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ABSTRACT

A NEW INTEGRATIVE DATA MINING FRAMEWORK FOR
ANALYZING THE CANCER GENOME ATLAS DATA

DIJUN LUO, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Heng Huang

Besides accuracy andheiency, understandability is another key issue of predkcti
modeling in real-world applications, especially in bionwadland healthcare data analysis.
We develop a new integrative framework to enhance the irg&ability of data by sparsity-
based learning. We proposed several novel sparsity-baseding models, emphasizing
different understandable properties of data, such as exgaisisy, low redundancy, and
low rank, and apply to The Cancer Genome Atlas (TCGA) data arglResults indicate
that the proposed methods provide more insights from TCGAwhtle maintaining stable
and competitive performances in predictive modeling. Téhier enhance the interpretabil-
ity of biological processes and disease mechanisms, welalsgdop a novel visualization
tool by considering heterogeneous relationships amongrges elements. By applying
the novel learning models and the visualization tools, watts of several important can-
cer diseases are revisited and a series of novel potentiahbarkers are discovered which

improves our ability to diagnosis, treat and prevent cancer
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Cancer has been developed to be one of the leading causestiofiié¢lae United
States and many other countries. Currently, one in four geofll die of cancer in the
United States, since the fact that rfeet treatment has been discover for cancer diseases.
In total, 1,638,910 new incidents and 577,190 deaths framearaare projected to occur in
the United States in 2012. The chance of being diagnosedanitimalignant cancer in a
lifetime is 45% and 38% for men and women respectively [1].

Cancer is now one of the major threats to public health and degperate need for
a cure. The Cancer Genome Atlas (TCGA) project The Cancer GeAdiae (TCGA)
began as pilot in 2006 with an investment of $50 million eacmfthe National Cancer
Institute (NCI) and National Human Genome Research InstiiNtéGRI). The project
was dedicated to analyze and discover genome alterationsnars by introducing the
integrated multi-dimensionahulti-view analysis which provides a unique opportunity to
conduct insilico scientific research where multiple measurements of clisichjects are
simultaneously considered. The mission is to put comprgieand coordinatedi®rt to
accelerate the understanding of the molecular basis ofecahmugh the application of
genome analysis technologies, including large-scalemersequencing. The final goal of
the TCGA project it to improve our ability to diagnosis, tread prevent cancer.

We are interested in analyzing the TCGA data in a data miningnaachine learn-
ing way, especially for the purpose of deeper understaniorg the biological data and

providing feedback with interpretable learning models. &ifa to developed integrative

1



framework to enhance the interpretability of learning meds making use of the struc-

tures of data and by visualization.

1.2 Main Contributions
1.2.1 Multi-subspace Learning for Linear Modeling of TCGAtBa

We present several important techniques in data analysi€C@A data, include
multi-subspace discovery problem and provides a thealet@ution which is guaranteed
to recover the number of subspaces, the dimensions of edslpate, and the members
of data points of each subspace simultaneously. We furttogroge a data representation
model to handle noisy real world data. We develop a novehapétion approach to learn
the presented model which is guaranteed to converge tolgiphbenizers. As applications
of our models, we first apply our solutions as preprocessirggseries of machine learning
problems, including clustering, classification, and seapervised learning. We found that
our method automatically obtains robust data presentatlioh preserves thefiine sub-
space structures of high dimensional data and generateaocueate results in the learning
tasks. We also establish a robust standalone classifiehwlimectly utilizes our sparse and
low rank representation model. Experimental results m@iche proposed methods im-
prove the quality of data by preprocessing and the standal@ssifier outperforms some
state-of-the-art learning approaches. The proposed-sulispace method is also applied

to the TCGA data and interesting and consistent patternssceweéred.

1.2.2 Social Difusion Process for Clustering

In the dissertation, a new stochastic process, called amlSoifusion Process
(SDP), is also presented to address the graph modeling. Baséus model, we de-
rive a graph evolution algorithm and a series of graph-bagpgdoaches to solve machine

learning problems, including clustering and semi-susedilearning. SDP can be viewed
2



as a special case bfatthew gfect which is a general phenomenon in nature and societies.
We use social event as a metaphor of the intrinsic stochpstiwess for broad range of
data. We evaluate our approaches in a large number of frdgused datasets and com-
pare our approaches to other state-of-the-art technigresults show that our algorithm
outperforms the existing methods in most cases. We alsyiagpbur algorithm into the
functionality analysis of microRNA and discover biologigahteresting cliques. Due to
the broad availability of graph-based data, our new modelagorithm potentially have

applications in wide range.

1.2.3 Explicit Structured Sparse Learning for Bio-markemitification

The dissertation enhance the interpretability of striedduearning by introducing the
{,/€o norm optimization. As powerful tools, machine learning aladia mining techniques
have been widely applied in various areas. However, in maalyworld applications, be-
sides establishing accurattack boxpredictors, we are also interestedahite boxmech-
anisms, such as discovering predictive patterns in datahnémhance our understanding
of underlying physical, biological and other natural preses. For these purposes, sparse
representation and its variations have been one of the dgcuslore recently, structural
sparsity has attracted increasing attentions. In previessarch structural sparsity was
often achieved by imposing convex but non-smooth norms aséh/¢, and groupt,/¢,
norms. In this dissertation, we present the expligity and groupl,/£o norm to directly
approach structural sparsity. To tackle the problem oguttablet, /£, optimizations, we
develop a general Lipschitz auxiliary function which leadsimple iterative algorithms.
In each iteration, optimal solution is achieved for the ioeld sub-problem and a guarantee
of convergence is provided. Further more, the local coramrgate is also theoretically

bounded. We test our optimization techniques in the ma#lktfeature learning problem.



Experimental results suggest that our approaches outpedtner approaches in both syn-

thetic and real world data sets.

1.2.4 Sparse Learning with Low-redundancy

We also developed a scalable model for risk factor and bidkenadentification. As
diverse clinical information become available for anadysi large number of features can
be constructed and leveraged for predictive modeling. Ufeatelection is a classic ana-
lytic component that faces new challenges due to the newcapiphs: How to handle a
diverse set of high dimensional features? How to seleatifeatwith high predictive power,
but low redundant information? How to design methods thatsmect globally optimal
features with theoretical guarantee? How to incorporatkextend existing knowledge
driven approach? In this dissertation, we present Scalatlgogonal Regression (SOR),
an optimization-based feature selection method with tHeviing novelties: 1) Scalable:
SOR achieves nearly linear scale-up with respect to the pumiinput features and the
number of samples; 2) Optimal: SOR is formulated as an alt&®nconvex optimization
problem with theoretical convergence and global optimaitarantee; 3) Non-redundant:
thanks to the orthogonality objective, SOR is designedifipalty to select less redundant
features without sacrificing the quality; 4) Extensible:RE5€an enhance an existing set of
preselected features by adding additional features tleat@nplement to the existing set
but still with strong predictive power. In the evaluation B@onsistently outperforms sev-
eral other state of the art feature selection methods irrakgeality metrics on several real
datasets. Finally, we demonstrate a case study of a laaje-glinical application for pre-
dicting early onset of Heart Failure (HF) using real ElenicdHealth Records (EHRS) data
of over 10K patient for over 7 years. Leveraging SOR, we are &bconstruct accurate

and robust predictive models and derive potential clinigsights.



1.2.5 Regulatory Elements Visualization

Regulatory elements in cell, such as microRNAs (miRNAs), ptapartant roles.
Extensive &orts have been made by both biological experimentsianglico studies.
As low-cost alternatives of biological experiments, saleomputational approaches have
been developed to facilitate the discovery of mechanisntisese elements.

We develop novel approaches for regulatory elements asalgsluding visualiza-
tion and prediction. More specifically, we formalized thelgem into a partial dferential
equation framework, and employed Green’s function apgr@ex the corresponding Di-
rechlet boundary conditions to solve the problem. We discamnovel miRNA pattern in
H. Sapiendn the visualization results. RNAPred achieves 100% pregiby using few
number of known of miRNAs. By applying RNAPred, we discover nouéRNASs in D.

Melanogasterwhich are conserved in other species.

1.3 Overview of The Rest of the Dissertation

The rest of the dissertation will be organized as follows. Atirsubspace learning
algorithm will be introduced in Chapter 2, and the expliciasgity learning will be intro-
duced in Chapter 3. Then the low redundancy property of dyasdli be emphasized in
Chapter 4 and two visualization tools will be introduced in Qiieas 5 and 6. Finally a

conclusion will be made in Chapter 7.



CHAPTER 2
MULTI-SUBSPACE LEARNING WITH CONVEX OPTIMIZATION

2.1 Motivations of Multi-subspace Learning

The linear sparse representation approaches recentgtadiitentions from the re-
searchers in statistics and machine learning. By providalystness, simpleness, and
sound theoretical foundations, sparse representatiorishbdve been widely considered
in various applications [2, 3, 4, 5].

In most previous models, we impose on the data an assumpgbihie data points
can be linearly represented by other data points in the sdase or data points nearby
[6, 7]. This assumption will further lead to another assuorpthat subspace of each class
has to include the original point. Our major argument in tapter is that this assumption
is too loose in real world applications. For this reason, wéhier impose thefeine prop-
erties of the subspaces and present a challendfimgaubspace discovery problem. To be
more specific, given a set of data points, which lie on mudtiphknown spaces, we want
to recover the membership of data points to subspa@eswhich data point belongs to
which subspace. The major challenge here is that not onlguhspaces and membership
are unknown, but also the number of subspaces and the dionensi the subspaces are
unknown.

In this chaptet we will (1) present a sparse representation learning madahbtain
the solutions automatically, which is theoretically gudesd to recover all the unknown
information listed above, (2) extended our model to handisyndata and apply the sparse

representation as a preprocessing in various machinanegatasks, such as unsupervised

IMost of the major results in this chapter have been publishedper [8].



learning, classification and semi-supervised learning,(&h develop a standalone classi-
fier directly based on the sparse representation model. fidiéahe noisy data with ro-
bust performance, we introduce a mixed-norm optimizatiadb{em which involves trace,
{>/t1, and €, norms. We further develop arfieient algorithm to optimize the induced
problem which is guaranteed to converge to a global optimize

Our model explicitly imposes both sparse and low rank rexents on the data
presentation. We apply our model as preprocessing in vamnaachine learning applica-
tions. The extensive and sound empirical results suggasbiie might benefit from taking

sparsity and low rank into consideration simultaneously.

2.2 Problem Description and Our Solution

ConsiderK groups data pointX = [Xy, Xy, -, Xk] and assume that there are
Ny, Ny, --- , Nk data points in each group, respectively(; n, = n). We assume that for
each group, the data points belong to independé@mteasubspaces. And the dimensions of
the dfine subspaces ark, d,, - -- ,dx. To be more specific, for eacltime subspac,
there existl + 1 basedJk = [uk, uk, - -- ,ugk, u§k+1] and for each data point € X, , there
existsB such thak = U¥B* and thajs™1 = 1. In this chapter, by the dimension of théiee
subspace, we mean the characteristic dimens@rifom the manifold point of view. Even
though there ardy + 1 bases iru¥, we still consider tha* defines al.-dimensional &ine

subspace.

2.2.1 Multi-Subspace Discovery Problem
The problem oMulti-Subspace Discovelig givenX = [Xq, Xy, - - - , Xk] to recover
(1) the number of fiine spac&, (2) the dimension of each subspakeand (3) the mem-

bership of the data points to thé&iae subspaces. The challenge in this problem is that the



only known information is the inpuX, where the data points are typically disordered, and
all other information is unknown.

Will illustrate the Multi-Subspace Discovery problem irgEie 2.%. In this chapter,
we first derive a solution of this problem and provide sevérabretical analysis of our so-
lution on non-noisy data, then extend our model to handlsyn@al-world case by adding
{>/¢, norms which are convex but non-smooth regularizations. &eldp an #icient

algorithm to solve the problem.

(@) $/
ZT1-

™
.

T

.

Figure 2.1. A demonstration of the Multi-Subspace Discgyeoblem. (a) and (c): Two
groups of data points lying on two 1-dimension subspaceg. Albdata points shifted by
x; from (a). (d): All data points shifted by from (c). (e): A mixture of data points from
(b) and (d). The fiine subspace clustering problem is to recover the numbetspsces
(2 in this case), the membership of the data points to thepsues (indicated by the color
of the data points in (e), the dimensions of the subspaces {doth of the subspace in this
cases)..

2This figure has been published in paper [8].



2.2.2 A Constructive Solution

We cast the multi-subspace discovery problem into a tracen raptimization, in
which the optimizer directly gives the number dfiae subspace and the membership of
the clustering. The results are theoretically guaranteed.
Representation of One Subspace

In order to introduce our solution in a more interpretablg,wee first solve a simple
problem in which there is only onefme subspace. Let; = (Xi,---,Xn,) be in ad;-
dimensional fine subspace spanned by the b&kisd; + 1 < ny, i.e. for each data points
Xi, there existsy;,

Xi = Ui, a; € Rdl+l, aiTl =1, 1<i<m (2.1)

or more compactlyX; = U;A, ATl = 1, wherel is a column vector with all elements

one in proper size andl = (@, - - - , @,,). We define
- U;A
Xy = (2.2)
1T

Then we have,

Lemma 2.2.1 If X, satisfies Eq. (2.1) and let

~ ~

Z; = X1Xq (2.3)

x

whereX is defined in Eq. (2.2) an¥? is theMoore-Penrospseudo inverse o1, then
X]_ = X]_Z]_, lTZ]_ = 1T, (24)

and rankKZ,) = d; + 1.



Proof By making use of the property dfloore-Penrosgseudo inverse, we immediately

have
)21 = )21)21—)21,
Thus,
U;A U,A
= Z,
17 17

which is equivalent to two equations of

X1 = X1y,

12, =1T.

It is obvious that rankd;) = rank(X;). On the other hand, by the definition Afin
Eq. (2.2), we havdTA = 17, thus

[ uA U.A U
= =] T =] A (2.5)

17 1A 1T

From Eq. (2.2) we have

rank(X;) > rankU;A) = rank(X,) = d; + 1

But from Eq. (2.5) we have

rank(X,) < rank@) = d + 1.

Thus rankZ,) = rank(X;) = d; + 1.
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Sinced; + 1 < ng, Z; is low rank. Interestingly, this low-rankfféne subspace pre-

sentation of Egs. (2.1, 2.4) can be reformulated as a trate aptimization problem:
I'Tz'llnllzlll* st. X1 =X1Z4, 12, =17 (26)
1

where||Z4]|. is the trace norm oZ 4, i.e. the sum of singular values, or explicitly,
Lemma 2.2.2 Z defined in Eq. (2.3) is an optimizer of the problem in Eq. (2.6)

The proof of Lemma 2.2.2 requires Lemma 2.4.1. We will introel the proof
Lemma 2.2.2 later.

In this chapter, we hope to recover multidewhich has diagonal block structure
from X by which we solve the multi-subspace discovery problem.
Constructive Representation of K Subspaces

Now consider the full case where the data potbelong exactly tak indepen-

dent subspaces. Assume data points within a subspace aeethdequentiallyX =

[X1, X5, -, Xk]. Repeat the above analysis for each subspace, we have
X =[Xg, -+, Xg] = [X1Z1, -+, XkZk] = XZ, (2.7)
where
Z, 0 -~ 0
0 Z, --- 0
Z= (2.8)
. . t. 0
O 0 0 Z

Thus by construction, we have the following,
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Theorem 2.2.31f X = [Xy,X, -+, Xy] belong exactly to K subspaces of rankrdspec-

tively, there existZ, such that

X =XZ, 17Z = 17. (2.9)

whereZ has the structure of Eq.(2.8) and rgi@) = dy + 1,1 < k < K.
Proof Since we have Lemma 2.2.1, the proof of Theorem 1 is straighi&ird by con-
struction. LetX = [Xg,---,Xk], then by Lemma 1, we can always rewrite 4s=

[X1Z4,- -+, XkZk], or

Z, 0 .- 0
0 7, 0

X =[Xq, -+, Xk]
0
0O 0 0 Z

Recovery of The Multiple Subspaces
Intuited by Lemma 2.2.2, and Theorem 2.2.3, one might hygiathlly consider

recovering the block structure by using the following opgation,

min|iZ|l. s.t. X =Xz, 12 = 17, (2.10)

which is a convex problem since the objective functjii@l. is a convex functiorw.r.t Z
and the domain constrain¥ = XZ, 17Z, = 17 is an dfine space, which is a convex
domain. This is desirable property: if a solutidhis a local solutionZ* must be a global
solution. However, a convex optimization could have migtiglobal solutionsj.e., the
global solution is not unique.

This optimization indeed has one optimal solution:

12



Theorem 2.2.4 The optimization problem of Eq. (2.10) has the optimal sofut

Z* = X*X (2.11)
where
. X
X = (2.12)
1T

Theorem 2.2.4 can be directly derived from Lemma 2.2.1, plangX, with X.

In general,Z* is not sparse and does not have the sparse block structuerof
Eqg. (2.8). Similar data representation model was repredant][9], which sifers from the
same problem. Here we extend the model to solve the genelilsubspace problem and
provide a proof of the solution.

To recover a solution which has the sparse structure of E8), (@e add &; term to

optimization Eq. (2.10) to promote sparsity of the solutiand optimize the following

min Ji(Z) = IZ]l. + dlIZ]l1
z (2.13)
st.X=XZ,127Z,=17,

where||Z]|; is the element-wisé; norm: [|Z||; = }}; |Z;| andé is model parameter which
control the balance between low rank and sparsity. In ouoréteal studies, we only
requireé > 0.

And fortunately, for problem Eq.(2.13), we have the follagitheorem,
Proposition 2.2.5 AssumeXq, X5, --- , Xk are independent fine subspaces. Le{ =
[X1, X5, -, Xk], then all the minimizers of problem Eq.(2.13) have the fofraa(2.8).

Further more, each blocKy has only one connected component.
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By independentwe mean for any in thek-th group,x can not be represented by all

the data points not in theth group. Or explicitly,
VK, P NP = d, (841)

where® is the empty set is the space spanned by all the data points in giQamdP_

is the space spanned by all the data points not in gkoup

Pe={x:x =X, of1=1, ax e R,

Po={x:x=Xjay o 1=1 a,eR™™,

where

X—k = [Xl"“ 7Xk—1axk+1"“ 7XK]7

andny is the number of data points in tketh groupXy.
Proof. We first introduce the following Lemma.
Lemma 2.2.6 (Lemma 3.1 in paper [9]) Let A D, B and C be matrices of compatib

dimension, the following always holds,

\%

= [IAll« + [IDl... (2.15)

* 3k

Notice that this Lemma here is a littleftBrent from Lemma 3.1 in paper [9] in the sense
that we here do not require andD to be square matricdsWe prove the first part of the
theorem by showing that for any non-block diagonal ma#ixZ’ is not an optimizer of

Eq. (13). Assumé&’ is an optimizer of Eqg. (13) and is non-block diagonal. Withlmss

3The proof is similar.
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of generality, we assume theth column ofZ’ in the first block has f5-block diagonal
elementsi.e.

21t
Lot

r / / /
Z - 21,22,"', Zf{h,t ’Z’[+19”'7Zn ’

Z/

ni+1t

’
Zn,t

Wherez] is the j-th column ofZ” andZ;; is thei-th element ofz}. Let

z=2"+2
where

’

Zl’t 0
’

z, 0

b _ o _
Z - ZI’,11,t ) Z - O
’

O Zn1+1,t
0 Zl,

z° # 0 here. Since&’ is an optimizer of Eq. (10)X = XZ’, orx; = Xz}, j=1,---,n
Obviously,

X = Xz; € Py,
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Due to Eq. (S4.1), one must have

Xz e Py, (")l =1

Then
(z°1=0, Xz°=0,
or
X; = XZ°.
LetZ, =[z,---,2°Z,,, - ,2Z,]. ThenX = XZ|. However, sinc&® # 0, we have
n n
121l = Z 1Zill2 + llztll2 > Z 1Zjll2 + l1zpll2 = [1Zplla-
j=Lj#t, j=Li#t,
And by the Lemma 2.2.6, we have
1Z°1l = 1 Zpll-.

or

IZ°Nle + ollZ" 1l > 11 Zgl. + 6lIZlla

(remembes > 0) indicatingZ| satisfies the constraint in Eq. (13) and has a lower objec-
tive function value tharZ’. ThusZ’ is impossible to be the optimizer of Eq. (13). This
completes the proof of the first of the theorem.

The second part of the theorem is obvious. Without loss oegaization, let us
consider the first block;. Assume all the data points K, share the same bakg with
rankd; andZ, can be further separated irfq, andZ7, then the corresponding} andx?

must have dimensiod! andd? andd] + d? = d;. Then Lemmas 1 and 2, the total rank
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of Z = rank@}) + rank@Z?) = df + 1+ d? + 1 = dy + 2. However, still by Lemmas 1,
and 2, suclz; is not possible to be the optimizer of Eq. (13). Thlshas to be a single
connected component.

Since each blocky has only one connected component and all the whAakeblock
diagonal, the number offiéne subspaces is trivial to recovered, which is the number of
connected components @gf The membership of each data points to th&a spaces is

also guaranteed to be recovered.

2.2.3 More Theoretical Analysis

In previous research by Liat al. [9], the theoretical properties of low-rank repre-
sentation have been discussed. Here we investigate mgnessug results on these repre-
sentations.

First we have similar result on the following problem.

mzin||Z||* s.t. X = XZ, (2.16)
Theorem 2.2.7 The optimization problem of Eq. (2.16) has the optimal sofut
Z"=X"X (2.17)

and||Z*||, = rank(Z*) =rank(X).
The proof is similar to Lemma 2.2.2 and we omit it here.

Surprisingly for the following problem,
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1
mzlnEIIZIIﬁ s.t. X = XZ, (2.18)

where||Z||r denotes the Frobenius noifd||r = ,/Zij Z|2J we also have
Theorem 2.2.8 The optimization problem of Eq. (2.18) has the unique optsoktion

Z* = X*X (2.19)

and||Z*||2 = rank(Z*) =rank(X).

Proof We write the Lagrangian function of Eq. (2.18) as
1_.5 T
L(Z.A) = SlIZ]le —tr (X - XZ)TA (2.20)

We prove the theorem by showing that there exissuch that both of the following hold,
1. 0L/0Z = 0whereZ = Z* andA = A*
2. X =XZ*

One can find in the proof Lemma 2.2.2 that the second condiienXZ* automatically

holds. And now show the first condition.

oL
= _z-XA=0. 2.21
oz 0 (2.21)

18



LetZ = Z* = X*X andA = A* = UZ"V whereUZVT = X is the SVD decomposition of

X. Then
0L
= = Z-XTA 2.22
57 (2.22)
= VX UTUZVT — VxUTUZ VT (2.23)
EERVIVARRRY.VA, (2.24)
=0 (2.25)

Theorems 2.2.4 and 2.2.8 indicate that choosing the smé&llesenius norm of Eq. (2.16)

gives the same results

2.3 Multi-Subspace Representation With Noise

Typically data are drawn from multiple subspaces but witis@o ThusX = XZ
does not hold anymore for any low ra@dk On the other hand, we can combine the two

constraints in Eq. (2.13) as,

= Z. (2.26)

With the notation ofX in Eq. (2.12), we hav& = XZ. We may express the relationship
asX = XZ + E, whereE represents noise. To handle such noise case, in the optioniza

objective of Eq.(2.13), we add the term

n
Xj X
Bl =Y [ EG=> - zj||.
i i =1 1 1

“Notice that this theoretical results igidirent from Liuet al.s statement in Section 3.2 of paper [9].
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This is thef,/¢1-norm of matrix ofE. This norm is more robust against outliers than the

usual Frobenius norm. With this noise correction term, weeso
min X = XZlleye, + AZI + 61Z1l, (2.27)
wherel and¢ are parameters which control the importanc@&if. andZ,, respectively.

2.3.1 Multi-Subspace Representation

Notice that if the data contain noise and the constraintsapésition 2.2.5 do not
hold, we lose the guarantee of the block diagonal structtiz dHowever, since the low
rank and sparsity regularizer of Eq. (2.27), the final solu# can be interpreted as repre-
sentation cofficient of X. We call such representation as Multi-Subspace Repregsntat
(MSR).

In summary, MSR representation of datas given by the following:
(1) From input dat&, solve the optimization Eq.(2.27) to obtain
(2) The MSR representation &fis XZ, i.e., the representation gfis Xz;.

In §4, we develop an algorithm to solve Eq. (2.27) an@% some applications of

our model in machine learning are given.

2.3.2 Relation to Previous Work

The MSR representation here is motivated by tfi@a subspace clustering problem.
However, some properties of the representation have beestigated in previous work by
other researchers. First notice tiZats sparse, the representationpf~ Zz; is similar to
the one in sparse coding [10, 11]. Interestingly, reseanabther communities suggests

that in the natural process and even in human cognitiongrimdtion is often organized in
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a sparse waye.g. Vinge et al. discover that primary visual cortex (argd) uses a sparse
code to diciently represent natural scenes [12].

In the sparse representation model, for each testing oljecteek a sparse repre-
sentation of the testing object by all objects in trainingadset. Such learning mechanisms
implicitly learn the structure, under the assumption tih&t $parse representation fice
cients are imbalanced among groups. To be more specificn giveet of training data
X = [X1, X2, -+, Xn] (P X nmatrix, wherep is the dimension of the data) and a testing data

pointx, they solve the following optimization problem

min|ix; — Xax|l* + Allarl1, (2.28)

at

wherea; (n x 1 vector) has the reconstruction ¢deents ofx; using all the training data
objectsX, A is the model parameter, afjd||; is thef; norm:|jall; = Xi_4 |&l.
Wrightet alintroduce the Sparse Represented-Based Classification njéj{hatiich

uses the following strategy for class prediction,
arg nlzinrk = [Ix; — Xakl, (2.29)

wherer, is the representation error using the training samplesdogk anda¥ is obtained

by setting the caécients inay, corresponding to training samples not in cl&ss zero,

i.e.
ay(i) if i € Cy,
o) = { |
0 otherwise,
whereCy is a set of all data points in clagsk = 1,2,--- ,K, andK is the number of
classes.
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On the other handZ in our model is also low rank, which is a natural requirement
of most of data representation techniques, such as the lokvkernel methods [13] and
robust Principle Component Analysis [14]. One can easily htedacy of the low rank
representation in real world applications in various doreavhich indicates that low rank
is one of the intrinsic properties of the data we obseevg,the missing value recover of
DNA microarrays [15].

By combining the two basic properties (sparsity and low raoky model naturally
captures a proper representation of the data. We will detraieghe quality of such rep-
resentation using comprehensive empirical evidencesiexperimental section.

HereZ can be viewed as the similarity between objects. And these exists ap-

proaches for directly similarity learning[16, 17].

2.4 An Hficient Algorithm and Analysis
2.4.1 Outline of The Algorithm

Assume we are solving a general problem of

J(X) = T(X) + ¢(X), (2.30)

where f(x) is smooth and(x) is non-smooth and convex. If one of the elements in sub-

gradient of¢(x) can be written as product gfx) andh(x), i.e.,

g(x)h(x) € d¢(x),
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whereh(x) is smooth and¢(x) is the subgradient of(x), then instead of solving Eq.

(2.30), we iteratively solve the following,

x*! = arg rrxlinj(x) = f(x) + g(x) f h(x)dx. (2.31)

Notice thatdJ(x)/dx € dJ(x) whenx = x'. Hopefully, at convergenced*! = x!, then
0 € 8J(x) atx!, which means' is an optimizer ofJ(x).

In general, the iterative steps in Eq. (2.31) cannot guartiie convergence af
(i.e. x*1 = x!), and even the convergence &) (i.e. Jx'1) = J(x!)). Fortunately, in
our case of Eq. (2.27), our optimization technique guaesb®th, and thus our algorithm
guarantees to be an optimizer. Further more, in our algarigptimization problem in Eq.

(2.31) has a close form solution, thus our algorithmficeent.

2.4.2 Optimization Algorithm

Here we first present the optimization algorithm of Eq.(2.2nd then present theo-
retical analysis of the algorithm.

The algorithm is summarized in Algorithm 1. In the algorithendenotes the-th
column ofZ. The converged optimal solution is only weakly dependenpammeter. We
setd to § = 1. € is an auxiliary constant for improving numerical stabilitycomputing
trace norm. We set= 1078 in all experiments.

In the third line of thefor loop, we are actually solving the problem in Eg. (2.31). In
practice, we do not explicitly compute the inverse. Insieeel solve the following linear
equation to obtaim;,

|XTX + Ad; (B + 6D) |z = X7%. (2.32)

The algorithm is simple which involves no other optimizatjmrocedures. The algo-

rithm generally converges in about 10 iterations in our expents.
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Algorithm 1 (X, 4, 6)
Input: DataX, model parameters 6
Output: Z which optimizes Eq.(2.27).
Initialization: ComputeX using Eq. (2.12)Z = 0.
while not convergedio
B=(ZZT +el)?
fori=1:ndo
di = [IX; — Xz,
Di = diag(Z;1. Z;% - . Z;1) .
Zi = [XT)’Z + /ldi (B + 5D)]_1)~<T)~(i,
end for
end while
Output: Z

We have developed theoretical analysis for this algorittonyering three properties
for this algorithm: convergence, objective function vatiecreasing monotonically, and

converging to global solution.

2.4.3 Theoretical Analysis of Algorithm 1

Before presenting the main theories for Algorithm 1, we finrdtaduce two useful

lemmas here.
Lemma2.4.1

IZIl. = lim tr (ZZ7 + el)?, (2.33)
and

lim (ZZ7 + el)y 2z €)1z, (2.34)

whered||Z||. is the subgradient of trace norm.
Hereel is introduced for numerical stability.

Proof
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Let

g1 0
.0
Z=U VT,UUT = ,WT =1,
0 - o
0 0
be the SVD decomposition &. Then
lim tr (ZZ7 + el)t?
1/2
0'% +€ --- 0
_ : : 0
=limtrU ut
0 0 o o2 teE
0 el
1/of +€ --- 0
_ : : 0
=limtr UTu
€0 0 e NoZ t+E
0 Vel

:Iel_rgg \JoP+e+(n—m)Ve
i=1

=[1Z]..
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On the other hand,

1/2

—(:T o0 1 ...0
: -1/2 : : : 0 .20
lim (ZZ™ + el)™Y?Z = limU VT =U VT
=0 =0 o ... o 0 --- 1
0 0 0 0

Denote the above bly. By following papers [18, 19] or explicitly Eq. (3.2) in pap@0],

for all Z, we have

AZll. ={E+W : W e R™ PyW = 0,WPy =0, ||W| < 1},

where
1 -0
0
PU = U UT,
0o - 1
0 0
and
1 -0
N 0
Py =V VT,
0O --- 1
0 0

Obviously,W = 0 is a special case ifi|Z||., or

E € dllZ].,

which completes the proof.

26



Lemma 2.4.2 Assume matriceg andY have the same size. Lat= (YYT + €l)¥? and

B = (ZZ7 + €l)Y2. Then the following holds

1 1
trA —trB + trZ Bz - Sty BlY <O. (2.35)

Proof

1 1
trA —trB + Etrz Bz - étrY By

1
=trA —trB + EtrB L(@zzT-YYT)
1 -1 2
:étrB (2BA _2B24+77Z7 - YYT)
:%trB -1 (ZBA _2B24+7ZZT 4+l —YYT - el)

:%trB -1 (2BA -B%2- A2)

1
= - StB 2(a-B)’B Y2 <.
One should notice that hefeandB are symmetric full rank matrices.
Lemma 2.4.2 serves as a crucial part of our main theorem hatgtated as follows,

Theorem 2.4.3 Algorithm 1 monotonically decreases the following objestiv
minJ(Z) = IX = XZlyye, + At (ZZ7 + €l)? + 611211, (2.36)

i.e. J(Zi1) < J(Zy), whereZ, is the solution o in the t-th iteration.

Proof We first consider the following optimization problem.

mzinj(Z)
N (||>?i—>?zi||2
1

5 + /lcSziTD‘lzi) +ArZ Bz,
i
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whereB = (Z.Z] + €l)"?.d; = |I% - XZ{[I.D;* = diag (124,121, .1Z41), Zt is the so-
lution of Algorithm 1 at iterationt and z is thei-th column ofZ;, and Zi‘j is the (, j)
element ofZ;. We will show that (1) the solution at iteratiar+ 1 of Algorithm 1Z;,,
is a global minimizer ofi(Z), i.e. Zy,1 = argminy J(Z) (thus J(Z..1) < J(Z))), and (2)
IZe1) = IZy) + 23(Z0) - 13(Z111) < 0. Then the proof will be completed by following
IZww) < I@) + 5 (32w - 3(20) < 3@,
(1)One can check that
JZ) = ; (w +AZ'B™'z + 462/ D" z,),

and N

0J

Y (XX i -1, B 7 —
(XTX/d + 6D+ 1B l)

XTX;
(9Zi di -

Setting the above to be 0, we obtain,
= [X7X/d; + 26D + 1B K%/,

Notice that the above solution is exacHy.;. And because(Z) is convex, we know that

J(Zea) < I(2Z)).
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(2) LetA = (ZyaZ],, +€l) ", then

t+1

32ia) - 320 + 3320 - 5320

=[IX = XZs1ll21 = [IX = XZll1 + Atr (A — B)

1% — Xz 4|2 - d?
t+1 i i
+/16§ 1zt - 1251) ;1 >

t+1 t+1 ZJB_:LZJ)

/15 I t+1|2
2 [ 1zl ~14
|m—24ﬂﬁ—&)

2d;

t+1|2

Z (2|zt+1| ~1Zi| ||z—t|)

+ %tr (ziB7'2] - 2], ,B™'Z],, + (A - B))

/l 1
~Str (zT B-1zT

n
= ﬁm Xz - di -
i_
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By applying Lemma 4 (wittZ = Z; andY = Zi,,), we have

32ea) - 32) + 532) - 332)

n v v o t+1112 2
. o IXi — Xz:+||* - d
o t+1 —d _ | |
< _E_ (IIX. Xz - d 2d, )

Z 2z - 1Z| AT
"2 1z

1 - ~ . ~
o (20il% = Xz - o — % - Xzi™F?)

-1 |

n

t t+1 t)2 t+1(2
A_Z AZZ = 14517 = 14
2 |

n

=- % (1% — Xz*4| - di)2

i=1

|Zt Zt+1|)

A6
2 Z Z]

i

<0,

which completes the proof.

Since the objective in Eq.(2.36) is lower bounded by 0, TesoR.4.3 guarantees
the convergence of the objective value. Further more, we hav

And according to Lemma 2.4.1, we know that the above solus@tso the optimal
solution of Eq.(2.27) whea — 0.

Now we are ready to proof Lemma 2.2.2.
Proof Lemma 2.2.2

We write the Lagrangian function of Eq. (6) as

LZ,A) = 1Z]l, - tr (X1 — X1Z)TA,
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whereX is defined Eq. (2). We complete the proof by showing thztig given by Eq. (3),

there exists a Lagrangian multipliarwhich satisfies the following,

0e dL(Z, A), (S1.1)

whered L(Z, A) is the subgradient of(Z, A). Since Eq. (6) is convex, we then conclude
that Eq. (3) gives the optimal solution of Eq. (6).
Now we proof Eq. (S1.1). Assume the SVD decompositioiX ofs

o - 0
Xp=U| : - & o [[V.VIN,
0 - o
whereoy, -+ ,om > 0 andmis the rank ofX;. Notice that ¥/, V][V, V] = I, then we
have,
oﬁ 0
X XT=Ul : - : |UT,
0 o2
or
Z* :XI(X]_)’ZI)_]'X]_
1 -0
~l: 0 -
=[V, V] [V,V].
0 ... 1
0 0
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From Lemma 2.4.1, we have

And

im (2°2°7 + el)_l/ZZ* € AlIZ"Il..
e—0

iim (2°2°7 + )’z

1
=lim [V, V]
e—0 0
0
1+e€
=lim|[V, V]
e—0 O
1
Vive
=lim[V, V]
e—0 O
1
Vite
=limV :
e—0
0
=VVT,
which leads to
VVT

B otr ()21 - )~(12)TA

€ 0L(Z,N)|z=z
32

-1/2
0
0 -
[V,V]T + el Z"
1
0
-1/2
0
0 -
[V.V]T
1+€
0 el
0
0 ~
[V,V]Z*
1
Vite
L)
Ve
0
VT
1
VIte

b

Z>\'<



or

VT —XIA € 0L(Z, A)lz=z-,

To complete the proof, one only need to findsuch thatvVvT — )~<IA = 0, or equivalently,

VVT - VZIUTA =0,

where
01 0
Y =
0 Om
We let
A = U v,
This leads to
VVT - VIUTA

=VVT - VIUTUZ VT

-0,

which completes the proof.

2.5 Applications
2.5.1 Using Multi-Subspace Representation as Preprogessin

SinceZ is low rank, XZ is also low rank. And sinc& is sparseXZ can be in-
terpreted as a sparse coding representatiod.ofAccording to the analysis i§4.2, we

hopefully improve the qualities of the data representatiprusingXZ. In our study, we
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replaceX by XZ as a preprocessing step for various machine learning prshleherez
is the optimal solution of Eq. (2.27).

Notice that the learning o in Eq. (2.27) is unsupervised, which requires no fur-
ther label information. Thus we can apply it as preprocgsfmn any machine learning
tasks, as long as the data are represented in Euclidean dpabés chapter, we employ
MSR for clustering, semi-supervised learning, and clasgifin. We will demonstrate the

performance of the preprocessing in the experimental@ecti

2.5.2 Using Multi-Subspace Representation as Classifier

Here we try to directly make use of our MSR model as a staneattassifier. As-
sume we have data points in the data sef,= [xy, Xo, - - - , Xp] and the firstm data points
have discrete class labejlg y,, - - - ,ym In K classesy; € {1,2,---,K}. The classification
problem is to determine the class labekgfi = m+1,--- ,n. LetZ be the optimal solution

of Eq.(2.27) fom data points. The MSR representation of each imag&isi = 1,--- ,n.

The class prediction of our model for unlabeled datad = m+1,--- ,n, is
argminr = [|Xz; — X{l, X< = Z XiZit. (2.38)
k ieCy
HereXk is the representation of testing objegusing objects in clas§y, k= 1,2,--- , K.

The classification strategy is similar with Wrigétt al's approach [6]. We will com-

pare the two models in the experimental section.

2.6 Experiment
2.6.1 A Toy Example
We demonstrate with toy example of thilae space recovering by our method in
Figure 2.2 [8] (a) shows 100 images from 10 groups used inetkasnple, which are se-
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Figure 2.2. A toy example of multi-subspace discovery poband our solution. (a): 100
images in which the last component has been removed witlim gi@up, then the condi-
tions in Proposition 2.2.5 are satisfied. (b): the optiméltson of Z in Eq. (2.13). White,

blue, and red colors represent zeros, negative values ganubsitive values, respectively.
Within each group, the values of the subgraph represent&q yefined in Eq. (2.8)) is a
single connected component and among the 10 blocks theysm@ndected components.
(c): PCA visualization of the 100 images where x-axis and ig-axe the first and second
principal component, respectively. (d): clustering griogpof K-means. (e): Laplacian
Embedding results of the 100 images where x-axis and y-agitha eigenvectors with the
second and third least eigenvectors of graph Laplacianxmatspectively. (f): clustering

grouping of normalized-cut. . 35




lected from the AT&T data set, details can be found in the erpental section. In order to
obtain 10 &ine subspaces which satisfy the constraints in Propositib,2ve remove the
last principle component in each group of face images. To e specific, for each group
Xk, we first subtract the data points by the group mean >Zk = Xk — m17, then perform
a PCA (Principle Component Analysis) on the zero-mean dat&eyl the first 8 principle
components and get rid of the 9-th principle component. Themlata is projected back on
to the original space and the meag is added back. Assume the resulting PCA projection
is Uy then the processed data= UKUE)ZK + my are used in our examplke,=1,2,---,10.
The images in which the last principle component have bemoved are shown in Figure
2.2 (a). Notice that they are visually almost identical te dniginal image since the energy
of the last component is close to zero. Then we solve Eq. 248 the optimal solution
is shown in Figure 2.2 ( b), in which white color represent®geblue colors represent
negative values, and red positive values. One can see tthahwach group, the values of
the subgraph represented by (defined in Eq. (2.8)) is a single connected component and
among theteZ,k =1,2,---, 10 they are disconnected components.

For comparison, we also cluster the data udfrghneans and normalized-cut [21],
see Figure 2.2 (d) and (f), the corresponding Principal CamapbAnalysis and Spectral
embedding results are also shown in (c) and (e), respecti@ie see that botK-means

and Normalized-Cut cannot correctly discover the subspaceégroup assignments.

2.6.2 Experimental Settings
Datasets. We evaluate the performance of our model on 5 med Watasets, including

two face image data basd€iW (Labeled Faces in the Wilg)) AT& TS, two UCI datasets

Shttpy/www.itee.uq.edu.au-conradlfwcrop/
Shttpy/people.cs.uchicago.efdinojvis/ORL.zip
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Table 2.1. Data descriptions of experiments

Data Type sample# feature# class# max# min#
LFW Face Image 400 4096 20 20 20
AT&T Face Image 400 644 40 10 10
Australian Financial 690 14 2 383 307
BinAlpha Text Image 1404 320 36 39 39
Dermatology Disease 366 34 6 112 20

Austrianand Dermatology[22], and one handwritten character data BinAlphall the
data sets are used with the original data, without any fugiheprocessing.

We summarize the data statistics for these data sets in Zahlevhere the number
of samples, features, classes are listed. The minimum andmam number samples in
classes are also listed to show the balance of the data. \W/eialslize the data using the
first and second principal components for these data in EigL8.

Compared Methods. For the usage of preprocessing of our iwdetompare 3 clus-
tering algorithms (Normalized Cut [21] which tends to proelbalanced clustering results
on manifolds, Spectral Embedding Clustering [23], &neans, which is the standard
clustering algorithm), two standard semi-supervisediiegralgorithms (Local and Global
Consistency by [24], which considers the local and globabkiancy of data points and
Gaussian Fields and Harmonic Functions by [25], which fdates Gaussian random field
graphs by harmonic functions using matrix methods or beliepagation), and two stan-
dard classification algorithms (linear Support Vector Maehwhich is a stable and com-
petitive classification method for high dimensional datal lekNearest Neighbor).

For the usage of standalone classifier, we compare our metitodVright et. als

sparse representation based approach [6].

’httpy//www.cs.toronto.edfiroweigdata.html
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(d) BinAlpha (e) Dermatology

Figure 2.3. Data visualization with the first (x-axis) and@ed (y-axis) principal compo-
nents..

Validation Settings. All the clustering algorithms comgairin our experiments require
random initializations. Thus we run the algorithms for 5@dam trials and report the
averages. For semi-supervised learning, we randomly th@idata into 30% and 70%
where the 30% of the data points are used as labeled data & aréOused as unlabeled
data. We repeat the random splitting for 50 times, where\beage result is reported. For
classification, when comparing our method as a preproagssgorithm, we use the same
splitting strategy as in semi-supervised learning, buttsm in to 50% for training and
the other half for testing. For classification, when compguour method as a standalone
classifier, we use 30% for training and the rest 70% for tgsfline reason is that for some
of the datasets, the data points are well separated andabsifidation accuracy is very
high, then the dference between approaches is not obvious. Thus here wewsedata

samples as the training set to enlarge th#edences.

38



Parameter settingsKk-means has no parameters. KkdIiN we usek = 1, i.e. just use
the nearest neighbor classifier. For the Normalized Cut (NGuigctral Embedding Clus-
tering (SEC) in clustering, Local and Global Constancy (LG@Y &aussian Fields and
Harmonic Functions (GFHF) in semi-supervised learning,establish the graph using
Gaussian kernel\; = exp(—yllxi - lelz/az), wherey is the parameter which is set to be
v =1[0.1,05,1,2,---,30] ando is the average of pairwise Euclidian distances among all
data points.

For Wrightet. als sparse representation (SR), we use LARS [26] to obtain the fu
LASSO path solution and use top ranked coféicients according to the shrinking order
in LARS solution path. We choosa fromm = 1,2, ---min(n, p) wheren is the number
of data points ang is the number of data dimension. The reason we use LARS istthat i
is more dficient than any othef; solver in the sense that LARS computes all the possible
solution with dfterent parameters at once and for other solver, we need &irrédte model
every time we change the parameter, which is time consunanthé purpose of highly

parameter tuning. For our method, we chog@$eom [0.5,0.6,--- , 2.5].

2.6.3 Experimental Results

For the usage of preprocessing our model, the results avensihd=igure 3.4. Here
we show the average accuracies for both original data withimcessing (marked &3rig
in the figure) and the corresponding method on the preprededata by our method
(marked asVISR. We further plot the original accuracy values of all the &@dom tri-
als for each methods to visualize the overaffetiences of the performance.

One-way ANOVA (Analysis of Variance) is performed to testhsignificantly our
method is better than the original method, and correspgnglivelue is also shown in the
figure. p < e meangp is less than any positive values in machine precisienthe p value

is very close to O.
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Table 2.2. Clustering accuracy comparison of our method asm@cessing metho@rig
denotes without any processingCA denotes the clustering accuracy with PCA dimen-
sional reduction, anMSRdenotes the clustering accuracy with our method. Best sesult
are highlighted.

Ncut SEC K-means
Orig PCA MSR Orig PCA MSR Orig PCA MSR
LFW 0.194 0.193 0.213 0.207 0.225 0.245 0.193 0.177 0.198
AT&T 0.797 0.795 0.822 0.805 0.791 0.810 0.599 0.583 0.621

Australian 0.557 0.564 0.667 0.662 0.669 0.691 0.562 0.546 0.665
BinAlpha 0.357 0.346 0.388 0.468 0.486 0.487 0.412 0.417 0.431
Dermatology 0.829 0.8210.891 0.869 0.874 0.958 0.759 0.761 0.805

Table 2.3. Semi-supervised learning accuracy comparisouaranethod as a preprocessing
method.Orig denotes the accuracy without any processR(@Adenotes the accuracy with
PCA dimensional reduction, andSRdenotes the accuracy with our method. Best results
are highlighted.

GFHF LGC
Orig PCA MSR Orig PCA MSR
LFW 0.1636 0.1688 0.2185 0.2227 0.2154  0.2700
AT&T 0.3458 0.3379 0.6682 0.7881 0.7701  0.8195
Australian 0.5549 0.5590 0.6736 0.5598 0.5487 0.6778
BinAlpha 0.5670 0.5813  0.5968 0.6198 0.6299  0.6529

Dermatology 0.7543 0.7448 0.8673 0.9226 0.9293  0.9446

Out of the 5< 7 = 35 comparisons, our method significantly outperforms thga el
methods in 33 comparisons, with< 0.03. There is one case (SVM &T&T data set)
where our method is better but with no significant evidendeer€ is also another case in
which our method is worse than the original methkdl on AT&T), but the diference is

not significant p = 0.263).
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Figure 2.4. Experimental results of our method as a pregsisg method on 7 learning
methods and 5 data sets. The scattering dots representciraeg values of the methods
and bars represent the averagésig andMSRdenote the corresponding method on the
original data and on the preprocessed by our method, resglgctThe p stands for the
significance of the one-way ANOVA test (for the hypothesisafr method is better than
the original method”). Out of 35 comparison, our method sigantly outperforms the
original methods in 33 cases, wifh< 0.03. € is the smallest positive values by machine
precision.. 41



Table 2.4. Classification accuracy comparison of our metlsoa jareprocessing method.
Orig denotes the accuracy without any processP@A denotes the accuracy with PCA
dimensional reduction, andSRdenotes the accuracy with our method. Best results are
highlighted.

KNN SVM
Orig PCA MSR Orig PCA MSR
LFW 0.2122 0.2316  0.2231 0.2990 0.3053 0.3140
AT&T 0.9203 0.9093  0.9143 0.9204 0.9371  0.9260
Australian 0.6469 0.6560 0.6645 0.6853 0.6853  0.7463
BinAlpha 0.6488 0.6304 0.6883 0.7238 0.7339  0.7444

Dermatology 0.9410 0.9441 0.9503 0.9638 0.9822  0.9696

LFW AT&T Australian BinAlpha Dermatology
T p<e - — <1072 | s p<Le —: : -1
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Figure 2.5. A comparison of our mod®ER and the Sparse Representation based method
(SR on 5 data sets. Thp values represents the significance of one-way ANOVA test of
the hypothesis “our method is better than SR”. .

For our model as a standalone classifier, the comparisofigesith Sparse Rep-
resentation based method are shown in Figure 2.5 [8]. Outd#ta sets, our method is
significantly better than the Sparse Representation basthchm four withp < 0.01.

Due to the low rank property of our method, one might also beré@sted in compar-
ing our method with other low rank method as preprocessingcivhpare the preprocess-
ing results with Principal Component Analysis (PCA) in Tabl2 2 2.4. For PCA, the

best numbers of dimensions are achieved by tuning and thedsedts are reported.

8These results have been published in paper [8].
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Table 2.5. Running time (s) of our algorithm

Dataset LFW AT&T Australian BinAlpha  Dermatology
Time 0.549+ 0.061 0.43#0.114 1.768: 0.092 4.44# 0.367 0.393: 0.058

2.6.4 Running Time

We test the running time on a Intel Core i7-2670QM CPU @ 2.20 Gitlz & GB
memory and 64-bit operating system. The codes are implesdevith Matlab. In the third
line of thefor loop in Algorithm 1, we use the Matlab command =xA \y” to solve “x
= inv(A) * y”. The running time of our algorithm is listed in Téd2.5. The average and

standard deviation over 10 times of random trials are replort

2.6.5 Experimental Results on TCGA Data

The Cancer Genome Atlas (TCGA) project has analyzed mRNA esipresniRNA
expression, promoter methylation, and DNA copy number Bi§h-grade serous ovarian
adenocarcinomas (HGS-OvCa) and the DNA sequences of exangfrding genes in 316
of these tumors. These results show that HGS-OvCa is chaescidy TP53 mutations in
almost all tumors (96%); low prevalence but statisticaigurrent somatic mutations in 9
additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113icamt fo-
cal DNA copy number aberrations; and promoter methylati@nes involving 168 genes.
Analyses delineated four ovarian cancer transcriptionatypes, three miRNA subtypes,
four promoter methylation subtypes, a transcriptionatatgre associated with survival du-
ration and shed new light on the impact on survival of tumaote BRCA1/2 and CCNE1
aberrations. Pathway analysis suggested that homologaosnbination is defective in
about half of tumors, and that Notch and FOXM1 signaling avelved in serous ovarian

cancer pathophysiology.
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Table 2.6. Running time (s) of our algorithm

Dimensions MRNA Copy Number Methylation MiRNA
# of measurements 17814 21942 25149 799
min value -9.3743 -5.6338 0.0000 -7.1434
max value 10.9291 5.1026 1.0000 9.9827
# patients 455

Figure 2.6. Experimental results afon TCGA data. .
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We downloaded the clinical data from web8if@7] for mRNA expression, DNA
copy number variation, promoter methylation, and miRNA esgion.

Among these dimensions, we have selected 455 patients Wwhighmeasurements
in all 4 dimensions and have survival records as well. Wetisthnumber of measurement
of each dimensions as well as the value ranges of the datdla 2.

We selected 50 elements in each view of the data and put thgathier to formX
and solve the multi-space learning problem in Eq. (2.27)thAedptimal solution o is
shown in Figure 2.6.

The observation here is that the representativéficoent ofZ betweerhas-mir-200c

andPI3K is significantly high.

%httpsj/tcga-data.nci.nih.ggicgadataAccessMatrix.htm?disease T/
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CHAPTER 3
STRUCTURED LEARNING WITH EXPLICIT¢,/£,-NORM

3.1 Introduction of Structured Learning

Both theoretical and empirical studies have suggestedhbatgarsity is one of the
intrinsic properties of real world data [28, 26, 29, 30]. &earepresentation not only
simplifies the data models, but also helps us in discoveniediptive patterns in data which
enhance our interpretation and understanding of underiyitysical, biological and other
natural mechanisms [3, 31, 32, 33, 34].

Sparse representations are typically achieved by impasamgsmooth normsg.g.
{1 norm and/,/¢1-norm (initially called rotational invariant; norm orR;-norm [35]), as
penaltiegegularizers in the optimization problems. Applicationslude LASSO [11],
compressive sensing [36, 37], matrix factorization [38jiltitask learning [39]. Related
approaches are also successfully developed and appleedtimr scientific domains, such
as genetics analysis [40, 41], neuroscience [42], commigeEm [43, 6], and disease stud-
ies [44]etc.

The optimization problems of these approaches often coofsie’o components: a
convex smooth loss function and a convex non-smooth ragatarAlthough the global
solutions are guaranteed, the naive approaches are officient and unsuitable for large
scale problems. Thus, moréieient algorithms are desired. According to the structure of
the constraints, the sparsity can be obtained from threestgp regularizers for ierent

purposes:
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1. Flat sparsity This type of sparsity is often achieved Bynorm regularizer. Opti-
mization techniques include LARS [26], linear gradient shgdd5], and proximal
methods [46].

2. Structural sparsityincluding group featurg¢sovariates detection [47, 48, 49], jointly
vector sparsity [50], hierarchical group features [=lE,. In the other communities,
the structural sparsity is also called block sparsity [92Je sparsity is often obtained
by ¢,/¢;-norms, which can befgciently solved by methods in [53] and [54].

3. Matrixtensor sparsitysuch as matrjkensor completion [55, 43]. The typical reg-
ularizer is the trace norm which can be solved by Singulau&dbecomposition
thresholding [55].

In this chapte¥, we focus on the structural sparsity. For the structuratsfyapur-
pose, we often deal with convex optimization problems (wibtmvex non-smooth norm,
like ¢,/¢; norms) and a large number of optimization techniques haveldged to tackle

the problems, for example [48, 51, 26, 56i¢

3.2 An lllustration of Structural Sparsity
Here we provide a concrete example to illustrate the subfilerdnce betweestruc-
tural sparsity andlat sparsity, which show why structural sparsity is useful inchiae

learning and data mining.

IMost of the major results in this chapter have been publishedper [5].
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3.2.1 LASSO
Let Xpxn = [X1,X2,- -, Xn] D& n data point X; is a p-dimensional vector)yn =
(Y1.--- ,Yn)" be the class labels, aftl, = [B1.B2,--- ,Bp]" be thep-dimensional vector

of regression cdécients. Consider the following class prediction problem,

minJ(8) = 21y - XA + Bl (3.1)

where A is model parameter which controls the sparsityaof This model is known as
LASSO [11]. The solution is typically sparsee., the solution of3 contains many zero
elements.

Assume in the optimal solution of Eq. (3.1) for somes;, = 0.

P

XTB)y =D .xiBi= > X (32)
j=1 1<j<p.j#io

wherexij is the j-the component of;. EqQ. (3.2) indicates thi-th componeritlimensioyffeature

of all x; are irrelevant, because they multiply zeros in actual uskgelargeri, more el-

ements of3 are zero, indicating more featurdsnensions are eliminated. The remaining

features are thuselected The sparse learning is useful for feature selection.

3.2.2 Multi-Task Regression: A Structural Sparsity Example

Now let us consideK linear regression simultaneously, with same dataut differ-

ent regression targ®t, vy, - - - ,Yk. DenoteY = [y1,V2, -+, Yk], then a naive extension of
Eq. (3.1) is
(1
mBin J(B) = kZ:;‘ (Ellyk — XTBP + AllBllx
= %IIY ~ XTBIIZ + AlBla, (3.3)
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whereB = [B,8,, -+ ,Bk]. Since Eq. (3.3) solv& linear regression problems simultane-
ously but independently, the sparsity pattern of the elési@mB is not structured. We use

a synthetic data to demonstrate what the word “structureztims here. Let

0463 (0319 -0.100 0526 0535 0329 0475 100
0296 0192 Q058 -0.076 Q152 Q313 -0114 110
0196 0189 Q167 -0.280 0267 -0.246 Q164 101
T _ 0330 0357 Q027 -0.001 0118 Q058 Q191 v = 111
0332 0035 -0.002 0280 0111 -0.043 Q104 010
-0.022 -0.026 Q770 0189 019 -0.146 -0.121 011
-0.217 Q028 Q404 (0359 0335 -0.282 -0.235 0 01
0396 0297 0260 Q0241 0193 Q038 Q101 0 01
(3.4)

By solving Eq. (3.3) witht = 0.3, we obtain the following global optimal solution,

0350 1262 0.000
1128 0.000 1.866
0000 0701 1205
B =|-0.749 0.000 Q000
1156 0.000 Q000
0.151 0.000 -0.993

0.000 -0.450 0.000

Notice that the solution is sparsee. there many zero elements in the solution.
However these sparsity patterns areonsistent For classC, label prediction, feature di-
mensions (3,7) are irrelevant. For cl&dabel prediction, feature dimensions (2,4,5,6) are

irrelevant. For clas€; label prediction, feature dimensions (1,4,5,7) is irralgv There-
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fore, this type of inconsistent feature elimination are usgful. This inconsistent sparsity
pattern for diferent classes are call#dt sparsity
Now we consider atructural sparsity In the solutionB, if the entire jo-th row is

zero,i.e. B,k =0,k=1,2,3. Then
p . .
T
(x B)ik - ZX'J Bj = Z X Bjc.

=1 =130

suggesting that thg's component ok; is irrelevant in the regression outpug.

The jo-th row of B is zero— The jo-th feature dimension X is irrelevent

There could be several rowsgo( i1, - , J-) of B where the entire row are zeroes. These
consistentsparse patterns are useful, because feature dimensiogsristently elimi-
nated for allK class label predictions. Thigsis an indicator to select relevant features.

How do we get structural sparsity? We solve the followingobem,

. 1
min J(8) = 51IY ~ X"BIE + A Z Z B? (3.5a)
i i

1 .
= 5IY - X"BI ”Z”b'”’ (3.5b)

whereb' is thei-th row of B. The termy; \/TBIZJ in Eq. (3.5a) is called th&, /¢, norm of
matrix B. With its equivalent notation in Eq. (3.5b), thig/¢; norm of B can be interpreted
as thef; norm of £, norm of its rows, which generates the sparsity on the rowsh e
sameX andY in Eqg. (3.4) and witht = 0.3 andA = 0.5 we obtain the following global
optimal results of Eq. (3.5b),
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0526 Q764 0183 0.677 Q660 0254
1101 0198 1101 0.678 Q187 0584
-0.027 0859 1253 0.002 0682 1251
B%ili-03 =|-0.139 -0.016 —0.040|.B5il1-05 ={0.000 Q000 QOOO|-

0441 -0.090 Q215 0.231 0.000 0.157
0.144 0188 -0.490 0.000 QOO0 Q000
0.000 Q000 Q000 0.000 Q000 Q000

We can see that the solutionsB¥;|,-o3 andB3,|,-05 are row-wise sparse, amg},|i—os is
more sparse tha;,|,—03. With these structural results, we can selects relevamiifesin

the multi-task regression.

3.2.3 Group LASSO
We can also specify the structures by groupsgroup lasso we are interested in

solving the following problem,

i — v — in12 g
mind(8) = lly - 3, > XBilF + A, (3.6)
g ieg

whereX = [x1,x2,---,xP]. In (3.20), we assume that the features of a data pgintdered

in groups,
g1 92 gk
—
XIT = [X|l’ X|29 Tt X!glla X!gl|+1a ) X!g1|+|gZ|a ) le], (37)
whereg;, 0o, - - - , gk areK groups of indexes ranging in [2,-- - , p] and|g;| is the size of

groupg;, j=1,2,--- ,K.
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We continue to use the sameand the first column o¥ asy and the following

grouping to specify a group LASSO problem in (3.20).

O1 92 O3

and the corresponding results of group lasso with1 is

. g1 92 g3
B =[0,0,0,0.17,0.14, 70,0 .

The structural sparsity of group lasso is similarfigf, norm of multi-task regression
discussed in previous subsectiom. for some of the groupsg{ andgs in this specific

case), the entire group are zeros.

3.2.4 ¢,/t,-norm: An Explicit Approach

However, the purpose of the convex norms is to approximatec#rdinality. In
feature selection problems, the feature we are interestista subset of the whole feature
space. For this purpose, the most natural constraint isattenality constraint.

To directly solve this problem, we propose the explfgjtt, regularizer in this chap-
ter. For a matriXA = (A;;), thet,/¢o norm is defined aBAlle, ., = 2 ll X; Ai2j||0, where for
a scalarx, |[Xllo = 1L if x # 0, |[X|lo = O if x = 0. For a vecto, the groupt,/fo norm is
2 I11XClllo-

Due to the dificulty of £,/¢, norm, instead of using convex norm for approximation,
we develop a novel general optimization framework to sahesihduced problems by in-
troducing an auxiliary function. The major advantage of auxiliary function method is

that it induces an extremely simple optimization problemohitan be decoupled as a sum

of loss for grouped variables.
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3.2.5 Towards Deeper Understanding by Structural Sparsity

One of the basic task in machine learning is to estatdisturateclassifiers, which
can be used to predict some unknown knowledge. The accusagften estimated by
cross-validation, of some other empirical studies. Howesech predictors are, in most
casesblack boxesi.e. the only output is the classification or regression resoltimg else
is obtained (in an interpretable way). For example, in amcglpnachine learning study,
we might use the functional MR images or image sequencespas amd try to classify
whether the person is looking at an image or reading a seatéme might try to develop
more advance techniques to push the accuracy. However,isvtieg next step? Without
the investigation of the hidden mechanisms of the braintfans, few could be done in an
meaningful way. Byhidden mechanismse mean explore avhite boxunderstanding of
the object we are interested. For example, we might be istisdldhe memory mechanisms
of the visual cognitions, such as, which parts of the brasmrasponsible for the visual
memories, which pars are for long term memory, which pagsf@ar short term memory,
etc. A block classifier would not answer such questions.

However, on the other hand, by studies in previous cogngmence, we know that
the brain areas have clear and natural structuré&rdnt areas exhibit fierent functions.
Thus we can investigate more details mechanisms of humamsksg making use of the
the functional grouping in brain tissues, which leads tqp@e@nderstanding of our human
beings.

Notations In this chapter, we use the following notatio§g,, B) denotes the inner

product of two matrixA andB with the same siz&A, B) = 3;; AijBij. £o norm of a scale
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x is defined asl|xllo = 1 if x # 0, |IXllo = 0 if x = 0. X2 = Xj; Xizj is the Frobenius norm.

IXI = Xl = /3 xi2 . IXlle = X IXil. €2/€1-norm of a matrixA is

Al = > > A2, (38)
i i

{>/t,-norm was first proposed in [35] as rotational invariéninorm for the purpose of
robust subspace learning. It is a vahdrm because it satisfies the triangle inequality
Allz,e, + 1Blleyse, = 1A+ Bllg,se, @and two other conditions. On should notice that in literacy
(e.g. [57]), we also use thg - ||, norm, which is defined afiAll,q = max [|AX]|p/[IXllg-
And notice that thigp, g-norm (with p = 2,q = 1) is different from the one we used in
our chapter. Thus we usé;1-norm” instead of “21-norm” to distinguish them. How-
ever, {,/{p-norm is not a valid norm because it does not satisfy the ipesscalarbility:
l@Alle, e, = |llAlle,;e fOr any scalaw. The term ‘horni’ here is for convenience. Another
structural norm we are interested in is the gréf#, normy., . /Zieg X2 = 2 IIX9ll, where

g here is groups of the indexesxifThe corresponding groufy/£o norm is 3 |[[1x9|/lo.

3.3 Related Work

We begin with a brief discussion of the related work.

3.3.1 Related Sparsity Models

LASSO (Least Absolute Shrinkage and Selection Operdtbf)mposes flat; spar-
sity regularize on the model and is a natural yet simple wasetect related variables.

A cousin to the Lasso is thlgroup Lassq47], where the covariates are assumed to be
clustered in groups, and instead of summing the absolutesalf each individual loading,
the sum of Euclidean norms of the loadings in each group id.u¥¢hen Reproducing

Kernel Hilbert Spaces (RKHS) is used to measure the groupdittinction, group Lasso
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turns out to be equivalent to learn the best convex comloinaif a set of basis kernels,
where each kernel corresponds to one Hilbertian norm useedalarization [58].

Along thesef; horms approaches, some variants have been developed.dfoplex
Bachet al. employ bootstrap approach to learn multiple Lasso modeldata subsets,
then use the intersection of the active variables to mairdastable feature set [59]. And
Meinshausen and Buehimann use the same bootstrap strateggldct frequent enough
variables. Adaptive Lasso [60] approximate the SCAD perjélty using data dependent
weights with convex constraints.

Another direction of the sparsity is joint covariates satet[48, 50, 51, 53]. These
models consider multi-task learning problems in featutect®n, which incorporate mul-
tiple domain knowledge to learn common covariates.

Besides the linear and convex constraints, other nonlineaalpes are also devel-
oped to derive sparse solutions. Zetal. use elastic net to make the penalty more smooth
and to allow the model to select more variable tmathe number of data points) [3].
Tibshiraniet al. developed the fused Lasso model which favors smoothnerg alatu-
ral ordering of variables [62] and enhance understandinth@factive features in many

applications [63].

3.3.2 Related Optimization Techniques
In most cases of the previous models, the optimization problare convex. Yet,
simple algorithmse.g. quadratic programming, are ndfieient in many real world appli-
cations. Extensive techniques have been developed tetduklptimization problems.
LARS (Least Angle Regression) obtains entire solution pagh, all solution for
all features under all possible regularization parametéry making use of the piecewise
linear property of Lasso [26]. Osboreeal. made uses of the property of the dual of Lasso

problem which leads to new insights into the charactessticLasso estimator and to an
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improved method of estimating the covariance matrix [S6gll&t and Zhang solved the
problem by greedy search [64], while other researcherd to@mploy coordinate descend
and soft thresholdingg.g. [65, 66, 67, 46]. Matching pursuit and orthogonal matching

pursuit are also widely used in the sparse optimizationlprob [68, 69].

3.4 Structural Sparsity via Structural Regularizer
3.4.1 Structural Sparsity Regularizer

A typical sparse learning problem can be written as theotig problem,
n;(in J(X) = f(X) + 20(X), (3.9

wheref is aconvexitting function which measures how good the model fits thecoles
tion, ®(X) is the sparsity regularizer, andis the parameter balancing between the fitting
function and the regularizer. The regularize{X) can be in various forms for flerent

purposes. Here we list 6 of them:

O:(X) = IXlh= ) > Xl (3.10a)
i
©o(X) = IIXllo =), > IXillo (3.10b)
i
®yy(X) = ||X||£2/51:Z inzj’ (3.10c)
i i
OaX) = Xl = Y1 [ X lo (3.10d)
i i
Oer(X) = IXllgesre, = ) 16, (3.10¢)
g
Do) = Xllgrziro = ), 11l (3.10f)
g
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among which Egs. (3.10a) and (3.10b) are for the purposetaglsity and Egs. (3.10c)
— (3.10f) are for structural sparsity.

The purpose of the convex norms is to approximate the cdiyingor example, in
feature selection problems, the feature we are interestesda subset of the whole feature
space. For this purpose, the most natural constraint isattei@lity constraint as presented
Egs. (3.10d) and (3.10f), which are our contributions oa thirection.

These explicit,/{y and groupt,/ £, norm problems are NP-hard. Fortunately, in this
chapter we develop an optimization technique (the Lipgadhitxiliary Function Approach)
by reducing this problem into tractable sub-problems witiah be solved optimally and
efficiently. Empirical results show that our approaches ottper the £,/¢, and group
/¢, relaxation.

For convenient discussion, without confusion, we somesioseX to represent both
cases matrix and vector in Egs. (3.10c) — (3.10f) in the régtechapter. WheiX is a

vector, the Frobenius norm is reduced to £h@orm of the vector.

3.4.2 Optimization Overview
We show later that Eq. (3.9) can be reduced to the followidplem by our Lipschitz
Auxiliary Function approach,

1
SIIX = Al + AD(X). (3.11)

And Eq. (3.11) can be further reduced to the following
1 2
§||X — al” + A¢(x). (3.12)

which has close form solutions in all the sparse regulasilisted above. We will show the

reduction from Eq. (3.11) to Eq. (3.11) in Sections 3.6.ark] 3.6.2.1.
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3.5 Lipschitz Auxiliary Function Approach

In machine learning and data mining, auxiliary function noet is wide employed,
including in the optimization of maximum likelihood estitran [70] and matrix factoriza-
tion [71, 72]. In this chapter, we first present a novel Lipschuxiliary function which is
a variant of the proximal [67] and is a general framework tlvesdhe structural sparsity
problems.

An auxiliary function for problem
min J(X), (3.13)

is a function which satisfies the following,

Z(X,X) = J(X) (3.14)
Z(X,X) > J(X), ¥X,X. (3.15)

Then the iterative updating algorithm is,
X! = arg rr)1<inZ(X,X"), k=0,1,---, (3.16)

whereXK is the result of the-th iteration. Using this algorithm one can easily show that

the objective function value af(X) will monotonically decrease:

I = Z(X, X < Z(X, X < Z(XK X5 = 3(XN. (3.17)

The first inequality (3.17) comes from the auxiliary functiproperty of (3.15), while the
second inequality (3.17) is achieved by the definitioixXbf* in (5.6).
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In the rest of this chapter, without further explanatiealjd auxiliary functionmeans
any function which satisfies (3.14) and (3.15). Notice thaeg any functionJ(X), the
auxiliary functions are not unique.

A function f : R™ — R is Lipschitz continuous with constaptif the following
holds [73],

F(X) < F(R) + X = K, 7F (X)) + gnx _ |2, (3.18)

In this chapter, we consider optimization the type of olyectunctionsf (X) which
is Lipschitz continuous. We propose a valid auxiliary fuoetwhich can simplify norm
regularization to an easier format, and thus the originglulaization problem can be
solved dficiently. We also provide convergent guarantee of the dlgms. If the norm
is convex, we further provide the convergent rate guaraoité®e algorithms.

As the foundation of this chapter, we provide the followihgdrem:

Theorem 3.5.1 Consider the optimization problem in (3.9), if function: fR™™ — R
is Lipschitz continuous smooth loss function with constarth@n the following function

satisfies (3.14) and (3.15),
Z(X,X) = gnx “ AR + AD(X) + C, (3.19)

whereA = X — %vf()”(), and C= f(X) - 2—1p||vf(>~<)||§.

We call the auxiliary function in (3.19) dspschitz auxiliary function
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Proof First we prove inequality Eq.(3.14)

Z(X, X) gnx ~ (X - %vf(X))HE + AD(X) +C

1 1
= Z—pnvf(X)n% +A0(X) + f(X) - 2—p||vf(><)||%
= f(X) + AD(X)

= JX).

Second, we prove inequality Eqg. (3.15) as

ZOX,X) = f(X) + AD(X)

IA

F(X) + (X = X, V(X)) + gux ~ AR + AD(X)

Z(X, X),

where the inequality comes from the Lipschitz continuousdition of Eq. (3.18).

Now settingX = XX in the auxiliary function of Eq. (3.19), the convergencegua
antee Eq. (3.17) lead to the algorithm in Algorithm 1. The togportant features of the
algorithm are (A1)Ain Line 3 is readily available becau$éX) is differentiable (A2) The
difficult non-diterential regularization terr(X) are now handled in Line 4 together with
amuch simplified objectivia Line 4 (as explained in Section 3B), which halesed-form
solutionsand therefore can be easily anfti@ently computed.

From this, one can easily develop new algorithms by utitjzine proposed auxil-
iary function according to the above observations. In thiapter, we provide a series of
examples, including,/¢;-norms, trace norm, anf}/£,-norms.

Further discussions on Algorithm 1
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In general Lipschitz continuous Function is bounded by gaiéc function. How-
ever, the constam is not always easy to determine. This is not a problem in désigthe
algorithm, because we can use an initial guegs @hd update it when necessary. we have

the following algorithm and theorem.

Algorithm 2 The GLAF (General Lipschitz Auxiliary Function) Algorithm.
Require: f(-), 4, ®(), po, Xo, Yy

1. P« Po, X « Xo,)N( «— X,

2: while Not convergedio

3 A X- %vf(X)

4: SolveX® « argmin, [lU - A|I2 + AD(U),

5: if J(XP) < J(X) then

6: X « XP > Lipschitz condition satisfied.
7 else

8: p < yp > Lipschitz condition not satisfied.
9: end if
10: end while
11: return X

Heref(-), A, and®(-) define the learning modg, is the initial guess of the Lipschitz
continues constant, anXl, is the initialization. The only optimization parameter het
algorithm isy, which is set to 1.1 in all our applications. Since the ihigaess of the
Lipschitz continues constap might be too small such that the inequality of (3.18) is not
satisfied, which leads t@&(X") > J(X) (line 8 in GLAF Algorithm). Thus we increasp by
a factory until (3.18) is satisfied. Hence the parametatoes not change the converged
solution, indicating that our algorithm requires no op#ation parameter. Further more,
we have the following guarantee of the convergence for gordahm.

Theorem 3.5.2 For any lower bounded Lipschitz continues function f, Altjon 2 con-
verges.

Notice that we have no requirement on the penalty functioh.of
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Line 4 of theGLAF Algorithm is a sub-problem of optimizing (3.19), which need
to be solved. We fucus on this optimization in the rest of thapter.

Our algorithm makes use of the Lipschitz continues proeeui the objective func-
tions in the auxiliary function point of view. In previouda&d work, researchers have also

developed algorithms using Proximal Gradient Method, ac[9].

3.6 Two Examples of Application

We use group lasso and multi-task learning as two exampliisistrate the appli-
cation of our optimization techniques on non-smooth andeuamvex norms for structural
learning problems.

We first develop a new algorithm using the auxiliary functagrproach developed in
the previous section to solves the group lasso and mukitesning problem. Then we
employ the auxiliary function approach in a more challeggion-convex version of the

corresponding learning problems.

3.6.1 Group Lasso

3.6.1.1 Group Lasso by Lipschitz Auxiliary Function
In group lassewe are interested in solving the following problem,
minJ(B) = |ly — XBIP + A 9, 3.20
1in J(B) = Ily ;Zg Bil Zglll,l? [ (3.20)

whereX = [x%,x2,---,xP]. One simple algorithm to solve the group LASSO problem is
guadratic programmingwhich is not dficient here. Due to the piecewise linearity of the
set of solutions as a function of the regularization pareme{26]. For the group Lasso,

however, the path is only piecewiseffdrentiable, and following such a path is not as
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efficient as for the Lasso. Recently, researchers have beengeétort on new algorithms
to solve (3.20)e.g.[47, 58, 74].

As an example of the Lipschitz auxiliary function, we hergealep a new algorithm
to solve (3.20).

Obviously, sinceJiK:lgi ={1,2,---,n}, (3.20) can be rewritten as,

minJ(B) = ly - XTBI + A; 189, (3.21)

For (3.21) the Lipschitz auxiliary function is

Z(p.p) = Igll.B—aIIZMZ||,B@’|| +C, (3.22)
9
where -
a=p- 2(xx ,s—Xy), (3.23)
and i
C =1ly - XBI? - ZHXXTI;_ XyIE (3.24)

Notice thata andC are constantsv.r.t. B. In order to employ the general framework of

Algorithm 2, we need to solve the following sub-problem,

- n_ P
minJ;(8) = Z(8.5) = 5118 - all* + ﬂZgl 181 (3.25)
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where the constar@ is ignored. Notice that both of th&-norm and¢,/¢;-norm can be

group-wise decoupled:

DB - P + AZ 18I

g
_ E
- 2 (2 — a2 +A|L8g||) (3.26)

rT}jn J3z(B8) =

NI|©T

In general, we have the following,

Theorem 3.6.1 The optimal solution of (3.26) is given by,

0 if 1> pllagll
By = ol _ : (3.27)
plagr %0 1T A< pliagl

The proof utilizes the following lemma (witla = 1/p),

Lemma 3.6.2 The global optimal solution of
1 2
Jw)=yw—a|+mw| (3.28)
is given by

0 if 4> all
u= . (3.29)
fga i p<jal

llall

The proof of the lemma will be given in the Appendix A.
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3.6.1.2 ¢,/ty-norm Group Lasso by Lipschitz Auxiliary Function

In this subsection,we first present the expligitéo-norm Group Lasso, then afffie
cient algorithm is developed to solve the induced optintaaproblem.
In the ¢,/€o-norm group Lasso, we are interested the group Lasso proioléwo

forms,

mind(8) = lly = 3, ) XA+ 3 il (3.30)

g ieg g

and

minJ(e) = lly - ) > XAl
g

ieg

st > IlIBOI < ¢ (3.31)
g

3.6.1.3 ¢,/tp-norm as Penalty

For (3.30) the Lipschitz auxiliary function is
2B.5) = D18 -all> + )" B0 + C, (3.32)
g

wherea andC are defined as the same as (3.23) and (3.24). Then one needigto s

min J2(8) =5 316~ &1 + 4 ) 18Il
9 ) 9 (3.33)
_ ~ _ 2
_Zg](zmg a9 +/1||||ﬂg||||o)-

For this problem, we have the following theorem,
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Theorem 3.6.3 The optimal solution of (3.33) is given by,

0 if a> 2
Bq = A= PRl ,Geg. (3.34)
g if A< pllagll/2

Proof Since (3.34) can be decoupledr.t. G, without loss of generation, we solve the

following problem,

min J(8) = 218~ &l + Al (3.35)

Obviously,¥B8 # 0, ALo(]|B]]) = A. In this case, the minimum of the first tergwnﬂ —al?is
zeros, whepB = a. ThenJ(B) = 4. And if 8 = 0, ALo(||Bll) = 0, andJ(B) = pllall/2. Thus
whenAa > pllal/2, @ = 0 gives the lowest objective value, while< p||al|/2, 8 = a gives
the lowest objective value. Thus, by considering the deliogiproperty of (3.33), (3.34)
gives the optimal solution.

Notice that the solution of (3.34) is not continuous on thermaryl = pllagl..

However, on this boundary, whichever of the two solutionggithe same objective value.

3.6.1.4 ¢»/ty-norm as Constraint

For (3.31), the Lipschitz auxiliary function is

Z(B.B) = glw —aff+C, (3.36)
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wherea andC are defined as the same as (3.23) and (3.24). In order to erAfgoyithm
2, by ignoring the constant ter@ and the positive cdicient p/2, we need to solve the

following constrained problem,

min||8 — alf?
J B

st DB < € (3.37)
g

Unlike, other problems in previous discussion, this probtannot be decoupled with re-
spective tay. However, we provide the following,

Theorem 3.6.4 The solution of problem (3.37) is given by,

g if 1€K=<
B = G- K28 (3.38)
0 if i€ Or(k)> k> &

wherer is the sorting index such thga%®|| > [[a%@]|, - - - ,> [|a%®||, and|la®|| = |/ Zicq, 8.
Proof We rewrite the objective and constraint of (3.37) as,
IB)=B-alP =) 18— %P 2 > A, (3.39)
g g

and
DBl 2 Y <k (3.40)
9 ¢}

For anyp? # 0, ||B%o = 1. In such case, the optimgl; which gives the lowest objective
value isp® = a%. And for anyp® = 0, A9 = ||8% — a9|>. Thus, in order to give the lowest
objective value, we have to select the fiigt (the largest integer not larger th&plargest

A and set the correspondi = a% which gives the solution of (3.38).
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3.6.2 Multi-Task Learning

3.6.2.1 Multi-Task Learning Witld,/¢,-norm Regularization

Let us consider (3.5a). Due to the piecewise linearity ofgbeof solutions as a
function of the regularization parametef26]. For multi-task learning, however, the path
is only piecewise dferentiable, and following such a path is not d@ceent as for the
Lasso. Recently, researchers have been puttifogteon new algorithms to solve (3.5a),
e.g.[53].

As an example of the Lipschitz auxiliary function, we hergalep a new algorithm

to solve (3.5a).

= P
2(B.B) = SIB - Al +/IZ Z B? +C, (3.41)
[ j
where
TR _
A-pg_ XBXY (3.42)
p
and
1 ~ IXXTB — XY|2
C=ZY -X"B|2 - F. 3.43
5| IIE T (3.43)

Notice thatA andC are constants..r.t. B. In order to employ the general framework of

GLAF Algorithm, we only need to solve the following sub-problem,

. P 2 2
mBmEnB—AllFmZ ZB”, (3.44)
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where the constar@ is ignored. Notice that both of th&-norm and¢,/¢;-norm can be

row-wise decoupled:

- _ b LAY 2
minJ(8) = ZZ‘(B” Aij) +AZZ JB?
P 2 i
Z(§||b ~al + A1),
whereB = (bl, b2, .- b'°)T A = (al, a2, ap)T , andx anda are thei-th row of B andA,

respectively. By directly using Lemma 3.6.2, we have

Theorem 3.6.5 The optimal solution of (3.44) is given by,

. 0 if 1> pla
b plla| (3.45)

Peara it a<plall

This gives an ffective algorithm for,/¢1-norm regularization problems.

3.6.3 Multi-Task Learning Witlf,/{o-norm Regularization
In thet,/{o-norm multi-task learning, we are interested the regregsioblem in the

following form,

1 TR|~2 i
min SIY - X B||F+AZ||||b||||o, (3.46)

The corresponding Lipschitz auxiliary function is

Z(B,B) = §||B—A||%+AZ||||b‘||||o+c, (3.47)
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where A and C are defined as in (3.42) and (3.43). Th&hAF Algorithm requires a

solution to the following problem,

mBin Jz(X)

p .
SIB — Al + AZ o'l

Z (gllbi —a|P+ /1||b‘||o). (3.48)

By applying Theorem 3.6.3 we have
Theorem 3.6.6 The optimal solution of (3.48) is given by,

b - 0 if 1> plla|?/2 (3.49)
a if A<plal/2

3.6.4 (¢,/ty-norm as Constraint

One can also impose tifg/{,-norm as constraint,

1 TR(_2
mxlnéllY—X Bl

s.t. Znnb‘nno <¢, (3.50)

The corresponding Lipschitz auxiliary function is equesat to
. 1 .
min Jz(B) = 5B - Alz st Z bl < &, (3.51)

whereA is defined as same as (3.42). Following the similar techsigué& heorem 3.6.4

we have the following,

70



Theorem 3.6.7 The following gives the global optimal solution of (3.51).

_ ai)  j<
X" = I=¢ (3.52)
0 j > &,

T T . o
where X= (xl, X2, .- xp) JA= (al, a2, .- ap) andr is the sorting index such thi™®)|| >

& @, -1l = a @,

3.7 Optimization Algorithm Analysis

In this section, we provide more theoretical propertieswfalgorithms.

3.7.1 Convergent Rate GLAF Algorithm
Theorem 3.7.1 Let X° be the initialization of AlgorithnGLAF and X*,--- X" be the
updating results of first T iterations. Assume that therstexpoint setD and To < T such

that X € D,t =Ty, To+1,--- T, and®(X) is convex orD, then the following bound holds,

PriX ™ — X“lig

J(XT) = J(X) < 20Ty

whereX* is the local optimal of Eq. (3.9) i, pr is the p value in T -th iteration.
The proof will be given in the Appendix B.

Theorem 3.7.1 suggests that when the solution is close toda¢ minimum, the
convergent rate i©(1/t) wheret is the iteration number. The requirement of the convexity
of ®(X) on D is easy to satisfy, since that in a small region around lodalmum, the

norm functions can be precisely approximated by quadratictfons.
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3.7.2 Computational Complexity Analysis
For multi-task learning, the computation cost comes from parts: The computa-

tion of matrixA and the optimization of Lipschitz auxiliary function.

3.7.2.1 The computation &

Ais defined in (3.42). Notice that is ap x n matrix andB is a p x K matrix, where
p, n, K are the number of dimension, data points, and tasks, resggctf pis large, one
can first comput&’ = XTB then comput&XXTB = XY, both of which cosO(npK). If n
is large and we do not want to compX "B in each iteration of the main loop BLAF
Algorithm, we can computXX ™ before the main loop. Then in each iteration, the cost of

computingXX "B is p?K, which isO(1) with respect tan.

3.7.2.2 The optimization of Lipschitz auxiliary function

For ¢,/¢,-norm, the solution of Lipschitz auxiliary function is givdoy Theorem
3.6.5. Itis easy to check that the computational co8X({sK). For£,/{-norm penalty (see
(3.46)) form, the computation cost of Lipschitz auxiliagnttion isO(pK) (see Theorem
3.6.6). And for¢,/{p-norm constraint (see (3.50)) form, the cost of Lipschitzikary

function isO(pK + log(p)) (see Theorem 3.6.7).

3.8 Accelerated Lipschitz Auxiliary Function Optimizatio

Nesterov shows that gradient method is capable to reachaheegent rate of
O(1/1?) [75, 73]. More recently, many optimization techniques destrate that for some
non-smooth function, similar convergent rate can also etk In this section, we de-
velop an accelerated version of GLAF (AGLAF) by followingettechniques in [67] or
[53].
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Again, theAGLAF algorithm requires no optimization parameters (the choice
does not change the convergency of the algorithm). For thasighm, we have the follow-
ing property,

Theorem 3.8.1 Let X° be the initialization of AlgorithmrAGLAF and X2, --- | XT be the
updating result of first T iterations. Assume that theretexassetD and To < T such that

XieD,t =Ty, To+1,--- T, andd(X) is convex oD, then the following bound holds,

2pr|IXTo — X*|12
(T-To+12 °

J(XT) = J(X*) <

whereX* is the local optimal of Eq. (3.9) i, pr is the p value in T -th iteration.
The proof is similar to that in Appendix of [53]. We omit theoof here. The convergent

property of GLAF andAGLAF will be studies in the experimental section.

3.9 Experimental Results

In this section, we validate theéfciency of the presented algorithms. We first test our
algorithm in an SNPs (Single Nucleotide Polymorphismsadat in the 21st chromosome
of H. sapien$, After that four image data sets ( MSRCATE T face databadebarcelona
dataset, and theTrecVideo 200476]) and one music data [77] are used to compare the

efficiency of thel,/{o-norm with ¢, /¢1-norm group Lasso and multi-task learning.

3.9.1 Group Lasso
Data mining techniques are widely used in Bioinformaticghsas [78, 79]. Here

we use the SNPs for the application of Group Lasso.

2http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/z005—03_phaseI/full/genotypes_
chr21_CEU.phased.gz

Shttpy/research.microsoft.cqlen-ugprojectgobjectclassrecognitigdefault.ntm

“httpy/www.cl.cam.ac.ukesearcfdtg/attarchivg facedatabase.html

Shttpy/mlg.ucd.igcontentview/61
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Table 3.1. Objective value, feature recovery recall andipren comparison on SNPs data
under diferent number of selected SNP blocks.

Objective Recall Precision
#Block = 1 hlty Gl Glly Gi6i Gl
10 41679.10 6434.77 29.85 5522 86.96 100.00
15 14816.15 2597.58 49.25 65.67 81.67 93.62
30 1560.54 1513.90 70.15 74.63 75.81 80.51
60 338.58 238.2 85.07 88.06 53.27 58.82

For this experiment, we solve the problem of (3.21) and (3.80 generate the data
matrix X, we select 200 SNPs in the 21st chromosomekl.odapiendor 120 patientsi.e.
Xis a 120x 200 matrix.

In order to generate the grouping of the SNPs, first detedbltheks using Linkage
Disequilibrium (LD) of SNPs, see Figure 3.1 A. We first caltel the LD values of neigh-
bor SNPs:v; = LD(i,i + 1), which is plotted in Figure 3.1 B. Then we cuusing 0.2
to split the 200 SNPs into 79 blocks, see Figure 3.1 C. We usbltuok structure as the
groups in group Lasso. To get the respopsee randomly select 10, 15, 30, and 60 blocks

and we let

N
y:ZZXiﬁi+6,

k=1 iegq
wheree ~ N(0,0.1) is drawn from normal distribution (with = 0 ando- = 0.1) and
N = 10,15,30,60. With theX,y, and the selected groups, we trained the model of group
Lasso using,/¢1-norm andt,/£o-norm.

We evaluate the objective valudly & X7 8||%), the precision and recall of the feature
recovered under fferent number of selected blocks. The results are shown ile Bab.
One can observe that thg/fo-norm group Lasso achieve much lower objective. As a
byproduct, it also generate higher recall and precisioreuttte same number of selected

blocks.
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Figure 3.1. [5] SNP dataset used in our experiment. A: th&dge disequilibrium (LD)
values of pairwise SNPs. B: The LD values of neighbor SNPs. @:blbck structure split

using threshold of 0.2 in B. .
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From Table 3.1 we see thé&i/{, norms are consistently better thgm¢, norms in

all the measurements we are interested.

3.9.2 Multi-Task Learning on SNP Data

In this experiment, we solve the following problem,
min|lY - XTB|Z + AD(B), (3.53)

where either®(B) = |[|Blls,/,, or ®(B) = [IBlls,,. We employ bothGLAF and AGLAF
algorithms to solve these problems. The data is generatéollawing. We select 100
single nucleotide polymorphisms (SNPs) from the 21st hu@aromosome across 120
patients [80], which forms a 100120 matrix (denoted bi{;). Then we randomly generate
a 100x 20 matrix (denoted bf,) and letY, = XTB; + oz, wheres = 0.05 andz ~ N(0, 1)
is a Gaussian noise. Here we are simulating a multi-taskileguproblem with 20 tasks
in which only the selected 100 SNPs are related to the taiet.also randomly select
otherT,, SNPs from the same chromosome to forriax 120 matrix (denoted byp)
and letX = [X[,X]]",Y = Y.. HereX; is relevant to the tasks arxi, is the noise. In
this experiment, we try to recover the correlated SNPs floandY. We setl = 1 and
T, = 300 in this experiment. We apply botBLAF and AGLAF for 200 iterations and
measure the error at each iteration, which are plotted iargi§.3. The error is computed
asError = |IY — XTBJZ/[IY|[Z. One can observe thAGLAFalways converges faster than
GLAFin both cases, even for non-conv&x{y,-norm shown in Figure 3.2(b).

We also compare th&/¢, norm and/,/{, norm under dierentT, = 100 30Q 900.
For each norm and everywe have diterent||Y — XTB||§/||Y||§ values and dferent num-
bers of selected SNPs, which are plotted in Figure 3.3. Wesearfrom the figure using

the same number of SNP%,/ £, norm method gives much lower error.
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Figure 3.2. [5] The convergence &/ ¢,-norm (left), and,/£o-norm (right) forGLAF and
AGLAFmethods..
3.9.3 Multi-Task Learning on Image Data

Here we try to solve (3.53) as multi-task feature leafp., andY .« are obtained as
following. For AT&T andBarcelona we use pixels as features. FirecVideoandMISRC
we evenly divide each image intoxX88 = 64 blocks and compute the first and second
moments (mean and variance) of each color band and totalge®6< 3 = 384 moment
features<'. LetX = [x%,x%---,dP]", p = 384. AndYj = 1 if thei-th image belongs to
thek-th group,Yik = 0 otherwisek = 1,--- , K whereK is the number of groupsAT&T
:n =400 p = 10304K = 40; Barcelona n = 139 p = 1000QK = 4; TrecVideo n =
384 p=3718K =39;MSRCn =591 p=380K =23,Music n=593 p=78 K =6.
We compare the error ¢ — X7 BJ[2/||Y||> under diferent selected number of pixels using
{,/€1-norm andf(,/{p-norm learning, which are plotted in Figure 3.4. For all tlaasets,
{>/te-norm obtains much lower objective thé&sy,-norm.

We also solve the model in (3.50) with= 100Q 200Q--- ,6000. We select three
columns ofX and plot them as images in left panel of Figure 3.5 undéewdint choice of
£. Some discriminant areas are highlighted in rectangles.ekample, the third person

has long hair on the top left of her head, the correspondiag has negative values. For
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Figure 3.3. [5] Error comparisons undeffdrent number of selected SNPs fgf¢; norm
and¢,/f, norm in three synthetic data sets. In each data set, we ad@et)0300 (middle),
and 900 (right) irrelevant SNPs. .

all other persons, this area is not dark, and thus has laiggive values in the decision
functionb, d, whereby is decision weight vector for 3rd person. A heat map of theadev
ance of theb are also plotted in the right panel. From Figure 3.5, one tmeve that the
sparsity of the multi-task learning problem obtained by algorithm is quite consistent
with human interpretation.

We also compare the running time /¢, norm (which is implemented using Eu-

clidian Projection method [53]) and our method in Figure(f3.4The computational time
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Figure 3.5. [5] Visualization of columns oX of solution in multi-task learning with
by ¢,/fp-norm constraint. The left most column in the left panel axaneple im-
ages for each person. From the second column to the last notuenthe results for
& =100Q200Q---,6000. Red color represents positive values, dark blue reptesega-
tive values, and white color for 0. The discriminative areéthe corresponding people are
highlighted by black arrows. Right panel are the variance oler diferent tasks. Higher
variance indicates higher discriminative capability..

is calculated using 10%, 20%;-, 100% of the data. For Euclidian Projection method,
we use the software (version 3.0) downloaded at weB it default settings. For our
method, the computation time includes the gradient contiputand the updating time of
Eqg. (5.6). One can see that the computation time for our gkgnremains approximately
constant with respective to the number of data points whéeguclidian Projection method
grows linearly. These results indicate that our method ishnmore éicient for large-scale

data.

3.9.4 Experiments on TCGA Data
We continue to make use of the TCGA data described in Secti®®.2\We use
the subtype of ovarian cancer as the multi-tasks and asatlysi bio-marker patterns in

discriminating the cancer subtypes. The results indidatldothhas-mir-200candPI3K

Shttpy//www.public.asu.edtjye02/SoftwargSLEPdownload.htm
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have high cofficients to discriminate subtype 1 and subtypgs 2And this is consistent

with results in Section 2.6.5.
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CHAPTER 4
ORTHOGONAL REGRESSION FOR NON-REDUNDANCY FEATURE SELECTION

4.1 Motivations

Recent trends in healthcare and medicine enhance tradiknoaledge driven ap-
proaches with data extracted information, consideredtb@yevith knowledge for making
treatment and other decisions. As more and more comprefeesiR data become avail-
able, a diverse set of clinical features can be construatedpatentially leveraged for
clinical decision support applications. From both theicedtand application perspectives,
feature selection is a key component with a lot of challenges

From statistics and machine learning research, featueetsah provides many bene-
fits: 1) speed up the subsequent learning process, 2) imgrevaodel generalizability and
alleviate the &ect of the curse of dimensionality [81] and overfitting [82].large num-
ber of feature selection methods have been proposed inténatlire [83, 84, 85, 86, 87]
and there are many recent reviews and workshops devotets tofic,e.g, NIPS Confer-
ence [88]. Despite the vast literature on feature selecti@problem is by no algorithms
solved. Many practical feature selection are developetiercbntext of concrete applica-
tions, such as Bioinformatics applications[89, 90]. A syrea various feature selection
methods and applications are presented in Section 4.2.

Our motivating healthcare application and its associatd challenges for feature
selection are presented next.
Motivating exampleEHR data provide a longitudinal view of patients. This tygig in-
cludes diagnosis info such as ICD9 codes, medication infb asarug names, lab results

and symptoms. EMR data have been growing rapidly in quaatiey the past few years,
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and are increasingly considered to be a valuable asset thyéemedical institutions. Pre-
dictive modeling using EHRs for targeted high cost diseaasskcome highly valuable in
modern healthcare. One high cost disease is Heart Failu¥g {[Hhe clinical and societal
implications of HF are truly staggering. One in 5 US citizener age 40 is expected to
develop HF in their lifetime and HF is the leading cause ofditaéization among Medicare
beneficiaries. With the aging population, HF will continoebe a leading cause of health-
care use. The hope is that through mining the longitudinaREtdta, predictive features
can be identified from a large number of input features thi&wd us predict HF with high
accuracy. Furthermore, the selected features should Bargarious (i.e., non-redundant).
Often there is a known set of features (risk factors) thatdd¢a HF. Any additional features
should not only have great predictive value to HF but alsolement to the known risk
factors in order to minimize redundancy.

Motivated by this clinical application, we propose ScagaBirthogonal Regression
(SOR)*! to address the aforementioned requirements. In particB@R has the following
properties:

e Scalable: SOR achieves nearly linear scale-up with respect to the eummibinput
features and the number of samples;

e Optimal: SOR is formulated as a sparse learning problem that can bedsdti-
ciently using alternative convex optimization with thetozal convergence and global
optimality guarantee;

e Non-redundantSOR is designed specifically to select less redundant festuith-
out sacrificing the quality, where redundancy is measuredrbgrthogonality mea-
sure added as a penalty term in the objective function;

e Extensible:SOR can enhance an existing set of preselected featuresimgaatidi-

tional features that complement the existing set but siith &trong predictive power.

IMost of the major results in this chapter have been publighedper [91].
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In order to evaluate our algorithm, we compare other sthtbesart feature selection
algorithms in 9 real data sets from various domains, indgdiene expression, general UCI
benchmark data, and multimedia data. Extensive experahegults confirmed that SOR
significantly outperforms several state of the art featetection methods with respect to
various quality metrics. In particular, SOR achieves asddrmagnitude improvement of
speed compared to several other methods. Besides overglktitine AUC measure, SOR
can also achieve less redundancy and better stabilitynmstef selected features.

As a case study, we apply SOR to a clinical application oniptied modeling of HF.
The study is done on over 20 million real EHR records on 30Kepéd over 7 years from
a large healthcare provider network. The data contain disignmedication, lab results
and HF diagnostic symptoms. The goal is to predict the orfsdFa« months before the
actual diagnosis. In our cross validation evaluation, weex@ increased AUC measure in
comparison to knowledge driven baseline which is providgedlimical experts.

The rest of the chapter is organized as the follows. A briefespon various feature
selection methods and applications are presented in &et¢tib We then introduce our
method and the related optimization algorithms in Secti@n #heoretical analysis for our
method is given in Section 4.4. We demonstrate the qualiysaalability of our algorithm

in Section 4.5. Finally we highlight a case study on EHR dat@é experimental section.

4.2 Related Work

In feature selection, our purpose is to select a subg¢tioformative features where
K is the number of required features. There are two major sablgms in feature selec-
tion. One is the measurement lobw informative a given subset of featuresasd the
other one is how to obtain the subset of features. Given aune@ent of the quality of

features, the feature selection problem is essentiallyr@amatorial optimization problem,
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and is usually solved by an approximation or greedy searcheiheral, there are two types
of feature selection methods in the literature: (1) filterttmes [83] where the selection
is independent of classifiers and (2) wrapper methods [84ravithe selection is tightly

coupled with a specific classifier.

The filter methods evaluate features one by one, then séled¢bpK features ac-
cording to their scores. This type of scheme can be intexgras a greedy approach by
iteratively selecting one feature from the remaining uesteld feature set. Within this cat-
egory, one can implement it using two approaches. Uniafiliering, e.g. Information
Gain, or multivariate filteringe.g. Minimum Redundancy-Maximum Relevance (MRMR)
[90].

Feature selection using wrapper methods provides an atieenwvay to obtain mul-
tivariate subset selection by incorporating the classifieg. directly approximating the
area under the ROC curve [92] or optimization of the LASSCa@teAbsolute Shrinkage
and Selection Operator) model [93, 94].

The learning of non-redundant features has also been dsdus literature. For ex-
ample, mMRMR explicitly prefers low redundant features [@@jd non-redundant codebook

feature learning method was also proposed [95].

4.3 Sparse Orthogonal Regression

This section presents tli&parse Orthogonal Regressi¢BOR) algorithm in detail.

First we will introduce some notation and symbols that wéllused throughout the chapter.

4.3.1 Notations

We useX to denote the data matrix containingobservations on the covariates:
X = [Xg, X2, - -+, Xp] € R™P. Without the loss of generality, we assume all covariatéarsc
are normalized, i.e|lxll. =1 (1 =1,---, p). As we only care about the supervised setting
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in this chapter, we are further given the correspondingaesp vectoly € R", then the

feature selection problem idiaear regressiorundersquare losswhich takes the following

form.

minJ(a). J(@) = Sly ~Xal? = Sy - ) Xl (4.1)
wherea = [ay, a2, -+ ,ap]" € RP is the regression cdiécient vector. The absolute value
of |oj| can be regarded as the importance of covarjate- 1,2,--- , p. If &; = 0, then that

means covariateis not selected.

4.3.2 Othogonality of Features
As nonredundancys one of the major claims of the method we proposed in this

chapter, we first give the definition of thedundancybetween two covatiates.

Definition 1 (Redundancy).Given two covariateg; andx;, as well as their corresponding
regression cogcientse; ande; (which are fixed) as in Eq.(4.1), we define tedundancy
between them as follows

Rij = (aianiTXj)z. (42)

Obviously, ifx; andx; are orthogonal to each other, thehx; = 0 andR;; = 0, indi-
cating that they are totally non-redundantxjléndx; are identical, them x; is maximized.
In this casex; andx; are redundant.

Based on definition 1, in order to obtain a set of non-redundaveriates, we can

minimize the following objective

1
Jo(@) = Slly = Xelf? + § > (axxja) (4.3)
ij
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where the ternd;; R; = (aixiTx,-a,-)2 is the summation of the redundancies over all
pairwise features, anglis a tradef parameter which controls the importance of the redun-
dancy.

In feature selection, we also want the number of selectadresito be as small as
possible, thus we further impose the sparsity penalty térj|a on the objective function.

Then our goal becomes to minimize the following objective.

Ja) = %lly — Xall? + Al + f—i > (X, (4.4)
ij

where||a|l; is thel; norm of : |lelly = 3; le;|. We will show later that)(a) is convex and
develop an fiicient algorithm to minimizel(«) with respect tar.

Here A is a model parameter which controls the sparsity. One caly eshow that
if 1 > max |(XTy)il, @ = O gives the optimal solution of Eq. (4.4). Thus the parameter
has a natural range of © Ama = max |(XTy)i. In the rest of the chapter, without loss of
generalization, we use a normalizédranging from O~ 1, whered = 1 indicate we use
Amay). Once the optimal solution af* is obtained, we use the absolute valuegfifas the
importance of features.

Our method performs particularly well in cases where théjgm includes iden-
tifying a set of relevant predictors from a really large eotion of variables that are not

necessarily independent. We will provide detailed evigegndhe experimental section.
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4.3.3 Preliminaries

In this section we will present some preliminaries on how toimize Eq. (4.4). For

notational convenience, we will use
1 B 2
(@) = Jo(@) = 3lly ~ Xel + Z;(aixﬁxjaj) , (4.5)

through the rest of this chapter. Before diving into the detdirst we need to prove that

f (@) is locally Lipschitz continuoyswhich is defined as follows.

Definition 2 (Lipschitz continuous) [96]. A function f: RY — R™is Lipschitz continu-

ous if forva, b € RY, we can find a constant L satisfying the following inequality
lla—bll < LIIf(a) - f(b)I (4.6)

The function f is calledocally Lipschitz continuousif for eachc € R™, there exists an

L > O such that f is Lipschitz continuous on the open ball of ceaterd radius L.
BL(c) ={xeR":|x-c| <L} 4.7)

In our case, ag () is continuously smooth, the gradient is locally Lipschatmtinuous

[97]. Then we have the following inequality [96].
~ ~\T ~ L ~ 12
f(@) < f(a@) + (- @) Vf(a)+§|la—all , (4.8)
which immediately leads to

f(@) + Al (4.9)
. . .. L .
< f(@) + (@ - @) V(@) + E||a — &) + Al
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In this section, we will employ Eq. (4.10) and derive dhiagent iterative algorithm
which is guaranteed to converge to the global solution oimmizing Eq. (4.4). Denote the

right hand side of Eq. (4.10) Z(a, @), i.e.
Z(a,&)=f(@)+(@-a)" Vf(&)+%|la — &I’ + ||, (4.10)

whereVf is the gradient of . Bringing J(@) in Eq.(4.4) into Eq.(4.10), we can easily find

that
J(a) = Z(a, a) < Z(a, @). (4.11)
Then let@ = o' and
! = argminZ(a, '), (4.12)
thus we have
J@" Y =Z(a" e <Z(a't ) < Z(atat) = I(ah) (4.13)

This suggests that we can iteratively updatby solving problem (5.6) (i.e., minimizing

Z(a, @) with @ = ') to decrease the objective function monotonically.

4.3.4 Algorithm Details
Based on the contents in last subsection, in order to miniBgét.4), we need to

solve the following sub-problem iteratively
minZ(a, o). (4.14)

As f(a') is constant with respect t@, we can minimize the following objective instead
with respect tay

In(@)= (e~ o) VH(@)+ 3]l - 0P+ Al (4.15)
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where the gradient of (@) is
(V@) =[X"Xe]| +8 Zj (X x}) X xjevj, (4.16)
which can be written in its matrix form as
Vi(@) =(G+BAOGOG)e, (4.17)

whereA = aa',G = XTX, ando is the matrix Hadamard (elementwise) product.
Next we will show that the minimization of Eq. (4.15) has @dgorm solution. First,
as||Vf(a')|| is a constant with respect tg then minimizeJ,(«) in Eq. (4.15) is equivalent

to minimize

1 ty2
Im(a) + ﬂHVf(a )

1
212

(a—aﬂTVﬂa5+§m»wﬂF+ IV ()P + Alledly

2

= +Alle]
= all1.
> 1

af—(at—%Vf(a’t))

Furthermore, we can easily prove the following Lemma.

Lemma 1. The global minimum solution of minimizing the following albjee overu

1
J(u) = Sllu - all* + pllull, (4.18)
where wheres = [ug, Up, -+ ,Up]" anda = [ay, ap, - -+ ,ap)" are px 1vectors, is given by
0 if u>|a
b = AER sz
[ail—p

|T~_|ai if < lal
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or equivalently,

Ui = (|ai] — p).sign(a), (4.19)
where(x), = xif x > 0, (X); = 0if x <= 0 andsign(-) is the sign functiongign(0) is
defined as 0 here)

By applying the above lemma, and letting= 1/L,u = a,a = o' - %Vf(a‘), one can easily

obtain the following close form optimal solution for mininmg Eq. (4.15),

@ =([at—%Vf(at)]_ —%) figr([at—%Vf(a‘)D , (4.20)

wherei = 1,2,---,p.

The following Algorithm summarizes the whole procedure wif Scalable Orthogo-
nal RegressiolSOR) algorithm. In the algorithmis a optimization parameter to increase
L when the Lipschitz condition is not satisifed and is set td [2in all experiments. Next

section presents some analysis of the algorithm and it gxtes.

Algorithm 3 SOR (Scalable Orthogonal Regression)
Require: A, Lo, @o,y

1: while Not convergedio

2: ComputeV f (@) using Eq. (4.17)

3 a—a-Vf(a)/L

4: Solved « arg min, || — al> + Allall, (Eq. (4.20))
5. if J(@) < J(a) then

6: o — a

7: else

8: L«—yL

9: end if
10: end while
11: return «
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4.4 Analysis and Extension

In this section, we will provide some analysis and extersiaithe SOR algorithm.

First we show that the objective Eq. (4.4) is convex with ez$poc.

4.4.1 Convexity
We have the following theorem.
Theorem 4.4.1 (Convexity). Eq. (4.4) is convex w.r.ta.

Proof: See Appendix C.

Based on the convexity, we can prove the following theoremghvkerves as the founda-

tion of the follow up analysis on convergence rate.

Theorem 2 (Lipschitz Continuity). f in Eq. (4.5) is locally Lipschitz continuous. Furth-
more, there exists a global L such that Eq. (4.5) is Lipsatotatinuous aty; with Lipschitz

continuity constant L, where, is the solution of Algorithm 3 at the t-th iteration

Proof: f(a) is continuously smooth, thus it is locally Lipschitz [97Qn the other hand,
f (@) is convex and lower bounded, then theSet {a : f(a) < f(a?)} is close convex set.
Obviously,a; € S. As f(a) is locally Lipschitz with constant, ata, L = maX,.s L, IS

obviously the global Lipschitz constant for the solutiofig\morithm 3.

4.4.2 Convergence

As discussed in section 4.3.3, SOR can monotonically dsertge value ofl(a),
and it is obvious thafl(e) is lower bounded by zero, thus SOR will converge. Based on
Theorem 1 and 2, we can prove the following theorem analyttiegconvergence rate of

Algorithm 1.
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Theorem 4.4.2 (Convergence Rate of SOR). Algorithm 1 converges to global solution of

Problem in Eq. (4.4). Furthermore,

Lrllao — @I

J(at) - (@) < >T )

T is number of iterations in Algorithm 3, is the value ol in the last iterationa™ is the
global optimal of Eq. (4.4), and is the output of Algorithm 3.
Proof: See the Appendix D.

Theorem 3 also guarantees that Algorithm 3 converges tddtalgsolution, sincd(at) -
J(a*) - 0 asT — o (notice thatLt < L because of the locally Lipschitz continuity of

f (@) guaranteed by Theorem 2.

4.4.3 Accelerated Algorithm
As it is obvious that theél(«) in Eq. (4.15) is convex, we can also derive an accel-
erated algorithm shown in Algorithm 4.4.3, with much higleenvergence rate. For the

accelerated SORASOR), we have the following theorem.

Theorem 4 (Convergence Rate of aSORAlgorithm 1 converges to global solution of
Problem in Eq. (4.4). Furthermore,

Lrlleo — |7

J(at) - (@) < 572 ,

T is number of iterations in Algorithm 4.4.3; lis the value of L in the last iteratiom; is
the global optimal of Eq. (4.4), and; is the output of Algorithm 3.
The theorem can be proved using similar tricks as in [98], wadmit the details

here due to limited space.
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By comparing the convergence rate of SOR and aSOR, one shotte tivat the
gap to the optimal solution in aSOR decrease%awvhich is much faster than in SOR
with % whereT is the number of iterations. We will demonstrate the cornercg speed

comparison of these two algorithms in the experimentai@ect

Require: 2, po, @o,y
1. P« Po, @ <« @, «— @o,@ «— @, « 1,
2: while Not convergedlo
3 aen-=-Vi@m/p,

4: Solvea « arg min, |l — al?> + Allall; (Eq. (4.20))
5: if J(@) < J(n) then

6: ne—a+2(-1(a-a)/(l+ +1+472)

7: a —«a

8: C— 1+ 1+47%))2

9: else

10: pevyp

11: end if

12: end while

13: return «

4.4.4 Computational Complexity

We will analyze the computational complexity of SOR in thesigon. Specifically,
solving @ at Step 5 in Algorithm 3 need3(p) time, wherep is the dimension of. The
computational bottleneck of the Algorithm 1 is the evaloatof the gradient off (@) in
Eq. (4.17), which need®(np?) time at the first glance. However, we can develop a more
efficient way to obtain the gradient @(np) time. Specifically, we can first compuBe =

X © (a€'), wheree = [1,1,--- 1]" with proper size. TheB,; = a;x| wherex is the(-th
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Table 4.1. Complexity comparison of SOR, Information Gain)(ICARS, and mRMR.
For sparse features,is the average proportion of nonzeros.

Dense
SOR IG LARS mRMR
Time np np np np®

Storage np np np+ p?

Sparse
SOR IG LARS mRMR
Time  anp anp ng anp®
Storage anp anp anp+p?>  anp

element ofx; or b; = a;x;, whereb; is the j-th column ofB. Obviously, the computation

of B only need€D(np) time. Then

T T T 2
Zj (a’ia'in Xj)Xi Xjaj = a/i(Xi Zj bl) ,

the summation off = };b; takesO(np) time, which does not depends on the index
Notice that computingv only requiresO(n) time. One the other hand™Xy = XT(Xy)
also require©(np), thus the whole complexity of computing the gradier®{®p).

We also compare the computational and storage complex®pD&t with some other
state-of-the-art approaches (Information Gain, LARS, aRMR), which are summarized

in Table 4.1.

445 SOR with Preselected Features

In some real world scenarios, we may already have a set afrésapreselected
with prior knowledge. For example, physicians in hospitedse years of experience on

some specific diseases, they have their own knowledge orhvibatures (factors) are
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more important. In this case, we may want to select a set ¢fifes: (with data driven
approaches) complementary to those preselected features.

Fortunately our SOR algorithm can easily adapted to ina@atecthis prior knowl-
edge. Assume the preselected feature sftasid the remaining feature setds then we
can partition the whole data matrix Zs= [Xp, Xg], WhereXy, Xq only contains the ob-
servations on the features and@ and our goal is to select features fradn For the

feature sef®, we first compute their regression ¢beients with simple least squares:
ap = argminlly — Xpall? = (X, Xp) IXLy. (4.21)

Then we define

1
fo(@) =5ly = Xqal”

+§ Z(a’iX;erOJj)z+ Z (aiXiTXja/j)z ,

ijeQ ieQ.jep

wherea = [ay,,a)]" is the concatenated regression fiieéent vector witha,» computed
using Eq.(4.21). Note that there are two terms to punishahtufe redundancy. One mea-
sures the feature redundancy selected f@rthe other measures the redundancy between
the feature selected frod and the preselected feature $&tThen we can minimize the

following objective with respect tay,.
Jp(@) = fp(a@) + Allelz. (4.22)

Comparing Eq. (4.4) and Eqg. (4.22), one can immediately ssteMdgorithm still applies

for the minimization of Eq. (4.22). The only step we need tarafe is the computation of
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Table 4.2. Data Description

Data # Pos #Neg #Sample #Features Type
heart 150 120 270 13 uUCl
vehicle 416 430 846 18 UCl

coil 720 720 1440 1024 Image

jaffe 108 105 213 4096 Image
SRBCT 40 43 83 2308 Gene Expression
MLL 24 48 72 12582 Gene Expression

gradient. Notice that in this optimization, is a constant foj € #. The corresponding
gradient is

Vip(@) = (G + A @ Gq 0 Gg) @ + B(X Xpap) © .

4.5 Experimental Results
In this section, will first demonstrate the convergenceS@fRand aSORand the
scalability of the algorithm, then evaluate the quality &sered by AUC and stability) and

orthogonality of the features selected by our algorithm.

45.1 Datasets

We evaluate our algorithm on various kinds of data. The finstl ks the general
datasets from UCI data mining and machine learning repesig®], which include heart
and vehicle data sets. The second kind of data are imageiuletajing Columbia object
image library ( coil) [100] and the Japanese Female Facipréssion ( jdfe) Database
The third type is gene expression data including MLL [101d &RBCT [102]. We sum-

marize the data description in Table 4.2.

2Available at http/www.kasrl.orgjaffe.html
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4.5.2 Convergence

We now present the experiment on the convergence speed uineFHig2. For our
algorithms 3 and 4.4.3, we sét 0.1 andB = 0.1. Figure 4.2 shows the objective function
vs. number of iterations. It confirms that aSOR convergeshiaster than SOR on all
data sets Next we will present the evaluation results compared tewotbature selection

methods.

4.5.3 Baselines
We compare with several feature selection methods with degfgrent design:
¢ InfoGain: Information gain is a greedy approach that usetuaiunformation to
select features.
e LARS gives the entire solution path of LASSO. For this methvael yank the features
according to their order of turning from zero to nonzero i@ $olution path [93].
¢ MRMR: mRMR is another widely used feature selection method lwhims at ob-
taining a set of non-redundant features by greedy seargh [90
We have witnessed many other feature selection methodshvetne designed for
various purposes as we discussed in Section 2. The purpase iexperiments here is
to compare with the close related and representative featelection methods in each
category. Since we focus more in feature selection methesiguded for general purpose,
some other methods designed for specific classifiers (SUSVESRFE [103, 104]) are

not considered here.

4.5.4 Scalability
To test scalability, we generatefidirent datasets by subsampling from a large dataset

by varying the number of samples and features. The data depeparameters include the

3We only present the results on 3 datasets, but the same teesidton others
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number of featurep and the number of samples Figure 4.1 shows CPU time \sor n.
For our method, we use the following stop criteria. Jf £ J*1)/J' < 107° then we stop
the algorithm, where)' and J*** are the objective function values at théh andt + 1-th
iterations, respectively. For the other method, we usedfeudt settings. We observe aSOR
is orders of magnitudes moréieient than LARS and mMRMR. Among them, only aSOR
and InfoGain can apply to large datasets with over 10K fegstand samples. In particular,
despite its sophisticated optimization mechanism, aSOfeaes similar computational

performance to InfoGain, which is a very simple and greedihou:

N
ol
N
ol

o —+&— InfoGain —&— InfoGain
5l ; ‘=y-'LARS | | 2l | ~V-'LARS
- A - aSOR - A - aSOR
~¢* mMRMR ~¢ mRMR

g
o

g
o

CPU time(s)
=

-
\,

4

CPU time(s)

: . ©
05 : e 1 0.5} . 1
3 7 O e a4
o= V o -
0 B - &) o= &
0 500 1000 1500 2000 2500 3000 3500 1 2 3 4
# Features (n fixed to 5000) # Samples (p fixed) 4

Figure 4.1. [91] CPU time comparison of Information Gain ¢@&in), LARS, aSOR, and
MRMR. Left: fix he number of samples to 5000, and vary the numbéFatures. Right:
fix the number of features to 400, and vary the number of sanple

455 Classification Accuracy

In all the comparison evaluation, we conduct a standarcd8ftsplit of the data at

random at T times (in our case=20).
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—*— SOR
—+—aSOR

20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
# iterations # iterations #iterations

Figure 4.2. [91] Convergent rate comparison between algarBOR and aSOR on three
data setsyehicle(p = 18 n = 846),coil, (p = 1024 n = 1440) andVILL, (p = 12582n =
72), wherep is the number of dimensions ands the number of samples. .

Table 4.3. [91] AUC and feature stability comparison with  BQARS, mRMR, and
Information Gain. The best results on each data are higielehim bold.

Our LARS MRMR Information Gain

AUC Stable AUC Stable AUC Stable AUC Stable
MLL 0.990t 0.0240.579 0.97%0.044 0.450 0.9650.054 0.246 0.9660.0470.589
PROS0.96% 0.041 0.8420.956+0.044 0.794 0.9440.056 0.422 0.9590.046 0.755
SRBC0.990+ 0.025 0.7740.978:0.039 0.699 0.9660.059 0.352 0.9460.066 0.486
coil 0.931 0.0510.671 0.91%0.053 0.509 0.9150.041 0.645 0.8960.0460.689
hear 0.846+ 0.0580.935 0.77%0.0850.9380.827%0.057 0.737 0.7850.084 0.858
isol  0.829+ 0.0430.853 0.7980.053 0.716 0.8080.059 0.436 0.7140.0770.884
jaf  0.98% 0.024 0.5120.954+0.057 0.346 0.9760.027 0.350 0.9450.052 0.319
vehi 0.891 0.047 0.9910.846+0.055 0.918 0.7760.082 0.964 0.7780.045 0.893
yale 0.778: 0.103 0.2880.709:0.105 0.250 0.7360.082 0.147 0.7060.097 0.154

Classification accuracy is captured in terms of Area Under €(AUC) measure.

To compute AUC, we use a SVM classifier with Gaussian kernel:

Ly 12
_||X|*XJH

Kij =e 269 | (4.23)

wherex; andx; are data samples armdis the average of pairwise distances among all
the data samples aradis chosen from [2,272,271,1, 2%, 22, 2%]. The SVM trade & pa-

rameterC is chosen from [@1,0.1, 1,10, 100]. For all data and feature selection meth-
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ods, we report the best results among all the combinatiorssarfdC. We directly use
the LIBSVM [105] software in our experiments. For SOR, we faertlthoosel from
[0.001,0.01, 0.1, 0.5] andg from [0.001, 0.0, 0.1, 0.5].

We compare the average of AUC in Figure 4.3 while varying thnber of features
selected. We observe the AUC of SOR is clearly above mosteobther methods. More
specifically, among all 119 comparisons, SOR outperforrastst of the other methods
in 88, tie in 17. Our method is only worse than the best of theoiethods in 4 cases.

To compare the variability of the AUC, we present the averagkstandard devia-
tion of the AUC when 5 features are selected in Table 5.1. Fdha@ 6 data sets, SOR

outperforms the other methods in terms of AUC.

jaffe
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Figure 4.3. [91] AUC comparison on 6 data setedrt, vehicle, j#e, coil MLL and
SRBC]). .
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4.5.6 Stability

We are interested in two types of stability measures: 1)cHele stability measures
the overlap of selected features when we run it dfedent subsets of the data, and 2) Pa-
rameter stability measures how much the performance vasiege change the parameters
of the algorithms.

Selection stability is defined as

T T
Stabilty = = 1)2 Z 8 (4.24)

i=1 j= ]:ﬁl

whereT is the number of runs. Table 5.1 shows the selection stabilitolumn “stable”,
in which SOR performs the best in 5 out of 6 datasets.

In terms of parameter stability, SOR requires only two patarsi ands. We show
that our method is stable to those parameters in Table 4 &enthe maximum, minimum,
average, and the range of the AUC are reported. One can eldbatthough the parameters
change dramatically in wide ranges, the AUC measure onipgés about 1% — 5% for
most of the data except for the heart, PROSTATE, and yaleB8sds. In our experiments,
we looked into the value of which gives the best AUC, and we found that the typical value
has a relative narrow range (around 0.1) after the norntadizaindicating thatl is not a

sensitive parameter.

4.5.7 Redundancy
Next we compare the redundancy of the features selectedileyafit methods. Re-

dundancy is measured by orthogonality between sets oftedlézatures:

X} Xj
il 111l

Redundancy= ﬁ Z (4.25)

jeS.i#]

102



Table 4.4. [91] Stability to parameters of SOR. Reported aathCs of SOR whilet and
B vary from [0001,0.01,0.1,0.5]

Data min max average range
MLL 0.9480 1.0000 0.9900 0.0520
PROSTATE 0.8571 0.9939 0.9514 0.1369
SRBCT 0.9789 1.0000 0.9969 0.0211
coil 0.9441 0.9836 0.9641 0.0395
heart 0.7572 0.9532 0.8514 0.1959
isolet 0.8542 0.9073 0.8734 0.0530
jaffe 0.9849 0.9993 0.9939 0.0144
vehicle 0.8912 0.9353 0.9149 0.0441
yaleB 0.6656 0.9088 0.8003 0.2432

goejﬂ 0.6 T X T 03

Eo.zt 04 T x - 02

0.(2) 2 5 10 0.2 jfzi 5 10 O-(l) 2 5 10

# Features

# Features

[ N SOR I mRMR ] LARS I InfoGain|

# Features

Figure 4.4. [91] Redundancy comparison of features seldpte®lOR, mRMR, Lars, and
Information Gain (InfoGain) 6 data sets (heart, vehicl&gjacoil, MLL and SRBCT) .
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It measures the average cosine similarity between all pdhifsatures. As shown
in Figure 4.4, SOR clearly has the lowest redundancy in ssdefeatures across all set-
tings. In particular, the only scalable method InfoGainfpens badly with respect to this

measure.

4.5.8 Applications to TCGA Data

We perform the experiments on the data described in Sectos 2nd apply the SOR
algorithm. BothPI3K andhas-mir-200care selected but the correlationPI3K andhas-
mir-200cis low. This result is consistent with multi-task learningdaalso indicates that
low redundancy dose not destroy the results. Further mioea@hiances the interpretability

with higher accuracy.
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CHAPTER 5
GRAPH EVOLUTION VIA SOCIAL DIFFUSION PROCESS

5.1 Introduction of Graph Clustering

Data clustering, assignment, and dimensional reductive baen the focuses for ex-
ploring unknown data [106, 107]. Among them, graph-based daalysis techniques have
recently been investigated extensively in traditional hiae learning problems. One rea-
son for the popularity of graph-based approaches is thallaeailability of graph data. For
example, social objects (users, blog items, photos) arergesd with relational links, and
for objects represented in Euclidean space, one can elsdina graph by using similarity
measurementse(g. Gaussian kernels). Graph-based approaches fall into ttegaaes.
The first one isspectral graph partitioningnethods which address the group detection
problem by identifying an approximately minimal set of eslge remove from the graph
to achieve a given number of groups [108, 109, 110, 111]. ésgve results have been
shown in these methods which have been applied in many gaaeipplications. These
approaches relax NP-hard combinatorial problems intoicootis optimization problems
which can be solved by eigenvector decompositions.

Another approach category stochastic modeling In stochastic models, the ob-
served data are assumed to be drawn from some distributobigemerative assumptions
[112, 113, 114, 115, 116]. These approaches often lead toxmmm likelihood problems
that can be solved by Expectation Maximization (EM) or apprately Variational EM
algorithms [117].

Among these models, the Chinese Restaurant Processes (CR&ldgcarsequence

of customers coming to a restaurant according to the colmrenf Chinese people: one
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tends to stay in a place where there are more people. Eadnoeisseeks some previously
occupied table and the probability is proportional to thenber of customers already sitting
there. The new customer also sits in a new table with proibalpfoportional to some
parameter. CRP and its variations have been theoreticallgm@pitrically studied in many
previous researches [115, 116, 118, 119]

In a CRP mixture, customers are data points, and customeng sittthe same table
belong to the same cluster. Since the number of occupiedgablrandom, the resulting
posterior distribution of seating assignments providessaibution of clusterings where
the number of clusters is determined by the data.

In this chaptet, we propose a novel stochastic process which further cerssitie
social events among social members as a metaphor of thesictstochastic process for
broad range of data. We call this process as Soci@lision Process. The basic assumption
in this model is that two social members tend to communiddkesy are familiar with each
other or have many common friends, and that the more timgscthamunicate, the more
they are familiar with each other.

Based on our model, we derive an iterative evolution algoritb model the social
structures of the members. The major characteristic of arighm which difers from
most of previous research is that we do not need to imposet kzdeiables which leads to
maximum likelihood estimation. Instead, our evolutionakyorithm iteratively generates
a new relational graph among social members in which theakstuctures become more
and more clear, please see Figure 5.1 for a toy example. dreg@mple, our algorithm
starts from a random binary network and ends with clearlyasspd subgraphs.

The similar algorithm which is closest to our intuition is NMav Clustering (MCL)
[121] from the point of view of graph evolution. However, MC& mot suitable for the

purpose in this chapter. We perform the MCL evolution on theesgraph in Figure 5.1

IMost of the results in this chapter have been published iepg20].
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(a) Initialization

(e) 15th iteration (f) 20th iteration

Figure 5.1. [120] Graph evolution results on the grid toyada&sed on Social Busion
Process. Each point (blue dot) represents a social memté¢hardge between two social
members represents the familiarness between them. (agrrithieal graph. (b)— (f): the
condensation results of the 1st, 3rd, 10th, 15th, and 26thtibns of our evolution algo-
rithm. The darkness of the edge represents the familiatnetsgeen the social members
(the darker the higher).. 107



(a) Initialization

(d) 10th iteration

7 W ———y
(e) 15th iteration (f) 20th iteration

Figure 5.2. [120] Graph evolution results based on Marko\steling. .
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(a) and the results for MCL are demonstrated in Figure 5.2.canebserve that the result
in Figure 5.1 is much more reasonable than that in Figure 5.2.

The results of the evolution algorithm can be viewed as aiapesse of théMatthew
gffect in which “The rich get richer”. This is a general phenomenmonature and societies
[122, 123, 124]. One interesting observation in our alf@ponitis that the evolution of a
graph by the SDP enhance thealitiesof the graph in a wide range of applications. This
phenomenon suggests that the SDP assumptions are natgeaienal. Due to the broad
availability of graph-based data, our new model and algorihave potential applications

in various areas.

5.2 Social Ditusion Process for Friendship Broadening
In this section we introduce the Socialfldision Process based on the notations of

graph.

5.2.1 Preliminaries
Let G = {V, W} denote an undirected weighted graph, whére {vi, Vv, -,V } IS
the set of nodedl)/ ¢ R™" is anxn matrix, andW; denotes the weight of the edge between

nodesy; andv;. W;; = 0, if there is no edge betweenandy;.

5.2.2 Social Events and Broadening of Friendship

We consider the following scenari& andB are friends. Supposg brings a friend
A: and meets witlB. Now A; andB become known to each other.Bfalso brings a friend
B to the meeting, i.e., the fouA( A, B, B;) meet. TherA; become known to botB also
B¢, i.e., the friendship circle foA; is broadened. This happensAoB, B; as well.

In graph terminology, the initial friendship betwednand B is represented by an

edge connecting andB. The broadened friendship betwegnandB (assuming they are
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not connected at initial stage) has a connection strengtieatiere between 0 and 1. In
other words, if two persorS andD don’t know each other, the existence of a mutual friend
connect< andD. Further more, even A andB are friends (i.e., an edge exists betwéen
andB), their friendship is further enhanced due to the existefceutual friends. Our main
goal is to formally define this friendship broadening precasd compute th&iendship
enhancement probabilityWe expect this enhanced friendship provide a more cleaalsoc
community structure as shown in Figure 1.

Formally, we define the following events among social mesibgr) Date(Vi, v;): V;
andy; initial a dating. (2)Bring(vi, v): Vi bringsv after the evenDate(v;, v;) for somej.
(3) Meel(vp, Vy): v, andvy meet in the same table.

We further impose the following rules: (1) Date(v;, v;) happensMee(v;, v;) hap-
pens, or (2) IDate(v;, v;) andBring(vi, vi) happenMeelv, v;) happens. (3)IDateg(vi, vj),
Bring(vi, i), andBring(v;, vi) happenMee(v;, vi) happens.

Here we assumbateg(v,, v;) is equivalent tdate(v;, vi) andMee(y, V) is equivalent
to Meetv,, w).

We use the following to denote the rules above

Rule 1:  DateVv, V) = Mee(v, V;) (5.1)
Date(vi,vj)

Rule 2: = Meel(v;, ) (5.2)
Bring(vi, W)
Datg(vi, v))

Rule 3:  Bring(vi, W) = Mee(v, ) (5.3)
Bring(vj, v)
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5.2.3 Social Dffusion Process

Now we are ready to introduce the SociafiiDsion Process. The process starts with a
graphG = {V, W} whereV = {vi,V,, - - -, V,} denotes a set of social members aidenotes
the familiarness between social membeies, W; represents the familiarness betwagn
andvj,i,j =1,2,---,n. We assume thati; = W;i. The SDP happens as following,

(1) Choose a threshold~ U(0O, 1) whereu = max; Wi; andU denotes the uniform
distribution.
(2) Date(vi, vj) happens with a constant probabiliyf W;; > t.
(3) Bring(vi, vi) and Bring(v;, vi) happen with probabilityp(i, k, t), p(j,l.t), respectively,

where

L if V € M,t

p(l, k, t) — [Nitl i
0 otherwise

1 :
N if i € Nji

p(j.1.1) = :
0 otherwise
Nt =1{q: Wq > t}, Nj: = {q: Wjq > t}, and| - | denotes the cardinality of the set.
(4) Apply rules (1)—(3). For anp, g, if Mee(vy, V), Wpq «— Wpq + ap.
The threshold can be interpreted as the importance of the dating event fiferals

do not date if they are not familiar with each other enoughegholded byt)2. When a

social member brings some friend,/tlee only considers those friends who are familiar

2The reason why we use a thresholdingVié§ instead of directly usingVi; for eventDate(v;, v;) is
following. Assume we want to date with some one on the weddfrigoyal wedding for William and Kate,
who are we going to date? Probably one of our most importanrtds. In the same event, if we want to bring
guest to meet our friend in the date, who are we going to britgbably another one of our most important
friends. In reality, social events happen according tortimeportance, denoted as threshold the chapter.
We believe this model is much accurate than directly u¥ifgas the probability oDate(vi, v;).
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enough with (thresholded kY. The setN|; is the friends the social membercan bring
with this threshold. Eqg. (5.4) indicates that social memhechooses friends inV;; with
uniform distribution. Notice that there are two parameitetfis models anda. In section
3, we will introduce an algorithm based on the SDP, in whiaghttho parameters can be

eliminated by natural normalization.

5.3 Graph Evolution Based on Socialffdision Process
5.3.1 The Evolution Algorithm
We first denoteA' as the following
1 if VVij >t

(A j = (5.4)
0 otherwise

wheret is a positive threshold. Consider two social membeasdv;. The events in which
they meet each other can be divided into three cases:

Case (1) Datg(vi, v;). In this case the probability that they meet is
P(Mee‘(vi,vj)) = (5(At)ij.

Case (2).Datg(v;, k) andBring(w, v;). By definition| Nyl = X Atjk = di, whered,

is the degred&in A'. In this case,

P(Mee(vi s Vj))

= P(Meety, vj)|Date(v;, W), Bring(vi, v;)
k
{
J

Ay
= 05" = S(ADAY,,
k A
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whereD = diag(dy, dp, - - - , dy).

Case(3) Date(w, Vi), Bring(vi, vi), andBring(v, v;). Similar with case (2), we have

de d
= S(ADA'DAY;.

t A
P(Meetv.v) = 3 a(A) Skt
ki

By summing up the three cases, we have

P(Meetv;, v;))

= OA; + S(AD'AY); + S(ADTAD A,
From the definition of updating &, we have
E(AW;)
=aud (A + (ADA); + (AD'ADAY;) (5.5)
éauéMitj.
Here Aj; + (AD'A);; + (AD*A'D'A’);; is denoted byMj;. This suggests that the ex-

pectationE(AW;) is proportional toM}. In our implementation we normalizél}; by

Mj, < M}/ iy M}, which leads to the following algorithm,

|/J'H
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Algorithm 4 W = GraphEvolution (W)

Input: GraphW

Output: GraphW

= max; W, W =0

fori=1:Tdo
t=iu/T
CalculateM! using Eq. (5.5)
NormalizeM" : M{, « M{;/ Xy M,
W — W+ Mt

end for

Output: W

In this algorithm, we use an evenly distributed threshatdapproximate the uniform
distribution from whicht should be drawn from. In our experiments, we Eet 50. One
should notice that no matter what the choice of the normiadizas, the algorithm has the
following properties.

Property 5.3.1 The result ofGraphEvolutionis scale invariantj.e. V8 > 0,

GraphEvolutiortW) = GraphEvolutiofsW).

This is because the threshdli$ always evenly distributed in the interval f@ax; W;] and
M! remains the same. In other words, the choice of the norntimizdoes not change any
terms inM".

Property 5.3.2 If W is a set of disconnected full cliques with same size anc: sa@ight,
i.e.thereis a partitionI = {my, 75, - - - , g}, mkNm = @, L < K, | < K, Uk = {V1, Vo, - -+, V)

such thatvi, j € m,, W;; = ¢ where c is a constant, and € ny, j € m, kK # |, W; = 0, then

W oc GraphEvolution (W).
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This is easy to show sinceW is a set of disconnected full cliques with the same weight,
A'is the same for every: A = 1if Aj # 0, A; = 0 otherwise. ThusM' o« W, which
leads toW o GraphEvolutiorfW). This property shows a hint of conditions in which the

algorithm of W « GraphEvolutiorfW) converges, which will be discussed later.

5.3.2 Application of Graph Evolution

The algorithmGraphEvolutioncan be used in éierent purposes. The basic idea is
that it improves the quality in terms of the natural struetunderlying the graph data. In
this chapter, we investigate two applications: clusteand semi-supervised learning.

For the purpose of clustering, one can simply iterativelfqren the following
W « GraphEvolutioW). (5.6)

As iterations continue, the structures of the graph is eleand clearer. We show results of
the evolution algorithm on a toy grid data, see Figure 5.1.

In this example, we randomly generate 198 points in x 20 grid. We obtain an
unweighted graph as follows. If nodés one ofK-nearest neighbors of nogeor nodej is
one of theK-nearest neighbors of nodewe setwW,; = 1, andW; = 0 otherwiseK = 7 in
this example and the neighborhood is computed using thedeacl distance of the nodes
on the 2-dimensional grid coordinate. The original grapshiswn in Figure 5.2(a).

Starting from this graph, we run ti@raphEvolutionalgorithm for 20 iterations and
the results of the first, third, 10th, 15th, and 20th iteradiare shown in Figure 5.1 (b)—(d).
In the third iteration (Figure 5.2(c)), the structure of tteta is observable. In the 10th
iteration (Figure 5.2(d)), the structure is even more cldanally, in the 20th iteration,

(Figure 5.2(f)), the clusters are completely separated.
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After the graph evolution iterations, the cluster struetencoded in the edge weight
matrix is usually obvious to human. In practice, the numberusters discovered by the
algorithm is dfferent from expected number of clusters. We use the folloveugition
scheme to reach a desired number of cluster. We run algonithitg. (5.6) until there are
two disconnected subgraphs. Then pick up the subgraph wiaista large number nodes
to run algorithm in Eq. (5.6), and do the same strategy urgir@ach a specified number
of clusters.

For the purpose of semi-supervised learning, we justMse GraphEvolutiofw)
as preprocessing, whevé is the input of andV is the output. Instead of performing semi-
supervised learning oW, we do it onW. We show that the qualities of th& are much

higher tharw.

5.4 Experimental Results

In this section, we first demonstrate the convergence ofrithgo and then show
experimental evidence of the quality improvement by appiygraph evolution algorithm.
In the clustering comparison, we specify the number of ehgstHowever, in a microRNA
pattern discovery application, we run our algorithm uriheergence and let the algorithm

determine the number of clusters.

5.4.1 Convergence Analysis

We first demonstrate the convergence of our algorithm on ad&dg, which is a
9 x 9 binary graph, shown in the left most panel of the bottom réwigure 5.3. There
are two cliques in this graph: nodes 1-4 and nodes 5-9. We@dd soise by setting
W3 = Wsg = W9 = 0 andW,s = 1. We run algorithm in Eqg. (5.6) for 30 iterations. One

can observe that our algorithm converges fast and at thesogent graph, all edges within
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the same clique have the same value. Also as highlightedjur&5.3, the noise values of

W3, Wsg, W9, andW,s are corrected by our algorithm.

# iteration

e e e e e

Figure 5.3. [120] Convergence curves and adjacency matrouoflgorithm on a % 9

toy data. The left most panel of the bottom row is the initialoy graph (black represents
1 and white represents 0) and the rest of the bottom row is\bkiteon result of 2nd,
4th, ---, 18th iterations. Initially, nodes 1-4 is a pseudo-cligas,well as nodes 5-9.
Wiz = Wsg = Wy = 0 andWys = 1. After around 18 iterations, the two cliques become
separated and the nodes within the two cliques become falexied. The top panel show
the convergence of all the elementd/h Highlighted are the values &Y,3, Wsg, Wyg, and
W,s, which are corrected by our algorithm. .
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Table 5.1. [120] Accuracy, normalized mutual informatidiM]), and purity comparison
of K-mean (Km), Spectral Clustering (SC), Normalized Cut (Ncutlj &raph Evolution
(GE). Both Spectral Clustering and Normalized Cut are achibyadning the graph con-
struction parameters and the best results are reported.

Accuracy NMI Purity

Km SC Ncut GE Km SC Ncut GE Km SC Ncut GE
UMI 0.458 0.471 0.4980.644 0.641 0.646 0.649.763 0.494 0.505 0.50%.667
COl 0.570 0.614 0.792.8390.734 0.750 0.86M.879 0.623 0.658 0.817.840
ION 0.707 0.702 0.684).880 0.123 0.193 0.107.446 0.707 0.730 0.684.880
JAF 0.744 0.799 0.96%.967 0.809 0.849 0.959.962 0.774 0.819 0.969.967
MNI 0.687 0.713 0.8200.833 0.690 0.698 0.748).769 0.705 0.733 0.820.833
ORL 0.582 0.683 0.75@).775 0.786 0.834 0.866.891 0.624 0.713 0.773.802
PR1 0.716 0.675 0.56P2.899 0.129 0.176 0.102.458 0.726 0.757 0.708).899
PR2 0.580 0.566 0.569.706 0.019 0.017 0.013.136 0.580 0.566 0.569.706
SOY 0.908 0.8711.000 1.0000.903 0.8591.000 1.0000.924 0.8931.000 1.000
SRB 0.480 0.6220.699 0.639 0.232 0.4110.454 0.421 0.512 0.64%.699 0.639
YEA 0.132 0.327 0.3020.395 0.013 0.129 0.1260.231 0.328 0.430 0.436.540
Z0OO 0.264 0.674 0.629.723 0.116 0.615 0.57M®.751 0.423 0.750 0.7370.871
AML 0.688 0.678 0.6590.847 0.100 0.100 0.073.394 0.696 0.692 0.66@.847
CAR 0.623 0.729 0.719.799 0.655 0.743 0.738.779 0.691 0.789 0.788.822
WIN 0.961 0.936 0.9780.983 0.863 0.845 0.907.926 0.961 0.943 0.978.983
LEU 0.879 0.840 0.958.972 0.559 0.513 0.73%.806 0.879 0.860 0.958).972
LUN 0.663 0.6720.748 0.704 0.495 0.48%.547 0.473 0.864 0.86(0.911 0.828

DER 0.766 0.848 0.95%.964 0.838 0.818
ECO 0.552 0.496 0.509.631 0.467 0.458
GLA 0.452 0.446 0.453).565 0.320 0.298
GLI 0.585 0.548 0.559.700 0.465 0.410
IRl 0.802 0.746 0.8430.953 0.640 0.514
MAL 0.911 0.731 0.9020.929 0.569 0.299
MLL 0.669 0.637 0.6870.861 0.435 0.376

0.909.931 0.853
0.4810.549 0.739
0.333.399 0.549
0.398).505 0.619
0.659.849 0.815
0.544.624 0.911
0.42@.681 0.692

0.876 0.959.964
0.770 0.808.851
0.5720.652 0.650
0.569 0.6010.700
0.758 0.843).953
0.743 0.902.929
0.651 0.6810.861

5.4.2 Clustering

In this experiment, we extensively compare our algorithrthvgtandard clustering

algorithms K-means, Spectral Clustering, Normalized §im 20 data sets. These data

3We also compared with MCL. However the accuracies are muaheithan 10%) lower than all the
method we compare here. We believe MCL is not suitable fopthipose in this chapter. One can find visual
evidence in Figure 5.2.
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sets come from a wide range of domains, including gene esjores including gene ex-
pressions (PR1,SRB, LEU, LUN, DER, AML, GLI, MAL, MLL), images R, UMI,
COl, JAF, MNI) and other standard UCI data sets (ION, PR2, SQY, EGI(A, YEA,
Z0O0, CAR, WIN, IRI)“. We use accuracy, normalized mutual information (NMI) aoe p
rity as the measurement of the clustering qualities anddhaelts are shown in Table 5.1.
Our method achieves the best results in 22 out of 24 datatsets.notice that for Spectral
Clustering and Normalized Cut, we tune the graph construgiamameters. More explic-
itly the graph is constructed &%;; = exp(—||>q — x,-||2/(yF2)) wherer denotes the average
pairwise Euclidean distances among the data pointyasdhosen from [2, 271, - | 29]

and the best results are reported.

5.4.3 Semi-supervised Learning

We first run graph evolution algorithm (Eq. (5.6)) for onedtigon. After that we use
the result weights as input to run Zletial's [125] (marked as HF in the Figure 5.5) and
Zhouet al’s [126] (marked as GC) approaches. We compare four methd€§$ 8, HF on
resulting graph (HEGE), GC on resulting graph (GGE), on four face image datasets. We
tested the methods on AT&TBinAlpha®, JAFFE, and Shéield 8 data sets. For all the
methods and datasets, we randomly se\eletbeled images for each clagé= 1,2, 3,4,5,
and use the rest as unlabled images. We try 50 random seledtio each dataset, and
computer the average of the semi-supervised classificationracy.

The results are shown in Figure 5.5.

4All the mentioned data can be downloaded at parchive.icedigml/ or csie.ntu.edu.tcjling.
Shttpy/people.cs.uchicago.efdinojvis/ORL.zip
Shttpy//www.cs.toronto.edfiroweigdata.html

"httpy//www.cs.toronto.edfiroweigdata.html

8httpy/www.shef.ac.uleegvie/face.tar.gz
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Figure 5.4. [120] 6 miRNA cliques found by Graph Evolution.pTpanel is the miRNA
graph in which the values denotes the number of common tagggénes of two miRNAs.
The bottom panel is the top 10 targeting genes for each cligibe cliques are separated
by different colors. The left top part of the top panel is 7 miRNA family and the
right bottom part of the top panel is thaa-mir-200family. .
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In all these case, we always obtain higher classificationracy by applying graph
condensation. For datasets BinAlpha, JAFFE, andihd our methods are consistently

5%—-10% better than the standard semi-supervised learratigoahs.

Accuracy
Accuracy

Accuracy

# Labeled # Labeled

Figure 5.5. [120] Semi-supervised learning on 4 datasets(feft to right): AT&T, BinAl-
pha, JAFFE, and Sifigeld datasets. Classification accuracies are shown for fothraus:
HF, GC, HF using condensated graph (BIE), GC using condensated graph (GE).
For each dataset, number of labeled data per class are se2,t8,14, 5. Using the graph
evolution consistently improves over original methods. .

5.4.4 Graph Evolution for microRNA Functionality Analysis

In this experiment, we are interested in the interactiomwosgt between microRNAs
(miRNAs) and genes. MiRNAs play important regulatory rolesténgeting messenger
RNAs (mMRNAs) for degradation or translational repressiom lasve become one of the
focuses of post-transcriptional gene regulation in amsnaald plants[127, 128, 129] and
have been an active research topic in various domains [1280, 1132, 133]. A database

of verified miRNAtarget gene relationship can be found in [134]. Here we apply
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algorithm to investigate the relationships between the MiRENd the genes. The main
purpose is to discover new interaction patterns in the miR&gulatory network.

We use the data with version of Nov. 6, 2010. We use the nunfliargeting genes
as the weights of two miRNAsg,e. W; = >, BixBj whereBjy = 1 indicates miRNAi
targets geng, By = 0 otherwise. We select the largest disconnected comporfeohwas
103 miRNAs and run th&raphEvolutionalgorithm until converges. Finally, we discover
6 separated subgroups of miRNAs, which are shown in Figure Bh@ following is the
outline of our discovery in this experiment. (1) thet-7 [135, 136] miRNA family is
correctly clustered into the same group. (2) Hsa-mir-200family are highly connected

with each other, which is not reported in literature so far.
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CHAPTER 6
REGULATORY ELEMENTS VISUALIZATION

6.1 Background and Motivation

Regulatory elements such as MicroRNAs (miRNAS) are importantonents in
the cell processes. MiRNAs are small non-coding RNAs of 20 nucleotides, which
were first discovered in [137], and now have been found to bsgmt and highly conserved
among species [138]. Like other regulatory RNAs, miRNAs areegally involved in post-
transcriptional gene regulation, which control the eukéicygene expression by reducing
the protein yield from specific target MRNAs. MiRNA genes amglgsized in the nucleus
as a double stranded precursor, which is processed by twonesz Drosha and Pasha, into
a precursor (pre)-miRNA, then exported to the cytoplasm kpodin 5 [139, 140]. Once
the pre-miRNA reaches the cytoplasm, it is cleaved by Dicer 22 nt long functional
mature miRNA. The mature miRNA can then assemble into a rideopcotein complex
known as the RNA-induced silencing complexes to participateNA interference [141].
Recent studies indicate that miRNAs may be essential in bzdbgrocesses, such as cell
growth, cell proliferation, tissue flerentiation, embryonic development, apoptosis, and
cellular signaling networks[142].

MiRNAs have attracted exponentially more research intenestecent years. One
of the main reasons is that miRNAs have been discovered tovbé/ed in disease regu-
lations, playing the role of targeting key mRNAs in diseastways. For example, Cim-
mino et al. [143] showed that botimiR-15aand miR-16-1negatively regulatéCL?2 at
a post-transcriptional level, which induces apoptosis iaukemic cell line model. Sim-

ilar mechanisms are found in many other cases [144, 129,128,146, 147, 148, 149].

123



Though the over all mechanisms remains unclear, studies lirlked miRNAS to several

important types of diseases, such as cancers [150, 151, hé2it diseases [153, 154]
which strongly suggests that miRNAs could be useful as distgmand prognostic mark-

ers [155, 156, 157, 158, 159, 160, 161, 162, 163], and eveerlnberapy approaches
[153, 164, 165, 166, 167].

However, more and more studies indicate that the targetitigqms between miR-
NAs and mRNAs are complicated. First, one miRNA can target gelanumber (up to
thousands) of MRNAs [168, 169]. Second, on the other handjpleumiRNAs are found
to work synergistically to control individual genes. Foraexple,lin-4 andlet-7 are co-
operative and are the earliest miRNA pair to be experimsgntaliified [170]. Kreket al
(9) also demonstrated thatiR-375, miR-124ndlet-7bjointly regulateMtpn, providing
evidence for coordinate miRNA control [169]. Further moteyas demonstrated that the
majority of all human genes are modulated by miRNAs [171, 127]

Though these discoverieffer deeper insights of disease regulation and open a wide
direction on diagnostic and therapy, they also bring a ehgihg problem in the analysis
of genes, disease, and miRNAs as a whole network. Obviouslynttependent study of
MiRNAs, their targets, and the related diseases do fitceun fully understanding the
their functions and in exploring other potential unknowncimenisms. The challenge here
is how to incorporate the known evidences to establish aibtgne. This chapter provides
visualization tool for this purpose using-silico analysis of publicly available data.

To be more specific, wefker a global view of of miRNAs by visualize all miRNAs
in a single shot. The basic idea is to incorporate simultasiyaall the directing targeting
relationship (local relationship) and obtain a global aiszation of the miRNAs. The vi-
sualization results visually answer questions like thiowaing, (1) does one miRNA func-
tion similarly to another miRNA? (2) does one miRNA functiorifeiently from another

mMiRNA? (3) do a set of miIRNAs function as a group? We establisbv&lnvisualization
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system based on solely computational targeting predigtiand interestingly, our visual-
ization results are verified by a series of experimentalisguiom other investigators.

By providing a big picture of the whole interaction networkyr avisualization tool
helps miRNA research in the several ways. (1) Discovery of mMiRddmplexes. By
MiRNA complex, we mean a group of miRNAs which function sinmyaio each other
in the whole regulatory network. Similar to protein com@eX172, 173, 174, 175, 176,
177, 178], miRNA complexes play important roles in functioanalysis. However, in
contrast to proteins, miRNAs do not directly interact witlcle@ther; instead, they inter-
acts with mRNAs. Further more, the interaction networks agnmiRNAs and targeting
MRNAs are complicated, a visualization tool is essentiahatiieginning of the analysis.
Surprisingly, we discover several miRNA complexes, two ofchthave been verified by
independent research groups and two of which of which areapatrted yet. (2) To verify
results of biological experiments. We highlight 234 miRNAkieh are verified to func-
tion in AML (Acute Myeloid Leukemia), prostate cancer, luogncer, breast cancer, and
ovarian cancer in the global visualization of 711 miRNAs ofrfain beings using a single
picture. We discover that miRNAs are often close to each athkey have similar func-
tion(s). And based on these observation, our visualizaboh(3) provides a reasonable
range if mMiRNAs on which researchers should focus. The \isat@bn tool systematically
offers a series of candidates for some specific diseases.dradtbndly testing the func-
tions of all the miRNAs, the visualization tool helps to navrdown the search range to
some candidates. (4) We also predict miRNA regulatory caatdidf the five diseases by
combining the causally verified miRNAs and unverified miRNAamem.

Our techniques can also be employed in other networks fargibrposes. As an
example, we build a miRNA predictor by considering the gldh&drmation of miRNAs.
To be specific, we combine local and global miRNA structuresdiablish detect novel

miRNAs. By validating in human miRNAs, we show that our predi¢scaccurate, robust,
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and stable. We also apply our predictoDnMelanogasteand successfully discovery 30

novel miRNAs, 14 of which are conserved in other species.

6.2 Results and Discussions
6.2.1 Notations

In order to present the results in a more convenient way, weifitroduce a set of
notations, details of which will be given in the “Materialséctions.

Data point By data point we mean the objects we are interested in, which means
mMiRNAs in the whole chapter if there is no further explanatidfithout confusion, we also
call a data point aobject

EmbeddingIn order to obtain a visualization of data points, we core@Euclidian
coordinate system for all the data points from some noniéiacl system, for example, a
graph in this chapter. The resulting Euclidian coordingtdesm is calle@mbedding space
in which each object is represented as data point in Eualidrdinates (3-dimensional
Euclidian coordinates in our chapter).

Graph A graphin this chapter is a weighted graph, in which each vertexasgnmt a
miRNA and the weights of the edges represent the similaritwéen miRNAs which the
corresponding edges connect. In this chapter, waNise represent a weight graph, where
W;; represents the weight between objeandj, i, j = 1,2,--- ,nandn is the number of
objects we consider.

Bipartite graph Bipartite graph is a special graph, in which there are twgoitis
group of vertices. In this chapter, the two groups are miRN#&saRNAs and the edge be-
tween a miRNA and a mRNA represent that the miRNA directly irderavith the mRNA.

In the whole chapter, we use a matBxe R™" to represent the bipartite graph, whene
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andn are the number of miIRNA and mRNA, respectively, @id= 1 if miRNA i directly
interact with mRNAj,i=1,--- ,mandj=1,---,n.

Local information By local informationof objects we mean the direct interaction
or similarity of objects. For example, consider two miRNAays andb). The the local
information of the might meaa andb interact with 10 mRNAs in common. We s&cal
because the information does no change no matter we cortb@lether miRNAs or not.
This is in contrast tglobal information which consider all the objects as a whole. Con-
sider a local resistor network, where resistors connechgmodes. The local information
for this network are the individual resistors, connectiray of nodes, which are inde-
pendent to each other. And the global information here ieffextive electric resistance
between nodes, considering all the resistors together.n¥die purpose of this chapter is
to incorporate the individual and local information to derglobal information and obtain
a bigger picture which demonstrates #fectiverelationships among objects we consider.

Distance profile In our analysis, use the distance profile to estimate the dloge
a pair of miRNAs are to each other in the embedding space. Gamaigair of miRNAs
m, andm,. We use four numbeid(x%, a, b) to represent the distance profile. By “distance
betweenm, andm, is d(x%, a, b)” we mean: (1) the Euclidean distancerof andm, in
the embedding spaceds (2) there arexo of the miRNA pairs have closer distance tltin
(3) m, is thea-th nearest neighbor ofiy, and (4),m, is theb-th nearest neighbor afy in
the embedding space, using the Euclidean distance. Olbyitlis smalled is, the closer
the pair of mMiRNAs are to each other. However, we do not knovstade of the distances,
we use the other three numbers of the distance ranking tesept the relative distance.
Sequence alignment profiethe same except that the neighborhoods are computed using
the sequence alignment score.

Naming systemIn the whole chapter, the miRNAs represent thature miRNAs

and without other notations, they mean miRNAdHamo sapiensFor example, byniR-
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21a we mean the mature miRNAsa-miR-21a For those miRNAs which come from
different precursors but have identical mature sequence, veedesthem a unique object.
For example three separate precursorsfietent locationdet-7a-1, let-7a-2andlet-7a-3

produce the maturet-7asequence.

6.2.2 Embedding Results of Whattomo sapiensiRNAS

We use new computational tools, the Green’s functions Wwegtcbrresponding Dirich-
let Boundary Conditions, to incorporate local informatiord aerive a global embedding
coordinates of 711 miRNAs ¢lomo sapiensWe compute the embedding from a weighted
graphW where the weights represents the number of common mRNAs t&RdAks inter-

act with. To be more precise, we use the following to commite

K
Wi = Z BikB k. (6.1)
1

whereB is a bipartite graph by considering the interactions betwgl miRNAs and
21199 mRNAs. Details can be found in the “Materials” sectibluotice that interactions
between miRNAs and mRNAs are derive from computational toglserdy considering
the sequences of the miRNAs and mRNAs, which means that weilanake use of the
visualization when we have no prior knowledge from expentakresults. We will show
that the embedding results are consistent with the expataheesults done independently
by other researchers.

The embedding results are shown in Figure 6.1. Each sphatesents one miRNA.
We color the miRNAs according to their functionsg. whether they are involved in one
or some of the 5 diseases (Acute Myeloid Leukemia, prostateear, lung cancer, breast

cancer, and ovarian cancer). Since one miRNA can be involvedlitiple diseases, there
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Figure 6.1. 3D embedding visualization results for 711 miRN#H. sapiensEach sphere
represents one miRNAs. The color of MIRNAs represent the fanstin 5 diseases.e.
whether they are involved in the diseases. AML: Acute Myetloeukemia; Ovar Canc:
ovarian cancer; Brea Canc: breast cancer; Lung Canc: lungrcdPrmes Cans: prostate
cancer. For those miRNAs which are involved in multiple dés=a we use+" to combine

the disease®.g. OrA means the miRNAs are involved in both Ovarian cancer and AML.
“NC” representNot Classifiedi.e. not involved in any of the 5 diseases. The size of the
sphere represents the number of diseases the miRNA is im/olMee embedding results
are derived from sequence of miRNAs and the functions ardiegfdy causal biological
experiments or microarray experiments. .

are 2 = 32 possible configurations. The configuratiorBoéast Cancer Ovarian Cancer
+ AML is not found, thus there are total 31 configurations.
We also list the distributions of the miRNAs over 23 chromossrim Figure 6.2.
Notice that the embedding coordinates are obtained onhgusie sequence infor-
mation and the functions of mMiRNAs (the coloring) are obtdibg biological experiments.
In the rest of this section, we will introduce the propertéshe embedding result and the

usage of the visualization in miRNA research.
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Figure 6.2. Distribution of the miRNAs over 23 chromosomesgdmstate cancer, lung
cancer, breast cancer, ovarian cancer, and AML (Acute My&leukemia)..

6.2.3 Over All Observations of The Visualization Result

We first highlight some of the observations. Then introdubeiodiscovery from the
visualization in details later.

If a pair of MIRNAs have the involved in the same disease ategften embedded
together Thus the embedding is consistent with the experimentatatid, which suggests
that it is useful to investigate the visualization to obthairther analysis. Some examples
will be shown later in the section.

If two MiRNAs are very similar in sequence, they are often eadx in a small
distance. But the other way does not hdld, if two miRNAs are embedded ia a small

distance, they are not necessarily similar in sequei@e.can see this observation in Fig-
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ure 6.3. The reason is that the sequence similarity onlyucaghe local information of
MiRNAs, and our embedding considers all the possible reiahigps of miRNAs and the
embedding distance reflect thgectivefunctional relationship among miRNAs. For exam-
ple, assume that two miRNAs are both involved in a key pathwasome disease, but the
sequences of the two miRNAs are not necessarily similar, hWexveheeffectivefunctional
similarity should be high, and the embedding distance resflegch functional similarity.
We demonstrate the fierence between embedding distances and sequence synriitarit
Figure 2 in which one can observe serval issues. (1) They shatnmiRNAs which have
high number in common target mMRNAs are often embedded in shisddinces. (2) If two
miRNAs are very similar in sequence, they are often embeddadgmall distance. But the
other way does not hold. (3) If two miRNAs are very similar tcleather, say the BLAST
score is higher than 29, then the number of common target mRhAst be high and the
embedding distance must be small.

These observations also suggest thatembedding distance reflects the functional
similarity more accurately than the sequence similariye will demonstrate thisféect
using more examples later in the section.

In Figure 6.1, we also see that there are several groups of ABRBILL — B4 in which
MiRNAs are close to each other and far away from miRNAs out$idgytoup. Two of the
four groups have been been well investigated. Accordingutofanctional analysis, we
believe the other two groups, which have not been reportecye equivalently important

in studies of MiRNAs.

6.2.4 Four Functional Groups of Human miRNAs
We first introduce the four functional groups in human miRNA® members of

which are listed in Table 6.1.
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Figure 6.3. A demonstration of theftérence between embedding distance and sequence
similarity. For each pair of miRNAs, we compute three valugs embedding distance,
the sequence similarity, and the number of putative mMRNA ititeract in common. The
embedding distance are the Euclidean distance of somefpaiRNAs in the embedding
space, the sequence similarity is measured by BLAST scoreeofjiven pair of mature
mMiRNAs, and the number of common putative target mRNASs is cdatpusing Eq. (6.1).

In both plots (A) and(B)), each dot represents a pair of miRNAs. In (A), we plot the dots
using embedding distance and the number of common putairgettmRNAS as x-axis
and y-axis, respectively, and color the dots with sequemdgasity. In (B), we plot the
dots using sequence similarity and embedding distanceaassxand y-axis, respectively,
and color the dots with the number of common putative targeiNés. (A) shows that
mMiRNAs which have high number in common target mMRNAs are oftebezided in small
distances. (B) indicate that if two miRNAs are very similar ggaence, they are often
embedded in a small distance. But if two miRNAs are embeddedmadl distance, they
are not necessarily similar in sequence. Both of the plotgestghat if two miRNAs are
very similar to each other, say the BLAST score is higher th@ntRen the number of
common target MRNAs is high and the embedding distance id.smal

6.2.4.1 BL Let-7miR-98family

In our visualization, théet-7/miR-98family includes 9 miRNAshsa-let-7ahsa-let-
7b, hsa-let-7c, hsa-let-7d hsa-let-7¢ hsa-let-7f hsa-let-7g hsa-let-7j andhsa-miR-98
Memberdet-7/miR-98family are found to express in late mammalian embryonic dbgve

ment [179, 180]. Instead of studying thet-7/miR-98family case by case [179, 181, 180],
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Table 6.1. Members of the four miRNAs groups found by viswion. The embedding
results of the four group are highlighted in Figure 6.1.

Group miRNA members Mature sequence Chromosome
hsa-let-7a UGAGGUAGUAGGUUGUAUAGUU 9,11, 22
hsa-let-7b UGAGGUAGUAGGUUGUAUGGUU 22
hsa-let-7c UGAGGUAGUAGGUUGUAUGGUU 21
hsa-let-7d AGAGGUAGUAGGUUGCAUAGUU 9
hsa-let-7e UGAGGUAGGAGGUUGUAUAGUU 19
hsa-let-7f UGAGGUAGUAGAUUGUAUAGUU 9, X
hsa-let-7g UGAGGUAGUAGUUUGUACAGUU 3
hsa-let-7i UGAGGUAGUAGUUUGUGCUGUU 12
hsa-miR-98 UGAGGUAGUAAGUUGUAUUGUU X

Group B2 hsa-miR-106a  ~ AAAAGUGCUUACAGUGCAGGUAG X
hsa-miR-106b ~ UAAAGUGCUGACAGUGCAGAU 7
hsa-miR-17 CAAAGUGCUUACAGUGCAGGUAG 13
hsa-miR-20a UAAAGUGCUUAUAGUGCAGGUAG 13
hsa-miR-20b CAAAGUGCUCAUAGUGCAGGUAG X
hsa-miR-93 CAAAGUGCUGUUCGUGCAGGUAG 7
hsa-miR-302a  UAAGUGCUUCCAUGUUUUGGUGA 4
hsa-miR-302b UAAGUGCUUCCAUGUUUUAGUAG 4
hsa-miR-302c UAAGUGCUUCCAUGUUUCAGUGG 4
hsa-miR-302d =~ UAAGUGCUUCCAUGUUUGAGUGU 4
hsa-miR-519d =~ CAAAGUGCCUCCCUUUAGAGUG 19
hsa-miR-520a-3p AAAGUGCUUCCCUUUGGACUGU 19
hsa-miR-520b ~ AAAGUGCUUCCUUUUAGAGGG 19
hsa-miR-520c-3p AAAGUGCUUCCUUUUAGAGGGU 19
hsa-miR-520d-3p AAAGUGCUUCUCUUUGGUGGGU 19
hsa-miR-520e  ~ AAAGUGCUUCCUUUUUGAGGG 19
hsa-miR-520g ACAAAGUGCUUCCCUUUAGAGUGU 19
hsa-miR-520h ~ ACAAAGUGCUUCCCUUUAGAGU 19
hsa-miR-526b* GAAAGUGCUUCCUUUUAGAGGC 19

Group B4 hsa-miR-374a  UUAUAAUACAACCUGAUAAGUG X
hsa-miR-374b ~ AUAUAAUACAACCUGCUAAGUG X
hsa-miR-548a-5p CAAAACUGGCAAUUACUUUUGC 6
hsa-miR-548b-5p AAAAGUAAUUGUGGUUUUGGCC 6
hsa-miR-548c-5p AAAAGUAAUUGCGGUUUUUGCC 12
hsa-miR-548d-5p AAAAGUAAUUGUGGUUUUUGCC 8
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in this chapter, we utilize the our visualization resultsl @stablish more comprehensive
understanding of this family.

We first summarize the verified targeting genes ofléte/miR-98family in Figure
6.6 in which we show the cross analysis of tee7/miR-98family and miR-108miR-20
family. Here we focus on thket-7/miR-98family, and themiR-106miR-20family will be
discussed later. In the left panel of the figure, the colorasgnts the number of com-
mon targeting genes of pairs of mMiRNAs. One can see that battireetwo families, the
interaction is weak, while they strongly interact with eaxther within the same family.
The targeting genes of tHet-7/miR-98family includeHMGA?2, CDC25A, CDK®6, KRAS,
BCL2, RAS, BFNF, Cdc34ndFUS1 Notice that HMGAZ2 (High-mobility group AT-hook
2) itself is a transcriptional regulating factor the 3' UTRnhich has seven conserved sites

complementary to the memberslet-7/miR-98family [182].

6.2.4.2 B2 MiR-106miR-20family

The miR-106miR-20family in our study includes 6 miRNAshsa-miR-106ahsa-
miR-106h hsa-miR-17 hsa-miR-20ahsa-miR-20bandhsa-miR-93 Their targeting re-
lationships are also shown in Figure 6.6. Their targeting ARMclude E2F2, p21,
CDKN1A, Mylip, PCAF, APP, BMPR2, CCLAndFBX031

TheMiR-106miR-20family comes from three paralog groumsr-17 miRNA clusters[183],
locating in Chromosome 7, 13, and X, which are shown in Figure BliRNA cluster is
a set of miRNAs which are located very close to each in chromes(ften within one
thousand nt), and are often transcribed together as ptlycis primary transcripts and are
then processed into multiple individual mature miRNAs. [1885]. The genomic organi-
zation of these miRNA clusters is often highly conservedgsstjing an important role for

coordinated regulation and function.
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The polycistrormiR-25, miR-93andmiR-106kare located at Chromosome 7, within
intron 13 of the minichromosome maintenance proteitMCi7) gene on chromosome
7922.1, see Figure 6.A). Among them,miR-93and miR-106bare in Mir-106/mir-20
family we discovered using our visualization tool, whicmarked by “@2’ in the figure.
The second cluster includesiR-17, miR-18a, miR-19a, miR-10a, miR-19mhd miR-
92a-1, among whichmiR-17andmiR-20aare in theMir-106/mir-20 family. This cluster is
located at intron 3 of open reading frame (ORF) 25 in Chromosb&@C130rf25). The
third cluster is located at Chromosome X g26.2, which incbuddR-393, miR-92a-2, miR-
19b-2, miR-20b, miR-18landmiR-106a among whichmiR-20bandmiR-106aare in the
Mir-106/mir-20 family.

The local embedding region &flir-106/miR-20family in Figure 6.1 is highlighted
in Figure 6.7 B). The clear separation of tHdir-106/mir-20 family from all the other
mMiRNAs suggests that they might play some particular funstihich are dterent from
the other miRNAs. The seed sequences, shown Figuresp, pdrtially supports that their
functions in targeting miRNAs, pathways, and disease mighgitnilar. We will discuss

more about this miRNA family in the “Discussion” section.

6.2.4.3 B3 miR-302miR-502family

ThemiR-302miR-502family we found in our visualization tool includes 13 miRNAs
which are listed in Table 6.1. For this group of miRNAs, selvevadences are discovered
by previous researchesiR-302ds found to be involved in AML [186], and Huargg al.
found thatmiR-520as causally involved in breast cancer and thaiR-520ctargetsCD44
and promotes tumor invasion and metastasis [187].efTal. discovered thamiR-520h
targetsABCG2[188]. Li et al. found thatmiR-302dtargetsKLF13, MBNL2,andTRPS1

Though the function mechanisms are reported less cleatliglogcy comparing with

the previous two group$({ andB?2), we can clearly see that the membersR-302miR-
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502family are close to each other and are far away from other mi&Ahe embedding
results.

The cluster oimiR-302a, miR-302b, miR-302c, miR-30&é |located as a cluster in
Chromosome 4 and thmiR-520cluster is located in the Chromosome 19. Interestingly,
miR-302a, miR-302b, miR-302c, miR-302d, miR-519b, mBR;5hiR-520a, miR-520Db,
miR-520c, miR-52QdandmiR-520ehave a consensus seed sequedddGUGG and the
were reported to be simultaneously highly expressed infierdntiated human embryonic

stem cells [189].

6.2.4.4 B4 miR-374miR-548family

MiR-374miR-548family includes 6 mature miRNAsmiR-374a, miR-374b, miR-
548a-5p, miR-548b-5p, MiR-548c-5@nd miR-548d-5p The functional targets of this
family are less well explored. Yet, Meesal. showed evidence thatiR-374# potentially
targetE1Abinding gene p300, dEP300[190]. Piriyapongsa suggested that the family of

mir-548are derived fronMadeltransposable elements [191].

6.2.5 Functional Analysis With Global Embedding

Here we combine the visualization results and the bioldgigperiments done by
other researches together and study interesting casesyarebWe investigate the miR-
NAs which are close to each other and which are both verifigdvmved in some same
disease. Notice that the visualization results do not fedyltiological experiments. Thus
the analysis can be done before any biological experimé&iotsexample, if miRNAalis
verified to be involved in diseage and we find that miRNAa2is close taal, then accord-
ing to our functional analysig2 is hypothetically related to diseage There have been

many miRNAs which are causally verified to be involved in vasalisease$, however,

Ihttpy/www.mir2disease.oyg
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miR-9(IBO)

Figure 6.4. Two cases in which the embedding distance ofitualization is close and the
sequences are dissimilar in alignment scokehsa-miR-7andhsa-miR-9 The symbols
in parentheses represent the function of the correspomdiRNA, which uses the same
notations as Figure 6.7. The embedding distance profileisfodr is 00286(02%, 2, 5)
which indicates they are close to each other. Their sequaigranent similarity profile is
—3.8824(4587% 360 336) indicating that they are far away from each other in sage
similarity. These tow miRNAs are both causally verified to leived in breast canceg:
hsa-miR204ndhsa-miR-205The embedding distance and sequence alignment similarity
profile of this pair are @250(014% 3, 2) and—-0.2773(1813% 80, 98), respectively. .

there are also many other cases which are not yet exploree.u3dge of our tool is to
narrow the list of candidate miRNAs in our biological studies

In the section, we (1) first test the cases in which both miRN&scausally verified
and are close to each other in our visualization, and thernif#)light cases in which
mMiRNA is causally verified and one is verified by large scalermarray studies. The first
test is to show that miRNAs which are close to each other otta@nesthe same functions.
The second task is toffer a set of potential miRNA candidates which we can focus on in

biological experiment design.

6.2.5.1 Causal miRNAs

Here we test the consistency of the visualization resultstha biological experi-

ments for 5 diseases: AML, prostate cancer, lung canceasboancer, and ovarian cancer.
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miR-155(Boal)

Figure 6.5. MiRNAs which are hypothetically involved in dises A: hsa-miR-3s verified

to be involved in breast cancer by causal experiments. ThebgeniRNAs hsa-miR-
152b and hsa-miR-136have been identified to be correlated to breast cancer byomicr
array experimentsB: hsa-miR-14%ausally verified for prostate cancer, whilsa-miR-
10bis verified by micro array experiment£: hsa-miR-155%ausally verified for breast
cancer, whiledhsa-miR-203s verified by micro array experimentS: hsa-miR-14Tausally
verified for breast cancer, whilesa-miR-181kand hsa-miR-181dare verified by micro
array experiments..

In Table 6.2 we list 20 pairs of miRNAs which are both causalyied by biological
experiments. Listed are the name of the pairs of miRNAs, tfereaces, the embedding

distance, and the sequence BLAST score.
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For the “Embedding distance” column, the numbers of a pami&NAs are listed
asd(x%, a, b) whered is the embedding distance in our visualization resdi,means that
the distance this pair of miRNAs ranks botto& among all the possible pairs of miIRNAS,
a andb are the ranks of the second, first miRNA to the first, second miREgpectively.
For example, in the first item in Table 6.@,= 0.0298 means that the Euclidean distance
of miRNAs hsa-miR-200andhsa-miR-141s 0.0298 in our visualization result. But we
do not know whether this is a small number, we use three velatimbers to show that
they are close to each othex.= 0.23% means that there are only28% of the pairs of
MiRNAs are closer than this pair out of 7k1(711— 1)/2 = 273705 pairs of miRNAs.
a = 4 means thahsa-miR-200das 710 neighbors among whibka-miR-141s the 4-th
closest tchsa-miR-200ab = 4 means thalhsa-miR-14Jas 710 neighbors among which
hsa-miR-200as the 4-th closest thsa-miR-141

For the “Sequence Alignment Score” column, we use the sarnteions, except
that the ranking is sorted using descend order, becauseghertAlignment score is, the
closer the sequences are. The sequence alignment sconegateal by MATLAB function
nwalign Details can be found in the “Materials and methods” section

Among the 20 pairs of miIRNAs, 11 pairs were discovered in timesahapter. For
example Gibbonst al. discoveredthsa-miR-200@andhsa-miR-141vere critically involved
in lung cancer [192]. The reason they simultaneously tetstese two miRNAs might be
that they are very similar to each other (0.03%, 1,1). The<ase similar for the other
10 pairs:hsa-miR-200khsa-miR-429192], hsa-miR-200kthsa-miR-200¢192], hsa-miR-
20 hsa-miR-17193],hsa-miR-29bhsa-miR-29¢194] for lung cancemhsa-miR-16hsa-
miR-15a[195] for AML, hsa-miR-1466hsa-miR-146b-5[(196], hsa-miR-200bhsa-miR-
200c[197], hsa-miR-221hsa-miR-2224198] for breast cancehsa-miR-16hsa-miR-15a

[195] for prostate cancer, afda-miR-200bhsa-miR-429199] for ovarian cancer.
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These discoveries indicates that we can narrow the list BNAi candidates using
the sequence alignment similaritye. if a miRNA is hypothetically involved in some
diseases or interact with some genes, we can also test theAsiRNich are very similar
to the miRNA we consider.

However, there are also many cases in which we cannot expioresing the se-
guence alignments an our visualization tool helps in thasex For the other 9 pairs, the
sequences are not similar to each other, but the are close iisualization. For example
the alignment score fdrsa-miR-7andhsa-miR-9s -0.38824, which ranks about 45% ac-
cording to the alignment similarity, however, they are fiimzally similar and are close to
each other in our visualization. The local embedding resafithese pair and another case
(hsa-miR-20Asa-miR-20b for breast cancer are highlighted in Figure 6.4. Thesescase
suggests that the global embedding reflects the functi@talionships among miRNAs

more accurate than the local sequence similarity do.

6.2.5.2 Functional Prediction Using Causal miRNAs

In our studies, we also discover that we can often find some MgRNhich might
be potentially involved in some diseases, and there is an@tiRNAS near by which is
causally verified by biological experiments. According tor analysis above, these miR-
NAs might strongly hypothetically be involved in the samsedises, too. For example, in
Figure 6.5B, miRNA hsa-miR-145s verified to be involved in prostate cancer by causal
experiments [200], while large scale micro-array expentady other independent group
support thahisa-miR-10bs correlated to the same disease [201]. Notice that the émbe
ding distance profile betwedrsa-miR-145ndhsa-miR-10bs 0.0223(010% 2, 3) while
the sequence alignment similarity profile-i4.7144(5217% 214, 302), indicating that the
two miRNAs are close to each other in embedding distance aswindiar in sequence

alignment. We highlight 3 other cases in Figure 6.5 and listentases in Table 6.3.
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One should notice that in Table 6.3, most of the miRNAs arardits to each other
according to the sequence alignment profiles. We believeaniqus studies, researchers
have already employ the sequences to guide how to select mi@iNdidates and most of
the possible similar miRNAs have been tested. Table 6.3 alppests that we can discover
many more candidates using our visualization tool whileatisequence comparison does

not work.
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Table 6.2. MiRNA pairs causally verified by biological expeents for AML, breast can-
cer, Prostate cancer, ovarian cancer. For the “Referendeinen the first number is the
year in which the relationship of between the disease anthiR&A is verified, and the
second number is the reference number. Details can be fouhé main text.

Disease miRNA Reference Embedding Distance Sequence BLAST Score
hsa-miR-200a 2000 [192] . ;
iy 5000 [107] 00298(023%,4,4) 255131 (0.03% 1,1)
hsa-miR-200b 2009 [192] ; .
plinigpos 5000 [107] 00520 (1.05%,3,2) 155207 (0.21%,4,3)
hsa-miR-200b 2009 [192] o :

. heamiR2000  2000[107 O-0666(1.89%.6,13) 257904 (0.02%,1,1)
hsa-miR-20a 2005 [193]

2007 [202] 0.0724 (2.29%, 4,3)  26.8997 (0.01%, 2, 2)
hsa-miR-17 2005 [193]
hsa-miR-29b 2007 [194] . .
i S00y [1o4] 00293 (022%,2,2)  23.2045(0.04%,1,2)
hsa-miR-16 2007 [195]

A b e 158 5007 (193] 0-0482(0.86%,3,3) 155297 (0.21%, 2, 3)
hsa-miR-200a 2000 [192] . .
iy 5000 [107] 00298 (023%,4,4)  25.5131(0.03%1,1)

2008 [203]
hsa-miR-7 ;882 {28‘5‘} 0.0286 (0.20%, 2,5)  -3.8824 (45.87%, 360, 336)
hsa-miR-9 2009 [206]
hsa-miR-127-3p 2006 [207]
heamiR.1030 . 2008 [208] 0-0632(L68%,9,6)  -0.2773 (18.13%, 142, 80)
Ezz:ng:ﬁga gggg Egg} 0.0720 (2.26%, 11, 29)  -2.2185 (29.98%, 228, 193)
2006 [210]
hsa-miR-146a gggg E?% 0.0765 (2.60%, 16, 42)  25.5131 (0.03%, 1, 1)
B hsa-miR-146b-5p 2008 [196]
Ezgm:ii’gg gggg {gg} 0.0729 (2.33%, 29, 38)  -4.4371 (50.26%, 254, 301)
) 2008 [197]
hsa-miR-200b 2010 [214]
2008 [197] 0.0666 (1.89%, 6,13)  25.7904 (0.02%, 1, 1)
hsa-miR-200c 2009 [215]
2009 [216]
hsa-miR-204 2008 [209] ) - ;
o 208 5008 [107] 00250 (0.14%,3,2) 0.2773 (18.13%, 80, 98)
Ezgm:gggé ;882 Hgg} 0.0687 (2.05%, 40, 28)  13.8658 (0.25%, 1, 1)
hsa-miR-510 2008 [209] ) - )
heamiR-100b-5p 2008 [217] 0-0426 (0:63%,10,10)  -6.6556 (70.61%, 500, 500)
hsa-miR-16 2007 [195] . ;
b iR 154 5007 [105] 0-0482(0.86%,3,3) 155297 (0.21%, 2, 3)
) 2009 [218]

P hsa-miR-21 2009 [219]

2008 [220] 0.0487 (0.89%, 19, 15)  0.2773 (14.05%, 152, 136)
hsa-miR-101 2009 [221]

2010 [222]
hsa-miR-200b 2009 [199] ) ;

Svaran Cancer| NeA-MR429 5000 [10g] 00520 (105%,3,2) 155207 (0.21%,4,3)
hsa-miR-200b 2009 [199] ; )
heamiR2000 2000215 O-0666 (1.89%,6,13) 257904 (0.02%,1,1)
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Table 6.3. 64 miRNAs which are near a causal verified miRNA anidinmave been tested
using micro-array experiments. The “Causal”’ column is th&NA which are causally
verified. The corresponding reference is also given. The ti@kate” column is the miRNA
which are tested using micro-array experiments and cooreipg reference(s). Details

can be found in the main text.

Disease| Causal Candidate Embedding Distance Sequence BLAST Score
miR-192[180] 0.0416 (0.59%, 3, 2) -0.5546 (19.19%, 178, 108)
miR-183(223] miR-377[224] 0.0678 (1.99%, 22,27)  -1.1093 (22.98%, 214, 153)
miR-126[180, 225, 226]  0.0460 (0.76%, 6, 23) -2.7732 (36.15%, 328) 2
L miR-224[180] 0.0585 (1.40%, 16, 23)  4.4371 (2.96%, 33, 19)
miR-197[227] miR-150[180] 0.0322 (0.28%, 2, 2) 3.8824 (3.73%, 13, 15)
miR-192a[193] miR-101[225] 0.0504 (0.98%, 18, 18) 3.8824 (3.73%, 21, 26)
MiR-429[192] mMiR-338-50225] 0.0566 (1.30%, 4, 6) -1.1093 (22.98%, 145, 229)
miR-126*[228] miR-1300[229] 0.1632 (12.34%, 18,90) -3.8824 (45.87%, 268, 343)
miR-16[195] miR-195[186] 0.0459 (0.76%, 2, 2) 21.9080 (0.06%, 1, 1)
MiR-204[230] miR-22[229] 0.0491 (0.91%, 11, 16)  -11.9246 (96.82%, 670, 685)
A miR-210[231] mMiR-342-30195] 0.0404 (0.54%, 4, 5) -6.6556 (70.61%, 543, 414)
mMiR-23a[231] mMiR-23b[229] 0.0350 (0.37%, 8, 12) 26.6223 (0.02%, 1, 1)
miR-320[232] miR-331-5(d186] 0.0332(0.32%, 5, 2) -5.2690 (58.99%, 338, 375)
miR-34b[233] mMiR-182[186] 0.0520 (1.06%, 15, 20)  -6.3783 (68.70%, 492, 418)
miR-451[229] 0.0516 (1.04%, 13, 14) 3.0505 (5.03%, 33, 53)
miR-10b{234] mMiR-145[235] 0.0223(0.10%, 3, 2) -4.7144 (52.17%, 302, 214)
miR-887 0.0041 (0.00%, 2, 2) -10.8153 (93.96%, 650, 623)
MiR-126[212, 236] mMiR-1484237, 238] 0.0317 (0.27%, 10, 10)  -1.1093 (22.98%, 147, 234)
miR-141[197] miR-1810[158, 239] 0.0214 (0.10%, 2, 3) 0.0000 (15.66%, 119, 136)
miR-181d239] 0.0248 (0.14%, 3, 4) 0.0000 (15.66%, 120, 118)
miR-1464210, 196, 211] | miR-143[235] 0.0858 (3.37%, 18, 37) 3.6051 (4.24%, 34, 28)
MiR-146b-5[1196] mMIR-191[235] 0.0348 (0.36%, 7, 8) 0.8319 (12.12%, 93, 50)
miR-155[240] miR-203[235] 0.0334 (0.32%, 2, 2) -6.6556 (70.61%, 503, 440)
MiR-205[197, 241] miR-22[242] 0.0608 (1.53%, 12, 22)  -6.1010 (66.21%, 423, 526)
miR-221[198] m@R-148a{237, 238] 0.0391 (0.49%, 9, 15) -6.6556 (70.61%, 525, 580)
miR-143[235] 0.0563 (1.28%, 27, 11) -5.2690 (58.99%, 453, 488)
B miR-202[235] 0.0479 (0.85%, 16, 6) 2.2185 (7.53%, 66, 43)
miR-222[198] miR-136[235] 0.0266 (0.16%, 3, 4) 1.3866 (10.07%, 85, 58)
miR-152[237, 238] 0.0617 (1.58%, 22, 31) -2.4958 (32.43%, 315, 314)
miR-27a[243, 213] miR-365[239] 0.0815 (3.02%, 34, 40) -7.2102 (74.50%, 546, 444)
MiR-661[244, 213] MiR-328[245] 0.0608 (1.53%, 6, 4) 7.7648(0.76%, 4, 3)
. miR-1484237, 238] 0.0768 (2.63%, 32, 50) 2.4958 (6.21%, 60, 69)
MiR-7[203, 204, 205] miR-152[237, 238] 0.0674 (1.95%, 22,37)  -6.1010 (66.21%, 475, 565)
miR-136[235] 0.0119 (0.02%, 2, 2) 3.6051 (4.24%, 25, 20)
MiR-9[206] miR-152[237, 238] 0.0515 (1.03%, 17, 22) -0.2773 (18.13%, 134, 186)
mMiR-202[235] 0.0507 (0.99%, 15, 11)  -7.2102 (74.50%, 522, 447)
miR-148a237, 238] 0.0681 (2.00%, 26, 39) 0.0000 (15.66%, 112, 190)
MiR-96[213] MiR-365[239] 0.0791 (2.81%, 16, 36)  2.4958 (6.21%, 42, 19)

143



Table 6.4. Cont. of Table 6.3.

Disease| Causal Candidate Embedding Distance Sequence BLAST Score
MiR-145[246] mMiR-10b[201] 0.0223 (0.10%, 2, 3) -4.7144 (52.17%, 214, 302)

. miR-937 0.0940 (4.11%, 17, 10) 1.3866 (10.07%, 58, 70)
MiR-1256246] miR-125a-5[1247]  0.0284 (0.19%, 3, 3) 23.5719 (0.04%, 1, 1)
MIR-126*[248] mMiR-26a[247] 0.1060 (5.28%, 5, 13) -0.5546 (19.19%, 102, 126)
miR-145[200] miR-10b[201] 0.0223 (0.10%, 2, 3) -4.7144 (52.17%, 214, 302)
miR-1468249] MIR-143247] 0.0858 (3.37%, 18, 37) _ 3.6051 (4.24%, 34, 28)

miR-373*[247] 0.0969 (4.38%, 26, 66) -11.0926 (94.99%, 675, 558)
MiR-15a[250] mMiR-31[251] 0.0800 (2.89%, 5, 4) -1.3866 (25.04%, 224, 202)
miR-195[247, 201]  0.0459 (0.76%, 2, 2) 21.9080 (0.06%, 1, 1)
miR-16[250] mMiR-31[247] 0.0686 (2.04%, 4, 3) -3.0505 (37.82%, 285, 328)
miR-182*[251] 0.1600 (11.92%, 15,93) -10.5380 (93.44%, 667, 654)
p miR-221[252] miR-126[201] 0.0670 (1.92%, 39, 35) -6.6556 (70.61%, 524, 517)
.y MiR-202[247] 0.0479 (0.85%, 16, 6) 2.2185 (7.53%, 66, 43)
MiR-222252, 253] |~ R 75106 0.0846 (3.28%, 42,52)  -2.4958 (32.43%, 318, 279)
mMiR-513-34247] _ 0.0199 (0.08%, 3, 5) 0.0000 (15.66%, 170, 101)
miR-21[218, 219] [ miR-19b[247] 0.0539 (1.15%, 23, 13) 0.0000 (15.66%, 163, 101)
MIR-181g201] 0.0670 (1.93%, 33,23) _ -0.8319 (20.27%, 218, 161)
iR- 0, 0,
miR-23b253] miR-23a[247] 0.0350 (0.37%, 12, 8) 26.6223 (0.02%, 1, 1)
miR-491-3(247] 0.0524 (1.08%, 19, 17) -8.8741 (86.43%, 609, 574)
MiR-330-3(254] miR-96[251] 0.0531 (1.11%, 15, 6) -11.3700 (95.69%, 663, 669)
MiR-27a[247, 201]  0.1012 (4.79%, 47, 53)  -11.0926 (94.99%, 654) 672
MiR-34a[255] MiR-503247] 0.0513 (1.02%, 3, 3) -2.4958 (32.43%, 320, 267)
MIR-521[256] miR-375[251] 0.0386 (0.48%, 7, 7) -1.9412 (28.45%, 204, 175)
mMiR-96[251] 0.0572 (1.33%, 16, 7) -2.4958 (32.43%, 222, 241)
o MiR-34b[257] MiR-4870258] 0.0862 (3.41%, 50, 45)  -1.9412 (28.45%, 188, 210)
MiR-34c-3[257] MiR-221[258] 0.0454 (0.74%, 17, 15) _ -7.4875 (76.66%, 444, 582)

6.2.6 Novel MiRNA Detection

By combining local information we obtain a globatective relationships for miR-
NAs and enhance the understanding. Here we are also irgdrastapplying the sim-
ilar technique to establish a novel miRNA predictoe. to incorporate the local rela-
tionship together and to detect novel miRNAs given some knowRNAs. To be more
specific, we sample candidates from the whole genome of spewes . sapiensand
D. Melanogastem our studies), and pool them together with known miRNAs m$hame
species, compute tHecal similaritiesamong all the known and candidate miRNAs, and
use the global féective similarities to retrieve novel miRNAs from the caraties. The

detail retrieval algorithms can be found in the “Materiaisl Methods” section.
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Figure 6.6. Cross analysis tdt-7/miR-98family and mir-106mir-20 family. Left panel:
the number of common targeting genes of pair of miRNAs. Righepahe targeting genes
of the members of the two family. White grid means no intemacts found and colored
grid means interaction is found. All the targeting relasibips are verified by biological
experiments. .

We first test our algorithm, which is named, miRNAPred (miRNA gRé&uNction
Affinity Prediction), on human miRNAs to see the prediction aacias then apply it iD.

Melanogasteto detect novel miRNAs.

6.2.6.1 H. sapienaniRNA Prediction Evaluation

We evaluate the performance of our miRNAPred algorithniHsapienslata based
on the known miRNA precursors mixed with the pool of putatisadidates to be ranked.
The prediction quality is assessed by the recall and pregisvhich are, respectively, de-

fined as:

TP

Reca” = m (62)
- TP
Precision = TP+ EP’ (6.3)
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Figure 6.7. Members of miIRNAs grolg®2 found by our visualizationA: The chromosome
positions of the members of grol2, which are located in three paralog miRNAs clusters,
themiR-25cluster,miR-17cluster, andnir-106acluster. “@B2” means the corresponding
MIiRNA is in groupB2. (B): The embedding result of the members of gr&® The
symbols in the parentheses represent the function of thesgmynding miRNAB: breast
cancer,L: Lung cancerQO ovarian cancerP: prostate cancer. Upper case of the disease
name means the function is verified by causal experimemsgrloase means the function
is verified by micro array experiment8: The sequences of the members of miRNA group
B2. The highlighted region is seed sequence which is usedaiocglthe targeting mRNASs.

where TP, FP and FN are numbers of true positive predicti@atse positive predictions,
and false negative predictions, respectively.

Our miRNAPred method is compared to the state-of-the-art nkRaethod [259]
that has been proved to outperform previous Support Vectwtiihe (SVM) based super-
vised methods [130, 260]. The number of query samples is th& oritical parameter
for algorithm miRank. We perform the two methods, miRank an&NKAPred, onH.
sapiensdata with 4, 8, 16, and 32 known miRNA precursors that are natglgelected
(we do it for 30 times) as query samples. To reiterate, in ed¢hese experiments, the

rest known miRNA precursors are combined with the 1000 haiggiquences extracted
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Figure 6.8. Novel miRNA prediction evaluation d¢#h sapiensfor miRank and miR-
NAPred.A: Prediction precision with dlierent numbers (4, 8, 16, and 32) of query (known)
MiRNAs onHSA1533andHSA1720B: ROC curve with diferent numbers of query miR-
NAs on HSA1533and HSA1720 C: The precision distributions of both methods with
different numbers of query miRNAs andidrent numbers (50, 100, 150, and 200) of re-
trieved miRNAs onHSA1533andHSA1720 Each dot is for one random choice of the
selected query miRNAs. Thp values indicate the significance of miRNAPred is better
than miRank. When the number of known miRNAs is small, miRank galle in predic-
tion precision, while miRNAPred remains robust..
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from the genome to form the pool of candidates to be ranked.r&ball and precision are
computed by averaging the measurements over 30 randos thieeach experiment, we
choosen topmost ranked candidates, and determine the precisiomeaadl of the result
by comparing the chosen candidates with the known human mgRNzt are hidden in the
candidate pool. We test two algorithms in both HSA1533 (533MAs in miRBase with
the version of September 1, 2007, mixed by 1000 putativeidates) and HSA1720 (720
miRNAs in miRBase with the version of Release 16: Sept. 2010, arlixe1000 putative
candidates). By varying the number we obtain the Receiver Operating Characteristic
(ROC) curves ([261]) for both methods and plot results in Fegai8B.

With 8 known miRNAs, our first 50 predictions are 100% correatich higher than
miRank (87.45%) in HSA1533. As an extreme example, we use dkmiRNAS to
predict 200 top ranked miRNAs in HSA1720, 98.21% of them aresotly retrieved. In the
same scenario, miRank only achieves 79.83%. Detailed casoparon the two datasets
in different settings can be found in Supplementary materialde Tl ).

We are also interested in the precision with small numbeeiofaved miRNAs. This
is useful in biological experimental design. Witlfdrent small numbers of retrieval miR-
NAs, the prediction precisions of two methods are drawn guFa 6.8A. From the figure,
we see that miRNAPred is significantly better than miRank ircigrens.

In Figure 6.8C, we plot the distribution of the prediction precision withfdrent
numbers of query miRNAs andftierent numbers of retrieved miRNAs. One can observe
that our method miRNAPred is significantly better than miRaitk W values ranging from
1.14x 10°3(Q = 16, # retrievak200, HSA1553 to 1.09x 10-1°(Q = 16, # retrievat150,
HAS172(. We also notice that when the number of known miRNAs is smmailRank is

unstable in prediction precision, while miRNAPred remamisust.
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6.2.6.2 Novel miRNAs detection iD. melanogaster

D. melanogasteis a species of Diptera, in the family Drosophilidae. Thecspeis
known as the common fruit fly which is one of the most frequentled model organisms in
biology, including studies in genetics, physiology, mimied pathogenesis, and life history
evolution. In the latest version of miRBase (Sept. 2010) glaee 176 miRNAs found.

By applying miRNAPred on the mixed pool of 176 known miRNAs an@Q@u-
tative candidates which are closest to known miRNAs, weaetri200 novel miRNAs.
Out of the first 30 candidates, associate with the 30 higleedting scores, 14 of them
are conserved in other animal species. By conserved, we rheendre at least 21 nt are
conserved in at least one other species.

We list the first 30 miRNAs detected by miRNAPred in Table 6.5.e Tutative
MiRNAs are sorted according to ranking scores. The posifioictuding the name of the
chromosome, starting position and ending position) are ledsed.

We show the hairpin structures of the first two putative miRNé®me-putativeland
dme-mir-519in Figure 6.9A. The hairpin structures and the entropy are computed by the
RNAFold web servet. Shown are also the alignment resuldofie-mir-51%nd conserved

mMiRNAS in other species.

6.2.7 Discussion

In causal studies of biological mechanisms, we often needttiblish some potential
hypothesis than design biological experiments to suppgaint With the fast growing
biological techniques, we have exponentially accumulatdalicly available experimental
data. Putting expensive biological experiments on one laaidhe free abundant data on

the other hand, we often come up with one simple questionweaguide how to design

2httpy/rna.tbi.univie.ac.4tgi-biryRNAfold.cgi
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Table 6.5. Top 2@. melanogastecandidate miRNAs discovered by miRNAPred.

ID2 Chr Start Stop Strand Ranking Score ConseRred
dme-putativel X 5656849 5656938 + 0.4957 No
dme-mir-519 U 1627351 1627450 - 0.4951 Yes
dme-putative2 2R 10410083 10410172 + 0.4949 No
dme-mir-548 3R 503941 504025 - 0.4945 Yes
dme-mir-792 X 14550110 14550189 - 0.4944 Yes
dme-miR1134 X 9961014 9961113 - 0.4944 Yes
dme-mir-669 X 19194916 19195015 + 0.4943 Yes
dme-putative3 2R 17987368 17987457 + 0.4940 No
dme-putative4 X 3964388 3964477 + 0.4938 No
dme-putative5 2R 11048444 11048533 + 0.4937 No
dme-mir-29 3L 11920039 11920138 - 0.4935 Yes
dme-putative6 2R 1409430 1409519 + 0.4930 No
dme-putative7 X 20008745 20008834 + 0.4923 No
dme-putative8 3L 5856504 5856593 + 0.4921 No
dme-putative9 3R 26690572 26690661 + 0.4912 No
dme-putativel0 3R 27475642 27475731 + 0.4906 No
dme-putativell 2L 21231648 21231737 + 0.4896 No
dme-putativel2 3L 6641688 6641777 + 0.4886 No
dme-putativel3 2L 17962072 17962161 + 0.4879 No
dme-mir-1375 2R 19389491 19389570 - 0.4877 Yes

a For those putative miRNAs which are conserved in other speeie use the known
conserved miRNAs to name the putative miRNAs:Conserved’ indicates we can find
conservation miRNAs in other species. The criterion is thiddre are at least 21 nt which
are conserved in at least one other species, the candidatesglered as ‘conserved'.

our experiments by making use of the available data suclotirdbiological experiments
have lower cost or higher chance to succeed? Many previoupuational research have
provided positive and successful answers. However, wheredo the research miRNAs,
the contribution from computation techniques to real lyadal communities is limited,
due to the much higher complexity level among miRNAs, genathvays, and diseases.
Here we give a bigger picture by briefly reviewing relatecesesh and further dis-

cuss the potential usage of our techniques presented iotthjser.

6.2.7.1 The Complexity of the MiRNAengdisease Network

In history, we first discovery the functions of proteins,rttdiscovered that genes,
which express proteins, are much more important. After, twatfound that the regula-

tors, which govern the genes are also critical in biologatadies. When more factors
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being considered, we have wider view and deeper undersiguadi the hidden biological
mechanisms. But what is the next step? The answer also becnonesand more dicult.

One of the dificulties is that the complexity of the regulatory network leen
raised to a much higher level when regulatory componen¢gsiklRNAs are being taken
into account: tiny regulators have huge impacts. Imagindéalevnetwork of the triangle
relationships among genes, diseases, and miRNAs. Sincargeeriumber of target genes
of single miRNAs, thedensityof the connection becomes much high than the network
without miRNAs. We plot the distribution of number of targefsmiRNAs in Figure 6.11
to illustrate what the complexity level of miRNAs regulatargtworks. If we put them in
the triangle network, we can imagine that for each nodes BiNAis, they have hundreds
of connections coming out and there are hundreds of suchsnode

The complexity level of the interaction network of miRNAs kalso been supported

by the discoveries by Lewist al. [168] and Kreket al. [169].

6.2.7.2 Narrowing the List of Candidates

The computational techniques are applied in biologicaliss) among which candi-
dates selection has been widely accepted.

Cozmaet al. applied a bioinformatics-based strategy to identify tbdilyc and
Cdc25A Apmmammary tumor latency modifiers [262]. In their argumenytbeed se-
guences comparison and pathway analysis, which stronglystithatc-Mycis theApmtl
tumor latency modifier locus. In plat research, Mitctedllal. developed a novel compu-
tational approach to discover candidate genes for the sgigtand feruloylation of ara-
binoxylan. They provided strong evidences which stronglypert for genes withirthe
GT43, GT47, GTelandPF02458families being responsible for the synthesis of arabi-
noxylans and its side chains. In their research, sequenu&asty was the original evi-

dence. Wu developed an analyzing technique to identify idabel genes from DNA mi-
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croarrays gene expression data. [263]. He used indiviegsald identify the significance
of every considered gene undeftdrent conditions and to rank the genes to obtain a list of
candidate genes. His method nowadays can be interprefedtage selectioin machine
learning and bioinformatics communities [264].

The all these computational methods mentioned above, thegrasidered the ob-
jects independently, one case by one case. To use the mstatiohis chapter, they only
made use ofocal informationof the available data. Obviously, in the studies of miRNA,
especially considering the regulatory network, such teghes do not stiice. From Table
6.2, we observe that there are many cases in which the neaRiyAs have already been
simultaneously discovered in the same paper, suggestaigrtbst of the close (in terms
of sequence) by miRNAs have already been explored. We havedsdimething else to
narrow the list of candidates in our studies.

On the other hand we discovered 20 pairs of miRNAs which aredaisally verified
by biological experiments and are nearby in the visualiratesults. Out of the 20 pairs,
9 of them are dissimilar in sequences and are discoveredfgyeht independent groups.
This suggest that these research groups were not able tifydée tight patterns of these
MiRNAs. So they should be benefited from our visualization.

One should also notice that in Table 6.3, the sequence adighsimilarities are
often too low to use local pairwise comparison cannot disc@any of the item in the
table. Another interesting casetisa-miR-204andhsa-miR-205%n Figure 6.4B. The aign-
ment similarity profile for this pair of miRNA is-0.2773(1813% 80, 98), showing that
they are actually very dissimilar in sequences, howevayalization distance profile is
0.0250(0149% 3, 2), which is very close. This can also be observed by sightgore 6.4
B.

These evidences suggest that the visualization has clearistity when we consider

a whole network which involved complicated miRNAs interans.
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6.2.7.3 Discovering Interesting Patterns

In our visualization results, Figure 6.7 demonstrates algop@mple of the miRNA
pattern we discovered. The 6 miRNAss@-miR-93, hsa-miR-106b, hsa-miR-17, hsa-miR-
20a, hsa-miR-20bndhsa-miR-106pare very close to each other and far away from most
of the other miRNAs (see Figure 6.B2) for a bigger picture) and have a clear common
sequence signaturdQAAGUQ in their 5-end. Further more they are actually located
at three paralog miRNAs clusters (Figure &Y More evidence suggests that these six
miRNAs should be functionally tight to each other, see theraattion network with genes
in Figure 6.6.

ThemiR-17-92 clusterare a prototypical example of a polycistronic miRNA gene
and have been well explored by other independent reseaocipgf265, 193]. However,

notice that our discoveries solely reliesiarsilico studies on publicly available data.

6.2.7.4 Potential Applications of Our Visualization Tool

Our visualization cannot automatically discovered nevigras. Instead, it provides
a novel way in which we can analysis the available data. Besldediscoveries above, we
believe that there are still many un-explored interestiagons and other useful knowledge
in our visualization results, which requires more carefiukstigation.

On the other hand, notice that the input of our visualizatiosthe local and direct
similarities of the objects we considered and the outpinasisualization embedding coor-
dinates of the objects. Thus we can employ our techniqueyiotiner network. Nowadays,
the gene-gene [266], miRNA-gene [267], miIRNA-disease [2®B]2and gene-disease
[269] networks have been well established. Can we put allerhttogether? Since the best
advantage of the global embedding is the integration ofiall of local information, our

visualization tool shall fier an clear and positive answer.
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6.2.7.5 Novel miRNAs ldentification

Experimental cloning forts have successfully identified highly expressed miRNAs
from various tissues. In cloning-based approaches, distii2 nt RNA transcripts are
first isolated and then intensively cloned and sequencedvelNniRNAs identification
by such biological experiments highly biased towards abatig andor ubiquitously ex-
pressed miRNAs; only abundant miRNA genes can be easily @et¢@70, 133]). The
found miRNAs are collected in the miRBase web¥[267]). Alternative computational
approaches have been developed to complement experimegitabds as a powerful aid
for finding tissue-specific or lowly expressed miRNAs. A numbkecomputational meth-
ods for miRNA prediction were introduced using supervisedreg [130, 260] and semi-

supervised learning [259]).

6.3 Methods and Materials

We first introduce the whole computational protocol thenl&xpthe details of each
component in the protocol one by one later. The whole pratacduding the visualiza-
tion and miRNAPred is illustrated in Figure 6.10. The maintmthe Green’s Function
Affinity, in which objects are modeled by partiatidrential equations which are solved by
Green’s function method. The input of the “Green’s Func#dghinity” is a matrix measur-
ing the pairwise similarities among objects, which are coteg by different ways for two

different purposes: visualizatioA)(and novel miRNA predictiong).

6.3.1 Laplacian Operator and Green’s Functidfirity

The continuous Laplacian operator

Shttpy/www.mirbase.org
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Figure 6.10. Computational protocol used in our miRNA analy&i Data flow chart for
the visualization. The “Bipartite Graph B” block represer# thipartite graptB between
human miRNAs and human genes. “Similarity matrix” represkatmatrixW computed
using Eqg. (6.1). The “Green’s Functionffity” method will be introduced in the main
text. B: The protocol used imiRNAPred The features of known miRNAs and candidate
MiRNAs are extracted, then the similarity matrix is compuisthg Eq. (6.16). All the
known miRNAs and candidates are considered to be precurBbes the candidate miR-
NAs are ranked by “Green’s Functionfifity”. In the main text, we will explain how the
candidates are obtained and how the feature extractiomis.do

, pe &
£1(X) = V2 (k0 Yo . %) ( e axg) ) (6.4)

describes the second-order partidtetiential equation. Heré is a second-order fleren-

tiable function in ad-dimension spacef, : R* — R. Given a partial dferential equation,

L f(x) = y(x). (6.5)

The solution can be given by

f(x) = Ly(x) = f G(x, x")s(x")dx’, (6.6)
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Figure 6.11. Distribution of number of targets of 711 miRNAWglost of the miRNAs
(93.81%) target more than 600 genes. .

whereG(r, r’) is the Green’s function, which captures the field respohgelae to a single

source ak’ represented by(r —r’):
L G(x,x) = 6(x — X). (6.7)
If the differential operatoy’ admits a set of eigenvectors
L= A, 1=12,---

then

G(X X) _ Z lpl(x)wl(x)
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The discrete Laplace operator is an analog of the continuapkace operator, and is de-
fined so that it has meaning on a graph or a discrete grid. Eaabe of a finite-dimensional
graph (with a finite number of edges and vertices), the diedraplace operator is more
commonly called as the Laplacian matrix. Green’s functanthe Laplace operator repre-
sents the propagation of influence from all points. On a gadpdairwise similarities, the
Green'’s function is the inverse of the combinatorial LaacWill see later that thefect

of Green’s function is to incorporate all the connectiorgetber and enhance the local con-
nection through the neighbors, like affimity propagation. We name the method “Green’s
function dfinity”. In this chapter, we employ Green’s functioffinity to solve two prob-
lems in miRNAs: (1) visualizationi.e. to embed pairwise network data into Euclidian

space, and (2) miRNAs predictions.

6.3.2 Network Embedding for MiRNAs Visualization

We seek a linear subspace to visualize the functional oglsiiips of miRNAs ac-
cording to the miRNAs:target information. Our aim is to seelome MiRNA is close to
or far away from another miRNA according to their functionspecies. In our model, we
define miRNAs as nodes of a graph. By embedding, miRNAs are memexs$ by points
in the vector space. The Euclidian distance between eaclopaiiRNAs in embedding
space reflects their biological relationships.

LetG = (V,E) be a graph with vertice¥ and edges, andf : E — R be aring-

valued function of the vertices. Then, the discrete Laplati acting onf is defined by

Liw) = > [f(v) - fu)]. (6.8)

u:d(u,v)=1
whered(u, v) is the distance operator ofandv on the graphd(u, v) = 1 can be interpreted

as that node andv are neighbors.
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LetV = {vi, Vs, ..., vy} represennh miRNAs, and pairwise connectivity is given by
Wi, 1 <i,j < n. In our visualization methodyV;; is the number of common targets
between two miRNAS and j. The relationship between random walks on a graph and
electric resistors network has been shown in [271]. Oneefthin results is the relation-

ship between global resistance and the expected commugaesim
Tij :CRJ', (69)

wherer;; is the expected number of steps a random walker walks fraom and comes
back toi, R; is the global resistance between no@d@d j, andC is a constant. In order to
illustrate the model in a more grounded way, we use the @eesistor network instead
of random walk models. Lert,Lj denote thdocal electric resistobetween nodeandj. In
other word, the electric resistor network is establisheadmynecting all pair nodes, ()
via an electric resistmf-j. Our goal is to compute thglobal or effectiveelectric resistance
between nodeand .

The global electric resistor can be derived as the followwag. We impose dierent
electric potentials between nodand j by adding an electric current source (assumiisg
positive, j is negative, and the currentdg) on them and all other nodes are free. ugbe

the electric potential of node k = 1, 2, ..., n. According to Kirchhd Law,

C = ZKij(Ui - uj), (6.10)

j#i

wherex; is thelocal electric conductivityxi; = 1/riLj) andc; is thenet currencyof nodei.
In order to visualize the functional relationship among mM&Nn a meaningful way, we
use the number of common target genes asabal conductivityi.e. «; = Wj;. Using the

Laplacian operator, Equation (6.10) can be rewritten as,
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Lu=c (6.11)
whereu = [uy, Uy, - - - ,Uy] @andL is the Laplacian matrix,
L=D-x,

D = diag(xe), xij = «j, ande is a column vector with all elements 1. Sincand j
are applied with a current sourcg and all other nodes are freg, = c;, ¢; = —Cp, and
o =0, k#i,j. Let};4qq’ = L be the eigenvector decompositionsLof Similarly to

continues case, we have
n

u=Gc=L"%= (Z qquJC (6.12)
_Ge=Llc= e, .

k=2 'k

whereG is the discrete Green’s function. Notice that eigenvegtoassociating with the

smallest eigenvalug is ignored here. Becausg is a constant vector argf c = 0. Thus

n i ]
_ Coqk - Cqu i
b= — . U

and _
n i J

Cody — CoQ

uj = Z /l—k%

whereq], andqu( are thei-th andj-th component ofy,, respectively. According to Ohm'’s

Law, | o | | |
R =0 _di_ Z (CoCli — Cod)(i — ) _ Z (g} - ap)?
| Co k=2 Codk £ S
Let
pi = [/ VAo, A3/ VA3, ., O/ N Aa]"
and

p; = [a)/ VA2 4/ Vs, .. ab/ VAT,
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we have

Rj = lIpi — pjll%

which means thefeective resistance is the squared distance between twaspniatvector

space. More generally, allmiRNAs are embedded into a linear space:

92 O3 an

[p2’ p3’ ) pn] = (613)

where the squared Euclidean distance representdintiee resistance. Notice thad <
A3 <--- < Ap, andqy, - - - , ¢, are orthogonal to each other, thas [ VA2, 93/ VAs, da/ VA4]"
are the first threerinciple components the embedding space. In our study, we use these

three components to visualize the functional relationginqfwng miRNAS.

6.3.3 Green’s function for miRNAs prediction

We use the electric resistor network model to illustrate miRNAs prediction ap-
proach — miRNA gReen’s functioNfnity Prediction (miRNAPred). Leg = ({V, 0V}, E)
denotes a graph, in which each veriex V represents a putative candidate and oV
represents a known miRNA precursor, an edge E captures the relation between two
vertices linked bye, and the weightv of edgee quantifies the relation. More explicitly, we

write the weights in the following order:

Wovav, W
W= avav> Wavv

WV¢9V > WVV

We usedV to represent the known miRNAs, because the known nodes caridspreted
as the boundary conditions of the partiafferential equations. [272] showed that they are

under Dirichlet boundary conditions.
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Let the nodes corresponding to known miRNAs be imposed witbsitipe electric
current sourc&™ and putative candidates be imposed with negativeWe chosect and
¢ such thaimc = —nc", wheren andm are the number of known miRNAs and putative

candidates, respectively. Then the electric current vesto

c=(c, - ,cc,---,c). (6.14)

Let u be electric potential results of the nodes. According tacKivdf Law, Egs.

(6.10) and (6.11) hold, which lead to the solution:

u = Gc,
or explicitly
u = ZGijC++ZGijC_, ieV. (6.15)
jeaVv jev

The electric potential; provides a natural way to rank the putative candidate miRNAs,
we pick up the candidates which have highest potential.
mMiRNAPred Algorithm

We explicitly summarize miRNAPred algorithm as following:

1) Construct the local similarity matrix
WIJ = e_||Xi_Xj||2/20'2’ (6_16)

wherex; andx; are the feature vectors of (putative) miRNifand j, (described ir§6.3.6),
i,j =12---,N, whereN is the total number of miRNAs, including labeled miRNAs
(denoted byV) andm putative candidates (denoted WY, and compute the graph Lapla-
ciant =D - W, whereD = diag (We).
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2) ComputeG = Y1, akdy /A, Wherel, andqy are the eigenvalues and eigenvectors of
graph Laplaciark, see Equation (6.12).
3) Compute ranking scores for all unlabeled (putative caatd)dmiRNAs.U; = ey Gijc™+
Yjev Gij€™,i € V. Here we set* = 1 andc™ = —n/m.
4) Rank the putative candidates. Sort the ranking scare$ candidates, and select top
ranked candidates as the final predicted miRNAs.

We should notice th&V is calculated by dierent ways in visualization and miR-
NAPred, because the aims of visualization and predictierddferent. miRNAPred uses
the structural similarity to predict the miRNAs, while vidization utilizes the targeting

genes to analyze miRNA functionality.

6.3.4 Data Sources

Here we introduce how the data are prepared for the Greemdifun dfinity com-

ponent in Figure 6.10.

6.3.4.1 MiRNAs-target bipartite graph

For human miRNAs visualization, we use the collection of miRMNArget pairs
which can be found in website [273]. The data used in this @&ragre downloaded on
Sept. 20th, 2010. There are 851 unique miRNAs, 21,199 unigneg and 685,813 tar-
geting pairs in thédomo sapienspecies. MiRNAs which are not found in the same species
in miRBase (http/www.mirbase.org) are ignored. Considering miRNAs and target genes
as two sets of vertices, we construct a bipartite grBgs following: B;; = 1 if thei-th
MiRNA has thej-th target gene. The final size Bfis 711x 21199 indicating 711 miRNAs

are selected. The total number of targeting pairs is 568,070
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6.3.4.2 Human MicroRNA Prediction

The precursor sequencestdf sapiensare downloaded from the miRBdsg§267]).
Genome sequences of H.sapiens are retrieved from UCSC GebimwseP. We verify
two versions of miRNAs datasets, one is the version of Septerhp2007, and the other
one is that of Release 16 ( Sept, 2010). The first one has 533 nsR&Al this number
increased to 720 in the second version.

We randomly extract non-overlapping fragments of 90 nt ftbe genome so that
no genome annotation information is used. We first discdrfdea/ments overlapping with
known miRNA precursors in miRBase (Release 15, Sept, 2010). heoextracted frag-
ments, we further predict their secondary structures uBiNgfold ([274]). We select
fragments with the following criteria: minimum 18 base pajs on the stem of the hairpin
structure, maximum0.25 kcal/mol average free energy of the secondary structure and no
multiple loops. These fragments (putative candidatespamted together with two ver-
sions of known human miRNA precursors (533 miRNAs and 720 miRNéspectively)
which are all known human miRNA precursors except the onege s query samples in
our experiments to form the pool of candidates. The two vessiof datasets are name
HSA1533 and HSA1720, respectively. The reason we add thegerk human miRNA
precursors to this pool of samples is to evaluate the pliedigterformance of the miR-
NAPred algorithm in terms of both precision and recall.

The reason why we choose 90 nt and a threshold0d?5 kcal/mol for average free
folding energy is that most of the miRNA precursors are ab&uibtin length and have
lower average free energy thai®.25 kcal/mol, see Figure 6.12 for the statistics for the
precursor length and average free folding energy for alimii®NAs in all species available

at miRBase.

http;/www.mirbase.org
Shttpy/genome.ucsc.edu
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Figure 6.12. Statistics for precursor length and averaggefivlding energy of the all miR-
NAs in all species available at miRBagk.the distribution of average free folding energy.
96.92% of the miRNAs have lower average free folding free gnéhnan -0.25.B: The
correlation between average free folding energy and psecdength.C: Distributions of
sequence length of miRNA precursors. Most of the miRNA premrgrare about 90 nt in

length. .

6.3.5 Drosophila melanogaster

The precursor sequencesiiosophila melanogasteare downloaded from the miR-
Base (httpywww.mirbase.orf) with Release 16 (Sept, 2010). Every chromosom® of
melanogasters fragmented, from 5’-end to 3’-end, by a sliding window @&f Bt and a
shift increment of 45 nt. These fragments are folded by RNA{{274]), and hairpinned
fragments are selected by the same criteria described albbeechosen hairpin sequences
formed the initial candidate pool. In the fragmentatiopst®me putative candidates might

be cut into two pieces, and have lost their hairpin strustunence were excluded from the
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candidate pool. To avoid this, we further fragment, with shene sliding window and in-
crement, the sequences between each pair of hairpinneddrag next to each other. The
secondary structures of the new set of fragments are peedartd selected by the same

tool and criteria. This process is iterated until no haingitt fragment could be found.

6.3.6 Features used in miRNA prediction

We use the features introduced by [259] to describe miRNAsviector space. The
entire hairpin structure of a miRNA precursor is charactstiby 36 global and local in-
trinsic attributes that capture sequence, structural @poldgical properties of the miRNA

precursor. Details can be found in [259].
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CHAPTER 7
CONCLUSION

Interpretability is crucial to TCGA data analysis. The whdigsertation is dedicated
to developVunderstandable Data Mining and Machine Legrtenhniques for TCGA data
analysis.

We present the multi-subspace representation and discaowedel, which is moti-
vated by the multi-subspace discovery problem. We solventhki-subspace discovery
problem by providing block diagonal representation matrhere the data points are con-
nected in the same subspace and disconnectedfferatit subspace. We then extend our
approach to handle noisy real world data which leads to th&i{8ubspace Representa-
tion. We develop anfécient algorithm for the presented model and a global opgmiz
guaranteed. Empirical studies suggest that our methodoweprthe quality of the data
by sparse and low rank representation and the induced $taugdelassifier outperforms
standard sparse representation approach.

In this dissertation, we also propose the expligit,-norm penalties and constraints
to obtain structural sparsity models in multi-task leag@md group sparsity learning. The
induced learning problems are tackled by a novel generadhipz Auxiliary Function
framework, which reduces the learning problem into simfgeative algorithms. We pro-
vide theoretical convergent guarantee, as well as the cgenee rate guarantee. Empirical
studies suggest that the expli¢y/{o-norm and groug,/{-norm models achieve much

lower objective values thafy/¢,-norms under the same number selected joint variables.
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Itis also natural to extend our optimization techniquesefgen overlapped structural
sparsity, such as grouped tree structure learning, or ewedlmur methods with some other
machine learning techniques such Structured Sparse pairi€omponent Analysis.

Our optimization techniques which are written in a genesatt, could also be useful
in other machine learning models which involved both smaotth non-smooth objective
functions. On the other hand, the concept of group lassolandetlated groug,/¢, and
{>/to norms can be extended to more general casgs, for grouping in matrices and
tensors, where our optimization techniques remain aggkca

We also present the Socialfiision Process, which is motivated from the Matthew
effect in social phenomenons. We develop the stochastic mgd#iebassumption that
social members tend to be together with someone who is famyiith. We also derive an
graph evolution algorithm based on the presented mode. rigrmistudies show significant
improvement of the qualities of the graph data by the SociguBion Process, indicating
that the assumptions in our model are natural in general. [8¢ediscover a new miRNA
family in the experiment on miRNA functionality analysis.

In this dissertation, we propoSzalable Orthogonal Regressi¢BOR) to select low
redundancy features. We propose diicent iterative algorithm to resolve the problem
and analyze its convergence rate. Furthermore, we als@peogn extension of SOR to
incorporate preselected features according to prior éispdtnowledge. Theffectiveness
and dficiency of SOR is demonstrated on several benchmark data Betally we also
validate the usefulness of SOR on a real world clinical data s

We also proposed novel computation tool to visualize andlipr§miRNAPred)
miRNAs using Green’s function approach. The visualizatiool embeds miRNAs into
an Euclidean space, where the squared Euclidean distaat#slly represent the func-
tional relationship. We discover four tightly connectedRNAs patterns, two of which

have been well studied in previous literature and two of Wiiave not been explored yet.
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By investigating the visualization results and combininghvexisting causal biological re-
search and large scale micro-array experimental data, seevkred 20 pairs of miRNAs
which are both causally verified by biological experimewt®é involved in one or more
in AML, prostate cancer, lung cancer, breast cancer, andasvaancer, and are nearby
in the visualization results. Out of the 20 pairs, 9 of them dissimilar in sequences and
are discovered by fferent independent groups. We further discover 64 miRNAs aie
near a causal verified miRNA and which have been tested usiogfarray experiments.
According to our analysis, these miRNAs are hypothesizedlwed in the corresponding
five diseases we considered. The miRNAPred predictor, weesités be robust even when
few proportion of the miRNAs are used to retrieve unknown miRNAVe successfully
apply miRNAPred orD. melanogasterand discover 30 novel miRNAs, out of which 14
are conserved in other animal species.

To summarize, we developed several integrative machimaitegaand data mining
approaches from fferent point of views and it turns out that these approachesasis-

tent in discovering interesting and understandable petter TCGA data.
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APPENDIX A

PROOF OF LEMMA 3.6.2
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Proof Denote

1
Jau(U) = EIIU —all® + plull, (A.1)
then,
1 1
Ja,(U) = éuTu —a'u+ éaTa+y VuTu, (A.2)
0Ja,(U) M
T A3
By settingmg—‘;((l’) = 0, and by denoting = 1T , we have
puTu
u—a+ubu/p=0,
or
a
= A4
u s (A.4)

Equation (A.4) does not solve for, sinceb is unknown. But we know that the optimal

can be always represented by the following form,

u=pa, (A.5)

whereg is scaler. By substituting (A.5) into (A.2), we have

1 1
Jau(B) = Ellallzﬁz + (ullall - lal?)B + Enanz. (A.6)

171



Figure A.1. The optimal solution af,,. Left: the case of|al| — 4 < 0. Right: the case of
pllall - > 0. .

One can easily prove that whenis the optimal solution of (A.1)3 is hon-negative. To
show this, we just assume= 3a, 8 < 0 is the optimal solution of (A.1). Then lat = —3a,

and

1 — —

Jay(U) =51 + B)?llall® + |Blllall
1 — —

<§(1—B)2lla||2 + (Bllall

:Jaﬂ(U),

which is impossible, since is the optimal solution. Thus the optimization problem in
(A.1) is to seek thgg > 0, such that = pa gives the optimal solution, which leads to the

following problem,

1 1
Jau(B) = EIIaIIZ,BZ + (ullall - all?)B + §||a||2,ﬁ > 0. (A7)
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One can check (see Figure A.1) that the optimal solution o7 \&" is given the

following,
Lo i uzlal
F= lall-u
e i <l
or
.o i pxlal
u =

llall— :
Sara it p<lall

which completes the proof.
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APPENDIX B

PROOF OF THEOREM 3.7.1
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For two consecutive solutions!, X***, sincef(X) is convex andP(X) is convex on

f(X*) > f(Xo) + (X" = X, v (XY, (B.1)
AD(X*) > AD(X") + X" = XT G,

whereG € 9d(X"1) is any element in the sub-gradient®{X) at X'*1. SinceX'*! is the
optimal solution of

Z(X, XY = ZIX - All2 + A0(X) + C

0 € 9Z(X"1, XY, or

0 € p(X™ = A) + 920(X'1).

Obviously,G = p(A — X*1)/1 must be im®(X*?). Thus we have
AD(X*) > AD(X™Y) + X" = X, p(A = XY /2). (B.2)
By combining (D.1) and (D.2) , we have
f(X*) + AD(X) >(X* = X', V(XYY + 20X + (X" — XL p(A — X"/,

By considering the fact that(X'*1, X%*1) < Z(X*1, X"), and thatz(X**1, X') < Z(Xt, XY),

we have

f(X7) + AD(X*) > f(X") + Ad(X) + gnx”l — XY[Z + p(Xt = X7, X XY,
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or
J(Xt+1) _ J(X*) Sp(X* _ Xt, Xt+1 _ Xt> _ g”XHl _ Xt|||2:
:p(<x*, Xt+l> + <Xt, Xt> _ <X*, Xt> _ <Xt, Xt+l>)
- Ig(nxmné + X2 = 2X!, X))

N|©

(”Xt _ X*HZ _ ||xt+l _ X*HZ) )

According to Theorem 3.5.2, we have

IJXT) < IXTH <IXT2) <o < J(XTO).

Thus
T-1 T-1 D
23T = 3 < 37 5 (IX =X~ IX = X7
t=To t=To
Pt £112 T yr2
=5 (IXT = XUz = IXT - XIZ)
p . Pr .
<SIXT = XCIE < SIXT =X,
or
IXT) = IXT) < =P XTo — 7|2,
2(T —To)

Notice here we use the relation of

pr=>p,t=212---,T -1
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APPENDIX C

PROOF OF THEOREM 4.4.1
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We first introduce the following Lemma.
Lemma 2. If A andB are semi-positive definite, théno B is also semi-positive definite.
Proof. We first notice that i andv are vectors, then

[(uuT) ® (va)]”. = UUvivy = (Wvi)(u;v)),

Letw, = uvi, orw = u® Vv then
[(uuT) ) (WT)] =ww'.

SinceA is semi-positive definite, there existsuch thatA = UUT. For the same reason,
letB=VVT'. LetU = [ug, Uy, --- U],V = [Vq, Vo, - - -, Vs] Wherer ands are the ranks of\

andB, respectively, andv;; = u; © v}, then
_ ur T = RYTL T
AoB= Zij Uity OVv; = Zij WijWj; = WW "',

whereW = [Wqy, - -+, W1s, Wor, - -+, W;s]. ThusA © B is semi-positive definite. O

Then we can prove the convexity 6{a) by showing the Hessian matrix d{«) is
positive semi-definite. From the gradient of Eq. (4.17), \a@ compute the Hessian of
f(a) as

B G(Vf(a))p Gt 6Zjapaj(xng)2aj
pg — - ~pq

(C.1)

Oaq Oaq

szapajxijaj
Oaq

Let Hpq = , then

pg —

_ { 20500%0)" + ), @f0x)° i p=g

2apaq(xgxp)2 if p#q
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Thus the Hessian matrix is

H=G+28A0GoG+28diag(ag, az, -+ , &),

whereA = ae’ anda = 3 j(xxj)%i = 1,2,--- ,n. Sincea, > 0, diag(as, a, - - - ,an)
is positive semi-definite. And according to Lemma®2e G 6 G is also positive semi-
definite. ThusH is positive semi-definite. Thud is positive semi-definite, andi(@) is

convex. Obviousha||; is convex, hencd(a) is convex.
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APPENDIX D

PROOF OF THEOREM 4.4.2
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The following proof is similar to paper [5]. For two consegatsolutionsa!, ',

sincef(a) is convex andla||; is convex,
fa) > (@) + (a* )" VT(a), (D.1)

Alle’lly = Alle™Hly + 22" - gle'™,

whereg € d||a||; is any element in the sub-gradient/of|; ata'*!. Sincea'*! is the optimal
solution of

L
Z(a,a') = Sl = all? + Allally + C,

0 € 0Z(a'*t, at), or

0 e L(a"! - a) + dap(a™?).

Obviously,G = L(a - a***)/1 must be indg(e'*t). Thus we have
Al lly = Al + L(e* - o) (a - o™ (D.2)

By combining (D.1) and (D.2) , we have

fla”) + Alle”||

Z(a* _ a’t)TVf(Gft) + /l”(l't+1||1 + L(a'* _ Q’t+1)T(a— a,t+l)’
By considering the fact that(a'™!, a'*t) < Z(a'?, '), and thatZ(e'*!, o) < Z(a!, o), we

have

f(@") + Ale’|ly = f(@h) + Al (D.3)

L
+§”at+l _ a,t||2 + L(a't _ a*)T(aHl _ Q’t),
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then

L
J(a'“l) _ J(a*) < L(Gf* _ at)T(a,H—l _ (}’t) _ E||a,t+1 _ a,t”2

L (a*T a,t+1 + a,tT a,t _ a,*T at _ atT a,t+1)

L
2

L t 2 t+1 2
= 5 (la' - @I = ™ — @)

(”a,t+l||2 + ”atHZ _ Za,tTa,t+1)

According to Eq. (4.13), we havér") < J(a' 1) < --- < J(@P). Thus
L . T-1L 2 el a2
Do, AeN=d@) <y S (et -a IR~ et -al)
L L L
=5 (le®~e’E~lla"~a"|F) < Slla®~a’l} < Slle®~a .
or

L
Ty _ * _T 0 _ 2
Ja@') - Ja) < 2_I_Ilaf a’||c.

Notice here we use the relation of

Lr >L,t=212,---, T -1
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