
DISCRIMINANT PROCESSING IN

MULTI-CLASS PATTERN RECOGNITION

SYSTEMS

by

SOUMITRO SWAPAN AUDDY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

ii

Copyright © by Soumitro Swapan Auddy 2013

All Rights Reserved

iii

Acknowledgements

This thesis is the culmination of the efforts of several individuals. I would like to

thank Dr. Michael Manry, my supervising professor, for his constant input and guidance. I

would also like to thank Rohit Rawat and Kanishka Tyagi, for their valuable inputs during

this process. I thank Nayana and Sheetal for keeping me focused on the task at hand; my

roommates Anup, Madhukar, Neeraj and Shantanu; members of House 140/141, Dilip,

Raghu, Asha, Shwetha, Gautam and Karthik; my friends in India, Faris, Nishant and

Akshay. Last, but definitely not the least, I would like to thank my parents, Swapan and

Monika Auddy, for their unwavering belief in me and my decisions. None of this would have

been possible without them.

25th Nov, 2013

iv

Abstract

DISCRIMINANT PROCESSING IN

MULTI-CLASS PATTERN RECOGNITION

SYSTEMS

Soumitro Swapan Auddy, M.S.

The University of Texas at Arlington, 2013

Supervising Professor: Michael Manry

Multi-Layer Perceptron neural network classifiers face problems when applications

have numerous output classes. A major problem is the fact that the MLP discriminant

values given by the MLP differ considerably from the posterior probabilities of the Bayes

decision rule. A non-linear mapping technique is developed in this thesis, which warps the

neural network outputs into posterior probabilities. A second problem is that when the

neural network is given inputs for classes it is not trained to handle, the output discriminant

values become very noisy, as compared to the values seen for correct inputs. Variance

based methods are investigated for detecting unanticipated classes. A method is

developed for detecting cases where a class is confused with another. In this case, a follow

on chapter helps clear up the confusion.

v

 Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... viii

List of Tables .. ix

List of Acronyms .. x

List of Symbols ... xi

Chapter 1 Introduction... 1

1.1 Basics of Pattern Recognition .. 1

1.2 Feature Extraction .. 2

1.3 Classification ... 3

1.4 License Plate Recognition .. 6

1.4.1 Damaged and New Characters ... 6

1.4.2 Confused Characters .. 7

1.4.3 State Recognition .. 7

1.5 Work and Thesis Organization ... 8

Chapter 2 Neural Network Classification .. 9

2.1 Structure of a Multi-Layer Perceptron .. 9

2.2 Training a Neural Network .. 11

2.2.1 First Order Training Methods .. 12

2.2.2 Second Order Training Methods ... 13

2.2.2.1 Assumption 1: .. 14

2.2.2.2 Assumption 2: .. 14

2.2.3 Levenberg-Marquardt Algorithm .. 15

2.2.4 Output Reset ... 16

vi

2.3 Properties of the Multi-Layer Perceptron .. 19

2.3.1 Modelling a Noisy Discriminant ... 19

2.3.1.1 Lemma 1 .. 19

2.3.1.2 Lemma 2 .. 19

2.3.2 Approximating Bayes Posterior Probabilities .. 20

2.3.3 Memorization ... 22

2.3.4 Universal Approximation Theorem .. 23

2.3.5 No Free Lunch Theorem ... 24

2.3.5.1 Assumption 3: .. 25

2.3.5.2 Assumption 4: .. 26

2.3.6 Alternate Justification of the MLP Classifier .. 26

2.3.6.1 Lemma 3: ... 26

Chapter 3 License Plate Recognition .. 28

3.1 Introduction to License Plate Recognition .. 28

3.2 License Plate Finding ... 28

3.2.1 Statistical Window Binarization Approach to finding a License

Plate.. 29

3.2.2 Hue, Saturation and Intensity Based Methods to Locate a License

Plate.. 30

3.3 License Plate Segmentation ... 31

3.3.1 Blank Space Detection Based Approach .. 32

3.3.2 Neural Network Based Approach .. 32

3.4 Feature Extraction .. 33

3.4.1 Filter Based Feature Extraction ... 33

3.4.2 2D-DFT Based Feature Extraction .. 34

vii

Chapter 4 Interpreting MLP Discriminants .. 36

4.1 Discarding MLP Discriminants .. 37

4.2 SoftMax ... 38

4.3 Proposed Mapping Scheme ... 41

Chapter 5 Detecting Bad Characters .. 44

5.1 Effect of Bad Inputs on Output Discriminants ... 44

5.2 Using Discriminant Variances to Detect Bad Inputs ... 46

5.2.1 Single Variance Method .. 46

5.2.1 Two Variance Method ... 49

5.3 Comparison of Results ... 54

Chapter 6 Detection and Correction of Bad Inputs ... 56

6.1 The Confusion Matrix ... 56

6.2 Detecting a Confusion between Multiple Classes .. 57

6.3 Reclassifying Probable Misclassifications .. 58

6.4 Discussion .. 60

Chapter 7 Conclusions and Future-Work .. 61

References .. 63

Biographical Information ... 73

viii

List of Illustrations

Figure 1-1 Support Vector Machine hyperplane ... 5

Figure 1-2 Multi-stage License Plate Recognition System ... 6

Figure 2-1 Fully Connected Multi-Layer Perceptron Structure ... 10

Figure 2-2 Sample discriminant values for a network trained without OR 18

Figure 2-3 Sample discriminant values for a network trained with OR 18

Figure 3-1 Integral image .. 31

Figure 4-1 Histogram of discriminant values of an MLP ... 36

Figure 4-2 Plot of Pc v/s maximum discriminant values ... 38

Figure 4-3 Plot of Pc after softmax v/s maximum discriminant values 40

Figure 4-4 Plot of Pc v/s non-linearly mapped discriminant values 42

Figure 5-1 Samples of Bad Characters ... 44

Figure 5-2 Plot of discriminants for a good character ... 45

Figure 5-3 Plot of discriminants for a bad character ... 45

Figure 5-4 Plot of Number of Misclassified Characters (Not Removed) v/s threshold 48

Figure 5-5 Plot of Number of Bad Characters (Not Removed) v/s threshold 48

Figure 5-6 Plot of Number of Good Characters (Removed) v/s threshold 49

Figure 5-7 Plot of Pe v/s threshold for Single Variance method 49

Figure 5-8 Plot of # Misclassified Characters (Not Removed) v/s threshold 51

Figure 5-9 Plot of # Bad Characters (Not Removed) v/s threshold 52

Figure 5-10 Plot of #Good Characters (Removed) v/s threshold 52

Figure 5-11 Plot of Pe v/s threshold for the two variance method 53

ix

List of Tables

Table 1 List of feature sets for different image types [68] .. 33

Table 2 Number of Patterns removed and corresponding thresholds for Single

Variance Method ... 47

Table 3 Number of Patterns removed and corresponding thresholds for Two Variance

Method 51

Table 4 Thresholds and Error Percentages for Single Variance Method 54

Table 5 Thresholds and Error Percentages for Two Variance Method 54

Table 6 Confusion matrix for characters ‘4’; ‘6’; ‘A’; ‘W’; ‘X’ ... 57

Table 7 Performance comparison for different thresholds ... 58

Table 8 Performance comparison for a group of confused characters in both stages . 59

Table 9 Comparison of Error Percentage for each individual stage 59

x

List of Acronyms

Acronym Definition

2D-DFT 2 Dimensional Discrete Fourier Transform

LM Levenberg-Marquardt

LPR License Plate Recognition

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NFL No Free Lunch

NNC Nearest Neighbor Classifier

OCR Optical Character Recognition

OR Output Reset

ROI Region of Interest

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

SVM Support Vector Machine

xi

List of Symbols

Symbol Definition

Fd Original image

fd Character image

X Input vector

T Desired output vector

N Number of inputs

M Number of outputs

Nh Number of hidden units

W, Woi, Woh Weight matrices

G, Goi, Goh Gradient matrices

w Weight vector

g Gradient vector

d1 Original discriminant vector

S Discriminants after softmax operation

d2 Remapped discriminants

c Constant

1

Chapter 1

Introduction

1.1 Basics of Pattern Recognition

A standard image contains vast amounts of information, most of which, is

redundant for applications in object detection, machine vision, etc. This redundancy

creates a need for an efficient way to extract crucial information from an image, while

discarding the redundant information. This method is called Pattern Recognition. Pattern

recognition is defined as “the automatic recognition, description, classification, and

grouping of patterns” by Jain et al. [1]. In essence, it is a process of distinguishing between

images of two or more classes, using the information unique to all images within a particular

class, from the images belonging to a different class [2].

Numerous computer vision applications rely on the correctness of the pattern

recognition engine for accurate identification, tracking, etc. of objects. Pattern recognition

is used in face tracking [3] for selective photography used in digital cameras. Video tracking

is the process of locating a moving object, found in applications like medical imaging [4],

video editing [5], etc. Patterns found in 3D point clouds are used for motion tracking and

gesture recognition [6]. Features like SIFT [7] and SURF [8] are used for reconstruction of

3D environments using 2D images, obtained from standard cameras. Pattern recognition

is used in the field of health care, to detect cardiovascular problems such as atrial

fibrillation, isochemic beats, etc. by analyzing ECG signals [9] and to analyze

mammograms to find micro calcifications, an indicator to possible breast cancer [10]. IC

fabrication techniques often lead to defects on the silicon surface [11], and the processing

steps to remedy each defect are different, making the classification of the defects essential.

Feature extraction and pattern recognition techniques are used extensively for this purpose

[11]. Given a sufficient amount of training data, it is possible to use pattern recognition to

2

predict annual weather patterns accurately [12], to determine the daily electrical load

patterns. Optical character recognition (OCR) is of particular interest, due to the numerous

approaches available to the implementer.

OCR systems are used in parcel and mail sorting facilities [13], to read the

addresses, delivery priorities, etc. electronically and sort them accordingly. OCR systems

are now used as teaching aids in schools [14], where students trace characters using a

stylus, with the objective of improving their handwriting skills. OCR is also used in license

plate recognition (LPR) systems for speed cameras [15], toll roads [16], parking lots [17],

etc. Some methods attempt to reconstruct the license plate image [18], while others simply

find the location of the license plate [19] and use various methods to recognize each

character.

1.2 Feature Extraction

One of the first steps in pattern recognition, for all applications, is feature extraction

which can be defined as the process of generating features which can be used as inputs

to a classifier, which can then be used to classify the image into one of several possible

classes [20]. Feature extraction focuses on the unique properties of an image and extracts

the relevant information from the same. Different feature types focus on different aspects

of the data, to extract features based on unique properties.

Some methods use transforms such as the Fourier transforms to concentrate on

the unique frequency components of the data at different frequency ranges [21]. Other

frequency based features attempt to classify information of shapes, such as those seen in

fingerprints, etc., for classification purposes [22]. Wavelet transform based feature sets

[23], including Gabor filters [24], have been used for applications with large image

databases. Some methods use the edge information of images to detect patterns such as

finger gestures [25]. Features such as SIFT and SURF features may also be used for

3

gesture recognition [26], 3D reconstruction [8] of environments using 2D images, etc.

Features like geometric moment features [27] are used due to their properties of scale and

rotation invariance. Feature extraction is also used for detection of tampering in video

footage, such as that from security cameras, by combining feature extraction and feature

fusion techniques [28].

1.3 Classification

Pattern recognition systems can be classified as to the type of learning algorithms

implemented, like supervised learning, unsupervised learning, reinforcement learning and

evolutionary learning [29]. Recognition is also dependent on the type of classifier used, i.e.

two class classifiers or multi-class classifiers, etc.

The most basic working principal of a classifier comes from the Bayes decision

rule. It assigns posterior probabilities to each possible output class, and the class with the

maximum probability is accepted as the correct class, while all other classes are rejected

[2]. This approach, however, is not robust, as it does not accommodate for noisy estimates

of the posterior densities. As a result, a Bayes classifier is a theoretical concept, which is

never used for practical applications. There are, however, other classification structures,

which are more easily implemented and which approximate the Bayes classifier arbitrarily

well.

A k-means Nearest Neighbor classifier (k-NNC) is a simple, yet efficient machine

learning algorithm, used for many practical applications [30]. In a nearest neighbor

classifier, in order to classify an unknown input vector, its nearest neighbors are found from

a sample vector field. The unknown input vector is assigned the class number to which a

majority of the neighboring sample vectors belong [31]. It has been shown that the k-

Nearest Neighbor classifier approaches the Bayes classifier’s performance as the number

4

of sample vectors approaches infinity [32]. When there are many sample vectors, however,

this is a computationally taxing method of classification.

A Bayes-Gaussian classifier is a standard Bayes classifier, where the input vectors

have a Gaussian distribution. The classifier calculates the posterior probabilities of the

output classes and the highest probability is assumed to indicate the correct class. This

classifier potentially has a lower implementation time than a nearest neighbor classifier, as

it has only one mean vector per output class. The final decision is also independent of

missing input values, as these values are ignored while the posterior probabilities are being

computed, thus making the Gaussian-Bayes classifier highly robust [33]. One problem with

this classifier occurs if some input features are linearly dependent on others for a given

class. In this case, the required inverse covariance matrix for that class cannot be

calculated. A second, more serious problem is that most applications do not generate

Gaussian feature vectors.

A support vector machine (SVM) is a two class classifier, where the classification

is performed by separating data by a hyperplane [34]. The goal of SVM training is to find

the hyperplane with the largest margin. The generalization of the classifier is directly

proportional to its margin size [2].

5

Figure 1-1 Support Vector Machine hyperplane

One advantage of an SVM is the fact that its training is not adversely affected if

the number of training patterns for one class is far greater than those of another class. For

applications with multiple output classes, multi-class SVMs may be used, but they

commonly suffer from combinatorial explosion. Also, given a simple statistical model for

testing input vectors in terms of the given training vectors, it can be shown that SVMs

reduce the probability of classification error and therefore, may approximate Bayes

classifiers [34].

Neural network classifiers are based on either the multilayer perceptron (MLP)

structure, or, the radial basis function structure. The structure consists of multiple layers,

i.e. an input layer, an output layer and one or more hidden layers [35]. The layers are

connected to each other using matrices of weights or coefficients. An MLP based neural

network is a non-linear approximator which uses non-linear activation functions in the

hidden layers [36]. As opposed to a Bayes-Gaussian classifier, the performance of a neural

network is not adversely affected by the presence of linearly dependent input vectors [2].

Neural networks are naturally multiclass classifiers, making them more flexible than two

class classifiers like the SVM [37]. The neural network outputs approximate the posterior

6

probabilities of each output class [2] [38], and thus neural networks approximate Bayes

discriminants.

1.4 License Plate Recognition

License plate recognition systems are typically multistage systems, with each

successive stage is dependent on the previous one, akin to an instruction pipeline. Broadly,

the stages are divided as (i) Plate Finding; (ii) Plate Segmentation; (iii) Character

Recognition, as shown in Figure 1-2. Each of these stages is further divided into multiple

steps and depending on the resources available, multiple algorithms can be used to

perform the same tasks.

Figure 1-2 Multi-stage License Plate Recognition System

License plate recognition systems are seen in applications such as toll road

cameras [19], parking lot monitoring systems [17], traffic signal cameras [19], vehicle weigh

stations [39] etc. The accuracy of the systems, when placed in such diverse environments

[40], with such diverse scenarios, is of critical importance. LPR systems may need to

predict whether or not a given plate is correctly classified. This probability depends directly

on the error probabilities of the shapes found during segmentation.

1.4.1 Damaged and New Characters

License plate characters are not always perfect. Often, the characters are

damaged due to dents in the license plate. The camera angle with respect to the license

7

plate may be such that the characters may be incomplete due to shadows and various

obstructions such as those due to license plate frames, random glints and other artefacts

shaped like bars [41].

The license plates may also have various ancillary characters, such as depictions

of wheel chairs, logos of specific companies, etc., which the classifier is not trained to

recognize. In such cases, the classifier is almost guaranteed to misclassify the character.

Characters may also be damaged during the process of segmentation [42], wherein, a

single region of interest may contain portions of multiple characters. Incorrect thresholding

during the binarization stage [43] may lead to erroneous artefacts connected to the correct

character image.

1.4.2 Confused Characters

Characters with similar shapes and dimensions, characters which, due to the angle

of the camera, appear to be other valid characters, etc. also cause problems in LPR

systems. In such cases, a two classifier system may be used, where the second classifier

is specific to reclassifying a group of characters which may be confused.

1.4.3 State Recognition

License plates usually show of the state of registration of the vehicle. This state

information, however, is displayed differently for each state. Some plates contain a state

map, while some carry the full name of the state. The character fonts for the states is also

not uniform and may be in a mixture of upper and lower case, or may only be in upper case

format.

Such differences cause problems in the segmentation step of an LPR system.

State specific solutions may be implemented to avoid this. But for a more general, universal

LPR solution, it is a challenge to accommodate the numerous different state information

styles seen on license plates.

8

1.5 Work and Thesis Organization

In this thesis, we develop neural network based discriminants for a license plate

character recognition application. Chapter 2 reviews the multilayer perceptron classifier

used in the thesis. It details the MLP training algorithm and the decision rules it follows.

Also covered are relevant neural network theorems. Chapter 3 details the steps involved

in a license plate recognition system. It describes various plate extraction methods, plate

segmentation algorithms and feature extraction methods. In chapter 4, problems with MLP

neural network classifier discriminants are discussed and a non-linear mapping scheme is

detailed, to remedy them. Methods for detecting bad characters are discussed in chapter

5. Chapter 6 proposes a method to identify confused input images and proposes a two

classifier solution to correct it, thus improving the error percentage.

9

Chapter 2

Neural Network Classification

Artificial neural networks attempt to mimic the biological model, for applications in

pattern recognition and machine learning. The smallest building block of an artificial neural

network is the hidden unit which is modeled on the structure of the standard biological

neuron. The dendrites are equated to inputs, the axon is akin to the output and the decision

making nucleus is represented by numerical weights. A positive weight simulates a neural

excitation, while a negative weight simulates neural inhibition. An activation function

controls the magnitude of the output, to help mimic the actual working of a biological neural

network.

2.1 Structure of a Multi-Layer Perceptron

Artificial neural networks are structured so as to replicate biological neural

networks. They consist of an input layer, an output layer and one or more hidden layers.

The output layer consists of nodes, with each node corresponding to a different output

class. Nodes in a layer are connected to nodes in another layer by unique numerical values,

termed as weights. Nodes within the same layer are not connected to each other. A fully

connected MLP with one hidden layer is shown in Figure 2-1. The input to the MLP consists

of N elements. However, one input is added for every input vector, p, and this input is

valued at 1, to function as a biasing threshold. As a result, the input is a vector, xp with

dimension 1 × (N + 1). The MLP has M output classes, making the output, d1, a vector of

dimension 1 × M. The input and output nodes are connected to each other through a series

of hidden unit nodes. An MLP contains 𝑁ℎ such hidden units. The input layer is connected

to the hidden layer through a network of weights, represented by the input weight matrix W

which is Nh × (N + 1). The weights connecting the nodes in the hidden layer to the output

10

nodes is the output weight matrix Woh, having dimensions M × Nh. Some of the input nodes

are directly connected to output layer nodes through the bypass weight matrix Woi , which

has dimensions M × (N + 1).

Figure 2-1 Fully Connected Multi-Layer Perceptron Structure

The output of an MLP is a function of the input vector x, the weight matrices and

the hidden unit activation vector, O. The non-linearity of a neural network’s hidden layer is

what helps it mimic biological neural networks [44] and this non-linearity is achieved

through a combination of the input to the layer and a sigmoid activation function. The net

function at the hidden units is given by (1)

11

𝑛(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥(𝑛)

𝑁+1

𝑛=1

(1)

The activation vector O, for the pth training pattern, is given by (2)

𝑂𝑝(𝑘) = 𝑓(𝑛(𝑘)) =
1

1 + 𝑒−𝑛(𝑘)
 (2)

The expression for the output of the classifier, for the pth training pattern, thus becomes,

𝑑1(𝑖) = ∑𝑤𝑜ℎ(𝑖, 𝑘)𝑂𝑝(𝑘) + ∑ 𝑤𝑜𝑖(𝑖, 𝑛)𝑥𝑝(𝑛)

𝑁+1

𝑛=1

𝑁ℎ

𝑘=1

 (3)

The output values for each class is called a discriminant and the class with the

highest discriminant value is considered to be the correct class. As such, the correct class

number is ic and the estimated class decision, i'c is given by

𝑖𝑐′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑑1(𝑖)) (4)

2.2 Training a Neural Network

The process of determining the weights of a neural network, to achieve optimum

performance, is called training. Training involves feeding the neural network inputs with

known output classes. A constant comparison and minimization of the mean squared error

of the known output class and the predicted output class forms the basis of neural network

training [45].

𝐸 =
1

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

2
𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (5)

The objective here is to find the most optimum weights such that the actual output

of the classifier, d1 is almost equal to the desired output t, for the pth training pattern. The

neural networks are trained using different gradient techniques, all focusing on optimizing

the weights using the calculated gradients.

12

2.2.1 First Order Training Methods

Numerous first order methods are available for training a neural network. Each

method has its own trade-offs, with respect to ease of implementation, speed of learning,

robustness to noise, etc. [45]. The following algorithms can be implemented on a fully

connected MLP structure with a single input layer, a single hidden unit layer and a single

output layer. The term fully connected implies that all the nodes in the MLP are connected

to all other nodes in different layers by weights.

The first order methods take the first order derivatives of the error function with

respect to the weight matrices 𝑾𝒐𝒊,𝑾 and 𝑾𝒐𝒉. The corresponding negative gradient

matrices for these individual regions are given by

𝑮 =
−𝜕𝐸

𝜕𝑾
 , (6)

𝑮𝑜𝑖 =
−𝜕𝐸

𝜕𝑾𝑜𝑖

 , (7)

and

𝑮𝑜ℎ =
−𝜕𝐸

𝜕𝑾𝑜ℎ

 (8)

The negative gradient vector g, for the network is

𝒈 = 𝑣𝑒𝑐(𝑮, 𝑮𝑜𝑖 , 𝑮𝑜ℎ) (9)

where the vec() function maps G, Goi and Goh to a column for convenience. The weights

W, Woi and Woh are remapped to form a column vector w, as

𝒘 = 𝑣𝑒𝑐(𝑾,𝑾𝑜𝑖 ,𝑾𝑜ℎ) (10)

The weights are updated in each iteration, k, using a learning factor z and the

negative gradient vector, g. The initial value of z is a small constant value and this value is

increased by a predefined step, if the error function for the current iteration is less than that

13

seen in the previous iteration, else, it is decreased. In back propagation [46], for the (k +

1)th iteration, wk representing the weights in the kth iteration and wk+1 representing the

weights in the (k + 1)th iteration, the weights are updated as,

𝒘𝑘+1 = 𝒘𝒌 + 𝑧 ⋅ 𝒈𝑘 (11)

Back-propagation, despite being a preferred method of training neural networks,

has a slow convergence rate and is heavily dependent on the selection of the initial weights

[47], making it unsuitable for many large applications.

The conjugate gradient method is a related first order training method, where the

gradient gk is used to update a direction vector pk for the kth iteration. The direction vector

is updated as

𝒑𝑘+1 = −𝒈𝑘 + 𝐵1 ⋅ 𝒑𝑘 (12)

using a factor B1 calculated as,

𝐵1 =
𝒈𝑘+1

𝑇𝒈𝑘+1
𝒈𝑘

𝑇𝒈𝑘
 (13)

This direction vector, in turn, updates the weights as

𝒘𝑘+1 = 𝒘𝒌 + 𝑧 ⋅ 𝒑𝑘 (14)

Since the weights are updated using the direction matrix as opposed to the

gradients themselves, the direction of descent is superior to that seen in the conjugate

gradient method. Thus the conjugate gradient method converges in fewer iterations than

the steepest descent method [45].

2.2.2 Second Order Training Methods

Second order algorithms are preferred for training neural networks due to their

faster convergence [48], but many second order training algorithms lead to memory

limitation problems [49], since the Jacobian matrix must be calculated and stored. Second

order training methods work on two basic assumptions

14

2.2.2.1 Assumption 1:

The error function is approximately quadratic in w for small weight changes [50].

2.2.2.2 Assumption 2:

The output for the pth training pattern is approximated as a first degree function of

w [50].

The following method is Newton’s second order training algorithm for a fully

connected MLP. The first partial derivative of the error function with respect to the weights

is given by

𝜕𝐸

𝜕𝑤(𝑗, 𝑘)
= −

2

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑗, 𝑘)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (15)

The Gauss-Newton approximation of the second partial of the error function with respect

to the weights, is

𝜕2𝐸

𝜕𝑤(𝑗, 𝑘)𝜕𝑤(𝑢, 𝑣)
=
2

𝑁𝑣
∑∑

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑗, 𝑘)

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑢, 𝑣)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (16)

As described in Error! Reference source not found., the weight matrix is remapped into

 column major format, giving the weight vector w. The remapping of w from a two

dimensional to a one dimensional vector w is performed as

𝒘 = 𝑣𝑒𝑐(𝑤) (17)

Using this mapping approach, the second order derivatives of (16) become elements of

the Hessian matrix H is defined as

15

ℎ(𝑚, 𝑛) =
𝜕2𝐸

𝜕𝑤(𝑚)𝜕𝑤(𝑛)
 (18)

Newton’s update vector e is found by solving,

𝑯 ∙ 𝒆 = 𝒈 (19)

The new weight vector w’ is updated as

𝒘′ = 𝒘+ 𝒆 (20)

The problem with Newton’s training method is the likelihood that the Hessian matrix H is

singular [50]. As a result of which, it may not be possible to calculate the update vector e.

Hence, the Levenberg-Marquardt training algorithm is proposed, which eliminates this

possibility.

2.2.3 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt’s algorithm is an iterative technique used to find the

local minima of a multivariate function. This algorithm is an interpolation between Newton’s

algorithm and steepest descent, which leads to a guaranteed convergence at a slower

speed [51]. The weight vector w, in the LM algorithm, is updated as

𝒘 = 𝒘+ [𝑯 + 𝜆𝑰]−1𝒈 (21)

which implies

[𝑯 + 𝜆𝑰]𝒆 = 𝒈 (22)

The term λ controls the LM training towards either the first order or the second

order methods [51]. If the error function E increases, λ is increased, making the algorithm

mimic the steepest descent method. Else, the term λ is decreased. The equation in (22) is

solved using orthogonal least squares (OLS) [52]. LM may be used on all the network

weights, or only on the hidden layer weights. The problem with LM is that the number of

calculations involved in it mean it cannot be used effectively in larger networks. Thus, LM

is generally used to train smaller networks.

16

2.2.4 Output Reset

For the MLP, it is desirable to minimize the probability of classification error, but it

is more practical to minimize the MSE E. The error function puts certain restrictions on the

classification error. If the outputs have a unique constant bias, E may be increased or

decreased, but the classification error remains unaffected. In the event that an output has

a magnitude greater than the output bias, E will increase, leaving the classification error

unchanged or lesser [53].

The output reset (OR) algorithm assigns each desired output a bias which reduces

the error function and sets the desired output equal to the actual output, when the output

has the correct sign but too great a magnitude [53]. The resulting modified error function

E’ is expressed as

𝐸′ =
1

𝑁𝑣
∑∑[𝑡′

𝑝
(𝑖) − 𝑑1(𝑖)]

2

𝑁𝑐

𝑖=1

𝑁𝑣

𝑝=1

 (23)

where,

𝑡′𝑝(𝑖) = 𝑡𝑝(𝑖) + 𝑎𝑝 + 𝑑𝑝(𝑖) (24)

By varying ap, dp(i) or t’p(i) for each training pattern p, it is possible to decrease E’. If id is

an incorrect class number, the methods must adhere to two conditions,

i. The difference |𝑡′𝑝(𝑖𝑐) − 𝑡
′
𝑝(𝑖𝑑)| must be greater than, or equal to 1.

ii. All changes made to these parameters must reduce, or not affect E’.

The first method equates the first derivative of E’, with respect to ap, equal to zero. The

expression for ap is then obtained as,

𝑎𝑝 =
1

𝑀
∑[𝑦𝑝(𝑖) − 𝑡𝑝(𝑖) − 𝑑𝑝(𝑖)]

𝑀

𝑖=1

 (25)

The second method attempts to modify the term dp(i), such that

17

𝑑𝑝(𝑖) = 𝑦𝑝(𝑖) − 𝑡𝑝(𝑖) − 𝑎𝑝 (26)

with the constraints that 𝑑𝑝(𝑖𝑐) ≥ 0, 𝑑𝑝(𝑖𝑑) ≤ 0. By implementing OR, the outputs

corresponding to the classes with lower probabilities are forced to be lower and those with

higher probabilities of being correct are assigned higher values. This effectively increases

the number of negative discriminants at the output of the MLP and increases the magnitude

of the maximum discriminant value, corresponding to the correct class.

For a given input vector which can belong to one of 36 possible output classes,

class 1 being the correct class, Figure 2-2 shows the discriminant values obtained at the

output of an MLP trained without implementing OR. The same input vector, when passed

through an MLP trained with OR, gives the discriminant values seen in Figure 2-3 It is seen

in Figure 2-2 and Figure 2-3 that most output classes have either positive or negative

discriminant values. The discriminant value corresponding to the correct class has a much

higher value at the output of the MLP trained with OR, compared to the MLP trained without

OR. The significance of increasing the number of negative discriminant values without

affecting the overall performance of the network will be seen in Error! Reference source

ot found..

18

Figure 2-2 Sample discriminant values for a network trained without OR

Figure 2-3 Sample discriminant values for a network trained with OR

19

2.3 Properties of the Multi-Layer Perceptron

2.3.1 Modelling a Noisy Discriminant

From Figure 2-2and Figure 2-3, the discriminant output of an MLP is not ideal, i.e.

it has noise. Thus, the ith discriminant is modeled as

𝑑1(𝑖) = 𝑑(𝑖) + 𝑛𝑑(𝑖) (27)

where the discriminant vector d sums to 1 and the noise component has a mean mn. We

analyze some of the properties of this model in the following two lemmas.

2.3.1.1 Lemma 1

The expected sample mean of d1(i) converges to the mean of the additive noise

as the number of classes M increases.

𝐸 [
1

𝑀
∑𝑑1(𝑖)

𝑀

𝑖=1

] = 𝐸 [
1

𝑀
∑(𝑑(𝑖) + 𝑛𝑑(𝑖))

𝑀

𝑖=1

]

=
1

𝑀
+ 𝐸 [

1

𝑀
∑𝑛𝑑(𝑖)

𝑀

𝑖=1

]

=
1

𝑀
+𝑚𝑛

(28)

As M increases, the discriminant sequence’s mean approaches mn.

2.3.1.2 Lemma 2

If the desired output for the ith class is tp(i) = δ(i-ic) where ic denotes the correct

class and the noisy discriminant d1 has a bias a, found through regression, the noise

component of d1(i) is zero mean.

20

𝐸 = 𝐸 [
1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖) − 𝑎]

2
𝑀

𝑖=1

]
(29)

𝜕𝐸

𝜕𝑎
= −2 ⋅ 𝐸 [

1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖) − 𝑎]

𝑀

𝑖=1

] = 0
(30)

∴ 𝑎 = 𝐸 [
1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖)]

𝑀

𝑖=1

] =
1

𝑀
−
1

𝑀
∑𝐸[𝑑1(𝑖)]

𝑀

𝑖=1

(31)

Absorbing a into d1(i) and using lemma 1,

∑𝑑1(𝑖)

𝑀

𝑖=1

= 1,
(32)

𝑚𝑛 = 0 (33)

Thus, the sum of the discriminants of an MLP classifier sum up to 1, as would posterior

probabilities.

2.3.2 Approximating Bayes Posterior Probabilities

A Bayes discriminant [54] which minimizes the probability of error Pe, can be

expressed in any of the following three forms

𝑓(𝒙|𝑖)𝑃(𝑖) (34)

𝑔(𝑓(𝒙|𝑖)𝑃(𝑖)) (35)

𝑃𝑏(𝑖|𝒙) (36)

In (ii) g(.) is either an increasing or decreasing function. MLP classifiers have been

used successfully for numerous applications, based on their proven performance. This

good performance is partially due to the following result.

Theorem: “When MLP classifiers are trained to minimize the mean-squared error,

the MSE approaches a constant value plus the expected squared error between the

21

classifier output and Bayes discriminant, as the number of training patterns approaches

infinity [55].”

In other words, if the Bayes discriminant vector b, has elements as described in

(36) then as the number of training patterns approaches infinity,

lim
𝑁𝑣→∞

1

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

=∑𝐸 [(𝑏(𝑖) − 𝑑1(𝑖))
2
] + 𝑐

𝑀

𝑖=1

(37)

where c is a constant, independent of the pth training pattern. Experiments have

shown that an MLP classifier often gives the same accuracy as conventional non-

parametric Bayes classifiers [54]. The Bayes posterior probability for an input vector x, of

the pth training pattern, belonging to a class i within the output discriminant vector d1 is

given by

𝑑1(𝑖) = 𝑃𝑏(𝑖|𝒙𝑝) (38)

The training of an MLP classifier involves the minimization of the MSE function E

as seen in (16), which is minimized over all the training patterns. Thus, E is the ensemble

error surface for a pattern recognition problem [54]. The input training vectors are drawn

from a common, known distribution of vectors, the number of training vectors is effectively

proportional to the a priori probability of any given class [54]. Since the training minimizes

E with respect to the weights vector w, the MLP is effectively a minimum mean squared

error approximation to the Bayes optimal discriminant function [54]. It must be noted that

the accuracy of the MLP in approximating the Bayes posterior probabilities is dependent

on the weights vector w. If the number of hidden units is too small, the approximation of

the MLP will not be a good approximation of the Bayes posterior probabilities well.

22

2.3.3 Memorization

A nonlinear neural network has the ability to memorize its input patterns during

training. The number of patterns it can memorize is called information capacity [56]. The

ability of a neural network to memorize relates to its ability to form arbitrary shapes in the

weight space, and attests to the usefulness of the training algorithm used on the neural

network [57]. However, in training a neural network, memorization must be avoided as it

leads to the possibility of overfitting [58]. Overfitting ultimately negatively affects the

validation and testing errors of the MLP. Thus, it becomes essential to find the upper bound

on memorization, in order to design an optimum classifier.

For a given application, the parameters known to us beforehand are, the number

of inputs, N, the number of input training patterns, Nv and the number of output classes, M.

Thus, to design an optimum classifier, the only parameters under our control are the

numbers of hidden units, Nh and the training iterations, Nit. The upper bound CMLP [59], also

called the storage capacity, must satisfy

𝐶𝑀𝐿𝑃 ≤
𝑁𝑤
𝑀

 (39)

where Nw is the total number of weights,

𝑁𝑤 = (𝑁 + 1)𝑁ℎ +𝑁ℎ𝑀 + (𝑁 + 1)𝑀 (40)

In order to prevent memorization and promote generalization, Nv must be much

greater than CMLP.

𝑁𝑉 ≫
𝑁𝑤
𝑀

 (41)

From this expression, the number of hidden units should be chosen to satisfy

𝑁ℎ ≪
𝑀(𝑁𝑣 −𝑁 − 1)

(𝑁 + 1 +𝑀)
 (42)

23

This upper bound of (39) is independent of the activation function used and is also

valid for most feed forward neural network structures, irrespective of the connectivity of the

network [57].

2.3.4 Universal Approximation Theorem

A question that arose in the late 1980s is, ‘How many hidden layers are needed to

sufficiently approximate an arbitrary, continuous function?’ the answer is given by the

universal approximation theorem. The universal approximation theorem for the nonlinear

input-output mapping of Figure 2-1 is stated as follows [35] [60]:

Theorem: “Let f be a non-constant, bounded and monotonically increasing function. Let x

be the input with dimensionality, 1 × N. If each of the input vectors are drawn from a

specific distribution and ε > 0, there exist a number, M, and real valued constants x(N +

1), Woh and W, such that an output d1, with dimensionality 1 × M, can be defined as given

in (3).”, which is an approximate realization of the desired output t”, i.e.

|𝑑1(𝑖) − 𝑡(𝑖)| < 𝜀, 𝑓𝑜𝑟 0 < 𝑖 ≤ 𝑀

For the application of license plate character recognition, the input vectors x are selected

from a continuous distribution. A sigmoidal activation function (2) is used to make the

outputs monotonically increasing and bounded, as required in the theorem. The MLP used

has one hidden layer with Nh hidden units. The theorem justifies the approximation

capabilities of an MLP with a single hidden unit layer and these criteria are adhered to by

the MLP used for this classification problem. Hence, as confirmed by the universal

approximation theorem, the single hidden layer MLP used here for classification is a good

approximator. It however, does not state that the MLP has the optimum learning time, the

easiest of implementations or that it is the most general classifier available for all

applications [35].

24

2.3.5 No Free Lunch Theorem

As seen in previous chapters, there are different types of classifiers, some suitable

for two class systems, some for multi class systems. There are also many available training

algorithms, which can be used interchangeably with these classifiers. The focus now turns

to the optimization of a classifier, irrespective of the training and structure of the algorithm,

a “black-box” optimization algorithm, as labeled by Wolpert and Macready [61], as the No

Free Lunch theorem. The theorem assumes the existence of a search algorithm, a, which

relies on either deterministic or stochastic extrapolation of information from an existing set

of m points. The performance of the algorithm is decided by the histogram c, of the cost

values of the algorithm, decided by a cost function, F. Let F’ represent every possible input

vector, from every classification problem. The cost function is a function of the number of

patterns, Nv, in the population and the output discriminant values, d1, which is a vector of

length M. Assuming the existence of F1, a subset of F’ input vectors, for which a search

algorithm a1 outperforms an algorithm a2 for a second subset of F’, called F2. The reverse

is true also, i.e., a2 outperforms a1 for the set F2. To perform a comparison of the two search

algorithms, the sum over all F’ of P(c|f,m,a1) is compared to the sum over all f of P(c|f,m,a2).

Since the comparison sums over all of F’, it implies that the comparison is independent of

the search algorithms, a1 and a2, since they are implemented on F1 and F2, which are

effectively subsets of F’. The theorem is thus stated as,

Theorem [62]: For any pair of algorithms, a1 and a2,

∑𝑃(𝐶|𝐹′,𝑁𝑣 , 𝑎1) = ∑𝑃(𝐶|𝐹′,𝑁𝑣 , 𝑎2)

𝑓𝑓

 (43)

The No Free Lunch theorem implies that if nothing is known about f, then

P(C|Nv,a), which is the probability of obtaining a histogram C after Nv evaluations is

independent of the algorithm used. Thus,

25

𝑃(𝐶|𝑁𝑣 , 𝑎) =∑𝑃(𝐶|𝐹′, 𝑁𝑣 , 𝑎)𝑃(𝐹′|𝑁𝑣 , 𝑎)

𝑓

=∑𝑃(𝐶|𝐹′, 𝑁𝑣 , 𝑎)𝑃(𝐹′)

𝑓

(44)

If we have no prior knowledge of the type of input for the classifier being designed, then all

F’ are equally likely.

This theorem implies that a selected algorithm may be an optimum solution for a

particular application but it may or may not be optimum for a new application. It is possible

that a different algorithm may be optimum for the new case. Thus, it is not possible to

determine a single algorithm that is optimum for all possible applications. It also implies

that every learning algorithm must make certain assumptions beyond the given data, in

order to form a reasonable degree of generalization [63]. Given a lack of such assumptions,

the ability of a learning algorithm to correctly predict the class for an input is analogous to

random guessing [64].

The multilayer perceptron structure used in this thesis should, according to this

theorem, be as competent at predicting correct class numbers for the input feature vectors,

as random guessing [64]. But the theorem does not hold true for a multilayer perceptron,

because the algorithm is designed making certain assumptions, as discussed in Error!

eference source not found..

2.3.5.1 Assumption 3:

The basic criteria for training a multilayer perceptron is the adjustment of weights

to minimize the error function, E, The input vectors used to train the MLP belong to a certain

distribution [65] and the weights are adjusted to minimize the error for all inputs belonging

to the same distribution. Any input vectors which do not belong to the distribution, i.e. new

26

character classes the MLP has not been trained for, cannot be handled by the classifier.

This effectively makes an assumption that all inputs to the classifier belong to a particular

distribution, thus imposing a limit on the types of inputs the classifier can handle.

2.3.5.2 Assumption 4:

The hidden layer of the neural network uses a sigmoid activation function, as

discussed in Error! Reference source not found., to replicate the non-linear decision

aking process of biological neurons. This also serves the purpose of making the outputs

continuous, thus imposing a criteria that both the inputs and the activation function, belong

to a continuous distribution. We therefore have a second assumption on the working of the

classifier. These two assumptions put on the MLP are enough to refute the claims of the

No Free Lunch theorem.

2.3.6 Alternate Justification of the MLP Classifier

A second approach can be constructed, that shows that the NFL theorem does not

apply to the MLP. First, most classifiers, including the MLP, SVM, Bayes-Gaussian

classifier, nearest neighbor classifier (NNC) etc., have continuous discriminant functions,

which are discussed in the following lemma.

2.3.6.1 Lemma 3:

The output discriminant functions of the MLP, SVM, NNC and Bayes-Gaussian

classifiers are continuous.

For the MLP, as discussed in Error! Reference source not found., the activation

unction is a sigmoid function, which is bounded, monotonically increasing and continuous.

As a result of this, the discriminant output vector d1 of the MLP is also continuous. The

other, linear layers cascaded with the activation layers are also continuous. The SVM is an

27

MLP with continuous Gaussian activations, and therefore has continuous output

discriminants. For a Bayes-Gaussian classifier, each discriminant is a quadratic function of

the input vector x, making the discriminant continuous.

The ith class discriminant of an NNC is

𝑑𝑖(𝒙) = 𝑚𝑖𝑛𝑘(𝑑(𝒙,𝒎𝑖𝑘))

where d(∙) denotes the distance from x to the kth center vector from the ith class, mik. As x

changes continuously, the distances d(x,mik) change continuously as well. If the two

smallest distances for the ith class change place, so that a different one is the minimum,

there is no discontinuity in di(x). This occurs because the two distances are infinitesimally

different when they change places.

Second, universal approximation implies that the MLP can approximate these

continuous discriminants arbitrarily well. Thus, the MLP can perform at least as well as the

best alternative classifier. Given these results, we have decided to use the MLP classifier

in this research.

28

Chapter 3

License Plate Recognition

3.1 Introduction to License Plate Recognition

Automatic license plate recognition is the process by which, a computer based

system acquires vehicle images from a camera, locates the license plate and recognizes

the license plate number. Depending on the place of application of the LPR system, such

as unattended parking lots [17], automatic toll collection [16], speed and traffic cameras

[15], etc., the steps to perform this will vary, to accommodate for the numerous restrictions

imposed on the images captured. These restrictions come in the form of vehicle speed,

ambient lamination, camera image quality, ancillary text on the vehicle, etc. [66]. Although

this can be done manually, it is the least efficient brute force method available. A more

practical solution is to automate the license plate recognition system using one of the many

image processing and pattern recognition methods available to us. As such, there are

numerous practical approaches to implement LPR systems. They are, usually, multi-stage

applications, with the more generally accepted breakdown being plate finding [66], plate

segmentation [67], feature extraction [68] and character classification [61].

3.2 License Plate Finding

This is the first step in any LPR application. Given an image Fd of an environment,

the location of the license plate must first be correctly established. Several methods exist

to find the location of the license plate from Fd. This step is usually divided into finding the

region of interest (ROI) using area based grayscale variations, using histogram analysis,

morphological operations, etc. [66] and subsequently isolating the exact license plate using

methods like using edge detection followed by Hough transform [69]. Some of the common

29

problems encountered in these methods is their inability to distinguish between license

plates and other forms of text visible on the vehicle, such as bumper stickers,

advertisements, etc. Often, glints caused by light reflecting off chromed grills, high beam

headlights manage to yield false results for the license plate location. Methods such as

block-wise binarization using traditional thresholding algorithms such as Otsu’s

thresholding [67] to remove spurious high frequency noises. Other methods such as

divisive normalization [70] to enhance the contrast in the image, thus facilitating the

process of license plate extraction.

Several approaches to license plate finding are currently available in the market.

These approaches are based on unique properties of the license plate, such as color [71],

shape [40] [70], spatial frequency [24], variance, etc.

3.2.1 Statistical Window Binarization Approach to finding a License Plate

A typical preprocessing step is to binarize the complete image. One commonly

used approach is to resize the image to a fixed dimension. Two concentric windows, A and

B, are passed across the image, Fd, moved pixel by pixel, from the top to bottom and left

to right. If the ratio of the statistical measurements corresponding to these windows, either

the mean value or the standard deviation of the regions A and B, MA and MB respectively,

is greater than a threshold, T, the center pixel of the window is set to logic 1, indicating the

pixel is present in the ROI, else, it is cleared to logic 0, indicating it is not part of the ROI

[40]. The binarized image Fbin derived from this relation is represented in (45).

𝐹𝑏𝑖𝑛(𝑚 , 𝑛) = {
0, 𝑖𝑓

𝑀𝐵

𝑀𝐴
≤ 𝑇

1, 𝑖𝑓
𝑀𝐵

𝑀𝐴
> 𝑇

 (45)

30

Once the probable region is located, image morphological, Dilation [40] and

Erosion [40] operators are used to remove smaller blobs within the ROI. This method yields

the shape of the license plate within the image which is then processed further.

3.2.2 Hue, Saturation and Intensity Based Methods to Locate a License Plate

Some license plate recognition systems are region specific and tend to exploit

certain properties unique to certain parts of the world. The most commonly exploited

property among these is the method of combining the algorithms for edge detection and

summed area table images to find the license plate.

The algorithm [71] first converts the image Fd, initially in the red, R, green, G, blue,

B, format, to a hue, H, saturation, S and intensity, V, format using the following conversion

criteria:

{

𝑉(𝑚, 𝑛) = max(𝑅(𝑚, 𝑛), 𝐺(𝑚, 𝑛), 𝐵(𝑚, 𝑛))

𝑆(𝑚, 𝑛) = {
[𝑉(𝑚, 𝑛) − min(𝑅(𝑚, 𝑛), 𝐺(𝑚, 𝑛), 𝐵(𝑚, 𝑛))] ×

255

𝑉(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻(𝑚, 𝑛) =

{

 (𝐺(𝑚, 𝑛) − 𝐵(𝑚, 𝑛)) ×

60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝑅(𝑚, 𝑛)

180 + (𝐵(𝑚, 𝑛) − 𝑅(𝑚, 𝑛)) ×
60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝐺(𝑚, 𝑛)

240 + (𝑅(𝑚, 𝑛) − 𝐺(𝑚, 𝑛)) ×
60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝐵(𝑚, 𝑛)

𝐻(𝑚, 𝑛) = 𝐻(𝑚, 𝑛) + 360; 𝑖𝑓 𝐻(𝑚, 𝑛) < 0

(4

6)

After converting the image to the HSV color space, its integral image is extracted

[72]. Using the integral image, the sum of any rectangle can be obtained using the values

of the sum at the four corners of the rectangle A, B, C and D, shown in Figure 3-1. For

illustrative purposes, the calculation of the area within rectangle D is described.

The area within rectangle D is obtained from the points 1, 2, 3 and 4. The value at

1, A1, is the sum of pixels in A; the value at 2, A2, is the sum of pixels in A and B; the value

31

at 3, A3, is given by the sum of pixels in A and C; and the value at 4, A4, is given by the

sum of pixel values in A, B, C and D. The area within region D is thus given by,

𝑎𝑟𝑒𝑎(𝐷) = 𝐴4 + 𝐴1 − (𝐴2 + 𝐴3) (47)

Figure 3-1 Integral image

The edges of the image are extracted by using a Sobel filter and the subsequent

image is dilated [73]. As a result, several brighter regions are highlighted in the image. By

performing a logical AND operation on the HSV image with the Sobel-dilated image,

probable license plate regions are located. A connected component analysis of the

rectangular areas from the ANDed image and the integral image yields an accurate license

plate.

3.3 License Plate Segmentation

Once the general location of the license plate is identified, it must be segmented,

i.e. each individual character must be isolated from the other characters, for the purpose

of further processing. This step is challenging due to the inconsistencies in the formatting

of the license plate characters and backgrounds. License plates in different states have

different, often multicolored backgrounds. Some have holographic emblems and

characters, which, depending on the lighting conditions in the vicinity, cause glints and

other light artefacts which partially obscure the neighboring characters. The angle of the

32

camera, on certain occasions, may be too steep, causing the view of the characters to be

blocked, partially, by portions of the car, etc.

Several methods have been devised for character segmentation, from image

morphological techniques, namely dilation and erosion [74]; using wavelet based methods

like the 2D Haar Wavelet transform, as shown by Jeffery et al. [75]; or using robust texture

analysis methods using Gabor filters [76], which abandons traditional edge detection and

thresholding techniques, in favor of multi-directional filter responses. Some of the methods

of license plate segmentation are mentioned below.

3.3.1 Blank Space Detection Based Approach

A paper on character segmentation by Shan [77] uses the most computationally

simple method for segmentation. The necessary preprocessing step of binarization is

performed on the license plate image. The sum of the pixel values for each column is then

calculated. The gap between characters appears as a region with a high value, as

compared to the other values, which are low, due to the presence of dark characters. These

valleys and peaks are used to segment the characters vertically. A similar step, taking the

sum of pixel values in each row, within the vertically segmented plate, is used to create

horizontal boundaries, thus segmenting the characters from the plate image.

3.3.2 Neural Network Based Approach

A paper by Garris and Wilson [42] describes a neural approach which combines

the tasks of character segmentation and recognition into a single neural network. A

rectangular window is passed over the probable location of the license plate characters,

assuming a fixed size of the license plate characters. The image within the rectangle are

passed through a neural network, to decide whether the image is a valid character, or, if it

contains portions of two separate characters.

33

A second, two network approach is also proposed in the same paper [42]. In this

method, the first neural network is tasked with determining whether the image segment at

the input is a valid character, or an invalid one. The second neural network determines the

correct class of the character, assuming the first neural network deems the image as a

valid character.

3.4 Feature Extraction

A survey conducted by Trier, Jain and Taxt [68] discusses the different feature

extraction methods for character recognition. The paper covers multiple methods for the

segmented characters obtained after most common preprocessing steps, like grayscale

images, binarized images and skeletal edge images.

Depending on the type of preprocessing steps used, the feature extraction

methods change drastically. This is done to ensure the correct features are the focus of

the extraction method being used.

Table 1 List of feature sets for different image types [68]

3.4.1 Filter Based Feature Extraction

Wang, Ding and Liu [24], in their paper, discuss the use of Gabor filters for the

process of feature extraction. Gabor filters can simulate the behavior of simple cells in the

34

human eyes [78]. Gabor filters also have an optimal joint spatial-frequency localization

property [24], thus making them suitable filters for applications like texture analysis,

handwritten character recognition, etc. A 2-dimensional Gabor filter is a complex,

sinusoidal modulated Gaussian function with the responses in the spatial domain and

spatial-frequency domain [24]. The directional properties of the filters to detect character

strokes in different directions. To accomplish this, the character image first needs to be

normalized and the must pass through a bank of Gabor filters. To accommodate for

background noise and non-uniform lighting, the outputs of the filter bank pass through an

adaptive regulator. The system extracts histogram features by counting the positive and

negative real parts of the output of each Gabor filter. This histogram forms input vectors,

which is put through a histogram feature extraction process, before finally being

compressed into a single feature vector x. This is a time consuming and memory intensive

feature extraction method, which cannot be implemented easily on simple hardware.

3.4.2 2D-DFT Based Feature Extraction

A simpler feature set relying on the information obtained from an image through

frequency domain analysis is the 2D-DFT feature extraction method. The feature vectors,

which ultimately are the inputs to the MLP used in this thesis, are extracted using this

method. The 2D-DFT is an image processing tool which extracts the sine and cosine

components of the image [79]. Any image, when finite in the spatial domain, has an infinite

number of components in the frequency domain. The Fourier transform of an image gives

a point corresponding to the frequency at that spatial region of the image. The discrete

Fourier transform samples this point cloud and retains only a set of points. It, thus, does

not contain the complete frequency information stored in an image. It, however, stores

enough low frequency points, so as to faithfully represent the spatial information contained

in the image [80].

35

For a given image M × N, fd(m,n), the 2D-DFT gives the cosine and sine, i.e. real,

R, and imaginary, I, components of the image, up to a limit L, as follows

𝑅(𝑖, 𝑗) = ∑ ∑ 𝑓𝑑(𝑚, 𝑛)cos (2𝜋 (
𝑚𝑖

𝑀
+
𝑛𝑗

𝑁
))

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (48)

𝐼(𝑖, 𝑗) = ∑ ∑𝑓𝑑(𝑚, 𝑛)sin (2𝜋 (
𝑚𝑖

𝑀
+
𝑛𝑗

𝑁
))

𝑁

𝑛=0

𝑀

𝑚=0

 (49)

The resulting vectors R and I are matrices, with dimensions (2L+1) × (L+1),

consisting of the low frequency information contained in the image. This data, despite being

compressed, still has redundant information. This is because, for a 2D signal, the

information contained in the first and fourth quadrants of the Fourier domain are mirrors of

the information contained in the second and third quadrants. As a result, only the

information contained in the former is retained, while that in the latter is discarded. The

remaining data is stored in the form of an array which is mapped to the input feature vector

x for the classifier.

.

36

Chapter 4

Interpreting MLP Discriminants

As mentioned in previous chapters, the output discriminants of an MLP structure are

approximate posterior probabilities [38], as described by the Bayes decision rule [60].

However, in practice, the outputs of an MLP do not map to real probabilities [81]. A

histogram of MLP outputs for 8719 validation patterns, obtained from segmented and

binarized license plate character images, and 36 output classes is shown in Figure 4-1.

The largest discriminant corresponds to the estimated class, while the other values

correspond to estimated incorrect classes.

Figure 4-1 Histogram of discriminant values of an MLP

The output of the MLP, as evident, consists of both positive and negative values.

By lemma 2, the output discriminant values of an MLP do however, approximately sum up

37

to 1, thus, partially buttressing the above claim. Considering the initial assumption that the

MLP outputs are posterior probabilities, as discussed in Error! Reference source not

ound., it should be possible to remap the discriminants in a way to get the classifier to

approximate posterior probabilities [81]. This chapter proposes an approach, which, based

on a combination of data restructuring and non-linear mapping, attempts to warp the

discriminants such that we derive a vector d2 which adheres to the following constraints

0 ≤ 𝑑2(𝑖) ≤ 1; (50)

∑ 𝑑2(𝑖)

1≤𝑖≤𝑀

= 1; (51)

𝑑2(𝑖) ≈ 𝑃(𝑖|𝒙) (52)

4.1 Discarding MLP Discriminants

As seen in Error! Reference source not found., the output of an MLP is not just

 single value, which denotes the class to which the input has been assigned. It is a series

of outputs, which should approximate the M posterior probabilities. As seen in (4), the

correct class number is determined by the maximum element in the discriminant vector.

The other discriminant values do not play a role in the final decision process of the MLP,

but give an approximation of the validity of the other classes. Based on this knowledge, it

is safe to assume that, for an MLP giving both positive and negative valued discriminants,

there is no likelihood that the negative valued outputs corresponds to valid, correct classes.

As mentioned in Error! Reference source not found., by implementing OR, the

iscriminants which earlier had negligible positive values are often assigned significantly

negative values. This helps eliminate those discriminant values which are not required and

these negatively valued outputs are, hence, equated to zero. This process gives us a new

discriminant vector d’1.

38

𝑑′1(𝑖) = {
𝑑1(𝑖), 𝑖𝑓 𝑑1(𝑖) ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (53)

This step takes care of all negative valued discriminants, thus helping us achieve

the lower bound of probability, i.e. 0, seen in (50). But this raises a problem, since the

outputs now consist of zeros and positively valued discriminants, the sum of the

discriminants, which was initially 1, now sum up to a much higher value, thus contradicting

the upper bound of probability, i.e. 1.

4.2 SoftMax

At this point, the discriminants, d’1, sum to a value greater than 1. As evident from

Figure 4-1, the positive discriminant values vary over a large range.

Figure 4-2 Plot of Pc v/s maximum discriminant values

39

From Figure 4-2, it is evident that the maximum value of the discriminant may take

numerous values and the probability of correct classification for a majority of these

maximum discriminant values is very high. A softmax operation is implemented to scale

these values [82] so that they sum to 1. The softmaxed discriminant vector S is described

as follows

𝑆(𝑖) =
𝑑′1(𝑖)

∑ 𝑑′1(𝑗)
𝑀
𝑗=1

 (54)

The elements of S now have values ranging between 0 and 1, as described in (50),

and the sum of the vector’s elements is now 1. Thus, a second criteria for the MLP output

discriminants to equate to posterior probabilities is now achieved. A new plot of Pc versus

the maximum softmax discriminant Smax in Figure 4-3 shows a smoother mapping, which

now exists within the bounds of 0 and 1.

40

Figure 4-3 Plot of Pc after softmax v/s maximum discriminant values

Despite the softmax operation, the discriminant values do not, yet approximate

posterior probabilities. As evident in Figure 4-3, numerous maximum discriminant values

of the vector S, have values in the mid-range of 0 to 1, but have higher actual posterior

probabilities, P (i|x). Ideally, if the MLP discriminants are posterior probabilities, the graph

should be perfectly linear with a one to one mapping between the true posterior

probabilities and Smax. Another detail of importance is that Pc is approximately 1 for the Smax

discriminant values between 0.69 and 0.92. This suggests that, given an appropriate non-

linear mapping technique, the discriminants may be mapped to the posterior probabilities

[81].

41

4.3 Proposed Mapping Scheme

The plot in Figure 4-3 shows that Pc versus Smax is not a straight line. A group of

discriminants, with values in the upper mid-range of 0 to 1 have very high probabilities,

while some discriminants with lower values also have sufficiently high probabilities of being

correct. Any mapping scheme which is proposed, must take into account the non-linearity

evident in Figure 4-3. The piecewise mapping proposed here uses a different mapping

scheme for Smax < St and for Smax ≥ St, where St is assumed to be 0.68.

The actual probabilities corresponding to Smax values greater than St lie between

Pmin = 0.98 and Pmax = 1. For the current application, this range is fixed at 0.98 to 1. The

corresponding discriminant values must hence, map to values within this range. This

mapping is performed by finding coefficients, a and b, which modify the value of the

discriminants, making them fall within the range Pmin to Pmax. The coefficients are calculated

by solving the equations

𝑃𝑚𝑖𝑛 = 𝑎 + (𝑆𝑡 ⋅ 𝑏) (55)

𝑃𝑚𝑎𝑥 = 𝑎 + (max (𝑆𝑚𝑎𝑥) ⋅ 𝑏) (56)

The term max(Smax) refers to the maximum observed value among the maximum

softmaxed discriminant values Smax for all patterns. The new maximum discriminant values

shall be referred to as d2max and for Smax less than St, the value is given by,

𝑑2𝑚𝑎𝑥 = 𝑎 + (𝑆𝑚𝑎𝑥 ⋅ 𝑏) (57)

This mapping scheme now yields values of d2max which lie within the range of Pmin

to Pmax, making the values approximate the posterior probabilities. Since this mapping

procedure attempts to map values in a specified range, it cannot be used to map the

discriminant values Smax which are lower than St. These discriminant values, however,

42

need to be mapped to values with Pmin being the highest allowable value. A simple mapping

for this region is proposed, where the square root of the value is multiplied by a constant,

c. Thus, the new maximum discriminant value for Smax < St is given by

𝑑2𝑚𝑎𝑥 = 𝑐 ⋅ √𝑆𝑚𝑎𝑥 ; 𝑐 =
𝑃𝑚𝑖𝑛

√𝑆𝑡
 (58)

This mapping scheme warps the Smax values so that the Pc versus d2max curve of

Figure 4-4 better approximates a straight line.

Figure 4-4 Plot of Pc v/s non-linearly mapped discriminant values

Between Figure 4-3 and Figure 4-4, the difference is evident. The new curve in

Figure 4-4 is much closer to being linear. Therefore the maximum discriminants

43

approximate posterior probabilities more accurately. The remaining discriminants d2(i)

which are less than d2max are accordingly adjusted to approximate the posterior

probabilities by multiplying the remaining discriminants with a factor c calculated as

𝑐 =
1 − 𝑑2𝑚𝑎𝑥

𝑑
; 𝑑 = ∑ 𝑆(𝑗)

𝑀

𝑗=1;
𝑗≠𝑖′𝑐

(59)

The adjusted discriminant vector d2 is given as

𝑑2(𝑖) = 𝑐 ⋅ 𝑆(𝑖); 𝑖 ≠ 𝑖′𝑐 (60)

This ensures that the sum of the discriminants in d2 is equal to 1, thus mapping all

discriminant values to the approximate posterior probabilities.

44

Chapter 5

Detecting Bad Inputs

The LPR character classifier is trained to correctly classify input feature vectors for

valid characters. However, there may be cases where the characters obtained after

segmentation are not valid, good characters. This may be caused by a non-robust license

plate segmentation software, or by certain license plate artefacts which fuse with the valid

characters and are not distinguishable, even to good plate segmentation software. Error!

eference source not found.Figure 5-1 shows some examples of bad characters caused

by faulty segmentation code.

Figure 5-1 Samples of Bad Characters

Since the classifier treats all input feature vectors as valid and tries to place them

into the correct class, it becomes necessary to detect and isolate these bad character

cases. This chapter proposes a method to use the discriminant outputs d1 of an MLP

classifier to detect such bad characters.

5.1 Effect of Bad Inputs on Output Discriminants

The output discriminants of an MLP classifier sum up to 1. When a feature vector

x from a valid, good character is input to the MLP, the discriminant vector d1 usually has

only one large element and all other values are small, as seen in Figure 5-2. If a feature

vector x, corresponding to a bad character is input to the classifier, the discriminant vector

d1 has multiple elements with values that are nearly the same magnitude, as seen in Figure

45

5-3, where two classes have very similar, high discriminant values and many other classes

have moderately high values, in sharp contrast to Figure 5-2. This behavior of the

discriminants can be exploited to detect probable bad characters in 0.

Figure 5-2 Plot of discriminants for a good character

Figure 5-3 Plot of discriminants for a bad character

46

5.2 Using Discriminant Variances to Detect Bad Inputs

5.2.1 Single Variance Method

As seen in 0, there is an obvious contrast in the behavior of the discriminants d1(i),

for good and bad characters. The proposed method exploits the differences in the variance

of the discriminant vector to detect bad characters. In the single variance method, the

variance of the discriminant vector excluding the maximum discriminant value d1m is

calculated as

𝑉1 =
1

𝑀 − 1
∑ (𝑑1(𝑖) − 𝐸(𝑑1𝑚))

2

𝑀

𝑖=1;𝑑1(𝑖)≠max (𝒅1)

 (61)

where E(d1m) is the expected value of the discriminant vector d1m excluding the maximum

discriminant value. Assuming each element of the discriminant vector d1m is equiprobable,

the expected value is given by

𝐸(𝑑1) =
1

𝑀 − 1
∑ 𝑑1(𝑖)

𝑀−1

𝑖=1;𝑖≠𝑖′𝑐

 (62)

If the value of the variance V1 is greater than a certain threshold T1, the character

is labeled as a bad character. To decide the thresholds for the single variance method, the

first step was to calculate the variance V1 (61) for all the bad characters. The lower and

upper bounds on the threshold T1 were the minimum and maximum observed thresholds

for the bad characters. For the current application, the performance of the algorithm has

been compared over a range of thresholds T1, starting from 0.07 up to 1.17 with increments

of 0.1. Table 2 shows the number of patterns each threshold removes, from the total of

8719 patterns of which 112 are bad characters.

47

The performance is measured on the basis of three main parameters, (i) the

number of misclassified characters which are not removed is shown in Figure 5-4; (ii) the

number of bad characters which are not removed is shown in Figure 5-5; (iii) the number

of good characters which are incorrectly detected as bad characters is shown in Figure

5-6. The overall error percentage is the performance measure of this method, compared

over the different thresholds and shown in Figure 5-7. From the results seen, a threshold

of 0.27 is an optimum threshold, since it identifies a majority of the misclassified characters

and the number of good characters it incorrectly identifies is relatively low.

Table 2 Number of Patterns removed and corresponding thresholds for Single Variance

Method

Threshold (T1) #Patterns Removed
(Good and Bad)

0.07 6283

0.17 1428

0.27 277

0.37 85

0.47 34

0.57 16

0.67 7

0.77 4

0.87 1

0.97 1

1.07 1

1.17 1

48

Figure 5-4 Plot of Number of Misclassified Characters (Not Removed) v/s threshold

Figure 5-5 Plot of Number of Bad Characters (Not Removed) v/s threshold

49

Figure 5-6 Plot of Number of Good Characters (Removed) v/s threshold

Figure 5-7 Plot of Pe v/s threshold for Single Variance method

5.2.1 Two Variance Method

A second proposed method is to take the variance of the discriminant vector twice

and take the ratio of the two variances. The first step is to take the variance, V1, of all the

50

discriminants at the output of the MLP, excluding the maximum discriminant, as seen in

(61). Next, the variance, V2, of all the discriminants are calculated, as seen in (63)

𝑉2 =
1

𝑀
∑(𝑑1(𝑖) − 𝐸(𝑑1))

2

𝑀

𝑖=1

 (63)

where the term E(d1) is the expected value of the complete discriminant vector d1 given as

𝐸(𝑑1) =
1

𝑀
∑𝑑1(𝑖)

𝑀

𝑖=1

 (64)

The ratio of V2 to V1 is calculated for the discriminant vector, d1, for every input of

the classifier and a character is considered bad if this ratio is greater than a particular

threshold T2. The variances V1 and V2 (61) and (63), respectively, are calculated and their

ratio is observed. The lower and upper bounds for the threshold T2 are the minimum and

maximum observed ratios for the bad characters. For the purposes of this application, a

performance comparison is shown for thresholds, having values 0.4, 0.5, 0.6, 0.7, 0.8 and

0.9. As in section Error! Reference source not found., the performance is measured on

he basis of three main parameters, (i) the number of misclassified characters which are not

removed in Figure 5-8; (ii) the number of bad characters which are not removed in Figure

5-9; (iii) the number of good characters which are incorrectly detected as bad characters

in Figure 5-10. The overall error percentage for this method is shown in Figure 5-11. Table

3 shows the number of patterns each threshold removes, from the total of 8719 patterns,

of which 112 are bad characters. From the observed results, a threshold of 0.8 is optimal

since it detects a majority of the misclassified and bad characters. The number of good

characters it removes is only marginally higher than the higher thresholds.

51

Table 3 Number of Patterns removed and corresponding thresholds for Two Variance

Method

Threshold (T2) #Patterns Removed (Good
and Bad)

0.4 6023

0.5 3902

0.6 2104

0.7 851

0.8 272

0.9 44

Figure 5-8 Plot of # Misclassified Characters (Not Removed) v/s threshold

52

Figure 5-9 Plot of # Bad Characters (Not Removed) v/s threshold

Figure 5-10 Plot of #Good Characters (Removed) v/s threshold

53

Figure 5-11 Plot of Pe v/s threshold for the two variance method

54

5.3 Comparison of Results

Table 4 Thresholds and Error Percentages for Single Variance Method

Threshold (T1) Error Percentage

0.07 70.78%

0.17 16.14%

0.27 4.35%

0.37 3.10%

0.47 3.07%

0.57 3.26%

0.67 3.38%

0.77 3.38%

0.87 3.45%

0.97 3.45%

1.07 3.45%

1.17 3.45%

Table 5 Thresholds and Error Percentages for Two Variance Method

Threshold (T2) Error Percentage

0.4 67.79%

0.5 43.51%

0.6 23.07%

0.7 8.98%

0.8 3.26%

0.9 3.03%

The error percentages for the different thresholds used in both the single variance

case and the two variance case are shown in Table 4 and Error! Reference source not

found. respectively. For the single variance case, the threshold values 0.27 and greater

give the lowest error percentages, while for the two variance case, threshold values 0.8

and greater give low error percentages. However, if we take a look at Table 2, it is evident

that the number of patterns actually detected by the algorithm is lower than those seen in

Table 3. This implies that the two variance method, with a threshold of 0.8, is better at

detecting the bad characters as compared to the single variance method with a threshold

55

of 0.37. The number of characters detected by the single variance method seen in Table 2

is far lower, compared to that of the two variance method, as seen in Table 3. Hence,

despite the similar low error percentages, the two variance method is better in terms of

practical usability than the single variance method, since the number of bad patterns

detected by the latter is greater than the former.

56

Chapter 6

Detection and Correction of Bad Inputs

Here we assume that all training and validation images are undamaged. The input

vector is usually sufficient to classify a character image correctly. However, there are

characters which look remarkably similar to each other. It is common to see a classifier

misclassify these images. The final output decision of the MLP is based on the class with

the maximum discriminant value. It is, however, possible to detect confused images by

comparing the maximum discriminant values to the others. This chapter details a method

to identify such misclassifications and rectify them.

6.1 The Confusion Matrix

As mentioned earlier, a character may be confused with a small number of other

characters. This behavior is displayed using a confusion matrix [11], which is a detailed

report of the performance [83] of the MLP classifier. The row numbers denote the correct

class number for a given input vector and the column numbers denoted the predicted class

number. During the validation stage, we have information of the correct and predicted

classes for each input vector. By running a comparison of these two pieces of information,

it is possible to generate a confusion matrix. For a set of validation patterns, the confusion

matrix gives the number of times a character was classified correctly and the number of

times it was incorrectly classified. It also gives the incorrect classes the input vector was

assigned to.

57

Table 6 Confusion matrix for characters ‘4’; ‘6’; ‘A’; ‘W’; ‘X’

6.2 Detecting a Confusion between Multiple Classes

Examining the confusion matrix shown in Table 6, it is possible to identify the

classes which may be confused. For example, ‘6’ is clearly being confused with ‘5’ and ‘G’.

Also, ‘W’ is being confused with ‘N’.

To detect the possibility of a confusion, the first step is to find the discriminant

vectors for the classes that are most likely to be confused. For a correctly classified

character, the discriminants for the other classes should, ideally, be much lower than the

maximum discriminant. However, for inputs where the classifier has difficulty correctly

classifying the input character’s feature vector, it will give a higher discriminant value for at

least one of the other possible classes. From the discriminant vector d1, the discriminant

values corresponding to the classes which the estimated class is confused with are saved

to a vector d1t. For a threshold T3, if any of the discriminant values are greater than or equal

to the product of T3 and the maximum discriminant value, as seen in (65), the input vector

is termed as a confused input and is put through further processing, discussed in section

0. x is a confused input vector if

𝑇3 ≤
𝑑1𝑡(𝑖)

𝑑1𝑚𝑎𝑥
< 1, 𝑓𝑜𝑟 𝑎𝑛𝑦 ′𝑖′ (65)

The threshold T3 is varied between 0.2 and 0.9 for the purpose of detecting the

confused characters. It is assumed that for a confused case, there will be at least one

58

discriminant value in d1’ with a value which is some fraction of the maximum discriminant

value. However, threshold values lower than 0.2 detect nearly all correct patterns and label

them as confused patterns and hence, these lower thresholds have been ignored.

This assumption has been tested out for different threshold values and the

performance of this algorithm is based on the number of confused patterns detected by

each threshold and the number of correct patterns detected by the thresholds, as shown

in Table 7. The data set contains 8607 patterns with 56 patterns being the confusion cases.

Table 7 Performance comparison for different thresholds

Threshold (T3) Number of
Confused Patterns

Detected

Number of
Correct Patterns

Detected
(False Positives)

0.2 42 1978

0.3 40 1211

0.4 36 713

0.5 34 352

0.6 31 138

0.7 30 56

0.8 23 19

0.9 11 8

6.3 Reclassifying Probable Misclassifications

One of the reasons for a misclassification is the large number of output classes in

the original classifier. By reducing the number of output classes the network must train for,

the accuracy of the network increases. The proposed solution for the case of confused

characters involves the use of a second classifier, to reclassify the input feature vector. A

cascaded classifier has been used in applications to detect pedestrians at road crossings

[84]. In this case, the first classifier is a statistical learning classifier, to detect approximate

ROIs and the second classifier is an SVM, used to locate pedestrians. Cascaded classifiers

59

have also been used in OCR systems [85], where principal component analysis is used to

detect possible misclassifications, which are then reclassified using a second classifier.

For this thesis, the second classifier is also an MLP classifier and this second

classifier is trained with only those classes which a particular class may be confused with.

The classifier is trained on the same feature set as the primary classifier. As a result, the

same input vector x is now put through a classifier with a significantly reduced number of

classes, which improves its performance. If any of the characters classified correctly in the

first classifier are passed to this stage, the characters are simply reclassified into the same

correct class. This is because, by reducing the number of output classes, we are not

adversely affecting the performance of the classifier for the correctly classified characters.

For illustrative purposes, a performance comparison is given for the group of

possible confused characters, ‘4’, ‘6’, ‘A’, ‘W’ and ‘X’. The comparison in performances for

this collective group is presented in Table 8 and the corresponding error percentages are

presented in Table 9 .

Table 8 Performance comparison for a group of confused characters in both stages

Character Group Number of
Misclassifications

(M = 36)

Number of
Misclassifications

(M = 5)

‘4’; ‘6’; ‘A’; ‘W’; ‘X’ 19 3

Table 9 Comparison of Error Percentage for each individual stage

Character Group Percentage Error (Single
Classifier System)

Percentage Error (Two
Classifier System)

‘4’; ‘6’; ‘A’; ‘W’; ‘X’ 1.534% 0.242%

60

6.4 Discussion

From Table 8, we see that the second classifier drastically reduces the number of

misclassifications due to confusion. This is because the second MLP deals with a fewer

classes and hence, the weights are more optimized to classify these particular sets of

inputs. Any correct characters which are put through this second classifier are also

correctly classified, since the accuracy of the MLP does not decrease when the number of

output classes is reduced. Hence, the overall effect of such a two classifier system is

positive, since it greatly reduces the error percentage of the system. As seen in Table 9,

the error percentage for the given cluster of characters, in a single classifier system is

1.534%, whereas, after the implementation of the proposed confusion detection algorithm,

the error percentage drops to 0.242%.

From Table 7, it is evident that a threshold values of 0.7 and greater give an

optimum results. They detect fewer confused characters than the thresholds lower than

0.7, but the number of correct characters labeled as confused and passed on to the second

classifier is also lower in the thresholds greater than 0.7 and this is the major performance

metric to be considered here. Although the thresholds lower than 0.7 detect more confused

characters, they also detect large numbers of correct characters too. As a result of this, the

number of characters which must be processed by the second classifier increases

drastically. This will adversely impact the overall speed of a practical LPR system. Hence,

the optimum threshold is 0.7.

61

Chapter 7

Conclusions and Future-Work

The methods to detect bad characters and confused characters; and the

remapping scheme to approximate MLP outputs to Bayes posterior probabilities, proposed

in this thesis have been validated using the application of license plate character

recognition. But these concepts are not limited to a single application. Since the proposed

methods are implemented solely on the discriminant outputs, they should work for many

additional applications.

The non-linear remapping of the outputs is not a perfect algorithm, since the

resultant plot is not an ideal straight line with a one-to-one mapping with the true

probabilities. However, it is a good approximation of the probabilities for the current LPR

application. Given a different application with a different set of input feature vectors, a more

linear graph may be achieved.

The detection of bad characters using discriminant variances is a method whose

robustness depends on the type of segmentation error generated by the preprocessing

steps. For cases where an improper segmentation results in a shape resembling a

character ‘D’, while the actual character on the license plate was a ‘P’, the algorithm may

not detect the character as a bad one, simply because, the incorrect segmentation ends

up producing a character that is valid in all aspects. Thus, there are certain limitations to

the detection of bad characters which must still be explored in detail.

The method for detecting confused characters can be improved by increasing the

number of patterns used for validation, effectively increasing the data contained in the

confusion matrix. The two classifier system greatly improves the accuracy of the overall

system, since it is trained to handle a smaller number of output classes. But if the classifier

encounters a character which it confuses with a character not seen in the confusion matrix,

62

the misclassification may not be caught by the proposed algorithm, since the discriminant

value corresponding to the estimated class will not be checked. A method to detect such

cases must also be explored.

63

References

[1] A. K. Jain, R. P. W. Duin and J. Mao, ""Statistical Pattern Recognition: A Review","

IEEE Transactions on Pattern Analysis and Machine Intelligenct, vol. 1, no. 22, pp.

4-37, 2000.

[2] R. O. Duda, P. E. Hart and D. G. Stork, ""Pattern Recognition Systems"," in Pattern

Classification, John Wiley & Sons, 2002, pp. 9-19.

[3] A. Colmenarez, B. Frey and T. S. Huang, ""Detection and Tracking of Faces and

Facial Features"," in International Conference on Image Processing, 1999.

[4] P. Mountney, D. Stoyanov and G.-Z. Yang, ""Three-Dimensional Tissue Deformation

Recovery and Tracking: Introducing Techniques based on Laproscopic or

Endoscopic Images"," IEEE Signal Procesing Magazine, vol. 7, pp. 14-24, July 2010.

[5] L. Mihaylova, P. Brasnett, N. Canagarajah and D. Bull, ""Object Tracking by Particle

Filtering Techniques in Video Sequences"," Advances and Challenges in

Multisensor Data and Information Processing, vol. 8, pp. 260-268, 2007.

[6] G. J. Brostow, J. Shotton, J. Fauqueur and R. Cipolla, ""Segmentation and

Recognition Using Structure from Motion Point Clouds"," Computer Vision-ECCV

2008, vol. 5302, pp. 44-57, 2008.

[7] L. Wang, S. Ma, H. Xue and Z. Hou, ""An Improved SIFT Algorithm for Feature Points

Matching of Dairy Cow Images"," in World Automation Congress (WAC), 2010, 2010.

[8] J. Moonrinta, S. Chaivivatrakul, M. N. Dailey and M. Ekpanyapong, ""Fruit Detection,

Tracking, and 3D Reconstruction for Crop Mapping and Yield Estimation"," in 11th

International Conference on Control Automation Robotics & Vision (ICARCV),

Singapore, 2010.

64

[9] N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas and M. Strintzis,

""ECG Pattern Recognition and Classification using Non-Linear Transformations and

Neural Networks: A Review"," International Journal of Medical Informatics, vol. 52,

no. 1, pp. 191-208, 1998.

[10] B. C. Subhash, S. Bagui, K. Pal and N. R. Pal, ""Breast Cancer Detection using Rank

Nearest Neighbor Clasification Rules"," Pattern Recognition, vol. 36, no. 1, pp. 25-

34, 2003.

[11] A. S. Godbole, ""Silicon Defect Recognition"," 2013.

[12] A. S. Dehdashti, J. R. Tudor and M. C. Smith, ""Forecasting of Hourly Load by

Pattern Recognition: A Deterministic Approach"," IEEE Transactions on Power

Apparatus and Systems, pp. 3290-3294, 1982.

[13] A. Singh, A. Sangwan and J. H. Hansen, ""Improved Parcel Sorting by Combining

Automatic Speech and Character Recognition"," in IEEE International Conference

on Emerging Signal Processing Applications (ESPA), 2012.

[14] A. K. S. Alvaro, R. L. D. Dela Cruz, D. M. T. Fonseca and M. J. C. Samonte, ""Basic

Handwriting Instructor For Kids Using OCR as an Evaluator"," in International

Conference on Networking and Information Technology, 2010.

[15] K. Yamaguchi, Y. Nagaya, K. Ueda, H. Nemoto and M. Nakagawa, ""A Method for

Identifying Specific Vehicles using Template Matching"," in IEEE/IEEj/JSAI

International Conference on Intelligent Transportation Systems, 1999, 1999.

[16] P. Davies, N. Emmott and N. Ayland, ""License Plate Recognition Technology for

Toll Violation Enforcement"," in IEE Colloquium on Image Analysis for Transport

Applications, 1990.

65

[17] T. Sirthinaphong and K. Chamnongthai, ""The Recognition of Car License Plate for

Automatic Parking System"," in Proceedings of the Fifth International Symposium on

Signal Processing and its Applications, 1999.

[18] T. Yushuang, K.-H. Yap and Y. He, ""High Resolution Vehicle License Plate

Reconstruction using Soft Recognition Learning"," in 8th International Conference

on Information, Communications and Signal Processing (ICICS), 2011.

[19] H.-J. Lee, S.-Y. Chen and S.-Z. Wang, ""Extraction and Recognition of License

Plates of Motorcycles and Vehicles on Highways"," in Proceedings of the 17th

International Conference on Pattern Recognition, 2004, 2004.

[20] S. Theodoridis and K. Koutroumbas, "Pattern Recognition", Fourth ed., Academic

Press, 2009.

[21] L.-G. Durand, P. D. Stein, M.-C. Grenier, J. Henry, R. Inderbitzen and D. W. Weiting,

""In Vitro and In Vivo Low Frequency Acoustic Analysis of Bjork-Shiley Convexo-

Concave Heart Valve Opening Sounds"," in IEEE Seventh Symposium on

Computer-Based Medical Systems, 1994, 1994.

[22] F. You, Y. Shi and P. Engler, ""Fingerprint Pattern Recognition for Medical Uses- A

Frequency Domain Approach"," in IEEE Nineteenth Annual Northeast

Bioengineering Conference, 1993.

[23] W.-Y. Ma and B. Manjunath, ""A Comparison of Wavelet Transform Features for

Texture Image Annotation"," in International Conference on Image Processing,

1995.

[24] X. Wang, X. Ding and C. Liu, ""Gabor Filters-Based Feature Extraction Methods for

Character Recognition"," in Pattern Recognition, 2005.

66

[25] R. Feris, M. Turk, R. Raskar, K.-H. Tan and G. Ohashi, ""Recognition of Isolated

Fingerspelling Gestures using Depth Edges"," Real-Time Vision for Human-

Computer Interaction, pp. 43-56, 2005.

[26] A. S. Ghotkar, R. Khatal, S. Khupase, S. Asati and M. Hadap, ""Hand Gesture

Recognition for Indian Sign Language"," in 2012 International Conference on

Computer Communication and Informatics (ICCCI), 2012.

[27] R. Bailey and M. Srinath, ""Orthogonal Moment Features for Use With Parametric

and Non-Parametric Classifiers"," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 18, no. 4, pp. 389-299, 1996.

[28] G. Chetty and M. Lipton, ""Multimodal Feature Fusion for Video Forgery Detection","

in 13th Conference on Information Fusion (FUSION), 2010.

[29] S. Marsland, in Machine Learning: An Algorithmic Perspective, CRC Press, 2011,

pp. 6-7.

[30] J. Laaksonen and E. Oja, ""Classification with Learning k-Nearest Neighbors"," in

IEEE International Conference on Neural Networks, 1996.

[31] E. Bax, ""Validation of Nearest Neighbor CLassifiers"," IEEE Transactions on

Information Theory, vol. 46, no. 7, pp. 2746-2752, 2000.

[32] L. Jiang, H. Zhang and J. Su, ""Learning k-Nearest Neighbor Naive Bayes For

Ranking"," in Advanced Data Mining and Applications, Springer Berlin Heidelberg,

2005, pp. 175-185.

[33] A. F. M. Hani, H. A. Nugroho and H. Nugroho, ""Gaussian Bayes Classifier for

Medical Diagnosis and Grading: Application to Diabetic Retinopathy"," in IEEE

EMBS Conference on Biomedical Engineering and Sciences(IECBES), 2010.

67

[34] L. Zhang and Y.-G. Xi, ""An Improved Multi-Class Algorithm for SVMs"," in

Proceedings of 2004 International Conference on Machine Learning and

Cybernetics, 2004, 2004.

[35] S. Haykin, "Neural Networks and Learning Machines", 3, Ed., Pearson Education,

pp. 197-198.

[36] K. Hara and K. Nakayama, ""Comparison of Activation Functions in Multilayer Neural

Network for Pattern Classification"," in IEEE World Congress on Computational

Intelligence, 1994.

[37] J. Li and S. Sun, ""Nonlinear Combination of Multiple Kernels for Support Vector

Machines"," in 20th International Conference on Pattern Recognition (ICPR), 2010.

[38] M. D. Richard and R. P. Lippmann, ""Neural Network Classifiers Estimate Bayesian

A Posteriori Probabilities"," Neural Computation, vol. 3, no. 4, pp. 461-483, 1991.

[39] H. Rakha, B. Katz and A. Al-Kaisy, ""Field Evaluation of Weigh-In Motion Screening

on Truck Weigh Station Operations"," in IEEE Intelligent Vehicles Symposium, 2003,

2003.

[40] H. Haiqi, M. Gu and H. Chao, ""An Efficient Method of License Plate Location in

Natural-Scene Image"," in Fifth International Conference on Fuzzy Systems and

Knowledge Discovery, 2008.

[41] D. Desrochers, Z. Qu and A. Saendeejing, ""OCR Readability Study and Algorithms

for Testing Partially Damaged Characters"," in International Symposium on

Intelligent Multimedia, Video and Speech Processing, 2001.

[42] M. D. Garris and C. L. Wilson, ""A Neural Approach to Concurrent Character

Segmentation and Recognition"," in Southcon Conference Record, 1992.

68

[43] J. B. Broadwater and R. Chellappa, ""Adaptive Threshold Estimation via Extreme

Value Theory"," IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 490-

500, 2010.

[44] S. Chen and S. A. Billings, ""Neural Networks for Non-Linear Dynamic System

Modelling and Identification"," in Advances in Intelligent Control, London, UK, Taylor

and Francis, 1991, pp. 319-346.

[45] M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic and S. Rajan, ""Comparison of

Feed-Forward Neural Network Training Algorithms for Oscillometric Blood Pressure

Estimation"," in $th International Workshop on Soft Computing Applications, Arad,

Romania, 2010.

[46] R. Hecht-Nielsen, ""Theory of the Backpropagation Neural Network"," in

International Joint Conference on Neural Networks, 1989.

[47] N. M. Nawi, R. S. Ranshing and M. R. Ransing, ""An Improved Conjugate Gradient

Based Learning Algorithm for Back Propagation Neural Networks"," International

Journal of Computational Intelligence, vol. 4, no. 1, pp. 46-55, 2007.

[48] H. Yu and B. Wilamowski, ""Neural Network Training with Second Order

Algorithms"," in Human-Computer Systems Interaction: Backgrounds and

Applications 2, 2012, pp. 463-476.

[49] M. T. Hagan and M. B. Mohammad, ""Training Feedforward Networks with the

Marquardt Algorithm"," IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-

993, 1994.

[50] M. D. Robinson and M. T. Manry, ""Two-Stage Second Order Training in

Feedforward Neural Networks"," in The Twenty-Sixth International FLAIRS

Conference, 2013.

69

[51] K. Tyagi, ""Second Order Training Algorithms for Radial Basis Function Neural

Network"," 2011.

[52] M. I. A. Lourakis, ""A Brief Description of the Levenberg-Marquardt Algorithm

Implemented by levmar"," institute of Computer Science-Foundation for Research

and Technology, 2005.

[53] J. Li, M. T. Manry, L.-M. Liu, C. Yu and J. Wei, ""Iterative Improvement of Neural

Classifiers"," in FLAIRS, 2004.

[54] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley and B. W. Suter, ""The Multilayer

Perceptron as an Approximation to a Bayes Optimal Discriminant Function"," IEEE

Transactions on Neural Networks, vol. 1, no. 4, pp. 296-298, 1990.

[55] A. A. Abdurrab, M. T. Manry, J. Li, S. S. Malalur and R. G. Gore, ""A Piecewise

Linear Network Classifier"," in International Joint Conference on Neural Networks,

2007.

[56] Y. Abu-Mostafa and J. St. Jacques, ""Information Capacity of the Hopfield Model","

IEEE Transcations of Information Theory, vol. 31, no. 4, pp. 461-464, 1985.

[57] P. L. Narasimha, M. T. Manry and F. Maldonado, ""Upper Bound on Pattern Storage

in Feedforward Networks"," Neurocomputing, vol. 71, no. 16, pp. 3612-3616, 2008.

[58] S. A. Cannas, D. Stariolo and F. A. Tamarit, ""Learning Dynamics of Simple

Perceptrons with Non-Extensive Cost Functions"," Network: Computation in Neural

Systems, vol. 7, no. 1, pp. 141-149, 1996.

[59] C. Mazza, ""On the Storage Capacity of Non-Linear Neural Networks"," Neural

Networks, vol. 10, no. 4, pp. 593-597, 1997.

70

[60] K. Hornik, ""Approximation Capabilities of Multilayer Feedforward Networks","

Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.

[61] D. H. Wolpert and W. G. Macready, ""No Free Lunch Theorems for Optimization","

IEEE Transcations on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997.

[62] D. H. Wolpert and W. G. Macready, ""No Free Lunch Theorems for Search"," 1995.

[63] P. Domingos, ""A Few Useful Things to Know about Machine Learning","

Communications of the ACM, vol. 55, no. 10, pp. 78-87, 2012.

[64] D. H. Wolpert, ""The Lack of A Priori Distinctions Between Learning Applications","

Neural Computation, vol. 8, no. 7, pp. 1341-1390, 1996.

[65] T. Hastie, R. Tibshirani and J. Friedman, "The Elements of Statistical Learning",

Springer.

[66] F. Faradji, A. H. Rezaie and M. Ziaratban, ""A Morphological- Based License Plate

Location"," in IEEE International Conference on Image Processing, 2007.

[67] E. Haneda and C. A. Bouman, ""Text Segmentation for MRC Document

Compression"," IEEE Transactions on Image Processing, vol. 20, no. 6, pp. 1161-

1626, 2011.

[68] O. Due Trier, A. K. Jain and T. Taxt, ""Feature Extraction Methods for Character

Segmentation and Recognition," 1996.

[69] T. D. Duan, D. A. Duc and T. L. H. Du, ""Combining Hough Transform and Contour

Algorithm for Detecting Vehicles' License-Plates"," International Symposium on

Intelligent Multimedia, Video and Speech Processing, 2004.

71

[70] S. Lyu and E. P. Simoncelli, ""Nonlinear Image Representation using Divisive

Normalization"," in IEEE Conference on Computer Vision and Pattern Recognition,

2008.

[71] W.-S. Kim and R.-H. Park, ""Color Image Palette Construction Based on the HSI

Color System for Minimizing the Reconstruction Error"," in Internationl Conference

on Image Processing, 1990.

[72] P. Viola and M. Jones, ""Robust Real-Time Object Detection"," International Journal

of Computer Vision", vol. 4, 2001.

[73] W. Dingyun, Z. Lihong and L. Yingbo, ""A new algorithm for license plate recognition

based on improved edge detection and Mathematical morphology"," 2nd

International Conference on Information Science and Engineering, 2010.

[74] S. Ozbay and E. Ercelebi, ""Automatic Vehicle Identification by Plate Recognition","

World Academy of Science, Engineering and Technology, vol. 9, no. 41, pp. 222-

225, 2005.

[75] Z. Jeffery, R. Soodamani and N. Bekooy, ""Real-Time DSP-Based License Plate

Character Segmentation Algorithm using 2D Haar Wavelet Transform"," Advances

in Wavelet THeory and Their Applications in Engineering, Physics and Technology,

pp. 953-979, 2012.

[76] F. Kahraman, B. Kurt and M. Gokmen, ""License Plate Character Segmentation

based on the Gabor Transform and Vector Quantization"," Computer and

Information Sciences-!SCIS 2003, pp. 381-388, 2003.

[77] B. Shan, ""License Plate Character Segmentation and Recognition based on RBF

Neural Network"," in Second International Workshop on Education Technology and

Computer Science (ETCS), 2010, 2010.

72

[78] J. G. Daugman, ""Uncertainty Relation for Resolution in Space, Spatial Frequency

and Oientation Optimized by Two-Dimensional Visual Cortical Filters"," Optics and

Image Science, vol. 2, no. 7, pp. 1160-1169, 1985.

[79] R. C. Gonzalez and R. E. Woods, "Digital Image Processing: Third Edition", Prentice

Hall, 2008.

[80] Y. Tao, V. Muthukkumarasamy, B. Verma and M. Blumenstein, ""A Texture

Extraction Technique using 2D-DFT and Hamming Distance"," in Fifth International

Conference on Computational Intelligence and Multimedia Applications, 2003.

[81] T. Kurita, H. Asoh and N. Otsu, ""Nonlinear Discriminant Features Constructed by

Using Outputs of Multilayer Perceptron"," in 1994 International Symposium on

SPeech, Image Processing and Neural Networks, Hong Kong, 1994.

[82] C. Cadieu, M. Kouh, A. Pasupathy, C. E. Connor, M. Riesenhuber and T. Poggio,

""A Model of V4 Shape Selectivity and Invariance"," Journal of Neurophysiology, vol.

98, no. 3, pp. 1733-1750, 2007.

[83] L. Chen and H. Tang, ""Improved Computation of Beliefs based on Confusion Matrix

for Combining Multiple Classifiers"," Electronics Letters, vol. 40, no. 4, pp. 238-239,

2004.

[84] Y. W. Xu, X. B. Cao, H. Qiao and R. Y. Wang, ""A Cascaded Classifier for Pedestrian

Detection"," in Intelligent Vehicles Symposium, 2006 IEEE, 2006.

[85] J. Duong and H. Emptoz, ""Cascade Classifier: Design and Application to Digit

Recognition"," in Eighth International Conference on Document Analysis and

Recognition, 2005.

73

Biographical Information

Soumitro Auddy was born in Lucknow, Uttar Pradesh, India, in 1990. He completed

his schooling in the Utpal Sanghvi School, Mumbai, Maharashtra, India. He pursued his

Bachelor of Engineering degree in Electronics Engineering in the Mumbai University, India,

and received his degree in 2011. He began his Masters in Electrical Engineering at the

University of Texas at Arlington, USA, in 2011. He is currently pursuing his Master’s thesis

in the IPNNL at UTA. In the summe;r of 2013, he interned at Microsoft Corp. During his

internship, he developed methods to detect screen defects caused by various

manufacturing processes on different devices. After graduating, he will join Microsoft Corp.

as a full time Hardware SDE.

