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ABSTRACT

SPARSE AND LARGE-SCALE LEARNING MODELS AND ALGORITHMS FOR

MINING HETEROGENEOUS BIG DATA

XIAO CAI, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Heng Huang

With the development of PC, internet as well as mobile devices, we are facing a

data exploding era. On one hand, more and more features can becollected to describe

the data, making the size of the data descriptor larger and larger. On the other hand, the

number of data itself explodes and can be collected from multiple resources. When the data

becomes large scale, the traditional data analysis method may fail, suffering the curse of

dimensionality and etc. In order to explore and analyze the large-scale data more accurately

and more efficiently, based on the characteristic of the data, we propose several learning

algorithms to mine the Heterogeneous data. To be specific, ifthe feature dimension is large,

we propose several sparse learning based feature selectionmethods to select the key words

from the text or to find the bio-marker from the gene expression data; if the number of

data itself is huge, we proposed multi-view K-Means method to do the clustering to avoid

the heavy graph construction burden; if the data is represented or collected by multiple

resources, we propose graph based multi-modality model to do semi-supervised learning

and clustering. In addition, if the number of classes is large, we provides a global solution

to the low-rank regression and proves that the low-rank regression is equivalent to doing

vi



linear regression in LDA space. We empirically evaluate each of our proposed models on

several benchmark data sets and our methods can consistently achieve superior results with

the comparison of state-of-art methods.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the advent of modern high technologies, like PC, internet as well as mobile de-

vices, we are drowning in a sea of data. Much of the data we regularly encounter nowadays

is (1) high dimensional, i.e. the data descriptor has a largenumber of variables (features),

possibly much more than observations (data samples); (2) the number of data samples is

huge and can be represented or collected by multiple resources; (3) the number of classes

is huge and there are some correlation between different classes. Blindly fitting traditional

models to such data is prone to giving over-fitted or useless models with heavy computation

burden posing great difficulty for further data analysis.

For the high dimensional data, although we can employ conventional dimension re-

duction method to reduce the number of features, for examplePCA, LDA, and so on [1],

we cannot tackle the problems where the features have natural meanings and they cannot

be projected, such as text mining [2], DNA microarray [3], and mass spectrometry [4].

Therefore, feature selection, the process of selecting a subset of meaningful features, is

a key issue in building robust data mining models for later classification, clustering, and

other data analysis tasks since it can select text key words,discover biomarkers, speed up

the learning process, boost the model generalization capability and alleviate the effect of

the curse of dimensionality[5].

In addition, data can be collected from numerous resources or represented by many

representations. In image segmentation, an image can be represented by many different

visual descriptors. In web grouping, a web can be characterized by its content and anchor

1



texts of inbound hyperlink. In social network community discovery, researchers discover

the hidden grouping relation (e.g. friend or knows) in the network via personal interest

or geographic information. In text mining, people study theway to find out latent topic

from documents or corpus available in multiple languages. When such heterogeneous data

becomes huge, for example, Facebook reports about6 billion new photo every month and

72 hours of video are uploaded to YouTube every minute, how to dounsupervised clustering

or semi-supervised learning for such a huge heterogeneous data is becoming a challenging

problem.

What is more, when the number of classes becomes higher and higher, there must be

some correlation between classes. How to incorporate such akind of correlation to boost

the classification performance is attracting more and more attentions in nowadays machine

learning research.

1.2 Notation

We summarize the notations and the definition of norms used inthis paper. Matri-

ces are written as uppercase letters and vectors are writtenas bold lowercase letters. For

matrix W = {wij}, its i-th row, j-th column are denoted aswi, wj respectively. The

trace of the matrixW is denoted as Tr(W ). The ℓp-norm of the vectorv ∈ R
n is de-

fined as‖v‖p = (
n∑

i=1

|vi|p)
1
p , for p 6= 0 and theℓ0-norm of the vectorv, is defined as

the number of non-zero entries ofv. The Frobenius norm of the matrixW ∈ R
d×m is

defined as‖W‖F =

√
d∑

i=1

m∑
j=1

w2
ij =

√
d∑

i=1

‖wi‖22. And theℓ2,1-norm of matrixW is de-

fined as|W ||2,1 =
d∑

i=1

√
m∑
j=1

w2
ij and theℓ2,0-norm of matrixW is defined as||W ||2,0 =

d∑
i=1

||
m∑
j=1

w2
ij||0, where for a scalar a,||a||0 = 1 if a 6= 0, ||a||0 = 0 if ||a|| = 0. Please

note thatℓ2,0-norm is not a valid norm because it does not satisfies the positive scalarbility:

||αW ||2,1 = |α|||W ||2,1 for any scalarα. The term “norm” here is for convenience.

2



This paper is organized as follows. Chaper II discusses several sparse learning mod-

els and how to use them to do feature selection on bio-data, where the number of features is

much larger than the number of data point. Chapter III shows graph model to fuse multiple

modality data to do unsupervised clustering or semi-supervised learning. When the num-

ber of data point is large, Chapter IV gives an efficient and robust multiple view K-Means

clustering algorithm to release the burden of graph construction, clustering large-scale het-

erogeneous data. When the number of classes is large, Chapter V gives a global solution

to low-rank linear regression and proves that the low-rank regression is equivalent to doing

linear regression in LDA space. Chapter VI proposes the future work and summarize the

thesis.
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CHAPTER 2

SPARSE LEARNING BASED FEATURE SELECTION

2.1 Introduction

Generally speaking, feature ranking and feature selectionalgorithms may roughly be

divided into three main types: filter, wrapper and embedded methods. These three basic

categories differ in how the learning algorithm is incorporated in evaluating and selecting

features. In filter methods, features are pre-selected by the intrinsic properties of the data

without running the learning algorithm. Therefore, filter methods are independent of clas-

sifiers. Popular filter-type feature selection methods encompass F-statistic [6], reliefF [7],

mRMR [3], t-test, Chi-square and information gain [8] and etc. [9] which all compute the

sensitivity (correlation or relevance) of a feature with respect to ( w.r.t.) the class label

distribution of the data. These methods can be characterized by utilizing the global statis-

tical information. In wrapper methods [10], feature selection is wrapped around predictors

providing them subsets of features and receiving their feedback. Wrapper-type feature s-

election methods are tightly coupled with a specific classifier, such as correlation-based

feature selection (CFS) [11], support vector machine recursive feature elimination (SVM-

RFE) [12]. In spite of expensive computational cost, they often have good performance.

In embedded methods, feature search and the learning algorithm are incorporated into a

single optimization problem, which is also specific to the classifier. For example, Random

multinomial logit (RMNL) [13].

With the development of sparsity regularization, dimension reduction has been wide-

ly investigated and applied into feature selection studiesas well. For example,ℓ1-norm

SVM can perform variable selection via theℓ1-norm regularization [14], which tends to
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give sparse solution to the following optimization problem. However, it has some limi-

tations due to the fact that the number of selected features is upper bounded by the data

sample size. What is more, since the sparsity nature ofℓ1-norm does not discovery data’s

intrinsic group structure, it tends to pick up features without considering all the classes.

In order to overcome theℓ1-norm’s drawbacks, a method called Hybrid Huberized SVM

(HHSVM) [15] was proposed combining bothℓ1-norm andℓ2-norm regularization with

the huberized hinge loss function to form a more flexible feature selection method. Nev-

ertheless, it was designed only for binary case only. In multi-task learning, Obozinsky et

al. [16] , Argyriouet. al. [17] have developed aℓ2,1-norm based feature selection method

that imposes the structure sparsity in feature selection, i.e. the selected features have large

scores across all the tasks (classes) and the unselected features have small scores (sparse)

over all tasks. However, due to the optimization difficulty in multi-class case, the approach

used least square loss function instead of the hinge loss function.

In this chapter, we will propose three sparse learning feature selection methods to se-

lect features w.r.t multiple classes. In the following paragraph, we will introduceℓ2,1-Norm

Support Vector Machine first and then we will propose anotherpractical feature selection

approach called ”Exact Top K Feature Selection Method withℓ2,0-Norm Constraint”. At

last, if the number of classes is large, we propose another sparse learning method to

2.2 Multi-Class Feature Selection viaℓ2,1-Norm Support Vector Machine

2.2.1 Multi-Class Hinge Loss Withℓ2,1-Norm Regularization

As we know, hinge loss is usually better than the Least Squareloss in terms of clas-

sification tasks [18]. In this section, we propose the following multi-class feature selection

method based on hinge loss as well.

min
W

f(W TX, Y ) + α‖W‖2,1 (2.1)
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where functionf is the multi-class hinge loss function as defined as follows,

f(W TX, Y ) =

n∑

i=1

(1− wT
yi

xi +max
m6=yi

wT
mxi)+ (2.2)

andℓ2,1-norm regularization term is defined as

‖W‖2,1 =
p∑

i=1

√√√√
k∑

j=1

w2
i,j =

p∑

i=1

∥∥wi
∥∥
2

(2.3)

Please note that as we defined in Chapter1, wi denotes the i-th row vector of matrixW ∈

R
p×k. Some other literatures called theℓ2,1-norm asℓ1,2-norm, orℓ2/ℓ1-norm, orℓ1/ℓ2-

norm.

From the sparsity perspective, although theℓ2,0-norm is more desirable, that is,

R(W ) =
p∑

i=1

‖wi‖02, we will useℓ2,1-norm based on the subsequent two reasons: On one

hand,ℓ2,1-norm regularization term is convex and can be easily optimized [19]. On the

other hand, it was shown that the results ofℓ0-norm is identical or approximately identical

to theℓ1-norm results under practical conditions [20]. So doesℓ2,0-norm andℓ2,1-norm.

Here the key new development is the first time to combine multi-class hinge loss

with ℓ2,1-norm regularization term to do the feature selection across all the classes, which

has never been solved before due to its optimization difficulty. Although the hinge loss

with ℓ2,1−norm regularization problem is a convex problem, complete solution path has

not been provided yet due to the complexity of multi-class hinge loss as well as the non-

smooth regularization term. In the next section, we will propose an efficient algorithm to

tackle Eq. (2.1), with the proof of its convergence.
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2.2.2 An Efficient Optimization Algorithm

Chih-Jen Lin et al. have solved the following“real” multi-class SVM problem with

the published code [21].

min
wm,ξi

1
2

k∑
m=1

wT
mwm + α

n∑
i=1

ξi

s.t.wT
yi

xi − wT
mxi ≥ eim − ξi,

for i = 1, ..., n,m = 1, ..., k
n∑

i=1

ξi ≤ α

ξi ≥ 0, for i = 1, ..., n

(2.4)

In other words, given X and Y, we have a function to obtainW ∗,

W ∗ = argmin
W

f(W TX, Y ) + α ‖W‖22 (2.5)

where the functionf is also defined in Eq. (2.2).

Let J(W ) = f(W TX, Y ) + α‖W‖2,1. We find that the result of taking derivative of

J(W ) w.r.t.W is equivalent to the derivative of the following objective function w.r.tW ,

min
W

f(W TX, Y ) + αTr (W TDW ) (2.6)

where D is the diagonal matrix of W, and thei-th element on the diagonal is defined as

dii =
1

2‖wi‖2
, ∀ i = 1, ..., p (2.7)

Note thatD is dependent toW . So it is also an unknown variable. We propose an iterative

algorithm to find out the global solutionW , that is, in each iteration,W is calculated with

the currentD and thenD is updated according to the currentW . The iteration procedure

is repeated until the algorithm converges.

In order to do that, we need to change the variables, letW1 = D
1
2W andX1 =

D− 1
2X.
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Therefore,

min
W

f(W TX, Y ) + αTr (W TDW )

= min
W

f(W TD
1
2D− 1

2X, Y ) + αTr (W TD
1
2D

1
2W )

= min
W1

f(W T
1 X1, Y ) + αTr (W T

1 W1)

(2.8)

Note thatD is a diagnoal matrix. So far, we have bridged the new objective function

Eq. (2.6) with the solvable objective function Eq. (2.5).

Algorithm 1 An efficient iterative algorithm to solve the optimization problem in Eq. (2.8)

Input: dataX ∈ R
p×n, labelY ∈ R

k×n, regularization parameterα

Output: the coefficient matrixW ∈ R
p×k

Procedure:

1: Initialize the coefficient matrix

W (0) = {wij = 1}, i = 1, ...p, j = 1, ...k.

2: Initialize the diagonal matrixD(0), where thei-th diagonal element is defined by E-

q. (2.7).

3: Initialize matrixW (0)
1 asW (0)

1 = (D(0))
1
2W (0)

4: Sett = 0

5: repeat

6: Relax the input data asX(t)
1 = (D(t))−

1
2X

7: Calculate the coefficient matrixW (t+1)
1 = argmin

W
f((W

(t)
1 )TX

(t)
1 , Y ) +

αTr ((W (t)
1 )TW

(t)
1 ) by Crammer’s Algorithm using LIBLINEAR [21].

8: Update the diagonal matrixD(t+1) by Eq. (2.7).

9: t = t + 1

10: until Converges

11: Calculate the outputW = D(∗)−
1
2W

(∗)
1
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Please note that whenwi = 0, thendii = 0 is a subgradient of‖W‖2,1, w.r.t. wi.

However we cannot setdii = 0 whenwi = 0, otherwise the derived algorithm cannot be

guaranteed to converge. To solve this issue, we can regularize dii asdii = 1

2
√

(wi)T wi+ζ
,

whereζ is a very small number and in our experiment we will useeps in matlab as the

value forζ . The derived algorithm can be proved to minimize the regularizedℓ2,1-norm of

W (defined as
p∑

i=1

√
(wi)Twi + ζ) instead ofℓ2,1-norm of W. It is easy to verified thta the

regularizedℓ2,1-norm of W approximates theℓ2,1-norm of W whenζ → 0.

We summarize the proposed iterative method in Algorithm 6.

2.2.3 The Proof of The Convergence

We will utilize the following Theorem to prove the convergence of the Algorithm 1.

Theorem 1. The Algorithm 6 will monotonically decrease the objective of the problem

Eq. (2.8) in each iteration and converge to the global optimum of the problem.

Proof. Since Crammer’s Algorithm gives the solution to problem Eq.(2.5), we will find

out the solution to the following problem by changing the variable:

min
W

f(W TX, Y ) + αTr (W TDW ) (2.9)

whereD is a function ofW satisfying Eq. (5.26). Therefore, in thet-th iteration,

W (t+1) = arg
W

min f((W (t))TX, Y ) + αTr ((W (t))TD(t)W (t)) (2.10)

which indicates

f((W (t+1))TX, Y ) + αTr ((W (t+1))TD(t)(W (t+1)))

≤ f((W (t))TX, Y ) + αTr ((W (t))TD(t)(W (t)))
(2.11)

The above inequality can be extended as,

f((W (t+1))TX, Y ) + α
p∑

i=1

∥

∥

∥
(w(t+1))

i
∥

∥

∥

2

2

2‖(w(t))
i‖

2

≤ f((W (t))TX, Y ) + α
p∑

i=1

∥

∥

∥

(w(t))
i
∥

∥

∥

2

2

2‖(w(t))
i‖

2

(2.12)
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since(
∥∥∥(w(t+1))

i
∥∥∥
2
−
∥∥∥(w(t))

i
∥∥∥
2
)2 ≥ 0, we can obtain the next inequality

∥∥∥(w(t+1))
i
∥∥∥
2
−

∥∥∥(w(t+1))
i
∥∥∥
2

2

2
∥∥∥(w(t))

i
∥∥∥
2

≤
∥∥∥(w(t))

i
∥∥∥
2
−

∥∥∥(w(t))
i
∥∥∥
2

2

2
∥∥∥(w(t))

i
∥∥∥
2

(2.13)

So the following inequality holds:

α
p∑

i=1

(
∥∥∥(w(t+1))

i
∥∥∥
2
−

∥

∥

∥

(w(t+1))
i
∥

∥

∥

2

2

2‖(w(t))
i‖

2

)

≤ α
p∑

i=1

(
∥∥∥(w(t))

i
∥∥∥
2
−

∥

∥

∥
(w(t))

i
∥

∥

∥

2

2

2‖(w(t))
i‖

2

)

(2.14)

Adding Eq. (2.12) and Eq. (2.14) together, we arrive at

f((W (t+1))TX, Y ) + α
p∑

i=1

∥∥∥(w(t+1))
i
∥∥∥
2

≤ f((W (t))TX, Y ) + α
p∑

i=1

∥∥∥(w(t))
i
∥∥∥
2

(2.15)

By the definition ofℓ2,1-norm, we get

f((W (t+1))TX, Y ) + α
∥∥W (t+1)

∥∥
2,1

≤ f((W (t))TX, Y ) + α
∥∥W (t)

∥∥
2,1

(2.16)

Thus the Algorithm 6 will monotonically decrease the objective of the problem in Eq. (2.1)

in each iteration t. At last, it will converge andW (t) andD(t) will satisfy the Eq. (5.26)

and Crammer’s Algorithm. Furthermore, please note that theproblem in Eq. (2.8) is a

convex problem, which indicates thatW
(∗)
1 is a global optimum solution to the problem in

Eq. (2.8) andW is the global optimum solution to the problem in Eq. (2.1). Asa result, the

Algorithm 6 will converge to the global optimum of the problem Eq. (2.1).�

Empirical results show that the convergence is fast and usually only a few iterations

(less than 10) are needed to converge.
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2.2.4 Experiments

2.2.4.1 Data Sets Description

To evaluate the performance of ourℓ2,1-norm SVM, we applied our Algorithm into

five publicly available gene expression data sets and one Mass Spectrometry (MS) data

set to do multi-class feature selection. All the data sets are standardized to be zero-mean

and normalized by the standard deviation. The gene expression data sets are the malig-

nant glioma (GLIOMA) data set [22], the human lung carcinomas (LUNG) data set [23],

ALLAML data set [24], Human Carcinomas (Carcinomas) data set [25], mixed-lineage

leukaemia (MLL) data set [26]. MS data is the Prostate Cancerdata set. All of those data

sets have the characteristic that the number of the samples is much less than the number of

the features.

We give a brief description of all the data sets used in our subsequent experiments

and summarize them in Table 2.1.

GLIOMA data set encompasses 50 samples of four classes in total: cancer glioblastomas

(CG), non-cancer glioblastomas (NG), cancer oligodendrogliomas (CO) and non-cancer

oligodendrogliomas (NO), which have 14, 14, 7, 15 samples, respectively. Each sample

has 12625 genes. Genes with minimal variations across the samples were removed before

the experiment. Also, intensity thresholds were set at 20 and 16,000 units for this data set.

Genes whose expression levels varied less than 100 units between samples or varied less

than 3 folds between any two samples were excluded. After preprocessing, we obtained a

data with 50 samples and 4433 genes.

LUNG data contains 203 samples of five classes, which have 139, 21, 20, 6, 17 samples,

respectively. Each sample has 12600 genes. In the preprocessing, the genes with standard

deviations less than 50 expression units were removed and wegot a data set with 203 sam-

ples and 3312 genes at last.
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Table 2.1. Data set summary.

data name # samples (n) # features (p) # classes (k)
GLIOMA 50 4433 4

LUNG 203 3312 5

ALLAML 72 7129 2

Carcinom 174 9182 11

MLL 72 12582 3

Pro-MS 89 15154 2

ALLAML data set contains 72 samples of two classes, that is, ALL and AML, which have

47 and 25 samples, respectively. Each sample contains 7,129genes.

Carcinomas data set is composed of 174 samples of eleven classes, prostate, bladder/ureter,

breast, colorectal, gastroesophagus, kidney, liver, ovary, pancreas, lung adenocarcinomas

and lung squamous cell carcinoma, which have 26, 8, 26, 23, 12, 11, 7, 27, 6, 14, 14 sam-

ples, respectively. The raw data encompasses 12533 genes and the after preprocessing, the

data set has 174 samples and 9182 genes.

MLL data set contains 72 samples of three classes, acute lymphoblastic leukaemia, acute

myeloid leukaemia and mixed-lineage leukaemia, which have24, 20 and 28 samples, re-

spectively. Each sample has 12582 genes.

Prostate-MS data set consists of 89 samples of two classes, patient and normal people,

which have 26 and 63 samples, respectively. Each mass spectrum is composed of peak

amplitude measurements at 15154 points defined by a corresponding m/z value.

2.2.5 Experiment Setup

We compare our Algorithm (ℓ2,1-norm SVM) with six naive multi-class feature se-

lection methods such as F-statistic [6] , reliefF [27], mRMR[3], t-test, Chi-square, infor-

mation gain [8]. What is more, in order to demonstrate the power of the combination of
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multi-class hinge loss withℓ2,1 regularization term to do feature selection, we also com-

pare three baseline methods. The famous multi-class SVMRFE[28] uses hinge loss with

ℓ2-norm regularization.ℓ2,1-norm LS method which uses Least Square loss withℓ2,1-norm.

ℓ2,1-norm LR method which uses logistic loss withℓ2,1 regularization term.

Because we concern the multi-class feature selection method, we don’t compare bi-

nary feature selection method, such as HHSVM [15]. Due to theupper bound and small

number of samples data with5-fold cross validation in our experiment, we do not consider

ℓ1-SVM neither. Regarding to multi-class SVMRFE, since our method resorts to Crammer

and Singer’s multi-class SVM (MSVMCS) withℓ2,1-norm regulation, we will use MSVM-

CS to do the recursive feature elimination as well for fair comparison.

The Support Vector Machine (SVM) with linear kernel model,C = 1 and K nearest

neighbor (KNN) withK = 1 will be used as two popular classifiers to evaluate the perfor-

mances of different multi-class feature selection algorithms. In order to fixed number of

selected features (from5 to 80 with the incremental step size5), we sort the row index of

matrix W by the row summation value and features are selectedby the top ranked indices.

In addition, all the experiments are using5-fold cross-validation and the average classifi-

cation accuracy based on the above two classifiers are reported. As we know, when the

penalty parameterα is large enough, it tends to reduce the coefficients of more irrelevant

features to exactly zero [15]. Therefore, the largerα is, the more irrelevant features are

eliminated from the model and we will get a more sparse matrixW . We utilized 2-fold

cross validation inside the training data to decide the value of the regularization parameter

empirically.

2.2.5.1 Classification Comparison Using Selected Features

Fig. 2.1 and Fig. 2.2 show the comparisons result of all nine multi-class feature s-

election methods in terms of classification accuracy on six data sets using SVM classifier
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(c) ALLAML
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(f) PROSTATE-MS

Figure 2.1. Comparisons of nine feature selection algorithms on six data sets in terms of
classification accuracy using SVM as classifer with 5-fold cross-validation. SVM21NORM
is our method whose curve are marked as red..
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(e) MLL
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(f) PROSTATE-MS

Figure 2.2. Comparisons of nine feature selection algorithms on six data sets in terms
of classification accuracy using KNN (K = 1) as classifer with 5-fold cross-validation.
SVM21NORM is our method whose curve are marked as red..
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Table 2.2. Classification Accuracy of SVM using 5-fold crossvalidation evaluated on top
20 selected features. RF: ReliefF, F-s: F-score, CS:χ2, IG: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss withℓ2,1-norm regularization, LR21: logistic loss
with ℓ2,1-norm regularization and SVM21:ℓ2,1-norm SVM (our method).

Average accuracy of top 20 features (%) SVM

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 50.0050.0058.0054.0058.00 56.00 54.0058.0070.0072.00
LUNG 89.2481.7586.7390.1490.17 92.12 94.1291.2293.3395.61
ALLAML88.7591.7994.2993.3990.54 90.5497.3291.9694.5897.32
Carcinom 76.9955.1139.6079.3281.06 73.63 86.2282.8687.27 89.09
MLL 87.6891.9687.6893.2192.14 93.2194.6491.4293.46 93.39
Pro-MS 77.6598.8995.5698.8998.89 95.42 94.6493.2696.54 97.77
Average 78.3978.2576.9784.8385.13 83.49 81.5984.7989.20 90.87

Table 2.3. Classification Accuracy of SVM using 5-fold crossvalidation evaluated on top
80 selected features. RF: ReliefF, F-s: F-score, CS:χ2, IG: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss withℓ2,1-norm regularization, LR21: logistic loss
with ℓ2,1-norm regularization and SVM21:ℓ2,1-norm SVM (our method).

Average accuracy of top 80 features (%) SVM

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 60.0058.0068.0066.0066.0072.00 72.0068.0072.00 72.00
LUNG 93.6391.6390.6695.5895.10 94.12 95.1093.6694.5896.07
ALLAML95.8996.0794.2994.4695.71 94.46 95.8993.7595.2397.32
Carcinom 90.2483.3268.9187.3389.65 87.92 94.2589.5288.79 94.82
MLL 93.3996.0798.7594.6495.89 94.6498.7594.6494.5798.75
Pro-MS 89.9398.8994.4498.8998.89 93.14 95.8997.4498.33100
Average 86.1887.6784.5188.1590.21 88.38 91.9886.2390.58 93.16

and KNN classifier respectively. Table 2.2 and Table 2.3 illustrate the detailed experimental

results for top 20 and top 80 features for all feature selection approaches using SVM (linear

kernel,C = 1) respectively. And Table 2.4 and Table 2.5 demonstrate the detailed experi-

mental results for top 20 and top 80 features for all feature selection approaches using KNN

(K = 1) respectively. From them, we can obviously see that our method outperforms the

naive multi-class feature selection approaches and achieve competitive performance com-
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Table 2.4. Classification Accuracy of KNN using 5-fold crossvalidation evaluated on top
20 selected features. RF: ReliefF, F-s: F-score, CS:χ2, IG: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss withℓ2,1-norm regularization, LR21: logistic loss
with ℓ2,1-norm regularization and SVM21:ℓ2,1-norm SVM (our method).

Average accuracy of top 20 features (%) KNN

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 42.0066.0060.0072.00 58.00 56.00 68.0068.0068.0072.00
LUNG 84.2780.7884.75 87.73 89.17 90.17 94.5391.8691.7795.96
ALLAML90.3690.3691.43 93.21 93.21 93.21 96.8892.4093.8297.41
Carcinom 77.6148.7641.34 75.85 83.92 74.22 86.3782.8386.92 88.65
MLL 89.1191.9689.11 88.93 90.54 91.79 94.4591.4892.1093.21
Pro-MS 86.5498.8297.78100.0098.89 97.78 94.6392.9795.08 97.51
Average 78.3179.4577.40 86.29 85.62 83.86 89.1584.9688.04 90.84

Table 2.5. Classification Accuracy of KNN using 5-fold crossvalidation evaluated on top
80 selected features. RF: ReliefF, F-s: F-score, CS:χ2, IG: Information Gain, RFE: multi-
class SVMRFE, LS21: Least Square loss withℓ2,1-norm regularization, LR21: logistic loss
with ℓ2,1-norm regularization and SVM21:ℓ2,1-norm SVM (our method).

Average accuracy of top 80 features (%) KNN

RF F-s T-test CS IG mRMR RFE LS21LR21SVM21
GLIOMA 54.0066.0054.0062.0058.00 62.0072.0070.0072.00 72.00
LUNG 92.1789.1784.7592.5895.10 94.12 95.0793.7894.4695.47
ALLAML91.7990.3691.4394.4695.71 94.46 95.7293.5593.3997.23
Carcinom 87.3681.5841.3485.3186.33 85.43 94.5589.8088.31 94.78
MLL 94.6490.5490.5492.6495.89 92.64 98.5194.8293.9298.83
Pro-MS 90.9896.5496.5498.8998.89 95.14 95.9597.9097.6499.80
Average 85.1685.7081.1490.1290.25 87.74 91.9389.6189.79 92.98

pared with multi-class SVMRFE especially if we only selection the top20 features. Also,

compared with multi-class Least Square loss or multi-classlogistic loss, multi-class hinge

loss withℓ2,1-norm usually achieves the best performance.

Fig. 2.3 demonstrates the learned matrix (the solution toW of Eq. (2.6)) of data

GLIOMA. Columns represent4 classes and rows represent around3000 features. The
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Figure 2.3. The learned matrixW of data GLIOMA.

brighter pixel means higher value entry. From it we can observe the intrinsic structural

horizontal pattern ofℓ2,1-norm clearly, that is, selecting features for all the classes.

2.2.5.2 Algorithm Time Complexity Analysis

In Alg.6, LIBLINEAR [21] provides the solver for Eq. (2.5) using very efficient

coordinate descent method and usually we can obtain the result for step 7 in less than

1 second for large scale data (like our bio-data). And sinceD is a diagonal matrix, the

computational complexity in step6 is also low. We report the average number of iteration

and the average feature selection time for multi-class SVMRFE and our method using5-

fold cross validation in Table 2.6 for all the data used in ourexperiment, where we used

Matlab2009b and the configuration of our PC is Intel Corel2 Duo CPUE7300 2.66GHz.

Choosing0.001 as the stop criterion, we can see that the converge rate of ourmethod is fast

and although our method can achieve competitive classification performance compared

with multi-class SVMRFE, the speed of our method is much faster.
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Table 2.6. Time comparison of our method and multi-class SVMRFE

data iter# our iter# RFE T our (sec) T RFE (sec)
G 12 4433 14.91 1115.73

L 30 3312 51.92 1023.86

A 13 7129 34.83 2127.95

C 15 9182 91.42 3192.84

M 13 12582 77.64 4244.23

P 30 15154 239.74 5256.38
G:GLIOMA, L: LUNG, A: ALLAML, C: Carcinom, M: MLL, P: Pro-MS

2.3 Exact Top-K Multi-Class Feature Selection viaℓ2,0-Norm Constraint

Since we are focusing on multi-class feature selection, structural sparsity regular-

ization is desired, which can select the features across allthe classes with jointly sparsity,

i.e. each feature has either small score or large score for all theclasses. From the sparsity

perspective, althoughℓ2,0-norm is more desirable, due to its nonconvex and non-smooth

properties which will induce great difficulty in optimization, people prefer the convexℓ2,1-

norm as the regularization term [29] [19] [30]. As we know, such kind of approximation

is under the assumption that the effects ofℓ2,0-norm regularization is identical or approxi-

mately identical to theℓ2,1-norm. Nevertheless, the above assumption does not always hold

in the real application [31]. Moreover, since the regularization parameter ofℓ2,1-norm does

not have explicit meaning, for different data, it may changedramatically and people need

to carefully tune its value based on the training data, whichwill take long time. Lots of

related work of sparse learning based feature selection methods adopt the model based on

convex problem due to the fact that convex problem has globalsolution. However, is it

always true that the method based on convex problem is alwaysbetter than that based on

non-convex problem?

In this section, we will propose an efficient, robust and pragmatic multi-class feature

selection model, which has the following advantages: (1) Weshow that it is NOT true that

the feature selection method based on convex problem is always better than its counterpart
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based on non-convex problem. (2) We tackle the original sparse problem withℓ2,0-norm

constraint directly instead of its relaxation or approximation problem. Therefore, we can

get a more accurate solution. (3) Since there is only one termin the objective function, we

avoid the computational burden of tuning the parameter for regularization term, which is

desired for solving the real problem. (4) We are the first to provide an efficient algorithm to

tackle the minimization problem ofℓ2,1-norm loss with theℓ2,0-norm constraint. Extensive

experiments on four benchmark biological datasets show that our approach outperforms the

relaxed or approximate counterparts and state-of-art feature selection methods evaluated in

terms of classification accuracy using two popular classifiers.

2.3.1 Sparse Learning Based Feature Selection Background

Typically, many sparse based supervised binary feature selection methods that arise

in data mining and machine learning can be written as the approximation or relaxed version

of the following problem:

< w∗, b >= min
w,b
||y−XTw− b1||22

s.t.||w||0 = k

(2.17)

wherey ∈ B
n×1 is the binary label,X ∈ R

d×n is the training data,w ∈ R
d×1 is the learned

model,b is the learned biased scalar,1 ∈ R
n×1 is a column vector with all1 entries, andk is

the number of the feature selected. Solving Eq. (2.17) directly has been approved NP-hard,

very difficult in optimization. In many practical situations it is convenient to allow for a

certain degree of error, and we can relax the optimization constraint using the following

formulation,

< w∗, b >= argmin
w,b

{||w||0 + λ||y−XTw− b1||22} (2.18)

which is equivalent to the following “fidelity loss plus regularization” format,

< w∗, b >= argmin
w,b

{||y−XTw− b1||22 + λ||w||0} (2.19)
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whereλ ∈ R
+ is the regularization parameter. Unfortunately, the way totackle Eq. (2.19)

is still challenging. To overcome this problem, the subsequent alternative formulation using

ℓ1-norm regularization instead ofℓ0-norm has been proposed,

< w∗, b >= argmin
w,b

{||y−XTw− b1||22 + λ||w||1} (2.20)

After we getw∗, we choose the feature indices corresponding to topk largest values of

the summation of absolute values along each row. In statistic, people call Eq. (2.20) as the

regularized counterpart of LASSO problem, which has been widely studied and proved to

have a closed form solution.

Although people can use heuristic strategy, i.e. one V.S. all or one V.S. one to extend

the above binary sparse based feature selection method to domulti-class feature selection,

some structural sparsity is preferred, if the goal is to select features across all the classes.

In multi-task learning, Obozinskyet al. and Argyriouet. al. [17] [32] have developed a

ℓ2,1-norm square regularization term to couple feature selection across tasks.

2.3.2 Robust And pragmatic Multi-class Feature Selection

Given training data{x1, x2, · · · , xn} ∈ R
d×1 and its corresponding class labels{y1, y2, · · · , yn} ∈

R
m×1, traditional least square regression solves the followingoptimization problem to learn

the projection matrixW ∈ R
d×m and the biasb ∈ R

m×1:

< W ∗, b >= argmin
W,b

n∑

i=1

||yi −W Txi − b||22. (2.21)

Since there is inevitable noise existing in the training data, in order to be robust to outliers,

our proposed method will use the robust loss function:

< W ∗, b >= argmin
W,b

n∑

i=1

||yi −W Txi − b||2, (2.22)
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which has a rotational invariant property whereas the pureℓ1-norm loss function does not

has such desirable property [33]. In addition, for the sake of obtaining a more accurate

model, we useℓ2,0-norm constraint instead of impose it as the regularizationterm.

Denotingn training dataX ∈ R
d×n as well as the associated class labelsY ∈ R

n×m

for m classes, in this paper, we propose the following objective function to selectk features

in multi-class problems

min
W,b
‖|Y −XTW − 1bT ||2,1

s.t.||W ||2,0 = k,

(2.23)

where,1 ∈ R
n×1 is a column vector with all its entries being1.

2.3.3 Optimization Algorithm

In this section, we will propose an efficient algorithm to tackle Eq. (4.25) directly

followed by the proof of its convergence to local solution.

2.3.3.1 General Augmented Lagrangian Multiplier Method

In [34], the general method of augmented Lagrange multipliers is introduced for

solving constrained optimization problems of the kind:

min
X

f(X), s.t. Tr (h(X)) = 0, (2.24)

One may define the augmented lagrangian function:

L(X,Λ, µ) = f(X) + Tr (ΛTh(X)) +
µ

2
||h(X)||2F , (2.25)

where matrixΛ is the Lagrange multiplier andµ is a positive scalar called the quadratic

penalty parameter and then Eq. (2.25) can be solved via the method of augmented Lagrange

multipliers, outlined as Alg. 2.
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2.3.3.2 Problem Reformulation

According to Augmented Lagrangian Multiplier (ALM) Method, we introduce two

slack variablesi.e. V andE. Eq. (4.25) can be reformulated as

min
W,b,V,‖V ‖2,0=k,E

‖E‖2,1 + µ
2

∥∥∥W − V + 1
µ
Λ
∥∥∥
2

F

+µ
2

∥∥∥XTW + 1bT − Y − E + 1
µ
Σ
∥∥∥
2

F

(2.26)

2.3.3.3 An Efficient Algorithm to Solve the Constrained Problem

We will introduce an efficient algorithm based on the generalALM to tackle problem

Eq. (2.26) alternatively and iteratively.

The first step is fixingW , V andE, solvingb. Then we need to solve the following

subproblem:
µ

2

∥∥∥∥X
TW + 1bT − Y − E +

1

µ
Σ

∥∥∥∥
2

F

(2.27)

Take derivative w.r.t.b and set it to zero, we have

b =
1

n
(Y + E − 1

µ
Σ)T1− 1

n
W TX1 (2.28)

The second step is fixingV , b andE, solvingW . Then the objective function be-

comes,

min
W

∥∥∥∥W − V +
1

µ
Λ

∥∥∥∥
2

F

+

∥∥∥∥X
TW + 1bT − (Y + E − 1

µ
Σ)

∥∥∥∥
2

F

(2.29)

Take derivative w.r.t.W and set it to zero, we have

W = (XXT + I)−1(V − 1

µ
Λ +X(Y + E − 1

µ
Σ− 1bT )) (2.30)

whereI ∈ R
d×d is the identity matrix.

The third step is fixingW , b andE, solvingV . The subproblem becomes,

min
‖V ‖2,0=k

∥∥∥∥V − (W +
1

µ
Λ)

∥∥∥∥
2

F

(2.31)
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which can be solved by Alg. 3.

The fourth step is fixingW , b andV , solvingE. The subproblem becomes,

min
E

1

2

∥∥∥∥E − (XTW + 1bT − Y +
1

µ
Σ)

∥∥∥∥
2

F

+
1

µ
‖E‖2,1 (2.32)

Denote

G = XTW + 1bT − Y +
1

µ
Σ. (2.33)

Then Eq. (2.32) is equivalent to the following problem,

min
E

1

2
||E −G||2F +

1

µ
||E||2,1, (2.34)

which can be decoupled as,

min
ei

n∑

i=1

1

2
||ei − gi||22 +

1

µ
||ei||2 (2.35)

whereei andgi is the i-th row of matrixE andG respectively. And the solution to Eq. (2.35)

is

ei =





(1− 1/µ
||gi||2

)gi, ||gi||2 > 1/µ

0, ||gi||2 ≤ 1/µ
(2.36)

We iteratively and alternatively updateb,W, V, E according to the above four steps and

summarize the whole Algorithm in Alg. 4.

2.3.3.4 Algorithm Analysis

Since Eq. (2.26) is not a convex problem, in each iteration, given fixedΛ, Σ, and

µ, Alg. 4 will find its local solution. The convergence of ALM algorithm was proved and

discussed in previous papers. Please refer to the literature therein [35] [36].

The overall computation complexity of our method is low, although we solve it sepa-

rately and iteratively. In each iteration, the only computation burden is in Eq. (2.30), where

we need to calculate an inversed × d matrix. However, since it is only related to the in-

put data, we can calculate it before we go to the loop. What is more, when the number
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Algorithm 2 General Method of Augmented Lagrange Multiplier
Initialization:

1. Sett = 0

2. Initialize the Lagrangian multiplier matrixΛ(t).

3. Initialize the quadratic penalty parameterµ(t).

4. Initialize the incremental step size parameterρ ≥ 1.

repeat

1. UpdateX(t+1) = argmin
X

L(X(t),Λ(t), µ(t))

2. UpdateΛ(t+1) = Λ(t) + µ(t)h(X(t+1))

3. Updateµ(t+1) = ρµ(t)

4. Updatet = t+ 1

until Converges

Output: X∗

of feature is much larger than the number of data, we can resort to Woodbury formula to

transform it as an × n inverse matrix. Although its solution depends on the initialization,

in the following experiment section, we will conduct experiment to demonstrate that its

local solution is stable and its feature selection performance is better than that of some

state-of-art sparse feature selection methods based on convex problems.

2.3.4 Experiment

We denote our proposed method asℓ2,0-norm ALM. The performance ofℓ2,0-norm

ALM is evaluated on four biological gene expression datasets. We give a brief description

of all the datasets used in our subsequent experiments.

2.3.4.1 Datasets Descriptions

The gene expression datasets are the leukimia (LEU) data set[22], the human lung

carcinomas (lUNG) data set [23], ALLA data set [24] and HumanCarcinomas (Carcino-
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Algorithm 3 The algorithm to solve Eq. (2.31)
Input:

1. The projection matrixW .

2. The Lagrangian multiplier matrixΛ

3. The quadratic penalty parameterµ.

4. The number of feature selectedk.

Process:

1. CalculatẽW = W + 1
µ
Λ.

2. Calculate the vectorp ∈ R
d×1, where each entry defined aspi =

∑
j

w̃ij
2
, ∀i = 1, 2, · · · , d.

3. Sortp, find out the indices vectorq = [q1, q2, · · · , qk]T corresponding to topk sorted entries.

4. Assigni-th row ofW̃ to V if i ∈ q;

assign zero row vector0T ∈ R
1×mto V , if i /∈ q.

Output: The slack variable matrixV .

mas) data set [25]. All these four datasets are standardizedto zero-mean and normalized

by the standard deviation, which are summarized in Table 2.7.

LEU data set encompasses two classes samples:25 leukimia patient (Positive),47 healthy

patient (Negative). Each sample has3571 genes. Genes with minimal variations across the

samples were removed before the experiment. Also, intensity thresholds were set at20 and

16, 000 units for this data set. After preprocessing, we obtained a data with72 samples and

3571 genes.

LUNG data contains203 samples of five classes, which have139, 21, 20, 6, 17 samples,

respectively. Each sample has12600 genes. In the preprocessing, the genes with standard

deviations less than50 expression units were removed and we got a data set with203 sam-

ples and3312 genes at last.

ALLA data set contains72 samples of two classes, that is, ALL and AML, which have47

and25 samples, respectively. Each sample contains7, 129 genes.

Carcinomas (CAR)data set is composed of174 samples of eleven classes, prostate, blad-
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Table 2.7. Gene Expression data set summary.

data name # samples # features # classes
LEU 72 3571 2

LUNG 203 3312 5
ALLAML 72 7129 2

CAR 174 9182 11
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Figure 2.4. The classification accuracy using selected features by KNN.

der/ureter, breast, colorectal, gastroesophagus, kidney, liver, ovary, pancreas, lung adeno-

carcinomas and lung squamous cell carcinoma, which have26, 8, 26, 23, 12, 11, 7, 27, 6,

14, 14 samples, respectively. The raw data encompasses12533 genes and the after prepro-

cessing, the data set has174 samples and9182 genes.
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Figure 2.5. The classification accuracy using selected features by SVM.
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2.3.4.2 Experiment Setup

In our experiments, for each data, we will randomly select20% to do the training

and use the remaining part as testing. The reason we use smaller portion of training data is

because it is well known that when the number of training databecomes sufficiently large,

any feature selection method will work well. We select the number of features ranging from

1 to 10 with the incremental step1 and the feature selection performance is evaluated by

average classification accuracy on two popular classifiers,i.e. K nearest neighbor (KNN)

and support vector machine (SVM). Specifically, we set up KNNwith K = 1 and SVM

with linear kernelC = 1 respectively for their intuitive meaning and simplicity. Here we

assume that the better the feature selection algorithm is, the higher classification accuracy

we will get. We compare our feature selection method with thefollowing two basic filter

methods:

Fisher Score [37] selects each feature independently according to the score under the Fisher

criterion.

Information Gain (IG) [8] computes the sensitivity (correlation or relevance) of a feature

w.r.t the class label distribution of the data.

In addition, we also compare our approach with some similar feature selection methods

based on sparse learning:

Multi-Task Feature Selection (MTFS) [38] selects featuresacross multi-task (multi-class)

by solving a general loss function withℓ2,1-norm regularization. .

Robust Feature Selection (RFS) [19] selects features w.r.tmulti-class and can be robust to

the outlier data by solving a jointℓ2,1-norm problem.

Sparse Feature Selection (SFS) [39] selects features by solving a smoothed general loss

function with a more sparseℓ2,0-norm constraint.

We tune the regularization parameter in MTFS and RFS to let the non-zero row number of
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Table 2.8. The mean and std of the converged objective function value of our method using
50 random initialization

data k = 1 k = 5 k = 8 k = 10
LEU 1.72 ± 1.80 0.68 ± 0.49 0.58 ± 0.43 0.66 ± 0.37

LUNG 23.61 ± 2.87 11.81 ± 0.38 11.31 ± 0.84 10.12 ± 0.74
ALLA 6.06 ± 2.26 2.45 ± 1.24 1.28 ± 0.85 0.92 ± 0.56
CAR 29.69 ± 1.73 23.01 ± 1.70 19.81 ± 1.68 18.40 ± 1.48

the optimum solutionW exactly equal to the number of selected features. Because MTFS

and RFS both solve a convex optimization problem, they will get global solution finally.

However, SFS and our method are based onℓ2,0-norm constraint and we can only find local

solution. In our experiment, we used the optimum solution ofMTFS as the initialization for

SFS and used random initialization for our method. Since there is an explicit meaning of the

constraintk in our method or SFS, we can avoid the heavy burden of tuning regularization

parameter and just make them as the number of selected features. We use the following

parametersµ = 0.01, ρ = 1.02 and choose1000 as the maximum number of iterations in

Alg. 4.

2.3.4.3 Feature Selection Results

Fig. 2.4 shows the classification accuracy V.S. the number ofselected feature using

KNN classifier. Similarly, Fig. 2.5 demonstrates the feature selection results by SVM.

From them, we can see that when the number of selected featureis small, particularly the

one with less than5 features, the classification result of our method can beat MTFL as

well as RFS consistently, since our method can find a more sparse solution byℓ2,0-norm

constraint instead of the solution to the relaxed regularization problem. Because SFS finds

local solution, its performance depends on the initialization, i.e. MTFS. When feature

selection result of MTFS is good, like LEU data, SFS can achieve very promising results.

However, for some data, like LUNG, when MTFS performs badly,SFS will stuck at the bad

local optimum. When the number of selected feature increases, all the sparse learning based
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feature selection methods will tend to perform similarly, which is within our expectation.

Next we will conduct experiment to show that our method can find stable local solutions

under different random initializations.

2.4 Conclusion

In classification problem, the large number of features and the relatively small num-

ber of data samples pose great challenges for classification. To tackle these problems, in

this chapter, we proposed a novel and efficient multi-class feature selection method with

emphasizing the combination of multi-class hinge loss andℓ2,1-norm regularization min-

imization (ℓ2,1-norm SVM) or least square loss withℓ2,0-norm constraint. Theℓ2,1-norm

or ℓ2,0-norm can capture the joint sparse structure to select features across all the classes,

which naturally solves the feature selection for multi-class problem. An efficient algorithm

with proved convergence has been provided and broad empirical studies have been per-

formed on the bench mark data sets. Compared with some of the existing the state-of-art

methods, our method can consistently achieves better multi-class feature selection perfor-

mance evaluated on two popular classifiers.
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Algorithm 4 The algorithm to solve Eq. (2.26)
Input:

1. Training dataXtr ∈ R
d×ntr , training labelsYtr ∈ R

ntr×m

2. The number of feature selectedk.

3. The initial projection matrixW0.

Output:

1. Thek selected feature indices vectorq.

2. The objective function valueobj

3. The learned projection matrixW and biasb.

Initialization:

1. Sett = 0

2. Initialize the projection matrix asW = W0.

3. Initialize the Lagrangian multiplier matrixΛ ∈ 0d×m, Σ ∈ 0n×m.

4. Initialize the quadratic penalty parameterµ = 0.1.

5. Initialize the incremental step size parameterρ = 1.02.

Process:

repeat

1. Update the biasb by Eq. (2.28).

2. Update the projection matrixW by Eq. (2.30).

3. Update the the slack variable matrixV by Alg. 3.

4. CalculateG by Eq.(2.33).

5. UpdateE by Eq. (2.36).

6. UpdateΛ(t+1) = Λ(t) + µ(t)(W (t+1) − V (t+1))

7. UpdateΣ(t+1) = Σ(t) + µ(t)(XTW (t+1) + 1b(t+1)T − Y − E(t+1))

8. Updateµ(t+1) = ρµ(t)

9. Updatet = t+ 1

until Converges
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CHAPTER 3

MULTI-VIEW K-MEANS CLUSTERING ON BIG DATA

3.1 Introduction

With the rising of data sharing websites, such as Facebook and Flickr, there is a

dramatic growth in the number of data. For example, Facebookreports about 6 billion

new photo every month and 72 hours of video are uploaded to YouTube every minute.

One of major data mining tasks is to unsupervised categorizethe large-scale data [40–43],

which is useful for many information retrieval and classification applications. There are

two main computational challenges in large-scale data clustering: (1) How to integrate the

heterogeneous data features to improve the performance of data categorizations? (2) How

to reduce the computational cost of clustering algorithm for large-scale applications?

Many scientific data have heterogeneous features, which aregenerated from dif-

ferent data collection sources or feature construction ways. For example, in biological

data, each human gene can be measured by different techniques, such as gene expres-

sion, Single-nucleotide polymorphism (SNP), Array-comparative genomic hybridization

(aCGH), methylation; in visual data, each image/video can be represented by different vi-

sual descriptors, such as SIFT [44], HOG [45], LBP [46], GIST[47], CENTRIST [48],

CTM [49]. Each type of features can capture the specific information in the data. For ex-

ample, in visual descriptors, CTM uses the color spectral information and hence is good

for categorizing the images with large color variations; GIST achieves high accuracy in

recognizing natural scene images; CENTRIST is good for classifying indoor environment

images; HOG can describe the shape information of the image;SIFT is robust to image

rotation, noise, illumination changes; and LBP is a powerful texture feature. It is crucial to
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integrate these heterogeneous features to create more accurate and more robust clustering

results than using each individual type of features.

Although several graph based multi-view clustering algorithms were presented with

good performance, they have the following two main drawbacks. On one hand, because all

of them are graph based clustering method, the constructionof data graph is a key issue.

Using different kernels to build the graph will affect the final clustering performance a

lot. Moreover, for some specific kernels, we have to considerthe impact of the choice of

parameters, such that the clustering results are sensitiveto the parameters tuning. On the

other hand, more important, due to the heavy computation of the kernel construction as well

as eigen decomposition, these graph based methods cannot beutilized to tackle large-scale

data clustering problem.

The classicalK-means clustering is a centroid-based clustering method, which par-

titions the data space into a structure known as Voronoi diagram. Due to its low com-

putational cost and easily parallelized process, theK-means clustering method has often

been applied to solve large-scale data clustering problems, instead of the spectral cluster-

ing. However, theK-means clustering was designed for solving single-view data clustering

problem. In this section, we propose a new robust multi-viewK-means clustering method

to integrate heterogeneous features for clustering. Compared to related clustering methods,

our proposed method consistently achieves better clustering performances on six bench-

mark data sets. Our contributions in this paper are summarized in the following four folds:

(1) We propose a novel robust large-scale multi-viewK-means clustering approach,

which can be easily parallelized and performed on multi-core processors for big visual data

clustering;

(2) Using the structured sparsity-inducing norm,ℓ2,1-norm, the proposed method is

robust to data outliers and can achieve more stable clustering results with different initial-

izations;
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(3) We derive an efficient algorithm to tackle the optimization difficulty introduced

by the non-smooth norm based loss function with proved convergence;

(4) Unlike the graph based algorithms, the computational complexity of our method-

s is similar to the standardK-means clustering algorithm. Because our method does not

require the graph construction as well as the eigen-decomposition, it avoids the heavy com-

putational burden and can be used for solving large-scale multi-view clustering problems.

3.2 Robust Multi-ViewK-Means Clustering

As one of most efficient clustering algorithms,K-means clustering algorithm has

been widely applied to large-scale data clustering. Thus, to cluster the large-scale multi-

view data, we propose a new robust multi-viewK-means clustering (RMKMC) method.

3.2.1 Clustering Indicator Based Reformulation

Previous work showed that the G-orthogonal non-negative matrix factorization (N-

MF) is equivalent to relaxedK-means clustering [50]. Thus, we reformulate theK-means

clustering objective using the clustering indicators as:

min
F,G
||XT −GF T ||2F

s.t. Gik ∈ {0, 1},
K∑
k=1

Gik = 1, ∀i = 1, 2, · · · , n
(3.1)

whereX ∈ R
d×n is the input data matrix withn images andd-dimensional visual features,

F ∈ R
d×K is the cluster centroid matrix, andG ∈ R

n×K is the cluster assignment matrix

and each row ofG satisfies the1-of-K coding scheme (if data pointxi is assigned tok-th

cluster thenGik = 1, andGik = 0, otherwise).
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3.2.2 Robust Multi-ViewK-Means Clustering via Structured Sparsity-Inducing Norm

The originalK-means clustering method only works for single-view data clustering.

To solve the large-scale multi-view clustering problem, wepropose a new multi-viewK-

means clustering method. LetX(v) ∈ R
dv×n denote the features inv-th view,F (v) ∈ R

dv×K

be the centroid matrix for thev-th view, andG(v) ∈ R
n×K be the clustering indicator matrix

for thev-th view. GivenM types of heterogeneous features,v = 1, 2, · · · ,M .

The straightforward way to utilize all views of features is to concatenate all features

together and perform the clustering algorithm. However, insuch method, the important

view of features and the less important view of features are treated equally such that the

clustering results are not optimal. It is ideal to simultaneously perform the clustering using

each view of features and unify their results based their importance to the clustering task.

To achieve this goal, we have to solve two challenging problems: 1) how to naturally

ensemble the multiple clustering results? 2) how to learn the importance of feature views

to the clustering task? More important, we have to solve these issues simultaneously in the

clustering objective function, thus previous ensemble approaches cannot be applied here.

When a multi-view clustering algorithm performs clustering using heterogeneous

features, the clustering results in different views shouldbe unique,i.e. the clustering indi-

cator matricesG(v) of different views should share the same one. Therefore, in multi-view

clustering, we force the cluster assignment matrices to be the same across different views,

that is, the consensus common cluster indicator matrixG ∈ R
n×K , which should satisfy

the1-of-Kcoding scheme as well.

Meanwhile, as we know, the data outliers greatly affect the performance ofK-means

clustering, because theK-means solution algorithm is an iterative method and in eachit-

eration we need to calculate the centroid vector. In order tohave a more stable clustering

performance with respect to a fixed initialization, the robustK-means clustering method is

desired. To tackle this problem, we use the sparsity-inducing norm,ℓ2,1-norm, to replace
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theℓ2-norm in the clustering objective function,e.g. Eq. (3.1). Theℓ2,1-norm based clus-

tering objective enforces theℓ1-norm along the data points direction of data matrixX, and

ℓ2-norm along the features direction. Thus, the effect of outlier data points in clustering are

reduced by theℓ1-norm. We propose a new robust multi-viewK-means clustering method

by solving:

min
F (v),G,α(v)

M∑
v=1

(α(v))
γ ||X(v)T −GF (v)T ||2,1

s.t.Gik ∈ {0, 1},
K∑
k=1

Gik = 1,
M∑
v=1

α(v) = 1,
(3.2)

whereα(v) is the weight factor for thev-th view andγ is the parameter to control the

weights distribution. We learn the weights for different types of features, such that the

important features will get large weights during the multi-view clustering.

3.3 Optimization Algorithm

The difficulty of solving the proposed objective comes from the following two as-

pects. First of all, theℓ2,1-norm is non-smooth. In addition, each entry of the cluster

indicator matrix is a binary integer and each row vector mustsatisfy the1-of-K coding

scheme. We propose new algorithm to tackle them efficiently.

3.3.1 Algorithm Derivation

To derive the algorithm solving Eq. (3.2), we rewrite Eq. (3.2) as

J = min
F (v),D(v),α(v),G

M∑
v=1

(α(v))γH(v), (3.3)

where

H(v) = Tr (X(v) − F (v)GT )D(v)(X(v) − F (v)GT )T . (3.4)
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D(v) ∈ R
n×n is the diagonal matrix corresponding to thev-th view and thei-th entry on

the diagonal is defined as:

D
(v)
ii =

1

2 ‖e(v)i‖ , ∀i = 1, 2, ..., n, (3.5)

wheree(v)i is thei-th row of the following matrix:

E(v) = X(v)T −GF (v)T . (3.6)

The first step is fixingG, D(v), α(v) and updating the cluster centroid for each viewF (v).

Taking derivative ofJ with respect toF (v), we get

∂J

∂F (v)
= −2X(v)D̃(v)G + 2F (v)GT D̃(v)G, (3.7)

where

D̃(v) = (α(v))γD(v). (3.8)

Setting Eq. (3.7) as0, we can updateF (v):

F (v) = X(v)D̃(v)G(GT D̃(v)G)−1. (3.9)

The second step is fixingF (v), D(v), α(v) and updating the cluster indicator matrixG.

We have
M∑

v=1

Tr (X(v) − F (v)GT )D̃(X(v) − F (v)GT )T

=

M∑

v=1

N∑

i=1

D̃
(v)
ii ||x

(v)
i − F (v)gi||22

=
N∑

i=1

(
M∑

v=1

D̃
(v)
ii ||x

(v)
i − F (v)gi||22) (3.10)

We can solve the above problem by decoupling the data and assign the cluster indicator for

them one by one independently, that is, we need to tackle the following problem for the

fixed specifici, with respect to vectorg = [g1, g2, · · · , gK]T ∈ R
K×1

min
g

M∑

v=1

d̃(v)||x(v) − F (v)g||22, s.t.gk ∈ {0, 1},
K∑

k=1

gk = 1 (3.11)
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whered̃(v) = D̃
(v)
ii is thei-th element on the diagonal of the matrix̃D(v). Given the fact that

g satisfies1-of-K coding scheme, there areK candidates to be the solution of Eq. (3.11),

each of which is thek-th column of matrixIK = [e1, e2, · · · , eK ]. To be specific, we can

do an exhaustive search to find out the solution of Eq. (3.11) as,

g∗ = ek, (3.12)

wherek is decided as follows,

k = argmin
j

M∑

v=1

d̃(v)||x(v) − F (v)ej ||22 . (3.13)

The third step is fixingF (v), G, α(v) and updatingD(v) by Eq. (5.26) and Eq. (3.6).

The fourth step is fixingF (v), G, D(v) and updatingα(v).

min
α(v)

M∑

v=1

(a(v))
γ
Tr H(v), s.t.

M∑

v=1

α(v) = 1, α(v) ≥ 0 (3.14)

whereH(v) is also defined in Eq. (3.4). Thus, the Lagrange function of Eq. (4.26) is:

M∑

v=1

(α(v))γH(v) − λ(

M∑

v=1

α(v) − 1). (3.15)

In order to get the optimal solution of the above subproblem,set the derivative of Eq. (4.28)

with respect toα(v) to zero. We have:

α(v) =

(
λ

γH(v)

) 1
γ−1

. (3.16)

Substitute the resultantα(v) in Eq. (4.29) into the constraint
M∑
v=1

α(v) = 1, we get:

α(v) =

(
γH(v)

) 1
1−γ

M∑
v=1

(γH(v))
1

1−γ

. (3.17)
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By the above four steps, we alternatively updateF (v), G, D(v) as well asα(v) and repeat

the process iteratively until the objective function becomes converged. We summarize the

proposed algorithm in Alg. 5.

3.3.2 Discussion of The Parameterγ

We use one parameterγ to control the distribution of weight factors for different

views. From Eq. (4.30), we can see that whenγ → ∞, we will get equal weight factors.

And whenγ → 1, we will assign1 to the weight factor of the view whoseH(v) value is

the smallest and assign0 to the weights of the other views. Using such a kind of strategy,

on one hand, we avoid the trivial solution to the weight distribution of the different views,

that is, the solution whenγ → 1. On the other hand, surprisingly, we can take advantage of

only one parameterγ to control the whole weights, reducing the parameters of themodel

greatly.

3.3.3 Convergence Analysis

We can prove the convergence of the proposed Alg. 5 as follows: We can divide

the Eq. (3.2) into four subproblems and each of them is a convex problem with respect to

one variable. Therefore, by solving the subproblems alternatively, our proposed algorithm

will guarantee that we can find the optimal solution to each subproblem and finally, the

algorithm will converge to local solution.

3.4 Time Complexity Analysis

As we know, graph based clustering methods, like spectral clustering and etc., will in-

volve heavy computation,e.g.kernel/affinity matrix construction as well as eigen-decomposition.

For the data set withn images, the above two calculations will have the time complexity
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of O(n2) andO(n3) respectively, which makes them impractical for solving thelarge-scale

image clustering problem. Although some research works have been proposed to to reduce

the computational cost of the eigen-decomposition of the graph Laplacian [51] [52], they

are designed for two-way clustering and have to use the hierarchical scheme to tackle the

multi-way clustering problem.

However, our proposed method is centroid based clustering method with the similar

time complexity as traditionalK-means. ForK-means clustering, if the number of iteration

is P , then the time complexity isO(PKnd) and the time complexity of our proposed

method isO(PKndM), whereM is the number of views and usuallyP ≪ n, M ≪ n

andK ≪ n. In addition, in the real implementation, if the data is too big to store them

in memory, we can extend our algorithm as an external memory algorithm that works on a

chunk of data at a time and iterate the proposed algorithm on each data chunk in parallel

if multiple processors are available. Once all of the data chunks have been processed, the

cluster centroid matrix will be updated. Therefore, our proposed method can be used to

tackle the very large-scale clustering problem.

Because the graph based multi-view clustering methods cannot be applied to the

large-scale image clustering, we did not compare the performance of our method with

them in the experiments.

3.5 Experiments

In this section, we will evaluate the performance of the proposed RMKMC method

on six benchmark data sets: SensIT Vehicle [53], Caltech-101 [54], Microsoft Research

Cambridge Volume1(MSRC-v1) [55] Handwritten numerals [56], Animal with attribute [57]

and SUN397 [58]. Three standard clustering evaluation metrics are used to measure the
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Table 3.1. Data set summary.

Data sets # of data # of views # of cluster
SensIT 300 2 3

Caltech7 441 6 7
MSRC-v1 210 6 7

Digit 2000 6 10
AwA 30475 6 50
SUN 10000 7 100

multi-view clustering performance, that is, Clustering Accuracy (ACC), Normalized Mu-

tual Information(NMI) and Purity.

3.5.1 Data Set Descriptions

We summarize the six data sets that we will use in our experiments in Table 5.1.

SensIT Vehicle data set is the one from wireless distributedsensor networks (WD-

SN). It utilizes two different sensors, that is, acoustic and seismic sensor to record different

signals and do classification for three types of vehicle in anintelligent transportation sys-

tem. We download the processed data from LIBSVM [59] and randomly sample100 data

for each class. Therefore, we have300 data samples,2 views and3 classes.

Caltech101 data set is an object recognition data set containing 8677 images, be-

longing to101 categories. We chose the widely used7 classes,i.e. Faces, Motorbikes,

Dolla-Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair. Following [42], we sample

the data and totally we have441 images. In order to get the different views, we extract

LBP [46] with dimension256, HOG [45] with dimension100, GIST [47] with dimension

512 and color moment (CMT) [49] with dimension48, CENTRIST [48] with dimension

1302 and DoG-SIF [44] with dimension128 visual features from each image.

MSRC-v1 data set is a scene recognition data set containing8 classes,240 images in

total. Following [41], we select7 classes composed of tree, building, airplane, cow, face,
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car, bicycle and each class has30 images. We also extract the same6 visual features from

each image with Caltech101 dataset.

Handwritten numerals data set consists of2000 data points for0 to9 ten digit classes.

(Each class has 200 data points.) We use the published6 features to do multi-view cluster-

ing. Specifically, these6 features are76 Fourier coefficients of the character shapes (FOU),

216 profile correlations (FAC),64 Karhunen-love coefficients (KAR),240 pixel averages

in 2× 3 windows (PIX),47 Zernike moment (ZER) and6 morphological (MOR) features.

Animal with attributes is a large-scale data set, which consists of 6 feature,50

classes, 30475 samples. We utilize all the published features for all the images, that is,

Color Histogram (CQ) features , Local Self-Similarity (LSS) features [60], PyramidHOG

(PHOG) features [61], SIFT features [44], colorSIFT (RGSIFT) features [62], and SURF

features [63].

SUN 397 dataset [58] is a published dataset to provide researchers in computer vi-

sion, human perception, cognition and neuroscience, machine learning and data mining,

with a comprehensive collection of annotated images covering a large variety of environ-

mental scenes, places and the objects. It consists of397 classes with100 images for each

class. We conduct the clustering experiment on the top100 classes via the7 published fea-

tures for all the10000 images.The7 visual features are color moment, dense SIFT, GIST,

HOG, LBP, MAP and TEXTON.

3.5.2 Experimental Setup

We will compare the multi-view clustering performance of our method (RMKMC)

with their corresponding single-view counterpart. In addition, we also compare the results

of our method with the baseline method naive multi-viewK-means clustering (NKMC),

and affinity propagation (AP). In our method, when we ignore the weight learning for

each type of visual features, the method degenerates to a simple version, called as simple
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Table 3.2. SensIT Vehicle data set

Methods ACC NMI Purity
acoustic 0.5049± 0.030 0.1018± 0.023 0.5055± 0.029
seismic 0.5122± 0.047 0.1149± 0.046 0.5129± 0.046
NKMC 0.5449± 0.041 0.1375± 0.030 0.5465± 0.039

AP 0.3867± 0.000 0.0084± 0.000 0.3867± 0.000
SMKMC 0.5490± 0.040 0.1395± 0.032 0.5494± 0.040
RMKMC 0.5504± 0.049 0.1484± 0.033 0.5542± 0.044

MKMC (SMKMC). In order to see the importance of the weight learning, we also compare

our method to this simple version method.

Before we do any clustering, for each type of features, we normalize the data first,

making all the values in the range[−1, 1]. When we implement naive multi-viewK-means,

we simply use the concatenated normalized features as inputfor the classicK-means clus-

tering algorithm. As for affinity propagation methods, we need to build the similarity

kernel first. Due to the fact that linear kernel is preferred in large-scale problem, we use the

following way to construct linear kernel.

wij = xT
i xj, ∀i, j = 1, 2, ..., n, (3.18)

In addition, RMKMC has a parameterγ to control the weight factor distribution among

all views. We search the logarithm of the parameterγ, that is,log10γ in the range from

0.1 to 2 with incremental step0.2 to get the best parametersγ∗. Since all the clustering

algorithms depend on the initializations, we repeat all themethods50 times using random

initialization and report the average performance.

3.5.3 Clustering Results Comparisons

Table 3.2 demonstrates the clustering results on SensIT Vehicle data set. From it,

we can see that although there are only two views (acoustic and seismic), compared with
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Table 3.3. Caltech101-7 data set.

Methods ACC NMI Purity
LBP 0.5236± 0.021 0.4319± 0.006 0.6005± 0.008
HOG 0.5561± 0.052 0.5020± 0.035 0.6459± 0.038
GIST 0.5663± 0.032 0.4737± 0.024 0.6418± 0.028
CMT 0.3809± 0.015 0.2706± 0.021 0.4346± 0.010

DoG-SIFT 0.6125± 0.037 0.5637± 0.018 0.6673± 0.028
CENTRIST0.6315± 0.058 0.5981± 0.046 0.7035± 0.044

NKMC 0.6587± 0.063 0.6561± 0.035 0.7458± 0.030
AP 0.5125± 0.000 0.3611± 0.1054 0.5170± 0.1290

SMKMC 0.6723± 0.058 0.6775± 0.034 0.7561± 0.026
RMKMC 0.6797± 0.053 0.6892± 0.029 0.7595± 0.027

single-viewK-means counterparts, our proposed RMKMC can boost the clustering per-

formance by more than10%. Our RMKMC can also beat NKMC and AP. Table 3.3 and

Table 3.5 show the clustering results on regular size Caltech101-7, MSRC-v1 as well as

Handwritten numerals data set. From it, we can see that with more feature views involved

in, our method can improve the clustering performance even further. Also, on large-scale

data set Animal with attribute, although doing clustering on a 50 class data set is hard,

the performance of our method can still outperform that of the other compared methods as

shown in Table 3.6.

We plot the confusion matrices of RMKMC and NKMC in terms of clustering accu-

racy in Fig. 4.6. Because the clustering numbers of AwA and SUN data sets are large, their

confusion matrices cannot be plotted within one page. We skip these two figures. From

both tables and figures, we can see that our proposed methods consistently beat the base

line method on all the data sets.
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(a) Caltech7 (NKMC) (b) Caltech7 (RMKM-
C)

(c) MSRCV1 (NKMC) (d) MSRCV1
(RMKMC)

(e) sensIT (NKMC) (f) sensIT (RMKMC) (g) digit(NKMC) (h) digit(RMKMC)

Figure 3.1. The calculated average clustering accuracy confusion matrix for Caltech101,
MSRCV1, SensIT Vehicle, and Handwritten numerals data sets..

Table 3.4. MSRC-v1 data set.

Methods ACC NMI Purity
LBP 0.4726± 0.039 0.4156± 0.024 0.5087± 0.030
HOG 0.6361± 0.041 0.5669± 0.032 0.6610± 0.037
GIST 0.6283± 0.057 0.5523± 0.039 0.6511± 0.044
CMT 0.5076± 0.043 0.4406± 0.037 0.5307± 0.037

DoG-SIFT 0.4341± 0.036 0.3026± 0.028 0.4558± 0.030
CENTRIST0.5977± 0.062 0.5301± 0.037 0.6205± 0.054

NKMC 0.7002± 0.085 0.6405± 0.057 0.7207± 0.073
AP 0.1571± 0.000 0.2890± 0.000 0.1714± 0.000

SMKMC 0.7423± 0.093 0.6940± 0.070 0.7652± 0.079
RMKMC 0.8142± 0.087 0.7776± 0.071 0.8341± 0.073

3.6 Conclusion

In this chapter, we proposed a novel robust multi-viewK-means clustering methods

to tackle the large-scale multi-view clustering problems.Utilizing the common cluster

indicator, we can search a consensus pattern and do clustering across multiple visual feature

views. Moreover, by imposing the structured sparsityℓ2,1-norm on the objective function,

45



Table 3.5. Handwritten numerals data set.

Methods ACC NMI Purity
FOU 0.5560± 0.062 0.5477± 0.028 0.5793± 0.048
FAC 0.7078± 0.065 0.6791± 0.032 0.7374± 0.051
KAR 0.6898± 0.051 0.6662± 0.030 0.7149± 0.044
MOR 0.6143± 0.058 0.6437± 0.034 0.6428± 0.050
PIX 0.6945± 0.067 0.7030± 0.040 0.7235± 0.059
ZER 0.5348± 0.052 0.5123± 0.025 0.5684± 0.043

NKMC 0.7282± 0.067 0.7393± 0.039 0.7609± 0.059
AP 0.6285± 0.000 0.5940± 0.000 0.6600± 0.000

SMKMC 0.7758± 0.079 0.7926± 0.039 0.8106± 0.060
RMKMC 0.7889± 0.075 0.8070± 0.033 0.8247± 0.052

Table 3.6. Animal with attribute data set.

Methods ACC NMI Purity
CP 0.0675± 0.002 0.0773± 0.003 0.0874± 0.002
LSS 0.0719± 0.002 0.0819± 0.005 0.0887± 0.002

PHOG 0.0690± 0.004 0.0691± 0.003 0.0823± 0.004
RGSIFT 0.0725± 0.003 0.0862± 0.004 0.0889± 0.003

SIFT 0.0732± 0.003 0.0944± 0.005 0.0919± 0.004
SURF 0.0764± 0.003 0.0885± 0.003 0.0978± 0.004
NKMC 0.0802± 0.001 0.1075± 0.003 0.1007± 0.001

AP 0.0769± 0.001 0.0793± 0.003 0.0975± 0.001
SMKMC 0.0841± 0.005 0.1108± 0.005 0.1039± 0.005
RMKMC 0.0943± 0.005 0.1174± 0.005 0.1140± 0.005

our method is robust to the outliers in input data. Our new method learns the weights

of each view adaptively. We also introduce an optimization algorithm to iteratively and

efficiently solve the proposed non-smooth objective with proved convergence. We evaluate

the performance of our methods on six multi-view clusteringdata sets.
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Table 3.7. SUN data set.

Methods ACC NMI Purity
COLOR 0.0507± 0.003 0.1417± 0.003 0.0544± 0.003
DSIFT 0.0661± 0.002 0.1717± 0.002 0.0710± 0.002
GIST 0.0740± 0.002 0.2008± 0.002 0.0812± 0.004
HOG 0.0715± 0.003 0.1862± 0.003 0.0772± 0.003
LBP 0.0599± 0.002 0.1618± 0.002 0.0644± 0.002
MAP 0.0656± 0.003 0.1917± 0.003 0.0710± 0.004

TEXTON 0.0561± 0.002 0.1682± 0.002 0.0608± 0.002
NKMC 0.0546± 0.001 0.1507± 0.003 0.0591± 0.001

AP 0.0667± 0.001 0.1693± 0.003 0.0765± 0.001
SMKMC 0.0834± 0.003 0.2106± 0.003 0.0839± 0.003
RMKMC 0.0927± 0.003 0.2154± 0.003 0.0922± 0.003

47



Algorithm 5 The algorithm of RMKMC
Input:

1. Data forM views{X(1), · · · , X(M)} andX(v) ∈ R
dv×n.

2. The expected number of clustersK.

3. The parameterγ.

Output:

1. The common cluster indicator matrixG

2. The cluster centroid matrixF(v) for each view.

3. The learned weightα(v) for each view.

Initialization:

1. Sett = 0

2. Initialize the common cluster indicator matrixG ∈ R
n×K randomly, such thatG

satisfies the1-of-K coding scheme.

3. Initialize the diagonal matrixD(v) = In for each view, whereIn ∈ R
n×n is the identity

matrix.

4. Initialize the weight factorα(v) = 1
M

for each view.

repeat

1. Calculate the diagonal matrix̃D(v) by Eq. (3.8)

2. Update the centroid matrixF(v) for each view by Eq. (3.9)

3. Update the cluster indicator vectorg for each data one by one via Eq. (3.12) and

Eq. (3.13)

4. Update the diagonal matrixD(v) for each view by Eq. (5.26) and Eq. (3.6)

5. Update the weight factorα(v) for each view by Eq. (4.30)

6. Updatet = t+ 1

until Converges
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CHAPTER 4

HETEROGENEOUS IMAGE FEATURE INTEGRATION

4.1 Introduction

As we know, scene categorization and visual recognition arekey tasks in computer

vision research. However, due to images’ variability, ambiguity and the wide range of

illumination, they are challenging. The most popular way totackle such problems is to

utilize the low-level image features such as global color, texture histograms, object shapes,

etc. In recent years, a variety of feature representation methods had been proposed to solve

how to describe the visual objects in different images. Somefocus on the local information,

others are holistic descriptors. Among all local feature descriptors, Scale-Invariant Feature

Transform (SIFT) [44], Speeded-up Robust Features (SURF) [64], Histogram of Oriented

Gradients (HOG) [45] were most popularly used to overcome image variability caused by

changing viewpoints, occlusions, and varying illumination. Local Binary Patterns (LBP)

was proposed in [46] as a powerful texture feature based on occurrence histogram of local

binary patterns. GIST [47] and CENTRIST [48] are two representative holistic descriptors.

Because different features describe different aspects of the visual characteristics, it

is true that one descriptor can be regarded as a better representation under certain circum-

stances than the others. If we integrate all the descriptorsvia a proper machine learning

method, we could create a generally more accurate and more robust descriptor than any

single descriptor, which is like the scenario that if we use “multiple view” to observe an

object, we can “see” its details more clearly.

How to combine heterogeneous features is becoming a challenging as well as attrac-

tive problem nowadays. As a multiple-kernel learning algorithm, the heterogeneous feature
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machine (HFM) [65] was recently proposed based on logistic regression loss function and

group LASSO regularization tosupervisedfuse the multiple types of features for visual

classifications. On the other hand, unsupervised categorization of images or image parts

is needed for image and video collection or as a preprocessing step for later supervised

classification. In addition, labeling image is a time consuming as well as biased task. Al-

though it is possible to label large amounts of images for research purposes, this is often

unrealistic in practice. Therefore, how to take advantage of the heterogeneous features to

do unsupervised clustering or semi-supervised learning isstill a changing problem.

In this chapter, we will propose two graph based methods to dospectral cluster-

ing and semi-supervised learning with the reasonable fusion of heterogeneous modalities ,

where each modality is a kind of intermediate image descriptor.

4.2 Multi-Modality Spectral Clustering

In recent computer vision research, many unsupervised learning based methods have

been proposed to classify scenes and recognize objects fromimages. Ferguset al. [66] and

Sivic et al. [67] discovered the latent visual building block in images by making use of the

generative topic models that were developed for text mining, such as probabilistic Latent

Semantic Analysis (pLSA) [68] and Latent Dirichlet Allocation (LDA) [69]. Instead of uti-

lizing the generative models, Graumanet al. [70] employed partially matching kernel [71]

to get the distinctive model and explored the image categoryinformation by spectral clus-

tering. Dueck and Frey applied Affinity Propagation method to cluster different scene and

object images [42]. Nevertheless, all these methods only used one image feature descriptor

without the help of other descriptors extracted from the same image.

In this section, we unsupervised integrate five renowned descriptors, including DoG-

SIFT [44], LBP [46], GIST [47], CENTRIST [48], and HOG [45]. Figure 4.5 demonstrates
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Original images LBP GIST CENTRIST DoG-SIFT HOG

Figure 4.1. The visual patterns of descriptors LBP, GIST, CENTRIST, DoG-SIFT, and
HOG of three sample images from Caltech101 data set..

the visual patterns of each descriptor for sample images. Each representation corresponds

to a single modal, that is, a local descriptor or holistic descriptor.

4.2.1 Image Descriptors

DoG-SIFT is originally designed for recognizing the same object appearing under

different conditions and has been widely used in computer vision and image content re-

trieval. As a local descriptor, it is invariant to image rotation as well as scale. It is also

robust across a substantial range of affine noise and change in illumination. There are sev-

eral variations of SIFT descriptors (e.g. Dense SIFT [72]) in literature. In order to fairly

compare our method to existing unsupervised scene categorization methods [42, 70], we

use DoG-SIFT to be consistent with their selection.

LBP is a powerful texture feature based on occurrence histogram of local binary

patterns. It emphasizes the local structure and is famous for its robustness to rotation and

non-uniform illumination.

HOG is a good local descriptor to describe the shape information of the image. D-

iffering to SIFT which describes the feature at the candidate location (keypoint), HOG
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describes the feature over the given region. HOG was combined with cell-structured LBP

as the human detector and achieves promising performance [73].

GIST encodes rough geometry and spatial structures within an image and suppress

detailed texture focusing on the holistic information. It achieved high accuracy in recog-

nizing natural scene categories,e.g. mountain and coast. But it often fails to recognize

images from indoor environments.

CENTRIST is a holistic descriptor to capture the the stable spatial structure within

images that reflects the functionality of the location, and especially suitable for indoor

environment categorization classification.

4.2.2 Multi-Modal Spectral Clustering

Generally speaking, there are two main streams for seeking the solutions to multi-

modal unsupervised learning problem. One is based on the designed centralized algorithm-

s, making use of the multiple perspectives simultaneously to find out the hidden pattern

from the data. The other is to figure out the multi-modal unsupervised clustering problem

via a distributed way, that is, to learn the hidden patterns individually from each single

representation and then learn the optimal hidden patterns from those multiple patterns [74].

To naturally integrate heterogeneous image features, we propose a unified objective

function to simultaneously optimize clustering results ofeach individual descriptor and

their combinations. In other words, we minimize both spectral clustering error of each

view and the distances between the multi-modal clustering indicator matrix and each single

modal spectral clustering indicator matrix. Therefore, our multi-modal spectral clustering

objective function is

min
G≥0,GTG=I,Gi

∑

i

J(G,Gi), (4.1)
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where

J(G,Gi) = Tr Gi
TLiGi + αTr (G−Gi)

T (G−Gi) (4.2)

whereLi andGi are the corresponding Laplacian matrix and clustering indicator matrix

of each single modal,α is the penalty parameter,G is the multi-modal clustering indicator

matrix which we care about. Thus, given the Laplacian matrixof each single modal, we

utilize Eq. (4.25) to learn the clustering indicator matrixfor each modal and clustering

indicator matrix for the multi-modal simultaneously.

4.2.3 Non-Negative Orthonormal Constaint

The traditional way to do spectral clustering results is taking advantage of spectral

relaxation. The main disadvantage of this approach is that the obtained spectral solution

has mixed signs, which could severely deviate from the true solution and have to resort to

other clustering methods, such as K-means or spectral rotation to obtain the final cluster

indicators. In order to directly get the discrete cluster indicator matrix without further dis-

cretization process, we add the non-negative constraintG ≥ 0. Compared to the traditional

spectral clustering method [75], although we still find the local solution, this relaxation is

guaranteed to be converged (will be proved later) and can directly assign clusters to data

point. Moreover, it is more robust to the initial conditions.

4.2.4 MMSC Algorithm

In order to get the optimal solution of Eq. (4.25), we set the derivative of the objective

function with respect toGi to zero. We have2LiGi + 2α(Gi −G) = 0. Thus,

Gi = α(Li + αI)−1G. (4.3)
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We substitute Eq. (4.3) to Eq. (4.25) and the first term in the summation can be rewritten

as:

Tr GT
i LiGi = α2Tr GT (Li + αI)−1Li(Li + αI)−1G (4.4)

Also, since

Gi −G

= α(Li + αI)−1G−G

= (α(Li + αI)−1 − I)G

= (α(Li + αI)−1 − (Li + αI)(Li + αI)−1)G

= −Li(Li + αI)−1G

(4.5)

the second term in the summation can be rewritten as:

αTr (Gi −G)T (Gi −G)

= αTr GT (Li + αI)−1LiLi(Li + αI)−1G

= αTr GT (Li + αI)−1(Li + αI)Li(Li + αI)−1G

−α2Tr GT (Li + αI)−1Li(Li + αI)−1G

= αTr GTLi(Li + αI)−1G

−α2Tr GT (Li + αI)−1Li(Li + αI)−1G.

(4.6)

We substitute Eq. (4.4) and Eq. (4.6) to Eq. (4.25), and because

Li(Li + αI)−1

= (Li + αI − αI)(Li + αI)−1

= I − α(Li + αI)−1

(4.7)

the optimization problem becomes:

min
G≥0,GTG=I,Gi

∑
i

αTr GTLi(Li + αI)−1G

= min
G≥0,GTG=I,Gi

∑
i

αTr GTG− α2Tr GT (Li + αI)−1G.
(4.8)

Since there is the constrainGTG = I, Eq. (4.8) is equivalent to maximize the following:

max
G≥0,GTG=I

Tr GT (
∑

i

(Li + αI)−1)G. (4.9)
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The above optimization problem can be solved using an iterative algorithm [76]:

Gij ← Gij

√
(JG)ij
(Gβ)ij

, β ≡ GTJG, (4.10)

whereJ =
∑
i

(Li + αI)−1. We initialize G byG0 + 0.2, whereG0 is obtained by spectral

relaxation of Normalized Cut using spectral rotation in theeigenspace. BecauseG0 is a

cluster indicator matrix, 0.2 is added to makeG0 + 0.2 as a valid practical initialization to

avoid stucking at the same solution. We can use random initialization as well. However, if

we use the above initialization, we can get a more robust clustering result.

Algorithm 6 The algorithm of MMSC
Input: Given V multi-modal affinity matricesWi, ∀i = 1, 2, · · · , V andc clusters

Output: Cluster indicator matrixG

Procedure:

1: Calculate the corresponding Laplacian matrices,Li = Di −Wi, ∀i = 1, 2, · · · , V .

2: Calculate the inverse matrix,Lmulti−modal =
V∑
i

(Li + αI)−1.

3: Compute the firstc eigenvectorsu1, u2, · · · , uc of Lmulti−modal.

4: Let U ∈ R
n×c be the matrixU = [u1, u2, · · · , uc].

5: Calculate the matrixT ∈ R
n×c from U by normalizing each row of U to be norm 1.

6: Let gi ∈ R
c, ∀i = 1, 2, · · · , n, be the vector corresponding to thei-th row ofT .

7: Cluster the points(gi)i=1,2,··· ,n with spectral rotation algorithm to getG0

8: UseG0 + 0.2 as the input and perform the iterative algorithm with the non-negative

relaxation, to get final assignment indicator matrixG.

55



4.2.5 Convergence of Our Algorithm

It can be proved that the Eq. (4.10) is guaranteed to converge. First, we write the

Lagrangian function of Eq. (4.9) as:

L = Tr GTJG− λTr (GTG− I). (4.11)

Theorem 1 Given the update approach of Eq. (4.10), the lagrangian function L as in

Eq. (4.11) increases monotonically, that is, nondecreasing.

Proof. We use the auxiliary function [77]. An auxiliary function P (G, G̃) ≤ L(G) of

functionL(G) satisfies

P (G,G) = L(G), P (G, G̃) ≤ L(G). (4.12)

We define

G(t+1) = argmax
G

P (G,G(t)). (4.13)

Thus,

L(G(t)) = P (G(t), G(t)) ≤ P (G(t+1), G(t)) ≤ L(G(t+1)). (4.14)

So far, we have shown thatL(G(t)) is monotonically increasing. In the following

paragraph, we will prove two issues. First, we will prove that we find an appropriate aux-

iliary function. After that, we will find the global maxima ofthe auxiliary function. Note

that it is important that the maxima in the Eq. (4.13) are the global maxima. Otherwise, the

first inequality of Eq. (4.14) does not hold. We can show that

P (G, G̃) =
∑
k

∑
ij

JijG̃ikG̃jk(1 + log
GikGjk

G̃ikG̃jk
)

−
p∑

i=1

∑
k,l

(G̃λ)ikG
2
ik

G̃ik

(4.15)
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is an auxiliary function ofL(G) of Eq. (4.11) (the constant termλ is ignored). Using the

inequalityz ≥ 1 + log z and setz =
GikGjk

G̃ikG̃jk
, the first term in Eq. (4.15) is a lower bound of

the first term in Eq. (4.11). Since there is a generic inequality

n∑

i=1

k∑

p=1

(AS ′B)ipS
2
ip

S ′
ip

≥ Tr (STASB), (4.16)

whereA > 0, B > 0, S > 0, S ′ > 0, with A andB symmetric. Taking advantage of that

Generic Inequality Eq. (4.19), we can find the second term in Eq. (4.15) is a lower bound of

the second term in Eq. (4.11). According to Eq. (4.13), we need to find the global maxima

of P (G, G̃) for G. The gradient is

∂P (G, G̃)

∂Gik

= 2
(JG̃)ikG̃ik

Gik

− 2
(G̃λ)ikGik

G̃ik

. (4.17)

The second derivative is

∂2P (G, G̃)

∂Gik∂Gjl
= −2[(JG̃)ikG̃ik

G2
ik

+
(G̃λ)ik
G̃ik

]δijδkl. (4.18)

Therefore,P (G, G̃) is a concave function in H and has a unique global maximum. This

global maximum can be obtained by setting the first derivative to zero, which yields

G2
ik = G̃2

ik

(JG̃)ik
(G̃λ)ik

. (4.19)

According to Eq. (4.13),G(t+1) = G andG(t) = G̃. Thus, we proved the theorem. �

4.2.6 Experimental Results

In this section, we compare the performance of our multi-modal clustering and re-

lated methods via two benchmark data sets: Caltech-101 (Fei-Fei et al.2004) as well as

Microsoft Research Cambridge Volume 1 (MSRC-v1) (Winn et al.2005). Three standard

metrics have been used to measure the image clustering performance, that is, Clustering

Accuracy (ACC), Normalized Mutual Information (NMI), and purity.
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Table 4.1. Clustering Accuracy

7 classes 20 classes MSRC-v1
L 0.4314 ± 0.0065 0.3040 ± 0.0091 0.5613 ± 0.0220

G 0.5439 ± 0.0416 0.0.4089 ± 0.0026 0.6615 ± 0.0051

C 0.60525 ± 0.0185 0.5080 ± 0.0026 0.7258 ± 0.0177

D 0.5766 ± 0.0237 0.2744 ± 0.0057 0.4210 ± 0.0221

H 0.581 ± 0.0542 0.3659 ± 0.0042 0.4966 ± 0.0040

N 0.5137 ± 0.0375 0.3694 ± 0.0049 0.5085 ± 0.0052

K 0.5049 ± 0.0277 0.3383 ± 0.0158 0.5667 ± 0.0518

A 0.5003 ± 0.0000 0.2881 ± 0.0000 0.4476 ± 0.0000

S 0.6327 ± 0.0000 0.2496 ± 0.0000 0.3381 ± 0.0000

M 0.6244 ± 0.0105 0.5237 ± 0.0047 0.801 ± 0.0087
L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive spectral clustering, K: K-means, A:

Affinity Propagation, S: Affnity Propagation with DoG-SIFT, M: MVSC

4.2.6.1 Data Set Descriptions

Caltech-101 Images

The Caltech101 image data set contains 8677 images of objects, each with approx-

imately 0.1 mega pixel resolution, belonging to 101 categories. We follow [42] to choose

7 and 20 classes data set respectively from 101 classes. The 7classes include Faces, Mo-

torbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windsor-Chair and have 441 images in

total. The 20 classes include Faces, Leopards, Motorbikes,Binocular, Brain, Camera, Car-

Side, Dollar-Bill, Ferry, Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler, Stop-Sign,

Water-Lilly, Windsor-Chair, Wrench, Yin-Yang and have 1230 images all together.

MSRC-v1 Images

We follow Lee and Grauman’s approach [41] to refine the data set, getting 7 classes

composed of tree, building, airplane, cow, face, car, bicycle, and each refined class has 30

images. Compared to the Caltech-101 data set, MSRC-v1 has more clutter and variability

in the objects appearances.
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Table 4.2. Normalized Mutual Information.

7 classes 20 classes MSRC-v1
L 0.4177 ± 0.0104 0.3807 ± 0.0047 0.4411 ± 0.0129

G 0.5443 ± 0.0199 0.4846 ± 0.0041 0.6322 ± 0.0236

C 0.5284 ± 0.0136 0.5503 ± 0.0025 0.5966 ± 0.0163

D 0.5930 ± 0.0110 0.2873 ± 0.0052 0.2613 ± 0.0160

H 0.4748 ± 0.0225 0.4326 ± 0.0030 0.4318 ± 0.0023

N 0.4828 ± 0.0027 0.4337 ± 0.0030 0.4560 ± 0.0133

K 0.5298 ± 0.0463 0.4004 ± 0.0130 0.4803 ± 0.0384

A 0.4807 ± 0.0000 0.3766 ± 0.0000 0.5376 ± 0.0000

S 0.5139 ± 0.0000 0.3242 ± 0.0000 0.4798 ± 0.0000

M 0.6865 ± 0.0053 0.5915 ± 0.0039 0.7405 ± 0.0127
L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive spectral clustering, K: K-means, A:

Affinity Propogation, S: Affnity Propagation with DoG-SIFT, M: MVSC

4.2.6.2 Experimental Setup

We extract LBP, GIST, CENTRIST, DoG-SIFT, and HOG descriptors respectively

from each image and use the Gaussian Kernel to get the similarity matrices for LBP, GIST,

CENTRIST and HOG. In order to solve the inequality length problem of the DoG-SIFT

feature, we resort to the pyramid match kernel [71] to build the similarity matrix, using

the LIBPMK toolkit. Thus, given an image, we have five similarity (affinity) matrices

calculated from five different features. Regarding the parameterσ for Gaussian Kernel, we

resort to the self tuning method [78].

We apply the spectral clustering algorithm [75] to do the clustering with each single

modal method. Within these five methods (corresponding five modals), the spectral clus-

tering plus DoG-SIFT is the method used in [70]. We also implement Affinity Propagation

plus DoG-SIFT method that was proposed in [42].

In order to further show the power of our MMSC method, we concatenate these five

features to get a large feature vector and use Gaussian Kernel to calculate a unified simi-

larity matrix. We also evaluate the clustering performances of classical spectral clustering,
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Table 4.3. Clustering Purity.

7 classes 20 classes MSRC-v1
L 0.5727 ± 0.0049 0.3607 ± 0.0070 0.5622 ± 0.0195

G 0.6683 ± 0.0237 0.4711 ± 0.0045 0.7084 ± 0.0228

C 0.6942 ± 0.0165 0.5554 ± 0.0026 0.7258 ± 0.0177

D 0.7016 ± 0.0203 0.3114 ± 0.0067 0.4390 ± 0.0209

H 0.5921 ± 0.0154 0.4227 ± 0.0031 0.5537 ± 0.0040

N 0.5968 ± 0.0144 0.4248 ± 0.0028 0.5614 ± 0.0128

K 0.6507 ± 0.0455 0.3713 ± 0.0167 0.5882 ± 0.0474

A 0.5941 ± 0.0000 0.3691 ± 0.0000 0.5857 ± 0.0000

S 0.6372 ± 0.0000 0.3967 ± 0.0000 0.5619 ± 0.0000

M 0.7639 ± 0.0009 0.5777 ± 0.0009 0.8048 ± 0.0085
L: LBP, G: GIST, C: CENTRIST, D: DoG-SIFT, H: HOG, N: Naive spectral clustering, K: K-means, A:

Affinity Propogation, S: Affnity Propagation with DoG-SIFT, M: MVSC

K-means and Affinity Propagation on this new similarity matrix. Thus, we compare our

MMSC approach to total nine existing methods.

As we know, the results of all clustering algorithms depend on the initial conditions.

Therefore, we average 50 iterations to get the average and standard deviations of three

evaluation metrics for each method and fix the penalty parameter log10α in the range from

-2 to 2 with incremental step 0.2.

4.2.6.3 Clustering Results Comparison

The results are shown in Table 4.1, Table 4.2.6.1, Table 4.2.6.1. we can conclude

that utilizing our MVSC algorithm, we can always obtain a better clustering quality at least

5 percent than the single view or other state-of-the-art unsupervised image categorization

methods.

For demonstration purpose, we randomly pickup the Garfield image class from Cal-

tech101 7-class data set and show top 28 nearest images to thecluster centroid (gotten by

applying spectral clustering to each single view and our MVSC method) in Fig. 4.4. Obvi-
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Figure 4.2. The randomly selected image samples for MSRCv-1data.

ously the integration of different views can cluster more Garfield images into correct group

than each individual view.

From MSRC-v1 data, we randomly select20% images from each class, and Fig.

4.2 shows the selected images. We project them to the 2nd and 3rd eigenvectors of graph

Laplacian matrices of each individual view and multi-view.Fig. 4.3 illustrates the projec-

tion results. Obviously the performance of feature fusion by MMSC method is the best.

Note that we use red arrows to point to the images which are visually far away from other

images in the same group,i.e. wrong clustering results. Because MSRC-v1 data have 7

classes and each class has 30 images, we cannot plot all of them on the figure (otherwise,

many of them will be overlapped each other).

4.2.6.4 Visual Analysis

In MSRC-v1 data, because lots of tree (red frame), building (green frame), cow

(black frame), and airplane (dark blue) images have large grass background area, if we only
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(a) LBP (b) GIST

(c) CENTRIST (d) DoG-SIFT

(e) HOG (f) MMSC

Figure 4.3. The visual clustering performance of MMSC projected to the 2nd and 3rd
eigen-vector plane for MSRC-v1 data set..
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use the local descriptors, lots of features are prone to falling into the background area and

these descriptors in the background area may “look” very similar. Our results have shown

that the clustering performance using local descriptors (LBP, DoG-SIFT, HOG) for such

four categories images is worse than that using holistic descriptors (GIST, CENTRIST)

as shown in Fig. 4.3. However, if we choose holistic descriptor only, we cannot achieve

good cluster performance neither. Because we will ignore many useful detail information,

which is like the case that we are prone to confusing car images shown in cyan frame with

bicycle images shown in orange frame in Fig. 4.3(b) and Fig. 4.3(c). Another interesting

thing is that from our results, we observe if we combine the features not properly, the

performance of using one large feature vector can be worse than that using only one feature,

even by classical clustering methods, like Naive spectral clustering, K-means, and Affinity

propagation, which again demonstrates the power of our MMSCalgorithm.

In Caltech 101 data, for both 7 classes and 20 classes, the majority of images have

varying degrees of background clutter, which will affect the clustering results. From Fig.

4.4, we can see that Garfield with uniform background will be clustered with motorbike im-

ages with higher probability using holistic descriptors (GIST and CENTRIST). Moreover,

since the shape of Garfield’s face and human’s face are similar: round shape, two eyes, one

nose and one mouth, the descriptors focusing on local shape information (LBP and HOG)

will cluster more face images with garfield images as well.

4.3 Heterogeneous Image Features Integration via Multi-Modal Semi-Supervised Learn-

ing Model

As we know, in the traditional supervised learning paradigm, increasing the quantity

and diversity of labeled images enhances the performance ofthe learned classifier. Never-

theless, labeling image is a time consuming as well as biasedtask. Although it is possible
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(a) LBP (b) GIST

(c) CENTRIST (d) DoG-SIFT

(e) HOG (f) MMSC

Figure 4.4. Clustering results of different methods on Garfield cluster in Caltech 101 data
set. The top 28 nearest images to the centroid are visualized..

to label large amounts of images for research purposes, thisis often unrealistic in practice.

To solve the classification problem caused by the scarce or expensive labeled data, we re-

sort to semi-supervised learning, which takes advantage ofthe combination of both labeled

and unlabeled images.

The most popular way to do semi-supervised learning for image categorization is to

use some low-level image descriptors. In order to overcome the image content represen-

tation issue, more and more visual descriptors have been proposed. Some focus on the

local information, while others are holistic descriptors.If we integrate all the descriptors
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via a proper learning method, we could create a generally more accurate and more robust

descriptor than any single one.

In this section, we propose a novel semi-supervised learning approach to integrate

heterogeneous features from both labeled and unlabeled as well as unsegmented images.

Considering each type of feature as one modality, taking advantage of the large amount of

unlabeled data information, our new adaptive multi-modal semi-supervised classification

(AMMSS) algorithm propagates the class labels from labeledimages to unlabeled images

based on the integrated multi-modal feature similarity andlearn the weights for different

modalities (image features) simultaneously. We applied our AMMSS method to integrate

multiple popularly used image features, which describe theimage content from different

perspectives, and evaluated the performance by four benchmark datasets. Compared with

the existing semi-supervised scene and object categorization methods, our approach always

achieves superior performances in terms of both macro and micro classification accuracy.

4.3.1 Basic Framework of Graph Based Semi-Supervised Learning

Assume we haven imagesX = {x1, · · · , xn}, where each image is abstracted as

a data pointxi ∈ R
p. Each data pointxi belongs to one ofK classesC = {c1, · · · , cK}

represented byyi ∈ {0, 1}K, such thatyi(k) = 1 if xi is classified intok-th class, and0

otherwise. Without loss of generality, we assume the firstl ≪ n data are already labeled,

which are denoted asT = {xi, yi}li=1. Our task is to learn a functionf : X → {0, 1}K

from T that is able to classify the given unlabeled dataxi(l + 1 ≤ i ≤ n) into one and

only one class inC. For simplicity, we useu to denote the number of unlabeled data point.

that is,l + u = n and split the label matrixY = [y1, y2, ..., yn]
T , yi ∈ R

K into 2 blocks:

Y =




Yl

Yu


.
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Given the datasetX, all the image data including the labeled and unlabeled ones

are abstracted as the vertices onK − NN graph. To be specific, we connectxi, xj if

one of them is among the other’sK-nearest neighbor by Euclidean distance and define the

corresponding weight on the edge as the following,

wij =





exp(−‖xi−xj‖
2

2σ2 ), if xi andxj are connected

0, otherwise
(4.20)

whereσ is the bandwidth parameter. Therefore,W = {wi,j} is an (l + u) × (l + u)

symmetric undirected matrix with non-negative edge weight. Let dii =
l+u∑
j=1

wij andD be

the diagonal matrix by substitutingdii, i = 1, 2, ...(l + u) on the diagonal. The normalized

graph Laplacian matrixL is defined as

L = I −D− 1
2WD− 1

2 (4.21)

4.3.2 Label Propogation for Single Modality

According to graph theory, if the edge weight between two vertices on affinity matrix

is large, then the class labels of these two instances shouldbe similar. Based on the above

assumption, denoteG ∈ R
n×K as the class label matrix, for each feature modality, we use

the following way to propagate the class label information from labeled data to unlabeled

data,

min
G

GTLG s.t. gi = yi, ∀i = 1, 2, ..., l, (4.22)

whereL is the normalized Laplacian matrix defined in Eq. (4.21).

Eq. (4.22) can be rewritten as the following,

min
Gu

Tr (




Yl

Gu




T 


Lll Llu

Lul Luu







Yl

Gu


), (4.23)

since we know the labelsYl for the firstl instances, which has the following unique solution,

Gu = −L−1
uuLulYl (4.24)
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4.3.3 Label Propogation by AMMSS

In order to properly and naturally integrate heterogeneousimage features to do semi-

supervised learning, we need a co-regularization term to learn a consensus class label ma-

trix and let the differences between that consensus label matrix and the class label matrix

of each feature modality as small as possible. With the addition of weight factor for each

feature modality, we adaptively learn the weight for each feature modality, assigning the

more discriminative modality with higher weight. We summarize the proposed AMMSS

method as the following objective function,

min
G,G(v),α(v)

V∑
v=1

(α(v))rTr (G(v)TL(v)G(v))

+λ
V∑

v=1

Tr ((G−G(v))T (G−G(v)))

s.t. gi = yi, ∀i = 1, 2, ...l,
V∑

v=1

α(v) = 1,

α(v) ≥ 0,

(4.25)

whereV is the number of image visual features,α(v) is the non-negative normalized weight

factor for thev-th modality,L(v) andG(v) are the normalized Laplacian matrix and class

label matrix for thev-th feature modality respectively.G is the shared consensus class label

matrix that we are interested. We use the scalarr to control the distribution of different

weights for different feature modalities andλ is the regularization parameter to balance the

1st term and the2nd term. We want to solve forG, G(v) andα(v) simultaneously via the

proposed Eq. (4.25).

4.3.4 Optimization Algorithms

4.3.4.1 The Optimization Algorithm of AMMSS
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We decompose Eq. (4.25) as the following three subproblems and solve them alter-

natively and iteratively.

The first step is fixingG andG(v), solvingα(v). Then, the objective function becomes

min
α(v)

V∑
v=1

(α(v))rTr (G(v)TL(v)G(v)),

s.t.
V∑

v=1

α(v) = 1, α(v) ≥ 0

(4.26)

Let p(v) = Tr (G(v)TL(v)G(v)), then the Eq. (4.26) can be rewritten as

V∑

v=1

(α(v))
r
p(v), s.t.

V∑

v=1

α(v) = 1, α(v) ≥ 0 (4.27)

Thus, the Lagrange function of Eq. (4.27) is

V∑

v=1

(α(v))rp(v) − β(

V∑

v=1

α(v) − 1) (4.28)

whereβ is the Lagrange multiplier. In order to get the optimal solution of the above sub-

problem, set the derivative of Eq. (4.28) with respect toα(v) to zero. We have

α(v) =

(
β

rp(v)

) 1
r−1

(4.29)

Substitute the resultantα(v) in Eq. (4.29) into the constraint
∑

v α
(v) = 1, we get

a(v) = (rp(v))
1

1−r /

V∑

v=1

(rp(v))
1

1−r (4.30)

The second step is fixingα(v) andG, solvingG(v). We change the variable and letL̃(v) =

(α(v))rL(v) then the objective function becomes

min
G,G(v)

∑
v

Tr (G(v)T L̃(v)G(v))

+ λ
∑
v

Tr ((G−G(v))T (G−G(v)))

s.t. gi = yi, ∀i = 1, 2, ..., l

(4.31)
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Set the derivative of Eq. (4.31) with respect toG(v) to zero. We have

G(v) = λ(L̃(v) + λI)−1G (4.32)

The third step is fixingα(v) andG(v), solvingG. Substitute the resultantG(v) in Eq. (4.32)

into the Eq. (4.31), we get (The proof is in Appendix)

∑
v

Tr (G(v)T L̃(v)G(v))

+λ
∑
v

Tr ((G−G(v))T (G−G(v)))

= λTr (GT (
∑
v

(I − λ(L̃(v) + λI)−1)G)

(4.33)

Let H =
∑
v

(
I − λ(L̃(v) + λI)−1

)
. Therefore, Eq. (4.31) is equivalent to the following

optimization problem,

min
G

Tr (GTHG)

s.t. gi = yi, i = 1, 2, ..., l
(4.34)

To compute class label matrix for the unlabeled image explicitly in terms of matrix opera-

tions, we split the matrixH into 4 blocks by thel-th row andl-th column:

H =




Hll Hlu

Hul Huu


 (4.35)

Therefore,

Tr (GTHG)

= Tr







Gl

Gu




T 


Hll Hlu

Hul Huu







Gl

Gu







= Tr







Yl

Gu




T 


Hll Hlu

Hul Huu







Yl

Gu







= Tr (Y T
l HllYl +GT

uHulYl + Y T
l HluGu +GT

uHuuGu)

= Tr (Y T
l HllYl +GT

uHulYl +GT
uHulYl +GT

uHuuGu)

(4.36)
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Thus optimization problem in Eq. (4.34) is equivalent to thesubsequent problem,

min
Gu

[2Tr (GT
uHulYl) + Tr (GT

uHuuGu)] (4.37)

Setting the derivative of Eq. (4.37) to zero with respect toGu, we get

Gu = −H−1
uu HulYl (4.38)

By the above three steps, we alternatively updateα(v), G(v) andG and repeat them itera-

tively until the objective function converges. At last, we resort to the following decision

function to assign the single class label to the unlabeled images,

yi = argmax
j

Gij, ∀i = l + 1, l + 2, ..., n. ∀j = 1, 2, ..., K. (4.39)

We summarize the algorithm in Alg. 7.

4.3.4.2 Convergence of The Algorithm

We will prove the convergence of the proposed Alg. 7 as following: We divide the o-

riginal problem Eq. (7) into three subproblems and each of them is convex problem. Since

the original problem is not a joint convex problem, by solving the subproblems alterna-

tively, Alg. 7 will converge to the local solution and we use1/V as the initial weight for

each modality. Later in our experiment we will demonstrate the fast convergence of our

algorithm.

4.3.4.3 Discussion of The Parameterr

In AMMSS, we use one parameterr to control the distribution of weight factors for

different feature modalities. From Eq. (4.30), we can see that whenr → ∞, we will get

equal weight factors. And whenr → 1, we will assign1 to the weight factor of the modality

whosep(v) value is the smallest and assign0 to the weights of other modalities. Using such

70



kind of strategy, on one hand, we avoid the trivial solution to the weight distribution of

the different modalities, that is, the solution whenr → 1. On the other hand, surprisingly,

we can take advantage of only one parameterr to control the whole weights, reducing the

parameters of the model greatly.

4.3.5 Experimental Results

Since our AMMSS is a kind of graph based semi-supervised learning algorithm, we

will compare the performance of our AMMSS and related graph based state-of-art semi-

supervised methods on five benchmark datasets: Caltech-101[54], Microsoft Research

Cambridge Volume1 (MSRC-v1) [55], Handwritten numerals (HW) [56] and Animal with

Attributes(AwA) [57]. The image classification performance is evaluated in terms of aver-

age macro and micro classification accuracy.

4.3.5.1 Dataset Descriptions

Caltech-101 ImagesThe Caltech101 image dataset contains8677 images of objects,

each with approximately0.1 mega pixel resolution, belonging to101 categories. We fol-

low [42] to choose7 and20 classes dataset respectively from101 classes. The7 classes

include Faces, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign, Windsor-Chair and

have441 images in total. The20 classes include Faces, Leopards, Motorbikes, Binocular,

Brain, Camera, Car-Side, Dollar-Bill, Ferry, Garfield, Hedgehog, Pagoda, Rhino, Snoopy,

Stapler, Stop-Sign, Water-Lilly, Windsor-Chair, Wrench,Yin-Yang and have1230 images

all together.

MSRC-v1 Images

We follow Lee and Grauman’s approach [41] to refine the dataset, getting7 classes com-

posed of tree, building, airplane, cow, face, car, bicycle,and each refined class has 30

images. Compared to the Caltech101 dataset, MSRC-v1 has more clutter and variability in
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the objects appearances. Since there is no published image descriptors for Caltech-101 and

MSRC-v1 datasets, we extract the following six popular visual features for each image: On

one hand, we extract three holistic visual features for eachimage,i.e. 45 dimension color

moment (CMT) [49];512 dimension GIST feature [47];1302 dimension CENTRIST fea-

ture [48]. On the other hand, we collect three local descriptor as well,i.e. 256 dimension

local binary pattern (LBP) [46];576 dimension HOG feature and famous128 dimension

DoG-SIFT descriptor [44].

Handwritten numerals (HW)

Handwritten numerals dataset consists of2000 data point for0 to 9 ten digit classes. (Each

class has 200 data points.) We use the published six visual features [56] extracted from

each image. Specifically, the six visual features are76 dimension Fourier coefficients

of the character shapes (FOU),216 dimension profile correlations (FAC),64 dimension

Karhunen-love coefficients (KAR),240 dimension pixel averages in2× 3 windows (PIX),

47 dimension Zernike moment (ZER) and6 dimension morphological (MOR) features.

Animal with attributes (AWA)

Animal with attributes data set is the largest data set, which is also an image data set

consisting of6 feature50 classes. We randomly sample50 images for each class and

get 2500 images in total. We utilize all the published features, thatis, 2688 dimension

Color Histogram (CQ) features ,2000 dimension Local Self-Similarity (LSS) features ,252

dimension PyramidHOG (PHOG) features,2000 dimension SIFT features,2000 dimension

colorSIFT (RGSIFT) feature and2000 dimension SURF features.

4.3.5.2 Experimental Setup

We use the Gaussian Kernel in Eq. (4.20) with7-nearest neighbor to get the affinity

matrices for different visual features. We utilize self-tuning method [78] to calculate the

bandwidth parameterσ. In order to solve the inequality length problem of the DoG-SIFT
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Figure 4.5. The demonstration of different visual descriptors from Caltech101 dataset. The
final class label of the testing image is decided by the weighted six different feature modal-
ities, where the weight for different feature modality is learned by the training images..

feature, we utilize the pyramid match kernel [71] to build the similarity matrix, using the

LIBPMK toolkit. Thus, given an image, we have multiple similarity (affinity) matrices

calculated from different modalities. In our experiment for each dataset to mimic the “real”

situation in semi-supervised learning case (l ≪ u), we randomly choose20% data for

training and use the rest for testing. We repeat the above procedure10 times and report

the average result.r is the parameter to control the distribution of the weights for different

feature modalities, which we will discuss in detail later. We search the logarithm of the

parameterr, that is,log10r in the range from0.1 to 2 with incremental step0.2 and search

the regularization parameterλ in the range from 0 to 1 with incremental step0.1 to get the
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best parametersr∗ as well asλ∗ based on the2-fold cross validation inside the training data

only.

4.3.5.3 Classification Results Comparison

First of all, in order to test the feature integration power of our method, we compare

classification performance using all the feature modalities with that using only one feature

modality. From Table 4.4 to Table 4.6, we can draw the conclusion that the performance of

our proposed AMMSS can beat the best of single modality, which tackles the problem of

Eq. (4.22).

We also compare our methods with some graph based state-of-the-art semi-supervised

learning methods:(a) the harmonic function (HF) approach [79],(b) learning with local

and global consistency approach (LGC) [80] and(c) the random walk approach (RW) [81].

For each of the above three methods, we use the kernel addition (KA), that is, the simple

average of equal weighted Laplacian matrices or the graph Laplacian of the concatenat-

ed features of all modalities (FC) as the input for HF, LGC as well as RW. Moreover,

for sake of completeness, we also compare the results of support vector machine with the

pre-computed kernel Eq. (4.20) implemented by LIBSVM [59].Since Multiple Kernel

Learning (MKL) approaches [82] can also realize feature integration if we consider one

feature modality as one kernel, we report its classificationresult as well. Moreover, since

our method can learn the weight for each feature modality adaptively, we compare the re-

sults of our model using equal weight (MMSS). We adopt the optimal parameter settings

for the above methods empirically. As for performance evaluation, we utilize the widely-

used performance metrics, average macro classification accuracy as well as average micro

classification accuracy for each class. Average macro classification accuracy is shown in

Table 4.7 and micro accuracy for all the datasets are shown inFig. 4.7. We can see that our

method always achieves consistently better results than the other state-of-art methods in
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Figure 4.6. Calculated confusion matrices by AMMSS method (a) MSRCV1 (b)
Caltech101-7 (c) Handwritten numerals..

terms of average macro classification accuracy and choosingdifferent weights for different

features can even boost the performance of multi modality semi-supervised learning result-

s. As for average micro classification accuracy, the resultsof AMMSS are the best for most

classes. The confusion matrices of MSRCV1, Caltech101-7 and Handwritten numerals are

shown in Fig. 4.6.

Moreover, since our method can learn the weight for each feature modality after

convergence, we add the generalization ability of the objective function Eq. (4.25). Fig. 4.8

shows the learned weight by our Alg. 7 on five benchmark datasets. From it, we can observe

that DoG-SIFT has the most discriminate power in Caltech101−7 dataset, CENTRIST has

the highest weight for Caltech101 − 20 dataset while for MSRCV1 dataset, GIST is the

best feature modality among the six which is consistent withsingle modality’s performance

shown in Table 4.4. Instead of treating each feature modality equally, our method can do

weighting each feature modality and classification simultaneously.

At last, we test the convergency speed of our AMMSS algorithm, which is shown in

Fig. 4.9. From it, we can observe that our AMMSS algorithm converges very fast on all the

datasets and usually the number of iteration is less than10.
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Figure 4.7. The Micro accuracy on two datasets (a) MSRCV1 (b)Caltech101-7. (c) Hand-
written number (d) Caltech101-20.

Table 4.4. The average macro classification accuracy compared with single view on
Caltech101-7, Caltech101-20 and MSRCV1 datasets.

Methods Caltech7 Caltech20 MSRCV1
CTM [49] 0.45 0.27 0.30
LBP [46] 0.66 0.39 0.71
GIST [47] 0.80 0.51 0.79

CENTRIST [48] 0.79 0.70 0.77
DoG-SIFT [44] 0.81 0.30 0.51

HOG [45] 0.89 0.27 0.69
AMMSS 0.91 0.74 0.94

Table 4.5. The average macro classification accuracy compared with single view on Hand-
written numerals dataset.

Data FOU FAC KAR PIX ZER MOR AMMSS
HW 0.92 0.82 0.93 0.46 0.94 0.82 0.98

Table 4.6. The average macro classification accuracy compared with single view on animal
with attribute dataset.

Data CQ LSS PHOG RGISIFT SIFT SURF AMMSS
AWA 0.057 0.062 0.050 0.054 0.065 0.072 0.095

76



Table 4.7. The average macro classification accuracy compared with baseline methods on
all datasets.

Methods Caltech7Caltech20MSRCV1 HW AWA
SVM [59] 0.85 0.59 0.86 0.95 0.076
MKL [82] 0.89 0.68 0.89 0.96 0.079

HF(KA) [79] 0.84 0.70 0.92 0.97 0.079
HF(FC) [79] 0.82 0.68 0.89 0.96 0.077
RW(KA) [81] 0.89 0.72 0.88 0.97 0.080
RW(FC) [81] 0.86 0.69 0.87 0.96 0.079

LGC(KA) [83] 0.87 0.72 0.90 0.97 0.081
LGC(FC) [83] 0.89 0.71 0.88 0.96 0.079

MMSS 0.89 0.72 0.92 0.97 0.086
AMMSS 0.91 0.74 0.94 0.98 0.095

4.4 Conclusion

In this chapter, we proposed two graph based methods to fuse heterogeneous im-

age features. One is to do unsupervised spectral clusteringand the other is to do semi-

supervised learning. Utilizing our algorithms, a common cluser/class indicator matrix will

be learned. And by decomposing the original problem into several subproblems, we can

solve the proposed model iteratively with the proof of convergence to local/global solu-

tion. Empirical studies have been conducted on bench-mark data sets. Compare with the

existing state-of-art methods, our proposed models consistently achieve better clustering or

classification performance.
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Figure 4.8. The learned weight factor for different modalities on five dataset. The feature index on x-
axis from1 to 6 stands for CMT, LBP, GIST, HOG, CENTRIST and DOG-SIFT respectively for Caltech-7,
Caltech-20 and MSRCV1 datasets. And the index on x-axis from1 to 6 stands for FOU, FAC, KAR, PIX,
ZER, MOR respectively for Handwritten numerals dataset. The index on x-axis from1 to 6 stands for CQ,
LSS, PHOG, RGSIFT, SIFT, SURF respectively for AwA dataset..
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Figure 4.9. The convergency of five datasets (a) Caltech101-7 (b) Caltech101-20 (c) MSR-
CV1 (d) Handwritten numerals (e) AwA.
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Algorithm 7 The algorithm of AMMSS
Input:

1. Affinity matrices{W (1), · · · ,W (V )} ∈ R
n×n

2. The labels for the firstl images,Yl = [y1, y2, ..., yl]
T , yi ∈ B

K×1, ∀i = 1, 2, ..., l.

3. The parametersr andλ.

Output:

1. The predicted labels for the unlabeled imagesyi, ∀i = l + 1, l+ 2, ..., n.

2. The weight scalarα(v), ∀v = 1, 2, ..., V for each modality.

Initialization:

1. Sett = 0

2. Initialize the weight for each modality,α(v)
t = 1

V
, ∀v = 1, 2, ..., V

3. Initialize the common class label matrix,Gt =


 Glt

Gut


 =


 Yl

Yu


 whereYu ∈ R

u×K is a random

matrix and each entryui,j ∈ {0, 1}.

4. Calculate the normalized Laplacian matrices for each feature modality, L
(v)
t = I −

(D
(v)
t )−

1
2W

(v)
t (D

(v)
t )−

1
2

Procedure:

repeat

1. CalculateL̃(v)
t = (α

(v)
t )rL

(v)
t

2. Calculate the class indicator matrix for each modalityG
(v)
t = λ(L̃

(v)
t + λI)−1Gt

3. CalculateHt =
V∑

v=1

(
I − λ(L̃

(v)
t + λI)−1

)
and split theHt by Eq. (4.35).

4. Calculatep(v)t = Tr (G(v)
t

T

L
(v)
t G

(v)
t )

5. Update the weight for each modality by Eq. (4.30)

6. UpdateGut+1
= −H−1

uut
HultYl. And updateGt+1 =


 Yl

Gut




7. Updatet = t+ 1

until Converges

Assign the single class label for the unlabeled images by Eq.(4.39).
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CHAPTER 5

ON THE EQUIVALENT OF LOW-RANK LINEAR REGRESSIONS AND LINEAR

DISCRIMINANT ANALYSIS BASED REGRESSIONS

5.1 Introduction

As one of most important data mining and machine learning technique, multivari-

ate linear regression attempts to model the relationship between predictors and responses

by fitting a linear equation to observed data. Such linear regression models suffer from

two deficiencies when they are applied to the real-world applications. First, the linear re-

gression models usually have low performance for analyzingthe high-dimensional data.

In many data mining and machine learning applications, suchas gene expression, docu-

ment classification, face recognition, the input data have alarge number of features. To

perform accurate regression or classification tasks on suchdata, we have to collect an enor-

mous number of samples. However, due to the data and label collection difficulty, we often

cannot obtain enough samples and suffer from the curse-of-dimensionality problem [84].

To solve this problem, the dimensionality reduction methods, such as linear discriminant

analysis (LDA) [85], were often used to reduce the feature dimensionality first.

Second, the linear regression models don’t emphasize the correlations among differ-

ent responses. Standard least squares regression is equivalent to regressing each response

on the predictors separately. To incorporate the response (i.e. classes or tasks) correlations

into the regression model, Anderson introduced the reducedrank regression method [86],

which is a multivariate regression model with a coefficient matrix with reduced rank. Later

many researchers worked on the low-rank (or reduced) regression models [86–91], in which
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the classes/tasks correlation patterns are explored by thelow-rank structure and utilized to

enhance the regression/classification results.

In this chapter, we propose new and important theoretical foundations of the low-rank

regression. We first present the discriminant low-rank linear regression, which reformulates

the standard low-rank regression to a more interpretable objective. After that, we prove that

the low-rank regression model is indeed equivalent to doinglinear regression in the LDA

subspace,i.e. the learned low-rank classes/tasks correlation patterns are connected to the

LDA projection results. Our new theorem explains the underlying computational mecha-

nism of low-rank regression, which performs the LDA projection and the linear regression

on data points simultaneously. In our special case, when thelow-rank regression coefficient

matrix becomes a full-rank matrix, our result is connected to Ye’s work on the equivalence

between the multivariate linear regression and LDA [92].

Motivated by our new theoretical analysis, we propose two new discriminant low-

rank regression models, including low-rank ridge regression (LRRR) and sparse low-rank

regression (SLRR). Both methods are equivalent to performing the regularized regression

tasks in the regularized LDA subspace (two methods have different regularization terms).

Because the regularization term avoids the rank deficiency problem in both regression and

LDA, our LRRR method outperforms the low-rank regression inboth theoretical analysis

and experimental results. Using the structured sparsity-inducing norm based regularization

term, our SLRR method can explore both classes/tasks correlations and feature structures.

All our new discriminant low-rank regression models can simultaneously analyze the high-

dimensional data in the discriminant subspace without any pre-processing step and incor-

porate the classes/tasks correlations. We evaluate the proposed methods on six benchmark

data sets. In all experimental results, our discriminant low-rank models consistently out-

perform their corresponding full-rank counterparts.
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5.2 Low-Rank Regression and LDA+LR

One of the main result of this paper is to prove that the low-rank linear regression

(LRLR) is equivalent to doing standard linear regression inLDA subspace (we call this as

“LDA+LR”).

5.2.1 Low-Rank Linear Regression Revisit

Traditional Linear Regression model for classification is to solve the following prob-

lem:

min
W
||Y −XTW ||2F , (5.1)

whereX = [x1, x2, ...., xn] ∈ ℜd×n is the centered training data matrix andY ∈ ℜn×k is

the normalized class indicator matrix, i.e.Yi,j = 1/
√
nj if the i-th data point belongs to

thej-th class andYi,j = 0 otherwise andnj is the sample size of thej-th class. The model

outputs the parameter matrixW ∈ ℜd×k, which can be used to predict any test data point

x ∈ ℜd×1 by W Tx.

When the class or task number is large, there are often underlying correlation struc-

tures between classes or tasks. To explore these hidden structures and utilize such patterns

to improve the learning model, in recent work [38], researchers presented to learn a low-

rank projectionW in the regression model by imposing the trace norm regularization as:

min
W
||Y −XTW ||2F + λ||W ||∗ . (5.2)

The trace norm regularization can discover the low-rank structures existing between classes

or tasks. Using Eq. (5.2), the rank of coefficient matrixW , which is decided by the selection

of parameterλ, cannot be explicitly selected and tuned.

In related research work, the low-rank regression was studied in statistics and ma-

chine learning communities [86–91]. In the low-rank regression, the rank ofW is explicitly
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decided by constraining the rank ofW to bes < min(n, k) and solving the following prob-

lem:

min
W
||Y −XTW ||2F , s.t. rank(W ) ≤ s. (5.3)

Because the rank of coefficient matrix can be explicitly determined, the low-rank regression

in Eq. (5.3) is better than the trace norm based objective in Eq. (5.2) in practical applica-

tions. Although the general rank minimization is a non-convex and NP-hard problem, the

objectives with rank constraints are solvable,e.g.the global solution was given in [87,88].

5.2.2 Relation to LDA+LR

In this section, we will show that the low-rank linear regression (LRLR) is equiva-

lent to perform Linear Discriminant Analysis (LDA) and linear regression simultaneously

(LDA+LR). In other words, the learned low-rank structures and patterns are induced by the

LDA projection (with regression). The low ranks is indeed the projection dimension of

LDA.

Before introducing our main theorems, we first propose the following discriminant

Low-Rank Linear Regression formulation (LRLR):

min
A,B
||Y −XTAB||2F , (5.4)

whereA ∈ ℜd×s, B ∈ ℜs×k, s < min(d, k). ThusW = AB has low-ranks. The

above LRLR objective has the same solutions as Eq. (5.3), butit has clearer discriminant

projection interpretation. Eq. (5.4) can be written as

min
A,B
||Y − (ATX)TB||2F . (5.5)

This showsA can be viewed as a projection. Interestingly as we show in Theorem 1,A is

exactly the optimal subspace defined by the classic LDA.

Theorem 2 The low-rank linear regression method of Eq. (5.4)) is identical to doing stan-

dard linear regression in LDA subspace.
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Proof: DenotingJ1(A,B) = ||Y −XTAB||2F and taking its derivative w.r.t.B, we have,

∂J1(A,B)

∂B
= −2ATXY + 2ATXXTAB. (5.6)

Setting Eq. (5.6) to zero, we obtain,

B = (ATXXTA)−1ATXY. (5.7)

Substituting Eq. (5.7) back into Eq. (5.4), we have,

min
A
||Y −XTA(ATXXTA)−1ATXY ||2F , (5.8)

which is equivalent to

max
A

Tr ((AT (XXT )A)−1ATXY Y TXTA). (5.9)

Note that

St = XXT , Sb = XY Y TXT , (5.10)

whereSt andSb are the total-class scatter matrix and the between-class scatter matrix

defined in the LDA, respectively. Therefore, the solution ofEq. (5.9) can be written as:

A∗ = argmax
A

Tr [(ATStA)
−1ATSbA], (5.11)

which is exactly the problem of LDA, and the global optimal solution to Eq. (5.11) is the

top s eigenvectors ofS−1
t Sb corresponding to the nonzero eigenvalues (ifSt is singular,

we compute the eigenvectors ofS+
t Sb corresponding to the nonzero eigenvalues, whereS+

t

denotes the pseudo-inverse ofSt). Now Eq. (5.5) implies that we do linear regression on

the projected datãX = ATB. SinceA is the LDA projection, thus Eq. (5.5) implies we do

regression on the LDA subspace.

�

Note that in Eq. (5.4), the class indicator matrixY is normalized, but not centered.

HoweverX is centered. The following Theorem 3 shows that we obtain theoptimal solu-

tion whatever Y is centered or not.
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Theorem 3 The optimal solution(A∗, B∗) for the following problem

min
A,B
||PY −XTAB||2F (5.12)

is identical to those of Eq. (5.4); hereP = I − eeT/n ∈ ℜn×n is the centering matrix, and

e = (1 · · · 1)T .

For this reason, the bias (intercept) term are already automatically incorporated in

Eq. (5.4).

Proof: The key point of the proof is the fact that in the solution for bothB andA of Eq. (5.7)

and Eq. (5.9),Y always appears together withX as combination

XY = (XP )Y = XP 2Y = (XP )(PY ),

becauseX is centered andP 2 = P . In other words, as long asX is centered,Y is auto-

matically centered. �

This results can be easily extended to the standard linear regression. In fact we have

Remark1 As long asX is centered, the optimal solutionW ∗ for the standard linear re-

gression of Eq.(1) remains identical no matterY is centered or not.

Our new results provide the theoretical foundation to explain the mechanism behind the

low-rank regression methods. Meanwhile, the above proof process also indicates a concise

algorithm to achieve the global solution of LRLR in Eq. (5.4), as well as Eq. (5.3). The

Algorithm to solve Eq. (5.4) is summarized in Alg. 8.

Moreover, we note that Theorem 2 also provides clarificationto a long-standing puz-

zle in multi-class LDA, as explained below.
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Algorithm 8 The algorithm to solve LRLR
Input:

1. The centralized training dataX ∈ ℜd×n.

2. The normalized training indicator matrixY ∈ ℜn×k.

3. The low-rank parameters.

Output:

1. The matricesA ∈ ℜd×s andB ∈ ℜs×k.

Process:

1. CalculateA by Eq. (5.11)

2. CalculateB by Eq. (5.7)

5.2.3 LDA: Trace-of-Ratio or Ratio-of-Trace?

The original Fisher LDA is on2-class problem, where onlyk − 1 = 1 projection

directiona is needed. The Fisher objective is

max
a

aTSba
aTSwa

.

The generalization to multi-class has two natural formulations [85], either the trace-of-ratio

formulation

max
A

Tr
ATSbA

ATSwA
(5.13)

whereA = (a1 · · · ak−1), or the ratio-of-trace formulation1

max
A

Tr ATSbA

Tr ATSwA
(5.14)

Our Theorem 2 lends support to the trace-of-ratio objectivefunction because this formula-

tion arises directly from the linear regression.

1In Eqs.(5.13,5.14), the optimal solution remains the same whenSw is replaced bySt.
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5.2.4 Full-Rank Linear Regression and LDA

Here we note an important connection. In the special case, the low-rank regression

coefficient matrixW becomes a full-rank matrix. Without loss of generality we assume

s = k ≤ n, because the number of data pointsn is usually larger than the number of classes

k. The matrixB ∈ ℜk×k becomes a square matrix. Becauserank(W ) = rank(AB) = k

andk ≤ n, rank(A) ≥ k andrank(B) ≥ k. Thus,rank(B) = k andB is a full rank

matrix, i.e. the matrixB is invertible.

The Theorem 2 is still correct for the special case. Moreover, we can further conclude

the equivalence between the multivariate linear regression and LDA results. We can simply

prove this conclusion. Because the matrixA includes the LDA subspaces and the matrix

B can be considered as an invertible rotational matrix, thusAB is also one of the infinite

number global solutions of LDA [93]. Thus, in the special full-rank case, the multivariate

linear regression is equivalent to the LDA result, which wasshown in Ye’s work [92] with

the assumptions: the reduced dimension isk − 1 andrank(Sb) + rank(Sw) = rank(St).

Our proof is more general and doesn’t need the rank assumption.

5.2.5 Low-Rank Ridge Regression (LRRR)

As we know, by adding a Frobenius norm based regularization on the linear regres-

sion loss, ridge regression can achieve better performancethan linear regression [94]. Thus,

it is important and necessary to add the ridge regularization into low-rank regression for-

mulation. We propose the following Low-Rank Ridge Regression (LRRR) objective as,

min
A,B
||Y −XTAB||2F + λ||AB||2F , (5.15)

whereA ∈ ℜd×s, B ∈ ℜs×k, s < min(n, k), λ is the regularization parameter. Similarly,

we can see that the LRRR objective is equivalent to the following objective:

min
W
||Y −XTW ||2F + λ||W ||2F , s.t. rank(W ) ≤ s. (5.16)
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Compared to Eq. (5.16), Eq. (5.15) provides better chance for us to understand the learning

mechanism of LRRR. We will show that our new LRRR objective isconnected to the

regularized discriminant analysis, which provides betterprojection results than the standard

LDA. We will also derive the global solution of the non-convex problems in Eq. (5.15) and

Eq. (5.16).

Theorem 4 The proposed Low-Rank Ridge Regression (LRRR) method (bothEq. (5.15)

and Eq. (5.16)) is equivalent to doing the regularized regression in the regularized LDA

subspace.

Proof: DenotingJ2(A,B) = ||Y − XTAB||2F + λ||AB||2F , and taking its derivative w.r.t.

B, we have,
∂J2(A,B)

∂B
= −2ATXY + 2ATXXTAB + 2λATAB. (5.17)

Setting Eq. (5.17) to zero, we get,

B = (AT (XXT + λI)A)−1ATXY, (5.18)

whereI ∈ ℜd×d is the identity matrix. Substituting Eq. (5.18) back into Eq. (5.15), we

have

min
A
||Y −XTA(ATXXTA+ λATA)−1ATXY ||2F

+λ||A(AT (XXT + λI)A)−1ATXY ||2F , (5.19)

which is equivalent to the following problem:

max
A
{(AT (XXT + λI)A)−1ATXY Y TXTA}. (5.20)

Similarly, the solution of Eq. (5.20) can be written as:

A∗ = argmax
A
{Tr((AT (St + λI)A)−1ATSbA)}, (5.21)
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Algorithm 9 The algorithm to LRRR
Input:

1. The centralized training dataX ∈ ℜd×n.

2. The normalized training indicator matrixY ∈ ℜn×k.

3. The low-rank parameters.

4. The regularization parameterλ.

Output:

1. The matricesA ∈ ℜd×s andB ∈ ℜs×k.

Process:

1. CalculateA by Eq. (5.21)

2. CalculateB by Eq. (5.18)

which is exactly the problem in regularized LDA [95]. After we get the optimal solution

A, we can re-write Eq. (5.15) as:

min
B
||Y − (ATX)TB||2F + λ||AB||2F , (5.22)

which is the regularized regression, and the optimal solution is given by Eq. (5.18). Thus,

the LRRR of Eq. (5.15) is equivalent to performing ridge regression in regularized-LDA

subspace. �

Similar to Theorem 3, we can show thatY is automatically centered as long asX is

centered.

Another interest point is that although our LRRR model is a non-convex problem,

Theorems 1 and 3 show that they have the global optimal solutions. The Algorithm to solve

LRRR of Eq. (5.15) is described in Alg. 9.
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5.2.6 Full-Rank Ridge Regression and

Regularized LDA

In the special case, the low-rank regression coefficient matrix W becomes a full-rank

matrix. Similar to§5.2.4, we have the following lemma:

Lemma 1 The full-rank ridge regression result is equivalent to the solution of regularized

LDA (St is replaced by the regularized formSt + λI).

Similar to the proof in§5.2.4, we can easily prove the coefficient matrixW in full-rank

ridge regression is one of the global solutions of LDA regularized byλI.

5.3 Sparse Low-Rank Regression for Feature Selection

Besides exploring and utilizing the class/task correlations and structure information,

the learning models also prefer to select and use the important features to avoid the “curse

of dimensionality” problem in high-dimensional data analysis. Thus, it is important to

extend our discriminant low-rank regression formulationsto feature selection models.

Due to the intrinsic properties of real world data, the structured sparse learning mod-

els have shown superior feature selection results in previous research [19, 30, 33, 96–101].

One of the most effective ways for selecting features is to impose sparsity by inducing hy-

brid structuredℓ2,1-norm on the coefficient matrixW as the regularization term [16, 38].

Therefore, following our LRLR and LRRR methods, we propose anew Sparse Low-Rank

Regression (SLRR) method, which reserves the low-rank constraint and adds the mixed

ℓ2,1-norm regularization term to induce both desired low-rank structure of classes/tasks

correlations and structured sparsity between features. Tobe specific, “low-rank” means

rank(AB) = s < min(n, k) and “structured sparsity” means most rows ofAB are zero to

help feature selection. Thus, we solve:

min
A,B
||Y −XTAB||2F + λ||AB||2,1 , (5.23)
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whereA ∈ ℜd×s, B ∈ ℜs×k, s < min(n, k). Similarly, we can see that the above SLRR

objective is equivalent to the following objective:

min
W
||Y −XTW ||2F + λ||W ||2,1, s.t. rank(W ) ≤ s. (5.24)

Both Eq. (5.23) and Eq. (5.24) are new objectives to simultaneously learn low-rank classes

correlation patterns and features structured sparsity.

5.3.1 Connection to Discriminant Analysis

Interestingly our new SLRR method also connects to the regularized discriminant

analysis by the following theorem.

Theorem 5 The optimal solution of the proposed SLRR method (Eq. (5.23)and Eq. (5.24))

has the same column space of a special regularized LDA.

Proof: Eq. (5.23) is equivalent to the following problem,

min
A,B
||Y −XTAB||2F + λTr (BTATDAB), (5.25)

whereD ∈ ℜd×d is a diagonal matrix and each element on the diagonal is defined as

follows:

dii =
1

2||gi||2
, i = 1, 2, ..., d, (5.26)

wheregi is thei-th row of matrixG = A∗B∗. Denoting

J3(A,B) = ||Y − XTAB||2F + λTr (BTATDAB) and taking its derivative w.r.t.B, we

have,
∂J3(A,B)

∂B
= −2ATXY + 2ATXXTAB + 2λATDAB. (5.27)

Setting the above equation to be zero, we can get,

B = (AT (XXT + λD)A)−1ATXY, (5.28)
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whereD ∈ ℜd×d is the diagonal matrix defined in Eq. (5.26). Substituting Eq. (5.28) back

into Eq. (5.25), then we need solve the following problem to getA,

max
A

Tr ((AT (XXT + λD)A)−1ATXY Y TXTA). (5.29)

The solution of Eq. (5.29) is:

A∗ = argmax
A
{Tr ((AT (St + λD)A)−1ATSbA)}, (5.30)

Since the column space ofW ∗ = A∗B∗ is identical to the column space ofA∗, the proposed

SLRR has the same column space of a special regularized LDA (St is replaced withSt +

λD). �

After we get the optimal solutionA, we can solve Eq. (5.23) through Eq. (5.25),

which is the regularized regression problem. Again, similar to Theorm 3, we can prove that

if Y is centered or not will not affect the learnt modelA∗ andB∗.

5.3.2 Algorithm to Solve SLRR

Solving SLRR objective in Eq. (5.23) is nontrivial, there are two variablesA andB

needed to be optimized, and the non-smooth regularization also makes the problem more

difficult to solve. Interestingly, a concise algorithm can be derived to solve this problem

based on the above proof. The detailed algorithm is described in Algorithm 10. In next

subsection, we will prove that the algorithm converges. Ourexperimental results show that

the algorithm always converges in 5-20 iterations.

5.3.3 Algorithm Convergence Analysis

Because Alg. 10 is an iterative algorithm, we will prove its convergence.

Theorem 6 Alg. 10 decreases the objective function of Eq. (5.23) monotonically.
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Algorithm 10 The algorithm to SLRR
Input:

1. The centralized training dataX ∈ ℜd×n.

2. The normalized training indicator matrixY ∈ ℜn×k.

3. The low-rank parameters.

4. The regularization parameterλ.

Output:

1. The matricesA ∈ ℜd×s andB ∈ ℜs×k.

Initialization:

1. Sett = 0

2. InitializeD(t) = I ∈ ℜd×d.

Repeat:

1. CalculateA(t+1) by Eq. (5.30)

2. CalculateB(t+1) by Eq. (5.28)

3. Update the diagonal matrixD(t+1) ∈ ℜd×d, where thei-th diagonal element is

1
2||(A(t+1)B(t+1))i||2

.

4. Updatet = t + 1

Until Converge.

Proof: In thet-th iteration, we have

< A(t+1), B(t+1) >= argmin
A,B

||Y −XTAB||2F

+λTr (BTATD(t)AB)

(5.31)

In other words,

||Y −XTA(t+1)B(t+1)||2F + λTr (B(t+1)TA(t+1)TD(t)A(t+1)B(t+1))

≤ ||Y −XA(t)B(t)||2F + λTr (B(t)TA(t)TD(t)A(t)B(t))
(5.32)
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DenoteG(t) = A(t)B(t) andG(t+1) = A(t+1)B(t+1). By the definition of matrixD in the

algorithm, Eq. (5.32) can be rewritten as,

||Y −XTG(t+1)||2F + λ
d∑

i=1

||gi(t+1)||22
2||gi(t)||2

≤ ||Y −XTG(t)||2F + λ
d∑

i=1

||gi(t)||22
2||gi(t)||2

(5.33)

wheregi(t) andgi(t+1) are thei-th row of the matrixG(t) andG(t+1) respectively. Since for

eachi, we have

||gi(t+1)||2 −
||gi(t+1)||22
2||gi(t)||2

≤ ||gi(t)||2 −
||gi(t)||22
2||gi(t)||2

. (5.34)

Thus, summing upd inequalities and multiplying the summation with the regularization

parameterλ, we obtain:

λ

d∑

i=1

(
||gi(t+1)||2 −

||gi(t+1)||22
2||gi(t)||2

)

≤ λ

d∑

i=1

(
||gi(t) ||2 −

||gi(t)||22
2||gi(t)||2

)
(5.35)

Combining Eq. (5.33) and Eq. (5.35), we get:

||Y −XTG(t+1)||2F + λ

d∑

i=1

||gi(t+1)||2

≤ ||Y −XTG(t)||2F + λ

d∑

i=1

||gi(t)||2 (5.36)

Therefore, we have:

||Y −XTG(t+1)||2F + λ||G(t+1)||2,1 ≤ ||Y −XG(t)||2F + λ||G(t)||2,1 (5.37)

SinceA andB are updated according to gradient, Alg. 10 will monotonically decrease the

objective in Eq. (5.23) in each iteration. �
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5.3.4 Full-Rank Sparse Linear Regression and Regularized LDA

In the special case, the low-rank regression coefficient matrix W becomes a full-rank

matrix. Similar to§5.2.4, we also have the following lemma:

Lemma 2 The optimal solution of the full-rank sparse linear regression is one of the global

solutions of LDA regularized byλD.

Similar to the proof in§5.2.4, we can easily prove the coefficient matrixW in full-rank

sparse linear regression is one of the global solutions of LDA regularized byλD.

5.4 Experimental Results

In this section, we will evaluate the performance of our proposed LRLR, LRRR,

SLRR with their corresponding full-rank counterparts. We firstly introduce the six bench-

mark datasets used in our experiments.

5.4.1 Dataset Descriptions

UMIST face dataset [102] contains20 persons and totally575 images. All images

are cropped and resized into112× 92 pixels per image.

Binary Alphadigits36 dataset [103] contains binary digits of0 through9 and capital

A throughZ with size20× 16. There are39 examples of each class.

Binary Alphadigits26 dataset [103] contains binary capitalA throughZ with size

20× 16. There are39 examples of each class.

VOWEL dataset [104] consists of990 vowel recognition data used for the study of

recognition of the eleven steady state vowels of British English. The speakers are indexed

by integers0-89. (Actually, there are fifteen individual speakers, each saying each vowel

six times.) The vowels are indexed by integers0-10. For each utterance, there are ten

floating-point input values, with array indices0-9.
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MNIST hand-written digits dataset [105] consists of60, 000 training and10, 000

testing digits. It has10 classes, from digit0 to 9. Each image is centralized (according to

the center of mass of the pixel intensities) on a28×28 grid. We randomly select15 images

for each class in our experiment.

JApanese Female Facial Expressions (JAFFE) data set [106] contains213 photos of

10 Japanese female models. Each image has been rated on6 emotion adjectives by60

Japanese subjects.

We summarize the datasets that we will use in our experimentsin Table 5.1

5.4.2 Experimental Setup

All the datasets in our experiments have large number of classes (at least10 class-

es). For each dataset, we randomly split the data into5 parts. According to the standard

5-fold cross validation, in each round, we use4 parts for training and the remaining part

for testing. The average classification accuracy rates for different methods are reported.

In the training stage, we use different full-rank linear regression models,i.e. full-rank

linear regression, full-rank ridge regression, sparse full-rank linear regression to learn the

coefficient matrixW directly or we solve the proposed low-rank counterparts (LRLR, L-

RRR, SLRR) to calculateW indirectly byW = AB. In all experiments, we automati-

cally tune the regularization parameters by selecting the best parameters among the values

{10r : r ∈ {−5,−4,−3, ...3, 4, 5}}with 5-fold cross validation on the corresponding train-

ing data only. In addition, for LRLR, LRRR, SLRR, we calculate the classification results

with respect to different low-rank parameterss in the range of[k/2, k), wherek is the

number of classes. At last, in the testing stage, we utilize the following decision function

to classify the coming testing dataxt ∈ ℜd×1 into one and only one out ofk classes,

argmax
1≤j≤k

(W Txt)j . (5.38)
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Table 5.1. The summary of the datasets used in our experiments.k is the number of classes,
d is the number of feature dimensions,n is the number of data points.

Dataset k d n
UMIST 20 10304 575

BINALPHA36 36 320 1404
BINALPHA26 26 320 1014

VOWEL 11 10 990
MNIST 10 784 150
JAFFE 10 1024 213

Table 5.2. The average classification accuracy using different regression methods on six
datasets.

Data Rank Linear Regression(LR) Ridge Regression(RR) Sparse Regression(SR)

UMIST
Full 0.6650 ± 0.1069 0.9197 ± 0.0456 0.9525 ± 0.0533
Low 0.8225 ± 0.0937 0.9675 ± 0.0322 0.9675 ± 0.0245

BINALPHA36
Full 0.3488 ± 0.0241 0.6039 ± 0.0231 0.5971 ± 0.0205
Low 0.4147 ± 0.0238 0.6105 ± 0.0178 0.6069 ± 0.0205

BINALPHA26
Full 0.3636 ± 0.0124 0.6732 ± 0.0258 0.6527 ± 0.0297
Low 0.4422 ± 0.0255 0.6771 ± 0.0221 0.6578 ± 0.0281

VOWEL
Full 0.2960 ± 0.0405 0.3010 ± 0.0402 0.2960 ± 0.0417
Low 0.2980 ± 0.0323 0.3040 ± 0.0304 0.3020 ± 0.0314

MNIST
Full 0.4067 ± 0.0830 0.4467 ± 0.1043 0.8067 ± 0.0435
Low 0.4400 ± 0.1020 0.7933 ± 0.0772 0.8267 ± 0.0742

JAFFE
Full 0.6519 ± 0.1066 0.9446 ± 0.0479 0.9870 ± 0.0188
Low 0.8617 ± 0.0813 1.0000 ± 0.0000 0.9951 ± 0.0098

Please note that all the data are centered and we consider themodel without bias. The code

is written in MATLAB and we terminate our iterative optimization procedure of sparse

regression when the relative change in the objective function is below10−5.

5.4.3 Classification Results

Our proposed methods can find the low-rank structure of the regression models,

which are equivalent to doing regression in the regularizedLDA subspace. For illustra-
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(a) UMIST low-rank structure and sparse structure
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(b) VOWEL low-rank structure and sparse structure
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(c) MNIST low-rank structure and sparse structure
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(d) JAFFE low-rank structure and sparse structure

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

index of singular value

si
ng

ul
ar

 v
al

ue

index of class

ab
s 

of
 w

ei
gh

t c
oe

ffi
ci

en
ts

 

 

5 10 15 20 25 30 35

50

100

150

200

250

300

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

(e) BINALPHA36 low-rank structure and sparse
structure
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(f) BINALPHA26 low-rank structure and sparse
structure

Figure 5.1. Demonstration of the low-rank structure and sparse structure found by our
proposed SLRR method..

tion purpose, in Fig. 5.1 we plot the ranked singular value ofthe learnt coefficient matrix

W = AB on the left hand side and draw the absolute value of the learntW of the 1st fold

(of the 5 fold cross validation, other folds show similar result) on the right hand side for

each dataset. The corresponding rank parameter is selectedbased on which SLRR achieves

the best classification accuracy. For example, in Fig. 5.1(a) shows the UMIST results, we

can see the number of non-zero singular value ofW is 15, i.e., the rank of the learnt coef-

ficient matrix is15, less than its full rank value of20. In addition, the learntW is sparse

and is effectively used for feature selection,e.g.selecting the important features (non-zero

rows) across all the classes. Fig. 5.2 shows the average classification accuracy comparisons

of the above three types of full-rank regressions with the proposed low-rank counterparts
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with respect to different low-rank constraints. From Fig. 5.2, we can obviously conclude

that the discriminant low-rank regressions consistently outperform their full-rank counter-

parts, when the specified low-rank parameters falls in a proper range. For five out of six

datasets in our experiments, the low-rank property can boost the result greatly. Only in

JAFFE dataset (as shown in Fig. 5.2.(l)), the performance ofsparse low-rank regression is

competitive with that of the full-rank counterpart.

To help the researchers easily compare all methods, we also list the best classification

results in terms of average accuracy and standard deviationfor different regression methods

in Table 5.2.

Our experimental results also verify our previous key pointthat the RLRR method is

better than LRLR method. On all six datasets, the RLRR outperforms the LRLR. Surpris-

ingly, the standard ridge regression even has better performance than the LRLR method.

The LRLR is equivalent to existing low-rank regression models, and both methods may

have suboptimal results due to the rank deficiency problem. In standard ridge regression or

RLRR methods, because the rank constraint is imposed, both of them alleviate such matrix

rank deficiency issue. Now we showed the connection between low-rank constraint and

LDA projection, such that we can uncover this problem.

For some data with very large feature dimension (d >> n), like UMIST, MNIST

and JAFFE, feature selection is necessary to reduce the redundancy between features and

alleviate the curse of dimensionality. Our classification results both in Fig. 5.2 and Table 5.2

have shown that under such circumstances, SLRR and its full rank counterpart can achieve

better classification result than RLRR and ridge regressionsince theℓ2,1-norm can impose

sparsity and select the features for all the classes.

Thus, our newly proposed RLRR as well as SLRR methods are moreimportant and

more practical low-rank models for machine learning applications.
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Figure 5.2. The average classification accuracy using5-fold cross validation on six datasets.
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5.5 Conclusion

In this chapter, we provide theoretical analysis on low-rank regression models. We

proved that the low-rank regression is equivalent to doing linear regression in the LDA

subspace. More important, we proposed two new discriminantlow-rank ridge regression

and sparse low-rank regression methods. Both of them are equivalent to doing regularized

regression in the regularized LDA subspace. From both theoretical and empirical views,

we showed that both LRRR and SLRR methods provide better learning results than stan-

dard low-rank regression. Extensive experiments have beenconducted on six benchmark

datasets to demonstrate that our proposed low-rank regression methods consistently outper-

form their corresponding full-rank counterparts in terms of average classification accuracy.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we have proposed several methods to tackle the learning big

heterogeneous data problems.

Specifically, if the number of feature or the length of the data descriptor is high,

we could useℓ2,1-norm SVM to select important features with respect to all the classes.

Moreover, if we want to select exact K features and do not wantto bother tuning the regu-

larization parameter, we can resort to the proposed featureselection method withℓ2,0-norm

constraint. Although the latter will find the local solutionsince the proposed model is not

a convex problem, we can always find a good starting point and get a reasonable solution.

If the data is collected from different sources or represented by multiple descriptors,

we proposed graph based multi-modality learning models to do either spectral clustering

or semi-supervised learning to fuse those heterogeneous information. Moreover, if the

data number is huge, we propose the robust multi-view K-Means model to cluster big

heterogeneous data without the heavy burden of graph construction.

At last, if the number of classes is large, we give a global solution to low-rank linear

regression and prove that the low-rank regression is equivalent to doing linear regression in

the corresponding linear discriminant analysis (LDA) space.

6.2 Future Work

In the coming big data era, the number of categories of data can be increased dramat-

ically. When the number of classes becomes large, how to utilize the correlation between
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classes to learn heterogeneous multi-modality data becomes the hot topic right now, which

can be coped with the learning model with new group lasso and low-rank regularization.

In addition, kernel learning can be combined into our proposed methods to handle the non-

linear data.
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[4] Y. Saeys, I. Inza, and P. Larrañaga, “A review of featureselection techniques in

bioinformatics,”Bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007.

[5] H. Liu and H. Motoda,Feature selection for knowledge discovery and data mining.

Springer, 1998.

[6] J. Habbema and J. Hermans, “Selection of variables in discriminant analysis by F-

statistic and error rate,”Technometrics, vol. 19, no. 4, pp. 487–493, 1977.

[7] K. Kira and L. A. Rendell, “A practical approach to feature selection,” inML, 1992,

pp. 249–256.

[8] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the gini index and

information gain criteria,”Ann. Math. Artif. Intell., vol. 41, no. 1, pp. 77–93, 2004.

[9] F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, “Trace ratiocriterion for feature

selection,” inAAAI, 2008.

[10] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell.,

vol. 97, no. 1-2, pp. 273–324, 1997.

104



[11] M. A. Hall and L. A. Smith, “Feature selection for machine learning: Comparing a

correlation-based filter approach to the wrapper,” inFLAIRS Conference, 1999, pp.

235–239.

[12] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer clas-

sification using support vector machines,”Machine Learning, vol. 46, no. 1-3, pp.

389–422, 2002.

[13] A. Prinzie and D. V. den Poel, “Random forests for multiclass classification: Ran-

dom multinomial logit,”Expert Syst. Appl., vol. 34, no. 3, pp. 1721–1732, 2008.

[14] P. S. Bradley and O. L. Mangasarian, “Feature selectionvia concave minimization

and support vector machines,” inICML, 1998, pp. 82–90.

[15] L. Wang, J. Zhu, and H. Zou, “Hybrid huberized support vector machines for mi-

croarray classification,” inICML, 2007, pp. 983–990.

[16] G. Obozinski, B. Taskar, and M. Jordan, “Multi-task feature selection,”Statistics

Department, UC Berkeley, Tech. Rep, 2006.

[17] A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying, “A spectral regularization

framework for multi-task structure learning,” inNIPS, 2007.

[18] N. Cristianini and J. Shawe-Taylor,An introduction to support Vector Machines: and

other kernel-based learning methods. Cambridge university press, 2004.

[19] F. Nie, H. Huang, X. Cai, and C. H. Q. Ding, “Efficient and robust feature selection

via joint ;2, 1-norms minimization,” inNIPS, 2010, pp. 1813–1821.

[20] D. L. Donoho, “Compressed sensing,”IEEE Transactions on Information Theory,

vol. 52, no. 4, pp. 1289–1306, 2006.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A

library for large linear classification,”Journal of Machine Learning Research, vol. 9,

pp. 1871–1874, 2008.

105



[22] C. Nutt, D. Mani, R. Betensky, P. Tamayo, J. Cairncross,C. Ladd, U. Pohl, C. Hart-

mann, M. McLaughlin, T. Batchelor,et al., “Gene expression-based classification

of malignant gliomas correlates better with survival than histological classification,”

Cancer Research, vol. 63, no. 7, p. 1602, 2003.

[23] D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Ren-

shaw, A. D’Amico, J. Richie,et al., “Gene expression correlates of clinical prostate

cancer behavior,”Cancer cell, vol. 1, no. 2, pp. 203–209, 2002.

[24] S. Fodor, “Massively parallel genomics,”Science(Washington), vol. 277, no. 5324,

pp. 393–395, 1997.

[25] A. Su, J. Welsh, L. Sapinoso, S. Kern, P. Dimitrov, H. Lapp, P. Schultz, S. Powell,

C. Moskaluk, H. Frierson,et al., “Molecular classification of human carcinomas by

use of gene expression signatures,”Cancer Research, vol. 61, no. 20, p. 7388, 2001.

[26] S. Armstrong, J. Staunton, L. Silverman, R. Pieters, M.den Boer, M. Minden, S. Sal-

lan, E. Lander, T. Golub, and S. Korsmeyer, “MLL translocations specify a distinc-

t gene expression profile that distinguishes a unique leukemia,” Nature genetics,

vol. 30, no. 1, pp. 41–47, 2001.

[27] I. Kononenko, “Estimating attributes: Analysis and extensions of relief,” inECML,

1994, pp. 171–182.

[28] X. Zhou and D. P. Tuck, “Msvm-rfe: extensions of svm-rfefor multiclass gene

selection on dna microarray data,”Bioinformatics, vol. 23, no. 9, pp. 1106–1114,

2007.

[29] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l2, 1-norm mini-

mization,” inUAI, 2009, pp. 339–348.

[30] X. Cai, F. Nie, H. Huang, and C. H. Q. Ding, “Multi-classℓ2,1-norms support vector

machine,” inICDM, 2011, pp. 91–100.

106



[31] L. Mancera and J. Portilla, “L0-norm-based sparse representation through alternate

projections,” inICIP, 2006, pp. 2089–2092.

[32] G. Obozinski, B. Taskar, and M. I. Jordan, “Joint covariate selection and join-

t subspace selection for multiple classification problems,” Statistics and Computing,

vol. 20, no. 2, pp. 231–252, 2010.

[33] C. H. Q. Ding, D. Zhou, X. He, and H. Zha, “R1-pca: rotational invariantl1-norm

principal component analysis for robust subspace factorization,” in ICML, 2006, pp.

281–288.

[34] D. Bertsekas, “Constrained optimization and lagrangemultiplier methods,”Comput-

er Science and Applied Mathematics, Boston: Academic Press, 1982, vol. 1, 1982.

[35] D. P. Bertsekas,Constrained optimization and lagrange multiplier methods. Athena

Scientific, 1996.

[36] M. J. D. Powell,A method for nonlinear constraints in minimization problems. In

R. Fletcher, editor, Optimization. Academic Press, Londonand New York, 1969.

[37] R. Duda, P. Hart, and D. Stork, “Pattern classification and scene analysis 2nd ed.”

1995.

[38] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,” inNIPS,

2006, pp. 41–48.

[39] D. Luo, C. H. Q. Ding, and H. Huang, “Towards structural sparsity: An explicit l2/l0

approach,” inICDM, 2010, pp. 344–353.

[40] A. Biswas and D. Jacobs, “Active Image Clustering: Seeking Constraints from Hu-

mans to Complement Algorithms,”CVPR, pp. 2152–2159, 2012.

[41] Y. J. Lee and K. Grauman, “Foreground focus: Unsupervised learning from partially

matching images,”International Journal of Computer Vision, vol. 85, no. 2, pp.

143–166, 2009.

107



[42] D. Dueck and B. J. Frey, “Non-metric affinity propagation for unsupervised image

categorization,” inICCV, 2007, pp. 1–8.

[43] X. Cai, F. Nie, H. Huang, and F. Kamangar, “Heterogeneous image features integra-

tion via multi-modal spectral clustering,” inIEEE Conference on Computer Vision

and Pattern Recognition (CVPR 2011), 2011, pp. 1977–1984.

[44] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”Interna-

tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[45] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

CVPR (1), 2005, pp. 886–893.
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