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ABSTRACT 

 
REAL TIME MOTION CONTROL FOR NATURAL 

HUMAN ROBOT INTERACTION 

 

Suresh Sampathkumar, M.S  

 

The University of Texas at Arlington, 2013 

 

Supervising Professor:  Dan Popa   

 In this thesis, we present the research work performed with various robots including 

Android PKD, Zeno and the Atlas robot. The main focus of this thesis is to develop algorithms 

for vision-based natural human robot interaction in real-time. 

 Zeno is a childlike robot that we use for the research related to Autism in children. 

Children with Autism who lack motor skills tend to shy away from humans. In this project we use 

the robot Zeno that is capable of facial expressions, arm and body motions to teach motor skills 

to them. For this purpose we developed a program that plays predetermined gestures like hand 

wave, tummy rub and fist bump in a particular sequence. This was used in the UNT Health 

Science Center to record the motion of the Autistic children so that we can compare the motion 

of the child and the robot.  

 Android PKD is an avatar of the science fiction writer Philip K. Dick. In this project we 

developed a novel algorithm to distribute the motion between the neck and the eye servo 

motors to solve the redundancy involved. The robot was able to track faces by moving its eyes 

and neck in a realistic humanlike motion. Another project was done to mimic the facial 

expressions and the 3D rotations of the human head by the PKD. In this the mapping between 
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the facial feature space and the actuator space is addressed using linear and nonlinear 

methods. Both of these demos and Zeno were exhibited at the Humanoids 2013 Conference in 

Atlanta. 

 An algorithm to map the human arm, torso and leg motion to the robot was developed 

as a project for DARPA Robotics Challenge and also controlling the robot in real-time. The robot 

used is called Atlas and it is a virtual robot in a Gazebo simulation environment. The issue of 

singularities has been addressed while mapping the human motion to the robot.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation for Vision-based Human Robot Interaction 

 Human Robot Interaction (HRI) is the study of interactions between humans and robots. 

Human Robot Interaction is a multidisciplinary field with contributions from robotics, human 

computer interaction, artificial intelligence, computer vision, machine learning, natural language 

understanding, real-time processing and social sciences. 

 Human Robot Interaction is the development of robotics systems enabling interaction 

capabilities more similar to human-human interaction has become a hot research topic. Most of 

the research in this area is carried with a goal to furnish robotics systems with the function to 

observe, detect and respond to the modes of interaction that people apply naturally with one 

another. 

 A major research area that attracts the research in Human Robot Interaction is in the 

area of Autism. Autism spectrum disorder (ASD) and autism are both general terms for a group 

of complex disorders of brain development. These disorders are characterized, in varying 

degrees, by difficulties in social interaction, verbal and nonverbal communication and repetitive 

behaviors. They include autistic disorder, Rett syndrome, childhood disintegrative disorder, 

pervasive developmental disorder-not otherwise specified (PDD-NOS) and Asperger syndrome. 

With the May 2013 publication of the new DSM-5 diagnostic manual, these autism subtypes will 

be merged into one umbrella diagnosis of ASD. ASD can be associated with intellectual 

disability, difficulties in motor coordination and attention and physical health issues such as 

sleep and gastrointestinal disturbances. Autism appears to have its roots in very early brain 

development. However, the most obvious signs of autism and symptoms of autism tend to 

emerge between 2 and 3 years of age. Through experimental observations it has been seen 
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that children with Autism like interacting with Robots. This is one of the major motivations for 

conducting research in natural human-robot interaction. It is also important for the robots to be 

socially acceptable so the robots that we use for research must satisfy this criterion. It is also 

needed to come up with algorithms leading to natural human robot interaction. Several areas 

that need algorithm development are face tracking, facial expressions, mimicking the human 

motions for natural HRI. Face tracking is an important ability for the robot to perform natural 

conversations with the humans. The challenge lies in developing computer vision algorithms to 

process the image to position the eyes of the robot and to control the servo motors such that the 

face tracking by the robot looks realistic and occurs in real-time. Facial expression generation is 

another important aspect of natural HRI. Facially expressive robots find more acceptance while 

interacting with humans. Facial expressions synthesis and mimicking is an important part of the 

research that can enable social interaction with humans.  

1.2 Challenges in Natural Human Robot Interaction 

 Human Robot Interaction can be classified into three types: visual interaction, physical 

interaction and interaction with verbal dialogue. Physical interaction involves sensing of the 

environment through contact sensors like force feedback sensors. Dialogue based interaction 

involves the use of voice feedback together with artificial intelligence to interpret the message. 

Vision-based interaction involves sensing the environment through cameras (normal and 

stereo), 3D depth sensors like Microsoft Kinect etc. There are many challenges involved in 

vision-based Human Robot Interaction. Face tracking by the robot, mimicking the motion of the 

human by the robot, motion control for distributing motion to actuators that have redundancy, 

facial expressions synthesis and mapping to the robot are some of the aspects requiring new 

algorithm development. 

 Face tracking by the robot is a challenging task as it needs robust algorithms. There is 

considerable redundancy in the neck and eye actuators in order to track the human face. One of 

the challenges is how to servo the motors such that the robot motion looks more human like 
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instead of looking unnatural. The other challenge is to being able to detect a face in a given 

image in real-time. Numerous face detection algorithms that are available in the open source 

community are not deterministic. This means we cannot guarantee that a face is detected 

during fixed intervals of time. This deterministic requirement is important if we implement a 

control algorithm for real-time face tracking.  Another challenge is the computational time 

needed to detect a face in a given image. Generally for the control algorithms generally we 

need to actuate the motors at 100 Hz bandwidths to get a smooth motion. 

 There are also several research challenges in human motion detection and in mapping 

the human motion to the robot by considering the robot’s kinematic constraints. There are 

software available for tracking human skeleton using 3D depth cameras like Microsoft Kinect. 

The challenge here is how we use those non real-time algorithms for controlling a real-time 

robot. Another research challenge in mapping the human kinematics to that of the robot 

kinematics might involve singularities and there is a need to take care of this as well. 

 For mapping the facial expressions of the human to that of the robot, the challenge is to 

be able to track those critical muscle movements that are responsible for a certain facial 

expressions and to map these points that are being tracked to the actuator space of the robot 

that create facial expressions. 

 In order to accomplish real-time vision-based interaction we need to rely on the 

processing requirements as well. For example, the current face detection using OpenCV takes 

approximately 500ms to detect a face using a full 640x480 pixel image. To improve this we 

might carry out processing of these algorithms in FPGA and DSP chips. There is considerable 

complexity involved in designing a real-time, distributed, embedded systems  for this purpose, 

so the control of the motors is deterministic and communication between the control hardware 

and the vision acquisition hardware is real-time. 

 Robotic systems are inherently real-time systems. The robot has to respond within a 

defined latency for it to perform tasks successfully. For example, the robot that does the 
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assembly in a manufacturing plant has to pick and place with precise timing requirements. A 

robot that does the obstacle avoidance has to respond in real-time when it encounters an 

obstacle. Robots that incorporate vision for manipulation tasks also tend to be real-time, for 

example the robotic arm that has a fixed stereo camera to estimate the depth of an object for 

grabbing, need to establish its orientation in real-time so that it can plan its trajectory for 

grabbing it. Another example is using the 3D depth acquisition devices like Kinect to build the 

map and localize itself in it also have to be done in real-time. 

 In order to handle these tasks efficiently, we need choose appropriate Software and 

Hardware design model to accomplish these tasks. Computer Vision algorithms tend to be 

computationally expensive. For example, to be able to run the Simultaneous Localization and 

Mapping (SLAM) on standard desktops we need processors with Graphics Processing Unit 

(GPU) in it for performing the computationally intensive algorithms. Processors that are good for 

performance like Intel Core i7 based on x86 or x64 architecture running on Windows/Linux 

operating systems may be well suited to get increased average throughput but are not efficient 

in handling tasks that needs to be run periodically with deadline constraints. Context switching 

in such processors frequently could turn out to be expensive and the deadlines of the real-time 

control and sensing tasks may fail to meet. So the use of such systems to perform deterministic 

low level tasks is not a feasible solution. 

 The solution for handling sensing and actuating tasks that have specific scheduling rate 

such as 100Hz or 1 KHz is then to use a processor that supports real-time operating system. So 

for a complete hardware system we can use a high performance x86 or ARM based processor 

for processing vision related algorithms and use another processor that runs a real-time 

operating systems that can do the sensing and the actuation in real-time. For communication 

between the vision system and the control system we can choose a real-time communication 

protocol like CAN, EtherCAT [1][2]. 
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We need to choose appropriate Software model for the vision and the control system. 

For processing the vision algorithms from Kinect we can use the open source library OpenNI [3] 

that provides the driver support for the depth acquisition devices. For image processing 

applications we can use the OpenCV library. Since all of these libraries can be installed easily in 

Robot Operating System (ROS) [4] it would be a good choice for building the vision system. 

Since ROS is heavily supported in Linux, we can use Linux as our operating system for vision 

system. For the real-time sensing and control of robots we can consider any real time system 

that can handle real-time tasks. In our case we use real-time controller from National 

instruments called sbRIO [5] for the purpose of controlling and sensing. 

1.3 Description of the Work Conducted 

 In this thesis, we describe the algorithm development and implementation for natural 

human robot interaction. We start with reviewing the current literature on algorithms for human 

robot interaction including image and position based visual servoing, control of humanoid robots 

and focusses on developing new algorithms. For interaction with humanoid robots like Androids, 

a novel motion distribution algorithm is developed to distribute the motion between eye servos 

and neck servos to solve the redundancy in actuation such that the movement appears 

humanlike. Facial expression imitation by the android is implemented by mapping the feature 

points of the human face to that of the actuator space of the robots using neural networks as 

well as direct mapping. 

 Natural human robot interaction involving the gestures using the arms of Zeno robot 

was also developed in this thesis. Zeno is a childlike humanoid robot by Hanson RoboKind.  

Zeno is used as a robotic platform for research with Autistic children. The robot is taken 

periodically to UNT Health Science Center for running the experiments with ASD kids and 

collecting the data. As a part of this research, the scripted motion for the Zeno robot was 

developed in LabVIEW. This scripted motion of the robot includes a series of gestures including 

hand wave, tummy rub and fist bump. Each of it performed three times consecutively with both 
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left and right arm, one arm at a time. The movements of both the Zeno and the robot are 

captured using a motion capture system and the motions are compared using Dynamic time 

warping technique to compare how close the child is following the robot. 

 

Figure 1.1 Zeno Robot 

As a part of my research, I made some contributions to the DARPA Robotics Challenge (DRC). 

UT Arlington partnered with RE2, a leading robotics company based in Pittsburgh, PA to 

compete in the DRC and we were competing in Track B. My contributions to this project were in 

two areas. 1) Robot tele-operation using the 3D Kinect sensor and 2) Making the ATLAS robot 

stand up in case it falls down. In the DARPA Robotics Challenge (DRC) competition the ATLAS 

robot has to perform various tasks including driving a car, connecting a hose and many other 

task that are generally designed to be operated by humans. Robot tele-operation with Kinect will 

be a useful tool for many such applications. The person doing the Tele-operation performs the 

task in front of the Kinect and the algorithm in the computer extracts the joint angles from the 

Kinect, converts it and maps it to the joint angles of the robot sends it to the controller. The 

result of this is that the robot mimics the operation of the human in real-time. The other part of 



 

 7 

the contribution involves making the robot stand up in the event it falls down. This involves 

identifying if the robot is lying down in supine or prone position, generating joint position and 

velocity trajectories that will change the contact states of the robot in a sequential manner, 

interpolating and filtering these trajectories using cubic spline interpolation and finally feeding 

these trajectories to the joint controllers of the Atlas robot so that the robot performs the getting 

up sequence of operations. 

 

Figure 1.2 Atlas robot 

1.4 Research Contributions of Thesis 

 The primary research contribution of this thesis is in the area of vision-based natural 

Human robot interaction. This research has been conducted with Zeno robot, PKD android and 

the Atlas robot in Gazebo simulation. 

1.4.1 Natural HRI with Zeno  

The research contributions with the Zeno robot includes the development of the 

gestures like hand wave, tummy rub and fist bump. These gestures were developed for the 

robot to interact with children diagnosed with Autism. The 3D depth senor Kinect was used to 
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extract the information from the human joint angles and map it to the robot. With this setup, the 

root was able to imitate the arm, torso and head motions of the human. 

1.4.2 Natural HRI with PKD 

 The PKD android avatar was used to develop vision-based interaction for face tracking 

by the android. The android’s camera in the eyes was used to detect faces. The research 

contribution was to develop a novel algorithm to distribute the motions between the neck and 

the eye servo motors so the neck eye coordination of the android looks more humanistic. 

Another research contribution was to map the human facial expression to the robot. The PKD 

android is capable of full range of human facial expressions and the contribution was to map the 

facial features of the human face to the actuator space of the robots. This mapping was done 

with both linear way using direct mapping approach and non-linear way using neural networks. 

1.4.3 Natural HRI with Atlas Robot 

 The Atlas robot in the Gazebo simulation was used to develop mapping between the 

human joints and the Atlas robot. The Atlas is a humanoid robot with 28 degrees of freedom.  

Here, the research contribution was to develop a novel way of using Quaternions in solving the 

singularities in the joint angle parameterization that was used for the mapping. This natural 

interaction with the Atlas robot by imitation of the full range of human motions will enable the 

robot to be able to tele-operate the robot remotely. 

1.5 Thesis Organization 

 Chapter 2 describes the Literature Review in 1) using robots for diagnosis and 

treatment of Autism in Kids 2) Social robots and its use 3) Robots imitating the motions of the 

human and finally 4) Facial expressions mapping to Androids. 

 Chapter 3 describes the robots used for conducting research in this thesis. It describes 

the hardware details of the Zeno, PKD and Atlas robot. 

 Chapter 4 describes the algorithms developed for vision-based natural HRI. It starts 

with the description of the implementation of Image Based and Position Based Visual Servoing 
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to control the Pan and Tilt motion of a robot with two degrees of freedom. It then describes the 

use if Image-Based Visual Servoing technique for the distribution of neck and eye motion of the 

PKD robot for the movement to appear Humanlike. It also develops algorithms for mapping 

human motion to that of the robot. In this there are two types, the first one maps the arms and 

torso motion to the ATLAS robot and the second maps the facial expressions from the human to 

the PKD android using Linear and Non Linear methods. 

 Chapter 5 describes Real-time control of Zeno robot for Autism therapy. In this chapter 

two modes of operation with Zeno is discussed. The first one is the interactive mode where the 

Zeno robot mimics the motion of the therapist and in the second one it performs a 

predetermined sequence of gestures that is used for conducting ASD experiments at UNT 

Health Science Center. 

 Chapter 6 describes a technique to make the robot stand up from its lying down 

position. This was done as one of the contributions to DARPA Robotics Challenge. 

 Chapter 7 finally concludes the thesis with the contributions made and discussed some 

of the research that could be extended in the future based on the work done in this thesis. 

 

 

 

 



 

 10

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Research in Autism 

 Autism Spectral Disorders are characterized by children having difficulty in social 

interaction with other kids. They tend to shy away from humans and have problems 

communication in both verbal and nonverbal ways. In the United States, ASD has been seen in 

1 of 88 children [6]. There are now increasing evidences that children with Autism may have 

motor difficulties as well. 

 There are some recent works that show a link between the mirror neurons and the 

Autism [7]. Even though there is still a debate about the link between the mirror neurons and 

Autism, many studies show a positive link between them. Mirror neurons are helpful in 

developing the motor skills that are required for social development and interaction. Skills like 

imitation of facial expression and body gestures are considered an important part of the 

development of social interaction in children. 

 Understanding the limitations in the planning and coordination of movement and 

posture is fundamental to a comprehensive understanding of the impairments and functional 

limitations link to ASD. Slowed or uncoordinated head and arm movements may limit head 

turning, reaching, pointing, showing and sharing that are key components of initiation and 

response to joint attention [8]. A child’s poor coordination and slowed movement are linked to 

poor social participation and increased anxiety during playtime [9][10]. To fully engage in social 

interaction, a child requires a full repertoire of movement behaviors for use in communication 

and for understanding the communicative nature of others’ movements. 

 Humans learn new skills using numerous techniques and modalities, in particular 

through observation and imitation [11][12]. Imitation of motor gestures and movements is 
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paramount during childhood for the development of social interactions. Contrary to typically 

developing children, those with ASD do not imitate the movements of other people and do not 

point towards an object of interest. We believe that their motor imitation difficulties contribute to 

lack of play and interaction with other children. Children with ASD have difficulties initiating and 

engaging in imitation behavior. 

 The advancement and cost-effectiveness of sensor/actuator and computing 

technology has played an important role in the recent emergence of robotic technology. 

Recently, use of pattern recognition from sound data as well and the use of human and non-

human robots for improving play in children with ASD was considered [13][14][15][16]. Several 

robotic systems have been developed for use in the therapy of individuals in the autism 

spectrum such as FACE, AuRoRa, Kaspar, and Keepon, but many of them have only been 

tested under manual operator control, rather than in a truly autonomous, interactive manner 

[17]. These studies concluded that the appearance of the robot plays an important role in how 

children relate and interact with such robots. 

 

 

(a)                                             (b)                                                 (c)               

Figure 2.1 (a) FACE (b) KASPER (c) KEEPON [17] 
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 Researchers at Massachusetts Institute of Technology have recently ushered a new 

research area in social robotics, where the goal is to create realistic interaction between 

humans and humanoid robots in manners as intuitive and natural as human-to-human 

conversation [11]. In other words, the humanlike robot hardware has to be controlled so that the 

overall behaviors are similar to those of humans. People are likely to become familiar with 

robots that exhibit human-like features, appearance and characteristics. Additional studies 

confirm that human-like robots that do not have a mechanical-like appearance are treated 

differently in social settings [18][19]. On contrast, [20] proposed that if the robot appearance are 

too close to human-like features, an “uncanny valley” is created which leads to feelings of 

“repulsion” by humans. Additional research is needed to investigate how individuals with ASD 

respond to robots as instructional agents. However, studies suggest that leading types of 

interactions useful in engaging children with ASD are emotion recognition, joint 

attention,imitation and turn-taking [14][15][21]. 

 A robot called Bandit was used to guide older adults to perform imitative exercises [22]. 

This project had a robot perform upper body gestures that the subject imitated, performance 

criteria were related to achievement of target poses. These projects and others involving the 

use of robots for assisting humans in a social, collaborative setting can be considered part of a 

relatively new field called Socially Assistive Robotics [17]. However, to date, evaluation of 

human-robot interaction is restricted due to lack of objective criteria that rate imitative gestures 

and movements and quantify the Human-Robot Interaction (HRI). Moreover, currently available 

clinical tests that evaluate imitation rely on observation and categorical data of “yes” and “no”. 

Use of the robot will provide consistent repeatable imitation tasks that can be evaluated using 

continuous kinematic measures over time. The purpose of this project was to conduct a 

feasibility study to examine the utility of a robotic device and human robot interaction as a tool 

for assessing and quantifying imitation behavior in children with autism spectrum disorders. 
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We aimed to verify if the system and the analysis algorithm can accurately measure imitative 

behavior in typically developing children and to compare the results with those of children with 

ASD. 

2.2 Social Robotics 

The advancements in computing technologies, sensors and actuators have played a 

major role in the research in social robotics research. There is a lot of research that has been 

focused on human robot interaction in natural ways similar to how humans interact with each 

other. In other words, the interface between robots and humans are now controlled to be more 

humanistic. The motivating factor for our work is to create realistic robots that are capable of 

interacting in the form of facial expressions, tracking faces, maintaining eye contact to make it 

more humanistic. 

 Mori [23] was one of the first to suggest that people are going to be more familiar with 

robots with human like appearances and if those features are not apparent then it would result 

in “uncanny valley” which may become repulsive to humans. The study of “uncanny valley” 

continues to attract research studies. Bartneck [24] proposed the alternative model to the Mori’s 

“uncanny valley” model, and Shimada [25] suggested that the “uncanny valley” model varies 

from person to person. If the robots do not have mechanical appearences then the studies done 

by Woods[26] and Goetz [18] suggested that human-like robots are more likely to be treated the 

same way people are treated in a social setting. Robots like COG and Kismet from MIT are 

used extensively to study the human imitation in a social setting with sociable robots. Breazeal 

[27] discussed the potential challenges regarding building robots that imitate humans, and 

Scassellati[28] studied human social development models, the way social interaction skills are 

developed in humans, relating to human-like robot interaction. Gurbuz [29] proposed a novel 

approach to do human mouth mimicking on a humanoid robot head in real-time. Facial features 

are tracked in real-time through stereo vision and a learning algorithm is implemented to detect 

and imitate human mouth movement.  
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 It is clear that creating both a realistic appearance, as well as realistic behaviors for 

humanoid robots will play an important role in the future of robotics. I chapter 6 we develop a 

novel algorithm to distribute the motion between the neck and the eyes so that when the robot 

begins to make eye contact, its eyes and neck move in realistic way as a human moves. 

 In past work, Breazeal [30] proposed a vision system for social robots that allows them 

to interact with humans in a meaningful way, e.g., the intention of the human can be perceived 

and elicit a natural response from the robot. Cannata [31, 32] proposed an approach for tendon 

driven eyes mechanism based on Listing’s law. The assumption for their approach was that the 

eyes mechanism of the robot is close to that of the human eye. In [33] Rajruangrabin has used 

reinforcement learning and visual servoing to create head–eye motion profiles that are close to 

human kinesiology. In [34] a percentage function is used to distribute the motion between the 

eyes and the neck which may not appear to be realistic movements In chapter 6, a 

straightforward, real-time based algorithm proposed here that will control the movement of eyes 

and neck to track faces. 

2.3 Human Motion Imitation by Humanoid Robots 

 Human motion imitation by robots has numerous applications. Robots are able to 

perform complex problem more efficiently and if the robots has to work in a human environment 

then it needs to able to imitate human like motion. Human motion imitation is also helpful in the 

research involving social robots. These robots for example can be used for the research 

involving diagnosis and treatment of Autism 

 In recent years, imitation of the motions by the robots has become a hot research topic. 

Pollard et al [35] have proposed a method to transform a dance captured motion to a motion 

that the humanoid robot can execute. Nakaoka et al [36] have realized a whole body control of 

humanoid robot to imitate Jongara-Bushi dance that is a traditional Japanese folk dance. To 

maintain the dynamical stability of humanoid robot, they control the trajectory of Zero Moment 

Point (ZMP) [37] to be inside the polygon of support. Safonova et al [38] use also a pre-
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recorded human motion to generate optimal motion of the upper body of Sarcos humanoid 

robot. The function to be minimized is the difference between the recorded and executed motion 

by the robot. Ruchanurucks et al [39] have proposed a method to optimize upper body motion of 

humanoid robot in order to imitate a human record motion. Their objective function preserves 

the main characteristics of the original motion, and at the same time it respects the physical 

constraints of the humanoid robot. In [40], a neuroscientific inspired approach is presented, 

which solves imitation learning of cyclic motion with a set of basic motor primitives. These are 

learned by clustering and dimensionality reduction of visually acquired human motion data. For 

reproduction, a movement is classified into motor primitives which are played back sequentially. 

In [41] and [42] methods are introduced, where Hidden Markov Models are trained with a 

collection of observations of a demonstrated movement. To reproduce a newly observed 

movement, the observation is recognized based on a set of trained models. With the complying 

model, a generalization of the recognized movement is generated. 

In chapter 5 we develop an algorithm to map human motions to the humanoid robot 

called Atlas in a simulation environment called Gazebo.  

2.4 Research in Facial Expressions Mapping to Androids 

 Humans are sensitive to facial features when it comes to communication. When we 

speak, our lips and other facial features move. These speech related motion are subtle, and 

they are important in face to face communication and humans are very sensitive to them 

[43][44]. An android needs to display these motions in order to communicate naturally.  

 Face detection is another important aspect for natural HRI in Androids. The Android 

PKD must be able to detect faces successfully and deterministically in order to be able to track 

the face. In this thesis we use “Haar Cascade Classifier” [45] based approach for face detection. 

In this technique, first, a classifier (namely a cascade of boosted classifiers working with haar-

like features) is trained with a few hundred sample views of a particular object (i.e., a face or a 

car), called positive examples, that are scaled to the same size (say, 20x20), and negative 
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examples - arbitrary images of the same size. After a classifier is trained, it can be applied to a 

region of interest (of the same size as used during the training) in an input image. The classifier 

outputs a “1” if the region is likely to show the object (i.e., face/car), and “0” otherwise. To 

search for the object in the whole image one can move the search window across the image 

and check every location using the classifier. The classifier is designed so that it can be easily 

“resized” in order to be able to find the objects of interest at different sizes, which is more 

efficient than resizing the image itself. So, to find an object of an unknown size in the image the 

scan procedure should be done several times at different scales. 

In this thesis we also describe a neural network based algorithm that maps the facial 

expressions of the human onto the android and does the facial expressions imitation in real-

time. To detect the facial expressions we use the faceshift software that uses an extension of 

Kinect fusion algorithm for robust real time facial expressions tracking[46]. The mapping 

problem has been addressed using a linear model in the feature space by Ishiguro in [47] but it 

has several drawbacks such as it needs markers for motion capture; linear model works only 

when the marker points coincides with the actuator positions; the actuator space may not 

necessarily be linearly independent; number of markers is limited by the number of actuators. 

The same problem has been solved assuming a linear relationship between the marker space 

and the actuator space in [48]. 
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CHAPTER 3 

 
DESCRIPTION OF THE HARDWARE 

3.1 Zeno Hardware Description 

 Zeno is a child-size, 2 foot tall, articulated humanoid robot by Hanson Robotics 

with an expressive human like face shown in Fig. 31. It has 9 degrees of freedom (DOF) in the 

upper body and arms, an expressive face with 8 DOF, and a rigid lower body [19]. The robot is 

capable of moving the upper body using a waist joint, and has four joints in each on the arms 

implemented using Dynamixel RX-28 servos. It has a 1.6 GHz Intel Atom Z530 processor 

onboard and is controlled by an external Dell XPS quad core laptop running LabVIEW [20]. The 

appearance of Zeno is based on a fictitious character - he looks like a 4-7 year old child, and his 

head is about ¼ the size of an adult human head. Its unique features include life-like skin made 

of Frubber™ material. 

 

Figure 3.1 Zeno RoboKind R-30 
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The appearance of Zeno is a game changing experience thanks to this material and to 

the robot esthetics. The head of Zeno is powered by 9 servo motors, has 3 degrees of freedom 

(DOF) at the neck joint, and it is capable of panning, tilting the head back and forth as well as 

left to right. It also has 2 degrees of freedom in each eye (pan and tilt), and 4 of the servos are 

used for generating facial expressions (eye blink, jaw motion for smile, eyebrow motion for 

frown, etc.). 

Each arm has 4 degrees of freedom, alpha, Beta, gamma and theta as shown in the 

figure 3.2 

 

Figure 3.2 Zeno arm configuration [49] 

The Dell XPS laptop is used for handling the vision tasks like running the skeleton tracker and 

performing inverse kinematics on the joint angles to map to the corresponding joints to that of 

the robot. The control of the robot however is done using the LABVIEW sbRIO 9633 shown in 

the figure 3.3. This board is suitable to do real-time control as it integrates a real-time 

processor, a user-reconfigurable FPGA, and I/O on a single printed circuit board (PCB). It 
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features a 400 MHz industrial processor; a Xilinx Spartan-6 LX25 FPGA; 16 single-ended, 12-bit 

analog input channels at 500 kS/s; four 12-bit analog output channels; and 28 digital I/O (DIO) 

lines. The sbRIO-9633 offers a -40 to 85 °C local a mbient operating temperature range along 

with a 9 to 30 VDC power supply input range. 

 

(a) 

 

 

(b) 

Figure 3.3 (a) sbRIO 9633 board  (b) Block diagram of sbRIO 9633 [50] 

The communication between the sbRIO and the Dell XPS laptop is established using TCP/IP 

communications with LABVIEW real-time sharing of variables. 

3.2 PKD Android Hardware Description 

The android portrait of Philip K. Dick (PKD) is an intelligent robotic resurrection of the late 

science fiction writer who authored VALIS, Do Androids Dream of Electric Sheep, UBIK, and 

many other masterworks. In these works, PKD often portrayed robots who thought they were 
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human and then suffered identity crisis. By portraying PKD in an extremely realistic android, we 

seek both to explore this theme in a new form of interactive narrative, and also to serve novel 

research in artificial intelligence and human-robot interaction. The new PKD android, which is 

used in the described experiments, was built in 2010 with sponsorship from VPRO—Dutch 

public broadcasting. 

 

(a) 

 

(b) 

Figure 3.4 (a) PKD robot with servo motor positions (b) Block diagram of PKD mapping setup 
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The new PKD android hardware is innovative in several aspects, including novel facial 

materials, underlying expression mechanisms, and new approaches to aesthetic unification of 

these into an appealing humanlike robot. First, the robot takes advantage of one of the latest 

versions of Hanson Robotics’ formulations of artificial skin materials known as Frubber. The 

Frubber material results from bio-inpsired lipid-bilayer interactions that create nano-scale cells 

in self-assembled networks. These techniques result in a silicone elastomer far more compliant 

and strong that the base polysiloxane material, which requires 23x less force to deform into 

expressions. Moreover the resulting expressions fold and crease naturally in ways analogous to 

human facial soft tissues. The formula for the PKD android explored more radical lipid bilayer 

techniques and finer exploration of the skin pigmentation for improved sub-surface scattering 

relative to previous Hanson robots. 

 Connecting this skin over a skull-like mechanical shell, and to servomotors within the 

skull form,  allows the motors to pull the skin along vectors that correspond to human facial 

muscle action. In some cases, one motor will replicate the action of two opposing muscles—

since muscles only contract, while the motors are reversible. Thus, with 31 degrees of freedom, 

the PKD android replicates the action of the 48 major muscles in the human face. Given the 

low-force requirements and high-elongation of the Frubber material, combined with numerous 

expressions techniques that prevent the multiple expressions DOF from interfering and binding, 

the PKD android can generate large, human-scale expressions, across the range of possible 

human facial action units. As far as the authors know, these capabilities of large scale, full-

range facial expressions are unique to Hanson Robots. 

 The degrees of freedom in the PKD android include 4 DOF in the neck (two pitch, one 

roll, and one yaw), 1 jaw DOF, three eyes DOF (each eye turns independently, but the two are 

coupled for pitch), upper lids DOF, lower lids DOF, 5 DOF in the forehead simulating the 

frontalis, eyebrow, and procerus muscle actions, 1 nasalis  DOF along the nose, 2 orbicularis 

oris DOF, to effect Duchenne smile actions, and 12 DOF around the lips. The lips include a 
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drawstring that will contract the lips, but also allow the lips to expand to the large aperture sizes 

required for a smile, grimace, or surprise expressions. The numerous other techniques used to 

generate the expressions are beyond the scope of this paper, but interoperate to achieve the 

lifelike actions of the PKD android face. 

To control the facial expressions, a local notebook computer sends commands to the 

servo motors via USB signals sent to a Pololu Maestro servo controller, which generates the 

PWM motion commands for the individual servo motors. The Pololu servo controller used is 

shown in the picture below 

 

Figure 3.5 24 channel Pololu servo controller [51] 
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3.3 Description of the Atlas Robot 

ATLAS is a hydraulically powered robot in the form of an adult human. It is capable of a 

variety of natural movements, including dynamic walking, calisthenics and user-programmed 

behavior. Based on the Petman humanoid robot platform, Atlas was modified to meet the needs 

of the DARPA Robotics Challenge [52]. 

• Near-human anthropometry 

• 2 arms, 2 legs, torso and head. 

• 28 hydraulically actuated joints with closed-loop position & force control 

• On-board real-time control computer 

• Electric power & network tether 

• On-board hydraulic pump & thermal management 

• Crash protection 

• Modular wrists accept 3rd party hands 

• Head-mounted sensor package with LIDAR, stereo sensors, dedicated sensor electronics 

and perception algorithms. 

The Atlas robot described above is simulated in a Gazebo simulation environment. Fig 1.2 

shows the Atlas robot in the Gazebo simulation environment. We use this simulated robot to our 

research purpose. Gazebo is a multi-robot simulator for outdoor and indoor environments. Like 

Stage (part of the Player project), Gazebo is capable of simulating a population of robots, 

sensors and objects, but does so in a three-dimensional world. It generates both realistic sensor 

feedback and physically-plausible interactions between objects (it includes an accurate 

simulation of rigid-body physics) [53].  Some of the outstanding features of Gazebo are: 

• Access to multiple physics engines including ODE and Bullet 

• Access to parameters such as accuracy, performance and dynamic properties of each 

model 

• Using OGRE, Gazebo provides realistic rendering of environments 
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• State of the art GPU shaders generate correct lighting and shadows for improved 

realism 

• Generate sensor information from laser range finders, 2D cameras, Kinect-style 

sensors, and RFID sensors 

• Many robot models are provided including PR2, Pioneer2 DX, iRobot Create, TurtleBot,  

and generic arms and grippers 

• Support for ROS 

Gazebo is the basis for the DRC Simulator, which is used by participants in the DRC program, 

especially the Virtual Robotics Challenge (VRC), a cloud-based simulation competition 

scheduled for June 2013 [54]. Building upon Gazebo, the DRC Simulator, or DRCSim, 

comprises additional worlds, models, and code that is specifically required to simulate the DRC 

domain. Robot Operating System (ROS) fuerte in Ubuntu Linux 12.04 is used as a Software 

platform for programming. 
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CHAPTER 4 

VISION-BASED NATURAL HUMAN ROBOT INTERACTION 

4.1 Introduction 

 In this chapter we consider the development of algorithms for vision-based natural 

human robot interaction. Vision is normally used as a feedback mechanism to achieve certain 

tasks. In this chapter we use the vision feedback in many areas of human robot interaction. 

Mimicking of human motions by the robots is one of the major aspects that are focused in this 

chapter and it also plays an important role in human robot interaction. By making a robot imitate 

the body movements and facial features of the human we can make the robot more sociable 

and being accepted by the humans. This mimicking could be the motion of the hands and the 

torso or it could be mimicking of the facial expressions of a human. The input device that is 

often used for sensing the current state is the Microsoft Kinect sensor. The low cost of this 

device makes the depth sensing accessible to many users. We use the Kinect sensor to track 

the skeletal coordinates of the human. This skeleton tracking algorithm is used form the NITE 

middleware from OpenNI [55]. The research area that is addressed in this chapter is how can 

we map the dataset processed using the Kinect and nite algorithm to the actuator space of the 

robot in order for the mimicking to appear more natural. The facial expressions are another area 

that is addressed in this chapter for mimicking. We use the Kinect sensor and faceshift software 

to extract the facial features of the human. These facial features are then mapped to the servo 

actuator space using direct mapping with scaling and using neural networks.  

 Cameras are another input device that is used a feedback device in vision-based 

control systems. In this chapter we use camera as a feedback mechanism to find the position of 

the face in the image. The control algorithm that is then developed to servo the camera to 
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position the face in the center of the image. This type of control is called visual servoing. This 

kind of human robot interaction is useful for the robot to make eye contact with the human that it 

is interacting.  Visual servoing is the use of computer vision to control the motion of the robot. 

Here there are two basic type of approaches namely position based visual servoing (PBVS) and 

image based visual servoing. In the image based visual servoing, we use the features of the 

image to generate the error signal and in PBVS we use the vision data to extract the features in 

the 3D space and generate the error signal. For controlling the neck and eye motion of the 

android PKD we first consider the implementation of pan and tilt motion with two servos and 

applying both the PBVS [56] and IBVS [57] techniques and compare the results. Based on the 

results of this experiment we then develop an algorithm to distribute the motion between the 

neck and the eyes for tracking faces by the android PKD with realistic humanlike movements.  

4.2 Image based Visual Servoing with Pan and Tilt Motors 

 In this project we use a robot with two degrees of freedom namely Pan and Tilt and we 

mount a camera on it for tracking a person and 3D position estimation. This robot is shown in 

the figure 4.1 below. 

 

Figure 4.1 Robot with two degrees of freedom (Pan and tilt) 
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 For face detection we use the OpenCV ‘Haar Feature-based Cascade classifier 

‘algorithm [45]. This algorithm works in two stages: training and detection. In the training data 

preparation phase we need a set of samples. There are two types of samples: negative and 

positive. Negative samples correspond to non-object images. Positive samples correspond to 

detected objects. Set of negative samples must be prepared manually, whereas set of positive 

samples is created using ‘opencv_createsamples’ utility. After a classifier is trained, it can be 

applied to a region of interest (of the same size as used during the training) in an input image. 

The classifier outputs a "1" if the region is likely to show the object (i.e., face), and "0" 

otherwise. To search for the object in the whole image we can move the search window across 

the image and check every location using the classifier. This classifier is designed in such a way 

that it can be easily “resized” in order to be able to find the objects of interest at different sizes, 

which is more efficient than resizing the image itself. So, to find an object of an unknown size in 

the image the scan procedure should be done several times at different scales. 

 Once the face is detected, next step is to compute the error to implement the PID 

control for tracking the face. The error is calculated as the difference between the center of the 

image to the center of the face. This error is given as  

���� � �	 
 �	�. 
(4.1) 

where, 

�
 is the center of the image and �	� is the center of the face detected in the image. 

4.2.1 Camera Calibration     

 In order to figure out the center of the image, we used camera calibration algorithm 

from OpenCV. Using this algorithm we also succeed to determine the relation between the 

camera’s natural units (pixels) and the real world units (meters). The camera has some 

significant distortion, but these are constant and with a calibration and some remapping we 
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managed to correct it. For the distortion OpenCV takes into account the radial and tangential 

factors. For the radial we have used the following formula [58]:  

�	����	��� � ��1 � ���� � ���� � ����� 

�	����	��� � ��1 � ���� � ���� � ����� 

(4.2) 

So for an old pixel point at ��, �� coordinate in the input image, for a corrected output image its 

position will be (X-corrected Y-corrected). Tangential distortion occurs because the image 

taking lenses are not perfectly parallel to the imaging plane. Correcting this is made via the 

formulas:  

�	����	��� � � � �2 �� �  ���� � 2��� 

�	����	��� � � � �2 �� � 2 ���� � 2��� 

(4.3) 

So we have five distortion parameters, which in OpenCV are organized in a 5-column one-row 

matrix:  

!"#�$��"$%	��&&'	'�(�) � *�� ��  �  � ��, 
(4.4) 

Now for the unit conversion, we have used the following formula: 

-��./ � 01� 0 ��0 1� ��0 0 1 3 04563 

(4.5) 

where 1� and 1� are the focal lengths, ���  ��� what are the optical centers expressed in pixels 

coordinates and  *�� ��  �  � ��, are the Distortion coefficients 

If for both axes a common focal length is used with a given aspect ratio (usually 1), then  

1� �  1� �  7  and in the upper formula we will have a single focal length. The matrix containing 

these four parameters is referred to as the camera calibration matrix. While the distortion 

coefficients are the same regardless of the camera resolutions used, these should be scaled 
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along with the current resolution from the calibrated resolution. The process of determining 

these two matrices is the calibration. Calculating these parameters is done by some basic 

geometrical equations. The equations used depend on the calibrating objects. 

 For the calibration purpose we used the Classical black-white chessboard shown in the 

figure 4.2. For more details on conducting the experiment refer the documentation from 

OpenCV[58]. Basically we took some snapshots of this chessboard with setup camera and ran 

it through OpenCV. Each found pattern equals in a new equation. To solve the equation we 

used a predetermined number of pattern snapshots to form a well-posed equation system. The 

chessboard we used requires at least two equations. However, we ended up having a good 

amount of noise present in our input images, so for good results we took 30 good snapshots of 

the input pattern in different position. Since the calibration needs to be only once per camera, 

we saved the parameters after we got the successful calibration. The parameters output by the 

camera calibration are the distortion coefficients, focal length and the optical center. 

 

 

Figure 4.2 Chessboard pattern used for camera calibration 
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4.2.2 Control Algorithm 

 The error ���� computed as the difference between the optical center and the center of 

the persons face detected in OpenCV. After we have the error ����, we implement a PID control 

to make the error converge to zero. The input 8��� then is given by : 

 

8��� � 9:���� � 9; < ����=� � 9> ==� ����. 
 

 

 

 

 

 

 

Figure 4.3 Block diagram for the IBVS method 

 

The 9:, 9; , 9>gains are tuned using Zeigler Nichols method to minimize the rise time and 

overshoot so that the robot is responsive. Initially 9; and 9>are set to zero and 9: is increased 

until the camera started oscillating with constant amplitude and this gain is called 9?. The 

oscillation period @? is used for P I and D gains using the formula 

9: � 0.459? 

9' � 29:@?  

9> � @?89: 

(4.6) 

The values found for 9:, 9' , 9> through this method are 0.2, 1, and 0.1. 

9:. ���$�� 9' . ���$�#  
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4.3 Position based Visual Servoing using Pan and Tilt Motion 

 PBVS can also be referred as Kalman filter based 3D position estimation and tracking. 

As sensors (camera in our case) are uncertain and models are always incomplete, estimation 

theory is at the core of many problems in robotics. And in such cases tools like Kalman filter 

gives a powerful framework in which we can progress. Position-based control schemes use the 

pose of the camera with respect to some reference coordinate frame to define s. Computing 

that pose from a set of measurements in one image necessitates the camera intrinsic 

parameters and the 3-D model of the object observed to be known. This classical computer 

vision problem is called the 3-D localization problem. Basically in PBVS method, the 3-D 

position of an object (human face) with respect to camera reference frame is used to control the 

servomotors. 

 For the face detection purpose, we have used the same OpenCV ‘Haar Feature-based 

Cascade Classifier’ algorithm as explained in the section 4.1.1. The object coordinates are 

related to the image frame through a standard transformation written as: 

D � 1�E �	F	 � DG 

(4.7) 

D is the radius of the face detected in the image plane in pixels, focal length 1, �E , DG are the 

intrinsic camera calibration parameters. 5	 is the approximate radius of the average human 

face, usually considered as 3.03 inch. 6	 is the only unknown factor in the above equation and 

is the depth of the object i.e. the distance between the object and the camera. Once we have 

the 6	using the above equation, we can find out 4	, horizontal distance travelled by the object 

using the following formula: 

8 � 1�? HIJI � 8G, or 

4	 � �8 
 8G�6	1�? . 
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(4.8) 

Here u is in pixels and it is the center of detected human face in the camera. 198 and 80 are 

the intrinsic camera calibration parameters estimated as described before; 6
 is calculated as 

shown before. 

 Now we measure the velocity in X and Y directions the using the formula: 

4K � 4� 
  4�L�@   
5K � 5 
  5�L�@  

6K � 0 

(4.9) 

The measurement =6/=� is 0 since there is no dynamics considered here for the motion in the Z 

direction. 

The Kalman Filter requires a dynamical model and a measurement model. For the 

dynamical model, it is assumed that the object moves with a constant velocity over a defined 

sampling time, which is certainly the case at low speeds, typical of natural human motions 

during conversations with a robot. The measurement model for the Kalman Filter is given by (7) 

to (9), as detailed before. 

4.3.1 Position Vector Estimation     

For the estimation of position vector, the dynamic model is defined as constant 

instantaneous velocity as follows: 

NO � 0 

(4.10) 

N �  *4 5 6 4K  5K 6K, is the state variable.  So the discrete model of the Kalman filter is given as  

NPQ� � RNP � S 

(4.11) 

Where A is given by 
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R �  TU� @���U� �� V 
(4.12) 

I3 and O3 are 3x3 identity and zero matrices respectively, T3 is a 3x3 matrix which has the time 

difference between two successive predictions and S is the process noise of the discrete time 

dynamical model described as Gaussian with zero mean and a noise covariance of Q. 

 The Kalman filter used is described by the following model. 

 

Model: 

NPQ� � RNP � S 

WP � XNP �  YP 

(4.13) 

Where WP � * 4 5 6 4K  5K  6K , which is measured as described using the equations (1) through (3) 

and H is a 12 x 12 identity matrix. 

Gain: 

9P � ZPLXP[*XPZPLXP[ � \P,L� 

(4.14) 

where 

XP � ]^P]NP |`ab 

(4.15) 

Prediction: 

NcPQ�L � !NcPL 

ZPQ�L � RZPQR[ � dP 

(4.16) 

Update: 

ZPQ � *� 
 9PXP,ZPL, 
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NcPQ � NcPL � 9PefP 
 ^PgNcPLhi. 
(4.17) 

Once the position is estimated we calculate the equivalent PWM signal by using a linear 

mapping and send it as commands to the servo controllers so that the Pan and tilt motors will 

align itself towards the persons face. 

4.3.2 Results 

 To check the accuracy of the 3D position estimation we collected the estimated data 

and the actual value (Ground truth) and compared it with each other and found that the 

estimation is accurate when the person is near to the camera and as the person tends to go far 

away the difference between the estimated value and the ground truth starts to grow. This is 

clear as we do not have any prior in the Z direction as we are not modeling the dynamics in Z 

direction. Therefore we rely on the measurement of the radius of the face alone to estimate the 

depth which is very sensitive as a small radius change results in large changes in the distance. 

The figure 4.3 illustrates this. The X, Y and Z axis represents the distance from the camera. For 

each point we have the ground truth and the estimated value.  

 

Figure 4.4 Estimation of the position in 3D vs. the ground truth 
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4.4 Distribution of Motion to the Eyes and Neck Servo Motors for the Movement to Appear 

Humanlike 

 The PKD robot has a CMOS camera in its right eye and we use it to track faces. The 

eyes have 3 degrees of freedom together. Individual eyes can pan independently but the tilt 

(up/down motion) is actuated by a common actuator. The neck also has 3 degrees of freedom 

that can pan, tilt and rotate. We use image based visual servoing for the robot to track faces. 

For tracking purposes we can consider the error to be the difference between the center of the 

image and the center of the face/object detected in the image. 

�� �  �� 
 �&
 

�� �  �� 
 �&
 

(4.18) 

For each of the above error we can either move the neck or the eyes to make the error zero. 

However, in order to appear the motion to be more realistic like the way humans move their 

eyes and neck we need to control the speed of eyes and neck movement according to the 

distance between the robot and the object it is tracking. If the robot is tracking an object that is 

close to the robot then the eyes should move quickly to track the object and the neck will follow 

slowly. If the object that is tracked is far then neck movement becomes predominant 
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Figure 4.5 Block diagram for the motion distribution between neck and eye servos 

 

We use PI control for controlling the eyes and neck actuators. The eyes are controlled to make 

the errors �� and �� zero 

Z� � 9j��� � 9;� < ��=��
G  

Z� � 9j��� � 9;� < ��=��
G  

(4.18) 

where, 

9j�  , 9j� are the proportional gains of the x axis controller, 

9;�  , 9;� are the integral gains of the y axis controller, 

Z�  , Z� are the servo values for the Pan and tilt motors ranging from 0-255 

The eye controllers have high Kp and Ki gains so that they are able to move quickly and are 

also carefully calibrated with trial and error so that the overshoot is minimized. 

Similar PI control equations can be generated for the neck motion pan and tilt. For the neck 

motion the error signal is now the difference between the current servo position of the eyes and 

the center of the eyes. The error values for x and y are calculated with respect to the x and y 

center respectively. 

�k� � Z� 
 Zl� 

eno � Po 
 Pqo. 
(4.19) 

where, 
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Z�  , Z� are the current position of the servo motors in the x and y direction, 

Zl�  , Zl� are the center positions of the servo motors for the eyes in x and y direction 

respectively. 

A similar PI controller is implemented to minimize these errors which mean that the 

objective of the eye controller is to move the neck so that the eyes get positioned to the center. 

The gains of these Kp and Ki values of the servo motors are tuned to low values so that it is not 

as fast as the eye movements. The control signals to the eyes and neck are then passed to low 

pass filters. The cut off frequency is varied according to the distance between the robot and the 

object that is tracked. In case of face tracking this can be measured by the dimensions of the 

face. If the object is near then the low pass cut off frequency for the eyes are tuned to high 

values so that the eye movements will be fast and the cut off frequency of the neck will be low 

values so that neck movements will be slow. For tracking distant objects we vary the cut off 

frequency linearly based on the distance such that neck motion becomes predominant to track 

the object. In this way we can track the human face in most realistic way. 

4.4.1 Results 

The error value defined as the difference between the center of the face and the center of the 

camera pixels is recorded over time and we can see that the controller does an effective job by 

making the error converge to zero when there is a deviation.  
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Figure 4.6 Plot of error values �� of the eye pan servo motors vs. time 

 

Figure 4.7 Plot of error values ��of the eye tilt servo motors vs. time 
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4.5 Mimicking the Arm Movements of the Human by the Atlas Robot using Kinect 

This project was done as a part of the contribution for the DARPA Robotics Challenge. 

The primary technical goal of the DRC is to develop ground robots capable of executing 

complex tasks in dangerous, degraded, human-engineered environments. Competitors in the 

DRC are expected to focus on robots that can use standard tools and equipment commonly 

available in human environments, ranging from hand tools to vehicles, with an emphasis on 

adaptability to tools with diverse specifications. The robot that is used in the competition is 

called the Atlas robot. Fig 1.2 shows the Atlas robot in the Gazebo simulation environment. 

Atlas is being developed by Boston Dynamics, Inc. Based on its Petman humanoid robot 

platform; Atlas is modified to meet the needs of the DARPA Robotics Challenge.  

My contribution to this project was to perform tele-operation of the Atlas robot using the 

3D Kinect sensor. In the competition the robot has to perform various tasks including driving a 

car, connecting a hose and many other tasks that are generally designed to be operated by 

humans. Robot tele-operation with Kinect will be a useful tool for many such applications.  

Since the robot needs to operate on various tools designed for human use, I developed 

a mechanism through which the robot can be tele-operated through Kinect. The software 

utilizes the skeleton tracking algorithm from OpenNI. This algorithm attaches a transfer frame at 

each joints of the human and the rotations are modeled using rigid body motion. We can then 

use parameterization of angles like Euler angles, Roll pitch yaw or Quaternions to extract the 

joint angles. These joint angles are then filtered using cubic spline filtering to remove high 

frequency noise and to generate velocity trajectories. These joint angles are then mapped to the 

Atlas robot joint angles that are then used as set points for the joint controllers so eventually the 

robot mimics what a human does in real-time.  

  The Kinect camera gives us the 3D depth information of the surrounding environment. 

OpenNI provides various application programming interfaces using the raw sensor data from 



 

 40

the Kinect. One such algorithm is the skeleton tracker of a human. The algorithm attaches the 

Cartesian frames to each of the joints. Fig 4.8 shows the transfer frames attached to the human 

skeleton.  

 

Figure 4.8 Rigid body transfer frames at each joint of the human skeleton. 

The TF library in ROS provides an efficient ways to perform rigid body motion 

transformations. It provides libraries through which we can use various parameterizations like 

Euler XYZ, Euler ZYZ, roll pitch yaw, Quaternion representations and many more. To extract 

the human motion joint angles, we need to choose the parameterization such that there are no 

singularities in the workspace of the joint angles. For the shoulder joint angles for instance we 

can use Euler roll pitch yaw parameterizations because the range of motion of the human 

shoulder in approximately limited to �
r/2 , r/2�. In the Roll-Pitch- Yaw representation, a series 

of three ordered right-handed rotations is needed to coalesce the reference frame with the rigid-

body frame. Specifically, the reference frame is rotated: 
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i) about the 6\ �  *0 0 1,’ axis by an angle ∅ so that the plane �4\, 6\� contains 

4u; then 

ii) about the new 5\ � *
 #"%∅ 
$#∅ 0, axis by an angle v so that 4\ �  4u; and 

finally 

iii) about the new 4\ � * 
$#∅
$#v #"%∅
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 #"%v ,w axis by an angle x so that 
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~ � 
(4.20) 

The inverse transformation can be readily computed from the rotation matrix by observing that 

��� � 
$#z
$#v 

��� � #"%z
$#v 

��� � 
#"%v 

��� � 
$#v#"%x 

��� � 
$#v
$#x 

(4.21) 
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This inverse transformation problem has two solutions when 
$#v � 0. The solution for v in the 

range �
r/2 , r/2� is 

z � R�7%2����, ���� 

v � R�7%2�
���, 
����� � ���� � 

x � R�7%2����, ����. 
(4.22) 

The other equivalent solution for v in the range �r/2 ,3r/2� is 

z � R�7%2�
���, 
���� 

v � R�7%2�
���, 
����� � ���� � 

x � R�7%2�
���, 
����. 
(4.23) 

Both the above solutions degenerate when 
v � 0.   

  For representing roll pitch yaw of the shoulder joint this is not a problem as the human 

joint angles for the roll pitch yaw tend to be in the open  interval (-90 90). Therefore joints 

involving roll pitch and yaw motion like the shoulder joints, neck joints, torso and hip joints we 

can use the Euler Roll Pitch and Yaw representations without getting into singularities. 

 However, when we have to extract the joint angles of the elbow and the knee joint we 

cannot use the Euler Roll Pitch Yaw parameterization since the range of the elbow and knee 

joint angles is [0 180). Additionally, the elbow and knee joint has only one axis of rotation. The 

solution to this is to use the Quaternion representation of the joint angles. Any rotation in three 

dimensions can be represented as a combination of an axis vector and an angle of rotation. 

Quaternions give a simple way to encode this axis-angle representation in four numbers and 
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apply the corresponding rotation to a position vector representing a point relative to the origin in 

R3. A Quaternion d �  ��, �� where 

� � 
$# v2 

� � #"% v2 �; 
(4.24) 

η is called the scalar part of the quaternion while � � *�� �� �y,[ is called the vector part of the 

quaternion. They are constrained by the condition 

�� � ��� � ��� � �y� � 1, 
(4.25) 

hence, the name unit quaternion. Unlike the angle/axis representation, a rotation by 
v about −r 

gives the same quaternion as that associated with a rotation by v about r; this solves the above 

nonuniqueness problem. The rotation matrix corresponding to a given quaternion takes on the 

form 

\��, �� � �2��� � ���� 
 1 2����� 
 ��y� 2����y � ����2����� � ��y� 2g�� � ���h 
 1 2����y 
 ����2����y 
 ���� 2����y � ���� 2��� � �y�� 
 1�. 
(4.26) 

The inverse problem for a given rotation matrix R, where 

\ � 0��� ��� ������ ��� ������ ��� ���3, 
(4.27) 

The inverse problem can now be solved by  

� � 12 ���� � ��� � ��� � 1 

� � 12 �#�%���� 
 �������� 
 ��� 
 ��� � 1#�%���� 
 �������� 
 ��� 
 ��� � 1#�%���� 
 �������� 
 ��� 
 ��� � 1�. 
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(4.28) 

We can safely ignore the axis of rotation as it does not change for the elbow joint relative to the 

shoulder joint. The transfer function library in ROS allows us to use the Quaternion 

representation and to extract the joint angles. 

After successfully extracting the joint angles of the human motion through Kinect 

hardware and using the algorithm just described, the task now is to map these joint angles to 

the Atlas robot joint angles. The mappings for most joints are straight forward. We need to scale 

the joint angles and apply the appropriate joint limits as described in the URDF file of the Atlas 

robot. The URDF file is where we can find the joint limits and the velocity limits of each motor of 

the Atlas robot.  

The angles after mapping are published to the joint controllers of the Atlas robot which 

then uses the high gain PID control to move the joints to the desired position and the velocities. 

Please refer to Appendix C for the Software implementation and code snippets for the 

algorithm. 

4.6 Mimicking the Facial Expressions, Eye Motion and the Neck Rotations of a Human 

by Android PKD in Real-Time using Kinect 

The fig 4.9 shows the positions of the servo motors in the PKD head. It has a total of 31 servo 

motors. 
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Figure 4.9 Servo motor positions on the android PKD 

The goal here is to map the facial expressions of a human to the corresponding servo positions 

of the PKD so that the expression can be easily copied to the robot. In order to do this mapping 

first we need to be able to track the human facial expressions accurately. Humans have control 

on some specific areas of muscles on the face using which he or she will generate the facial 

expression. We need to be able to track exactly the same set of positions in-order to be able 

track the facial expressions. Faceshift is a commercial tool that can be used to track the 

expression of human faces. Faceshift can track with high accuracy because it learns the 

individuals personalized avatar. The avatar is created from a few training expressions and the 

resultant tracking is very stable, accurate and expressive. It provides 48 blendshape 

parameters, which allows us to capture even small emotions. Faceshift also transmits these 48 

blendshape variables through a TCP/IP connection. For our purposes we establish a TCP/IP 
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socket and receive the 48 blendshape variables in real-time for mapping to the servo actuators 

of the PKD. 

 We solve the mapping of the Human facial features captured using Faceshift and the 

PKD servo motors using two approaches. The first one is a direct mapping and second one is 

an automated using the neural network approach.  

4.6.1 Direct Mapping 

 In the direct mapping, we receive the 48 blendshape variables as shown in the table 

below. All 48 variables are normalized to the range between 0 and 1. 

Table 4.1 Blend shapes variable description 

Blendshape names Description Equivalent motor position on PKD 

EyeBlink_L Eye blink left 21,22 

EyeBlink_R Eye blink right 21,22 

EyeSquint_L Eye squint left NA 

EyeSquint_R Eye squint right NA 

EyeDown_L Eye down left 13 

EyeDown_R Eye down right 13 

EyeIn_L Eye line left 30 

EyeIn_R Eye line right 11 

EyeOpen_L Eye open left 22,21 

EyeOpen_R Eye open right 22,21 

EyeOut_L Eye out left 29 

EyeOut_R Eye out right 8 

EyeUp_L Eye up left 13 

EyeUp_R Eye up right 13 

BrowsD_L Brows down left 23,24 
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Table 4.1 - Continued 

BrowsD_R Brows down right 7,6 

BrowsU_C Brows up center 25 

BrowsU_L Brows up left 23,24 

BrowsU_R Brows up right 7,6 

JawFwd Jaw forward NA 

JawLeft Jaw left NA 

JawOpen Jaw open 0 

JawRight Jaw right NA 

MouthLeft Mouth left 18 

MouthRight Mouth right 3 

MouthFrown_L Mouth frown left 19 

MouthFrown_R Mouth frown right 1 

MouthSmile_L Mouth Smile left 20 

MouthSmile_R Mouth Smile right 4 

MouthDimple_L Mouth Dimple left 18 

MouthDimple_R Mouth Dimple right 13 

LipsStretch_L Lips stretch left NA 

LipsStretch_R Lips stretch right NA 

LipsUpperClose Lips upper close 27,5,10 

LipsLowerClose Lips lower close 26,16,12 

LipsUpperUp Lips upper up 5 

LipsLowerDown Lips lower down 16 

LipsLowerOpen Lips lower open 16 

LipsFunnel Lips funnel NA 
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Table 4.1 - Continued 

LipsPucker Lips Pucker NA 

ChinLowerRaise Chin lower raise NA 

ChinUpperRaise Chin Upper raise NA 

Sneer Sneer 9 

Puff Puff NA 

CheekSquint_L Cheek Squint left NA 

CheekSquint_R Cheek Squint right NA 

 

Most of the blendshape variables in the table can be mapped directly to a corresponding servo 

motor of the PKD android. These variables are scaled linearly to fit the PKD servo motor range. 

For direct mapping, the scaling of the blendshape variables takes the form 

 

Z� � �W� � 
 

(4.29) 

Some servo actuators are mapped inversely to the blendshape variable. In that case we can 

use 

Z� � ��1 
 W�� � 
. 
(4.30) 

where Z� is the servo position of the motor, � is the scaling factor and 
 is the offset that is 

adjusted to get the neutral position. 

 

The head rotations are transmitted from the faceshift using the Quaternion representation. This 

is converted to roll, pitch and yaw using the following formula. 

0zvx3 � }7�7%2�2��G�� � �����, 1 
 2���� � �����arcsin �2��G�� 
 ������7�7%2�2��G�� � �����, 1 
 2���� � ������ 
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(4.31) 

*�0 �1 �2 �3,[ is the unit quaternion transmitted by the faceshift software. The roll, pitch and 

yaw are further linearly scaled to map the range of motions of the PKD android neck servo 

motors. These motor values are then transmitted to the Pololu servo controller through serial 

port using RS 232 protocol. The result of this is that the PKD android copies the neck motions 

and the facial expressions of the human in real-time. The pictures below show various poses 

and expressions imitated by the robot in real-time. 

   

Figure 4.10 PKD copying the tilt motion 

 

   

Figure 4.11 PKD copying the yaw motion 
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Figure 4.12 PKD copying the smile expression 

    

Figure 4.13 PKD copying the eye left motion 

    

Figure 4.14 PKD copying the eye right motion 
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Figure 4.15 PKD copying the sneer expression 

 

In the second method we use an automatic way to map the 48 blend shape variables to 

the PKD servo motors using a neural network-based learning method. The set up to train the 

neural network is shown in the fig 4.22. Thousands of random servo values are given to the 

servo motors of the PKD robot and the corresponding 47 different facial features are recorded 

using the software Faceshift. 

Figure 4.16 to 4.19 shows the PKD command value and the servo values for the jaw, 

smile left and smile left movements. We can see that the movements are in synchronous with 

the values obtained from the faceshift. Also we can see the inverse mapping between the smile 

left faceshift values and the servo motor values. 

        

    Figure 4.16 Jaw set points vs. time            Figure 4.17 Jaw servo values vs. time 
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 Figure 4.18 Smile left set points vs. time       Figure 4.19 Smile left servo values vs. time 

                      

           Figure 4.20 Smile right set points vs. time     Figure 4.21 Smile right servo values vs. time 

4.6.2 Non Linear Neural Network Mapping  

In the second method we use an automatic way to map the 48 blend shape variables to 

the PKD servo motors using a neural network-based learning method. The set up to train the 

neural network is shown in the fig 4.22. Thousands of random servo values are given to the 

servo motors of the PKD robot and the corresponding 47 different facial features are recorded 

using the software faceshift. 
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Figure 4.22 Neural Network training setup 

The fig 4.23 describes the set up for collecting the minimum and maximum values of 

the 48 facial features obtained through faceshift software. These minimum and maximum 

values are used to generate the transformation matrix that will be used to transform 48 facial 

feature values of the user to that of the PKD and then we use the neural network as an inverse 

mapping to find the servo values for the corresponding facial feature values. 

 

Figure 4.23 Set up to find the transformation matrix between the user and the PKD 

The fig 4.24 describes the set up for the real-time facial expressions mimicking by the 

robot and the user. The 48 facial feature values extracted from the users face using the 

faceshift software is transformed to that of the PKD’s facial features using the transformation 
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matrix and finally neural network mapping is used to get the servo values of the PKD and all of 

this is done in a loop at approximately 10 Hz the expressions is mimicked in real-time. 

 

Figure 4.24 Set up for the Real-time facial expressions mimicking 

 

 4.6.2.1 Algorithm 

 Our proposed method employs Neural Network (NN) to learn the mapping between the 

Android facial expressions and the servo movements. In order to collect the data for NN 

training, Kinect captures the facial feature of PKD while it generates a series of random servo 

movements as shown in Figure 4.26 
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.Figure 4.25 set up for dataset generation for neural network 

In order to produce a mapping between the Human Operator’s facial expressions and servo 

movements, a Transformation Map is employed to convert each Operator’s facial features to the 

desired PKD’s facial features. Thereby, the trained Neural Network can operate on the stream 

of converted PKD’s facial feature values and produce the required control signals for the 

actuators. The block diagram for the process is shown in Figure 4.26: 

 

Figure 4.26 Block diagram including transforming map 

 A two layer Neural Network is used to learn the mapping between the facial features of 

the PKD and its servo values that generated the facial expressions. The training data set 

consists of inputs as the PKD facial features and outputs as the corresponding servo command 

values. These datasets are collected in thousands from the experiment conducted for the 

mapping of user and android facial features. The neural network is trained with the datasets 

using the back propagation algorithm. Once the neural network is successfully trained with the 

datasets we can use it to generate set points for the servo values by giving a desired PKD facial 

feature points. 

 Finally we combine the neural network mapping and the transformation mapping 

described earlier to perform real-time facial expressions imitation. The user’s facial expression 
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features will be captured by faceshift software using Kinect and we transform the user’s facial 

features with the PKD’s facial features using the transformation mapping. Finally we give the 

PKD facial features as input to the neural network to get the servo positions that produces the 

same facial expressions. We then use these servo positions as commands to the servo 

controller that uses a PID control to set the servos to the desired positions. 

4.6.2.2 Results 

At first we tried to train the neural network as one single network with the servo motors 

of the mouth and the eye brows as output and the corresponding Kinect facial features 

pertaining to the mouth and eyebrows as the input. After training with the datasets, we found 

that the eye brows were also moving a little when only mouth was moving. We attributed this 

behavior with the mechanical failure and degradation of the actuator behavior while generating 

thousands of datasets. We therefore used a separate neural network for the mouth and another 

neural network for the eyebrows. For training the mouth the following servo motor positions 

were used as output: 20, 27, 5, 10, 4, 3, 1, 12, 16, 26, 19, and 18 (numbers are as per figure 

4.9) and for eyebrows we used the following servo motor positions: 23, 24, 25, 7 and 6. The 

corresponding facial features from Faceshift we used as input. The neural network was trained 

using one hidden layer with 15 neurons using back propagation algorithm in MATLAB.  

After the neural network is trained, the experiment is conducted by giving the facial 

features from the Faceshift as the input. The servo values output of the neural network are then 

given as set points using the Pololu controller which results in the mapping between the human 

and the PKD as shown in the figure 4.27 
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(a) 

   

(b) 

Figure 4.27 Non Linear Mouth servos mapping using Neural Networks (a) Jaw motion (b) Smile 
motion 
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CHAPTER 5 

REAL-TIME CONTROL OF ZENO ROBOT FOR AUTISM THERAPY 

5.1 Introduction 

The Zeno robot is operated in two modes, interactive mode and the scripted mode. In 

the interactive mode, the robot will imitate the motion of the human arms and torso in Real-time 

and in the scripted mode it does preprogrammed gestures like hand wave, tummy rub, and fist 

bump. The scripted motion of the Zeno is used to conduct experiments with Autism at UNT 

Health science. 

The setup of the system is as shown in the fig 5.1 below. The Microsoft Kinect is used as an 

interface device to run the interactive mode. The skeleton tracker from NITE middleware is used 

to track the human joint angles in real-time. The Dell XPS laptop is used to run the computer 

vision algorithm. OpenNI SDK installed in the Dell laptop will provide the device driver interface 

for all the depth sensors like Microsoft Kinect, ASUS etc.   

 

Fig 5.1 Zeno System Architecture 
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The LABView sbRIO9633 is used to control the real-time motion of the Zeno that does the 

position and velocity control. 

5.2 Zeno Running in the Interactive Mode 

The Zeno running in the interactive mode occurs through a series of process. The VI that runs 

on a desktop based computer will process the data from the Kinect and its front panel is shown 

in the fig below. 

 

Figure 5.2 Front Panel of interactive mode VI 

The user has to stand in a calibration (“psi”) pose before the system could build his skeleton 

and the quality of the skeleton improves with time. These skeletal coordinates are passed 

through the low pass filter as shown in the fig 5.3. It retrieves specific joint coordinates from the 

Kinect data cluster. The data points from the Kinect are pretty noisy and a 2nd order low pass 

Butterworth filter with frame rate of 25 fps, and cut off frequency of 2 Hz is used to smooth the 

signals. The filtered joint angles of the human needs to be mapped to that of the robot joint 

angles. The human has three degrees of freedom at the shoulder, and two the elbow but the 
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Kinect only captures the one degree of freedom at the elbow. The robot on the other hand has 

two degrees of freedom at the shoulder and two degrees of freedom at the elbow. This mapping 

between the human and robot joint angles is done in the inverse kinematics VI (IK) in the fig 5.3. 

 

Figure 5.3 Kinematics mapping, filtering of the joint angles 

To extract the alpha and beta of Zeno shoulder joint we use the Euler ZYZ parameterization. 

Therefore alpha and Beta can be extracted as  

� � R�7%2 �
F
�� 

� � 
$#L� � ���� � �� � F�� 

(5.1) 

In similar ways the gamma and theta of the elbow joint can be extracted by considering the 

Euler ZYZ parameterization at the elbow joint. 

The robot joint angles alpha, beta, gamma and theta of both arms and the torso 

movements are then updated to the LabVIEW shared variable. These shared variables are read 

in the real-time joint control VI running in the sbRIO through the LabVIEW Real-time shared 

variable engine. The front panel of the VI running the sbRIO is shown in the fig 5.4. 

 The function of sbRIO is to control the motors of the robot in real-time. This is done by 

sending the position and velocity commands to the motors every 20 Hz 
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Figure 5.4 Front Panel of real-time control VI of sbRIO 

The baud rate in the front panel is the rate of communication between the sbRIO and the 

Dynamixel motors of the robot. This is selected to be 115200bps for the 2 Wire RS485 

interface. This is the maximum baud rate that the sbRIO supports. The visa resource should be 

selected as ASRL3 in the drop down menu as this indicates we are choosing the RS 485 

channel. The torque Stop can be used to stop the torque in the motors. The two plots show the 

position and velocity of the theta value on an arm that is sent to the Dynamixel motors to control 

the robot. The Real-time VI is scheduled to run at every 50ms as shown in the figure 5.5. This is 

as low as it can be scheduled due to the maximum limitation of the baud rate.  

 

Figure 5.5 scheduling rate of the VI 
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The alpha, beta, gamma and theta values are received from the VI that runs on the computer 

extracting the human joint angles through LabVIEW shared variable engine. The position 

variables are then low pass filtered using the Butterworth filter. The velocity is calculated using 

D��$
"�� � Z� 
 Z�L�� 
 �L� . 
(5.2) 

Where, 

The numerator is the difference in the position variable between the current time t and the time 

t-1. The denominator is the time elapsed between the last update of the position variable and 

the current time. This time is calculated in the elapsed timer below. The velocity and the position 

values thus generated in this VI are sent as commands to the RX28 Dynamixel motors through 

RS 485 communication channel in the sbRIO. 

5.3 Zeno Running in the Scripted Mode 

The gestures that are used for the scripted mode are the hand wave, tummy rub and 

the fist- bump for both of the arms of the robot. These gestures are pre-recorded in files and are 

played back in various combinations. The VI that was used to control the Zeno robot in the 

interactive mode was used to recording the various gestures. The difference is that now the joint 

angles are not channeled to the Dynamixel motors, instead they are recorded and stored in a 

file as a sequence of position commands. Another VI was developed to read the position values 

stored in the measurement files and send those position values to the Dynamixel motors 

through the RS 485 channel. Now we can also control the speed of the gesture. In the front 

panel, the Zeno motion speed control controls the frequency at which the position values are 

read from the measurement file. By changing this we can control the desired speed for a 

particular gesture. For the regular ASD trial, all motions are played three times consecutively. 

This can be selected using the playback motion dropdown menu shown in the front panel 

below. After selecting the appropriate files that contain the recorded motions on the left of front 
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panel and the appropriate serial port in the VISA Arms, the scripted motion is ready to be 

played.  

 

 

Figure 5.6 Front Panel of the scripted mode 

5.3.1 Data Collection and Processing of Human Subjects 

 Figure 5.7 shows the markers placed on Zeno and the child used for collecting the 

motion data of the child and the robot. The data collection is performed using the motion 

capture system. These experiments are carried out at UNT Health Science center where the 

therapists ask the child to imitate the motions of the robot so that we can capture the data of 

both the child and the robot. We use Dynamic Time Warping as a tool used for comparing the 

motions of the Zeno and the child [49]. The result of this method is that we get a number 

indicating how similar the motion of the Zeno and the child is. 
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Figure 5.7 Markers on Zeno and the child for data collection 

5.4 Results and Conclusion 

5.4.1 Zeno Motion Results using sbRIO 9633 

The figures below show the plot of the commanded servo position value vs. the actual 

motor encoding value. It can be seen that the Dynamixel motors at the joints follows closely the 

command signal and due to the real-time control that is possible with the sbRIO, we can see 

that the Dynamixel motors have smooth changes in the position commands even when the 

desired position is changing fast. This is possible since we are giving the velocity commands 

along with the position commands to the Dynamixel motors. 
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Figure 5.8 Angle sent to Servo(Beta) vs Actual position of Servo SID3 

 

Figure 5.9 Angle sent to Servo(theta) vs Actual position of Servo SID1 
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Figure 5.10 Angle sent to Servo(alpha) vs. Actual position of Servo SID4 

 

Figure 5.11 Angle sent to Servo(gamma) vs Actual position of Servo SID2 
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The advantages of using the sbRIO real-time controller for controlling the robot is as follows 

• Smooth motion with velocity commands 

• Advanced control algorithm like computed torque control can be implemented 

• We can do real-time force control 

5.4.2 Results of the Data Collection process 

 A set of clinical experiments with several children were performed to test the robot, 

capture the motion, and to compare the motion data using DTW. During experiments, children 

were directed to follow the hand gestures of the robot, such as wave with hands, tummy rub, fist 

bump, etc. Each motion was performed three times. The best one was picked for analysis. 

Representative joint angle trajectories for each DOF is shown in the fig 5.11 
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(d) 

Figure 5.12 (a), (b), (c), (d) Normalized Joint angles 

Wave gestures are compared for the subjects3, 4, 6, 7, 9, 10 and 15. The DTW distance 

between arm angles of Subjects and Zeno are calculated and is tabulated as shown in the table 

5.1 below: 

Table 5.1 DTW distance between arm angles Subject and Zeno 

Subject  # Alpha Beta Gamma Theta ASD/Control 

Subject 3 0.6807 0.6807 0.6807 0.1117 Control 

Subject 4 0.8392 0.8392 0.8392 0.2931 ASD 

Subject 6 0.803 0.803 0.803 0.2756 ASD 

Subject 7 0.3141 0.3141 0.3141 0.117 ASD 

Subject 9 0.7466 0.4806 0.4968 0.7506 ASD 

Subject 10 0.9663 0.857 0.6414 0.2643 Control 

Subject 15 0.3837 0.3463 0.3267 0.3171 ASD 
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CHAPTER 6 

ATLAS ROBOT GETTING UP FROM ITS PRONE POSITION 

6.1 Introduction 

This project was done as a part of DARPA Robotics Challenge. In this project a script 

was developed that will make the robot get up when it falls down. There are several pioneering 

researches concerning the getting up motions of small-size humanoid robots. “Hanzou”, 

developed is the first humanoid robot that can get up by itself (Inaba et al. 1995a)[59]. It can 

also continue to walk even after it tips over. Hanzou has a height of 30 cm, a weight of 2 kg, and 

16 degrees of freedom (DOF)[60]. When it tips over and is lying on its back, it can roll over by 

swinging its legs. The motion of getting up is segmented into a sequence of contact states 

between the robot and the floor, but each transition between consecutive states is realized by a 

playback of a fixed motion pattern. When the Atlas robot falls down, the trajectories are 

generated such that the robot goes through various contact states in the process of getting up. 

Contact states are the positions the robot has to go through in order to get up. These 

trajectories are then filtered using cubic spline interpolation to generate the position and velocity 

set point trajectories that complies with the minimum and maximum position and velocity 

constraints of each joint of the atlas robot. Finally, when the script is run the robot gets up on its 

feet successfully.  

6.2 Details of the Atlas Robot Getting up from its Prone Position 

 Getting up is a motion that changes the contact state between the robot and the floor 

from a state at which it’s front or back contacts the floor to another state at which its feet contact 

the floor. The static balance should be kept during a transition from one contact state to 

another. The transitions can be realized by controlling the relationship between the projection of 

the Center of Mass (CoM) onto the floor and the supporting polygon of the robot.  
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 The support polygon is defined as the polygon formed by the contact points of the robot 

with the ground. The robot pose is considered to be stable if the projection of the CoM of the 

robot lies within this support polygon.  The robot has to go through a sequence of several 

contact states in order to stand up as shown in the fig 6.1. Getting up task has been done 

successfully done and there is good number of papers published with various robots like the 

HRP2. 

 Once the contact states are defined, we need to now interpolate the start and end 

states of the joint angles to generate the trajectories. For this we shall use the cubic spline 

interpolation method. A cubic polynomial has 4 coefficients, and hence may be used to satisfy 

both position and velocity constraints at the initial and final positions.  

 

Figure 6.1 First four contact states while getting up from its prone position 

For joint variable qi, the constraints are: 

�'��G� � �G 

��K ��G� � �G�  

�'g�&h � �� 

��K g�&h � �'� 
where �G is the starting time,  
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           �& is the ending time, 

           �G and �G�  are the specified initial position and velocity 

           �� and ���  are the specified final position and velocity 

 

Figure 6.2 Last four contact states of the robot while getting up from the prone position 

The cubic polynomial for joint positions and its derivative for joint velocity are 

�'��� � 7G � 7�� � 7��� � 7��� 

��K ��� � 7� � 27�� � 37��� 

Then we have 70 and 71 from the initial conditions 

�'�0� � 7G � �G 

qGK �0� � a� � qG�  

Next we find a� and a� from the final conditions. Substituting for aG and a� evaluated at t�we get 

�'g�&h � �G � �G� �& � 7��&� � 7��&� � �� 

��K g�&h � �G� � 27��& � 37��&� � ���  
3�� 
 �&��� � 3�G � 3�G� �& � 37��&� � 37��&� 
 �G� �& 
 27��&� 
 37��&� 

� 3�G � 2�G� �& � 7��&� 
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Hence, 

7� � 3��� 
 �G� 
 �2�G� � ��� ��&�&�  

7� � 2��G 
 ��� � ��G� � ��� ��&�&�  

The method described above is used by trajectory filter package in ROS that will generate the 

trajectories by taking the position and velocity limits of each joint as we describe in 

joint_limits.yaml file. This yaml file is populated from the joint limit values from the URDF file. 

The starting and the ending position described for just one joint result in the trajectory as shown 

in the fig 6.3 below. 

 

Figure 6.3 Trajectory smoothing using cubic splines. 

After generating the trajectories by interpolating the contact states, the trajectories are then 

published to the joint controllers in a sequential manner which makes the robot get up in a 

smooth way. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this thesis, we have addressed some of the challenging problems involving real-time 

natural human robot interaction on various robotic platforms like the social robot Zeno, the 

android PKD and the Atlas robot in Gazebo simulation. The focus has been to develop natural 

interactions with humans in robots while having a real-time implementation 

 Starting with a simple Pan and tilt control of the robot that tracks faces with two 

degrees of freedom  we  developed algorithms that can be used for real-time face tracking in 

androids, real-time imitation of human motions by humanoid robots and real-time mimicking of 

facial expressions by the facially expressive robots. The motivation for this is the need for the 

robots to be more acceptable where humans work together with robots and the need of social 

robots in assisting people with medical condition like Autism therapy.  

7.1.1 Real-Time Face Tracking by Android PKD 

 In this part of the thesis we are interested in androids having natural interaction with 

humans by making eye contact with humans and moving the neck and eyes like the way a 

human moves. The motivation behind this is to impart social skills to robots while interacting 

with humans so that they don’t appear robot like. This will be important for therapy sessions with 

Autistic children. A novel algorithm was developed to distribute the motions between the neck 

and the eyes by solving the redundancy in the motions using separate PID control and 

formulating the error conditions for them. This enables the children with Autism make a 

connection with the android so that the robot can now teach social skills to them. 
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7.1.2 Real-Time Imitation of Motions and Facial Expressions by Androids 

 In this part of the thesis we are able to extract the human arms, legs, torso motions and 

the facial expressions of the humans and map it to the robots to its actuator space. One of the 

factors that influenced to develop the imitation of motions by robots was to be able to teach 

people with medical condition like Autism through the robots. Another motivation was to be able 

to tele-operate robots in a hazardous environment where the humans cannot be present and 

operate in environments where the Fukushima nuclear disaster took place. A novel way to 

extract the human joint angles through Euler and Quaternion representations were tested on 

Atlas robot. We also developed the mapping between the facial expressions of the humans to 

the androids and tested it on the PKD avatar. The tracking by the robots is promising to be used 

on such applications as discussed.  

7.1.3 Real-Time Arms and Torso Control of the Zeno Robot for Autism Therapy 

 In this part of the thesis we are able to isolate the low level real-time control of the robot 

and high level Kinect sensor data extraction and kinematics conversion. The real-time controller 

sbRIO was used for low level motion control and the Dell XPS was used for high level design. 

The result is that we are able to control the motions of the robot in fast yet smooth manner by 

performing velocity control. The scripted motion of the robot was used for Autism therapy 

sessions held at UNT Health science. These experiments were conducted to study the motions 

of the Zeno robot and the child and to compare the similarity of the motions. Experiments show 

an improvement in the motions of the child over a period of time when we used the same 

repeated gestures by the robot. 

7.2 Future work 

 Further research in natural Human robot interaction can include physical interaction by 

the use of impedance control in robots. Force sensor arrays can be mounted on the arms of the 

robot that uses motors in which we can control torque. Complex control algorithms like 
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computed torque control can be implemented in real-time with this set up so that the robots can 

interact with the humans physically. This research may be useful for making the robots operate 

safer in the presence of humans and may be used to interact with Autistic kids for developing 

their motor skills. 

The Androids like the PKD gets a lot of media attention as the algorithms that we 

developed at NGS laboratory makes the robot look as though it has life into it. This robot along 

with Zeno was exhibited at the Humanoids2013 [61] conference at Atlanta where it attracted a 

lot of professors and researchers in Robotics. One of the projects that David Hanson is working 

along with Dimitry Itskov is the research involved in uploading the mind to the android robots in 

order to extend life [62]. This needs a lot of research progress in the area of Artificial 

intelligence. Future research work with Androids like PKD can involve improving the response of 

the face tracking algorithm even when the face detection fails in some cases. It can also be 

made robust by rejecting wrong faces detected by the face tracker. Optic flow can be used to 

increase the speed of face tracking of pixels as it is computationally less expensive.  
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APPENDIX A 

 
 

PKD HARDWARE AND SERVO MOTOR DETAILS 
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    Figure A.1 PKD skull without the skin                       Figure A.2 PKD servo motor placement 
 
 

Table A.1 PKD servo motors torque and Manufacturer details 
. 
 

PKD servo positions Servo motor used Maximum torque 

18,3 SAV-SC1268MG-H 208 oz-in 

4,20,28,14,31,0,5,1,19 Hitec HSR-5990TG 333.3oz-in 

26,12,7,25,24,11,21,23,13, 22,30,9 Hitec HS-82MG 2.8 kg-cm 

2 HS-805BB 343 oz-in 

 

The figure A.3 shows the overall Block diagram of the connections made to the PKD. The servo 

motors are controlled with two different 24 channel Pololu servo controller. One servo controller 

is used for controlling the neck and eye servo motors and the other is used to control the facial 

expressions servo motors. The idea behind this isolation was to control the neck eye 

coordination and the facial expressions separately using two different software operating on two 

independent serial ports. The mode of communication used to talk to the Pololu is the RS232 

communication. The commands used to talk to the Pololu are the Mini SSC format.  
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Figure A.3 Block diagram of the PKD Electrical Connections
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APPENDIX B 

 
 

SOFTWARE ARCHITECTURE OF IBVS AND PBVS BASED FACE TRACKING 
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Figure B.1 Software Architecture of IBVS Pan Tilt Face Tracking 

In the Image Based Visual Servoing two threads are created. The Image thread and the Control 

thread. The image thread grabs the image from the USB webcam and detects the face using  

OpenCV face tracking Software that is based on Haar Cascade classifier. The code below 

shows the functions in OpenCV that does the image grabbing and the face detection 

 

for(;;) 
        { 
            IplImage* iplImg = cvQueryFrame( capture ); 
            frame = iplImg; 
            if( frame.empty() ) 
                break; 
            if( iplImg->origin == IPL_ORIGIN_TL ) 
                frame.copyTo( frameCopy ); 
            else 
                flip( frame, frameCopy, 0 ); 
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detectAndDraw( frameCopy, cascade, nestedCascade, scale,   
tryflip ); 

 
            if( waitKey( 10 ) >= 0 ) 
                goto _cleanup_; 
        } 
 

In the above code the function cvQueryFrame is responsible for grabbing the images and the 

function detectAndDraw detects the face in the image and draws a circle covering the face. The 

control thread formulates the error condition and implements the PI controller as shown below 

errorx = centerx - 302; 
errory = centery - 236; 
 

pwm1 = pwm1*Ki + (Kp)*(errorx); 
pwm1 = (int)(pwm1 + (double)Kd * (errorx/time)); 
  

pwm2 = pwm2*Ki - (Kp)*(errory); 
pwm2 = (int)(pwm2 - (double)Kd * (errory/time)); 
 

In the above code the errorx and errory are the difference between the center position of the 

face detected by the Image thread and the camera center which is found using the camera 

calibration function in OpenCV. The control signal to the servo motors pwm1 and pwm2 are 

calculated by adding the proportional, integral and the derivative component which is then fed 

as set points to the Pololu servo controller via RS232 communication.  

 The figure B.2 shows the Software implementation of PBVS based Pan and Tilt Control 

for Face tracking.  
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Figure B.2 Software Implementation of PBVS based Face Tracking 

The image thread is used to grab images from the camera and detect the face in the image as 

before. The Image thread is scheduled in 20 Hz because that is about the time it takes for 

running face detection on the image. The Kalman filter prediction is implemented in a separate 

thread. In this thread the Predict function is implemented where it predicts the next position in 

the 3D space based on the constant instant velocity model. Finally the control thread 

implements a PI control to servo the motor. The following code shows the implementation in the 

predict thread 

A[1] = 0.02; 
A[1] = 0; 
A[15] = 0; 
memcpy( kalman->transition_matrix->data.fl, A, sizeof(A)); 
const CvMat* prediction = cvKalmanPredict( kalman, 0 ); 
Zc = 649*3.02/rad; 
predictX = prediction->data.fl[0]; 
thetaX = atan(predictX/Zc)*57.295; 
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predictY = prediction->data.fl[2]; 
thetaY = atan(predictY/Zc)*57.295; 
 

The cvKalmanPredict is the library function that is called for predicting the next state. The A 

matrix is updated with the constant velocity values. 
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APPENDIX C 

 
 

SOFTWARE ARCHITECTURE OF ATLAS ROBOT TELEOPERATION 
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Figure C.1 Software Architecture for Atlas Robot Teleoperation 

The figure C.1 shows the Software implementation of the Atlas robot tele operation. First we 

need to run the skeleton tracker from OpenNI to transmit the frames for all the joints. This is 

shown under OpenNI skeleton tracker. A ROS node is defined that extracts the joint angles 

from the transform. The following definition defines the transforms for the Euler angles and the 

Quaternions. 

tf::Quaternion angrightknee; // for elbow and knee joints 
tf::StampedTransform sh_transform, leftknee_transform, rightknee_transform;// for 
//all other joints 
 
 
The following code extracts the angles represented by these transforms 

listener.lookupTransform("/left_shoulder_1", "/left_elbow_1", 
                                   ros::Time(0), el_transform); 
sh_transform.getBasis().getRPY(Rs, Ps, Ys); // use for Euler angles 
el_transform.getBasis().getRotation(angRE); // use for Quaternions angles 
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The function listener.lookupTransform takes the input of the rostopics ‘/left_shoulder’ and 

‘/left_elbow_1’ from the OpenNI skeleton tracker and compute the transform and stores it in 

el_transform. This is further used in the functions getRPY for getting the roll, pitch and yaw 

angles from the Euler representation and getRotation function for getting the angles from the 

Quaternion representation.  
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APPENDIX D 

 
 

SOFTWARE ARCHITECTURE OF PKD NEURAL NETWORK MAPPING 
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Figure D.1 Software Implementation of data collection 

The figure D.1 shows the block diagram for collecting dataset for Neural Networks. The main 

program opens a TCP/IP socket for receiving the 48 blendshape variables from the faceshift 

software. The following code shows how it is done. 

WSADATA wsaData; 
WORD wVersionRequested; 
  
wVersionRequested = MAKEWORD(2,2); 
err = WSAStartup(wVersionRequested, &wsaData); 
if (err != 0) { 
 _endthread(); 
} 
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) { 
 WSACleanup(); 
 _endthread(); 
} 
 
// Create a SOCKET for connecting to server 
ConnectSocket = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); 
if (ConnectSocket == INVALID_SOCKET) {  
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WSACleanup(); 
_endthread(); 
} 
 
 // The sockaddr_in structure specifies the address family, 
 // IP address, and port of the server to be connected to. 
clientService.sin_family = AF_INET; 
clientService.sin_addr.s_addr = inet_addr( "127.0.0.1" ); 
clientService.sin_port = htons( 33433 ); 
 
iResult = connect( ConnectSocket, (SOCKADDR*) &clientService,       
sizeof(clientService)); 
if ( iResult == SOCKET_ERROR) { 
closesocket (ConnectSocket); 
WSACleanup(); 
_endthread(); 
} 
 
if (ConnectSocket == INVALID_SOCKET) { 
 closesocket(ConnectSocket); 
 WSACleanup(); 
} 
 

The connect function is responsible for establishing the socket connection. The code below 

shows how to extract the facial features from the data transmitted by TCP/IP 

do { 
  iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0); 
  if ( iResult > 0 ){ 
   parserIn.received(iResult, recvbuf); 
   while(msg=parserIn.get_message())  
   { 
    if(dynamic_cast<fs::fsMsgTrackingState*>(msg.get()))  
    { 
     fs::fsMsgTrackingState *ts = 
dynamic_cast<fs::fsMsgTrackingState*>(msg.get()); 
     const fs::fsTrackingData &data = ts-
>tracking_data(); 
      
      
    }  
   } 
  } 
  if(!parserIn.valid()) { 
   printf("parser in invalid state\n"); 
   parserIn.clear(); 
  } 
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  // press keyboard c to call calibrate neutral 
  int c = GetKeyState('C'); 
  if( c&0xF0 )  
  { 
   printf("Call calibrate neutral\n"); 
   fs::fsMsgCalibrateNeutral msg; 
   std::string dataToSend; 
   parserOut.encode_message(dataToSend, msg); 
   send(ConnectSocket,dataToSend.data(),dataToSend.size(),0); 
  } 
 } while( iResult > 0 ); 
 _endthread(); 
 
The data.m.coefficients contains the 48 face shift variables. Another thread that is running in 

parallel will transmit random servo motors to the PKD. It then waits for the servo values to settle 

down and the 48 blendshape variables transmitted by the main function would be recorded 

against the servo values and is stored in separate files. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

92

REFERENCES 

[1] K. Tindell, H. Hansson and A. J. Wellings. Analysing real-time communications: Controller 
area network (CAN). Presented at Real-Time Systems Symposium, 1994., Proceedings. 1994.  

[2] D. Jansen and H. Buttner. Real-time ethernet: The EtherCAT solution. Computing and 
Control Engineering 15(1), pp. 16-21. 2004.  

[3] N. Villaroman, D. Rowe and B. Swan. Teaching natural user interaction using OpenNI and 
the microsoft kinect sensor. Presented at Proceedings of the 2011 Conference on Information 
Technology Education. 2011.  

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng. 
ROS: An open-source robot operating system. Presented at ICRA Workshop on Open Source 
Software. 2009 .  

[5] G. Husi and P. Szemes. Control of NI SbRIO-9631 prototype robot on the basis of hand 
movement. Presented at Robot Control. 2012.  

[6] C. Rice. Prevalence of autism spectrum disorders: Autism and developmental disabilities 
monitoring network, united states, 2006. morbidity and mortality weekly report. surveillance 
summaries. volume 58, number SS-10. Centers for Disease Control and Prevention 2009.  

[7] L. M. Oberman, E. M. Hubbard, J. P. McCleery, E. L. Altschuler, V. S. Ramachandran and J. 
A. Pineda. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive 
Brain Research 24(2), pp. 190-198. 2005.  

[8] M. A. Gernsbacher, J. L. Stevenson, S. Khandakar and H. H. Goldsmith. Why does joint 
attention look atypical in autism? Child Development Perspectives 2(1), pp. 38-45. 2008.  

[9] Y. Bar‐Haim and O. Bart. Motor function and social participation in kindergarten children. 
Social Development 15(2), pp. 296-310. 2006.  

[10] J. P. Piek, G. S. Bradbury, S. C. Elsley and L. Tate. Motor coordination and Social–
Emotional behaviour in Preschool‐aged children. International Journal of Disability, 
Development and Education 55(2), pp. 143-151. 2008.  

[11] C. Breazeal and B. Scassellati. f 4 challenges in building robots that imitate people. 
Imitation in Animals and Artifacts pp. 363. 2002.  

[12] E. Schopler, M. Lansing, R. Reichler and M. LM. PEP-3. Psychoeducational Profile.Teach 
Individualized Psychoeducational Assessment for Children with Autism Spectrum 
Disorders.Austin: Pro-Ed 2005.  



 

 

 

93

[13] C. Min and A. H. Tewfik. Novel pattern detection in children with autism spectrum disorder 
using iterative subspace identification. Presented at Acoustics Speech and Signal Processing 
(ICASSP), 2010 IEEE International Conference on. 2010.  

[14] D. J. Ricks and M. B. Colton. Trends and considerations in robot-assisted autism therapy. 
Presented at Robotics and Automation (ICRA), 2010 IEEE International Conference on. 2010.  

[15] B. Robins, K. Dautenhahn and J. Dubowski. Does appearance matter in the interaction of 
children with autism with a humanoid robot? Interaction Studies 7(3), pp. 509-542. 2006.  

[16] D. Xu, J. Gilkerson, J. Richards, U. Yapanel and S. Gray. Child vocalization composition as 
discriminant information for automatic autism detection. Presented at Engineering in Medicine 
and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009 .  

[17] B. Scassellati, H. Admoni and M. Mataric. Robots for use in autism research. Annu. Rev. 
Biomed. Eng. 14pp. 275-294. 2012.  

[18] J. Goetz, S. Kiesler and A. Powers. Matching robot appearance and behavior to tasks to 
improve human-robot cooperation. Presented at Robot and Human Interactive Communication, 
2003. Proceedings. ROMAN 2003. the 12th IEEE International Workshop on. 2003 .  

[19] S. Woods, K. Dautenhahn and J. Schulz. The design space of robots: Investigating 
children's views. Presented at Robot and Human Interactive Communication, 2004. ROMAN 
2004. 13th IEEE International Workshop on. 2004.  

[20] M. Mori, K. F. MacDorman and N. Kageki. The uncanny valley [from the field]. Robotics & 
Automation Magazine, IEEE 19(2), pp. 98-100. 2012.  

[21] N. J. Rinehart, J. L. Bradshaw, A. V. Brereton and B. J. Tonge. Movement preparation in 
high-functioning autism and asperger disorder: A serial choice reaction time task involving 
motor reprogramming. J. Autism Dev. Disord. 31(1), pp. 79-88. 2001.  

[22] J. Fasola and M. J. Mataric. Using socially assistive human–robot interaction to motivate 
physical exercise for older adults. Proc IEEE 100(8), pp. 2512-2526. 2012.  

[23] K. F. MacDorman and H. Ishiguro. Toward social mechanisms of android science. 
Interaction Studies 7(2), pp. 289-296. 2006.  

[24] C. Bartneck, T. Kanda, H. Ishiguro and N. Hagita. Is the uncanny valley an uncanny cliff? 
Presented at Robot and Human Interactive Communication, 2007. RO-MAN 2007. the 16th 
IEEE International Symposium on. 2007.  

[25] M. Shimada, T. Minato and S. Itakura. Uncanny valley of androids and its lateral inhibition 
hypothesis. Presented at Robot and Human Interactive Communication, 2007. RO-MAN 2007. 
the 16th IEEE International Symposium on. 2007 .  



 

 

 

94

[26] S. Woods, K. Dautenhahn and J. Schulz. The design space of robots: Investigating 
children's views. Presented at Robot and Human Interactive Communication, 2004. ROMAN 
2004. 13th IEEE International Workshop on. 2004 .  

[27] C. Breazeal and B. Scassellati. f 4 challenges in building robots that imitate people. 
Imitation in Animals and Artifacts pp. 363. 2002.  

[28] B. Scassellati. Investigating models of social development using a humanoid robot. 
Presented at Neural Networks, 2003. Proceedings of the International Joint Conference on. 
2003 .  

[29] S. Gurbuz, T. Shimizu and G. Cheng. Real-time stereo facial feature tracking: Mimicking 
human mouth movement on a humanoid robot head. Presented at Humanoid Robots, 2005 5th 
IEEE-RAS International Conference on. 2005.  

[30] C. Breazeal, A. Edsinger, P. Fitzpatrick and B. Scassellati. Active vision for sociable robots. 
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 31(5), pp. 
443-453. 2001.  

[31] G. Cannata, M. D'Andrea and M. Maggiali. Design of a humanoid robot eye: Models and 
experiments. Presented at Humanoid Robots, 2006 6th IEEE-RAS International Conference on. 
2006.  

[32] G. Cannata and M. Maggiali. Implementation of listing's law for a tendon driven robot eye. 
Presented at Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. 
2006.  

[33] J. Rajruangrabin and D. O. Popa. Robot head motion control with an emphasis on realism 
of neck–eye coordination during object tracking. Journal of Intelligent & Robotic Systems 63(2), 
pp. 163-190. 2011.  

[34] S. K. Singh, S. D. Pieper, D. Popa and J. Guinness. Control and coordination of head, eyes 
and facial expressions of virtual actors in virtual environments. Presented at Robot and Human 
Communication, 1993. Proceedings., 2nd IEEE International Workshop on. 1993.  

[35] N. S. Pollard, J. K. Hodgins, M. J. Riley and C. G. Atkeson. Adapting human motion for the 
control of a humanoid robot. Presented at Robotics and Automation, 2002. Proceedings. 
ICRA'02. IEEE International Conference on. 2002.  

[36] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa and K. Ikeuchi. Generating whole body 
motions for a biped humanoid robot from captured human dances. Presented at Robotics and 
Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on. 2003.  

[37] M. Vukobratović and B. Borovac. Zero-moment point—thirty five years of its life. 
International Journal of Humanoid Robotics 1(01), pp. 157-173. 2004.  



 

 

 

95

[38] A. Safonova, N. Pollard and J. K. Hodgins. Optimizing human motion for the control of a 
humanoid robot. Proc.Applied Mathematics and Applications of Mathematics 782003.  

[39] M. Ruchanurucks, S. Nakaoka, S. Kudoh and K. Ikeuchi. Humanoid robot motion 
generation with sequential physical constraints. Presented at Robotics and Automation, 2006. 
ICRA 2006. Proceedings 2006 IEEE International Conference on. 2006.  

[40] M. J. Mataric. Getting humanoids to move and imitate. Intelligent Systems and their 
Applications, IEEE 15(4), pp. 18-24. 2000.  

[41] S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid robot. 
Presented at Proceedings of the ACM/IEEE International Conference on Human-Robot 
Interaction. 2007.  

[42] T. Asfour, P. Azad, F. Gyarfas and R. Dillmann. Imitation learning of dual-arm manipulation 
tasks in humanoid robots. International Journal of Humanoid Robotics 5(02), pp. 183-202. 2008.  

[43] T. Chen and R. R. Rao. Audio-visual integration in multimodal communication. Proc IEEE 
86(5), pp. 837-852. 1998.  

[44] H. McGurk and J. MacDonald. Hearing lips and seeing voices. 1976.  

[45] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection. 
Presented at Image Processing. 2002. Proceedings. 2002 International Conference on. 2002.  

[46] Macedo, Marcio Cerqueira de Farias, A. L. Apolinario and Souza, Antonio Carlos dos 
Santos. A robust real-time face tracking using head pose estimation for a markerless AR 
system. Presented at Virtual and Augmented Reality (SVR), 2013 XV Symposium on. 2013.  

[47] F. Wilbers, C. Ishi and H. Ishiguro. A blendshape model for mapping facial motions to an 
android. Presented at Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ 
International Conference on. 2007.  

[48] T. Wu, N. J. Butko, P. Ruvulo, M. S. Bartlett and J. R. Movellan. Learning to make facial 
expressions. Presented at Development and Learning, 2009. ICDL 2009. IEEE 8th International 
Conference on. 2009.  

[49] I. Ranatunga, M. Beltran, N. A. Torres, N. Bugnariu, R. M. Patterson, C. Garver and D. O. 
Popa. "Human-robot upper body gesture imitation analysis for autism spectrum disorders," in 
Social RoboticsAnonymous 2013.  

[50] "http://sine.ni.com/nips/cds/view/p/lang/en/nid/210420," .  

[51] "http://www.pololu.com/product/1356," .  



 

 

 

96

[52] "http://www.darpa.mil/NewsEvents/Releases/2013/07/11.aspx," .  

[53] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. Presented at Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 
2004 IEEE/RSJ International Conference on. 2004.  

[54] "http://gazebosim.org/wiki/DRC," .  

[55] L. A. Schwarz, A. Mkhitaryan, D. Mateus and N. Navab. Human skeleton tracking from 
depth data using geodesic distances and optical flow. Image Vision Comput. 30(3), pp. 217-
226. 2012.  

[56] B. Thuilot, P. Martinet, L. Cordesses and J. Gallice. Position based visual servoing: 
Keeping the object in the field of vision. Presented at Robotics and Automation, 2002. 
Proceedings. ICRA'02. IEEE International Conference on. 2002.  

[57] G. L. Mariottini, G. Oriolo and D. Prattichizzo. Image-based visual servoing for 
nonholonomic mobile robots using epipolar geometry. Robotics, IEEE Transactions on 23(1), 
pp. 87-100. 2007.  

[58] "http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html,".  

[59] M. Inaba, F. Kanehiro, S. Kagami and H. Inoue. Two-armed bipedal robot that can walk, roll 
over and stand up. Presented at Intelligent Robots and Systems 95.'Human Robot Interaction 
and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on. 1995 .  

[60] F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, S. Kajita, K. Yokoi, H. Hirukawa, K. Akachi 
and T. Isozumi. The first humanoid robot that has the same size as a human and that can lie 
down and get up. Presented at Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE 
International Conference on. 2003 .  

[61] (). . Available: http://www.humanoids2013.com/.  

[62] (). Global Future 2045 International Congress. Available: http://gf2045.com/.  

 



 

 

 

97

BIOGRAPHICAL INFORMATION 

 

Suresh Sampathkumar was born in Bangalore, India. He gained his Bachelors of 

Engineering degree in Electronics and Communications from Dr. Ambedkar Institute of 

Technology, Bangalore in 2005 and gained his Master of Science degree in Electrical 

Engineering at University of Texas at Arlington in 2013. His main research interests are in 

Robotics with real-time implementation in an Embedded System platform. He is also interested 

in Digital Signal Processing and Computer Vision 

 

 

 


