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ABSTRACT

MODELING AN INTELLIGENT INTRUDER IN A REGION MONITORED BY

A WIRELESS SENSOR NETWORK

Sriram Srinivasan, M.S.

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Matthew Wright

Monitoring to detect unauthorized border crossing is very important for pro-

tecting national security. To accomplish this by continuous physical monitoring by

border patrol agents is impractical. Networks of low-cost wireless sensors have been

identified as a useful tool in monitoring with minimal human intervention. However,

ensuring the effectiveness of unattended monitoring against an intelligent intruder is

difficult, since the intruder can probe the system for weaknesses. To better understand

the capabilities of such an intruder, we propose a model for an intelligent intruder

whose purpose is to find a detection-free path across the border by which he could

cross back and forth without the risk of detection. Our intruder model is composed

of four agents, each with a specific task: Explore, Exploit, Evade, and Policy. The

first three agents follow the best course for achieving their named goals. The Policy

agent is an intelligent agent that learns on different maps whether to pick Explore

or Exploit or Evade given the intruders current knowledge about the map. We use

Q-learning (QL) to train the Policy agent over various maps. In QL, the agent gets a

positive reward for doing something right (e.g. moving to a detection-free zone closer
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to the goal) and a negative reward for doing something wrong (e.g. getting caught

by a sentry). We investigated different factors that affect the intruder’s behavior,

like the effect of different rewards, different sensor coverage of the region, and faster

and more effective sentries. Our results show that after getting trained on enough

number maps, the agent becomes better at finding a detection-free path across the

border region. In particular, it reduces the capture rate and the number of steps

required to find a detection-free path. Therefore, an intelligent intruder like this can

be used to build and test different defense mechanisms.
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CHAPTER 1

INTRODUCTION

Sensors are low-cost and low-power devices that posses capabilities to do sens-

ing, limited processing, and wireless transmission of signals. These sensors are gener-

ally used in monitoring the physical world. In most cases a collection of such sensors

are used to perform a specific task in the real world, and such a collection is called a

wireless sensor network [1]. These networks can be used to identify and track move-

ments and activities in a region. Hence, there is potential to leverage these networks

in unmanned surveillance in border regions between countries and surrounding sen-

sitive facilities such as nuclear and chemical plants, city water supplies, and military

bases [2].

In this thesis, we use surveillance of the country borders as our primary mo-

tivating factor. Monitoring country borders for countries like the United States of

America, whose border lasts for over 7000 miles is a very difficult task. The United

States of America spends billions of dollars in securing its borders by constructing

fences, video surveillance and other means. Monitoring such a vast border requires

large amounts of man-power as well. Even after spending all those resources, it is

extremely difficult to stop different unlawful groups like drug cartels and terrorists

from breaching these borders. These groups keep looking for areas that are monitored

poorly and capitalize on them. Their main goal for intrusion is to get their illegal

goods and supplies into the country. To do so they rely on such weakly monitored

areas where the risk of losing the goods or their men is low. Hence, there is a necessity

for a better monitoring system. This could be achieved by the use of sensor networks.
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Even though the use of such networks could be very useful, wireless sensor

networks deployed in the real world are vulnerable to all sort of attacks. The at-

tack could be both physical(like device tampering, jamming) or logical(like Sybil,

eavesdropping[3], selective routing). These different attacks could be used to mitigate

the capabilities of a network. But when we consider physical intrusion in a sensor

network, there are 2 major factors that determine the ability to detect a physical

intrusion :

• Connectivity: The ability to transmit a message from one node to another in a

network is called connectivity. A network is completely connected if every node

in that network is reachable.

• Coverage: The amount of physical region the sensors can cover is called the

network coverage. A network is said to have full coverage if every part of a

region is accessible by at least one sensor in that network.

Maintaining complete coverage and connectivity [4] is not a trivial task. There are

many difficulties in achieving this in a vast region such as country borders [5]. One

of the major challenges would be that, the amount of sensors needed to cover a vast

region such as the U.S border (with sensors whose range is ten meters) would be very

large. Additionally, it would be a bigger challenge to place them in the border at

right intervals throughout to get complete coverage. The other major problem is that

the battery life of a sensor is mostly about six months, even if we manage to precisely

place the sensors every ten meter on all kinds of terrains, it would be extremely

expensive to replace those every 6 months manually. Apart from this, node faults

and other problems further affect the network and make it more difficult to maintain.

Hence, getting complete coverage and connectivity is practically impossible. This

means that there is most likely a path in this area that will take an intruder from one
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country to the other without being detected by any sensor. We call such a path as a

detection-free path.

A detection-free path may not be obvious when a member of the group enters the

network and start exploring. But the sensors broadcast signals making it completely

vulnerable to eavesdropping. Hence, an intruder could silently eavesdrop and at the

least obtain information such as signal strength which could be used to precisely

find the location of the sensor, after enough probing. And there is always a delay

in capture of intruder after being sensed. Hence, he could gain a significantly large

amount of information about the network and communicate with his members. His

group members could use this information to further intrude and discover a completely

detection-free path.

The most obvious form of defense against such an attack is to increase the

coverage. But this could be very expensive considering the vastness of the region [6].

There are different approaches people have tried to improve detection [7, 8, 24]. But

to improve intrusion detection, it is extremely important to have an intruder who

would adapt, improve, and behave like a real-world human intruder. In this work we

try to build an intelligent intruder which will adapt by learning on many maps using

a technique called Q-learning.

Contributions: We try to model an intruder whose purpose is to find a detection-

free path in a border monitored by sensors. We also try to minimize the number of

times the intruder gets captured and number of steps it takes to find this path. We

generalize and abstract the state space for our agent so that the agent can re-use

the information learned on one map in another. We further analyze the intruder’s

behavior on maps with different sensor coverage, better sentries, and different costs

for getting captured by a sentry. Our results show the improvement of the intruder

3



before and after learning. We could further use this intruder to build a more effective

detection system.
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CHAPTER 2

BACKGROUND

In this chapter we talk about a few topics which will be essential in understand-

ing our attack model. We have modeled our attacker to use a concept of machine

learning called reinforcement learning. The goal of our attacker is, physical intru-

sion in an area monitored by wireless sensor networks. Hence, we discuss in brief

about wireless sensor networks and their security, machine learning, and reinforce-

ment learning. We also talk about a few related works in this section.

2.1 Wireless sensor networks

With recent advancements in hardware technologies and wireless communica-

tion, people have been able to build small and low-power devices called wireless sen-

sors. These sensors can measure a certain aspect of the environment around them.

These sensors, upon detecting a change in the environment, can send a signal/data

to their neighbors through wireless media. A collection of such sensors are used coop-

eratively to carry out a specific task. Such a collection or network is called a wireless

sensor network (WSN)[9]. In a WSN, every sensor is called a node. Nodes by them-

selves do not analyze the data acquired, i.e. they can only sense the environment

and send a message. This message is received by a key component of the network

called the base station. The base station is like the backbone of the network. It

acts as an interface between the user and the sensors. Once the message reaches the

base station, the user can access this message and analyze the environment. These

sensors can read different sets of data like temperature, sound, vibrations, movement
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and so on. Hence the application of such a network can be found in various fields

ranging from military to home applications[10]. For example in border monitoring,

these sensors are placed randomly throughout the border and each sensor can detect

movement in the environment. As the sensor detects movement around it, a sentry

is made to inspect the area to capture the intruder.

Figure 2.1. A wireless sensor network.

A WSN is generally completely distributed. Each sensor keeps sensing a small

area around it. As it detects a change in the environment it prepares to send a

signal to the base station. These sensors are deployed in a vast area. The wireless

signal range of these sensors are very small when compared to the area they are

deployed in. Hence, it is not possible for the sensor to send a signal directly to the

base station. However, each sensor can pass messages to other nodes in its wireless

range. This ability to pass messages is used to design different protocols to route
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messages to the base station through different nodes in the network. This type of

message passing is called multi-hop message passing. Once the base station receives

this signal, it sends back an acknowledgment, and if the node does not receive this,

the signal is retransmitted. Once the signal reaches the base station, the data can

then be analyzed to make interpretations about the environment. Fig. 2.1 represents

a typical WSN and its working. These sensor networks face a lot of security threats

in general. The threats range from an attacker physically damaging it to an intruder

silently listening to the network[1, 11]. The focus of our research is on using WSN for

border monitoring and physical intruder detection. The goal of our attacker is to be

able to cross the border without being detected or caught by a sentry. The type of

attacks that would make most sense in aiding an attacker cross borders undetected

are the ones where the intruder, captures and/or destroys nodes, or attacks the base

station. Many intrusion detection systems have been developed to deal with different

type of attacks. We have discussed a few of them in the related works section at the

end of this chapter. However, our intruder model does not use any regular attack

strategies but tries to find ways to circumnavigate across the network.

2.2 Reinforcement learning

Machine Learning(ML) is a set of algorithms that can learn and improve its

performance via experience [12]. In general an ML algorithm has a hypothesis func-

tion h and tries to map the input to the output and adjust its hypothesized function

to an ideal function f [13].

ML is classified into three forms of learning: supervised learning, unsupervised

learning, and Reinforcement learning. In supervised learning, there is another system

that is responsible for telling the agent what the right output is supposed to be, for

any given input. In unsupervised learning, the system is fed with just the input and
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the task of the agent to find a meaningful explanation to the data given. The third

type of learning falls between the first and second, and is called reinforcement learning

(RL)[14]. We model our intruder based on this method.

In RL, an agent tries to find the right action in an environment that would

increase its cumulative reward. The environment is unknown to the agent at the

start and it learns to behave as it gains experience in this world. Every RL problem

can be formulated as a Markov decision process (MDP) with states representing the

state of environment, and the transition of states depend on agents’ actions [15].

An RL model consists of a set of states S, actions a, rewards r, and a policy

π. Here, an agent tries to learn an optimal policy π∗ that maximizes its cumulative

payoff. To learn this policy the agent starts from a state St and either picks actions

at randomly or picks them based on its current policy π. It ends in a state St+1 to

get a reward rt. This reward is used to update the policy π. This process is repeated

until policy π converges to a perfect policy π∗.

There is a model-free RL called Q-Learning [16]. Here each state-action pair is

associated with a value called the Q-value. A table of such Q-values is used to arrive

at an optimal policy. Q(St, at)
π is the Q-value of the agent at state St, picking an

action at, using the policy π. The Q-value is a function of reward and is updated

after every action. These updates occurring at every iteration are called episodes.

Q(St, at) = Q(St, at) + α ∗ (rt+1 + γ ∗ (maxQ(St+1, a)−Q(St, at))) (2.1)

In the equation above, α is called the learning rate, and γ is called the discount

factor [17, 18].

The value of γ represents how much the previous reward is supposed to con-

tribute, and the value of α tells us how much effect this reward will have in the future.
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The value for these two parameters ranges from 0 to 1. When α = 1 the Q-value is

set based on just the current reward, and if α = 0, no learning happens. When γ = 0,

past events are ignored, and if γ = 1, agent strives for longterm high reward. Hence,

these parameter values have to be carefully chosen.

In Q-learning, there are generally two modes of operation: explore and exploit.

When an agent explores, it tries to pick a random action and update the policy. When

it exploits, it picks actions purely based on its policy, like an MDP. For complete

convergence, an agent should have visited every state and picked up every action

infinite number of times. But, for most practical purposes,( especially in a small

world problem with fairly limited states) random exploration works well. There are

different types of exploration technique used, the most popular ones being the Epsilon

greedy, Boltzmann, and Metropolis criterion [19].

RL algorithms are very versatile and can be used in many different areas. A

very useful property of RL is that it can perform on-line learning and keep improving

its policy as it encounters more scenarios. The use of RL in an intruder will help the

intruder understand the environment better as it is rewarded and punished based on

its actions. The attacker could simply learn more by simulation rather than actually

entering a network to learn. But, the most crucial part of using RL is to pick the

right state variables that represent the environment precisely, as the states determine

what the intruder learns.

2.3 Related work

There has been previous work done on building intruder detection systems. A

lot of the work focuses on improving and enhancing node coverage. But improvement

in node coverage is not a very good solution, given that the network is going to be

deployed in country borders. Country borders are generally very vast, and most of
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the deployment is done by dropping sensors from an aerial vehicle. This causes a lot

of randomness and hence makes it very hard to improve node coverage. Some lines of

research focus on using multiple sensors and co-ordinating them to detect intruders.

Doing this can improve detection, but they also increase miss rate or false alarms.

This is because a lot of co-ordination is required and each set of sensors will raise

false alarms at different time periods thus decreasing its reliability. Some research

has been done in building intelligent agents and using them for intrusion detection.

But these mostly focus on indoor environments and this can not be compared with

outdoor environments like country borders where the possibility of false a signal is

much higher. We have discussed a few papers below that focus on intrusion detection

or building efficient intruders to test the detection system.

In a research by Deng et al [20] the authors tried to find the base station’s

location by using time-correlation attack. The attacker tries to find the frequency

in which the node sends and receives packets. The nodes closer to a base station

are more likely to receive or send a packet. This helps the attacker find the location

of the base station. Some defense mechanisms suggested for such an attack were to

introduce redundancy and randomized routes to confuse the attacker.

In a paper by Saipulla et al [21], the authors discuss about how the sensor

deployment strategy could affect the node coverage. They take Poisson point process

to be their base model and show that using a more controlled approach on sensor

deployment could increase the node coverage. They reduce the random offset below

the sensing range of a sensor. They show in their results that, by using such strategies

on single or multiple line based deployment, the node coverage could be improved.

But in their results it is seen that, as the physical area being sensed increases, the

probability of full node coverage decreases exponentially down to almost 0.

10



In a research by Liu et al on approximate coverage in WSN [4], the authors

discuss the full coverage problem. They show that full coverage in a WSN is an

NP hard problem. They come up with a heuristic approach to partial, yet maximal

coverage. Their heuristic approach also focuses on increasing the network lifetime,

by turning sensors on and off and using limited sensors at a given time.

In a paper by Yuan et al on intrusion detection system [22], the authors build a

system that used unsupervised fuzzy adaptive resonance theory based neural network

to learn about and detect intruders in unknown environments. They used a com-

bination of WSN and a mobile robot. A hierarchical learning structure is used for

the system, with the robot as the root. A Markov model is used to learn time series

and time related changes in the environment. They show that their system performs

better than a previous but similar approach [23]. In the paper that they compare

their results to [23], they use unsupervised learning techniques to distinguish between

good and faulty sensors, and also detect unusual patterns and try to improve security

alerts. They measure performance by computing miss rate, false alarm, sensitivity,

and specificity. Their implementation however, lacked an intelligent intruder and the

intruder did not have any intention of staying undetected. Also, this system was

deployed in an indoor environment where the sensor data is more predictable and

reliable.

In a paper by Zhi Sun et al [24], the authors come up with a strategy for intrusion

detection that uses multiple technologies. Their hybrid approach involves the use of

multiple types of sensors: underground sensors, on-ground sensors, camera towers,

aerial and ground autonomous robots. In this network, all of the above communicate

and coordinate to detect an intrusion. The ground sensors send a signal to cameras

when they detect an intrusion, this is followed by the movement of robots and it ends

with the confirmation of an intrusion. In their approach, the ground sensors are much
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higher in number than the cameras, hence, cameras could be overloaded with signals

which further lead to an increase in miss rates and false alarms.

Dejmal et al have modeled an attacker based on RL, in vulnerability assessment

of peer to peer networks [25]. Here, the authors focus on problem of proactive security

in DoS attack, in P2P network. They then model their problem’s solution using a

gradient descent method in RL. They also show that their method outperforms a few

other heuristic approaches.

Pranav et al used RL to model their attacker to study intrusion detection in

a sensor monitored area [7]. The authors make their intruder agent move in a grid

world with sensors and the sentry tries to catch the intruder. As the intruder moves

in the map, it learns about the map and uses that to decide whether to head towards

goal or to retreat. Even though the agent is learning about the map and using that

information, if the same agent were placed in another map with sensors placed in

different locations, the agent will have to relearn everything in the new map. Hence,

the approach is applicable to a specific map only, at any given point in time.

In a research by Servin et al, the authors have used a multi-agent RL to build

an intrusion detection system for a distributed sensor network [26]. Here, they use

multiple agents to work towards a common network intrusion detection goal. They

use two sets of agents called Sensor agents and Decision agents. Sensor agent tries

to find the state of environment partially and the Decision agent learns to interpret

Sensor agent’s signals to find an abnormal state. Their results show that these agents

detect intrusion more successfully, with increase in the amount of training.
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CHAPTER 3

SYSTEM MODEL

In this chapter we explain our proposed model for a physical intruder and the

way we have modeled the entire system.

3.1 Modeling world

Country borders where wireless sensors are deployed, are vast and have different

terrain. But, for the sake of simplicity, we consider our world to be an nxm grid world.

Every block/grid in this world can be located using an i, and j value in the x, and

y axes. This entire grid world represents the border which will be monitored for

intrusion. Sensors are placed randomly in this grid world. The sensing coverage of

each sensor is just one grid, i.e, if a sensor is at location (i, j), it can sense the

presence of an intruder in only that block. Even though the sensing range is one grid,

we assume that it can successfully communicate information required to the base

station. The number of sensors in a map can be varied based on the node coverage

desired. We measure node coverage as,

Nodecoverage(%) =

(
Ns

Ng

)
∗ 100 (3.1)

P0(sensor) =

(
Ns

Ng

)
(3.2)

As our model is a grid world, to propagate through the world, the sentry and in-
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Table 3.1. Parameters used to compute node coverage

Ns Number of sensors in the grid world.
Ng Number of grids in the world.

truder, both are allowed to pick only one of the four directions possible:up, down,

right, or left. Fig. 3.1 represents a 6x6 grid world with eight sensors, one sentry, and

an intruder.

Figure 3.1. A simple grid world.

As described in the introduction section, the types of intruders we address here

are mostly those that work in groups. Hence, there are multiple intruders with the

same motive. In our model we assume that there is an infinite set of intruders in the

group waiting at the start point. Hence, getting captured by the sentry is not the

end of our simulation. Each intruder after getting captured by the sentry is assumed
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to have already passed on the information he has gained about the map to the next

intruder who would then continue exploring. Losing a man could be very expensive

for a group with small number of people and very low for a group with large number of

people. The details about the expense of losing an intruder for the group is explained

later in this section as a function of the reward awarded when captured. Details on

how the system is reset is explained in the sentry model.

3.2 Sentry Model

A sentry is similar to an officer on patrol duty at the border. The job of a

sentry is to protect the place from unauthorized border crossing. Sentry monitors the

network for activities. As a sensor gets triggered in the network, the sentry goes to

the place and tries to find and capture the intruder. When a sensor is triggered in the

network, our sentry gets to know the exact location of the sensor that was triggered.

As shown in the Fig. 3.1, our sentry starts from the top of the map which is also the

intruder’s destination.

The sentry after receiving a signal from a sensor starts moving towards that

sensor using the shortest path. The shortest path distance, is basically the Manhattan

distance from its present location to the sensor’s location. We assume that, the sensing

radius of the sensor is less than the sentry’s viewing radius. Based on this, our sentry

can spot an intruder x-blocks away from his location. We also assume that the sentry

is on some sort of a vehicle hence, can move through multiple blocks/grids in one

unit time. For example a sentry could pick up, up, right, up when the intruder

could do just up, or down, or right, or left. Once the sentry reaches the grid where

sensor detected intrusion and did not find any intruder, it starts moving in random

direction around the grid trying to find the intruder. If it spots the intruder at any

point and if it can reach to it before intruder escapes, then we say that the intruder

15



was captured and the sentry goes back to its start with captured intruder. Just

like in the real world, a captured intruder means one man caught and not the end of

intrusion. In our model, after an intruder is captured, the intruder is reset to his start

position and our sentry is sent back to his start position. During sentry’s random

walk or when moving towards a sensed region, if sentry receives another signal from a

different sensor, the sentry starts moving towards that location. The sentry will keep

looking for an intruder after reaching sensed area with a probability. We calculate

the probability to be,

Probability of intruders existence : PIE =
NoIS

(NoIS + TLS)
(3.3)

Table 3.2. Parameters for calculating PIE

NoIS Number of times intruder was sensed.
TLS Number of steps since intruder was sensed.

This probability is set to zero when we see that the value of PIE goes below a

certain threshold β. Value of zero means that the sentry has to go back to its start

position. Algorithm 1 explains the behavior of our sentry’s code.
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Algorithm 1 Sentry’s response

Require: PIE 6= 0

1: if !reached sensed node then

2: %% Note:n depends on speed of sentry. %%

3: take step(n, sensedNode);

4: else

5: %% Note:β is a threshold set by user. %%

6: if PIE > β then

7: take step(n, random);

8: else

9: go to(base);

10: if Reached base then

11: PIE ⇐ 0

12: end if

13: end if

14: end if

3.3 Modeling Intruder

Our intruder is a location aware attacker. The purpose of the intrusion is to find

a detection free path, from one end to the other end of the border. We restrict our

intruder to be able to move one grid in a unit time, unlike our sentry. The intruder

picks either up, down, right, or left to move in the map. As the intruder moves, he

can figure out his exact location in the map. As he enters a grid, he gets to know

if that block has a sensor or not. The intruder has a memory and can keep track of

where he has and has not been to. The intruder also keeps track of the grids in which

it encountered sensors. Just like the sentry, the intruder can see x-blocks around
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him and can spot a sentry within this radius. Being able to see the sentry gives the

intruder an opportunity to escape after being spotted. However, the intruder is at a

disadvantage, as the sentry is generally much faster than the intruder. The intruder

at every point takes one step in some direction with a goal of being able to find a

detection free path. He continues to move in the map till he finds one such path or gets

caught. If he gets caught he is reset to his start location. But he has the knowledge

that was gained so far. The intruder keeps track of the map by marking each grid

with a confidence value. This value is the probability of a sensor’s existence in the

grid. A no sensor block gets a confidence value of zero, if the intruder has been to

that block and a block with sensor gets a confidence value of one, after the intruder

has been there. The best possible route to reach to the other side is found by using a

shortest path algorithm like, Dijkstra’s algorithm. The way Dijkstra’s algorithm has

been applied is by considering each block as node and the edge between two nodes

has a weight equal to the inverse confidence value of the block that the edge leads to.

The inverse confidence value to a block is

inv(confidence) = (confidence− 1) ∗ (1− ε) (3.4)

−1 > inv(confidence) ≤ 0

The value for ε in the above equation is set to 0.000001 in our simulation. The value

(1− ε) should be as close to one as possible to get minimum information loss in the

shortest path value computation. The value can be small and large depending on the

size of the map. For example, if the (1 − ε) is set to .9 the value of shortest path

for path with ten grids will be −(0.99) = −0.3874 even though the true value should

be close to -1, and if we set the (1 − ε) to be equal to 1, then we wont be able to

distinguish between a detection free long path and a detection free short path. Hence,

it is important to pick a value that would be close to 1 to get the right precision.
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3.3.1 Modified Dijkstra’s Algorithm :

A small modification is done to Dijkstra’s algorithm to find the shortest path.

Instead of adding the weights (inv(confidence)), we multiply the weights and make

sure the resultant value is kept negative. We make sure that all the weights are always

less than or equal to zero and greater than negative one. The best route is the route

with smallest multiplicative weight. This means that the shortest path is actually a

value that tells us the probability of existence of a sensor in the path. The probability

of existence of a sensor in the path is the shortest path value plus 1. If this shortest

path at any point is zero, that means there is no detection-free path that exists in

this map. And if the shortest path is less than a threshold (a value close to negative

one, we set this threshold as -0.9), then the path is said to be detection-free. If one of

the grid in the shortest path has a sensor then the value of the shortest path becomes

zero, as the weight gets multiplied with this zero. This makes it easy to find the

non-existence of a detection-free path.

As we need to loop through the nodes just like in original Dijkstra’s algorithm,

the time and space complexity of this algorithm still remains the same. Algorithm 2

is the algorithm for our modified Dijkstra’s. It can be noted that everything is the

same as original Dijkstra’s1, except line number 14.

1http://en.wikipedia.org/wiki/Dijkstra’s algorithm
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Algorithm 2 Modified Dijkstra’s

1: for each vertex v in Graph do

2: dist[v] ⇐ infinity ;

3: previous[v] ⇐ undefined ;

4: end for

5: dist[source] ⇐ 0 ;

6: Q ⇐ the set of all nodes in Graph ;

7: while Q is not empty do

8: u ⇐ vertex in Q with smallest distance in dist[] ;

9: remove u from Q ;

10: if dist[u] = infinity then

11: break ;

12: end if

13: for each neighbor v of u do

14: %% Make sure this value is negative after multiplication. And also make

sure that all weights are negative or 0.%%

15: alt ⇐ dist[u]*dist between(u, v)*-1 ;

16: if alt < dist[v] then

17: dist[v] ⇐ alt ;

18: previous[v] ⇐ u ;

19: decrease-key v in Q;

20: end if

21: end for

22: end while

23: return dist;
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3.3.2 Agents

The main focus of our work is to build an intruder who would match up to

a real world smart intruder (a human trying to cross border). In the process of

achieving this, we have modeled the attacker to be able to learn and adapt based on

his knowledge. Our intruder model consists of four parts. There are three specialized

agents:Explore, Exploit and Evade. There is one intelligent agent that uses Q-learning

to learn the environment and best possible response:Policy.

3.3.2.1 Explore agent

As an intruder enters a map, he knows nothing about the map. Hence, the

confidence value for every grid is the same(P0(sensor)). Therefore it is essential for

the intruder to explore the map in the right way. To be able to find a detection-free

path, it is essential for the intruder to have explored enough in the map. Hence, the

job of the explore agent is to be able to pick the best direction for exploration that

would help the intruder expand the knowledge he has about the map. Picking the right

direction for exploration is slightly tricky. The confidences that the intruder maintains

tells the intruder the probability of a sensor’s existence in that block. Choosing an

action to explore a grid will not just affect the system’s current state, but also on

how fast or slow a detection-free path will be found. Hence, the intruder should not

just choose a direction based on its adjacent grid’s exploration level, but also consider

a greater area before deciding the direction. The direction for exploration has to be

picked in such a way that the intruder gains more knowledge about the map in less

time. Hence, an area with high or low confidence is not the right pick for exploration.

And another thing to keep in mind is that it should not run into a known sensor while

exploring.
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To take care of exploration we introduce a parameter called Expcd(explore con-

fidence of a direction) that will help us decide which direction to explore in. This

value is calculated by:

ACc =

∑
reachable direction

Cblk

number(reachable direction)
∗ 8 (3.5)

Ccd =
∑
Md<n

|Cblk − P0(sensor)|
Md

(3.6)

Table 3.3. Parameters used to compute explore values

Md Manhattan distance.
ACc Average confidence around current block.
Cd Sensor existence in the grid next to current grid in direction d.
Ccd Weighted average confidence in particular direction d.
Cblk Confidence of the block.
n The number of grids from current block.
reachable direction Directions in which agent can move and end up

in a different grid in one step.

Expcd = Ccd + Cd (3.7)

Cd =

 max value confidence of grid immediately next to it is 1

0 otherwise

 (3.8)

n is a value that is used to determine what radius we want to look before making a

decision. Algorithm 3 explains the working of an explore agent.
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Algorithm 3 Explore agent

1: ACc =

∑
reachable direction

Cblk

number(reachable direction)
;

2: for all four direction Ccd ⇐
∑
Md<n

|Cblk − P0(sensor)|
Md

;

3: for all four direcitonExpcd ⇐ Ccd + Cd;

4: direction to move ⇐ min(all four direction’s Expcd);

3.3.2.2 Exploit agent

This is a simple agent. Once intruder has explored enough, he needs to move

forward towards the goal and be able to cross border using a detection-free path. The

exploit agent is specialized to do this. Based on the confidences known, the exploit

pick the direction that is most detection free. The main component of this agent is to

find the shortest path from the current position. The way in which this is computed

is the same as discussed earlier in modified Dijkstra’s section. At every stage this

agent finds shortest path(Spex) that would lead to the goal. We introduce another

parameter called Exptcd(exploit confidence of a direction) to find exploitation level

that will be used by policy agent(discussed later in this section).

Exptcd = integer

(
log(|Spex|)

log(|inv(P0(sensor))|)

)
(3.9)

Algorithm 4 explains the working of an exploit agent.
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Algorithm 4 Exploit agent

1: Spex ⇐ (Double Path length,Array Shortest Path);

2: Spex ⇐ ModifiedDijkstra’s(map, curr grid, goal);%%3 parameters for Dijkstra’s:

map, start point and destination.%%

3: Exptcd ⇐ integer
(

log(|Spex.Path length|)
log(|inv(P0(sensor))|)

)
;

4: next grid ⇐ pop(Spex.Shortest Path);

5: next move ⇐ direction towards(next grid);

6: if Spex.Path length == 0 then %% the best path has sensor %%

7: next move ⇐ up; %% move up %%

8: end if

9: move(next move) ;

3.3.2.3 Evade agent

Sometimes when the intruder has hit sensors way too many times, it is best

to retreat. This agent is designed to do exactly that. The goal of this agent is to

find a path that will take the intruder safely back to the start point. The purpose of

this agent might be different from that of exploit, but the functionality is exactly the

same as the exploit. The only difference between evade and exploit agent is that the

goal state for the evade is the start point. Algorithm 5 explains how the evade agent

works.
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Algorithm 5 Evade agent

1: Spev ⇐ (Double Path length,Array Shortest Path) ;

2: Spev ⇐ ModifiedDijkstra’s(map,curr grid, start);%%3 parameters for Dijkstra’s:

map, start point and destination.%%

3: next grid ⇐ pop(Spev.Shortest Path);

4: next move ⇐ direction towards(next grid);

5: if Spev.Path length == 0 then%% the best path has sensor %%

6: next move ⇐ down;%% move down %%

7: end if

8: move(next move);

3.3.2.4 Policy agent

This is one of the key component of our intruder model. This is a learning

agent and at any given point in time is responsible to decide which agent to deploy

(Explore, Evade or Exploit). This decision is taken based on the current state of the

intruder. We have modeled this agent using Q-learning. The agent trains himself

over different maps, and learns the best agent to deploy, given its current state.

As mentioned Explore, Exploit, and Evade are the 3 actions that the policy

agent can pick. This is like the brain of the intruder. To be able to learn, the policy

agent should be able to understand the environment. For example, the policy agent

should know if the intruder just entered the map and has no idea about the map, or

if it has hit a sensor and sentry is nearing, etc. To make the agent understand the

exact state of the intruder, we need to choose the right parameters to be a part of

the agent’s state. As the location of the sensors keep changing in every map, having

the x and y location of the intruder as a part of its state would not be very useful.
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Hence, we need a slightly more abstract way of representing the state so that we can

re-use the information gained in one map on another. We have modeled the following

to represent the state of our intruder:

• Minimum Exploration Level: This parameter tells the agent about the area that

is least explored around it. This value is the same as the minimum of Expcd in

the explore agent. Having this as a part of its state will give the agent an idea

on whether exploring at this moment is a good option or not. This state value

is discretized from zero to four.

• Distance from goal to intruder: This value is same as Exptcd computed by

the exploit agent. This helps the agent understand how good the current best

detection free path is. As long as there is a detection free path, the physical

distance from the goal does not matter. Hence a distance based on confidences

makes sense to be a part of the state.

• Average Exploration Level: This helps the agent understand how well explored

the entire area is. This value is the average confidence of, all the blocks around

current grid. This along with the first parameter will make it easier to under-

stand the exploration level of the place around the intruder. This state value is

discretized from zero to seven.

• Sentry’s presence: This indicates the policy agent if the intruder was spotted

or not by the sentry. Every time the agent is caught this value is true hence

making the agent understand that entering a state with this value set is a bad

thing.

• Time since last damage: This value is an indicator of how long it has been since

the intruder ran into a sensor. This helps in making the decision of whether to

evade or not. The value is reset to zero after hundred time detection-free steps.
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• Damage times: This value is a count of how many times intruder was detected

by sensors so far. The larger this value is, more likely that intruder is going

to get caught. The upper limit to this number is ten. If the agent gets caught

more than ten times, the policy will still see it as ten. This value could be bigger

or smaller depending on the size of the map. As we increase this number the

states in which agent can be in increases by a factor equal to the combination

of all the other state variables. This will increase the time to take to learn as

well. In our simulation on 10x10 map, the average number of times agent runs

into sensor was less than ten. Hence we limit this number to ten.

With the above mentioned parameters the agent understands state of the intruder.

As the intruder moves, the agent learns by getting rewards from the environment.

The reward is both positive and negative. A positive reward indicates that, the action

that is took was a good response given the state and a negative reward indicates the

opposite. Following are the sets of rewards we use in our model:

• -1: for picking any step. This ensures that the agent tries to get to the goal as

quickly as possible.

• -50 : for getting caught by the sentry. This value could be increased and

decreased based on how expensive it is to lose an intruder.

• +100 : for finding a detection free path.

• +20 : for improving a path, ie. for taking an action that reduced the exploit’s

shortest path value. This will help the agent learn little faster.

• -5 : for picking an evade action. This helps the agent learn slightly faster by

making the agent avoid certain scenarios where the agent’s best action keeps

the intruder stuck between two states after partially learning the Q-values.
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These rewards are used to compute a Q-value for the current state. The Q-value for

a state action pair is calculated by:

Qt+1(St, At) = (1− α) ∗Qt(St, At) + α ∗ (Rt+1 + γ ∗ (max(Qt(St+1, A))) (3.10)

Table 3.4. Parameters used to compute Q-value

Qt Q-value at time t.
St State at time t.
At Action taken at time t.
α Learning rate.
γ Discount factor.
Rt+1 Reward obtained at time t+1.
Nvis Number of times you visited this state.

α = 1/Nvis, γ = 1 (3.11)

The agent uses softmax/Boltzmann exploration as its explore exploit policy. The

equation for softmax is :

P (At|St) =
eQ(St,At)/T∑n
A=0 e

Q(St,A)/T
(3.12)

Table 3.5. Parameters used to compute Softmax equation and Temperature

P (At|St) Probability of picking an action at time t given the state at time t.
T (Temperature) The value that determines whether to explore or exploit.
δ A constant to determine how quickly T should start dropping.
visit(St) Number of times agent has visited state St so far.
κ A large number.
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High T means exploration and low value means exploitation. T is computed

using the equation below :

T = e−δ∗visit(St) ∗ κ+ 1 (3.13)

Algorithm 6 and 7 explains the working of an policy agent in learning and evaluation

mode.

Algorithm 6 Policy agent: Learning Mode
1: i⇐ 0

2: while i < Nl && not found detection-free path do

3: St⇐ state(Exptcd,Expcd,ACc,damage count,time since damage,sentry visible);

4: T ⇐ e−δ∗visit(St) ∗ κ+ 1;

5: P (At|St)⇐ eQ(St,At)/T∑n
A=0 e

Q(St,A)/T ;

6: action ⇐ random();

7: At ⇐ first action < P (At|St);

8: Rt+1 ⇐ Take action(At);

9: Compute Exptcd,Expcd,ACc,damage count,time since damage,sentry visible;

10: St+1⇐ state(Exptcd,Expcd,ACc,damage count,time since damage,sentry visible);

11: Q(St, At)⇐ Q(St, At) + α ∗ (Rt + 1 + γ ∗ (maxQ(St+1, A)Q(St, At)));

12: St ⇐ St+1

13: i+ +;

14: visit(St+1) + +;

15: end while

The agent is trained on multiple maps by picking random action from different

states using softmax(Boltzmann exploration) and the Q-value is updated. As the
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Algorithm 7 Policy agent: Evaluation Mode

1: while i < Ne && not found detection-free path do

2: St⇐ state(Exptcd,Expcd,ACc,damage count,time since damage,sentry visible);

3: T ⇐ 1;

4: P (At|St)⇐ eQ(St,At)/T∑n
A=0 e

Q(St,A)/T ;

5: action ⇐ random();

6: At ⇐ action < P (At|St);

7: Take action(At);

8: Compute Exptcd,Expcd,ACc,damage count,time since damage,sentry visible;

9: St⇐ state(Exptcd,Expcd,ACc,damage count,time since damage,sentry visible);

10: i+ +;

11: end while

agent trains on more and more maps, he starts picking actions which will lead the

agent in finding a detection free path along with minimizing the risk of getting caught.

As this is a learning agent, we run it in two modes:training and evaluation. In

training mode we try action based on the Q-value and T of the current state. And

the rewards obtained are used in updating the Q-values. But in evaluation mode we

choose actions strictly based on Q-value. This is done by setting the temperature

value (T ) in the Boltzmann’s equation to one. We do not update the Q-values in this

mode.

3.4 Simulation

The simulation starts with the intruder at the bottom of the map in a random

location. The sentry is at the top. The sensors are spread randomly throughout the

grid world. The number of sensors and grid size can be varied. The confidence value
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of all the grids are initialized with a value equal to the P0(sensor). The intruder

takes one step into the map.

Figure 3.2. A grid world with confidence value.

The policy chooses which agent to deploy in order to find the direction to move.

The agent that is picked decides the best direction to move. After a step is taken,

the Policy agent is rewarded based on the outcome of the step. And after the step

the confidence of a grid is reduced to zero if the grid does not have a sensor and

it is increased to one if there was a sensor. When a sensor detects an intruder, the

sentry starts looking for the intruder by taking a step. If sentry catches the intruder,

the intruder is reset to start from bottom again. The knowledge of the new intruder

is equal to the knowledge that the captured intruder had (ie. the Q-values and the

information about the map is not reset, only the state of the agent is reset along with

sentry’s location). This goes on till the intruder finds a detection free path, or if it

is found that there is no detection free path, or when maximum number of steps is
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reached(this is an upper limit set in order to ensure that the agent does not take a lot

of time on a single map). The upper limit on number of steps on evaluation mode is

set based the maximum number of steps it took for agent to find a detection free path

on a hundred maps by picking random actions. The upper limit on learning mode

is set to the average number of steps instead of maximum. The Q-value of policy

is updated after every step only in training mode. Fig. 3.2 shows confidence of few

grids. Red indicates a sensor, yellow indicated unexplored zone (may or may not be

a sensor), red indicates encountered sensors.
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CHAPTER 4

RESULTS AND DISCUSSION

We ran different simulations with different parameter settings to analyze the

impact of a trained intruder. Different parameters in the simulation change how

accurately and quickly the agent learns. To test and understand the agent, we tried

different parameter settings on 10X10 maps. Table 4.1 shows the amount of time and

memory consumed by different sized maps. On each map, it takes a certain number of

steps before the agent finds a detection free path(Figure 4.1). For the agent to learn

all the Q-values, it has to learn on thousands of maps. Considering the amount of

time it would take to finish, based on the amount of time it takes for a step obtained

from Table 4.1 and the average number of steps required to find a detection free path

in a map obtained from Figure 4.1, we restrict the number of maps the agent learns

on, to 250,000 maps. And to see the progress after every 50,000 maps, we run the

agent in evaluation mode for a hundred maps. We noted that to finish one such

simulation on a 10X10 it takes about 24 to 48 hours which is close the the value

computed using the table. Even though restricting the number of maps to learn on

will restrict the learning of Q-values, we noted that the difference in the capture count

and the number of steps it takes to find a detection free path does not significantly

improve in most cases after 250,000 maps on a 10X10 map.
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Table 4.1. Time and Space required for different map size

Map Size Time to take Memory required
1000 steps(hrs) (GB)

5X5 0.000168 0.231
10X10 0.000609 0.231
20X20 0.00185 0.403
30X30 0.00720 0.404
40X40 0.0214 0.50
50X50 0.0521 0.63
60X60 0.108 0.71

Figure 4.1. Average number of steps to find detection free path with 20% sensor
coverage.

Based on our intuition about the problem and behavior of our agent, we con-

sidered the following factors as the most significant in deciding the effectiveness of

learning.
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1. Sensor Coverage: Rate of capture is intuitively a function of sensor coverage. A

low coverage means, the probability of agent getting sensed is low and hence, the

probability of getting captured by sentry also reduces. Similarly, high density

means large probability of getting captured by the sentry and low probability of

existence of a detection free path. Hence intuitively we can see that the effect of

learning is expected to be low for both extreme cases. This means that that we

would expect significant improvement of the intruder’s behavior after learning

on maps with average sensor coverage. To see this, we ran our agents on maps

with sensor coverage ranging from 10-60%.

2. Effectiveness of Sentry: Effectiveness of a sentry if determined by how effectively

the sentry can capture an intruder after detection. This is controlled by two

factors in the sentry, first the number of grids he can see(vision), and secondly

the number of grids he can move in one unit time(speed). Similar to sensor

coverage rate of capture is also a function of the effectiveness of a sentry. A very

effective sentry guarantees capture of the intruder, and a weak sentry can never

capture the intruder. Hence both these extremes don’t look like an interesting

place to learn a lot for our agent, and similar to sensor coverage, a setting with

an average sentry is where we would expect learning to have maximum effect.

To see this, we tried running simulations with three different sets of vision and

speed values.

3. Reward: The reward that the learner obtains determines what the agent learns,

and how quickly he learns. To test the effect of a different value of reward for

capture on learning, we used a low and a high penalty(-50 and -150) for capture.

Other than penalty for capture, we also tried a low and high penalty for doing

evade action(-1 and -5) for one setting. The reason for this is explained later in

this section.
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Table 4.2 shows the different parameters we tried.

Table 4.2. Parameter combinations

Sensor Penalty For Effectiveness of
Coverage Capture Sentry(Speed, Vision)

10 -50 2, 4
20% -150 4, 6
30% 6, 8
40%
50%
60%

We see that it takes a lot of time to run the simulation. Hence, we restrict the

number of steps

• Learning mode: the average number of steps it takes to find a detection free

path by taking random actions sampled over a hundred maps.

• Evaluation mode: the maximum number of steps it takes to find a detection

free path by taking random actions sampled over a hundred maps.

The reason we restrict the number of steps in evaluation mode is because we have

noticed in some cases that the agent can get stuck between two states. This is possible

as our model represents the world in an abstract level, and the evaluation mode is

run with incompletely learned Q-values.
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Figure 4.2. Percentage of maps in which there is no detection-free path.

Our primary focus is to reduce the capture rate and to reduce the time it takes

to find a detection-free path in a map. Figure 4.2 shows the percentage of maps in

which no detection-free path was found. This figure helps us understand the relation

between sensor coverage and possibility of existence of a detection-free path. As

expected, we see that as the sensor coverage increases, the probability of finding a

path reduces. Before running the simulation to see the effect of learning in agents,

we ran a simulation to see if our specialized agents do a better job compared to just

randomly moving in the map. We noted a significant difference in capture count and

number of steps to find the detection-free path. The average number of capture count

was two for a certain setting when we used our agents randomly and for the same

setting, picking up, down, right, or left randomly yielded an average capture count of
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thirteen. And for the number of steps in a map, it was average 750 if we used agents

and 4500 if we did not. After confirming the effectiveness of our specialized agents,

we ran our actual simulation on 10x10. We did not find any significant difference

in using a higher negative reward for getting captured over smaller negative reward.

Hence, we show only graphs for simulations with lower negative reward for getting

captured. Figure 4.3-4.4, we show the effect of learning on capture count and number

of steps it takes to find a detection-free path, respectively, for setting with weak sentry

(speed 2X, speed 4X). We see that the capture count does not increase significantly

for increasing sensor coverage while performing random action, and the actual capture

count is on lower side(on an average 1.5 for 30% sensor coverage). We also notice

an improvement between random and learning on greater than 50,000 maps. This

improvement is observed in both the capture count and number of steps. The capture

count goes down from 1.5 on an average in 30% coverage when doing random actions

to 0.7 after learning over 50,000 maps for the same. And number of steps goes down

from 1000 on an average for 30% sensor coverage and performing random actions to

100 after learning on 50,000 maps. But the improvement in capture count and number

of steps is not significant between learning on 50,000 and 250,000 maps. In Figure

4.5, 4.6, 4.7, 4.8 we show the capture count and number of steps to find detection-

free path for setting with average(speed 4X, vision 6X) and very strong(speed 6X,

vision 8x) sentry. We notice similar pattern as we did for weak sentry setting. But

when compared to the weak sentry, we see that the number of times the intruder

gets captured increases significantly(on an average to 3.7 in average and 4.4 in very

strong sentry for 30% sensor coverage). As the number of capture count is higher

than weak sentry setting, we see that the difference between random actions and

learning over 50,000 maps to be higher as well. For a setting with average sentry and

30% sensor coverage, we see the capture count drop down from 3.7 on an average by
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doing random actions to 1.8 on an average after learning on 50,000 maps, and we see

the number of steps to drop down from 1200 on an average by performing random

to 100 on an average after learning on 50,000 maps. The numbers look similar for

the setting with very strong sentry as well. (Note: the plot of 3 lines in all figures is

offset slightly to ensure clear visibility of the confidence intervals).

Figure 4.3. Capture Count for a setting with Sentry = (2 speed, 4 vision), reward =
-5 for Evade and -50 for capture.
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Figure 4.4. Number of Steps to find detection-free path for a setting with Sentry =
(2 speed, 4 vision), reward = -5 for Evade and -50 for capture.

Figure 4.5. Capture Count for a setting with Sentry = (4 speed, 6 vision), reward =
-5 for Evade and -50 for capture.
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Figure 4.6. Number of Steps to find detection-free path for a setting with Sentry =
(4 speed, 6 vision), reward = -5 for Evade and -50 for capture.

Figure 4.7. Capture Count for a setting with Sentry = (6 speed, 8 vision), reward =
-5 for Evade and -50 for capture.
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Figure 4.8. Number of Steps to find detection-free path for a setting with Sentry =
(6 speed, 8 vision), reward = -5 for Evade and -50 for capture.

As expected we see that the difference in capture count between random and

trained agent is maximum in the cases where the sensor coverage is 20-40% and

sentry’s speed and vision is four and six respectively. And the since we use a penalty

of five for performing evade we notice that the learning agent does not perform well

after 250,000 maps on sensor coverage 50-60%. This is because of the high sensor

coverage. As sensor coverage is high we would have to evade more often and we would

need to learn the Q-values completely in order to learn this. To show this we ran a

simulation with a penalty of one for evade. Figure 4.9-4.10 shows the capture count

and the number of steps it takes. We notice that for sensor coverage 50-60%, the agent

performs better than the previous case. But the problem of learning a small penalty

for evade is that it takes a long time to learn for the agent in low sensor coverage that

evade actions is not a good option. Figure 4.11 shows the number of times the agent
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ends up getting stuck between states. We notice that in 10% sensor coverage, the

agent gets stuck more often as it learns. This is caused due to incomplete Q-values

in the Q-table. To learn faster we tried implementing the lambda(Q)[27] learning.

But for our problem, we realized that the overall amount of time it took to learn

was almost the same as Q-learning. By changing the lambda value we could make it

slightly faster, but in some cases the agent ended up learning the wrong action, and

required more actions to unlearn what it had learned incorrectly.

Figure 4.9. Capture Count for a setting with Sentry = (4 speed, 6 vision), reward =
-1 for Evade and -50 for capture.
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Figure 4.10. Number of Steps to find detection-free path for a setting with Sentry =
(4 speed, 6 vision), reward = -1 for Evade and -50 for capture.

Figure 4.11. Number of maps in which agent got stuck between two states for a
setting with Sentry = (4 speed, 6 vision), reward = -1 for Evade and -50 for capture.
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Based on the results we found on 10X10 grid we ran the simulation on a 20X20

grid. we picked the following configurations for the simulation:

• Sensor coverage = 20%, capture penalty = -50, evade penalty = -5, sentry vision

= 8 grids, sentry speed = 4 grids.

• Sensor coverage = 50%, capture penalty = -50, evade penalty = -5, sentry vision

= 14 grids, sentry speed = 8 grids.

The results were as expected. It was similar to that on 10x10. For the first scenario,

we noted that the capture count went down by half after learning and the number

of steps it takes to reach the goal significantly went down as we had noted. For the

second scenario, we were not able to finish the simulation as it was running for a

really long time. But we noted that the number of steps went down from 130,000

with confidence interval 500,000 to 1500 with confidence interval of 500 after learning

on 50,000 maps. But the capture count did not reduce significantly. It went down

from 23 with confidence interval of 13 to 21 with confidence interval of 12. This is

expected, as it requires lot more training as there is a necessity to evade more often

on high density maps. We chose -5 for evade to speed up learning. But for this set

up, it will end up not picking evade initially. Thus, not significantly reducing the

capture count. Figure 4.12 and 4.13 show the capture count and number of steps

graph for the first scenarios. We notice a drop in capture count from 7 on an average

by performing random actions to 3.5 on an average after learning on 250,000 maps.

The number of steps to find a detection-free path was around 22,000 on an average

by doing random actions, and it dropped down to 2500 on an average after learning

on 250,000 maps.
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Figure 4.12. Capture Count for a setting on 20x20 with Sentry = (4 speed, 8 vision),
reward = -5 for Evade and -50 for capture.
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Figure 4.13. Number of Steps to find detection-free path on 20x20 with Sentry = (4
speed, 8 vision), reward = -5 for Evade and -50 for capture. The confidence interval
for first point is 50,000 and rest less than 100.
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CHAPTER 5

CONCLUSION

With growing use of sensors in monitoring areas it becomes extremely important

to get a good model of attacker to find the right defense. We proposed a reinforcement

learning based attacker who uses abstract state spaces to train over maps, and exploit

the gained information in other maps. Using an attacker modeled through this method

helped improving the intrusion in a map. The ability to find a detection-free path in

a sensor monitored area improved, and the method also minimized the cost of finding

such a path. It reduced the time it takes to find a path and also reduced the number

of times the intruder would get captured. It was also noted that the maximum effect

of learning is on the environment with average sentry and sensor coverage. The use

of such model could help analyze an intrusion detection system better.

Future Scope : There are lot of possible future enhancement to the current

system. In the current system, we send in signal from sensor as soon as the intruder

triggers it. Instead we could give a delay in sending the signal. This will reduce the

chance of the intruder being able to find the existence of the sensor. This will make

it harder for the intruder to learn on maps.

The current sentry is not smart and it is assumes that the only way a sensor

gets triggered is if a sensor is triggered by an intruder. But in real world, a sensor

if often triggered by wild animals. Hence, we need to model a better sentry who

learns the behavior of the environment and intruder to defend better. We could then
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test the intruder with that sentry. We could use the current intruder model and test

against the other detection system that exist currently.
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