ng’(t—f—l)H%
— + = ¢
b 2lg O]
HY XTG(t)HQ )\i ng(t)H% (5 33)
<y - A onamie :
b 2)lg o),

whereg® andg**! are thei-th row of the matrixG') andG*+) respectively. Since for

each:, we have

i(t+1) 19 i) 12
(1) g™ 5 10 g™ 113

Thus, summing upl inequalities and multiplying the summation with the regiziation

parameten, we obtain:

33 (gt - 1
i=1 2[|g"" |2
d i) 12

o) g3

Combining Eg. (5.33) and Eq. (5.35), we get:

d
1Y = XTG4S (16

=1
d
<Y = XTGOE+ 1) 11g]] (5.36)
=1
Therefore, we have:
1Y = XTGED) 2+ NG |1 < |V — XGO |2 + M|GD |21 (5.37)

SinceA and B are updated according to gradient, Alg. 10 will monotorjcdécrease the

objective in EqQ. (5.23) in each iteration. O
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5.3.4 Full-Rank Sparse Linear Regression and Regularipgd L

In the special case, the low-rank regression coefficientirét becomes a full-rank
matrix. Similar t0§5.2.4, we also have the following lemma:
Lemma 2 The optimal solution of the full-rank sparse linear regtiesss one of the global
solutions of LDA regularized byD.
Similar to the proof ing5.2.4, we can easily prove the coefficient mattfixin full-rank

sparse linear regression is one of the global solutions & téyularized byAD.

5.4 Experimental Results
In this section, we will evaluate the performance of our psgd LRLR, LRRR,
SLRR with their corresponding full-rank counterparts. Wetly introduce the six bench-

mark datasets used in our experiments.

5.4.1 Dataset Descriptions

UMIST face dataset [102] contair2® persons and totally75 images. All images
are cropped and resized intd2 x 92 pixels per image.

Binary Alphadigits36 dataset [103] contains binary digits @through9 and capital
A throughZ with size20 x 16. There are89 examples of each class.

Binary Alphadigits26 dataset [103] contains binary capitdlthroughZ with size
20 x 16. There are89 examples of each class.

VOWEL dataset [104] consists @00 vowel recognition data used for the study of
recognition of the eleven steady state vowels of Britishlishg The speakers are indexed
by integers)-89. (Actually, there are fifteen individual speakers, eachrgpgach vowel
six times.) The vowels are indexed by integéf$0. For each utterance, there are ten

floating-point input values, with array indicés.
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MNIST hand-written digits dataset [105] consists@¥, 000 training and10, 000
testing digits. It had0 classes, from digid to 9. Each image is centralized (according to
the center of mass of the pixel intensities) aiBa« 28 grid. We randomly seledts images
for each class in our experiment.

JApanese Female Facial Expressions (JAFFE) data set [d06ins213 photos of
10 Japanese female models. Each image has been ratécmotion adjectives by0
Japanese subjects.

We summarize the datasets that we will use in our experimeigble 5.1

5.4.2 Experimental Setup

All the datasets in our experiments have large number osetaat least0 class-
es). For each dataset, we randomly split the datajmarts. According to the standard
5-fold cross validation, in each round, we usearts for training and the remaining part
for testing. The average classification accuracy rates ifterent methods are reported.
In the training stage, we use different full-rank linearresgion modelsi.e. full-rank
linear regression, full-rank ridge regression, sparseréulk linear regression to learn the
coefficient matrixi¥’ directly or we solve the proposed low-rank counterpartsL(RRL-
RRR, SLRR) to calculatél indirectly by W = AB. In all experiments, we automati-
cally tune the regularization parameters by selecting st parameters among the values
{10" : r € {—5, -4, -3, ...3,4,5} } with 5-fold cross validation on the corresponding train-
ing data only. In addition, for LRLR, LRRR, SLRR, we calc@ahe classification results
with respect to different low-rank parametersn the range ofik/2, k), wherek is the
number of classes. At last, in the testing stage, we utiheefollowing decision function
to classify the coming testing datac ¢*! into one and only one out df classes,

argmax (W7x;); . (5.38)
1<j<k
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Table 5.1. The summary of the datasets used in our expesimieistthe number of classes,
d is the number of feature dimensionsis the number of data points.

Table 5.2. The average classification accuracy using difteregression methods on six

Dataset k d n
UMIST 20 10304 575
BINALPHA36 36 320 1404
BINALPHA26 26 320 1014
VOWEL 11 10 990
MNIST 10 784 150
JAFFE 10 1024 213

datasets.

Data Rank | Linear Regression(LR) Ridge Regression(RR) Sparse Regression(SH

UMIST Full 0.6650 + 0.1069 0.9197 + 0.0456 0.9525 + 0.0533

Low 0.8225 + 0.0937 0.9675 + 0.0322 0.9675 + 0.0245

Full 0.3488 4+ 0.0241 0.6039 4+ 0.0231 0.5971 + 0.0205

BINALPHAS6 Low 0.4147 4+ 0.0238 0.6105 + 0.0178 0.6069 + 0.0205

Full 0.3636 +0.0124 0.6732 + 0.0258 0.6527 + 0.0297

BINALPHA26 Low 0.4422 + 0.0255 0.6771 + 0.0221 0.6578 + 0.0281

VOWEL Full 0.2960 + 0.0405 0.3010 4+ 0.0402 0.2960 + 0.0417

Low 0.2980 + 0.0323 0.3040 + 0.0304 0.3020 £+ 0.0314

MNIST Full 0.4067 4+ 0.0830 0.4467 + 0.1043 0.8067 + 0.0435

Low 0.4400 + 0.1020 0.7933 + 0.0772 0.8267 + 0.0742

JAEFE Full 0.6519 + 0.1066 0.9446 + 0.0479 0.9870 £ 0.0188

Low 0.8617 + 0.0813 1.0000 + 0.0000 0.9951 + 0.0098

Please note that all the data are centered and we considapttel without bias. The code
is written in MATLAB and we terminate our iterative optimizan procedure of sparse

regression when the relative change in the objective fands below10-5.

5.4.3 Classification Results

Our proposed methods can find the low-rank structure of tgeession models,

which are equivalent to doing regression in the regularizBd subspace. For illustra-
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Figure 5.1. Demonstration of the low-rank structure andspatructure found by our
proposed SLRR method..

tion purpose, in Fig. 5.1 we plot the ranked singular valugheflearnt coefficient matrix
W = AB on the left hand side and draw the absolute value of the |&&rof the 1st fold
(of the 5 fold cross validation, other folds show similaruson the right hand side for
each dataset. The corresponding rank parameter is sebeaged on which SLRR achieves
the best classification accuracy. For example, in Fig. pdi{aws the UMIST results, we
can see the number of non-zero singular valuB/ois 15, i.e., the rank of the learnt coef-
ficient matrix is15, less than its full rank value af0. In addition, the learntV is sparse
and is effectively used for feature selectierg. selecting the important features (non-zero
rows) across all the classes. Fig. 5.2 shows the averagefidason accuracy comparisons

of the above three types of full-rank regressions with thappsed low-rank counterparts
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with respect to different low-rank constraints. From Fi@2,5ve can obviously conclude
that the discriminant low-rank regressions consistentiperform their full-rank counter-
parts, when the specified low-rank parametéalls in a proper range. For five out of six
datasets in our experiments, the low-rank property cantlbesresult greatly. Only in
JAFFE dataset (as shown in Fig. 5.2.(1)), the performanspafse low-rank regression is
competitive with that of the full-rank counterpart.

To help the researchers easily compare all methods, weisisiod best classification
results in terms of average accuracy and standard deviatidifferent regression methods
in Table 5.2.

Our experimental results also verify our previous key pthat the RLRR method is
better than LRLR method. On all six datasets, the RLRR otdp®ais the LRLR. Surpris-
ingly, the standard ridge regression even has better pegioce than the LRLR method.
The LRLR is equivalent to existing low-rank regression nisdand both methods may
have suboptimal results due to the rank deficiency problarstandard ridge regression or
RLRR methods, because the rank constraint is imposed, bt alleviate such matrix
rank deficiency issue. Now we showed the connection betwaendnk constraint and
LDA projection, such that we can uncover this problem.

For some data with very large feature dimensi@dr(> n), like UMIST, MNIST
and JAFFE, feature selection is necessary to reduce thedaaday between features and
alleviate the curse of dimensionality. Our classificatiesults both in Fig. 5.2 and Table 5.2
have shown that under such circumstances, SLRR and it@hkleounterpart can achieve
better classification result than RLRR and ridge regressiioce the/; ;-norm can impose
sparsity and select the features for all the classes.

Thus, our newly proposed RLRR as well as SLRR methods are ip@rtant and

more practical low-rank models for machine learning agians.
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Figure 5.2. The average classification accuracy usifudd cross validation on six datasets.
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5.5 Conclusion

In this chapter, we provide theoretical analysis on lowkreegression models. We
proved that the low-rank regression is equivalent to doingdr regression in the LDA
subspace. More important, we proposed two new discrimilzantrank ridge regression
and sparse low-rank regression methods. Both of them aieadejt to doing regularized
regression in the regularized LDA subspace. From both #teat and empirical views,
we showed that both LRRR and SLRR methods provide bettemitgaresults than stan-
dard low-rank regression. Extensive experiments have beeducted on six benchmark
datasets to demonstrate that our proposed low-rank regnasgthods consistently outper-

form their corresponding full-rank counterparts in terrhaverage classification accuracy.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we have proposed several methodscidetdhe learning big
heterogeneous data problems.

Specifically, if the number of feature or the length of theaddescriptor is high,
we could usé; ;-norm SVM to select important features with respect to adl thasses.
Moreover, if we want to select exact K features and do not w@bbther tuning the regu-
larization parameter, we can resort to the proposed feaaleetion method with, ,-norm
constraint. Although the latter will find the local solutiesmce the proposed model is not
a convex problem, we can always find a good starting point @hd geasonable solution.

If the data is collected from different sources or represeily multiple descriptors,
we proposed graph based multi-modality learning modelsoteither spectral clustering
or semi-supervised learning to fuse those heterogenedoisnation. Moreover, if the
data number is huge, we propose the robust multi-view K-Meaodel to cluster big
heterogeneous data without the heavy burden of graph catistn.

At last, if the number of classes is large, we give a globaltsmh to low-rank linear
regression and prove that the low-rank regression is elgun/to doing linear regression in

the corresponding linear discriminant analysis (LDA) spac

6.2 Future Work

In the coming big data era, the number of categories of datbeancreased dramat-

ically. When the number of classes becomes large, how tiaeutihe correlation between
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classes to learn heterogeneous multi-modality data bextimeehot topic right now, which
can be coped with the learning model with new group lasso ewer&nk regularization.
In addition, kernel learning can be combined into our prepasethods to handle the non-

linear data.
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