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Abstract 

DISCRIMINANT PROCESSING IN 

MULTI-CLASS PATTERN RECOGNITION  

SYSTEMS 

 

Soumitro Swapan Auddy, M.S. 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Michael Manry 

Multi-Layer Perceptron neural network classifiers face problems when applications 

have numerous output classes. A major problem is the fact that the MLP discriminant 

values given by the MLP differ considerably from the posterior probabilities of the Bayes 

decision rule. A non-linear mapping technique is developed in this thesis, which warps the 

neural network outputs into posterior probabilities. A second problem is that when the 

neural network is given inputs for classes it is not trained to handle, the output discriminant 

values become very noisy, as compared to the values seen for correct inputs. Variance 

based methods are investigated for detecting unanticipated classes. A method is 

developed for detecting cases where a class is confused with another. In this case, a follow 

on chapter helps clear up the confusion.  
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Chapter 1  

Introduction 

1.1 Basics of Pattern Recognition 

A standard image contains vast amounts of information, most of which, is 

redundant for applications in object detection, machine vision, etc. This redundancy 

creates a need for an efficient way to extract crucial information from an image, while 

discarding the redundant information. This method is called Pattern Recognition. Pattern 

recognition is defined as “the automatic recognition, description, classification, and 

grouping of patterns” by Jain et al. [1]. In essence, it is a process of distinguishing between 

images of two or more classes, using the information unique to all images within a particular 

class, from the images belonging to a different class [2]. 

Numerous computer vision applications rely on the correctness of the pattern 

recognition engine for accurate identification, tracking, etc. of objects. Pattern recognition 

is used in face tracking [3] for selective photography used in digital cameras. Video tracking 

is the process of locating a moving object, found in applications like medical imaging [4], 

video editing [5], etc. Patterns found in 3D point clouds are used for motion tracking and 

gesture recognition [6]. Features like SIFT [7] and SURF [8] are used for reconstruction of 

3D environments using 2D images, obtained from standard cameras. Pattern recognition 

is used in the field of health care, to detect cardiovascular problems such as atrial 

fibrillation, isochemic beats, etc. by analyzing ECG signals [9] and to analyze 

mammograms to find micro calcifications, an indicator to possible breast cancer [10]. IC 

fabrication techniques often lead to defects on the silicon surface [11], and the processing 

steps to remedy each defect are different, making the classification of the defects essential. 

Feature extraction and pattern recognition techniques are used extensively for this purpose 

[11]. Given a sufficient amount of training data, it is possible to use pattern recognition to 
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predict annual weather patterns accurately [12], to determine the daily electrical load 

patterns. Optical character recognition (OCR) is of particular interest, due to the numerous 

approaches available to the implementer.  

OCR systems are used in parcel and mail sorting facilities [13], to read the 

addresses, delivery priorities, etc. electronically and sort them accordingly. OCR systems 

are now used as teaching aids in schools [14], where students trace characters using a 

stylus, with the objective of improving their handwriting skills. OCR is also used in license 

plate recognition (LPR) systems for speed cameras [15], toll roads [16], parking lots [17], 

etc. Some methods attempt to reconstruct the license plate image [18], while others simply 

find the location of the license plate [19] and use various methods to recognize each 

character. 

1.2 Feature Extraction 

One of the first steps in pattern recognition, for all applications, is feature extraction 

which can be defined as the process of generating features which can be used as inputs 

to a classifier, which can then be used to classify the image into one of several possible 

classes [20]. Feature extraction focuses on the unique properties of an image and extracts 

the relevant information from the same. Different feature types focus on different aspects 

of the data, to extract features based on unique properties. 

Some methods use transforms such as the Fourier transforms to concentrate on 

the unique frequency components of the data at different frequency ranges [21]. Other 

frequency based features attempt to classify information of shapes, such as those seen in 

fingerprints, etc., for classification purposes [22]. Wavelet transform based feature sets 

[23], including Gabor filters [24], have been used for applications with large image 

databases. Some methods use the edge information of images to detect patterns such as 

finger gestures [25]. Features such as SIFT and SURF features may also be used for 
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gesture recognition [26], 3D reconstruction [8] of environments using 2D images, etc. 

Features like geometric moment features [27] are used due to their properties of scale and 

rotation invariance. Feature extraction is also used for detection of tampering in video 

footage, such as that from security cameras, by combining feature extraction and feature 

fusion techniques [28]. 

1.3 Classification 

Pattern recognition systems can be classified as to the type of learning algorithms 

implemented, like supervised learning, unsupervised learning, reinforcement learning and 

evolutionary learning [29]. Recognition is also dependent on the type of classifier used, i.e. 

two class classifiers or multi-class classifiers, etc. 

The most basic working principal of a classifier comes from the Bayes decision 

rule. It assigns posterior probabilities to each possible output class, and the class with the 

maximum probability is accepted as the correct class, while all other classes are rejected 

[2]. This approach, however, is not robust, as it does not accommodate for noisy estimates 

of the posterior densities. As a result, a Bayes classifier is a theoretical concept, which is 

never used for practical applications. There are, however, other classification structures, 

which are more easily implemented and which approximate the Bayes classifier arbitrarily 

well. 

A k-means Nearest Neighbor classifier (k-NNC) is a simple, yet efficient machine 

learning algorithm, used for many practical applications [30]. In a nearest neighbor 

classifier, in order to classify an unknown input vector, its nearest neighbors are found from 

a sample vector field. The unknown input vector is assigned the class number to which a 

majority of the neighboring sample vectors belong [31]. It has been shown that the k-

Nearest Neighbor classifier approaches the Bayes classifier’s performance as the number 
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of sample vectors approaches infinity [32]. When there are many sample vectors, however, 

this is a computationally taxing method of classification. 

A Bayes-Gaussian classifier is a standard Bayes classifier, where the input vectors 

have a Gaussian distribution. The classifier calculates the posterior probabilities of the 

output classes and the highest probability is assumed to indicate the correct class. This 

classifier potentially has a lower implementation time than a nearest neighbor classifier, as 

it has only one mean vector per output class. The final decision is also independent of 

missing input values, as these values are ignored while the posterior probabilities are being 

computed, thus making the Gaussian-Bayes classifier highly robust [33]. One problem with 

this classifier occurs if some input features are linearly dependent on others for a given 

class. In this case, the required inverse covariance matrix for that class cannot be 

calculated. A second, more serious problem is that most applications do not generate 

Gaussian feature vectors. 

A support vector machine (SVM) is a two class classifier, where the classification 

is performed by separating data by a hyperplane [34]. The goal of SVM training is to find 

the hyperplane with the largest margin. The generalization of the classifier is directly 

proportional to its margin size [2]. 
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Figure 1-1 Support Vector Machine hyperplane 

One advantage of an SVM is the fact that its training is not adversely affected if 

the number of training patterns for one class is far greater than those of another class. For 

applications with multiple output classes, multi-class SVMs may be used, but they 

commonly suffer from combinatorial explosion. Also, given a simple statistical model for 

testing input vectors in terms of the given training vectors, it can be shown that SVMs 

reduce the probability of classification error and therefore, may approximate Bayes 

classifiers [34]. 

Neural network classifiers are based on either the multilayer perceptron (MLP) 

structure, or, the radial basis function structure. The structure consists of multiple layers, 

i.e. an input layer, an output layer and one or more hidden layers [35]. The layers are 

connected to each other using matrices of weights or coefficients. An MLP based neural 

network is a non-linear approximator which uses non-linear activation functions in the 

hidden layers [36]. As opposed to a Bayes-Gaussian classifier, the performance of a neural 

network is not adversely affected by the presence of linearly dependent input vectors [2]. 

Neural networks are naturally multiclass classifiers, making them more flexible than two 

class classifiers like the SVM [37]. The neural network outputs approximate the posterior 
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probabilities of each output class [2] [38], and thus neural networks approximate Bayes 

discriminants. 

 
1.4 License Plate Recognition 

License plate recognition systems are typically multistage systems, with each 

successive stage is dependent on the previous one, akin to an instruction pipeline. Broadly, 

the stages are divided as (i) Plate Finding; (ii) Plate Segmentation; (iii) Character 

Recognition, as shown in Figure 1-2. Each of these stages is further divided into multiple 

steps and depending on the resources available, multiple algorithms can be used to 

perform the same tasks.  

 

Figure 1-2 Multi-stage License Plate Recognition System 

 
License plate recognition systems are seen in applications such as toll road 

cameras [19], parking lot monitoring systems [17], traffic signal cameras [19], vehicle weigh 

stations [39] etc. The accuracy of the systems, when placed in such diverse environments 

[40], with such diverse scenarios, is of critical importance. LPR systems may need to 

predict whether or not a given plate is correctly classified. This probability depends directly 

on the error probabilities of the shapes found during segmentation. 

1.4.1 Damaged and New Characters 

License plate characters are not always perfect. Often, the characters are 

damaged due to dents in the license plate. The camera angle with respect to the license 
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plate may be such that the characters may be incomplete due to shadows and various 

obstructions such as those due to license plate frames, random glints and other artefacts 

shaped like bars [41].  

The license plates may also have various ancillary characters, such as depictions 

of wheel chairs, logos of specific companies, etc., which the classifier is not trained to 

recognize. In such cases, the classifier is almost guaranteed to misclassify the character. 

Characters may also be damaged during the process of segmentation [42], wherein, a 

single region of interest may contain portions of multiple characters. Incorrect thresholding 

during the binarization stage [43] may lead to erroneous artefacts connected to the correct 

character image. 

1.4.2 Confused Characters 

Characters with similar shapes and dimensions, characters which, due to the angle 

of the camera, appear to be other valid characters, etc. also cause problems in LPR 

systems. In such cases, a two classifier system may be used, where the second classifier 

is specific to reclassifying a group of characters which may be confused. 

1.4.3 State Recognition 

License plates usually show of the state of registration of the vehicle. This state 

information, however, is displayed differently for each state. Some plates contain a state 

map, while some carry the full name of the state. The character fonts for the states is also 

not uniform and may be in a mixture of upper and lower case, or may only be in upper case 

format.  

Such differences cause problems in the segmentation step of an LPR system. 

State specific solutions may be implemented to avoid this. But for a more general, universal 

LPR solution, it is a challenge to accommodate the numerous different state information 

styles seen on license plates. 
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1.5 Work and Thesis Organization 

In this thesis, we develop neural network based discriminants for a license plate 

character recognition application. Chapter 2 reviews the multilayer perceptron classifier 

used in the thesis. It details the MLP training algorithm and the decision rules it follows. 

Also covered are relevant neural network theorems. Chapter 3 details the steps involved 

in a license plate recognition system. It describes various plate extraction methods, plate 

segmentation algorithms and feature extraction methods. In chapter 4, problems with MLP 

neural network classifier discriminants are discussed and a non-linear mapping scheme is 

detailed, to remedy them. Methods for detecting bad characters are discussed in chapter 

5. Chapter 6 proposes a method to identify confused input images and proposes a two 

classifier solution to correct it, thus improving the error percentage. 
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Chapter 2  

Neural Network Classification 

 
Artificial neural networks attempt to mimic the biological model, for applications in 

pattern recognition and machine learning. The smallest building block of an artificial neural 

network is the hidden unit which is modeled on the structure of the standard biological 

neuron. The dendrites are equated to inputs, the axon is akin to the output and the decision 

making nucleus is represented by numerical weights. A positive weight simulates a neural 

excitation, while a negative weight simulates neural inhibition. An activation function 

controls the magnitude of the output, to help mimic the actual working of a biological neural 

network. 

2.1 Structure of a Multi-Layer Perceptron 

Artificial neural networks are structured so as to replicate biological neural 

networks. They consist of an input layer, an output layer and one or more hidden layers. 

The output layer consists of nodes, with each node corresponding to a different output 

class. Nodes in a layer are connected to nodes in another layer by unique numerical values, 

termed as weights. Nodes within the same layer are not connected to each other. A fully 

connected MLP with one hidden layer is shown in Figure 2-1. The input to the MLP consists 

of N elements. However, one input is added for every input vector, p, and this input is 

valued at 1, to function as a biasing threshold. As a result, the input is a vector, xp with 

dimension 1 × (N + 1). The MLP has M output classes, making the output, d1, a vector of 

dimension 1 × M. The input and output nodes are connected to each other through a series 

of hidden unit nodes. An MLP contains 𝑁ℎ such hidden units. The input layer is connected 

to the hidden layer through a network of weights, represented by the input weight matrix W 

which is Nh × (N + 1). The weights connecting the nodes in the hidden layer to the output 
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nodes is the output weight matrix Woh, having dimensions M × Nh. Some of the input nodes 

are directly connected to output layer nodes through the bypass weight matrix Woi , which 

has dimensions M × (N + 1). 

 
Figure 2-1 Fully Connected Multi-Layer Perceptron Structure 

 
The output of an MLP is a function of the input vector x, the weight matrices and 

the hidden unit activation vector, O. The non-linearity of a neural network’s hidden layer is 

what helps it mimic biological neural networks [44] and this non-linearity is achieved 

through a combination of the input to the layer and a sigmoid activation function. The net 

function at the hidden units is given by (1) 
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𝑛(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥(𝑛)

𝑁+1

𝑛=1

 

(1) 

The activation vector O, for the pth training pattern, is given by (2)   

𝑂𝑝(𝑘) = 𝑓(𝑛(𝑘)) =  
1

1 + 𝑒−𝑛(𝑘)
  (2) 

The expression for the output of the classifier, for the pth training pattern, thus becomes, 

𝑑1(𝑖) =  ∑𝑤𝑜ℎ(𝑖, 𝑘)𝑂𝑝(𝑘) + ∑ 𝑤𝑜𝑖(𝑖, 𝑛)𝑥𝑝(𝑛)

𝑁+1

𝑛=1

𝑁ℎ

𝑘=1

 (3) 

The output values for each class is called a discriminant and the class with the 

highest discriminant value is considered to be the correct class. As such, the correct class 

number is ic and the estimated class decision, i'c is given by 

𝑖𝑐′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑑1(𝑖)) (4) 

 

2.2 Training a Neural Network 

The process of determining the weights of a neural network, to achieve optimum 

performance, is called training. Training involves feeding the neural network inputs with 

known output classes. A constant comparison and minimization of the mean squared error 

of the known output class and the predicted output class forms the basis of neural network 

training [45]. 

𝐸 = 
1

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

2
𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (5) 

The objective here is to find the most optimum weights such that the actual output 

of the classifier, d1 is almost equal to the desired output t, for the pth training pattern. The 

neural networks are trained using different gradient techniques, all focusing on optimizing 

the weights using the calculated gradients. 
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2.2.1 First Order Training Methods 

Numerous first order methods are available for training a neural network. Each 

method has its own trade-offs, with respect to ease of implementation, speed of learning, 

robustness to noise, etc. [45]. The following algorithms can be implemented on a fully 

connected MLP structure with a single input layer, a single hidden unit layer and a single 

output layer. The term fully connected implies that all the nodes in the MLP are connected 

to all other nodes in different layers by weights. 

The first order methods take the first order derivatives of the error function with 

respect to the weight matrices 𝑾𝒐𝒊,𝑾 and 𝑾𝒐𝒉. The corresponding negative gradient 

matrices for these individual regions are given by  

𝑮 =  
−𝜕𝐸

𝜕𝑾
 , (6) 

𝑮𝑜𝑖 =
−𝜕𝐸

𝜕𝑾𝑜𝑖

 , (7) 

and 

𝑮𝑜ℎ =
−𝜕𝐸

𝜕𝑾𝑜ℎ

 (8) 

 

The negative gradient vector g, for the network is  

𝒈 = 𝑣𝑒𝑐(𝑮, 𝑮𝑜𝑖 , 𝑮𝑜ℎ) (9) 

where the vec() function maps G, Goi and Goh to a column for convenience. The weights 

W, Woi and Woh are remapped to form a column vector w, as 

𝒘 = 𝑣𝑒𝑐(𝑾,𝑾𝑜𝑖 ,𝑾𝑜ℎ) (10) 

The weights are updated in each iteration, k, using a learning factor z and the 

negative gradient vector, g. The initial value of z is a small constant value and this value is 

increased by a predefined step, if the error function for the current iteration is less than that 
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seen in the previous iteration, else, it is decreased. In back propagation [46], for the (k + 

1)th iteration, wk representing the weights in the kth iteration and wk+1 representing the 

weights in the (k + 1)th iteration, the weights are updated as, 

𝒘𝑘+1 = 𝒘𝒌 + 𝑧 ⋅ 𝒈𝑘 (11) 

Back-propagation, despite being a preferred method of training neural networks, 

has a slow convergence rate and is heavily dependent on the selection of the initial weights 

[47], making it unsuitable for many large applications. 

The conjugate gradient method is a related first order training method, where the 

gradient gk is used to update a direction vector pk for the kth iteration. The direction vector 

is updated as 

𝒑𝑘+1 = −𝒈𝑘 + 𝐵1 ⋅ 𝒑𝑘 (12) 

using a factor B1 calculated as, 

𝐵1 =
𝒈𝑘+1

𝑇𝒈𝑘+1
𝒈𝑘

𝑇𝒈𝑘
 (13) 

This direction vector, in turn, updates the weights as 

𝒘𝑘+1 = 𝒘𝒌 + 𝑧 ⋅ 𝒑𝑘 (14) 

Since the weights are updated using the direction matrix as opposed to the 

gradients themselves, the direction of descent is superior to that seen in the conjugate 

gradient method. Thus the conjugate gradient method converges in fewer iterations than 

the steepest descent method [45]. 

2.2.2 Second Order Training Methods 

Second order algorithms are preferred for training neural networks due to their 

faster convergence [48], but many second order training algorithms lead to memory 

limitation problems [49], since the Jacobian matrix must be calculated and stored. Second 

order training methods work on two basic assumptions 
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2.2.2.1 Assumption 1: 

The error function is approximately quadratic in w for small weight changes [50]. 

 

2.2.2.2 Assumption 2: 

The output for the pth training pattern is approximated as a first degree function of 

w [50]. 

 

The following method is Newton’s second order training algorithm for a fully 

connected MLP. The first partial derivative of the error function with respect to the weights 

is given by 

𝜕𝐸

𝜕𝑤(𝑗, 𝑘)
= −

2

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑗, 𝑘)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (15) 

The Gauss-Newton approximation of the second partial of the error function with respect 

to the weights, is  

𝜕2𝐸

𝜕𝑤(𝑗, 𝑘)𝜕𝑤(𝑢, 𝑣)
=
2

𝑁𝑣
∑∑

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑗, 𝑘)

𝜕𝑑1𝑝(𝑖)

𝜕𝑤(𝑢, 𝑣)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (16) 

As described in Error! Reference source not found., the weight matrix is remapped into 

 column major format, giving the weight vector w. The remapping of w from a two 

dimensional to a one dimensional vector w is performed as  

𝒘 = 𝑣𝑒𝑐(𝑤) (17) 

Using this mapping approach, the second order derivatives of (16) become elements of 

the Hessian matrix H is defined as 
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ℎ(𝑚, 𝑛) =  
𝜕2𝐸

𝜕𝑤(𝑚)𝜕𝑤(𝑛)
 (18) 

Newton’s update vector e is found by solving, 

𝑯 ∙ 𝒆 = 𝒈 (19) 

The new weight vector w’ is updated as 

𝒘′ = 𝒘+ 𝒆 (20) 

The problem with Newton’s training method is the likelihood that the Hessian matrix H is 

singular [50]. As a result of which, it may not be possible to calculate the update vector e. 

Hence, the Levenberg-Marquardt training algorithm is proposed, which eliminates this 

possibility. 

2.2.3 Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt’s algorithm is an iterative technique used to find the 

local minima of a multivariate function. This algorithm is an interpolation between Newton’s 

algorithm and steepest descent, which leads to a guaranteed convergence at a slower 

speed [51]. The weight vector w, in the LM algorithm, is updated as 

𝒘 = 𝒘+ [𝑯 + 𝜆𝑰]−1𝒈 (21) 

which implies 

[𝑯 + 𝜆𝑰]𝒆 = 𝒈 (22) 

The term λ controls the LM training towards either the first order or the second 

order methods [51]. If the error function E increases, λ is increased, making the algorithm 

mimic the steepest descent method. Else, the term λ is decreased. The equation in (22) is 

solved using orthogonal least squares (OLS) [52]. LM may be used on all the network 

weights, or only on the hidden layer weights. The problem with LM is that the number of 

calculations involved in it mean it cannot be used effectively in larger networks. Thus, LM 

is generally used to train smaller networks. 



 

16 

2.2.4 Output Reset 

For the MLP, it is desirable to minimize the probability of classification error, but it 

is more practical to minimize the MSE E. The error function puts certain restrictions on the 

classification error. If the outputs have a unique constant bias, E may be increased or 

decreased, but the classification error remains unaffected. In the event that an output has 

a magnitude greater than the output bias, E will increase, leaving the classification error 

unchanged or lesser [53]. 

The output reset (OR) algorithm assigns each desired output a bias which reduces 

the error function and sets the desired output equal to the actual output, when the output 

has the correct sign but too great a magnitude [53]. The resulting modified error function 

E’ is expressed as 

𝐸′ =
1

𝑁𝑣
∑∑[𝑡′

𝑝
(𝑖) − 𝑑1(𝑖)]

2

𝑁𝑐

𝑖=1

𝑁𝑣

𝑝=1

 (23) 

where, 

𝑡′𝑝(𝑖) = 𝑡𝑝(𝑖) + 𝑎𝑝 + 𝑑𝑝(𝑖) (24) 

By varying ap, dp(i) or t’p(i) for each training pattern p, it is possible to decrease E’. If id is 

an incorrect class number, the methods must adhere to two conditions,  

i. The difference |𝑡′𝑝(𝑖𝑐) − 𝑡
′
𝑝(𝑖𝑑)| must be greater than, or equal to 1. 

ii. All changes made to these parameters must reduce, or not affect E’.  

The first method equates the first derivative of E’, with respect to ap, equal to zero. The 

expression for ap is then obtained as, 

𝑎𝑝 =
1

𝑀
∑[𝑦𝑝(𝑖) − 𝑡𝑝(𝑖) − 𝑑𝑝(𝑖)]

𝑀

𝑖=1

 (25) 

The second method attempts to modify the term dp(i), such that  
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𝑑𝑝(𝑖) = 𝑦𝑝(𝑖) − 𝑡𝑝(𝑖) − 𝑎𝑝 (26) 

with the constraints that 𝑑𝑝(𝑖𝑐) ≥ 0, 𝑑𝑝(𝑖𝑑) ≤ 0. By implementing OR, the outputs 

corresponding to the classes with lower probabilities are forced to be lower and those with 

higher probabilities of being correct are assigned higher values. This effectively increases 

the number of negative discriminants at the output of the MLP and increases the magnitude 

of the maximum discriminant value, corresponding to the correct class. 

For a given input vector which can belong to one of 36 possible output classes, 

class 1 being the correct class, Figure 2-2 shows the discriminant values obtained at the 

output of an MLP trained without implementing OR. The same input vector, when passed 

through an MLP trained with OR, gives the discriminant values seen in Figure 2-3 It is seen 

in Figure 2-2 and Figure 2-3 that most output classes have either positive or negative 

discriminant values. The discriminant value corresponding to the correct class has a much 

higher value at the output of the MLP trained with OR, compared to the MLP trained without 

OR. The significance of increasing the number of negative discriminant values without 

affecting the overall performance of the network will be seen in Error! Reference source 

ot found.. 
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Figure 2-2 Sample discriminant values for a network trained without OR 

 

Figure 2-3 Sample discriminant values for a network trained with OR 
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2.3 Properties of the Multi-Layer Perceptron 

2.3.1 Modelling a Noisy Discriminant 

From Figure 2-2and Figure 2-3, the discriminant output of an MLP is not ideal, i.e. 

it has noise. Thus, the ith discriminant is modeled as 

𝑑1(𝑖) = 𝑑(𝑖) + 𝑛𝑑(𝑖) (27) 

where the discriminant vector d sums to 1 and the noise component has a mean mn. We 

analyze some of the properties of this model in the following two lemmas. 

 

2.3.1.1 Lemma 1 

The expected sample mean of d1(i) converges to the mean of the additive noise 

as the number of classes M increases. 

𝐸 [
1

𝑀
∑𝑑1(𝑖)

𝑀

𝑖=1

] = 𝐸 [
1

𝑀
∑(𝑑(𝑖) + 𝑛𝑑(𝑖))

𝑀

𝑖=1

] 

=
1

𝑀
+ 𝐸 [

1

𝑀
∑𝑛𝑑(𝑖)

𝑀

𝑖=1

]        

=
1

𝑀
+𝑚𝑛 

(28) 

 

As M increases, the discriminant sequence’s mean approaches mn. 

 

2.3.1.2 Lemma 2 

If the desired output for the ith class is tp(i) = δ(i-ic) where ic denotes the correct 

class and the noisy discriminant d1 has a bias a, found through regression, the noise 

component of d1(i) is zero mean. 
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𝐸 = 𝐸 [
1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖) − 𝑎]

2
𝑀

𝑖=1

] 
(29) 

𝜕𝐸

𝜕𝑎
= −2 ⋅ 𝐸 [

1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖) − 𝑎]

𝑀

𝑖=1

] = 0        
(30) 

∴ 𝑎 = 𝐸 [
1

𝑀
∑[𝑡𝑝(𝑖) − 𝑑1(𝑖)]

𝑀

𝑖=1

] =
1

𝑀
−
1

𝑀
∑𝐸[𝑑1(𝑖)]

𝑀

𝑖=1

 

(31) 

Absorbing a into d1(i) and using lemma 1, 

∑𝑑1(𝑖)

𝑀

𝑖=1

= 1, 
(32) 

𝑚𝑛 = 0 (33) 

Thus, the sum of the discriminants of an MLP classifier sum up to 1, as would posterior 

probabilities. 

2.3.2 Approximating Bayes Posterior Probabilities 

A Bayes discriminant [54] which minimizes the probability of error Pe, can be 

expressed in any of the following three forms 

𝑓(𝒙|𝑖)𝑃(𝑖) (34) 

𝑔(𝑓(𝒙|𝑖)𝑃(𝑖)) (35) 

𝑃𝑏(𝑖|𝒙) (36) 

 

In (ii) g(.) is either an increasing or decreasing function. MLP classifiers have been 

used successfully for numerous applications, based on their proven performance. This 

good performance is partially due to the following result. 

Theorem: “When MLP classifiers are trained to minimize the mean-squared error, 

the MSE approaches a constant value plus the expected squared error between the 
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classifier output and Bayes discriminant, as the number of training patterns approaches 

infinity [55].”  

In other words, if the Bayes discriminant vector b, has elements as described in 

(36) then as the number of training patterns approaches infinity, 

lim
𝑁𝑣→∞

1

𝑁𝑣
∑∑[𝑡𝑝(𝑖) − 𝑑1𝑝(𝑖)]

2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

=∑𝐸 [(𝑏(𝑖) − 𝑑1(𝑖))
2
] + 𝑐

𝑀

𝑖=1

 

(37) 

 

where c is a constant, independent of the pth training pattern. Experiments have 

shown that an MLP classifier often gives the same accuracy as conventional non-

parametric Bayes classifiers [54]. The Bayes posterior probability for an input vector x, of 

the pth training pattern, belonging to a class i within the output discriminant vector d1 is 

given by 

𝑑1(𝑖) = 𝑃𝑏(𝑖|𝒙𝑝) (38) 

 

The training of an MLP classifier involves the minimization of the MSE function E 

as seen in (16), which is minimized over all the training patterns. Thus, E is the ensemble 

error surface for a pattern recognition problem [54]. The input training vectors are drawn 

from a common, known distribution of vectors, the number of training vectors is effectively 

proportional to the a priori probability of any given class [54]. Since the training minimizes 

E with respect to the weights vector w, the MLP is effectively a minimum mean squared 

error approximation to the Bayes optimal discriminant function [54]. It must be noted that 

the accuracy of the MLP in approximating the Bayes posterior probabilities is dependent 

on the weights vector w. If the number of hidden units is too small, the approximation of 

the MLP will not be a good approximation of the Bayes posterior probabilities well. 
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2.3.3 Memorization 

A nonlinear neural network has the ability to memorize its input patterns during 

training. The number of patterns it can memorize is called information capacity [56]. The 

ability of a neural network to memorize relates to its ability to form arbitrary shapes in the 

weight space, and attests to the usefulness of the training algorithm used on the neural 

network [57]. However, in training a neural network, memorization must be avoided as it 

leads to the possibility of overfitting [58]. Overfitting ultimately negatively affects the 

validation and testing errors of the MLP. Thus, it becomes essential to find the upper bound 

on memorization, in order to design an optimum classifier. 

For a given application, the parameters known to us beforehand are, the number 

of inputs, N, the number of input training patterns, Nv and the number of output classes, M. 

Thus, to design an optimum classifier, the only parameters under our control are the 

numbers of hidden units, Nh and the training iterations, Nit. The upper bound CMLP [59], also 

called the storage capacity, must satisfy  

𝐶𝑀𝐿𝑃 ≤
𝑁𝑤
𝑀

 (39) 

where Nw is the total number of weights, 

𝑁𝑤 = (𝑁 + 1)𝑁ℎ +𝑁ℎ𝑀 + (𝑁 + 1)𝑀 (40) 

In order to prevent memorization and promote generalization, Nv must be much 

greater than CMLP. 

𝑁𝑉 ≫
𝑁𝑤
𝑀

 (41) 

From this expression, the number of hidden units should be chosen to satisfy 

𝑁ℎ ≪
𝑀(𝑁𝑣 −𝑁 − 1)

(𝑁 + 1 +𝑀)
 (42) 
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This upper bound of (39) is independent of the activation function used and is also 

valid for most feed forward neural network structures, irrespective of the connectivity of the 

network [57].  

2.3.4 Universal Approximation Theorem 

A question that arose in the late 1980s is, ‘How many hidden layers are needed to 

sufficiently approximate an arbitrary, continuous function?’ the answer is given by the 

universal approximation theorem. The universal approximation theorem for the nonlinear 

input-output mapping of Figure 2-1 is stated as follows [35] [60]: 

 

Theorem: “Let f be a non-constant, bounded and monotonically increasing function. Let x 

be the input with dimensionality, 1 × N. If each of the input vectors are drawn from a 

specific distribution and ε > 0, there exist a number, M, and real valued constants x(N + 

1), Woh and W, such that an output d1, with dimensionality 1 × M, can be defined as given 

in (3).”, which is an approximate realization of the desired output t”, i.e

|𝑑1(𝑖) − 𝑡(𝑖)| <  𝜀, 𝑓𝑜𝑟 0 < 𝑖 ≤ 𝑀 

For the application of license plate character recognition, the input vectors x are selected 

from a continuous distribution. A sigmoidal activation function (2) is used to make the 

outputs monotonically increasing and bounded, as required in the theorem. The MLP used 

has one hidden layer with Nh hidden units. The theorem justifies the approximation 

capabilities of an MLP with a single hidden unit layer and these criteria are adhered to by 

the MLP used for this classification problem. Hence, as confirmed by the universal 

approximation theorem, the single hidden layer MLP used here for classification is a good 

approximator. It however, does not state that the MLP has the optimum learning time, the 

easiest of implementations or that it is the most general classifier available for all 

applications [35]. 
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2.3.5 No Free Lunch Theorem 

As seen in previous chapters, there are different types of classifiers, some suitable 

for two class systems, some for multi class systems. There are also many available training 

algorithms, which can be used interchangeably with these classifiers. The focus now turns 

to the optimization of a classifier, irrespective of the training and structure of the algorithm, 

a “black-box” optimization algorithm, as labeled by Wolpert and Macready [61], as the No 

Free Lunch theorem. The theorem assumes the existence of a search algorithm, a, which 

relies on either deterministic or stochastic extrapolation of information from an existing set 

of m points. The performance of the algorithm is decided by the histogram c, of the cost 

values of the algorithm, decided by a cost function, F. Let F’ represent every possible input 

vector, from every classification problem. The cost function is a function of the number of 

patterns, Nv, in the population and the output discriminant values, d1, which is a vector of 

length M. Assuming the existence of F1, a subset of F’ input vectors, for which a search 

algorithm a1 outperforms an algorithm a2 for a second subset of F’, called F2. The reverse 

is true also, i.e., a2 outperforms a1 for the set F2. To perform a comparison of the two search 

algorithms, the sum over all F’ of P(c|f,m,a1) is compared to the sum over all f of P(c|f,m,a2). 

Since the comparison sums over all of F’, it implies that the comparison is independent of 

the search algorithms, a1 and a2, since they are implemented on F1 and F2, which are 

effectively subsets of F’. The theorem is thus stated as, 

Theorem [62]: For any pair of algorithms, a1 and a2, 

∑𝑃(𝐶|𝐹′,𝑁𝑣 , 𝑎1) =  ∑𝑃(𝐶|𝐹′,𝑁𝑣 , 𝑎2)

𝑓𝑓

 (43) 

The No Free Lunch theorem implies that if nothing is known about f, then 

P(C|Nv,a), which is the probability of obtaining a histogram C after Nv evaluations is 

independent of the algorithm used. Thus, 



 

25 

𝑃(𝐶|𝑁𝑣 , 𝑎) =∑𝑃(𝐶|𝐹′, 𝑁𝑣 , 𝑎)𝑃(𝐹′|𝑁𝑣 , 𝑎)

𝑓

=∑𝑃(𝐶|𝐹′, 𝑁𝑣 , 𝑎)𝑃(𝐹′)

𝑓

 

(44) 

If we have no prior knowledge of the type of input for the classifier being designed, then all 

F’ are equally likely. 

This theorem implies that a selected algorithm may be an optimum solution for a 

particular application but it may or may not be optimum for a new application. It is possible 

that a different algorithm may be optimum for the new case. Thus, it is not possible to 

determine a single algorithm that is optimum for all possible applications. It also implies 

that every learning algorithm must make certain assumptions beyond the given data, in 

order to form a reasonable degree of generalization [63]. Given a lack of such assumptions, 

the ability of a learning algorithm to correctly predict the class for an input is analogous to 

random guessing

The multilayer perceptron structure used in this thesis should, according to this 

theorem, be as competent at predicting correct class numbers for the input feature vectors, 

as random guessing [64]. But the theorem does not hold true for a multilayer perceptron, 

because the algorithm is designed making certain assumptions, as discussed in Error! 

eference source not found.. 

 

2.3.5.1 Assumption 3: 

The basic criteria for training a multilayer perceptron is the adjustment of weights 

to minimize the error function, E, The input vectors used to train the MLP belong to a certain 

distribution [65] and the weights are adjusted to minimize the error for all inputs belonging 

to the same distribution. Any input vectors which do not belong to the distribution, i.e. new 
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character classes the MLP has not been trained for, cannot be handled by the classifier. 

This effectively makes an assumption that all inputs to the classifier belong to a particular 

distribution, thus imposing a limit on the types of inputs the classifier can handle. 

 

2.3.5.2 Assumption 4: 

The hidden layer of the neural network uses a sigmoid activation function, as 

discussed in Error! Reference source not found., to replicate the non-linear decision 

aking process of biological neurons. This also serves the purpose of making the outputs 

continuous, thus imposing a criteria that both the inputs and the activation function, belong 

to a continuous distribution. We therefore have a second assumption on the working of the 

classifier. These two assumptions put on the MLP are enough to refute the claims of the 

No Free Lunch theorem. 

2.3.6 Alternate Justification of the MLP Classifier 

A second approach can be constructed, that shows that the NFL theorem does not 

apply to the MLP. First, most classifiers, including the MLP, SVM, Bayes-Gaussian 

classifier, nearest neighbor classifier (NNC) etc., have continuous discriminant functions, 

which are discussed in the following lemma. 

 

2.3.6.1 Lemma 3: 

The output discriminant functions of the MLP, SVM, NNC and Bayes-Gaussian 

classifiers are continuous.  

For the MLP, as discussed in Error! Reference source not found., the activation 

unction is a sigmoid function, which is bounded, monotonically increasing and continuous. 

As a result of this, the discriminant output vector d1 of the MLP is also continuous. The 

other, linear layers cascaded with the activation layers are also continuous. The SVM is an 
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MLP with continuous Gaussian activations, and therefore has continuous output 

discriminants. For a Bayes-Gaussian classifier, each discriminant is a quadratic function of 

the input vector x, making the discriminant continuous. 

The ith class discriminant of an NNC is 

𝑑𝑖(𝒙) = 𝑚𝑖𝑛𝑘(𝑑(𝒙,𝒎𝑖𝑘)) 

where d(∙) denotes the distance from x to the kth center vector from the ith class, mik. As x 

changes continuously, the distances d(x,mik) change continuously as well. If the two 

smallest distances for the ith class change place, so that a different one is the minimum, 

there is no discontinuity in di(x). This occurs because the two distances are infinitesimally 

different when they change places.   

Second, universal approximation implies that the MLP can approximate these 

continuous discriminants arbitrarily well. Thus, the MLP can perform at least as well as the 

best alternative classifier. Given these results, we have decided to use the MLP classifier 

in this research. 
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Chapter 3  

License Plate Recognition 

 
3.1 Introduction to License Plate Recognition 

Automatic license plate recognition is the process by which, a computer based 

system acquires vehicle images from a camera, locates the license plate and recognizes 

the license plate number. Depending on the place of application of the LPR system, such 

as unattended parking lots [17], automatic toll collection [16], speed and traffic cameras 

[15], etc., the steps to perform this will vary, to accommodate for the numerous restrictions 

imposed on the images captured. These restrictions come in the form of vehicle speed, 

ambient lamination, camera image quality, ancillary text on the vehicle, etc. [66].  Although 

this can be done manually, it is the least efficient brute force method available. A more 

practical solution is to automate the license plate recognition system using one of the many 

image processing and pattern recognition methods available to us. As such, there are 

numerous practical approaches to implement LPR systems. They are, usually, multi-stage 

applications, with the more generally accepted breakdown being plate finding [66], plate 

segmentation [67], feature extraction [68] and character classification [61]. 

 

3.2 License Plate Finding 

This is the first step in any LPR application. Given an image Fd of an environment, 

the location of the license plate must first be correctly established. Several methods exist 

to find the location of the license plate from Fd. This step is usually divided into finding the 

region of interest (ROI) using area based grayscale variations, using histogram analysis, 

morphological operations, etc. [66] and subsequently isolating the exact license plate using 

methods like using edge detection followed by Hough transform [69]. Some of the common 
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problems encountered in these methods is their inability to distinguish between license 

plates and other forms of text visible on the vehicle, such as bumper stickers, 

advertisements, etc. Often, glints caused by light reflecting off chromed grills, high beam 

headlights manage to yield false results for the license plate location. Methods such as 

block-wise binarization using traditional thresholding algorithms such as Otsu’s 

thresholding [67] to remove spurious high frequency noises. Other methods such as 

divisive normalization [70] to enhance the contrast in the image, thus facilitating the 

process of license plate extraction. 

Several approaches to license plate finding are currently available in the market. 

These approaches are based on unique properties of the license plate, such as color [71], 

shape [40] [70], spatial frequency [24], variance, etc. 

3.2.1 Statistical Window Binarization Approach to finding a License Plate 

A typical preprocessing step is to binarize the complete image. One commonly 

used approach is to resize the image to a fixed dimension. Two concentric windows, A and 

B, are passed across the image, Fd, moved pixel by pixel, from the top to bottom and left 

to right. If the ratio of the statistical measurements corresponding to these windows, either 

the mean value or the standard deviation of the regions A and B, MA and MB respectively, 

is greater than a threshold, T, the center pixel of the window is set to logic 1, indicating the 

pixel is present in the ROI, else, it is cleared to logic 0, indicating it is not part of the ROI 

[40]. The binarized image Fbin derived from this relation is represented in (45). 

𝐹𝑏𝑖𝑛(𝑚 , 𝑛)  = {
0, 𝑖𝑓 

𝑀𝐵

𝑀𝐴
≤ 𝑇

1, 𝑖𝑓 
𝑀𝐵

𝑀𝐴
> 𝑇

   (45) 

 



 

30 

Once the probable region is located, image morphological, Dilation [40] and 

Erosion [40] operators are used to remove smaller blobs within the ROI. This method yields 

the shape of the license plate within the image which is then processed further. 

3.2.2 Hue, Saturation and Intensity Based Methods to Locate a License Plate 

Some license plate recognition systems are region specific and tend to exploit 

certain properties unique to certain parts of the world. The most commonly exploited 

property among these is the method of combining the algorithms for edge detection and 

summed area table images to find the license plate. 

The algorithm [71] first converts the image Fd, initially in the red, R, green, G, blue, 

B, format, to a hue, H, saturation, S and intensity, V, format using the following conversion 

criteria: 

 

{
 
 
 
 

 
 
 
 

𝑉(𝑚, 𝑛) = max(𝑅(𝑚, 𝑛), 𝐺(𝑚, 𝑛), 𝐵(𝑚, 𝑛))

𝑆(𝑚, 𝑛) = {
[𝑉(𝑚, 𝑛) − min(𝑅(𝑚, 𝑛), 𝐺(𝑚, 𝑛), 𝐵(𝑚, 𝑛))] ×

255

𝑉(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻(𝑚, 𝑛) =

{
 
 

 
 (𝐺(𝑚, 𝑛) − 𝐵(𝑚, 𝑛)) ×

60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝑅(𝑚, 𝑛)

180 + (𝐵(𝑚, 𝑛) − 𝑅(𝑚, 𝑛)) ×
60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝐺(𝑚, 𝑛)

240 + (𝑅(𝑚, 𝑛) − 𝐺(𝑚, 𝑛)) ×
60

𝑆(𝑚,𝑛)
; 𝑉(𝑚, 𝑛) = 𝐵(𝑚, 𝑛)

𝐻(𝑚, 𝑛) = 𝐻(𝑚, 𝑛) + 360; 𝑖𝑓 𝐻(𝑚, 𝑛) < 0

      
(4

6) 

 

After converting the image to the HSV color space, its integral image is extracted 

[72]. Using the integral image, the sum of any rectangle can be obtained using the values 

of the sum at the four corners of the rectangle A, B, C and D, shown in Figure 3-1. For 

illustrative purposes, the calculation of the area within rectangle D is described. 

The area within rectangle D is obtained from the points 1, 2, 3 and 4. The value at 

1, A1, is the sum of pixels in A; the value at 2, A2, is the sum of pixels in A and B; the value 
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at 3, A3, is given by the sum of pixels in A and C; and the value at 4, A4, is given by the 

sum of pixel values in A, B, C and D. The area within region D is thus given by,  

𝑎𝑟𝑒𝑎(𝐷) = 𝐴4 + 𝐴1 − (𝐴2 + 𝐴3) (47) 

 

 

Figure 3-1 Integral image 

 

The edges of the image are extracted by using a Sobel filter and the subsequent 

image is dilated [73]. As a result, several brighter regions are highlighted in the image. By 

performing a logical AND operation on the HSV image with the Sobel-dilated image, 

probable license plate regions are located. A connected component analysis of the 

rectangular areas from the ANDed image and the integral image yields an accurate license 

plate. 

3.3 License Plate Segmentation 

Once the general location of the license plate is identified, it must be segmented, 

i.e. each individual character must be isolated from the other characters, for the purpose 

of further processing. This step is challenging due to the inconsistencies in the formatting 

of the license plate characters and backgrounds. License plates in different states have 

different, often multicolored backgrounds. Some have holographic emblems and 

characters, which, depending on the lighting conditions in the vicinity, cause glints and 

other light artefacts which partially obscure the neighboring characters. The angle of the 
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camera, on certain occasions, may be too steep, causing the view of the characters to be 

blocked, partially, by portions of the car, etc.  

Several methods have been devised for character segmentation, from image 

morphological techniques, namely dilation and erosion [74]; using wavelet based methods 

like the 2D Haar Wavelet transform, as shown by Jeffery et al. [75]; or using robust texture 

analysis methods using Gabor filters [76], which abandons traditional edge detection and 

thresholding techniques, in favor of multi-directional filter responses. Some of the methods 

of license plate segmentation are mentioned below. 

3.3.1 Blank Space Detection Based Approach 

A paper on character segmentation by Shan [77] uses the most computationally 

simple method for segmentation. The necessary preprocessing step of binarization is 

performed on the license plate image. The sum of the pixel values for each column is then 

calculated. The gap between characters appears as a region with a high value, as 

compared to the other values, which are low, due to the presence of dark characters. These 

valleys and peaks are used to segment the characters vertically. A similar step, taking the 

sum of pixel values in each row, within the vertically segmented plate, is used to create 

horizontal boundaries, thus segmenting the characters from the plate image.  

3.3.2 Neural Network Based Approach 

A paper by Garris and Wilson [42] describes a neural approach which combines 

the tasks of character segmentation and recognition into a single neural network. A 

rectangular window is passed over the probable location of the license plate characters, 

assuming a fixed size of the license plate characters. The image within the rectangle are 

passed through a neural network, to decide whether the image is a valid character, or, if it 

contains portions of two separate characters.  
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A second, two network approach is also proposed in the same paper [42]. In this 

method, the first neural network is tasked with determining whether the image segment at 

the input is a valid character, or an invalid one. The second neural network determines the 

correct class of the character, assuming the first neural network deems the image as a 

valid character. 

3.4 Feature Extraction 

A survey conducted by Trier, Jain and Taxt [68] discusses the different feature 

extraction methods for character recognition. The paper covers multiple methods for the 

segmented characters obtained after most common preprocessing steps, like grayscale 

images, binarized images and skeletal edge images. 

Depending on the type of preprocessing steps used, the feature extraction 

methods change drastically. This is done to ensure the correct features are the focus of 

the extraction method being used. 

Table 1 List of feature sets for different image types [68] 

 

 
3.4.1 Filter Based Feature Extraction 

Wang, Ding and Liu [24], in their paper, discuss the use of Gabor filters for the 

process of feature extraction. Gabor filters can simulate the behavior of simple cells in the 
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human eyes [78]. Gabor filters also have an optimal joint spatial-frequency localization 

property [24], thus making them suitable filters for applications like texture analysis, 

handwritten character recognition, etc. A 2-dimensional Gabor filter is a complex, 

sinusoidal modulated Gaussian function with the responses in the spatial domain and 

spatial-frequency domain [24]. The directional properties of the filters to detect character 

strokes in different directions. To accomplish this, the character image first needs to be 

normalized and the must pass through a bank of Gabor filters. To accommodate for 

background noise and non-uniform lighting, the outputs of the filter bank pass through an 

adaptive regulator. The system extracts histogram features by counting the positive and 

negative real parts of the output of each Gabor filter. This histogram forms input vectors, 

which is put through a histogram feature extraction process, before finally being 

compressed into a single feature vector x. This is a time consuming and memory intensive 

feature extraction method, which cannot be implemented easily on simple hardware. 

3.4.2 2D-DFT Based Feature Extraction 

A simpler feature set relying on the information obtained from an image through 

frequency domain analysis is the 2D-DFT feature extraction method. The feature vectors, 

which ultimately are the inputs to the MLP used in this thesis, are extracted using this 

method. The 2D-DFT is an image processing tool which extracts the sine and cosine 

components of the image [79]. Any image, when finite in the spatial domain, has an infinite 

number of components in the frequency domain. The Fourier transform of an image gives 

a point corresponding to the frequency at that spatial region of the image. The discrete 

Fourier transform samples this point cloud and retains only a set of points. It, thus, does 

not contain the complete frequency information stored in an image. It, however, stores 

enough low frequency points, so as to faithfully represent the spatial information contained 

in the image [80]. 
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For a given image M × N, fd(m,n), the 2D-DFT gives the cosine and sine, i.e. real, 

R, and imaginary, I, components of the image, up to a limit L, as follows 

𝑅(𝑖, 𝑗) =  ∑ ∑ 𝑓𝑑(𝑚, 𝑛)cos (2𝜋 (
𝑚𝑖

𝑀
+
𝑛𝑗

𝑁
))

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (48) 

 

𝐼(𝑖, 𝑗) =  ∑ ∑𝑓𝑑(𝑚, 𝑛)sin (2𝜋 (
𝑚𝑖

𝑀
+
𝑛𝑗

𝑁
))

𝑁

𝑛=0

𝑀

𝑚=0

 (49) 

The resulting vectors R and I are matrices, with dimensions (2L+1) × (L+1), 

consisting of the low frequency information contained in the image. This data, despite being 

compressed, still has redundant information. This is because, for a 2D signal, the 

information contained in the first and fourth quadrants of the Fourier domain are mirrors of 

the information contained in the second and third quadrants. As a result, only the 

information contained in the former is retained, while that in the latter is discarded. The 

remaining data is stored in the form of an array which is mapped to the input feature vector 

x for the classifier. 

.  



 

36 

Chapter 4  

Interpreting MLP Discriminants 

As mentioned in previous chapters, the output discriminants of an MLP structure are 

approximate posterior probabilities [38], as described by the Bayes decision rule [60]. 

However, in practice, the outputs of an MLP do not map to real probabilities [81]. A 

histogram of MLP outputs for 8719 validation patterns, obtained from segmented and 

binarized license plate character images, and 36 output classes is shown in Figure 4-1. 

The largest discriminant corresponds to the estimated class, while the other values 

correspond to estimated incorrect classes.  

 

Figure 4-1 Histogram of discriminant values of an MLP 

The output of the MLP, as evident, consists of both positive and negative values. 

By lemma 2, the output discriminant values of an MLP do however, approximately sum up 
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to 1, thus, partially buttressing the above claim. Considering the initial assumption that the 

MLP outputs are posterior probabilities, as discussed in Error! Reference source not 

ound., it should be possible to remap the discriminants in a way to get the classifier to 

approximate posterior probabilities [81]. This chapter proposes an approach, which, based 

on a combination of data restructuring and non-linear mapping, attempts to warp the 

discriminants such that we derive a vector d2 which adheres to the following constraints 

0 ≤ 𝑑2(𝑖) ≤ 1; (50) 

∑ 𝑑2(𝑖)

1≤𝑖≤𝑀

= 1;  (51) 

𝑑2(𝑖) ≈ 𝑃(𝑖|𝒙) (52) 

 

4.1 Discarding MLP Discriminants 

As seen in Error! Reference source not found., the output of an MLP is not just 

 single value, which denotes the class to which the input has been assigned. It is a series 

of outputs, which should approximate the M posterior probabilities. As seen in (4), the 

correct class number is determined by the maximum element in the discriminant vector. 

The other discriminant values do not play a role in the final decision process of the MLP, 

but give an approximation of the validity of the other classes. Based on this knowledge, it 

is safe to assume that, for an MLP giving both positive and negative valued discriminants, 

there is no likelihood that the negative valued outputs corresponds to valid, correct classes. 

As mentioned in Error! Reference source not found., by implementing OR, the 

iscriminants which earlier had negligible positive values are often assigned significantly 

negative values. This helps eliminate those discriminant values which are not required and 

these negatively valued outputs are, hence, equated to zero. This process gives us a new 

discriminant vector d’1. 



 

38 

𝑑′1(𝑖) = {
𝑑1(𝑖), 𝑖𝑓 𝑑1(𝑖) ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (53) 

 

This step takes care of all negative valued discriminants, thus helping us achieve 

the lower bound of probability, i.e. 0, seen in (50). But this raises a problem, since the 

outputs now consist of zeros and positively valued discriminants, the sum of the 

discriminants, which was initially 1, now sum up to a much higher value, thus contradicting 

the upper bound of probability, i.e. 1. 

4.2 SoftMax 

At this point, the discriminants, d’1, sum to a value greater than 1. As evident from 

Figure 4-1, the positive discriminant values vary over a large range. 

 

Figure 4-2 Plot of Pc v/s maximum discriminant values 
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From Figure 4-2, it is evident that the maximum value of the discriminant may take 

numerous values and the probability of correct classification for a majority of these 

maximum discriminant values is very high. A softmax operation is implemented to scale 

these values [82] so that they sum to 1. The softmaxed discriminant vector S is described 

as follows 

𝑆(𝑖) =  
𝑑′1(𝑖)

∑ 𝑑′1(𝑗)
𝑀
𝑗=1

 (54) 

 

The elements of S now have values ranging between 0 and 1, as described in (50), 

and the sum of the vector’s elements is now 1. Thus, a second criteria for the MLP output 

discriminants to equate to posterior probabilities is now achieved. A new plot of Pc versus 

the maximum softmax discriminant Smax in Figure 4-3  shows a smoother mapping, which 

now exists within the bounds of 0 and 1. 
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Figure 4-3 Plot of Pc after softmax v/s maximum discriminant values 

 

Despite the softmax operation, the discriminant values do not, yet approximate 

posterior probabilities. As evident in Figure 4-3, numerous maximum discriminant values 

of the vector S, have values in the mid-range of 0 to 1, but have higher actual posterior 

probabilities, P (i|x). Ideally, if the MLP discriminants are posterior probabilities, the graph 

should be perfectly linear with a one to one mapping between the true posterior 

probabilities and Smax. Another detail of importance is that Pc is approximately 1 for the Smax 

discriminant values between 0.69 and 0.92. This suggests that, given an appropriate non-

linear mapping technique, the discriminants may be mapped to the posterior probabilities 

[81]. 
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4.3 Proposed Mapping Scheme 

The plot in Figure 4-3 shows that Pc versus Smax is not a straight line. A group of 

discriminants, with values in the upper mid-range of 0 to 1 have very high probabilities, 

while some discriminants with lower values also have sufficiently high probabilities of being 

correct. Any mapping scheme which is proposed, must take into account the non-linearity 

evident in Figure 4-3. The piecewise mapping proposed here uses a different mapping 

scheme for Smax < St and for Smax ≥ St, where St is assumed to be 0.68. 

The actual probabilities corresponding to Smax values greater than St lie between 

Pmin = 0.98 and Pmax = 1. For the current application, this range is fixed at 0.98 to 1. The 

corresponding discriminant values must hence, map to values within this range. This 

mapping is performed by finding coefficients, a and b, which modify the value of the 

discriminants, making them fall within the range Pmin to Pmax. The coefficients are calculated 

by solving the equations 

𝑃𝑚𝑖𝑛 = 𝑎 + (𝑆𝑡 ⋅ 𝑏) (55) 

𝑃𝑚𝑎𝑥 = 𝑎 + (max (𝑆𝑚𝑎𝑥) ⋅ 𝑏) (56) 

 

The term max(Smax) refers to the maximum observed value among the maximum 

softmaxed discriminant values Smax for all patterns. The new maximum discriminant values 

shall be referred to as d2max and for Smax less than St, the value is given by, 

𝑑2𝑚𝑎𝑥 = 𝑎 + (𝑆𝑚𝑎𝑥 ⋅ 𝑏) (57) 

 

This mapping scheme now yields values of d2max which lie within the range of Pmin 

to Pmax, making the values approximate the posterior probabilities. Since this mapping 

procedure attempts to map values in a specified range, it cannot be used to map the 

discriminant values Smax which are lower than St. These discriminant values, however, 
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need to be mapped to values with Pmin being the highest allowable value. A simple mapping 

for this region is proposed, where the square root of the value is multiplied by a constant, 

c. Thus, the new maximum discriminant value for Smax < St is given by 

𝑑2𝑚𝑎𝑥 = 𝑐 ⋅ √𝑆𝑚𝑎𝑥   ;   𝑐 =
𝑃𝑚𝑖𝑛

√𝑆𝑡
 (58) 

 

This mapping scheme warps the Smax values so that the Pc versus d2max curve of 

Figure 4-4 better approximates a straight line. 

 

Figure 4-4 Plot of Pc v/s non-linearly mapped discriminant values 

 

Between Figure 4-3 and Figure 4-4, the difference is evident. The new curve in 

Figure 4-4 is much closer to being linear. Therefore the maximum discriminants 
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approximate posterior probabilities more accurately. The remaining discriminants d2(i) 

which are less than d2max are accordingly adjusted to approximate the posterior 

probabilities by multiplying the remaining discriminants with a factor c calculated as 

𝑐 =
1 − 𝑑2𝑚𝑎𝑥

𝑑
; 𝑑 =  ∑ 𝑆(𝑗)

𝑀

𝑗=1;
𝑗≠𝑖′𝑐

 
(59) 

The adjusted discriminant vector d2 is given as 

𝑑2(𝑖) = 𝑐 ⋅ 𝑆(𝑖);   𝑖 ≠ 𝑖′𝑐 (60) 

This ensures that the sum of the discriminants in d2 is equal to 1, thus mapping all 

discriminant values to the approximate posterior probabilities.  
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Chapter 5  

Detecting Bad Inputs 

The LPR character classifier is trained to correctly classify input feature vectors for 

valid characters. However, there may be cases where the characters obtained after 

segmentation are not valid, good characters. This may be caused by a non-robust license 

plate segmentation software, or by certain license plate artefacts which fuse with the valid 

characters and are not distinguishable, even to good plate segmentation software. Error! 

eference source not found.Figure 5-1 shows some examples of bad characters caused 

by faulty segmentation code. 

       

Figure 5-1 Samples of Bad Characters 

Since the classifier treats all input feature vectors as valid and tries to place them 

into the correct class, it becomes necessary to detect and isolate these bad character 

cases. This chapter proposes a method to use the discriminant outputs d1 of an MLP 

classifier to detect such bad characters. 

5.1 Effect of Bad Inputs on Output Discriminants 

The output discriminants of an MLP classifier sum up to 1. When a feature vector 

x from a valid, good character is input to the MLP, the discriminant vector d1 usually has 

only one large element and all other values are small, as seen in Figure 5-2. If a feature 

vector x, corresponding to a bad character is input to the classifier, the discriminant vector 

d1 has multiple elements with values that are nearly the same magnitude, as seen in Figure 
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5-3, where two classes have very similar, high discriminant values and many other classes 

have moderately high values, in sharp contrast to Figure 5-2. This behavior of the 

discriminants can be exploited to detect probable bad characters in 0. 

 

Figure 5-2 Plot of discriminants for a good character 

 

Figure 5-3 Plot of discriminants for a bad character 
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5.2 Using Discriminant Variances to Detect Bad Inputs 

5.2.1 Single Variance Method 

As seen in 0, there is an obvious contrast in the behavior of the discriminants d1(i), 

for good and bad characters. The proposed method exploits the differences in the variance 

of the discriminant vector to detect bad characters. In the single variance method, the 

variance of the discriminant vector excluding the maximum discriminant value d1m is 

calculated as 

𝑉1 =
1

𝑀 − 1
∑ (𝑑1(𝑖) − 𝐸(𝑑1𝑚))

2

𝑀

𝑖=1;𝑑1(𝑖)≠max (𝒅1)

 (61) 

 

where E(d1m) is the expected value of the discriminant vector d1m excluding the maximum 

discriminant value. Assuming each element of the discriminant vector d1m is equiprobable, 

the expected value is given by 

𝐸(𝑑1) =
1

𝑀 − 1
∑ 𝑑1(𝑖)

𝑀−1

𝑖=1;𝑖≠𝑖′𝑐

 (62) 

 

If the value of the variance V1 is greater than a certain threshold T1, the character 

is labeled as a bad character. To decide the thresholds for the single variance method, the 

first step was to calculate the variance V1 (61) for all the bad characters. The lower and 

upper bounds on the threshold T1 were the minimum and maximum observed thresholds 

for the bad characters. For the current application, the performance of the algorithm has 

been compared over a range of thresholds T1, starting from 0.07 up to 1.17 with increments 

of 0.1. Table 2 shows the number of patterns each threshold removes, from the total of 

8719 patterns of which 112 are bad characters.  



 

47 

The performance is measured on the basis of three main parameters, (i) the 

number of misclassified characters which are not removed is shown in Figure 5-4; (ii) the 

number of bad characters which are not removed is shown in Figure 5-5; (iii) the number 

of good characters which are incorrectly detected as bad characters is shown in Figure 

5-6. The overall error percentage is the performance measure of this method, compared 

over the different thresholds and shown in Figure 5-7. From the results seen, a threshold 

of 0.27 is an optimum threshold, since it identifies a majority of the misclassified characters 

and the number of good characters it incorrectly identifies is relatively low.  

 

Table 2 Number of Patterns removed and corresponding thresholds for Single Variance 

Method 

Threshold (T1) #Patterns Removed  
(Good and Bad) 

0.07 6283 

0.17 1428 

0.27 277 

0.37 85 

0.47 34 

0.57 16 

0.67 7 

0.77 4 

0.87 1 

0.97 1 

1.07 1 

1.17 1 
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Figure 5-4 Plot of Number of Misclassified Characters (Not Removed) v/s threshold 

 

Figure 5-5 Plot of Number of Bad Characters (Not Removed) v/s threshold 
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Figure 5-6 Plot of Number of Good Characters (Removed) v/s threshold 

 

Figure 5-7 Plot of Pe v/s threshold for Single Variance method 

5.2.1 Two Variance Method 

A second proposed method is to take the variance of the discriminant vector twice 

and take the ratio of the two variances. The first step is to take the variance, V1, of all the 
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discriminants at the output of the MLP, excluding the maximum discriminant, as seen in 

(61). Next, the variance, V2, of all the discriminants are calculated, as seen in (63) 

𝑉2 =
1

𝑀
∑(𝑑1(𝑖) − 𝐸(𝑑1))

2

𝑀

𝑖=1

 (63) 

 

where the term E(d1) is the expected value of the complete discriminant vector d1 given as 

𝐸(𝑑1) =
1

𝑀
∑𝑑1(𝑖)

𝑀

𝑖=1

 (64) 

 

The ratio of V2 to V1 is calculated for the discriminant vector, d1, for every input of 

the classifier and a character is considered bad if this ratio is greater than a particular 

threshold T2. The variances V1 and V2 (61) and (63), respectively, are calculated and their 

ratio is observed. The lower and upper bounds for the threshold T2 are the minimum and 

maximum observed ratios for the bad characters. For the purposes of this application, a 

performance comparison is shown for thresholds, having values 0.4, 0.5, 0.6, 0.7, 0.8 and 

0.9. As in section Error! Reference source not found., the performance is measured on 

he basis of three main parameters, (i) the number of misclassified characters which are not 

removed in Figure 5-8; (ii) the number of bad characters which are not removed in Figure 

5-9; (iii) the number of good characters which are incorrectly detected as bad characters 

in Figure 5-10. The overall error percentage for this method is shown in Figure 5-11. Table 

3 shows the number of patterns each threshold removes, from the total of 8719 patterns, 

of which 112 are bad characters. From the observed results, a threshold of 0.8 is optimal 

since it detects a majority of the misclassified and bad characters. The number of good 

characters it removes is only marginally higher than the higher thresholds.  



 

51 

Table 3 Number of Patterns removed and corresponding thresholds for Two Variance 

Method 

Threshold (T2) #Patterns Removed (Good 
and Bad) 

0.4 6023 

0.5 3902 

0.6 2104 

0.7 851 

0.8 272 

0.9 44 

 

 

 

Figure 5-8 Plot of # Misclassified Characters (Not Removed) v/s threshold 
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Figure 5-9 Plot of # Bad Characters (Not Removed) v/s threshold 

 
Figure 5-10 Plot of #Good Characters (Removed) v/s threshold 
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Figure 5-11 Plot of Pe v/s threshold for the two variance method 
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5.3 Comparison of Results 

Table 4 Thresholds and Error Percentages for Single Variance Method 

Threshold (T1) Error Percentage 

0.07 70.78% 

0.17 16.14% 

0.27 4.35% 

0.37 3.10% 

0.47 3.07% 

0.57 3.26% 

0.67 3.38% 

0.77 3.38% 

0.87 3.45% 

0.97 3.45% 

1.07 3.45% 

1.17 3.45% 

 

 

Table 5 Thresholds and Error Percentages for Two Variance Method 

Threshold (T2) Error Percentage 

0.4 67.79% 

0.5 43.51% 

0.6 23.07% 

0.7 8.98% 

0.8 3.26% 

0.9 3.03% 

 

The error percentages for the different thresholds used in both the single variance 

case and the two variance case are shown in Table 4 and Error! Reference source not 

found. respectively. For the single variance case, the threshold values 0.27 and greater 

give the lowest error percentages, while for the two variance case, threshold values 0.8 

and greater give low error percentages. However, if we take a look at Table 2, it is evident 

that the number of patterns actually detected by the algorithm is lower than those seen in 

Table 3. This implies that the two variance method, with a threshold of 0.8, is better at 

detecting the bad characters as compared to the single variance method with a threshold 
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of 0.37. The number of characters detected by the single variance method seen in Table 2 

is far lower, compared to that of the two variance method, as seen in Table 3. Hence, 

despite the similar low error percentages, the two variance method is better in terms of 

practical usability than the single variance method, since the number of bad patterns 

detected by the latter is greater than the former. 
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Chapter 6  

Detection and Correction of Bad Inputs 

Here we assume that all training and validation images are undamaged. The input 

vector is usually sufficient to classify a character image correctly. However, there are 

characters which look remarkably similar to each other. It is common to see a classifier 

misclassify these images. The final output decision of the MLP is based on the class with 

the maximum discriminant value. It is, however, possible to detect confused images by 

comparing the maximum discriminant values to the others. This chapter details a method 

to identify such misclassifications and rectify them. 

 

6.1 The Confusion Matrix 

As mentioned earlier, a character may be confused with a small number of other 

characters. This behavior is displayed using a confusion matrix [11], which is a detailed 

report of the performance [83] of the MLP classifier. The row numbers denote the correct 

class number for a given input vector and the column numbers denoted the predicted class 

number. During the validation stage, we have information of the correct and predicted 

classes for each input vector. By running a comparison of these two pieces of information, 

it is possible to generate a confusion matrix. For a set of validation patterns, the confusion 

matrix gives the number of times a character was classified correctly and the number of 

times it was incorrectly classified. It also gives the incorrect classes the input vector was 

assigned to. 
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Table 6 Confusion matrix for characters ‘4’; ‘6’; ‘A’; ‘W’; ‘X’ 

 
 

 
6.2 Detecting a Confusion between Multiple Classes 

Examining the confusion matrix shown in Table 6, it is possible to identify the 

classes which may be confused. For example, ‘6’ is clearly being confused with ‘5’ and ‘G’. 

Also, ‘W’ is being confused with ‘N’. 

To detect the possibility of a confusion, the first step is to find the discriminant 

vectors for the classes that are most likely to be confused. For a correctly classified 

character, the discriminants for the other classes should, ideally, be much lower than the 

maximum discriminant. However, for inputs where the classifier has difficulty correctly 

classifying the input character’s feature vector, it will give a higher discriminant value for at 

least one of the other possible classes. From the discriminant vector d1, the discriminant 

values corresponding to the classes which the estimated class is confused with are saved 

to a vector d1t. For a threshold T3, if any of the discriminant values are greater than or equal 

to the product of T3 and the maximum discriminant value, as seen in (65), the input vector 

is termed as a confused input and is put through further processing, discussed in section 

0. x is a confused input vector if 

𝑇3 ≤
𝑑1𝑡(𝑖)

𝑑1𝑚𝑎𝑥
< 1, 𝑓𝑜𝑟 𝑎𝑛𝑦 ′𝑖′ (65) 

The threshold T3 is varied between 0.2 and 0.9 for the purpose of detecting the 

confused characters. It is assumed that for a confused case, there will be at least one 
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discriminant value in d1’ with a value which is some fraction of the maximum discriminant 

value. However, threshold values lower than 0.2 detect nearly all correct patterns and label 

them as confused patterns and hence, these lower thresholds have been ignored. 

This assumption has been tested out for different threshold values and the 

performance of this algorithm is based on the number of confused patterns detected by 

each threshold and the number of correct patterns detected by the thresholds, as shown 

in Table 7. The data set contains 8607 patterns with 56 patterns being the confusion cases. 

 
Table 7 Performance comparison for different thresholds 

Threshold (T3) Number of 
Confused Patterns 

Detected 

Number of 
Correct Patterns 

Detected 
(False Positives) 

0.2 42 1978 

0.3 40 1211 

0.4 36 713 

0.5 34 352 

0.6 31 138 

0.7 30 56 

0.8 23 19 

0.9 11 8 

 

 

 
6.3 Reclassifying Probable Misclassifications 

One of the reasons for a misclassification is the large number of output classes in 

the original classifier. By reducing the number of output classes the network must train for, 

the accuracy of the network increases. The proposed solution for the case of confused 

characters involves the use of a second classifier, to reclassify the input feature vector. A 

cascaded classifier has been used in applications to detect pedestrians at road crossings 

[84]. In this case, the first classifier is a statistical learning classifier, to detect approximate 

ROIs and the second classifier is an SVM, used to locate pedestrians. Cascaded classifiers 
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have also been used in OCR systems [85], where principal component analysis is used to 

detect possible misclassifications, which are then reclassified using a second classifier.  

For this thesis, the second classifier is also an MLP classifier and this second 

classifier is trained with only those classes which a particular class may be confused with. 

The classifier is trained on the same feature set as the primary classifier. As a result, the 

same input vector x is now put through a classifier with a significantly reduced number of 

classes, which improves its performance. If any of the characters classified correctly in the 

first classifier are passed to this stage, the characters are simply reclassified into the same 

correct class. This is because, by reducing the number of output classes, we are not 

adversely affecting the performance of the classifier for the correctly classified characters. 

For illustrative purposes, a performance comparison is given for the group of 

possible confused characters, ‘4’, ‘6’, ‘A’, ‘W’ and ‘X’. The comparison in performances for 

this collective group is presented in Table 8 and the corresponding error percentages are 

presented in Table 9 . 

 

Table 8 Performance comparison for a group of confused characters in both stages  

Character Group Number of 
Misclassifications 

(M = 36) 

Number of 
Misclassifications 

(M = 5) 

‘4’; ‘6’; ‘A’; ‘W’; ‘X’ 19 3 

 
Table 9 Comparison of Error Percentage for each individual stage 

Character Group Percentage Error (Single 
Classifier System) 

Percentage Error (Two 
Classifier System) 

‘4’; ‘6’; ‘A’; ‘W’; ‘X’ 1.534% 0.242% 
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6.4 Discussion 

From Table 8, we see that the second classifier drastically reduces the number of 

misclassifications due to confusion. This is because the second MLP deals with a fewer 

classes and hence, the weights are more optimized to classify these particular sets of 

inputs. Any correct characters which are put through this second classifier are also 

correctly classified, since the accuracy of the MLP does not decrease when the number of 

output classes is reduced. Hence, the overall effect of such a two classifier system is 

positive, since it greatly reduces the error percentage of the system. As seen in Table 9, 

the error percentage for the given cluster of characters, in a single classifier system is 

1.534%, whereas, after the implementation of the proposed confusion detection algorithm, 

the error percentage drops to 0.242%. 

From Table 7, it is evident that a threshold values of 0.7 and greater give an 

optimum results. They detect fewer confused characters than the thresholds lower than 

0.7, but the number of correct characters labeled as confused and passed on to the second 

classifier is also lower in the thresholds greater than 0.7 and this is the major performance 

metric to be considered here. Although the thresholds lower than 0.7 detect more confused 

characters, they also detect large numbers of correct characters too. As a result of this, the 

number of characters which must be processed by the second classifier increases 

drastically. This will adversely impact the overall speed of a practical LPR system. Hence, 

the optimum threshold is 0.7. 
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Chapter 7  

Conclusions and Future-Work 

The methods to detect bad characters and confused characters; and the 

remapping scheme to approximate MLP outputs to Bayes posterior probabilities, proposed 

in this thesis have been validated using the application of license plate character 

recognition. But these concepts are not limited to a single application. Since the proposed 

methods are implemented solely on the discriminant outputs, they should work for many 

additional applications. 

The non-linear remapping of the outputs is not a perfect algorithm, since the 

resultant plot is not an ideal straight line with a one-to-one mapping with the true 

probabilities. However, it is a good approximation of the probabilities for the current LPR 

application. Given a different application with a different set of input feature vectors, a more 

linear graph may be achieved. 

The detection of bad characters using discriminant variances is a method whose 

robustness depends on the type of segmentation error generated by the preprocessing 

steps. For cases where an improper segmentation results in a shape resembling a 

character ‘D’, while the actual character on the license plate was a ‘P’, the algorithm may 

not detect the character as a bad one, simply because, the incorrect segmentation ends 

up producing a character that is valid in all aspects. Thus, there are certain limitations to 

the detection of bad characters which must still be explored in detail. 

The method for detecting confused characters can be improved by increasing the 

number of patterns used for validation, effectively increasing the data contained in the 

confusion matrix. The two classifier system greatly improves the accuracy of the overall 

system, since it is trained to handle a smaller number of output classes. But if the classifier 

encounters a character which it confuses with a character not seen in the confusion matrix, 
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the misclassification may not be caught by the proposed algorithm, since the discriminant 

value corresponding to the estimated class will not be checked. A method to detect such 

cases must also be explored.  
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