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ABSTRACT

NEW MATRIX COMPLETION MODELS FOR SOCIAL INFORMATION

RETRIEVAL APPLICATION

JIN HUANG, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: HENG HUANG

Many popular social web sites have emerged during the past decades and completely

changed many users’ everyday lives. Recently, social information retrieval models, where

conventional information retrieval meets the social context of search and recommendation,

have become the central topic in machine learning, data mining, information retrieval and

many other areas.

A particular area of social information retrieval is the recommendation. Such recom-

mendation ranges from classic movie rating recommendation in user-item matrices, trust

and reputation modelling between members in any social network. If we model such rec-

ommendation in the form of matrices, then such recommendation can be formulated as

recovering missing values in the matrices. This is a classic research topic and there are

numerous literature papers regarding this.

In this dissertation, we propose a few different models in terms of social recom-

mendation. Specifically, we develop different models to predict the trust between users in

the discrete domain, trust and rating prediction via aggregating heterogeneous social net-

works, predicting the future events of users. We will introduce these models in different
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chapters, provide the mathematical derivation for the objective function optimization and

demonstrate the effectiveness of these methods with other benchmark methods in each cat-

egory. These methods provide new perspectives for discovering un-tagged relationships

and predicting future events for social networks.
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CHAPTER 1

Introduction

1.1 Chapter 1 Introduction

Web 2.0 sites (such as Facebook and Twitter) have undergone a rapid developmen-

t during the past a few years. The advancement in communication, especially in mobile

technology, enabling people contact each other in innovative ways. Various web and social

sites have been coming up, presenting new forms of interaction, communication and collab-

oration. There are a large number of volunteers working collaboratively on encyclopedia

articles, making wikipedia one of the top visited sites and a good source of information.

Individual users can tweet latest news and upload live videos, spreading news and messages

much faster than conventional media such as TV and printed newspaper. Huge number of

interest and profession groups are formed on virtual web sites, users can organize events

and expand their networks. Therefore, these web sites have a profound influence on the

whole society and fundamentally change many individual users’ daily lives.

However, there are multiple factors which make social web sites far from an ideal

collaborative platform for information sharing. There are a large number of hackers, spam

emails, virus writers, identity thieves flooding on these web sites. Due to the anonymity

nature of internet and social community users, preventing such crimes is difficult if not

impossible. As a result, many users are taking precautious measures when engaging social

network activity. Users are hesitant to accept a stranger’s add friend request from Facebook,

reluctant to trust tweet messages from un-verified twitter accounts. With such large amount

of information about users’ interaction activities, public profiles, and private content, the

question of whom and what to trust has become an important challenge to the users. Many
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on-line social networks allow users to explicitly express evaluations on other users, or the

content they created. For example, Facebook users may choose to accept or decline adding

friend requests from strangers, based on their confidence in trustworthiness. Yahoo allows

community members to rate any comment from another user as spam or regular message.

Clearly, social network analysis could potentially address many issues mentioned

above and greatly improve users’ experience on these web sites. Social network analysis is

not new and indeed has been the research topic for many different disciplines. Social scien-

tists adopted the concept of ”social networks” since early 20th century to connote complex

sets of relationships between members of social systems at all scales, from interpersonal to

international. There are quite a few literature works on this topic [1, 2, 3]. To analyze those

new social web sites, however, there are quite a few challenges:

1. Limited information. Social network study often needs to deal with data sparsity. For

social networks in web 2.0 category, the sparsity becomes a more serious issue. Users

are reluctant to share their profiles and activity records due to lack of diligence and

privacy concern. For example, Facebook has more than 800 million users, however,

individual users generally have at most a thousand friends in their friends lists. In

other words, even if we fetch all users’ friends lists information, if we try to grasp

the pairwise relationship between all users, the available information is less than

0.01%, which is generally very difficult for most conventional machine learning or

data mining methods to work.

2. Scalability. Web 2.0 companies usually start from small and gradually have a large

user database when they become popular. Still take Facebook as an example, its 800

million nodes size makes it a challenge to do any reasonable social network analysis.

3. Heterogeneity. There is a possibility that entries in such social network are of dif-

ferent types. Take Youtube as an example, users,tags and videos are merged into

2



the same network. Social network analysis with respect to heterogeneous entities

demand new theories and new methods.

4. Dynamicity. Active users in these web sites keep changing due to the registration of

new users and loss of existing users. Therefore, the corresponding method needs to

be adaptive to such change.

In this dissertation, we focus on proposing different models to address the first chal-

lenge. We tackle the information sparsity issue in two ways. The first is trying to take

the best use of the available social network data and explore the hidden structure informa-

tion. The other is to gather external correlated source information and help us to learn the

structure.

1.2 Main Scope

There are numerous ways to represent the social network, such as graph or adjacency

lists. These two methods both have their advantages and disadvantages. Graph represen-

tation is more straightforward and many graph theories can be used to explore the graph

structure, but it could cause a big waste of memory and hard disk. On the other hand, ad-

jacency lists are more frequently used to store the social network in its compact form, but

analyzing them will definitely be more difficult.

In this dissertation, we adopt the graph representation. Clearly, it is expected that

any popular social web site can not be fully loaded into memory on most individual per-

sonal computers. Therefore, such representation is generally applicable to medium size

social web sites only. However, with the popular distributed computing framework such as

MapReduce[4] and Hadoop1, it is possible if given multiple personal computers. The data

sets used in this dissertation are medium due to our limited computation resources, they are

1open source version of mapreduce
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used more to demonstrate the potential of our proposed methods to data sparsity issue than

to address the scale issue.

Also, in this dissertation, we assume social network users are the targets of our re-

search. The 3 main models are the trust prediction between users, where the trust is the

directed relation between two individual users; aggregating social trust graph and recom-

mendation system into one learning framework; predicting users’ future actions based on

past events.

1.3 Organization Of Following Chapters

In the next 3 chapters, we will present the 3 models we mentioned above, with 1

chapter for each model. Due to the variation in the background setting, within each chap-

ter, we first give necessary background information for each model, and the necessarily

mathematical notations. Next, we propose our objective function and the corresponding

optimization algorithm. We then compare it with a few classic classical methods to demon-

strate the effectiveness of our model.

In the last chapter, we will conclude our work and propose a few possible topics for

future work in the social network analysis area.
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CHAPTER 2

Robust Binary Rank-K Matrix Learning For Trust

And Link Prediction In Social Network

2.1 Chapter 2 Introduction

With the rapid growing number of registered users in various social web sites, privacy

has become a more serious concern for both users and web sites. Among different kinds

of online activities, adding (accepting) other users as friends is a primary one, since many

user interactions are built upon this. With the increasing risk of exposing private profile

to malicious users, the question of whom to trust has become an important challenge to

individual users. Many online social communities allow users to tag (or implicit imply)

other users to facilitate the trustworthiness evaluation and expand their networks. It is clear

that we can represent these online users (nodes) and their trust relationships (links) using

a graph, then whether a user should trust another user is equivalent to finding if there is a

link between these two users.

Due to lack of diligence from users’ side and the privacy concern, most users on-

ly have chance to explicitly tag a small number of users. For instance, individual users

rarely have more than one thousand friends considering its 800 million total users in Face-

book. Therefore, most trust graphs contain large number of missing values and conven-

tional graph mining methods [5, 6] that rely on local features will have difficulty getting

satisfactory prediction results. If we index users as row and columns, then the trust pre-

diction problem can be formulated into a recommendation system between users. Recom-

mendation systems are capable of handling matrices with large number of missing values,

a good example of such application is Netflix prize. Recommendation systems generally

5



produce outputs in one of the two ways-through content or collaborative filtering. Low-

rank approximation methods are a popular category of collaborative filtering methods, they

assume users’ interests are determined by a few latent factors. In fact, the relationship be-

tween users are often also determined by a few factors, such as social circle, background

and interest etc. It has been discovered in [7], people who are in the same social circle

often share similar behavior and tastes. In [8], Crandall et al. give the following two main

reasons. One is that people generally adopt behavior exhibited by those they interact with.

Such process is called social influence. The other more distinct reason is people incline

to form relationships with others who are already similar to them. In this paper, we will

therefore find a low-rank matrix to predict users’ tagging patterns towards other users based

on the global structure.

However, there are two subtle issues with the above approach, due to the ignorance

of the trust graph structure. Most social network users explicitly tag other users to indicate

whether their trust confidence, in binary form. Those conventional methods fail to retain

trust graph’s discrete structure. Second issue, which is more subtle, appears when attempt-

ing to convert the predictions into discrete values using heuristic threshold values. Such

conversion is clearly inefficient, due to the extra cost. Meanwhile, the choice of threshold

value for each individual user can be very difficult due to the severe sparsity and skewed

distribution of trust and distrust votes. Therefore, it is desirable to explicitly restrict the

output to the binary discrete domain.

In this chapter, based on our previous work [9, 10], we propose a low-rank matrix

completion method that retains the matrix binary structure. The main contributions of our

method are essentially threefold:

• We establish the connection between trust prediction problem and matrix completion

with low-rank and discrete constraints. Such formulation has theoretical justification

from other disciplines and are built based on historical success on similar applica-

6



Figure 2.1. A demonstration for scenarios that an individual user makes trust decisions in
various forms, such as accepting others’ adding requests from Facebook, believing in news
from other twitter users, reading emails sent by others. Green arrow represents the sources
this user should trust and red arrow represents the sources this user should distrust..

tions. The objective function has a clear motivation and is easy to interpret, it also

takes a collaborative filtering point view from both the global structure and the local

users’ pattern. The binary rank-k collaborative filtering to predict the relationship

between users, is first such attempt to the best of our knowledge.

• Based on integer programming formulation, we propose a framework to break down

the difficult problem into several manageable pieces. Such optimization simultane-

ously preserves its both low rank and discrete property, and can be solved effectively

by the state-of-the-art optimization techniques. The asymptotic convergence of our

framework is straightforward and can be derived from literature materials.

• We have conducted empirical studies using both synthetic and real data in Section

??. Using synthetic data, we look into the influences of discrete constraint and rank

on the prediction accuracies, which also show the robustness of our method. On real
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data sets, we conduct empirical experiments and compare our proposed method with

a set of classic methods. Results on the real data set also confirm the consistency of

our method.

The rest of the chapter is organized as follows: In Section 2.2, we briefly review

existing work for collaborative filtering and binary code learning. In Section 2.4, we first

formulate the problem of learning binary codes for collaborative filtering as a discrete op-

timization problem and introduce our objective function. Then, the learning algorithm

introduces auxiliary variables and reformulate the objective function, therefore the original

difficult one can be decomposed into several sub-problems that can be solved efficient-

ly. Empirical experiments on 3 public-domain data sets are conducted in Section 2.4. We

conclude our work and present several future research directions in Section 2.5.

2.2 Related Work

Existing recommendation system methods can be roughly divided into 2 categories:

collaborative filtering [11, 12] and content filtering [13, 14]. Collaborative filtering can be

further classified as memory based and model based, survey papers of these papers include

[15, 16] etc.

Recently, matrix factorization has become a popular direction for collaborative fil-

tering [17, 18, 19, 20]. These methods explore the associations between users and items,

so that the latent profiles in lower dimension spaces can capture their characteristics. Most

of these methods work in the continuous domain and try to find certain representations

between users and items. However, as stated in proceeding section, social network users

need explicit messages regarding whether others are trustable, i.e, the corresponding en-

tries of the matrix should be binary. In the literature, binary matrix factorization methods

are relatively few except recent papers [21, 22].
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Zhou and Zha [21] focus on designing efficient binary recommendation filtering al-

gorithm, which is independent of number of items. They use Hamming distance to preserve

the preference of users over items. By minimizing the divergence between training and pre-

dicted rating, the learning problem is formulated as a discrete optimization problem. Then

they relax the objective function and solve it via existing methods.

Shen et al. [22] consider a rank one binary matrix approximation approach, so as to

identify the dominant patterns of the data and preserve its discrete property. Trying to min-

imize the mismatches between given binary data and approximation matrix is formulated

as a 0-1 integer linear problem. In this paper, they propose a relaxation algorithm with

regularization term, which is applicable to medium size problem. What is more, they show

the relaxation can be formulated into a maximum flow problem and solved efficiently.

These two papers study data matrix pattern on the discrete domain, but fail to consid-

er the low-rank property of data matrix. SVD was a popular method for collaborative filter-

ing, but the prediction result was significantly improved when matrix completion methods

took the low-rank assumption into account. Therefore, to better predict the missing values

in trust graph, we simultaneously take both binary and low-rank constraint into account and

learn its topology structure from a global perspective.

2.3 Learn Binary Low-Rank Matrix

In this section, we describe the proposed method for learning binary low-rank ma-

trix in the category of collaborative filtering. We first describe how trust graph prediction

problem can be formulated into a general recommendation system problem. Then we give

a introduction to plausible conventional low rank methods, point out their drawbacks and

propose our objective function. Next, the learning method based on solving the constrained

9



problem is derived in detail. Finally, we discuss the optimization cost and sketch the con-

vergence proof.

2.3.1 Problem Formulation

The goal of trust prediction is to predict the unobserved relationship between online

users according to their past tags. Formally, we assume Mij represents the tag between

user i and user j and Ω is the collection of available tags for the whole graph. In particular,

we assume Mij is a binary value with either 0 or 1, where 0 represents user i does not trust

user j and 1 represents user i does. Note that such setting reflects the general scenarios for

nowadays social web sites, where user i can choose to accept user j’s connection request.

As mentioned in the introduction, trust graphs contain large number of missing values due

to the two reasons mentioned in the introduction section of this chapter, therefore, these

graphs are challenges for conventional graph mining algorithms. As these graphs share

high similarity with user-item matrix such as Netflix prize, recommendation system based

methods are appropriate for these cases.

2.3.2 Conventional Recommendation Methods

In this part, we focus on introducing two low-rank approximation methods in the

collaborative filtering category. The first one is SVD, which produces an approximation

matrix with specified rank.

min
X
∥XΩ −MΩ∥22

s.t. rank(X) ≤ k.
(2.1)

The solution to the above objective function is well known and therefore we skip it here.

A significant drawback of SVD approach is its vulnerability to the initial noise due to ℓ2

norm.

10



Candès et al [23] proposed to seek a low-rank matrix X such that

min ∥X∥∗ ,

s.t. XΩ = MΩ

(2.2)

where trace norm ∥X∥∗ is the sum of singular values of matrix X . Other researchers have

relaxed the constraints [24] to make the above problem easier to solve

min
X
∥XΩ −MΩ∥2F + λ ∥X∥∗ ,

where λ is the regularity parameter and

∥XΩ −MΩ∥2F =
∑

(i,j)∈Ω
(Xij −Mij)

2. (2.3)

However, there are two potential issues with trace norm minimization approaches. First,

the incoherence conditions of the data matrix is often too restrictive, there is no prediction

accuracy guarantee when the assumption is not satisfied. The theoretical results in [23]

assume that the observed entries are sampled uniformly at random. Unfortunately, many

real-world data sets exhibit power-law distributed samples instead [25]. Furthermore, Shi

and Yu [26] pointed out that the yielded solution via trace norm minimization is often not

low-rank or unique for practical applications. Second, the sparse entries are prone to the

influence of outlying or corrupted observations.

There is another issue when applying the above two methods to trust graph predic-

tion. For online social network users, they often desire to get explicit messages whom they

should trust. In other words, the desired outputs should still be in binary format. Clearly,

both SVD and trace norm minimization produce the outputs in the continuous domain, as

a result a separate post-processing is necessary for the conversion. But it brings another

two shortcomings: First, it is a ad-hoc procedure, especially difficult for sparse matrices

like trust graphs. What is more, such yielded solution is no longer the convex solution to

Eq. (2.2), which is against the motivation of trace norm.
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2.3.3 Robust Binary Rank-k Matrix Learning

Inspired by the discussion above, we decide our matrix completion should satisfy

these properties: First, the output should be in binary discrete format for easy interpretabil-

ity. Second, the approximation matrix should be in precise low-rank and captures the latent

factors of the trust graph. Third, the matrix completion measure should be more robust than

ℓ2 norm used by SVD.

Therefore, we propose the following objective function:

min
X
∥XΩ −MΩ∥1

s.t. rank(X) ≤ k,Xij ∈ {0, 1}
(2.4)

Here we explicitly specify the rank of output matrix and the discrete nature of matrix ele-

ments, use ℓ1 norm as discrepancy measure to alleviate the outlier issue. A more subtle but

important consideration for ℓ1 norm is that trust graph is often dynamic, users’ relationship

could change due to unexpected events. See Figure 2.2 for a demonstration. We wish our

prediction could be stable in spite of local entries change due to individual users. Based on

these characteristics of our method, we call out method Robust Binary Rank-K (RBRK).

In the next subsection, we will provide the optimization algorithm to Eq. (2.4).

2.3.4 Optimization Algorithm

In this part, we propose to incorporate the Augmented Lagrangian Method (ALM)

[27] in our framework. The main idea is to eliminate equality constraints and instead add a

penalty term to the cost function that assigns a very high cost to the infeasible points. ALM

differs from other penalty-based approaches by simultaneously estimating the optimal so-

lution and Lagrange multipliers in an iterative manner. The main advantages of ALM over

other generic algorithms are the fast, accurate performance and independence of problem

schemes [28].
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Figure 2.2. A demonstration for scenarios where users’ relationships change due to unex-
pected events. We use 1s to represent trusts and 0s to represent distrusts while question
mark for unobserved ones. Those changed elements are highlighted in red and the closest
scenarios indicate the reasons for such changes..

We first introduce an ancillary variable Y that will be used to approximate X and

write Eq. (2.4) into the following one

min
X,Y
∥XΩ −MΩ∥1

s.t. X = Y.

(2.5)

Then we write it in the following one that is suitable for ALM framework

min
X,Y
∥XΩ −MΩ∥1 + Tr

(
ΣT (X − Y )

)
+ µ

2
∥X − Y ∥2F

s.t. rank(Y ) ≤ k,Xij ∈ {0, 1}
(2.6)

where Tr is the trace operation for matrix, Σ is the parameter to adjust the discrepancy be-

tween X and Y , and µ is the penalty control parameter. The objective function in Eq. (2.6)

is not convex in both X and Y . Therefore, it is unrealistic to expect an algorithm to find the

global minimum solution, and we apply the alternative optimization technique here. Note

that there are also other steps in each iteration that accelerate the convergence, which is the

important features of ALM framework.
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Step 1: when X is fixed, optimizing with respect to Y is reduced to the following

equation.

min
Y

Tr
(
ΣT (X − Y )

)
+ µ

2
∥X − Y ∥2F

s.t. rank(Y ) ≤ k.
(2.7)

Such equation can be further reduced to the following equation.

min
Y

∥∥∥Y − (X + 1
µ

∑
)
∥∥∥2
F

s.t. rank(Y ) ≤ k
(2.8)

Assuming the SVD decomposition of X + 1
µ
Σ is FSGT , then the solution of Y is

Y = FkSkG
T
k , (2.9)

where Sk contains top k largest values and Fk, Gk are the singular vector matrices corre-

sponding to Sk.

Step 2: when Y is fixed, optimizing with respect to X is reduced to the following

one
min
Xij

∥XΩ −MΩ∥1 +
µ
2

∥∥∥X − Y + 1
µ
Σ
∥∥∥2
F
.

s.t. Xij ∈ {0, 1}
(2.10)

Here we solve X based on whether Xij ∈ Ω or not.

To solve Xc
Ω, the complement of XΩ, it is easy to see Eq. (2.10) becomes

min
X

∥∥∥X − Y + 1
µ
Σ
∥∥∥2
F
.

s.t. Xij ∈ {0, 1} , (i, j) /∈ Ω
(2.11)

Note that ∥X∥F =

√
m∑
i=1

n∑
j=1

x2
ij , therefore minimizing the matrix norm is equivalent to min-

imizing the square sum of matrix elements. Then Eq. (2.11) can be solved in an element-

wise way and we get the following solution since each entry is chosen from the list of

discrete values

Xij = argmin
ck∈{0,1}

(ck − Yij +
1

µ
Σij)

2, (i, j) /∈ Ω. (2.12)
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Solving XΩ comes down to the following optimization problem

min
X
∥XΩ −MΩ∥1 +

µ
2

∥∥∥X − Y + 1
µ
Σ
∥∥∥2
F
.

s.t. Xij ∈ {0, 1} , (i, j) ∈ Ω
(2.13)

It can be solved in a similar manner as Xc
Ω.

Xij = argmin
ck∈{0,1}

|ck −Mij|+
µ

2
(ck − Yij +

1

µ
Σij)

2, (i, j) ∈ Ω (2.14)

The complete solution for X is given by combining Eq. (2.12) and Eq. (2.14).

Step 3: re-calculate Σ = Σ + µ(X − Y ) to update the discrepancy between X and

Y .

Step 4: update µ = ρµ via a fixed coefficient ρ > 1, as number of iterations increase,

µ grows exponentially.

The main idea of this optimization framework is to consider the low-rank and dis-

crete constraints separately. In Eq. (2.5), we introduce Y to approximate X . This removes

the low-rank constraint on X and the original difficult problem Eq. (2.4) can now be solved

in an easy way. For each iteration, Y is the low-rank approximation to X in the contin-

uous domain, such approximation is from the global perspective of the matrix structure.

Meanwhile, X seeks the optimal discrete entry for each element in Y , based on the lo-

cal information without using any threshold parameter. Such framework adopts the recent

popular trace norm minimization technique, produces the discrete output and has the over-

all same computation complexity as SVT. The use of ℓ1 norm also makes our objective

function most robust to noise. This is especially important for application such as trust

prediction, where graphs are extremely sparse and prone to outlier influence. The above

analysis supports our claim regarding the merits of our method.

With the incorporation of ALM framework, it is easy to notice that µ → ∞ as the

number of iterations increase, X and Y have to be equal in order to keep objective function

in Eq. (2.6) finite. In other words, Y asymptotically converges to X , this sketches the
15



intuitive asymptotic convergence of our algorithm. Please see more discussions on ALM

algorithm convergence in [29, 30, 31, 32]. In practice, our method usually converges within

30 iterations on the data sets in the experiment section.

The complete steps of our algorithms are summarized in Algorithm (1). It is easy

to observe the the computation cost for the algorithm is dominated by the SVD operation

in step 1. This step is generally of order O(m2n), where m and n are row and column

sizes of M . Here we use PROPACK package [33]. PROPACK uses the iterative Lanczos

algorithm to compute the singular values and singular vectors directly, by using the Lanczos

bidiagonalization algorithm with partial reorthogonalization. As a result, it is much faster

than the conventional SVD methods. Note that as µ grows exponentially, usually it takes

only a few iterations to converge. Therefore, our method is faster than the conventional

SVD method for matrix completion. The convergence criteria is the relative change of the

objective function value is less than 10−4. The value of ρ has a significant impact on the

convergence speed of our algorithm, larger ρ value would reduce the required steps for

convergence but meanwhile compromise the accuracy of final objective function value.

2.4 Experiments

In this section, we empirically evaluate our RBRK method for the low rank matrix

completion problem using 1 synthetic and 3 real-world data sets. In the first part regarding

synthetic data, we investigate the influence of rank, discrete constraint etc on the output.

We compare our method with a set of competitive methods on real data sets in the second

part.

16



Algorithm 1: Robust Discrete Matrix Completion
Input: available entries MΩ, ALM parameters µ,Σ,ρ.

Initialize M ,X and Y .

repeat

Update Y with Y = FkSkG
T
k where Fk,Sk and Gk are defined in Eq. (2.9).

Update X with formulas XΩ and Xc
Ω respectively

Xij = argmin
ck∈{0,1}

(ck − Yij +
1

µ
Σij)

2, (i, j) /∈ Ω

Xij = argmin
ck∈{0,1}

|ck −Mij|+
µ

2
(ck − Yij +

1

µ
Σij)

2, (i, j) ∈ Ω

Σ = Σ+ µ(X − Y ).

µ = ρµ.

until Convergence

Output: X

The matrix completion evaluation metrics used in this paper are mean average error

(MAE) and root mean square error (RMSE)

MAE =mean |Xij −Mij|

RMSE =

√
mean(Xij−Mij)2

sd(Mij)
, (i, j) /∈ Ω

(2.15)

where sd represents the standard deviation.

The competitive methods include SVD, singular value projection 1(SVP) [34], robust

PCA 2(RPCA) [35], singular value thresholding 3(SVT) [36]. Since CFCodeReg [21] also

works on binary matrix learning, we include its Orthogonal transformations version.

1www.cs.utexas.edu/ pjain/svp/
2perception.csl.uiuc.edu/matrix-rank/samplecode.html
3www-stat.stanford.edu/ candes/software.html
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Table 2.1. Parameters setting for all methods. Some Matlab implementations call subrou-
tines in non-Matlab code or some numerical packages such as PROPACK [18] to efficiently
deal with the sparsity of the matrices involved. p is the sampling ratio.

Methods Environment Comments

RBRK Matlab ρ = 1.08, µ = 10−3,maxiter= 100
SVD Matlab tol= 10−3

OPTSpace Matlab tol= 10−3

SVP Matlab+PROPACK tol= 10−3, vtol= 10−3,maxiter= 500,verbosity= 1, δ = 1
20p

SVT Matlab+PROPACK τ = 5√
mn

, δ = 1
20p

,maxiter= 500, tol= 10−4

RPCA Matlab+PROPACK default
CFCodePair Matlab default

We set the parameters of all methods as listed in Table 2.1 for all subsequent experi-

ments. We give the ground truth rank of the recovery matrix for all methods (except SVT)

unless specified otherwise. Since the default step size for SVT and SVP would result in

divergence for some our data sets, we set it a conservative value. For RBRK and SVD,

we always initialize the missing entries with random values between 0 and 1, set Y the

initialized M for RBRK. We report results below the average of 20 runs.

2.4.1 Experiment On Synthetic Data

We first evaluate our method against other methods for random low-rank matrices

and uniform samples. We generate a random rank 2 matrix M ∈ (0, 1)n×n from 0 to 1

and generate random Bernoulli samples with probability 0.1. Our task is to predict the rest

entries based on available samples.

To make the prediction less trivial, we add approximately 5% Gaussian noise and

conduct matrix completion experiment as n increases from 1000 to 5000. In Fig. (3(a))it

can be observed that SVD is sensitive to moderate noise. Other methods are relatively

robust to this level of noise and have very close performance.
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Table 2.2. Investigation into ρ and number of iterations

ρ Value Iterations RMSE
1.01 123 4.82%
1.02 64 4.78%
1.04 33 4.76%
1.08 21 4.77%
1.2 12 5.36%

Next we fix the matrix size at 2000× 2000 but vary the noise level from 5% to 25%.

With the increased noise, some entries obviously become outliers with respect to others.

In this experiment, we exclude SVD and SVT methods due to their performance in the

previous one. In Fig. (3(b)), we can observe RBRK method shows significant better RMSE

than all other methods since noise level 15%. With the increased level noise, the matrix has

violated the structure assumptions many methods assumed. In contrast, since RBRK has

no requirement on the matrix structure, it shows the most robust performance.

Now it comes to the system parameter testing. First we test the rank parameter. In

previous experiments, we assume we know the ground truth rank, this is rarely the case for

real applications. Hence it is crucial our method can maintain robust performance when the

assumed rank is close to the ground truth. We plot the result in Figure 2.3. Second, as our

objective function is not convex, we want to emphasize that the performance of RBRK is

not very sensitive to the initializations and usually converge within the specified number of

iterations given reasonable µ and ρ. Since µ is enlarged in an exponential way, its influence

is relatively marginal compared to ρ. Therefore, we decide to list ρ, number of iterations

and the corresponding RMSE in Table 2.4.1. We take n = 2000, noise level 5% and set

µ = 10−3, the average number of iterations (rounded) and RMSE are out of such 10 runs.

It can be observed that RMSE is quite stable for all these values, the number of iterations

required for convergence is roughly proportional to ρ.
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(a) Matrix Completion with Moderate Noise
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Figure 2.3. Matrix completion on synthetic data set with various matrix sizes, noise levels
and ranks. (a) RMSE by various methods for matrix completion with p=0.1, k=2 and
around 10% known entries are corrupted. (b) RMSE with increased levels of noise, SVD
result was omitted due to its poor performance. (c) RMSE with different approximation
ranks..

So far our evaluations are in the continuous domain, for the convenience of most

competitive methods. However, for trust graph, entries are restrict to the binary values,

then the recall and precision are more appropriate evaluation metrics here.

recall =
TP

TP + FN
, precision =

TP

TP + FP
, (2.16)

where TP, FN and FP are numbers of true positives, false negatives and false positives

respectively. In next subsection, we will also use these two for evaluation.

2.4.2 Experiment On Real Data Sets

The 3 trust graph data sets we use are Epinions [37], Wikipedia [38] and Slashdot

[39].
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Table 2.3. Description of Data Set

Data set Epinions Wikipedia Slashdot
# of Nodes 2000 2000 2000

# of Trust Links 149,146 81,232 74,561
% among All Links 3.73 2.03 1.86

Epinions was collected in a 5-week crawl from Epinions.com. It consists of two part-

s, one is the trust ratings part. The Epinions data set consists of 49,290 users, 487,181 trust

statement between users. Users express their web of trust, i.e, reviewers whose reviews and

ratings they have consistently found to be valuable and offensive.

Wikipedia records the event that users hold elections to promote some users to ad-

ministers, who are users with access to additional technical features that aid in maintenance.

Here we consider a directed vote between two users as a trust link. Wikipedia contains

about 7,000 users and 103,000 trust links.

Slashdot is a technology-related news website thats introduced the Slashdot Zoo fea-

ture which allows users to tag each other as friends or foes. The network contains friend/foe

links between the users of Slashdot. It contains about 80,000 nodes and more than 900,000

edges.

Note that these (trust) links occupy a very portion of possible links. In other words,

most distrust links can be implied implicitly. It can be observed that the distributions of

links in these data sets are very skewed due to the domination of distrust links. To alleviate

the data skewness for fair comparison and keep the computation manageable, we select

top 2,000 highest degree users from each data set. Table 2.4.2 gives a summary descrip-

tion about the subsets used in our experiment. Note that the subsets still carry a skewed

distribution in trust and distrust links.
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We initialize all methods with the same missing values of X , random values be-

tween 0 and 1 unless otherwise specified. For SVD, since the possible choices of rank are

clearly dependent upon the particular data set structure, we specify the exact choices when

we come to each one. To simulate the actual social network where most trust votes are

unknown, we randomly hide 90% of the ground truth entries for prediction, then evaluate

performances using different measure metrics and record the optimal values. The reported

results in Table 2.4 are the average of 20 times such independent runs. It can be observed

that RBRK yields a much lower MAE than all methods while not so much in RMSE. The

inconsistence is easy to figure out, any number between 0 and 1 would be even smaller

after it gets squared. As a result, due to RBRK discrete outcome requirement, RMSE will

penalize it more for a wrong prediction. In previous synthetic data experiment part, we

already demonstrated that the our method is not sensitive to the choice of rank. Here in

table 5, we confirmed this conclusion again on the 3 real data sets.

Now we want to inspect the prediction accuracy curves as the threshold value varies.

As mentioned, trust graphs in this paper have a very skewed distribution. Epinions, the

one with largest number of trust links, has less than 4% trust links, i.e, the whole graph

has less than 4% 1s out of all entries. As a result, we tune the threshold from 0.01 to

0.05, with 0.5% as increment. For conventional methods that has continuous output, if the

initial predicted value is less than the threshold θ, we predict it 0, otherwise 1. We plot

the average results in Figure 2.4. Figure (a)-(c) show the prediction errors using various

threshold values for each data set. It is easy to observe that, in most cases, RBRK outper-

forms most methods including those continuous methods, even after we tuned the threshold

values in a reasonable manner. What is more, our result is very close to the optimal result

from all methods. Note that the rank is the most performance affecting parameter as other

ALM parameters mainly affects the convergence speed, however, from Table 2.5, RBRK

maintains a robust performance in terms of various ranks. It can be concluded RBRK can

22



achieve a satisfactory performance in most cases for real applications. In other words, our

model describes the essence of the trust graph in the real world well and our optimization

strategy provides a good solution. There is a possibility that the results from competitive

methods could be better if we make more efforts to search the grid in a more exhaustive

way. However, such search is often impractical due to the unknown ground truth, limited

resources etc. To make this point more clear, we use the default threshold (the proportion

of trust links among all entries) in all data sets and plot the relative ratio of prediction error

of RBRK results. RBRK shows advantages more than 10% in all data sets in Figure 2.4(d).

The threshold we choose is not optimal for all methods, but given situations when ideal

threshold is unknown, RBRK clearly is a better choice. The experiments in this subsection

clearly supports our motivation. They also demonstrate the superior performance of our

method when discrete topology of the data set is desired to retain.

2.5 Chapter 2 Conclusion

Trust and distrust prediction is of critical importance in privacy protection for online

users. Due to the extreme sparse tags among users, conventional graph mining algorithms

are difficult to apply to such graphs. Therefore it might be appropriate to formulate the trust

prediction problem into a collaborative filtering problem. However, an important difference

here is that users prefer to get explicit message whether to trust others. In other words, the

output is more appropriate to be discrete. Conventional matrix completion methods fail to

retain the discrete nature of the trust graphs, and resort to threshold tuning to convert. Such

heuristic approach relies on the prior information and fails to produce satisfying result most

of the time.

In this chapter, we propose a Robust Binary Rank-K (RBRK) method that retains the

discrete nature and meanwhile explores its latent factors. Our framework seeks a low-rank
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(c) Slashdot
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(d) Relative Ratio Error Plot using Ground Truth
Threshold

Figure 2.4. Prediction Errors for 3 Trust Graphs. (a)-(c) are the prediction error plots using
different threshold values for different data sets. (d) is the relative ratio plot using RDMC
results as the baseline, the threshold for each one is the default one..

binary matrix and is robust to data noise and potential outliers. Different from conventional

methods that tune the predictions using heuristic parameters, our method explicitly impose

the discrete constraints on the prediction and avoid the post-process step. We solve the dif-

ficult integer programming problem via introducing an ancillary variable and decomposing

the difficult problem into two manageable pieces. The empirical experiments on synthet-

ic data set shows its performance are not prone to the data noise and system parameters

change. The empirical experiments on 3 trust graph data sets demonstrate the effectiveness

and robustness of our method, the prediction accuracy is close to the optimal result from

competitive methods with threshold tuning.
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Table 2.4. MAE and RMSE for Trust Graphs

Data set MAE(%) RMSE

Epinions SVD 2.32± 0.12 0.95± 0.11
SVP 2.13± 0.08 0.89± 0.14
SVT 2.04± 0.09 0.86± 0.09
RPCA 1.92± 0.05 0.83± 0.11
RBRK 1.74± 0.32 0.84± 0.10
CFCodeReg 1.97± 0.08 0.86± 0.11

Wikipedia SVD 1.87± 0.09 0.86± 0.08
SVP 1.77± 0.03 0.82± 0.18
SVT 1.78± 0.11 0.81± 0.03
RPCA 1.62± 0.08 0.83± 0.05
RBRK 1.56± 0.09 0.82± 0.04
CFCodeReg 1.71± 0.06 0.83± 0.05

Slashdot SVD 1.52± 0.04 0.77± 0.05
SVP 1.38± 0.02 0.73± 0.04
SVT 1.21± 0.03 0.72± 0.03
RPCA 1.17± 0.04 0.7± 0.03
RBRK 1.13± 0.03 0.68± 0.02
CFCodeReg 1.19± 0.04 0.73± 0.04

Table 2.5. RBRK rank value vs MAE and RMSE

Data Set rank=2 rank=3 rank=4 rank=5 rank=6
Epinion 1.83% 1.77% 1.74% 1.78% 1.81%

0.89 0.86 0.84 0.86 0.87
Wikipedia 1.63% 1.56% 1.58% 1.60% 1.61%

0.84 0.82 0.83 0.84 0.86
Slashdot 1.17% 1.13% 1.14% 1.16% 1.18%

0.70 0.68 0.69 0.70 0.71

25



CHAPTER 3

Social Trust Prediction Using Heterogeneous Networks

3.1 Chapter 3 Introduction

This chapter is our another work to predict the pairwise relationship between social

network users, i.e, conduct trust prediction between social network users. Here we still

formulate such problem as recovering missing values in a matrix given only a small part of

available observations. In chapter 2, we discussed how to utilize the available entries in the

social graph itself to explore its structure, our proposed method seeks a low-rank matrix and

meanwhile retains the discrete structure. As we mentioned in Chapter 1, the data sparsity

is one of the most important characteristics and meanwhile the biggest challenge to work

on this problem. To yield a satisfying result, there are two ways, one is to maximize the

usage of available data such as what we did in Chapter 2; the other is to collect related and

ancillary data, which we will propose one model to demonstrate this category of methods.

The gathering of online-user data is among the most exciting and controversial busi-

ness issues in current century. It often brings up concerns about privacy, but it also presents

extraordinary opportunities for personalized, one-to-one advertising. Many web sites record

users’ online activities including purchase history, click history, query log etc. Such infor-

mation not only reveals individual user’s profile to certain extent, but also enables us to find

”similar” users. Here ”similar” users clearly are subject to the measure we choose, but our

point is to argue that such information helps us predict the relationship between two online

users. It has been discovered in [7], people who are in the same social circle often share

similar behaviors and tastes. In [8], Crandall et al. give the following two main reasons.

One is that people generally adopt behaviors exhibited by those they interact with. Such
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process is called social influence. The other more distinct reason is people incline to form

relationships with others who are already similar to them. Prior research works on inferring

individual user’s interests and attributes from his or her social neighbors [40, 41, 42, 43].

These papers show the possibility of improving the users’ attributes prediction from the

trust graph. However, a straightforward and interesting question can be raised here: is it

possible to reverse the direction and explore the trust graph with the users behavior infor-

mation instead? Or is it possible to achieve an even more aggressive goal, that is, if we

construct the auxiliary information graph where a large amount of entries are also missing,

can we utilize all the available information and improve the predictions for both graph-

s? Our model employs the idea of transfer learning, or more specific, multi-task learning.

There is a survey paper about transfer learning [44].

In this chapter, we propose a Joint Social Networks Mining (JSNM) model to predict

the trust and distrust in social network by aggregating heterogeneous social networks from

both target trust domain and auxiliary information domain. In this chapter, when we say

two graphs are heterogenous, it implies they are from different domains and have no ap-

parent structural similarity and their entries generally have different scales. Without loss of

generality, we assume there exists a collection of rating information from the identical so-

cial network users in the trust graph. Because the rating information can also be formulated

into a graph, our approach is to alleviate the sparsity problem in trust graph by taking ad-

vantage of the supplementary knowledge about user behavior and discovering the implicit

group-level similarity, which are jointly determined by the user-user trust graph matrix and

user-item auxiliary graph matrix. This helps us find the optimal like-minded user groups

across both domains. Moreover, we construct the individual affinity graphs to explore the

individual geometric structures of the feature manifold to improve the prediction of the

missing elements. In addition to the improvement in trust prediction accuracy, our model

also helps predict the missing values in the auxiliary matrix. Meanwhile, our method can
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also be extended to the homogeneous data sets as a powerful collaborative filtering tool.

The solution yielded by our algorithm is unique due to the orthonormal constraints and can

be easily interpreted. Experimental evaluations have been carried out by using one synthet-

ic data set and two real-world data sets. All empirical results demonstrate that our proposed

JSNM method outperforms the classic methods using single social network graph.

The remainder of this paper is organized as follows. In Section 3.2, we first do a

brief literature review about the trust or link prediction in social network. In Section 3.3,

we describe the notations used in this paper and formulate the new objective function.

We will derive our optimization method, provide the algorithm in Section 3.4 and prove

the convergence of our new algorithm. We empirically validate the effectiveness of our

method for trust prediction in Section 3.5 and conclude the paper in Section 3.6.

3.2 Related Work

Trust prediction can be viewed as a special case of the more general link prediction

problem. There have been quite a few methods in link prediction from various perspectives,

relational data modeling [45], structural proximity measures [46], and more advanced s-

tochastic relational model [47, 48, 49]. As to the collaborative filtering methods, there are

also a few of classic ones, such as memory-based methods [50] to find k-nearest neighbors

based on defined similarity measure, model-based methods [51] to learn the preference

models for similar users, matrix factorization methods [52, 53, 54] to find a low-rank ap-

proximation for the user-item matrix. It is tempted to apply the above collaborative filtering

methods to solve the trust prediction problem, however, the trust graph has two structure

properties different from the user-item matrix. Trust graph generally has transitivity and

symmetric properties between a few nodes. Transitivity enables the trust propagation a-

mong users. Symmetry comes from the mutual trust between users in social network. Such
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additional properties distinguish the trust graph from the typical user-item graphs where

collaborative filtering methods are applicable.

Our work is more related to the multi-relational learning, where several relations are

modeled jointly and their structures are captured simultaneously. Most methods express

the given relations as a few related matrices where a row or column represents an enti-

ty. Several methods have been developed to share parameters or structure information by

jointly factorizing related matrices so that knowledge can be transferred across different

tasks. In [55, 56], an entity is represented by the same latent feature in different matrices.

A few Bayesian models were also proposed, such as nonparametric latent variable models

[57, 58]. In particular, transfer learning has been applied to collaborative filtering [59],

where Pan et al. proposed to take advantage of an auxiliary user-item rating matrix to help

the prediction of the target user-item rating matrix. While this idea is intuitive and straight-

forward, such method is too idealistic to assume the existence of such a related and dense

auxiliary rating matrix. Our recent work [60] was the first one utilizing the transfer learn-

ing between trust graph and rating graph to simultaneously predict human social behaviors.

This chapter is mainly based on [61] and is an extension of our previous work in [60].

3.3 Joint Manifold Factorization

In this section, we will introduce our new JSNM objective function to aggregate the

heterogeneous social networks. Prior to this, we will first reveal the implicit connection

between the target user-user trust graph and auxiliary user-item rating graph 2.

As mentioned, trusted users in a social network often display similar behavior and

tastes. Meanwhile, social network users become friends due to the similar background and

interest. Therefore, the trust graph and rating graph should contain some structure similari-

2we will use abbreviation trust graph and rating graph for the following context
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Figure 3.1. A demonstration for our motivation and learning process. The shared group
structure matrix is jointly determined by the rating graph and trust graph. The rating matrix
contains 2 groups of users’ reviews about movies, where a smile face represents satisfactory
and an angry face represents unsatisfactory. The trust matrix contains users’ trust evaluation
towards other users, where 1 represents trust and 0 represent distrust. The question mark
represents missing value in both graphs. The 1s in cluster information matrix indicate users
are in the corresponding group while 0s represent users are not in that group..

ty in spite of the apparent difference, if the coincidence of the similar ratings contributes to

such trust. As a result, the trust prediction accuracy can be improved with the aid of rating

graph information and vice versa. In summary, we transfer the knowledge from different

domains to circumvent the sparsity constraint and help predict the entries in both matrices.

Figure 3.1 is a demonstration of our motivation.

In our proposed solution, we plan to share the implicit group structure between two

graphs, which is jointly determined by the trust graph and rating graph. This answers two

most important questions for transfer learning: what to transfer and how to transfer [59].

3.3.1 Notations

We use boldface uppercase letters, such as X to denote matrices, Xi., X.j , Xij to

denote the ith row, jth column and the entry located at (i, j) of X, respectively. In our

setting, for simplicity, we only discuss two matrices G1 and G2 case, then extend the

objective function to multiple matrices case. We further assume G1 ∈ Rn×m1 , G2 ∈ Rn×m2

are the trust graph and rating graph respectively, where n is the number of identical users
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in both domains, m1 is the number of users who receive trust votes, m2 is the number of

different items. Ω1 ⊂ G1 and Ω2 ⊂ G2 are entries known in corresponding graphs.

3.3.2 Objective Function Formulation

Inspired by the above assumption, we target at the joint matrix factorization to find

out the shared group structure between two graphs.

min
U,V1,V2,c

∥∥G1 −UVT
1

∥∥2
F
+
∥∥cG2 −UVT

2

∥∥2
F

(3.1)

Here U ∈ Rn×l, V1 ∈ Rm1×l, V2 ∈ Rm2×l where l is the number of group parameter to

be determined. c > 0 is a scalar adjusting the scale inconsistency between graphs since the

two graphs are from different domains. Here U is jointly determined by the trust graph and

rating graph structures, therefore it provides the shared group structure for both graphs.

Since rows represent users in both graphs, we could group users based on U and then

conduct the trust and rating prediction with V1,V2, respectively. It can be observed that

U carries the knowledge of both trust graph and rating graph, such framework becomes

especially useful since both graphs usually have data sparsity issues for real data sets.

While the above model takes into account of the common row group structure in

terms of both matrices, it fails to take into account the social network constrain. To over-

come this drawback, we include the Laplacian regularity term [62, 63]. To be specific,

min
U,V1,V2,c

∥∥G1 −UVT
1

∥∥2
F
+
∥∥cG2 −UVT

2

∥∥2
F

+λTr(VT
1 L1V1) + λTr(VT

2 L2V2)

s.t. V1V
T
1 = I,V2V

T
2 = I, U ≥ 0,V1 ≥ 0,V2 ≥ 0

(3.2)

Here λ > 0 is a scalar parameter to be tuned, L1 and L2 are the Laplacian graphs based on

the columns of G1 and G2 respectively, Tr is the trace operation which yields the sum of

diagonal elements of the matrix.
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In our objective function, to incorporate the social network information, we add two

graph Laplacian regularization terms. As the trust graph, G1 graph explicitly shows the

users trust/friendship relations in social networks. As the rating graph, G2 graph indicates

the users taste/hobby similarity, from which we can learn users implicit relations. Thus,

the graph Laplacian L1 and L2 represent the explicit and implicit social relations of users.

When we predict the users trust relations, these existing social relations between users

should be preserved. Thus, we add two graph Laplacian regularization terms as in Eq. (3.2).

The details of L1 and L2 constructions are given in the next section. We impose the

orthogonal constraints on V1 and V2 to ensure the uniqueness of the solution. Suppose

U∗, V∗
1 and V∗

2 are the solutions to Eq. (3.2), then for any given non-zero constant c1 > 1,

c1U
∗ and V∗

1/c1 would give same value in the first term and lower value for the third term,

this is true no matter U∗ and V∗
1 are local or global optimum solutions, the same reasoning

applies to V2, in other words, the optimal solution to Eq. (3.2) does not exist without the

constraints. With the orthogonal and non-negative constraints for V1 and V2, our solution

is the unique local optimum solution for the non-convex objective function 3.2.

3.3.3 General Formulation

There are a few possible generalizations to Eq. (3.2) we want to point out.

First, it can be easily extended to multiple matrices case. The objective function

would then be

min
U,V1...Vn

n∑
i=1

∥∥ciGi −UVT
i

∥∥2
F
+ λ

n∑
i=1

Tr(VT
i LiVi)

s.t. VT
i Vi = I,Vi ≥ 0, i = 1, . . . , n

(3.3)

The U here would then contain the common information among multiple matrices.

Second, although our motivation is to capture the shared pattern among users, it

could be used as a powerful collaborative filtering tool. For example, our framework can

also be applied to item-user case, where the reviews are from users in different domains.
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3.4 Optimization And Algorithm

In the following, we will derive solution to Eq. (3.2). As we see, minimizing Eq. (3.2)

is with respect to U, V1, V2 and c, and we can not give a closed-form solution. We

will present an alternating scheme to optimize the objective, this procedure repeats until

convergence.

3.4.1 Initialization

As mentioned in the introduction, the social graphs generally have large number of

missing values, therefore the initialization is almost necessary in trust prediction to replace

those missing values for methods that requires similarity calculation or structure explo-

ration. In this paper, for any missing entry Gij , we use mean of the available entries in

the corresponding row and column to impute this. For a user-item rating matrix, such ini-

tialization combines the available information for both the individual user rating habit and

other users’ ratings on a particular item. For a user-user trust matrix, such initialization

consider both user i and user j ’s social circle influence.

After the initial imputation, we construct the Laplacian Graphs of both social net-

works. As mentioned, the main purpose of the Laplacian terms is to incorporate the data

geometric information, because it is found that many real world data distribute on low-

dimensional manifold embedded in the high-dimensional ambient space [64]. The Lapla-

cian graph is to discretely approximate the manifold, whose vertices correspond to the

data samples, while the edge weight represents the affinity between the data points. One

common assumption about the affinity between data points is the cluster assumption [65],

which claims if two data samples are close to each other in the input space, then they are

also close to each other in the embedding space. This assumption has been widely used
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in spectral clustering [66, 67, 68]. To be specific, in this paper, we define the edge weight

matrix W as follows:

Wij =

 1 : Gi. ∈ Nk(G.j) or Gj. ∈ Nk(G.i)

0 : otherwise

where Nk(Gi.) denotes the set of k nearest neighbors of Gi.. We calculate the Euclidean

distances between users for each graph, then construct the corresponding Ws based on

the top k similar users for each user. It is easy to see Ws are symmetric. Let graph

Laplacian L = D −W, where D is a diagonal matrix whose entries are column sums of

W, Dii =
∑

j Wij . Corresponding to trust graph G1 and rating graph G2, we construct

L1 and L2.

After that, we construct V1 and V2 based on k-means on columns for G1 and G2

respectively. For i-th row of V1, if this row belongs to j-th cluster, then V1(i, j) = 1, all

other elements in i-th row are 0. V2 is initialized in the same manner.

Now we come to the optimization of our objective function. When we optimize the

objective function Eq. (3.2), we iteratively solve U, V1, V2 and c in an alternating manner.

In other words, we will optimize the objective with respect to one variable while fixing the

other variables. Such process repeats until convergence.

3.4.2 Computation Of U

Optimizing Eq. (3.2) with respect to U is equivalent to optimizing

J1 =
∥∥G1 −UVT

1

∥∥2
F
+
∥∥cG2 −UVT

2

∥∥2
F

s.t. VT
1 V1 = I, VT

2 V2 = I,V1 ≥ 0,V2 ≥ 0
(3.4)

Setting ∂J1
∂U

= 0 leads to the following updating formula

U =
G1V1 + cG2V2

2
(3.5)
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3.4.3 Computation Of V1

Optimizing Eq. (3.2) with respect to V1 is equivalent to optimizing

J2 =
∥∥G1 −UVT

1

∥∥2
F
+ λTr(VT

1 L1V1)

s.t. VT
1 V1 = I,V1 ≥ 0

(3.6)

For the constraint VT
1 V1 = I, we can not get a closed-form solution of V1. Therefore we

will present an iterative multiplicative updating algorithm. We introduce the Lagrangian

multiplier α ∈ Rl×l, the corresponding Lagrangian function is

L(V1) =
∥∥G1 −UVT

1

∥∥2
F
+ λTr(VT

1 L1V1)− Tr(α(VT
1 V1 − I)) (3.7)

Setting ∂L(V1)
∂V1

= 0 and use the orthogonal constrain VT
1 V1 = I, we obtain

−GT
1U+ λL1V1 −V1α = 0

⇒ α = −VT
1 G

T
1U+ λVT

1 L1V1

(3.8)

Using the Karush-Kuhn-Tucker condition [69] α · V1 = 0, where · is the element-wise

product operator and thereafter, we get

(−VT
1 G

T
1U+ λVT

1 L1V1) ·V1 = 0 (3.9)

Introduce L1 = L+
1 −L−

1 , V1 = V+
1 −V−

1 and U = U+−U− where U+
ij = (|Uij|+ Uij)/2

and U−
ij = (|Uij| − Uij)/2 [70] and L1,V1 defined in a similar fashion, we obtain

(GT
1U

− + λL+
1 V1 +V1α

− −GT
1U

+ − λL−
1 V1 −V1α

+) ·V1 = 0 (3.10)

Eq. (3.10) leads to the following updating formula

(V1)ij ← (V1)ij

√√√√[GT
1U

+ + λL−
1 V1 +V1α+

]
ij[

GT
1U

− + λL+
1 V1 +V2α−

]
ij

(3.11)
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3.4.4 COMPUTATION OF V2

Optimizing Eq. (3.2) with respect to V2 is equivalent to optimizing

J3 =
∥∥cG2 −UVT

2

∥∥2
F
+ λTr(VT

2 L2V2)

s.t. VT
2 V2 = I,V2 ≥ 0

(3.12)

The optimization with the above equation is almost identical to the previous subsec-

tion,

L(V2) =
∥∥cG2 −UVT

2

∥∥2
F
+ λTr(VT

2 L2V2)− Tr(β(VT
2 V2 − I)) (3.13)

Setting ∂L(V2)
∂V2

= 0 and use the orthogonal constrain VT
2 V2 = I, we obtain

−cGT
2U+ λL2V2 −V2β = 0

⇒ β = −cVT
2 G

T
2U+ λVT

2 L2V2

(3.14)

Using the Karush-Kuhn-Tucker condition [69] β ·V2 = 0, we get

(−cVT
2 G

T
2U+ λVT

2 L2V2) ·V2 = 0 (3.15)

Introduce L2 = L+
2 −L−

2 , V2 = V+
2 −V−

2 and U = U+−U− where U+
ij = (|Uij|+ Uij)/2

and U−
ij = (|Uij| − Uij)/2 [70] and L2,V2 defined in a similar fashion, we obtain

(cGT
2U

− + λL+
2 V2 +V2β

− − cGT
2U

+ − λL−
2 V2 −V2β

+) ·V2 = 0 (3.16)

Eq. (3.16) leads to the following updating formula

(V2)ij ← (V2)ij

√√√√[cGT
2U

+ + λL−
2 V2 +V2β+

]
ij[

cGT
2U

− + λL+
2 V2 +V2β−

]
ij

(3.17)

3.4.5 Computation Of c

Optimizing Eq. (3.2) with respect to c is equivalent to optimizing

J4 =
∥∥cG2 −UVT

2

∥∥2
F

(3.18)
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The above task is equivalent to

min
c

Tr(cG2 −UVT
2 )(cG2 −UVT

2 )
T

This can be written as

min
c

Ac2 − 2Bc+D

where A = Tr(G2G
T
2 ), B = Tr(UVT

2 G
T
2 ), D = Tr(UVT

2 V2U
T ) It is a quadratic

equation in c, the solution is then

c =
Tr(UVT

2 G
T
2 )

Tr(G2GT
2 )

(3.19)

In summary, we present the iterative multiplicative updating algorithm of optimizing

Eq. (3.2) in Algorithm 2. Because the targeted problem is a non-convex one, there is no

guarantee that Algorithm 2 will converge to the global optimum. However, the orthogonal

constraints in objective function ensure the yielded solution is unique.

The convergence criteria here is the relative change of the object function value at

the consecutive steps is less than 10−4. The above loop always exits within 20 iterations

for the subsequent experiments.

3.4.6 Algorithm Complexity Analysis

In this part, we want to analyze the time complexity of our algorithm. We would

analyze the cost for each phase separately. Let us assume n ≥ max(m1,m2) to keep the

notations simple.

For the missing values initialization, each missing entry needs to calculate its row

and column average, of order O(n + m1) and O(n + m2) respectively. Therefore, the

initialization cost would be O(n2m1) and O(n2m2) respectively and the total cost would

be O(n2(m1 +m2)).

Now it comes to the V1 and V2 initialization. k-means of G1 takes O(knm1) and

k-means of G2 takes O(knm2), therefore the total cost would be O(kn(m1 +m2)).
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Algorithm 2: Joint Manifold Factorization Algorithm
Input: G1,G2, maximum number of iterations T

Output: Converged U, V1 and V2

Initialize missing entries in G1 and G2 using the row-column average.

Initialize V1 and V2 using k-means clustering, initialize c according to scale

discrepancy between graphs.

Construct Laplacian graphs L1 and L2.

while not converged and iteration t less than T do
Compute U = G1V1+cG2V2

2

Compute (V1)ij ← (V1)ij

√
[GT

1 U++λL−
1 V1+V1α+]

ij

[GT
1 U−+λL+

1 V1+V2α−]
ij

Compute (V2)ij ← (V2)ij

√
[cGT

2 U++λL−
2 V2+V2β+]

ij

[cGT
2 U−+λL+

2 V2+V2β−]
ij

Compute c =
Tr(UVT

2 GT
2 )

Tr(G2GT
2 )

end

The last step of the initialization is to construct the Laplacian graphs. It takes

O(knm1) and O(knm2) to construct the k-nearest neighbor graphs for G1 and G2 re-

spectively. The total cost would then be O(kn(m1 +m2)).

Now it comes to the computation of U, V1 and V2. We focus on the discussion of

the t-th iteration.

From the U updating formula Eq. (3.5), it takes at most O(m3
1+m3

2), however, since

V1 was initialized to have only one nonzero element in each row and in general sparse

during the updating process, indeed it could be reduced to O(m2
1 +m2

2) [71].

For the update of V1, since V1 is sparse, it takes O(k2m2
1) to calculate α, as E-

q. (3.11) is an element-wise operation, it takes O(nkm1) to update V1.
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For the update of V2, again since V2 is sparse, it takes O(k2m2
2) to calculate β, as

Eq. (3.17) is an element-wise operation, it takes O(nkm2) to update V2.

For the update of c, it takes O(k2m2
2) to calculate A, O(m3

2) to calculate B, the total

cost would then be O(m3
2).

Therefore the total cost for one iteration is O(n2(m1 + m2)). As specified, our

algorithm usually converges in a few iterations independent of matrix size, the total multi-

plicative update process takes O(n2(m1 +m2)). The total complexity of our algorithm is

then O(n2(m1 +m2)).

3.4.7 Optimization Algorithm

In this subsection, we will prove the convergence of Algorithm 2. We use classic

auxiliary function approach used in [72].

Definition 1 (Auxiliary Function) [72] Z(h, h′) is an auxiliary function for F (h) if the

conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h)

are satisfied.

Lemma 1 [72] If Z is an auxiliary function for F , then F is non-increasing under the

update

h(t+1) = argmin
h

Z(h, h(t))

Proof 1 F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F (h(t))

Lemma 2 [70] For any nonnegative matrices A ∈ Rn×n, B ∈ Rk×k, S ∈ Rn×k, S′ ∈

Rn×k, and A, B are symmetric, then the following inequality holds
n∑

i=1

k∑
p=1

(AS′B)ipS
2
ip

S
′
ip

≥ Tr(STASB)

Theorem 1 Let

J(V1) = Tr(λVT
1 L1V1 − 2GT

1UVT
1 +αVT

1 V1) (3.20)
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Then the following function

Z(V1,V
′
1)

= λ
∑
ij

(L+
1 V′

1)ijV
2
1,ij

V′
1,ij

− λ
∑
ijk

(L−
1 )jkV

′
1,jiV

′
1,ki(1 + log

V1,jiV1,ki

V′
1,jiV

′
1,ki

)

−2
∑
ij

GT
1U

+V′
1,ij(1 + log

V1,ij

V′
1,ij

) + 2
∑
ij

GT
1U

−V2
1,ij+V

′2
1,ij

2V′
1,ij

+
∑
ij

α+V2
1,ij −

∑
ijk

α−V′
1,ijV

′
1,ik(1 + log

V1,ijV1,ik

V′
1,ijV

′
1,ik

)

is an auxiliary function for J(V1). Furthermore, it is a convex function in V1 and its global

minimum is

(V1)ij ← (V1)ij

√√√√[GT
1U

+ + λL−
1 V1 +V1α+

]
ij[

GT
1U

− + λL+
1 V1 +V2α−

]
ij

(3.21)

Proof 2 See Appendix A. �

Theorem 2 Updating V1 using Eq. (3.11) will monotonically decrease the value of the

objective in Eq. (3.2), hence it converges.

Proof 3 By Lemma 1 and Theorem 1, we can get that J(V0
1) = Z(V0

1,V
0
1) ≥ Z(V1

1,V
0
1) ≥

J(V1
1) ≥ . . .so J(V1) is monotonically decreasing. As J(V1) is nonnegative, i.e, bounded

below, the theorem is self-evident.

Theorem 3 Let

J(V2) = Tr(λVT
2 L2V2 − 2cGT

2UVT
2 + βVT

2 V2) (3.22)

Then the following function

Z(V2,V
′
2)

= λ
∑
ij

(L+
2 V′

2)ijV
2
2,ij

V′
2,ij

− λ
∑
ijk

(L−
2 )jkV

′
2,jiV

′
2,ki(1 + log

V2,jiV2,ki

V′
2,jiV

′
2,ki

)

−2
∑
ij

cGT
2U

+V′
2,ij(1 + log

V2,ij

V′
2,ij

) + 2
∑
ij

cGT
2U

−V2
2,ij+V

′2
2,ij

2V′
2,ij

+
∑
ij

β+V2
2,ij −

∑
ijk

β−V′
2,ijV

′
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is an auxiliary function for J(V2). Furthermore, it is a convex function in V2 and its global

minimum is

(V2)ij ← (V2)ij

√√√√[cGT
2U

+ + λL−
2 V2 +V2β+

]
ij[

cGT
2U

− + λL+
2 V2 +V2β−

]
ij

(3.23)

Proof 4 See Appendix A. �

3.5 Experiments

In this paper, we will compare the prediction performance with other methods on

both trust graph and rating graph. The competitive methods include average filling (AF), k-

nearest neighbors (KNN) using Jaccard’s coefficient which is based on nodes similarities,

SimRank [73] which is based on path ensembles, SVD approximation [74] and matrix

completion via trace norm (MC) [75] which are based on the global graph structure.

We are going to give a brief description about MC since this is a relatively new tech-

nique in missing value imputation. MC seeks a lower rank matrix as SVD does. The key

difference between MC and SVD is that MC tries to minimize the nuclear norm of the

matrix (sum of singular values of matrix), therefore, its convex objective function guaran-

tees its global optimum solution. On the other hand, SVD is often stuck at local optimum.

MC is generally more robust to outliers than SVD. In this paper, we stack the trust graph

and rating graph using common users (movie titles) for matrix completion method in this

section in the form of M = [G1,G2], to be specific, it attempts to find X such that

min
X
∥X∥∗

s.t. XΩ = MΩ

where MΩ is the subset of the observed elements and ∥X∥∗ is the trace norm of X . Re-

searchers also relax the constraints and optimize the following one:

min
X
∥XΩ −MΩ∥2F + ς ∥X∥∗
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where ς is the regularity coefficient. This would serve as the benchmark transfer learning

method in comparison to JSNM. It might be expected that trust graph and rating graph also

share their structures with this method, however, as we will demonstrate in the experiment

part, such a naive idea does not work well.

For KNN, we search k in the list {1, 2, . . . , 9}, to impute the missing value using the

node with the highest Jaccard similarity score. For SimRank method, we set the parameters

using the default value suggested by the author. For SVD, we choose the rank from the list

( R
10
, 2R
10
..., R), where R = min(n,m), the minimum of the number of rows and columns.

For MC, ς is tuned from the list {10−2, 10−1, 1, 10}.

3.5.1 Evaluations On Synthetic Data

In this part, we first do the experiments on a synthetic data set, it consists of the

MovieLens100K rating graph [76] and the synthetic trust graph we would construct.

MovieLens100K consists of 100,000 ratings (from 1 to 5) from 943 users on 1,682

movies, here each user rated at least 20 movies. Since this data set has around 94% missing

values, we first fill in the missing values with the mean of the available information in that

row. Then we construct the Laplacian graph W based on users with parameters setting

as follows: Euclidean distance as metric measure, heat kernel with scale parameter 5 and

number of neighborhoods k = 100. After that, we normalize each column into a ℓ2 unit

vector. At last, we construct the trust graph T based on the threshold θ which is set at 0.01,

T(i, j) = 1 if W(i, j) > θ and 0 otherwise. Via the above setting, the two users get 1

mutually(trust each other) if their reviews on items are similar. We find by such procedure,

the ratio of 1s in the trust graph is about 12%.

Due to the lack of ground truth for unobservable rating entries, we have to hide

existing rating entries to simulate missing ones, here we randomly leave half of them avail-

able (about 3%) and mask half of them for test. Since the trust graph is constructed from
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Table 3.1. Prediction Result for MovieLens

Prediction Measure Methods Result

MAE AF 0.802± 0.005
KNN 0.812± 0.006
SimRank 0.814± 0.006
SVD 0.962± 0.007
MC 0.826± 0.005
JSNM 0.745± 0.004

RMSE AF 0.996± 0.004
KNN 1.019± 0.004
SimRank 1.024± 0.004
SVD 1.183± 0.008
MC 1.032± 0.004
JSNM 0.931± 0.003

the Laplacian graph of the rating graph, so our evaluation would be limited to the rating

graph in this subsection. Note that the trust graph is constructed from very limited rating

entries, nevertheless, we show that with the auxiliary trust information, the accuracy of rat-

ing graph imputation is better than classical imputation methods which explores the rating

graph alone.

We adopt two evaluation metrics: Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE),

MAE =
∑

Rij∈TE

∣∣∣Rij − R̂ij

∣∣∣/ |TE|

RMSE =

√ ∑
Rij∈TE

(
Rij − R̂ij

)2
/ |TE|

(3.24)

where Rij and R̂ij are the true and predicted ratings respectively, |TE| is the number of

test ratings. In all experiments, we run 10 random trials when generating the missing and

observed ratings, use AF methods to initialize missing values, do the imputation with all

the methods in the 2-fold cross validation process. The averaged results are reported in

Table 3.1.
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It can be observed that our method consistently outperforms other methods in terms

of MAE and RMSE, it successfully incorporates the auxiliary information in the trust graph.

We now want to investigate into the influence of parameters for our method. First, we set

l = 3 and maximum iteration T = 20 and vary the value of λ, the MAE and RMSE results

are shown in Figure 3.2(a).

Next, with λ = 10−3 and T = 20, we plot the MAE and RMSE curves when the

number of clusters l vary in Figure 3.2(b).

The MAE and RMSE results for each iteration have been displayed in Figure 3.2(c)

with l = 3 and λ = 10−3.

It can be observed that our method is generally robust to the choice the parameter

λ, the number of clusters and maximum iterations. For the subsequent experiments, unless

otherwise specified, we set λ = 10−3, l = 3 and T = 20.

We provided the theoretical proof about the monotone decrease of our objective func-

tion in preceding section. To give a concrete example, we also include the objective func-

tion value plot using the above default setting. From Figure. 2(d), we can observe the our

objective function is very stable as the iteration increases.

This synthetic data set demonstrates that with synthetic auxiliary trust graph, our

method has better performance than other classical methods. Our next real data set shows

that, such transfer learning process is mutual beneficial, it improves the prediction for both

the trust graph and the rating graph.

3.5.2 Evaluations On Real Data

In this part, we will compare our method with other methods on trust prediction

using Epinions data set. This data set was collected by Paolo Massa [77] in a 5-week crawl

from Epinions.com. It consists of two parts: one is the ratings part, the other is the trust

part. The Epinions data set consists of 49,290 users, 139,738 items, 664,824 reviews from
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Figure 3.2. Investigation of Parameters in Our Method.

users to items, 487,181 trust statement between users. Users express their web of trust,

i.e, reviewers whose reviews and ratings they have consistently found to be valuable and

offensive [77]. Therefore it is reasonable to assume most individual users tend to cast trust

votes towards other users if the users have similar rating patterns towards those items. As

a result, the rating matrix and trust matrix could have similar row structure given common

users.

Inspired by the above observation, we design the experiments as follows: we select

top 2,000 users with the highest degrees (cast and receive most votes), then we select items

with more than 68 ratings from the above selected users. The resulting trust graph G1 of

size 2, 000× 2, 000 has 149,146 trust votes (represented by 1), which consists of 3.73 % of

all possible votes, those distrust or unknown votes are represented by 0. The rating graph

G2 of size 2, 000 × 96 has 10,225 ratings (from 1 to 5), which consists of 5.33 % of all

possible ratings, those missing ratings are represented by 0. Among those available ratings,
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the number of ratings 1,2 and 3 are roughly equal, 4 is twice as many as 1 and 5 is about

4 times as many as 1, such skew distribution might be due to users’ reluctance to give low

ratings for unsatisfactory items.

Evaluation Metric Since the binary trust votes has a very skewed distribution,

precision and recall are more suitable than receiver operating characteristic (ROC) [78].

The precision, recall of the evaluation metric are defined as follows,

recall =
TP

TP + FN
, precision =

TP

TP + FP

F1 =
2× recall × precision

recall + precision
(3.25)

where TP, FN and FP are numbers of true positives, false negatives and false positives, re-

spectively. Since the predicted values for trust graph are generally not 0/1 integers for most

methods, here we must decide the transformation criteria. The simplest one is probably

the threshold method, if the predicted value is less than the threshold θ, we decide it is 0,

otherwise it is 1.

We still hide half of the available entries and conduct the prediction via 2-fold cross

validation as previous subsection. To evaluate the prediction result in a comprehensive

manner, we calculate the recall and precision values for both trust and distrust, as θ value

varies from 0 to 1 with step 0.01. We can then compute the corresponding AUC values

for all methods for both trust and distrust predictions, together with F1 score values. From

Table 3.2, JSNM has better performance than other methods except F1 score for trust links,

where AF shows some slight advantage. Note that it is impractical and time consuming to

tune threshold for real application, therefore our method still shows better performance in

trust link prediction than AF method considering the significant AUC advantage. We can

conclude our method has the best performance in trust prediction in all the methods we

listed in terms of trust links and distrust links. Table 3.3 lists all methods’ optimal value in

terms of MAE and RMSE for the rating graph, again JSNM has the best MAE and RMSE
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Table 3.2. Recall-Precision Curves Evaluations

Link Methods AUC F1

Trust AF 0.207 0.223
KNN 0.183 0.218
SimRank 0.185 0.218
SVD 0.123 0.160
MC 0.075 0.122
JSNM 0.215 0.221

Distrust AF 0.914 0.977
KNN 0.916 0.977
SimRank 0.916 0.977
SVD 0.583 0.971
MC 0.972 0.981
JSNM 0.992 0.991

results. Based on Table 3.2 and 3.3, we can conclude that transfer learning does provide

the bridge for the trust graph and rating graph to share the valuable information with each

other. This helps alleviate the common data sparsity issue in social network data. On the

other hand, as we have shown, naive transfer learning MC method does not work very well

here, MC method fails to extract the common row structure with matrices stacked.

3.5.3 Application To Homogeneous Data Set

The previous two data sets both deal with the trust graph and the rating graph, which

are heterogeneous in terms of domain and scale. There are also cases that homogeneous

social graph inference desired. One example is to predict user preferences on books and

movies. In this subsection, we want to demonstrate our framework also apply to such

homogeneous type data, two movie rating data sets. Note that for homogeneous data sets,

we would drop the scale adjusting parameter c in objective Eq. (3.2), which is a special

case of our framework.
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Table 3.3. Rating Graph Evaluation Results

Prediction Measure Methods Result

MAE AF 0.864± 0.003
KNN 0.839± 0.004
SimRank 0.832± 0.005
SVD 0.924± 0.006
MC 0.828± 0.005
JSNM 0.772± 0.003

RMSE AF 1.062± 0.006
KNN 1.045± 0.003
SimRank 1.034± 0.003
SVD 1.263± 0.012
MC 1.024± 0.004
JSNM 0.963± 0.004

In our experiment, two movie rating data sets used are Netflix training set and Movie-

Lens [76]. The Netflix rating data contains more than 108 ratings with values from 1 to 5,

which are given by around 500,000 users on around 20,000 movies. The MovieLens rating

data contains more than 107 ratings with values from 1 to 5 and scale 0.5. We construct the

data set used in this experiment as follows: first we extract common movies titles which

has at least 100 ratings in both data sets, after that we select the first 100 users each. Via

this way, we get both matrices with size 1, 381 × 100. Next, we randomly split available

ratings into 20 parts. Each time preserving 1 part and masking all others3, we do the pre-

diction and evaluate the performance of all methods. We calculate the average MAE and

RMSE for these 20 experiments. Such process is repeated 10 times to calculate the mean

and standard deviation.

From Tables 3.4 and 3.5, we can observe that our method still outperforms other

methods in terms of MAE and RMSE. Meanwhile, the performance of all methods have

3for performance purpose, we do the row sampling based on movies and ensures each movie has a few

available ratings
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Table 3.4. Netflix Evaluation

Prediction Measure Methods Result

MAE AF 0.942± 0.007
KNN 0.928± 0.008
SimRank 0.925± 0.008
SVD 1.724± 0.014
MC 0.983± 0.008
JSNM 0.903± 0.005

RMSE AF 1.234± 0.005
KNN 1.189± 0.005
SimRank 1.164± 0.005
SVD 1.924± 0.011
MC 1.162± 0.006
JSNM 1.072± 0.005

decreased quite significantly compared with rating graph results in the previous subsection.

One possible reason is that since these two matrices are now made up of common movies

but different users, the ratings for any movie have more variability than the data in proceed-

ing section. We would conduct more investigations in our future research for such type of

data.

3.5.4 Social Network Regularization Effect Investigation

In this section, we look into the effect of manifold term in objective function E-

q. (3.2). We compare the the performance of our framework (JSNM) with the objective

function without the manifold terms. We call the new method Dual Graph Factorization

(DGF). We still set λ = 10−3 in JSNM and then repeat the same experiment procedure in

the above subsections. We summarize the results in Table IV. In terms of trust prediction

evaluation, JSNM improves DGF result 2-3% based on DGF result for trust link, 1% for

distrust link. As to the rating evaluation, JSNM improves 3.7% and 4% on Epinion for both
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Table 3.5. MovieLens Evaluation

Prediction Measure Methods Result

MAE AF 0.802± 0.005
KNN 0.812± 0.006
SimRank 0.814± 0.006
SVD 1.843± 0.007
MC 1.045± 0.006
JSNM 0.764± 0.004

RMSE AF 1.023± 0.004
KNN 1.043± 0.004
SimRank 1.037± 0.004
SVD 2.046± 0.008
MC 1.173± 0.005
JSNM 0.987± 0.003

Table 3.6. Manifold Term Investigation I

Link Methods AUC F1

Trust JSNM 0.214± 0.003 0.220± 0.002
DGF 0.209± 0.003 0.213± 0.004

Distrust JSNM 0.992± 0.002 0.992± 0.003
DGF 0.982± 0.004 0.984± 0.003

MAE and RMSE, 1.2% and 1.5% on Netflix, 5% and 2% on MovieLens. From the table,

we can conclude the social network regularity term plays a role in our framework.

3.6 Chapter 3 Conclusion

In this chapter, we developed the joint social network mining (JSNM) method to

perform the trust prediction with the ancillary rating matrix. We transfer the common

group structure knowledge between two related matrices and simultaneously explore the

individual matrix geometric structure. With publicly available data sets, our method shows

its advantage over classical trust prediction methods for both the trust matrix and rating
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Table 3.7. Manifold Term Investigation II

Data Methods MAE RMSE

Epinion JSNM 0.772± 0.004 0.963± 0.005
DGF 0.802± 0.011 1.004± 0.007

Netflix JSNM 0.904± 0.004 1.074± 0.006
DGF 0.918± 0.009 1.136± 0.011

MovieLens JSNM 0.766± 0.005 0.987± 0.004
DGF 0.783± 0.009 1.012± 0.012

matrix. Furthermore, our method can be also applied to homogeneous type data and yield

similar improvement in the prediction. Matrix factorization has been also applied to our

other work [79, 80, 81]

Although most web sites do not have (publish) both trust graph and rating graph

data sets, we believe our method provides many web sites a new perspective to improve

their service. Taking amazon.com and facebook.com for example, users may consent to

information sharing between these two sites, as their friends lists and purchase histories

generally cause no severe privacy leakage. Amazon may recommend users items their

friends purchased so that boost their sale, on the other hand, facebook users could have

the opportunity to link to other users and make new friends, who purchased similar topic

of books, style of music and demonstrated same interest. In the future work, we will

investigate the effectiveness of our framework applying to more general related dual graphs.
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CHAPTER 4

Future Events Recommendation Via Collaborative Ranking

4.1 Chapter 4 Introduction

This chapter presents the model for future events recommendation, it is slightly d-

ifferent from conventional recommendation system. The general recommendation system

setting consists of a collection of users and items, where user feedbacks are available for

different subsets of items. Figure 4.1 is a user-movie mini recommendation system demon-

stration. Here users give ratings to movies they have watched. Generally speaking, each

individual user only rate a small portion of movies in the whole collection. Therefore, such

a user-movie matrix generally contains a large amount of missing values. The goal is to

predict ratings for the remaining items users have yet to experience, based on limited rat-

ing history. One important note is that these missing values are generally assumed to be

distributed randomly.

Recommendation systems can be classified into two groups based on their tech-

niques: content-based system and collaborative filtering system. Content-based approaches

examine features of items recommended and relate user preferences to those features. Col-

laborative filtering methods, in contrast, recommend items based on similarity measures

between users and items and fill-in ratings for the remaining items. They often formulate

this problem as a matrix completion problem. Matrix factorization is an important category

of collaborative filtering algorithms, the rationale behind these methods in this category is

that the preferences of a user are determined by a small number of unobserved factors. We

will give a brief review over these methods in related work section. The content-based and

collaborative filtering approaches are often complementary.

52



Figure 4.1. A demonstration of general recommendation system. Rows index users and
columns index movies. The digits represent individual users’ rating towards corresponding
movies. The question marks represent missing values to be predicted. Note that missing
values are generally assumed to be distributed randomly..

In this chapter, we consider a recommendation system in which the information items

are events. Here, we predict users’ preferences on future events and recommend users

higher ranked ones that users are interested in. Traditionally, prediction and ranking are

considered two orthogonal tasks and generally should not have much overlap. Most ranking

problems deal with existing sample and sort according to pre-defined evaluation criteria.

However, The current scenario is to rank events users not yet responded based on their

historical preference. Therefore, it is necessary to conduct prediction prior to the ranking.

This is a relatively new area in both information retrieval and recommendation system but

with various applications. Such prediction can guide resource management and identify

potential time conflict events. The following is a few concrete examples.
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Example 1. Many deal websites (such as groupon and living social) are interested

in learning more about targeted customers. Providing accurate personalized deal recom-

mendation can both boost the sale revenue and reduce the advertising cost. These websites

have records of consumers’ detailed purchase history. Taking advantage of big data analy-

sis technique and accurate events recommendation system, these vendors can provide their

interested discount gift certificate and vacation packages they need in the future.

Example 2. Terrorist attacks preventing is now a global priority. Many actions have

been taken to enhance security. One of the important measures is to understand evolving

and emerging threats. With information-sharing partnerships, many countries make efforts

to keep track of the list of terror suspects and their past activities. With the help of a smart

future event prediction system, it is possible to predict terrorists’ targets and next step plans

based on their current locations and past behavior patterns. The corresponding strategies

can be well planned and the loss can be reduced.

Example 3. One of the most important features for social web sites (e.g, Facebook

and Twitter) has been the ability to create groups, allowing members to focus on following

and contacting different sets of people. Group members can invite whole groups to some

particular events. Those events, on the other hand, attract more members join the group and

expand the social network. Predicting which events users are interested in and attracting

new users to join have been the goals for those social web sites. Besides, future events

recommendation has close connections with social network analysis, social behavior study

and psychology research etc. The better understanding in this area helps the advancement

of other disciplines.

The applications of future events recommendation are clearly beyond the above three

examples and have significance in industry, government and academia. The main contribu-

tions of our paper include:
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• We present a method that combines the content-based approach and collaborative

filtering approach. Our method has the content-based element, since we recommend

events to users based on user’s past ratings and the implicit correlation between past

events and future events. Moreover, our framework takes a global collaborative fil-

tering perspective and investigates into the latent factors that determine users’ pref-

erences.

• We design a transductive framework. Our objective function successfully incorpo-

rates the future events information into our learning process. This helps our system

yields accurate ranking results when training instances are scarce.

• We propose an objective function that has clear motivation and interpretation for

each term. Beside this, we provide a concise optimization algorithm and show our

solution is the global optimal solution to our objective function.

• We conduct empirical experiments to demonstrate the effectiveness of our method,

comprehensive experiments and analysis include MAP comparison against classical

methods, parameter tuning investigation for our method, MAP histogram for indi-

vidual users.

The paper proceeds as follows. Section 4.2 formulates the event recommendation as

a ranking problem and provides all necessary notations. Section 4.3 gives a brief review

about related work in recommendation system, especially in event recommendation. Sec-

tion 4.4, Section 4.5 and Section 4.6 present our objective function, the algorithm and the

mathematical proof, respectively. Empirical experiments are conducted in Section 4.7. We

conclude our paper in Section 4.8.
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4.2 Event Recommendation

In this section, we formulate the ranking problem and provide necessary annotation

for the following context. Let us assume there are n individual users and each user is

present in total m events in k − 1 different sessions. In each session, user give preferences

to events happened within the specified time frame. Figure 4.2 is a good demonstration of

such system 1. Now given a few future events, our task is to predict users’ preference to

those events and recommend events that are of high probabilities to be interested in.

For the convenience of discussion in the following context, we formulate this prob-

lem in matrix setting. We index users as rows and events as columns in matrix M . Without

loss of generality, we sort events according to the order of session occurrence and therefore

events in the same session are grouped together. The matrix entry value Mij represents the

coded preference of user i to event j. According to the above setting, those future events

are expected at the end of the matrix and don’t carry value in the corresponding column-

s. Figure 4.2 is a demonstration of our setting. The most significant difference between

our events recommendation system and the conventional recommend system (as shown in

Figure 4.1) is that, due to the nature of the problem, our matrix contains multiple columns

without any feedback. In conventional recommendation [23, 36, 82], the missing values

are often assumed to be distributed randomly. In other words, it would be rare for missing

elements to be cluttered column-wise like Figure 4.2 does. This is the most significan-

t difference between conventional recommendation system and our future events recom-

mendation system. It is inappropriate to rearrange those future events columns due to the

occurrence order, also it is futile for prediction purpose since these columns are still blank.

Content-based methods alone generally are not applicable to our system since it provides

no feedback reference at all for those future events. Collaborative filtering methods, on the

1In this paper, we focus on the scenario that there is no missing feedback for the past events for simplicity,

because missing value handling will divert our discussion.
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Figure 4.2. A demonstration of our future events recommendation system. Users and events
are indexed by rows and columns, respectively. Events are arranged according to the order
of occurrence and grouped into k sessions. Users give their preference ratings regarding the
past events. Columns in the k-th session are future events and their ratings are unknown..

hand, focus more on global structure and therefore have the potential to handle such kind

of sparsity. We will give a brief review over literature work in recommendation systems

in the next section, especially collaborative filtering methods and event recommendation

related work.

4.3 Related Work

In this part, we provide a brief review regarding the literature related to our work.

First, we mention the previous work in event recommendation. Next, we give a quick

overview about collaborative filtering methods(especially in low-rank approximation). Last,

we introduce the recently popular collaborative filtering method-trace norm minimization,

it is an important component of our framework and therefore we provide the necessary

background.

Our future event recommendation system clearly has close connection with gen-

eral recommendation systems. More specifically, our approach belongs to personalized

recommendation-recommend things based on the individual’s past behavior. There are

57



many classic works in terms of generic prediction [83, 14, 76]. However, the problem

of collaborative ranking of future events recommendation has not received well attention.

There are 2 recent papers according to our knowledge. The first one [84] proposes a fuzzy

relational framework, which is a hybrid of content and collaborative filtering approach, to

recommend future events if they are similar to past events that similar users have liked.

The major drawback of this paper is the approach was not evaluated empirically. The sec-

ond one [85] presents a collaborative method based on matrix factorization, the rationale is

similar to the first one while the setting is more like our recommendation system.

Now we talk about collaborative filtering methods. In [86], Xu et al. further clas-

sified collaborative filtering methods into 3 categories: memory-based, model-based and

hybrid recommenders. In this chapter, we focus on low-rank approximation related meth-

ods [19, 52, 54], which belong to model-based category. The rationale behind these factor

model methods is that there are usually a small number of latent factors influencing the

preferences, and a user’s preference is determined by how each factor applies to that user.

This assumption applies here since in practice user’s interest in particular events is often

influenced by relatively stable past behavior pattern.

Last, we present a brief introduction to trace norm minimization method, a recent

popular framework for matrix completion. Candés et al. [23, 36, 82] use the trace norm of

user-item matrix as a convex relaxation of its rank, to seek a low-rank matrix X to approxi-

mate the original matrix and therefore make recommendation. Specifically, to optimize the

following equation

min
X
∥XΩ −MΩ∥2F + γ ∥X∥∗ , (4.1)

where Ω is the set of available entries and ∥X∥∗ denotes the trace norm of X , which is the

sum of singular values of X . γ > 0 is the regularity parameter balancing the observations

fit and the rank of matrix X . Note that such yielded X is the global optimal solution and
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not subject to the influence of initialization, due to the convex property of the objective

function. There is an important conclusion in [23]: for most n× n matrices, if the number

of uniformly sampled entries is no less than Cn1.2r log n, where C is a positive constant and

r (not too large) is the rank of matrix, then there is a high probability that such matrices can

be perfectly recovered. Moreover, the conclusion can hold for any matrix if 1.2 is replaced

by 1.25 [23].

However, there are two potential issues with this method. First, the incoherence con-

ditions of the data matrix is often too restrictive, there is no prediction accuracy guarantee

when the assumption is not satisfied. Second, the theoretical results in [23, 82] assume that

the observed entries are sampled uniformly at random. Unfortunately, many real-world

data sets exhibit power-law distributed samples instead [25]. In terms of our events recom-

mendation system, as demonstrated in Fig.(4.2), all unknown values are condensed into a

few columns. Due to the above two reasons, trace norm minimization method alone is not

a good choice for events recommendation.

4.4 Collaborative Ranking Framework

In this section, we present our motivation first and then propose the corresponding

objective function. As mentioned in the introduction part, we try to find a matrix that

best approximates the user-event matrix and therefore recommend highly ranked events to

individual users. Similar to other general recommendation systems, our framework also

assumes the preference of users to these events are based on a few latent factors. Based on

this, we seek a low-rank matrix X , where each xi (individual row of X) consist of two parts.

The first part is to approximate each individual user’s past events, the second part is for the

prediction purpose. Specifically, let us assume the past events matrix is M ∈ Rn×m, here n

is the number of users, m is the total number of past events. In the following context, when
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we refer to mi, it is the events activity record vector for individual user i. We are generating

vectors in the form of xi = [x̂i, x̃i], here x̂i corresponds to mi and x̃i predicts how users

will respond to those future events. As introduced in the proceeding part, the trace norm is

a convex approximation of matrix rank and therefore becomes an important component of

our objective function. In addition to this, as we are predicting future events based on users’

past activity history, our prediction matrix should approximate these available entries in the

original matrix, so it is natural to come up with the following tentative objective function:

n∑
i=1

∥x̂i −mi∥22 + γ ∥X∥∗ . (4.2)

Here X = [xT
1 ,x

T
2 , . . . ,x

T
n ]

T and γ > 0 is the regularity parameter. Note that the trace

norm regularity term ∥X∥∗ includes users’ responses to past events and the predicted re-

sponses to future events, instead of past events alone. After all, we expect individual user’s

behavior pattern should be consistent and his preference on future events can be inferred

from past events.

While Eq. (4.2) takes advantage of the convex property of trace norm and the latent

feature of the user-event matrix, it fails to explicitly incorporate the correlation of the events.

Although the available entries(past events activity) could also provide the events correlation

information to some extent, these entries are generally subject to constraints beyond users’

preference. As demonstrated in Figure 4.3, a basketball fan may decide not to attend a live

game due to schedule conflict, expensive admission ticket or even recent bad performance

of his favorite team, which is contrary to his usual behavior pattern. Therefore, we decide

to include the events correlation information in our objective function to enhance prediction

power, which will be presented in details in next part.
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Figure 4.3. A demonstration for individual user choose not to attend a particular event due
to various reasons. It could be due to his busy schedule, budget constraint or unexpected
reason. This is to illustrate the point individual user might not follow his usual behavior
pattern. Therefore, simply relying on historical data to make inference is not reliable for
practical application..

4.4.1 Events Correlation Capture

This part is to provide a derivation of the events correlation term, which will be

included in our final objective function. Let us assume we have defined an appropriate

evaluation metric for events similarity (the specific measure is dependent upon the events

domain knowledge and we will discuss in the experiment section), get the similarity matrix

W and the similarity between event i and event j is wij . Recall that our prediction vector for

individual k is xk, we use xk,i to denote his preference for event i. Then our intuition is that

for individual k, the difference between xk,i and xk,j should be small given the similarity

between event i and event j is high. To model such relation, we propose to minimize the
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following term: min
xk

1
2

m∑
i,j=1

wij (xk,i − xk,j)
2, the reason of putting 1

2
here will become clear

shortly. Notice that

1
2

m∑
i,j=1

wij (xk,i − xk,j)
2

= 1
2

(
m∑
i=1

dix
2
k,i − 2

m∑
i,j=1

xk,ixk,jwij +
m∑
j=1

djx
2
k,j

)
=

m∑
i=1

dix
2
k,i −

m∑
i,j=1

xk,ixk,jwij

=
m∑
k=1

xk(D −W )xT
k

(4.3)

where di =
n∑

j=1

wij , is the diagonal elements of diagonal matrix D. Note that L = D −W

is called the Laplacian matrix in literature and plays an central role in spectral clustering

[87, 88]. Since W is symmetric, it is also easy to see L is symmetric and positive definite.

Clearly we need to minimize the final term in Eq. (4.3), this is consistent with E-

q. (4.2). With the derivation in this part, we are ready to present our final objective function.

4.4.2 Collaborative Ranking Objective Function

With the discussion in proceeding parts, we propose the objective function as fol-

lows:

min
xi

n∑
i=1

xiLx
T
i + α

n∑
i=1

∥x̂i −mi∥22 + γ ∥X∥∗ . (4.4)

The first term is the summarization of n events correlation terms, as derived in Eq. (4.3).

The second part of the equation is identical to Eq. (4.2), except the positive parameter α,

which is to ensure the our predictor vectors fit past events well. Here parameters α > 0

and γ > 0 also ensure the solution xi is non-trivial. Otherwise, Eq. (4.4) reduces to the

summarization of n independent Eq. (4.3), it is clear all prediction vectors can be 0. The

first term captures the events correlation from a local perspective, while the trace norm term

seeks a global structure approximation to the user-event matrix.
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Technical speaking, our framework falls within the category of transductive learning

[89], as here we included the feature of future events (correlation with past events) in

our learning process, this is the most significant difference between our work and prior

work in event recommendation. Here is an example to illustrate the difference between

transductive learning and inductive learning to facilitate the understanding. Assuming there

are a few training instances and test instances, as well as labels for these training instances,

we are to classify test instances with Support Vector Machine (SVM). Inductive learning

uses training instances exclusively to learn the classification margin while all test instances

also play a role in learning the margin for transductive learning. It has been shown that

transductive learning generally yields better learning result than inductive learning [90, 91],

because it incorporates the information of test instances.

4.5 Optimization Algorithm

So far we have presented the objective function and the interpretation of each term.

This section, we will present the optimization algorithm to Eq. (4.4). First of all, due to the

trace norm property and the fact the trace over a scalar is still itself, it can be converted into

the following one

min
xi

n∑
i=1

xiLx
T
i + α

n∑
i=1

∥x̂i −mi∥22 + γ

n∑
i=1

xiDxT
i , (4.5)

where D = 1
2
(XTX)−

1
2 .

The new objective function is the summarization of n independent vectors and can

be solved in a decoupled manner. Therefore, in the following context, we will minimize

Eq. (4.6) with respect to individual xi. To make the optimization more clear, we combine

L and D together and get the following equation:

min
X̂,X̃

Tr([X̂, X̃]

 N11 N12

N21 N22

 [X̂, X̃]T ) + α
∥∥∥X̂ −M

∥∥∥2
F

(4.6)
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Here Tr is the trace operation, X̂ = [x̂T
1 , . . . , x̂

T
n ]

T , X̃ = [x̃T
1 , . . . , x̃

T
n ]

T

N = L+ γD =

 N11 N12

N21 N22

, the sizes of blocks within N are in accordance with

X̂ and X̃ . Note that here N12 = NT
21.

Eq. (4.6) can be written into the following equation:

min
X̂,X̃

Tr(X̂N11X̂
T ) + 2 Tr(X̂N12X̃

T )

+Tr(X̃N22X̃
T ) + αTr((X̂ −M)(X̂ −M)T )

(4.7)

To get the solution of X̂ and X̃ to the above objective function, we take derivative

with respect to them and set to zero respectively.
X̂N11 + X̃N21 + αX̂ − αM = 0

X̃N22 + X̂N12 = 0

(4.8)

We get the solution of X̂ and X̃ respectively.
X̂ = α((N11 −N12N

−1
22 N21 + αI)−1)TMT

X̃ = −X̂N12N
−1
22

(4.9)

It is clear that our objective function involves multiple variables. In order to min-

imize Eq. (4.4), we implement an alternative optimization algorithm. In other words, in

each iteration we optimize one variable while fixing other variables, such process repeats

until convergence. One subtle point is that once we get updated X̂ and X̃ , i.e, updated X ,

we need to update D accordingly. Our objective function decreases at each iteration and

naturally lower bounded. What is more, it is a convex function and therefore we are guar-

anteed to yield a global optimum. The rigid theoretical convergence proof will be presented

in next section.

Algorithm 3 is a summarization of our optimization process. The convergence cri-

terion here is the relative change of the objective function falls below 10−4. Empirical
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experiments show our algorithm converges within 30 iterations, for data sets used in this

paper. We call our framework Collaborative Ranking (CR). Here the term ”collaborative”

is twofold: first, it indicates users and events deliver information in a cooperate way to help

the prediction. second, training instances and test instances work together to establish the

model.

Algorithm 3: Collaborative Ranking Algorithm
Input: Events Laplacian matrix L, user events preference vector mis,

parameter α and γ.

Output: User events preference prediction matrix X̃

Initialize D = I

while Not Converged do
Step 1: N = L+ γD

Step 2: X̂ = α((N11 −N12N
−1
22 N21 + αI)−1)TMT

Step 3: X̃ = −X̂N12N
−1
22

Step 4: D = 1
2
(XTX)−

1
2

end

We summarize the highlights of our theoretical contributions here.

• Our algorithm has the pairwise events similarity term, it enables the content-based

recommendation based on past events relevance with future ones. On the other hand,

the trace norm captures the users’ pattern from a global view. Our hybrid system

combines both prospectives in a novel way.

• Instead of generating explicit ranking rule with the training events, we incorporate

the test events feature into the transductive learning framework and directly produce

the ranking result without intermediate result.
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• Our convex objective function has clear motivation and interpretation, yields global

optimal solution for the alternative optimization algorithm.

4.6 Convergence Proof

In this section, we want to show that our algorithm guarantees the objective function

Eq. (4.6) decreases at both steps. Since our objective function is a convex one, this implies

our converged solution is a global optimal one and not subject to the initialization. In the

remainder of this section, we will prove the above claim.

Lemma 3 Assuming two matrices A and B, we have the following inequality:

1

2
Tr(AB− 1

2 )− Tr(A
1
2 ) ≥ 1

2
Tr(BB− 1

2 )− Tr(B
1
2 ) (4.10)

Proof 5 Interested readers please refer to the proof of Lemma 3 in the appendix section.

Theorem 4 The objective function value in each iteration will decrease monotonically,

according to steps in Algorithm 3.

Proof 6 Let us denote the solution of X at t-th iteration X(t) and the corresponding solu-

tion D by D(t).

According to Step 1 and Step 2 in Algorithm 3, we have

X(t+1) = argmin
X

Tr(XNXT ) + α
∥∥∥X̂(t) −M

∥∥∥2
F

(4.11)

This is equivalent to

Tr(X(t+1)N (t)X(t+1)T ) + α
∥∥∥X̂(t+1) −M

∥∥∥2
F

≤ Tr(X(t)N (t)X(t)T ) + α
∥∥∥X̂(t) −M

∥∥∥2
F

(4.12)
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Due to the fact N (t) = L+ γD(t) and D = 1
2
(X(t)TX(t))−

1
2 , we substitute them into

the above equation and get

Tr(X(t+1)LX(t+1)T ) + α
∥∥∥X̂(t+1) −M

∥∥∥2
F

+γ
2
Tr(X(t+1)(X(t)TX(t))−

1
2X(t+1)T ) ≤ Tr(X(t)LX(t)T )

+α
∥∥∥X̂(t) −M

∥∥∥2
F
+ γ

2
Tr(X(t)(X(t)TX(t))−

1
2X(t)T )

(4.13)

Now according to Lemma 3, we have

γTr(X(t+1)TX(t+1))
1
2 − γ

2
Tr(X(t+1)(X(t)TX(t))−

1
2X(t+1)T )

≤ γTr(X(t)TX(t))
1
2 − γ

2
Tr(X(t)(X(t)TX(t))−

1
2X(t)T )

(4.14)

Combining the above two inequalities, we get

Tr(X(t+1)LX(t+1)T ) + α
∥∥∥X̂(t+1) −M

∥∥∥2
F

+γTr(X(t+1)TX(t+1))
1
2 ≤ Tr(X(t)LX(t)T )

+α
∥∥∥X̂(t) −M

∥∥∥2
F
+ γTr(X(t)TX(t))

1
2

(4.15)

From the above inequality, we know the proposed theorem holds.

It is clear that our objective function value is lower bounded by 0, as a result, our algorithm

will converge to a global optimum.

4.7 Experiments

As to this section, we have completed the theoretical parts of our work. In this

section, we conduct empirical experiments on two public data sets and demonstrate the

effectiveness of our method. This section consists of several parts. The first part is an in-

troduction of the data sets. The second part talks about event features and measure metrics.

The third part presents the experiments setup and main results. At last, we launch other

related discussion.
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4.7.1 Data Set Descriptions

The data set is about upcoming seminar preferences ratings by CS graduate students

from MIT and CMU2. We call this data set CSAIL. Among consecutive 15 weeks experi-

ments, participating computer science graduate students at MIT and CMU receive weekly

digest emails about the seminars in next week. In each week, users receive a list of seminar

titles, then users could further read the more detailed announcement after click the title he

was interested in. An example of seminar announcement is displayed in Figure 4.4. Users

are generally required to select at least one relevant talk to attend. If users really have no

interest in any talk, they select the option of attending none (”forced option”). Howev-

er, it is assumed that such ranking still carries information about relative ranking of the

alternatives. After users made the selection, users can no longer modify their choices.

Table 4.1 shows relevant weekly statistics about seminar announcements presented

and the associated user preference record. It can be observed the talk frequency varies

widely throughout experiment period, ranging from 2 to 21 talks on a given week. It also

includes the average number of talks judged relevant during a given week and the number of

derived preference pairs. In total, 8.6% responses were marked ”forced”, which indicated

no relevant talk was given in the week. There is an important observation, each student

chose about 2 seminars, even when there were more seminars being offered. This might

be due to students’ schedule, otherwise it is very likely there should be a strong correlation

between total number of students participated and the number of seminars offered that

week. This is a good indication that preference ratings from users are subject to external

factors besides latent factors, as we have mentioned in the introduction part.

The second data set is about the event recommendation competition at kaggle.com3.

We name this data set KAGGLE. This website asks all contest participants to predict what

2http://mis.haifa.ac.il/ einatm?id=326
3http://www.kaggle.com/c/event-recommendation-engine-challenge/data
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events its users will be interested in, based on events they have responded to in the past.

For all events, users can choose either interested in or not interested in. This data set

contains a lot of users’ information, such as gender, demographic information and even

their online friends’ list. For the sake of simplifying experiments, we only preserve the

columns directly related to events. There are 101 such columns, and they are processed as

follows. First, kaggle determined the 100 most common word stems (obtained via Porter

Stemming) occuring in the name or description of a large random subset of its events. The

last 101 columns are count1, count2, · · · , count100, count101, where countN is an integer

representing the number of times the N-th most common word stem appears in the name

or description of this event. count101 is a count of the rest of the words whose stem wasn’t

one of the 100 most common stems.

Based on the characteristic of both data sets, we use 1 to denote users will attend the

corresponding seminar or is interested in the particular event, 0 for otherwise. Clearly, the

user-event item matrices from both data sets are binary.

4.7.2 Events Relevance And Evaluation Metric

Since the second data set contains merely top frequent words, event features for 2nd

data set have to be based on those isolated words. Our subsequent discussions focus on the

first data set. As mentioned in the proceeding parts, events relevance is an important part

of our objective function. Clearly, we need to calculate the relevance between seminars

based on the announcements. As observed from Figure 4.4, each email can be viewed as

a document. There are many literature works discussing document relevance [92, 93]. In

this paper, we consider 2 methods to extract event features. One method is called term-

frequency inverse document frequency (TF-IDF) [94, 95] and the other is Latent Dirichlet

Allocation (LDA) [96].
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Table 4.1. Data Statistics for CSAIL

Data set Week Talks Relevant Pairs

MIT 1 8 2.0(0.8) 11.2(3.3)
2 8 1.9(0.9) 10.9(3.5)
3 7 1.4(0.7) 7.2(2.1)
4 3 1.3(0.5) 2.0(0)
5 20 2.7(1.7) 43.7(22.7)
6 12 1.8(1.1) 17.0(7.7)
7 5 1.1(0.3) 4.1(0.5)
8 12 1.9(1.0) 18.2(7.3)
9 21 2.3(2.0) 39.7(26.2)
10 17 2.4(1.4) 33.1(14.3)
11 7 1.9(1.0) 8.8(2.4)
12 7 1.7(1.0) 8.0(2.4)
13 5 1.2(0.6) 4.3(0.7)
14 21 2.7(1.8) 45.6(23.9)
15 5 1.2(0.5) 4.4(0.8)

CMU 1 11 2.5(1.3) 19.5(7.2)
2 8 1.4(0.6) 8.6(2.8)
3 7 1.6(0.7) 8.2(2.4)
4 11 1.4(0.8) 12.9(5.1)
5 11 1.6(0.8) 14.3(5.6)
6 11 1.7(1.2) 14.5(6.6)
7 11 1.8(1.2) 15.0(6.5)
8 2 1.0(0.1) 1.0(0.1)
9 14 2.3(1.6) 14.9(12.0)
10 13 1.7(1.1) 17.7(7.9)
11 11 1.9(1.2) 15.7(7.0)
12 7 1.2(0.7) 6.4(1.2)
13 17 2.0(1.5) 27.6(15.1)
14 12 1.4(1.0) 14.1(6.0)
15 17 2.6(2.5) 31.2(15.9)
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Figure 4.4. An example of email seminar announcement. We use LDA model and bag of
words model to extract the content feature..

TF-IDF is a numerical statistic which reflects how important a word is to a document

in a collection or corpus. It is often used as a weighting factor in information retrieval

and text mining. The TF-IDF value increases proportionally to the number of times a

word appears in the document, but is offset by the frequency of the word in the corpus,

which helps to alleviate the fact that some words are generally more common than others.

Following the idea, we tune documents into fixed-length feature vectors such that each

coordinate of feature vector correspond to a word occurrence with TF-IDF weighted word

counts. The rationale here is that users’ interest could be triggered by particular key words.

As a result, the coordinates of feature vectors can carry valuable information. Since CSAIL

consists of documents which are full of words, TF-IDF is applicable here. As to KAGGLE,

since these feature columns are the frequencies of these top frequent words, we get the

weights by simply normalizing each word frequency.

71



LDA is more sophisticated. LDA can identify topics from the announcement and

therefore can extract potential better features. These CS graduate students may decide

whether to attend those seminars based on how much overlap between their research topics

and the focus of the talk. Such decision relies more on the topic instead of individual

words. Therefore, LDA should be a more appropriate choice here. Learning an LDA model

requires estimation of the associated parameters and we apply Gibbs sampling method

[97] here. These parameters determine the generation of topic compositions and topic-

dependent word distributions from the training documents.

In summary, we apply both TF-IDF and LDA on both data sets while TF-IDF only

on the second data set. For features yielded by LDA, we calculate the events similarity

using the ad-hoc technique proposed in [98]. On the other hand, we determine the events

similarity using extended boolean method [99] for TF-IDF. Since events (documents) sim-

ilarity is not the main focus of this paper, we are not discuss these two methods in detail,

interested readers may refer to the above two papers.

Now we present the evaluation metric Mean Average Precision (MAP), which is

widely accepted measure in information retrieval [100]. Define the precision at rank k,

prec(k), to be the precision of the correct entries up to rank k. The MAP is the average

precision for each position that holds a correct entry:

MAP =
1

m

m∑
k=1

prec(k) (4.16)

A quick example will make it clear. Given a ranked list of 5 items, where the items at rank

2 and 4 are known to be correct. The MAP is then 1
2
(1
2
+ 1

2
) = 0.5.

4.7.3 Experiments Setup And Parameters

Overall, we divide each data set into train and test parts. For CSAIL, the train part

includes first 10 weeks feedbacks and the test includes feedbacks from week 11 to week
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15. We apply the models learned to generate a ranked list for every student and each week

in the test set. For KAGGLE, we sample the first 3,000 users from original training data

set and the first 2,000 as training, the rest 1,000 as test. Since we treat this ranking problem

in recommend system setting, we recommend test events to each individual user according

to descending order of the imputed value.

To evaluate our event evaluation system, we compare CR against RankSVM4[101,

102] and LowRank [85]. In CR, we tune α and γ from the list of{10−4, 10−3, 10−2, 10−1, 1, 10}.

For LowRank, we set the number of latent factors K in the list of {4, 6, 8, 10, 12} and reg-

ularity coefficient C from 1 to 5. Regarding RankSVM, the trade-off coefficient between

training error and margin is selected from{10−4, 10−3, 10−2, 10−1, 1, 10} and other param-

eters are set as default.

4.7.4 Main Results

With the specified train data, all methods mentioned above learn the models first and

evaluate the recommendation performance with MAP. The MAP results on both data sets

are summarized in Table 4.2. Here we report the optimal MAP result out of both TF-IDF

and LDA in Table 4.2. The optimal MAP result for CR yields when α = 0.1 and γ = 0.01.

We would like to postpone the discussion of this table until the next experiment, when more

results are revealed.

Our next experiment is to investigate the impact of train set size on performance.

In a real recommendation system, users are dynamic and can join and drop out of the

recommendation system at different points of time. In addition to this, users may only

provide feedback to a subset of events due to lack of diligence or unknown reasons. For

example, users could be bored with selecting a long list of potential interested events, he

4http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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may just quickly go through the list and select a few items just by random. Our experiment

is to simulate such case.

Out of 10 weeks’ CSAIL data, n (between 1 and 10) weeks are randomly selected

for training. For every value of n, we train recommendation models based on the sampled

data in the described fashion. To reduce the bias, every experiment is repeated 10 times.

The learned models are then evaluated using the test set (weeks 11-15) and we report the

average performance.

The corresponding experiment is slightly different for KAGGLE. There is no explicit

time order for those events. Therefore, we increase the number of users used in the training

part, from 400 to 2,000 with increment of 400. Again, during the 10 times repeated exper-

iments, we randomly select the specified number of users from the training set and test the

models on the separate test set.

The experimental results are displayed in Figure 4.5. Figure 4.5 delivers more in-

formation than Table 4.2. There are a few observations and we would like to initiate the

discussion here.

First of all, CR yields consistently better average MAP on both data sets, which

demonstrates its effectiveness. As highlighted in the contribution summary, our hybrid

system combines content-based approach and collaborative filtering approach in a natural

way, as long as the parameters are well tuned. Such an idea originates from ensemble

learning, a theory in statistics and machine learning. Ensemble learning theory says that

better predictive performance could be obtained by ensemble methods, which use multiple

models from the constituent models [103]. Content-based methods and collaborative filter-

ing methods have both been proven to be effective for certain recommendation problems

[104]. Therefore, there is no surprise CR model gets impressive performance.

Second, start from almost identical performance, all methods have a relatively stable

performance after get sufficient number of past events feedbacks. In particular, CR yields

74



Table 4.2. Classification Methods Accuracy Comparison

Data Set LowRank RankSVM CR
CSAIL 0.552 0.534 0.584

KAGGLE 0.665 0.684 0.712
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Figure 4.5. A comparison of CR, LowRank and RankSVM with increasing training data.
MAP is averaged across all users. It can be observed CR method yield consistently better
performance..

impressive result once it gets 3 weeks training data, which most models never achieve even

after all training samples are used. This is due to the transductive learning property of

our framework, CR model extracts the useful information from the test samples. A close

but not precise analogy is that CR uses in total 8 weeks data (3 training weeks with 5

test weeks) to train its model. What is more, although not an issue for current data set,

user-item matrices generally contain vast number of missing values due to various reasons,

which implies significantly fewer training feedbacks. CR model is especially useful for

those cases.

Third, the differences between the choice of TF-IDF or LDA are moderate with re-

spect to each recommendation model. Note that MAP of random ordering is 0.37 for C-

SAIL and 0.42 for KAGGLE. Therefore, we can conclude that these two feature extraction

methods should be effective. Is there any alternative feature extraction for better document

categorization? We will look into this question in the future.
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(b) γ Curve when α = 0.1

Figure 4.6. α and γ curve plot when the other is fixed. MAP is averaged across all users.
These two curves demonstrate how past events fit and global latent factor structure affect
MAP..

4.7.5 Other Related Discussions

This part, we first look into influence of parameters in our framework. Recall that α

controls the fit between prediction vector and past events vector, on the hand, γ ensures the

low-rank of the user-event prediction matrix. The combination of α value and γ determine

a trade off between the overall fit for past events and the emphasis of latent factors structure.

Similar idea is also proposed in Eq. (4.1) and explained in Section ??. As mentioned in the

proceeding part, the optimal setting for CR framework is α = 0.1, γ = 0.01. Therefore, we

plot the curves of α and γ, when we fix one parameter and vary the other one. Figure 4.6

shows the curves when we conduct experiments using the full training data set. The MAP

performance curves are stable as long as α and γ are in a reasonable range.

Now we want to check individual users’ performance. The results so far all focus on

all test users, it is also worth to look into variance among individual users’ performance.

We plot the histogram figures in Figure 4.7 for individual test users in both data sets. The

results are in accordance with the previous conclusions. There are two subtle points here.

First, as pointed out in Table 4.1 and data set description for KAGGLE, MAP can vary

between users due to variance of weekly event set size or his active level. In general, it is

expected accuracy will be higher for users who are interested in a large number of events,
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Figure 4.7. Histogram plot for individual user MAP. We also include noise as benchmark
for comparison..

because large amounts of past events provide sufficient information to determine the latent

areas/hobbies he is interested in. On the other hand, if users are interested in events with

low correlations, then MAP results for those users are expected to be lower. In this case, due

to schedule conflict or user limited time, data sparsity may become an issue for exploring

the latent factors.

Last, we want to mention a few alternative models regarding these two data sets.

Our task is to predict which events users are most likely to be interested in, our proposed

method clearly belongs to ranking category. But it is possible to model it as classification

or regression. We can classify events as interested or non-interested, or we can produce

the probability users attending events with regression. We tried classic models such as

random forest5 [105], large scale SVM [106], logistic regression [107] etc. Although not

listed in our experiment results, the results of these methods are not as good as ours. The

main issues with these models is the data sparsity, which motivates the eventual choice of

recommendation system as our baseline framework.

5http://www.stat.berkeley.edu/˜breiman/RandomForests/cc_home.htm
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4.8 Chapter 4 Conclusion

In this chapter, we tackle the problem of recommending events for which no avail-

able feedback exists. We introduced a collaborative ranking system, whose performance

surpasses existing algorithms. Since the direct feedbacks from future events are clearly

not available, we have to utilize other related information from those test instances to train

our learning function. As a result, we propose a transductive learning framework to incor-

porate the events Laplacian term. Our framework combines the content-based approach

and collaborative filtering approach in a novel way. The shares some similarities with our

work [108], where we incorporate the label for supervised learning. The convex objective

function guarantees the global optimal property of our solution and is not subject to the

influence of initialization of missing values. The empirical experiments on 2 real data set

from various aspects demonstrate the effectiveness of our method.

There are two directions for our future research. First, we are interested in applying

our learning framework to other related tasks. As mentioned in the introduction part, event

recommendation can be applied to various scenarios. In particular, along with the evolution

of social network web sites, accurate event recommendation can definitely help find users

interested events and boost the online interactions between users. Second, in this paper, we

assume there is no missing value in our training instances to simplify the model. For real

event recommendation projects, collecting exhaustive data generally exceeds the budget

and is often impossible for various reasons. Therefore, it is desirable to design a framework

that tolerates such data sparsity. Our transductive learning can alleviate such issue, but a

better training data learning model is still desirable.
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CHAPTER 5

Conclusions And Future Work

Social network is a rich data source of large quantity and high variety. It is a field

with many great and inspiring challenges for data mining. This dissertation proposes the

concept of social information completion and presents many matrix completion frame-

works to handle missing value prediction in large-scale social media networks. The key

contributions of this work are summarized below, followed by future work.

5.1 Key Contributions

The following summarizes the main contributions used in our paper.

• We design a model that seeks a low-rank matrix and meanwhile maintains its discrete

mode, this avoids the ad-hoc post-processing stage for conventional methods that

work on continuous domain.

• We propose a transfer learning framework between social graph and rating matrix,

this alleviates the data sparsity issue and significantly improve the prediction accura-

cies on both matrices.

• We create a new method that is applicable to future events prediction, such prediction

differs from conventional methods that user-event matrix has continuous blocks of

missing values.

• We suggest a novel targeted marketing model that maximizes the profit, such tree-

based models work on segments instead of individuals.
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5.2 Future Work

As mentioned in the introduction, the social web sites have generated enormous data

of various forms and structures. While this dissertation proposes many different models

in machine learning, they are only applicable to medium size social network. In order

to extend these methods to real data sets, the parallel version utilizing Map-reduce [4]

framework would be required and those algorithms need to be adjusted accordingly.
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APPENDIX A

Convergence Proof Of Theorems In Chapter 3
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In this appendix, we present the theoretical proof regarding the convergence of our

algorithm in Chapter 3.

A.1 Proof to Theorem 1

Proof 7 We rewrite Eq. (3.20) as

J(V1) = Tr(λVT
1 L

+
1 V1 − λVT

1 L
−
1 V1 − 2GT

1U
+V1

+2GT
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1 V1)
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On the other hand, to get the lower bound for the remaining terms, we employ the inequality

z ≥ 1 + log z, ∀z > 0, then
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By summing over all the bounds, we get Z(V1,V
′
1) and it is easy to conclude that

Z(V1,V
′
1) ≥ J(V1), Z(V1,V1) = J(V1)
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To find the minimum of Z(V1,V
′
1), we take derivative with respect to V1,ij ,
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is a diagonal matrix with positive elements due to V1 initialization and update rule; δik

is the delta function, δik = 1 if i = k and 0 otherwise. Therefore Z(V1,V
′
1) a convex

function of V1, we can obtain the global minimum of Z(V1,V
′
1) by setting ∂Z(V1,V′
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= 0

and solve for V1, we can get Eq. (3.21). �

A.2 Proof to Theorem 3

Proof 8 We rewrite Eq. (3.22) as
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On the other hand, to get the lower bound for the remaining terms, we employ the inequality

z ≥ 1 + log z, ∀z > 0, then
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In this appendix, we provide the proof to Lemma 3.

B.1 Proof to Lemma 3

Proof 9 Obviously, (A
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