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ABSTRACT

A NEW INTEGRATIVE DATA MINING FRAMEWORK FOR

ANALYZING THE CANCER GENOME ATLAS DATA

DIJUN LUO, Ph.D.

The University of Texas at Arlington, 2012

Supervising Professor: Heng Huang

Besides accuracy and efficiency, understandability is another key issue of predictive

modeling in real-world applications, especially in biomedical and healthcare data analysis.

We develop a new integrative framework to enhance the interpretability of data by sparsity-

based learning. We proposed several novel sparsity-based learning models, emphasizing

different understandable properties of data, such as explicit sparsity, low redundancy, and

low rank, and apply to The Cancer Genome Atlas (TCGA) data analysis. Results indicate

that the proposed methods provide more insights from TCGA data while maintaining stable

and competitive performances in predictive modeling. To further enhance the interpretabil-

ity of biological processes and disease mechanisms, we alsodevelop a novel visualization

tool by considering heterogeneous relationships among genomics elements. By applying

the novel learning models and the visualization tools, pathways of several important can-

cer diseases are revisited and a series of novel potential bio-markers are discovered which

improves our ability to diagnosis, treat and prevent cancer.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Cancer has been developed to be one of the leading causes of death in the United

States and many other countries. Currently, one in four people will die of cancer in the

United States, since the fact that no effect treatment has been discover for cancer diseases.

In total, 1,638,910 new incidents and 577,190 deaths from cancer are projected to occur in

the United States in 2012. The chance of being diagnosed withan malignant cancer in a

lifetime is 45% and 38% for men and women respectively [1].

Cancer is now one of the major threats to public health and is indesperate need for

a cure. The Cancer Genome Atlas (TCGA) project The Cancer GenomeAtlas (TCGA)

began as pilot in 2006 with an investment of $50 million each from the National Cancer

Institute (NCI) and National Human Genome Research Institute(NHGRI). The project

was dedicated to analyze and discover genome alterations intumors by introducing the

integrated multi-dimensional/multi-view analysis which provides a unique opportunity to

conduct insilico scientific research where multiple measurements of clinical subjects are

simultaneously considered. The mission is to put comprehensive and coordinated effort to

accelerate the understanding of the molecular basis of cancer through the application of

genome analysis technologies, including large-scale genome sequencing. The final goal of

the TCGA project it to improve our ability to diagnosis, treatand prevent cancer.

We are interested in analyzing the TCGA data in a data mining and machine learn-

ing way, especially for the purpose of deeper understandingfrom the biological data and

providing feedback with interpretable learning models. Weaim to developed integrative
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framework to enhance the interpretability of learning models by making use of the struc-

tures of data and by visualization.

1.2 Main Contributions

1.2.1 Multi-subspace Learning for Linear Modeling of TCGA Data

We present several important techniques in data analysis ofTCGA data, include

multi-subspace discovery problem and provides a theoretical solution which is guaranteed

to recover the number of subspaces, the dimensions of each subspace, and the members

of data points of each subspace simultaneously. We further propose a data representation

model to handle noisy real world data. We develop a novel optimization approach to learn

the presented model which is guaranteed to converge to global optimizers. As applications

of our models, we first apply our solutions as preprocessing in a series of machine learning

problems, including clustering, classification, and semi-supervised learning. We found that

our method automatically obtains robust data presentationwhich preserves the affine sub-

space structures of high dimensional data and generate moreaccurate results in the learning

tasks. We also establish a robust standalone classifier which directly utilizes our sparse and

low rank representation model. Experimental results indicate the proposed methods im-

prove the quality of data by preprocessing and the standalone classifier outperforms some

state-of-the-art learning approaches. The proposed multi-subspace method is also applied

to the TCGA data and interesting and consistent patterns are discovered.

1.2.2 Social Diffusion Process for Clustering

In the dissertation, a new stochastic process, called as Social Diffusion Process

(SDP), is also presented to address the graph modeling. Basedon this model, we de-

rive a graph evolution algorithm and a series of graph-basedapproaches to solve machine

learning problems, including clustering and semi-supervised learning. SDP can be viewed

2



as a special case ofMatthew effect, which is a general phenomenon in nature and societies.

We use social event as a metaphor of the intrinsic stochasticprocess for broad range of

data. We evaluate our approaches in a large number of frequently used datasets and com-

pare our approaches to other state-of-the-art techniques.Results show that our algorithm

outperforms the existing methods in most cases. We also applying our algorithm into the

functionality analysis of microRNA and discover biologically interesting cliques. Due to

the broad availability of graph-based data, our new model and algorithm potentially have

applications in wide range.

1.2.3 Explicit Structured Sparse Learning for Bio-marker Identification

The dissertation enhance the interpretability of structured learning by introducing the

ℓ2/ℓ0 norm optimization. As powerful tools, machine learning anddata mining techniques

have been widely applied in various areas. However, in many real world applications, be-

sides establishing accurateblack boxpredictors, we are also interested inwhite boxmech-

anisms, such as discovering predictive patterns in data which enhance our understanding

of underlying physical, biological and other natural processes. For these purposes, sparse

representation and its variations have been one of the focuses. More recently, structural

sparsity has attracted increasing attentions. In previousresearch structural sparsity was

often achieved by imposing convex but non-smooth norms suchasℓ2/ℓ1 and groupℓ2/ℓ1

norms. In this dissertation, we present the explicitℓ2/ℓ0 and groupℓ2/ℓ0 norm to directly

approach structural sparsity. To tackle the problem of intractableℓ2/ℓ0 optimizations, we

develop a general Lipschitz auxiliary function which leadsto simple iterative algorithms.

In each iteration, optimal solution is achieved for the induced sub-problem and a guarantee

of convergence is provided. Further more, the local convergent rate is also theoretically

bounded. We test our optimization techniques in the multi-task feature learning problem.
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Experimental results suggest that our approaches outperform other approaches in both syn-

thetic and real world data sets.

1.2.4 Sparse Learning with Low-redundancy

We also developed a scalable model for risk factor and bio-marker identification. As

diverse clinical information become available for analysis, a large number of features can

be constructed and leveraged for predictive modeling. Feature selection is a classic ana-

lytic component that faces new challenges due to the new applications: How to handle a

diverse set of high dimensional features? How to select features with high predictive power,

but low redundant information? How to design methods that can select globally optimal

features with theoretical guarantee? How to incorporate and extend existing knowledge

driven approach? In this dissertation, we present ScalableOrthogonal Regression (SOR),

an optimization-based feature selection method with the following novelties: 1) Scalable:

SOR achieves nearly linear scale-up with respect to the number of input features and the

number of samples; 2) Optimal: SOR is formulated as an alternative convex optimization

problem with theoretical convergence and global optimality guarantee; 3) Non-redundant:

thanks to the orthogonality objective, SOR is designed specifically to select less redundant

features without sacrificing the quality; 4) Extensible: SOR can enhance an existing set of

preselected features by adding additional features that are complement to the existing set

but still with strong predictive power. In the evaluation SOR consistently outperforms sev-

eral other state of the art feature selection methods in several quality metrics on several real

datasets. Finally, we demonstrate a case study of a large-scale clinical application for pre-

dicting early onset of Heart Failure (HF) using real Electronic Health Records (EHRs) data

of over 10K patient for over 7 years. Leveraging SOR, we are able to construct accurate

and robust predictive models and derive potential clinicalinsights.
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1.2.5 Regulatory Elements Visualization

Regulatory elements in cell, such as microRNAs (miRNAs), play important roles.

Extensive efforts have been made by both biological experiments andin silico studies.

As low-cost alternatives of biological experiments, several computational approaches have

been developed to facilitate the discovery of mechanisms ofthese elements.

We develop novel approaches for regulatory elements analysis, including visualiza-

tion and prediction. More specifically, we formalized the problem into a partial differential

equation framework, and employed Green’s function approach and the corresponding Di-

rechlet boundary conditions to solve the problem. We discover a novel miRNA pattern in

H. Sapiensin the visualization results. RNAPred achieves 100% precision by using few

number of known of miRNAs. By applying RNAPred, we discover novel miRNAs in D.

Melanogaster, which are conserved in other species.

1.3 Overview of The Rest of the Dissertation

The rest of the dissertation will be organized as follows. A multi-subspace learning

algorithm will be introduced in Chapter 2, and the explicit sparsity learning will be intro-

duced in Chapter 3. Then the low redundancy property of sparsity will be emphasized in

Chapter 4 and two visualization tools will be introduced in Chapters 5 and 6. Finally a

conclusion will be made in Chapter 7.

5



CHAPTER 2

MULTI-SUBSPACE LEARNING WITH CONVEX OPTIMIZATION

2.1 Motivations of Multi-subspace Learning

The linear sparse representation approaches recently attract attentions from the re-

searchers in statistics and machine learning. By providing robustness, simpleness, and

sound theoretical foundations, sparse representation models have been widely considered

in various applications [2, 3, 4, 5].

In most previous models, we impose on the data an assumption that the data points

can be linearly represented by other data points in the same class or data points nearby

[6, 7]. This assumption will further lead to another assumption that subspace of each class

has to include the original point. Our major argument in thischapter is that this assumption

is too loose in real world applications. For this reason, we further impose the affine prop-

erties of the subspaces and present a challenging affine subspace discovery problem. To be

more specific, given a set of data points, which lie on multiple unknown spaces, we want

to recover the membership of data points to subspaces,i.e. which data point belongs to

which subspace. The major challenge here is that not only thesubspaces and membership

are unknown, but also the number of subspaces and the dimensions of the subspaces are

unknown.

In this chapter1 we will (1) present a sparse representation learning model to obtain

the solutions automatically, which is theoretically guaranteed to recover all the unknown

information listed above, (2) extended our model to handle noisy data and apply the sparse

representation as a preprocessing in various machine learning tasks, such as unsupervised

1Most of the major results in this chapter have been publishedin paper [8].
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learning, classification and semi-supervised learning, and (3) develop a standalone classi-

fier directly based on the sparse representation model. To handle the noisy data with ro-

bust performance, we introduce a mixed-norm optimization problem which involves trace,

ℓ2/ℓ1, andℓ1 norms. We further develop an efficient algorithm to optimize the induced

problem which is guaranteed to converge to a global optimizer.

Our model explicitly imposes both sparse and low rank requirements on the data

presentation. We apply our model as preprocessing in various machine learning applica-

tions. The extensive and sound empirical results suggest that one might benefit from taking

sparsity and low rank into consideration simultaneously.

2.2 Problem Description and Our Solution

ConsiderK groups data pointsX = [X1,X2, · · · ,XK] and assume that there are

n1,n2, · · · ,nK data points in each group, respectively (
∑K

k=1 nk = n). We assume that for

each group, the data points belong to independent affine subspaces. And the dimensions of

the affine subspaces ared1,d2, · · · ,dK. To be more specific, for each affine subspaceXk,

there existdk + 1 basesUk = [uk
1,u

k
2, · · · ,uk

dk
,uk

dk+1] and for each data pointx ∈ Xk , there

existsβ such thatx = Ukβk and thatβ⊺1 = 1. In this chapter, by the dimension of the affine

subspace, we mean the characteristic dimension,i.e. from the manifold point of view. Even

though there aredk+1 bases inUk, we still consider thatUk defines adk-dimensional affine

subspace.

2.2.1 Multi-Subspace Discovery Problem

The problem ofMulti-Subspace Discoveryis givenX = [X1,X2, · · · ,XK] to recover

(1) the number of affine spaceK, (2) the dimension of each subspacedk, and (3) the mem-

bership of the data points to the affine subspaces. The challenge in this problem is that the
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only known information is the inputX, where the data points are typically disordered, and

all other information is unknown.

Will illustrate the Multi-Subspace Discovery problem in Figure 2.12. In this chapter,

we first derive a solution of this problem and provide severaltheoretical analysis of our so-

lution on non-noisy data, then extend our model to handle noisy real-world case by adding

ℓ2/ℓ1 norms which are convex but non-smooth regularizations. We develop an efficient

algorithm to solve the problem.

(c)

x2

(d)

(a)

x1

(b)

(e)

Figure 2.1. A demonstration of the Multi-Subspace Discovery problem. (a) and (c): Two
groups of data points lying on two 1-dimension subspaces. (b): All data points shifted by
x1 from (a). (d): All data points shifted byx2 from (c). (e): A mixture of data points from
(b) and (d). The affine subspace clustering problem is to recover the number of subspaces
(2 in this case), the membership of the data points to the subspaces (indicated by the color
of the data points in (e), the dimensions of the subspaces (1 for both of the subspace in this
cases)..

2This figure has been published in paper [8].
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2.2.2 A Constructive Solution

We cast the multi-subspace discovery problem into a trace norm optimization, in

which the optimizer directly gives the number of affine subspace and the membership of

the clustering. The results are theoretically guaranteed.

Representation of One Subspace

In order to introduce our solution in a more interpretable way, we first solve a simple

problem in which there is only one affine subspace. LetX1 = (x1, · · · , xn1) be in ad1-

dimensional affine subspace spanned by the basisU1, d1 + 1 < n1, i.e. for each data points

xi, there existsαi,

xi = U1αi , αi ∈ R
d1+1, α

⊺
i 1 = 1, 1 ≤ i ≤ n1 (2.1)

or more compactly,X1 = U1A, A⊺1 = 1, where1 is a column vector with all elements

one in proper size andA = (α1, · · · ,αn1). We define

X̃1 =





U1A

1⊺





(2.2)

Then we have,

Lemma 2.2.1 If X1 satisfies Eq. (2.1) and let

Z1 = X̃+1X̃1 (2.3)

whereX̃1 is defined in Eq. (2.2) and̃X+1 is theMoore-Penrosepseudo inverse of̃X1, then

X1 = X1Z1, 1⊺Z1 = 1⊺, (2.4)

and rank(Z1) = d1 + 1.
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Proof By making use of the property ofMoore-Penrosepseudo inverse, we immediately

have

X̃1 = X̃1X̃+1X̃1,

Thus,




U1A

1⊺





=





U1A

1⊺





Z,

which is equivalent to two equations of

X1 = X1Z1,

1⊺Z1 = 1⊺.

It is obvious that rank(Z1) = rank(X̃1). On the other hand, by the definition ofA in

Eq. (2.2), we have1⊺A = 1⊺, thus

X̃1 =





U1A

1⊺





=





U1A

1⊺A





=





U1

1⊺





A (2.5)

From Eq. (2.2) we have

rank(X̃1) ≥ rank(U1A) = rank(X1) = d1 + 1

But from Eq. (2.5) we have

rank(X̃1) ≤ rank(A) = d1 + 1.

Thus rank(Z1) = rank(X̃1) = d1 + 1.
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Sinced1 + 1 < n1, Z1 is low rank. Interestingly, this low-rank affine subspace pre-

sentation of Eqs. (2.1, 2.4) can be reformulated as a trace norm optimization problem:

min
Z1

‖Z1‖∗ s.t. X1 = X1Z1, 1⊺Z1 = 1⊺ (2.6)

where‖Z1‖∗ is the trace norm ofZ1, i.e. the sum of singular values, or explicitly,

Lemma 2.2.2 Z1 defined in Eq. (2.3) is an optimizer of the problem in Eq. (2.6).

The proof of Lemma 2.2.2 requires Lemma 2.4.1. We will introduce the proof

Lemma 2.2.2 later.

In this chapter, we hope to recover multipleZ which has diagonal block structure

from X by which we solve the multi-subspace discovery problem.

Constructive Representation of K Subspaces

Now consider the full case where the data pointsX belong exactly toK indepen-

dent subspaces. Assume data points within a subspace are indexed sequentially,X =

[X1,X2, · · · ,XK]. Repeat the above analysis for each subspace, we have

X = [X1, · · · ,XK] = [X1Z1, · · · ,XKZK] = XZ , (2.7)

where

Z =





Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . . 0

0 0 0 ZK





(2.8)

Thus by construction, we have the following,
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Theorem 2.2.3 If X = [x1, x2, · · · , xn] belong exactly to K subspaces of rank dk respec-

tively, there existsZ, such that

X = XZ , 1⊺Z = 1⊺. (2.9)

whereZ has the structure of Eq.(2.8) and rank(Zk) = dk + 1,1 ≤ k ≤ K.

Proof Since we have Lemma 2.2.1, the proof of Theorem 1 is straightforward by con-

struction. LetX = [X1, · · · ,XK], then by Lemma 1, we can always rewrite asX =

[X1Z1, · · · ,XKZK], or

X = [X1, · · · ,XK]





Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . . 0

0 0 0 ZK





.

Recovery of The Multiple Subspaces

Intuited by Lemma 2.2.2, and Theorem 2.2.3, one might hypothetically consider

recovering the block structure by using the following optimization,

min
Z
‖Z‖∗ s.t. X = XZ , 1⊺Z = 1⊺, (2.10)

which is a convex problem since the objective function‖Z‖∗ is a convex functionw.r.t Z

and the domain constraintsX = XZ , 1⊺Z1 = 1⊺ is an affine space, which is a convex

domain. This is desirable property: if a solutionZ∗ is a local solution,Z∗ must be a global

solution. However, a convex optimization could have multiple global solutions,i.e., the

global solution is not unique.

This optimization indeed has one optimal solution:
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Theorem 2.2.4 The optimization problem of Eq. (2.10) has the optimal solution

Z∗ = X̃+X̃ (2.11)

where

X̃ =





X

1⊺





. (2.12)

Theorem 2.2.4 can be directly derived from Lemma 2.2.1, by replacingX1 with X.

In general,Z∗ is not sparse and does not have the sparse block structure ofZ in

Eq. (2.8). Similar data representation model was represented in [9], which suffers from the

same problem. Here we extend the model to solve the general multi-subspace problem and

provide a proof of the solution.

To recover a solution which has the sparse structure of Eq. (2.8), we add aℓ1 term to

optimization Eq. (2.10) to promote sparsity of the solution, and optimize the following

min
Z

J1(Z) = ‖Z‖∗ + δ‖Z‖1

s.t. X = XZ , 1⊺Z1 = 1⊺,

(2.13)

where‖Z‖1 is the element-wiseℓ1 norm: ‖Z‖1 =
∑

i j |Zi j | andδ is model parameter which

control the balance between low rank and sparsity. In our theoretical studies, we only

requireδ > 0.

And fortunately, for problem Eq.(2.13), we have the following theorem,

Proposition 2.2.5 AssumeX1,X2, · · · ,XK are independent affine subspaces. LetX =

[X1,X2, · · · ,XK], then all the minimizers of problem Eq.(2.13) have the form of Eq.(2.8).

Further more, each blockZk has only one connected component.
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By independent, we mean for anyx in thek-th group,x can not be represented by all

the data points not in thek-th group. Or explicitly,

∀k,Pk ∩ P−k = Φ, (S4.1)

whereΦ is the empty set,Pk is the space spanned by all the data points in groupk, andP−k

is the space spanned by all the data points not in groupk.

Pk =
{

x : x = Xkαk, α
⊺
k1 = 1, αk ∈ R

nk
}

,

P−k =
{

x : x = X−kα−k, α
⊺
−k1 = 1, α−k ∈ R

n−nk
}

,

where

X−k = [X1, · · · ,Xk−1,Xk+1, · · · ,XK],

andnk is the number of data points in thek-th groupXk.

Proof. We first introduce the following Lemma.

Lemma 2.2.6 (Lemma 3.1 in paper [9]) Let A D, B and C be matrices of compatible

dimension, the following always holds,

∥
∥
∥
∥
∥
∥
∥
∥
∥

A B

C D

∥
∥
∥
∥
∥
∥
∥
∥
∥
∗

≥

∥
∥
∥
∥
∥
∥
∥
∥
∥

A 0

0 D

∥
∥
∥
∥
∥
∥
∥
∥
∥
∗

= ‖A‖∗ + ‖D‖∗. (2.15)

Notice that this Lemma here is a little different from Lemma 3.1 in paper [9] in the sense

that we here do not requireA andD to be square matrices3. We prove the first part of the

theorem by showing that for any non-block diagonal matrixZ′, Z′ is not an optimizer of

Eq. (13). AssumeZ′ is an optimizer of Eq. (13) and is non-block diagonal. Without loss

3The proof is similar.
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of generality, we assume thet-th column ofZ′ in the first block has off-block diagonal

elements,i.e.

Z′ =





z′1, z
′
2, · · · ,

Z′1,t

Z′2,t
...

Z′n1,t

Z′n1+1,t

...

Z′n,t

, z′t+1, · · · , z′n





,

wherez′j is the j-th column ofZ′ andZi j is thei-th element ofz′j. Let

z′t = zb + zo,

where

zb =





Z′1,t

Z′2,t
...

Z′n1,t

0
...

0





, zo =





0

0
...

0

Z′n1+1,t

...

Z′n,t





.

zo
, 0 here. SinceZ′ is an optimizer of Eq. (10),X = XZ ′, or x j = Xz′j , j = 1, · · · ,n.

Obviously,

xt = Xz′t ∈ P1,
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Due to Eq. (S4.1), one must have

Xzb ∈ P1, (zb)⊺1 = 1.

Then

(zo)⊺1 = 0, Xzo = 0,

or

xt = Xzb.

Let Z′b = [z′1, · · · , zb, z′t+1, · · · , z′n]. ThenX = XZ ′b. However, sincezo
, 0, we have

‖Z′‖1 =
n∑

j=1, j,t,

‖z′j‖1 + ‖z′t‖1 >
n∑

j=1, j,t,

‖z′j‖1 + ‖z′b‖1 = ‖Z′b‖1.

And by the Lemma 2.2.6, we have

‖Z′‖∗ ≥ ‖Z′b‖∗,

or

‖Z′‖∗ + δ‖Z′‖1 > ‖Z′b‖∗ + δ‖Z′b‖1

(rememberδ > 0) indicatingZ′b satisfies the constraint in Eq. (13) and has a lower objec-

tive function value thanZ′. ThusZ′ is impossible to be the optimizer of Eq. (13). This

completes the proof of the first of the theorem.

The second part of the theorem is obvious. Without loss of generalization, let us

consider the first blockX1. Assume all the data points inX1 share the same baseU1 with

rankd1 andZ1 can be further separated intoZ1
1, andZ2

1, then the correspondingX1
1 andX2

1

must have dimensiond1
1 andd2

1 andd1
1 + d2

1 = d1. Then Lemmas 1 and 2, the total rank
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of Z = rank(Z1
1) + rank(Z2

1) = d1
1 + 1 + d2

1 + 1 = d1 + 2. However, still by Lemmas 1,

and 2, suchZ1 is not possible to be the optimizer of Eq. (13). ThusZ1 has to be a single

connected component.

Since each blockZk has only one connected component and all the wholeZ is block

diagonal, the number of affine subspaces is trivial to recovered, which is the number of

connected components ofZ. The membership of each data points to the affine spaces is

also guaranteed to be recovered.

2.2.3 More Theoretical Analysis

In previous research by Liuet al. [9], the theoretical properties of low-rank repre-

sentation have been discussed. Here we investigate more surprising results on these repre-

sentations.

First we have similar result on the following problem.

min
Z
‖Z‖∗ s.t. X = XZ , (2.16)

Theorem 2.2.7 The optimization problem of Eq. (2.16) has the optimal solution

Z∗ = X+X (2.17)

and‖Z∗‖∗ = rank(Z∗) =rank(X).

The proof is similar to Lemma 2.2.2 and we omit it here.

Surprisingly for the following problem,
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min
Z

1
2
‖Z‖2F s.t. X = XZ , (2.18)

where‖Z‖F denotes the Frobenius norm‖Z‖F =
√

∑

i j Z2
i j , we also have

Theorem 2.2.8 The optimization problem of Eq. (2.18) has the unique optimal solution

Z∗ = X+X (2.19)

and‖Z∗‖2F = rank(Z∗) =rank(X).

Proof We write the Lagrangian function of Eq. (2.18) as

L(Z,Λ) =
1
2
‖Z‖2F − tr (X − XZ )⊺Λ (2.20)

We prove the theorem by showing that there existΛ∗ such that both of the following hold,

1. ∂L/∂Z = 0 whereZ = Z∗ andΛ = Λ∗

2. X = XZ ∗

One can find in the proof Lemma 2.2.2 that the second conditionX = XZ ∗ automatically

holds. And now show the first condition.

∂L
∂Z
= Z − X⊺Λ = 0. (2.21)
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Let Z = Z∗ = X+X andΛ = Λ∗ = UΣ−1V whereUΣV⊺ = X is the SVD decomposition of

X. Then

∂L
∂Z

= Z − X⊺Λ (2.22)

= VΣ−1U⊺UΣV⊺ − VΣU⊺UΣ−1V⊺ (2.23)

= VV⊺ − VV⊺ (2.24)

= 0 (2.25)

Theorems 2.2.4 and 2.2.8 indicate that choosing the smallest Frobenius norm of Eq. (2.16)

gives the same results4.

2.3 Multi-Subspace Representation With Noise

Typically data are drawn from multiple subspaces but with noise. ThusX = XZ

does not hold anymore for any low rankZ. On the other hand, we can combine the two

constraints in Eq. (2.13) as,




X

1⊺





=





X

1⊺





Z. (2.26)

With the notation ofX̃ in Eq. (2.12), we havẽX = X̃Z . We may express the relationship

asX̃ = X̃Z + E, whereE represents noise. To handle such noise case, in the optimization

objective of Eq.(2.13), we add the term

‖E‖ℓ2/ℓ1 =
∑

j

√
∑

i

E2
i j =

n∑

j=1

∥
∥
∥
∥
∥
∥
∥
∥
∥





x j

1





−





X

1⊺





zj

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

4Notice that this theoretical results is different from Liuet al.’s statement in Section 3.2 of paper [9].
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This is theℓ2/ℓ1-norm of matrix ofE. This norm is more robust against outliers than the

usual Frobenius norm. With this noise correction term, we solve,

min
Z
‖X̃ − X̃Z‖ℓ2/ℓ1 + λ‖Z‖∗ + δ‖Z‖1, (2.27)

whereλ andδ are parameters which control the importance of‖Z‖∗ andZ1, respectively.

2.3.1 Multi-Subspace Representation

Notice that if the data contain noise and the constraints in Proposition 2.2.5 do not

hold, we lose the guarantee of the block diagonal structure of Z. However, since the low

rank and sparsity regularizer of Eq. (2.27), the final solution Z can be interpreted as repre-

sentation coefficient ofX. We call such representation as Multi-Subspace Representation

(MSR).

In summary, MSR representation of dataX is given by the following:

(1) From input dataX, solve the optimization Eq.(2.27) to obtainZ;

(2) The MSR representation ofX is XZ , i.e., the representation ofxi is Xzi.

In §4, we develop an algorithm to solve Eq. (2.27) and in§5, some applications of

our model in machine learning are given.

2.3.2 Relation to Previous Work

The MSR representation here is motivated by the affine subspace clustering problem.

However, some properties of the representation have been investigated in previous work by

other researchers. First notice thatZ is sparse, the representation ofxi ≈ Zzi is similar to

the one in sparse coding [10, 11]. Interestingly, research in other communities suggests

that in the natural process and even in human cognition, information is often organized in
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a sparse way,e.g. Vinge et al. discover that primary visual cortex (areaV1) uses a sparse

code to efficiently represent natural scenes [12].

In the sparse representation model, for each testing object, we seek a sparse repre-

sentation of the testing object by all objects in training data set. Such learning mechanisms

implicitly learn the structure, under the assumption that the sparse representation coeffi-

cients are imbalanced among groups. To be more specific, given a set of training data

X = [x1, x2, · · · , xn] (p× n matrix, wherep is the dimension of the data) and a testing data

pointxt, they solve the following optimization problem

min
αt

‖xt − Xαt‖2 + λ‖αt‖1, (2.28)

whereαt (n × 1 vector) has the reconstruction coefficients ofxt using all the training data

objectsX, λ is the model parameter, and‖ · ‖1 is theℓ1 norm: ‖a‖1 =
∑

i=1 |ai |.

Wrightet al introduce the Sparse Represented-Based Classification method[6], which

uses the following strategy for class prediction,

arg min
k

rk = ‖xt − Xαk
t ‖, (2.29)

whererk is the representation error using the training samples in groupk andαk
t is obtained

by setting the coefficients inαt, corresponding to training samples not in classk, to zero,

i.e.

αk
t (i) =






αt(i) if i ∈ Ck,

0 otherwise,

whereCk is a set of all data points in classk, k = 1,2, · · · ,K, andK is the number of

classes.
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On the other hand,Z in our model is also low rank, which is a natural requirement

of most of data representation techniques, such as the low rank kernel methods [13] and

robust Principle Component Analysis [14]. One can easily findliteracy of the low rank

representation in real world applications in various domains which indicates that low rank

is one of the intrinsic properties of the data we observe,e.g. the missing value recover of

DNA microarrays [15].

By combining the two basic properties (sparsity and low rank), our model naturally

captures a proper representation of the data. We will demonstrate the quality of such rep-

resentation using comprehensive empirical evidences in the experimental section.

HereZ can be viewed as the similarity between objects. And there also exists ap-

proaches for directly similarity learning[16, 17].

2.4 An Efficient Algorithm and Analysis

2.4.1 Outline of The Algorithm

Assume we are solving a general problem of

J(x) = f (x) + φ(x), (2.30)

where f (x) is smooth andφ(x) is non-smooth and convex. If one of the elements in sub-

gradient ofφ(x) can be written as product ofg(x) andh(x), i.e.,

g(x)h(x) ∈ ∂φ(x),
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whereh(x) is smooth and∂φ(x) is the subgradient ofφ(x), then instead of solving Eq.

(2.30), we iteratively solve the following,

xt+1 = arg min
x

J̃(x) = f (x) + g(xt)
∫

h(x)dx. (2.31)

Notice that∂J̃(x)/∂x ∈ ∂J(x) whenx = xt. Hopefully, at convergence,xt+1 = xt, then

0 ∈ ∂J(x) atxt, which meansxt is an optimizer ofJ(x).

In general, the iterative steps in Eq. (2.31) cannot guarantee the convergence ofx

(i.e. xt+1 = xt), and even the convergence ofJ(x) (i.e. J(xt+1) = J(xt)). Fortunately, in

our case of Eq. (2.27), our optimization technique guarantees both, and thus our algorithm

guarantees to be an optimizer. Further more, in our algorithm, optimization problem in Eq.

(2.31) has a close form solution, thus our algorithm is efficient.

2.4.2 Optimization Algorithm

Here we first present the optimization algorithm of Eq.(2.27), and then present theo-

retical analysis of the algorithm.

The algorithm is summarized in Algorithm 1. In the algorithm, zi denotes thei-th

column ofZ. The converged optimal solution is only weakly dependent onparameter. We

setδ to δ = 1. ǫ is an auxiliary constant for improving numerical stabilityin computing

trace norm. We setǫ = 10−8 in all experiments.

In the third line of thefor loop, we are actually solving the problem in Eq. (2.31). In

practice, we do not explicitly compute the inverse. Instead, we solve the following linear

equation to obtainzi,
[

X̃⊺X̃ + λdi (B + δD)
]

zi = X̃⊺x̃i . (2.32)

The algorithm is simple which involves no other optimization procedures. The algo-

rithm generally converges in about 10 iterations in our experiments.
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Algorithm 1 (X, λ, δ)
Input : DataX, model parametersλ, δ
Output: Z which optimizes Eq.(2.27).
Initialization: ComputeX̃ using Eq. (2.12),Z = 0.
while not convergeddo

B = (ZZ ⊺ + ǫI )−1/2

for i = 1 : n do
di = ‖x̃i − X̃zi‖,
Di = diag

(

Z−1
1i ,Z

−1
2i , · · · ,Z−1

ni

)

,

zi =
[

X̃⊺X̃ + λdi (B + δD)
]−1

X̃⊺x̃i,
end for

end while
Output: Z

We have developed theoretical analysis for this algorithm,convering three properties

for this algorithm: convergence, objective function valuedecreasing monotonically, and

converging to global solution.

2.4.3 Theoretical Analysis of Algorithm 1

Before presenting the main theories for Algorithm 1, we first introduce two useful

lemmas here.

Lemma 2.4.1

‖Z‖∗ = lim
ǫ→0

tr (ZZ ⊺ + ǫI )1/2 , (2.33)

and

lim
ǫ→0

(ZZ ⊺ + ǫI )−1/2 Z ∈ ∂‖Z‖∗, (2.34)

where∂‖Z‖∗ is the subgradient of trace norm.

HereǫI is introduced for numerical stability.

Proof
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Let

Z = U





σ1 · · · 0
...

. . .
... 0

0 · · · σm

0 0





V⊺,UU⊺ = I ,VV⊺ = I ,

be the SVD decomposition ofZ. Then

lim
ǫ→0

tr (ZZ ⊺ + ǫI )1/2

= lim
ǫ→0

trU





σ2
1 + ǫ · · · 0
...

. . .
... 0

0 · · · σ2
m+ ǫ

0 ǫI





1/2

U⊺

= lim
ǫ→0

tr





√

σ2
1 + ǫ · · · 0
...

. . .
... 0

0 · · ·
√

σ2
m+ ǫ

0
√
ǫI





U⊺U

= lim
ǫ→0

m∑

i=1

√

σ2
i + ǫ + (n−m)

√
ǫ

=

m∑

i=1

σi

=‖Z‖∗.
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On the other hand,

lim
ǫ→0

(ZZ ⊺ + ǫI )−1/2 Z = lim
ǫ→0

U





σ1√
σ2

1+ǫ
· · · 0

...
. . .

... 0

0 · · · σ1√
σ2

1+ǫ

0 0





1/2

V⊺ = U





1 · · · 0
...

. . .
... 0

0 · · · 1

0 0





V⊺

Denote the above byE. By following papers [18, 19] or explicitly Eq. (3.2) in paper[20],

for all Z, we have

∂‖Z‖∗ =
{

E +W : W ∈ R
n×n,PUW = 0,WPV = 0, ‖W‖ ≤ 1

}

,

where

PU = U





1 · · · 0
...

. . .
... 0

0 · · · 1

0 0





U⊺,

and

PV = V





1 · · · 0
...

. . .
... 0

0 · · · 1

0 0





V⊺,

Obviously,W = 0 is a special case in∂‖Z‖∗, or

E ∈ ∂‖Z‖∗,

which completes the proof.
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Lemma 2.4.2 Assume matricesZ andY have the same size. LetA = (YY⊺ + ǫI )1/2 and

B = (ZZ ⊺ + ǫI )1/2. Then the following holds

trA − trB +
1
2

trZ ⊺B−1Z − 1
2

trY ⊺B−1Y ≤ 0. (2.35)

Proof

trA − trB +
1
2

trZ ⊺B−1Z − 1
2

trY ⊺B−1Y

=trA − trB +
1
2

trB −1 (ZZ ⊺ − YY⊺)

=
1
2

trB −1
(

2BA − 2B2 + ZZ ⊺ − YY⊺
)

=
1
2

trB −1
(

2BA − 2B2 + ZZ ⊺ + ǫI − YY⊺ − ǫI
)

=
1
2

trB −1
(

2BA − B2 − A2
)

= − 1
2

trB −1/2 (A − B)2 B−1/2 ≤ 0.

One should notice that hereA andB are symmetric full rank matrices.

Lemma 2.4.2 serves as a crucial part of our main theorem, which is stated as follows,

Theorem 2.4.3 Algorithm 1 monotonically decreases the following objective,

min
Z

J(Z) = ‖X̃ − X̃Z‖ℓ2/ℓ1 + λtr (ZZ ⊺ + ǫI )
1
2 + δ‖Z‖1, (2.36)

i.e. J(Z t+1) ≤ J(Z t), whereZ t is the solution ofZ in the t-th iteration.

Proof We first consider the following optimization problem.

min
Z

J̃(Z)

=

n∑

i=1

(

‖x̃i − X̃zi‖2
di

+ λδz⊺
i D−1zi

)

+ λtrZ ⊺B−1Z,
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whereB =
(

Z tZ
⊺
t + ǫI

)1/2
,di = ‖x̃i − X̃zt

i‖,D−1
i = diag

(

|Zt
1i |, |Zt

2i |, · · · , |Zt
ni|
)

, Z t is the so-

lution of Algorithm 1 at iterationt and zt
i is the i-th column ofZ t, andZt

i j is the (i, j)

element ofZ t. We will show that (1) the solution at iterationt + 1 of Algorithm 1 Z t+1

is a global minimizer ofJ̃(Z), i.e. Z t+1 = arg minZ J̃(Z) (thus J̃(Z t+1) ≤ J̃(Z t)), and (2)

J(Z t+1) − J(Z t) + 1
2 J̃(Z t) − 1

2 J̃(Z t+1) ≤ 0. Then the proof will be completed by following

J(Z t+1) ≤ J(Z t) + 1
2

(

J̃(Z t+1) − J̃(Z t)
)

≤ J(Z t).

(1)One can check that

J̃(Z) =
n∑

i=1

(

‖x̃i − X̃zi‖2
di

+ λz⊺
i B−1zi + λδz

⊺
i D−1zi

)

,

and
∂J̃
∂zi
=

(

X̃⊺X̃/di + λδD−1 + λB−1
)

zi −
X̃⊺x̃i

di
.

Setting the above to be 0, we obtain,

zi =
[

X̃⊺X̃/di + λδD−1 + λB−1
]−1

X̃⊺x̃i/di .

Notice that the above solution is exactlyZ t+1. And becausẽJ(Z) is convex, we know that

J̃(Z t+1) ≤ J̃(Z t).
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(2) LetA =
(

Z t+1Z
⊺
t+1 + ǫI

)1/2
, then

J(Z t+1) − J(Z t) +
1
2

J̃(Z t) −
1
2

J̃(Z t+1)

=‖X̃ − X̃Z t+1‖2,1 − ‖X̃ − X̃Z t‖2,1 + λtr (A − B)

+ λδ
∑

i j

(

|Zt+1
i j | − |Zt

i j |
)

−
n∑

i=1

‖x̃i − X̃zt+1
i ‖2 − d2

i

2di

−λ
2

tr
(

Z⊺
t+1B

−1Z⊺
t+1 − Z⊺

t B−1Z⊺
t

)

− λδ
2

∑

i j





|Zt+1
i j |2

|Zt
i j |
− |Zt

i j |




=

n∑

i=1



‖x̃i − X̃zt+1
i ‖ − di −

‖x̃i − X̃zt+1
i ‖2 − d2

i

2di





+
λδ

2

∑

i j



2|Zt+1
i j | − |Zt

i j | −
|Zt+1

i j |2

|Zt
i j |





+
λ

2
tr

(

Z⊺
t B−1Z⊺

t − Z⊺
t+1B

−1Z⊺
t+1 + (A − B)

)
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By applying Lemma 4 (withZ = Z t andY = Z t+1), we have

J(Z t+1) − J(Z t) +
1
2

J̃(Z t) −
1
2

J̃(Z t+1)

≤
n∑

i=1



‖x̃i − X̃zt+1
i ‖ − di −

‖x̃i − X̃zt+1
i ‖2 − d2

i

2di





+
λδ

2

∑

i j



2|Zt+1
i j | − |Zt

i j | −
|Zt+1

i j |2

|Zt
i j |





=

n∑

i=1

1
2di

(

2di‖x̃i − X̃zt+1
i ‖ − d2

i − ‖x̃i − X̃zt+1
i ‖2

)

+
λδ

2

∑

i j

2|Zt
i j ||Zt+1

i j | − |Zt
i j |2 − |Zt+1

i j |2

|Zt
i j |

= −
n∑

i=1

1
2di

(

‖x̃i − X̃zt+1
i ‖ − di

)2

− λδ
2

∑

i j

(

|Zt
i j | − |Zt+1

i j |
)2

|Zt
i j |

≤0,

which completes the proof.

Since the objective in Eq.(2.36) is lower bounded by 0, Theorem 2.4.3 guarantees

the convergence of the objective value. Further more, we have

And according to Lemma 2.4.1, we know that the above solutionis also the optimal

solution of Eq.(2.27) whenǫ → 0.

Now we are ready to proof Lemma 2.2.2.

Proof Lemma 2.2.2

We write the Lagrangian function of Eq. (6) as

L(Z,Λ) = ‖Z‖∗ − tr (X̃1 − X̃1Z)⊺Λ,
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whereX̃1 is defined Eq. (2). We complete the proof by showing that ifZ is given by Eq. (3),

there exists a Lagrangian multiplierΛ which satisfies the following,

0 ∈ ∂L(Z,Λ), (S1.1)

where∂L(Z,Λ) is the subgradient ofL(Z,Λ). Since Eq. (6) is convex, we then conclude

that Eq. (3) gives the optimal solution of Eq. (6).

Now we proof Eq. (S1.1). Assume the SVD decomposition ofX̃1 is

X̃1 = U





σ1 · · · 0
...

. . .
... 0

0 · · · σm





[V, Ṽ]⊺,

whereσ1, · · · , σm > 0 andm is the rank ofX̃1. Notice that [V, Ṽ]⊺[V, Ṽ] = I , then we

have,

X̃1X̃
⊺
1 =U





σ2
1 · · · 0
...

. . .
...

0 · · · σ2
m





U⊺,

or

Z∗ =X̃⊺
1(X̃1X̃

⊺
1)−1X̃1

=[V, Ṽ]





1 · · · 0
...

. . .
... 0

0 · · · 1

0 0





[V, Ṽ]⊺.
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From Lemma 2.4.1, we have

lim
ǫ→0

(

Z∗Z∗T + ǫI
)−1/2

Z∗ ∈ ∂‖Z∗‖∗,

And

lim
ǫ→0

(

Z∗Z∗T + ǫI
)−1/2

Z∗

= lim
ǫ→0





[V, Ṽ]





1 · · · 0
...

. . .
... 0

0 · · · 1

0 0





[V, Ṽ]⊺ + ǫI





−1/2

Z∗

= lim
ǫ→0





[V, Ṽ]





1+ ǫ · · · 0
...

. . .
... 0

0 · · · 1+ ǫ

0 ǫI





[V, Ṽ]⊺





−1/2

Z∗

= lim
ǫ→0

[V, Ṽ]





1√
1+ǫ

· · · 0
...

. . .
... 0

0 · · · 1√
1+ǫ

0 1√
ǫ
I





[V, Ṽ]⊺Z∗

= lim
ǫ→0

V





1√
1+ǫ

· · · 0
...

. . .
...

0 · · · 1√
1+ǫ





V⊺

=VV⊺,

which leads to

VV⊺ − ∂tr (X̃1 − X̃1Z)⊺Λ
Z

∈ ∂L(Z,Λ)|Z=Z∗ ,
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or

VV⊺ − X̃⊺
1Λ ∈ ∂L(Z,Λ)|Z=Z∗ ,

To complete the proof, one only need to findΛ such thatVV⊺ − X̃⊺
1Λ = 0, or equivalently,

VV⊺ − VΣU⊺Λ = 0,

where

Σ =





σ1 · · · 0
...

. . .
...

0 · · · σm





We let

Λ = UΣ−1V⊺.

This leads to

VV⊺ − VΣU⊺Λ

=VV⊺ − VΣU⊺UΣ−1V⊺

=0,

which completes the proof.

2.5 Applications

2.5.1 Using Multi-Subspace Representation as Preprocessing

SinceZ is low rank,XZ is also low rank. And sinceZ is sparse,XZ can be in-

terpreted as a sparse coding representation ofX. According to the analysis in§4.2, we

hopefully improve the qualities of the data representationby usingXZ . In our study, we
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replaceX by XZ as a preprocessing step for various machine learning problems, whereZ

is the optimal solution of Eq. (2.27).

Notice that the learning ofZ in Eq. (2.27) is unsupervised, which requires no fur-

ther label information. Thus we can apply it as preprocessing for any machine learning

tasks, as long as the data are represented in Euclidean space. In this chapter, we employ

MSR for clustering, semi-supervised learning, and classification. We will demonstrate the

performance of the preprocessing in the experimental section.

2.5.2 Using Multi-Subspace Representation as Classifier

Here we try to directly make use of our MSR model as a standalone classifier. As-

sume we haven data points in the data set,X = [x1, x2, · · · , xn] and the firstm data points

have discrete class labelsy1, y2, · · · , ym in K classes,yi ∈ {1,2, · · · ,K}. The classification

problem is to determine the class label ofxi , i = m+1, · · · ,n. Let Z be the optimal solution

of Eq.(2.27) forn data points. The MSR representation of each image isXzi , i = 1, · · · ,n.

The class prediction of our model for unlabeled dataxt, t = m+ 1, · · · ,n, is

arg min
k

rk = ‖Xzt − x̂k
t ‖, x̂k

t =
∑

i∈Ck

xiZit . (2.38)

Herex̂k
t is the representation of testing objectxt using objects in classCk, k = 1,2, · · · ,K.

The classification strategy is similar with Wrightet al’s approach [6]. We will com-

pare the two models in the experimental section.

2.6 Experiment

2.6.1 A Toy Example

We demonstrate with toy example of the affine space recovering by our method in

Figure 2.2 [8] (a) shows 100 images from 10 groups used in thisexample, which are se-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2. A toy example of multi-subspace discovery problem and our solution. (a): 100
images in which the last component has been removed within each group, then the condi-
tions in Proposition 2.2.5 are satisfied. (b): the optimal solution of Z in Eq. (2.13). White,
blue, and red colors represent zeros, negative values, and red positive values, respectively.
Within each group, the values of the subgraph represented byZk (defined in Eq. (2.8)) is a
single connected component and among the 10 blocks they are disconnected components.
(c): PCA visualization of the 100 images where x-axis and y-axis are the first and second
principal component, respectively. (d): clustering grouping of K-means. (e): Laplacian
Embedding results of the 100 images where x-axis and y-axis are the eigenvectors with the
second and third least eigenvectors of graph Laplacian matrix, respectively. (f): clustering
grouping of normalized-cut. . 35



lected from the AT&T data set, details can be found in the experimental section. In order to

obtain 10 affine subspaces which satisfy the constraints in Proposition 2.2.5, we remove the

last principle component in each group of face images. To be more specific, for each group

Xk, we first subtract the data points by the group meanmk : X̄k = Xk −mk1⊺, then perform

a PCA (Principle Component Analysis) on the zero-mean data andkeep the first 8 principle

components and get rid of the 9-th principle component. Thenthe data is projected back on

to the original space and the meanmk is added back. Assume the resulting PCA projection

is Uk then the processed dataY = UkU
⊺
kX̄k +mk are used in our example,k = 1,2, · · · ,10.

The images in which the last principle component have been removed are shown in Figure

2.2 (a). Notice that they are visually almost identical to the original image since the energy

of the last component is close to zero. Then we solve Eq. (2.13) and the optimal solution

is shown in Figure 2.2 ( b), in which white color represents zeros, blue colors represent

negative values, and red positive values. One can see that within each group, the values of

the subgraph represented byZk (defined in Eq. (2.8)) is a single connected component and

among the tenZk, k = 1,2, · · · ,10 they are disconnected components.

For comparison, we also cluster the data usingK-means and normalized-cut [21],

see Figure 2.2 (d) and (f), the corresponding Principal Component Analysis and Spectral

embedding results are also shown in (c) and (e), respectively. One see that bothK-means

and Normalized-Cut cannot correctly discover the subspacesand group assignments.

2.6.2 Experimental Settings

Datasets. We evaluate the performance of our model on 5 real world datasets, including

two face image data bases,LFW (Labeled Faces in the Wild)5, AT&T6, two UCI datasets

5http://www.itee.uq.edu.au/∼conrad/lfwcrop/
6http://people.cs.uchicago.edu/˜dinoj/vis/ORL.zip
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Table 2.1. Data descriptions of experiments

Data Type sample # feature # class # max # min #
LFW Face Image 400 4096 20 20 20
AT&T Face Image 400 644 40 10 10
Australian Financial 690 14 2 383 307
BinAlpha Text Image 1404 320 36 39 39
Dermatology Disease 366 34 6 112 20

AustrianandDermatology[22], and one handwritten character data BinAlpha7. All the

data sets are used with the original data, without any further preprocessing.

We summarize the data statistics for these data sets in Table4.2, where the number

of samples, features, classes are listed. The minimum and maximum number samples in

classes are also listed to show the balance of the data. We also visualize the data using the

first and second principal components for these data in Figure 2.3.

Compared Methods. For the usage of preprocessing of our model, we compare 3 clus-

tering algorithms (Normalized Cut [21] which tends to produce balanced clustering results

on manifolds, Spectral Embedding Clustering [23], andK-means, which is the standard

clustering algorithm), two standard semi-supervised learning algorithms (Local and Global

Consistency by [24], which considers the local and global consistency of data points and

Gaussian Fields and Harmonic Functions by [25], which formulates Gaussian random field

graphs by harmonic functions using matrix methods or beliefpropagation), and two stan-

dard classification algorithms (linear Support Vector Machine, which is a stable and com-

petitive classification method for high dimensional data, andk-Nearest Neighbor).

For the usage of standalone classifier, we compare our methodwith Wright et. al’s

sparse representation based approach [6].

7http://www.cs.toronto.edu/˜roweis/data.html
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Figure 2.3. Data visualization with the first (x-axis) and second (y-axis) principal compo-
nents..

Validation Settings. All the clustering algorithms compared in our experiments require

random initializations. Thus we run the algorithms for 50 random trials and report the

averages. For semi-supervised learning, we randomly splitthe data into 30% and 70%

where the 30% of the data points are used as labeled data and 70% are used as unlabeled

data. We repeat the random splitting for 50 times, where the average result is reported. For

classification, when comparing our method as a preprocessing algorithm, we use the same

splitting strategy as in semi-supervised learning, but splitting in to 50% for training and

the other half for testing. For classification, when comparing our method as a standalone

classifier, we use 30% for training and the rest 70% for testing. The reason is that for some

of the datasets, the data points are well separated and the classification accuracy is very

high, then the difference between approaches is not obvious. Thus here we use fewer data

samples as the training set to enlarge the differences.
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Parameter settings.K-means has no parameters. ForkNN we usek = 1, i.e. just use

the nearest neighbor classifier. For the Normalized Cut (NCut), Spectral Embedding Clus-

tering (SEC) in clustering, Local and Global Constancy (LGC), and Gaussian Fields and

Harmonic Functions (GFHF) in semi-supervised learning, weestablish the graph using

Gaussian kernel:Wi j = exp
(

−γ‖xi − x j‖2/σ2
)

, whereγ is the parameter which is set to be

γ = [0.1,0.5,1,2, · · · ,30] andσ is the average of pairwise Euclidian distances among all

data points.

For Wrightet. al’s sparse representation (SR), we use LARS [26] to obtain the full

LASSO path solution and usem top ranked coefficients according to the shrinking order

in LARS solution path. We choosem from m = 1,2, · · ·min(n, p) wheren is the number

of data points andp is the number of data dimension. The reason we use LARS is that it

is more efficient than any otherℓ1 solver in the sense that LARS computes all the possible

solution with different parameters at once and for other solver, we need to retrain the model

every time we change the parameter, which is time consuming for the purpose of highly

parameter tuning. For our method, we chooseλ from [0.5,0.6, · · · ,2.5].

2.6.3 Experimental Results

For the usage of preprocessing our model, the results are shown in Figure 3.4. Here

we show the average accuracies for both original data without processing (marked asOrig

in the figure) and the corresponding method on the preprocessed data by our method

(marked asMSR). We further plot the original accuracy values of all the 50 random tri-

als for each methods to visualize the overall differences of the performance.

One-way ANOVA (Analysis of Variance) is performed to test how significantly our

method is better than the original method, and corresponding p value is also shown in the

figure. p ≤ ǫ meansp is less than any positive values in machine precision,i.e. the p value

is very close to 0.
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Table 2.2. Clustering accuracy comparison of our method as a preprocessing method.Orig
denotes without any processing,PCA denotes the clustering accuracy with PCA dimen-
sional reduction, andMSRdenotes the clustering accuracy with our method. Best results
are highlighted.

Ncut SEC K-means

Orig PCA MSR Orig PCA MSR Orig PCA MSR
LFW 0.194 0.193 0.213 0.207 0.225 0.245 0.193 0.177 0.198
AT&T 0.797 0.795 0.822 0.805 0.791 0.810 0.599 0.583 0.621
Australian 0.557 0.564 0.667 0.662 0.669 0.691 0.562 0.546 0.665
BinAlpha 0.357 0.346 0.388 0.468 0.486 0.487 0.412 0.417 0.431
Dermatology 0.829 0.821 0.891 0.869 0.874 0.958 0.759 0.761 0.805

Table 2.3. Semi-supervised learning accuracy comparison of our method as a preprocessing
method.Orig denotes the accuracy without any processing,PCAdenotes the accuracy with
PCA dimensional reduction, andMSRdenotes the accuracy with our method. Best results
are highlighted.

GFHF LGC

Orig PCA MSR Orig PCA MSR
LFW 0.1636 0.1688 0.2185 0.2227 0.2154 0.2700
AT&T 0.3458 0.3379 0.6682 0.7881 0.7701 0.8195
Australian 0.5549 0.5590 0.6736 0.5598 0.5487 0.6778
BinAlpha 0.5670 0.5813 0.5968 0.6198 0.6299 0.6529
Dermatology 0.7543 0.7448 0.8673 0.9226 0.9293 0.9446

Out of the 5×7 = 35 comparisons, our method significantly outperforms the original

methods in 33 comparisons, withp ≤ 0.03. There is one case (SVM onAT&T data set)

where our method is better but with no significant evidence. There is also another case in

which our method is worse than the original method (kNN on AT&T), but the difference is

not significant (p = 0.263).
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Figure 2.4. Experimental results of our method as a preprocessing method on 7 learning
methods and 5 data sets. The scattering dots represent the accuracy values of the methods
and bars represent the averages.Orig andMSRdenote the corresponding method on the
original data and on the preprocessed by our method, respectively. The p stands for the
significance of the one-way ANOVA test (for the hypothesis of“our method is better than
the original method”). Out of 35 comparison, our method significantly outperforms the
original methods in 33 cases, withp ≤ 0.03. ǫ is the smallest positive values by machine
precision.. 41



Table 2.4. Classification accuracy comparison of our method as a preprocessing method.
Orig denotes the accuracy without any processing,PCA denotes the accuracy with PCA
dimensional reduction, andMSRdenotes the accuracy with our method. Best results are
highlighted.

KNN SVM

Orig PCA MSR Orig PCA MSR
LFW 0.2122 0.2316 0.2231 0.2990 0.3053 0.3140
AT&T 0.9203 0.9093 0.9143 0.9204 0.9371 0.9260
Australian 0.6469 0.6560 0.6645 0.6853 0.6853 0.7463
BinAlpha 0.6488 0.6304 0.6883 0.7238 0.7339 0.7444
Dermatology 0.9410 0.9441 0.9503 0.9638 0.9822 0.9696
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Figure 2.5. A comparison of our model (MSR) and the Sparse Representation based method
(SR) on 5 data sets. Thep values represents the significance of one-way ANOVA test of
the hypothesis “our method is better than SR”. .

For our model as a standalone classifier, the comparison results with Sparse Rep-

resentation based method are shown in Figure 2.5 [8]. Out of 5data sets, our method is

significantly better than the Sparse Representation based method in four withp ≤ 0.01.

Due to the low rank property of our method, one might also be interested in compar-

ing our method with other low rank method as preprocessing. We compare the preprocess-

ing results with Principal Component Analysis (PCA) in Table 2.2 – 2.48. For PCA, the

best numbers of dimensions are achieved by tuning and the best results are reported.

8These results have been published in paper [8].
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Table 2.5. Running time (s) of our algorithm

Dataset LFW AT&T Australian BinAlpha Dermatology
Time 0.549± 0.061 0.437± 0.114 1.768± 0.092 4.447± 0.367 0.393± 0.058

2.6.4 Running Time

We test the running time on a Intel Core i7-2670QM CPU @ 2.20 GHz with 8 GB

memory and 64-bit operating system. The codes are implemented with Matlab. In the third

line of the for loop in Algorithm 1, we use the Matlab command “x= A \y” to solve “x

= inv(A) * y”. The running time of our algorithm is listed in Table 2.5. The average and

standard deviation over 10 times of random trials are reported.

2.6.5 Experimental Results on TCGA Data

The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA

expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian

adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316

of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in

almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9

additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant fo-

cal DNA copy number aberrations; and promoter methylation events involving 168 genes.

Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes,

four promoter methylation subtypes, a transcriptional signature associated with survival du-

ration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1

aberrations. Pathway analysis suggested that homologous recombination is defective in

about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian

cancer pathophysiology.
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Table 2.6. Running time (s) of our algorithm

Dimensions mRNA Copy Number Methylation miRNA
# of measurements 17814 21942 25149 799
min value -9.3743 -5.6338 0.0000 -7.1434
max value 10.9291 5.1026 1.0000 9.9827
# patients 455

Figure 2.6. Experimental results ofZ on TCGA data. .
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We downloaded the clinical data from website9 [27] for mRNA expression, DNA

copy number variation, promoter methylation, and miRNA expression.

Among these dimensions, we have selected 455 patients whichhave measurements

in all 4 dimensions and have survival records as well. We listthe number of measurement

of each dimensions as well as the value ranges of the data in Table 2.6.

We selected 50 elements in each view of the data and put them together to formX

and solve the multi-space learning problem in Eq. (2.27) andthe optimal solution ofZ is

shown in Figure 2.6.

The observation here is that the representative coefficient ofZ betweenhas-mir-200c

andPI3K is significantly high.

9https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm?diseaseType=OV
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CHAPTER 3

STRUCTURED LEARNING WITH EXPLICITℓ2/ℓ0-NORM

3.1 Introduction of Structured Learning

Both theoretical and empirical studies have suggested that the sparsity is one of the

intrinsic properties of real world data [28, 26, 29, 30]. Sparse representation not only

simplifies the data models, but also helps us in discovering predictive patterns in data which

enhance our interpretation and understanding of underlying physical, biological and other

natural mechanisms [3, 31, 32, 33, 34].

Sparse representations are typically achieved by imposingnon-smooth norms,e.g.

ℓ1 norm andℓ2/ℓ1-norm (initially called rotational invariantℓ1 norm orR1-norm [35]), as

penalties/regularizers in the optimization problems. Applications include LASSO [11],

compressive sensing [36, 37], matrix factorization [38], multi-task learning [39]. Related

approaches are also successfully developed and applied into other scientific domains, such

as genetics analysis [40, 41], neuroscience [42], computervision [43, 6], and disease stud-

ies [44]etc.

The optimization problems of these approaches often consist of two components: a

convex smooth loss function and a convex non-smooth regularizer. Although the global

solutions are guaranteed, the naive approaches are often inefficient and unsuitable for large

scale problems. Thus, more efficient algorithms are desired. According to the structure of

the constraints, the sparsity can be obtained from three types of regularizers for different

purposes:
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1. Flat sparsity. This type of sparsity is often achieved byℓ1-norm regularizer. Opti-

mization techniques include LARS [26], linear gradient search [45], and proximal

methods [46].

2. Structural sparsity, including group features/covariates detection [47, 48, 49], jointly

vector sparsity [50], hierarchical group features [51],etc. In the other communities,

the structural sparsity is also called block sparsity [52].The sparsity is often obtained

by ℓ2/ℓ1-norms, which can be efficiently solved by methods in [53] and [54].

3. Matrix/tensor sparsity, such as matrix/tensor completion [55, 43]. The typical reg-

ularizer is the trace norm which can be solved by Singular Value Decomposition

thresholding [55].

In this chapter1, we focus on the structural sparsity. For the structural sparsity pur-

pose, we often deal with convex optimization problems (withconvex non-smooth norm,

like ℓ2/ℓ1 norms) and a large number of optimization techniques have developed to tackle

the problems, for example [48, 51, 26, 56],etc.

3.2 An Illustration of Structural Sparsity

Here we provide a concrete example to illustrate the subtle difference betweenstruc-

tural sparsity andflat sparsity, which show why structural sparsity is useful in machine

learning and data mining.

1Most of the major results in this chapter have been publishedin paper [5].
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3.2.1 LASSO

Let Xp×n = [x1, x2, · · · , xn] be n data point (xi is a p-dimensional vector),yn×1 =

(y1. · · · , yn)T be the class labels, andβp×1 = [β1, β2, · · · , βp]T be thep-dimensional vector

of regression coefficients. Consider the following class prediction problem,

min
β

J(β) =
1
2
‖y − XTβ‖2 + λ‖β‖1, (3.1)

whereλ is model parameter which controls the sparsity ofα. This model is known as

LASSO [11]. The solution is typically sparse,i.e., the solution ofβ contains many zero

elements.

Assume in the optimal solution of Eq. (3.1) for somej0, β j0 = 0.

(XTβ)i =

p∑

j=1

x j
i β j =

∑

1≤ j≤p, j, j0

x j
i β j , (3.2)

wherex j
i is the j-the component ofxi. Eq. (3.2) indicates thej0-th component/dimension/feature

of all xi are irrelevant, because they multiply zeros in actual usage. For largerλ, more el-

ements ofβ are zero, indicating more features/dimensions are eliminated. The remaining

features are thusselected. The sparse learning is useful for feature selection.

3.2.2 Multi-Task Regression: A Structural Sparsity Example

Now let us considerK linear regression simultaneously, with same dataX but differ-

ent regression targety1, y2, · · · , yK. DenoteY = [y1, y2, · · · , yK], then a naive extension of

Eq. (3.1) is

min
B

J1(B) =
K∑

k=1

(

1
2
‖yk − XTβk‖2 + λ‖βk‖1

)

=
1
2
‖Y − XTB‖2F + λ‖B‖1, (3.3)
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whereB = [β1,β2, · · · ,βK]. Since Eq. (3.3) solveK linear regression problems simultane-

ously but independently, the sparsity pattern of the elements in B is not structured. We use

a synthetic data to demonstrate what the word “structured” means here. Let

XT =





0.463 0.319 −0.100 0.526 0.535 0.329 0.475

0.296 0.192 0.058 −0.076 0.152 0.313 −0.114

0.196 0.189 0.167 −0.280 0.267 −0.246 0.164

0.330 0.357 0.027 −0.001 0.118 0.058 0.191

0.332 0.035 −0.002 0.280 0.111 −0.043 0.104

−0.022 −0.026 0.770 0.189 0.196 −0.146 −0.121

−0.217 0.028 0.404 0.359 0.335 −0.282 −0.235

0.396 0.297 0.260 0.241 0.193 0.038 0.101





,Y =





1 0 0

1 1 0

1 0 1

1 1 1

0 1 0

0 1 1

0 0 1

0 0 1





(3.4)

By solving Eq. (3.3) withλ = 0.3, we obtain the following global optimal solution,

B∗1 =





0.350 1.262 0.000

1.128 0.000 1.866

0.000 0.701 1.205

−0.749 0.000 0.000

1.156 0.000 0.000

0.151 0.000 −0.993

0.000 −0.450 0.000





Notice that the solution is sparse,i.e. there many zero elements in the solution.

However these sparsity patterns areinconsistent: For classC1 label prediction, feature di-

mensions (3,7) are irrelevant. For classC2 label prediction, feature dimensions (2,4,5,6) are

irrelevant. For classC3 label prediction, feature dimensions (1,4,5,7) is irrelevant. There-
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fore, this type of inconsistent feature elimination are notuseful. This inconsistent sparsity

pattern for different classes are calledflat sparsity.

Now we consider astructural sparsity. In the solutionB, if the entire j0-th row is

zero,i.e. Bj0,k = 0, k = 1,2,3. Then

(

XTB
)

ik
=

p∑

j=1

x j
i Bjk =

p∑

j=1, j, j0

x j
i Bjk,

suggesting that thej0’s component ofxi is irrelevant in the regression output,i.e.

The j0-th row ofB is zero→ The j0-th feature dimension ofX is irrelevent.

There could be several rows (j0, j1, · · · , jσ) of B where the entire row are zeroes. These

consistentsparse patterns are useful, because feature dimensions areconsistently elimi-

nated for allK class label predictions. ThusB is an indicator to select relevant features.

How do we get structural sparsity? We solve the following problem,

min
B

J21(B) =
1
2
‖Y − XTB‖2F + λ

∑

i

√
∑

j

B2
i j (3.5a)

=
1
2
‖Y − XTB‖2F + λ

∑

i

‖bi‖, (3.5b)

wherebi is thei-th row ofB. The term
∑

i

√
∑

j B2
i j in Eq. (3.5a) is called theℓ2/ℓ1 norm of

matrixB. With its equivalent notation in Eq. (3.5b), theℓ2/ℓ1 norm ofB can be interpreted

as theℓ1 norm ofℓ2 norm of its rows, which generates the sparsity on the rows. With the

sameX andY in Eq. (3.4) and withλ = 0.3 andλ = 0.5 we obtain the following global

optimal results of Eq. (3.5b),
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B∗21|λ=0.3 =





0.526 0.764 0.183

1.101 0.198 1.101

−0.027 0.859 1.253

−0.139 −0.016 −0.040

0.441 −0.090 0.215

0.144 0.188 −0.490

0.000 0.000 0.000





,B∗21|λ=0.5 =





0.677 0.660 0.254

0.678 0.187 0.584

0.002 0.682 1.251

0.000 0.000 0.000

0.231 0.000 0.157

0.000 0.000 0.000

0.000 0.000 0.000





.

We can see that the solutions ofB∗21|λ=0.3 andB∗21|λ=0.5 are row-wise sparse, andB∗21|λ=0.5 is

more sparse thanB∗21|λ=0.3. With these structural results, we can selects relevant features in

the multi-task regression.

3.2.3 Group LASSO

We can also specify the structures by groups. Ingroup lasso, we are interested in

solving the following problem,

min
β

J(β) = ‖y −
∑

g

∑

i∈g
xiβi‖2 + λ‖βg‖, (3.6)

whereX = [x1, x2, · · · , xp]. In (3.20), we assume that the features of a data pointxi ordered

in groups,

xT
i = [

g1
︷            ︸︸            ︷

x1
i , x

2
i , · · · , x

|g1|
i ,

g2
︷                 ︸︸                 ︷

x|g1|+1
i , · · · , x|g1|+|g2|

i , · · · ,
gK

︷ ︸︸ ︷

· · · , xp
i ], (3.7)

whereg1,g2, · · · ,gK areK groups of indexes ranging in [1,2, · · · , p] and |gj | is the size of

groupgj , j = 1,2, · · · ,K.
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We continue to use the sameX and the first column ofY asy and the following

grouping to specify a group LASSO problem in (3.20).

g1
︷︸︸︷

1,2,3,

g2
︷︸︸︷

4,5 ,

g3
︷︸︸︷

6,7

and the corresponding results of group lasso withλ = 1 is

βT
= [

g1
︷︸︸︷

0,0,0,

g2
︷     ︸︸     ︷

0.17,0.14,

g3
︷︸︸︷

0,0 ].

The structural sparsity of group lasso is similar toℓ2/ℓ1 norm of multi-task regression

discussed in previous subsection,i.e. for some of the groups (g1 andg3 in this specific

case), the entire group are zeros.

3.2.4 ℓ2/ℓ0-norm: An Explicit Approach

However, the purpose of the convex norms is to approximate the cardinality. In

feature selection problems, the feature we are interested in is a subset of the whole feature

space. For this purpose, the most natural constraint is the cardinality constraint.

To directly solve this problem, we propose the explicitℓ2/ℓ0 regularizer in this chap-

ter. For a matrixA = (A i j ), theℓ2/ℓ0 norm is defined as‖A‖ℓ2/ℓ0 =
∑

i ‖
∑

j A2
i j‖0, where for

a scalarx, ‖x‖0 = 1 if x , 0, ‖x‖0 = 0 if x = 0. For a vectorx, the groupℓ2/ℓ0 norm is
∑

g ‖‖xg‖‖0.

Due to the difficulty of ℓ2/ℓ0 norm, instead of using convex norm for approximation,

we develop a novel general optimization framework to solve the induced problems by in-

troducing an auxiliary function. The major advantage of ourauxiliary function method is

that it induces an extremely simple optimization problem which can be decoupled as a sum

of loss for grouped variables.
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3.2.5 Towards Deeper Understanding by Structural Sparsity

One of the basic task in machine learning is to establishaccurateclassifiers, which

can be used to predict some unknown knowledge. The accuracy is often estimated by

cross-validation, of some other empirical studies. However, such predictors are, in most

cases,black boxes, i.e. the only output is the classification or regression result, nothing else

is obtained (in an interpretable way). For example, in an typical machine learning study,

we might use the functional MR images or image sequences as input and try to classify

whether the person is looking at an image or reading a sentence. One might try to develop

more advance techniques to push the accuracy. However, whatis the next step? Without

the investigation of the hidden mechanisms of the brain functions, few could be done in an

meaningful way. Byhidden mechanismswe mean explore awhite boxunderstanding of

the object we are interested. For example, we might be interested the memory mechanisms

of the visual cognitions, such as, which parts of the brain are responsible for the visual

memories, which pars are for long term memory, which parts are for short term memory,

etc.A block classifier would not answer such questions.

However, on the other hand, by studies in previous cognitionscience, we know that

the brain areas have clear and natural structures: different areas exhibit different functions.

Thus we can investigate more details mechanisms of human brains by making use of the

the functional grouping in brain tissues, which leads to deeper understanding of our human

beings.

Notations. In this chapter, we use the following notations.〈A,B〉 denotes the inner

product of two matrixA andB with the same size:〈A,B〉 = ∑

i j Ai j Bi j . ℓ0 norm of a scale
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x is defined as,‖x‖0 = 1 if x , 0, ‖x‖0 = 0 if x = 0. ‖X‖2F =
∑

i j X2
i j is the Frobenius norm.

‖x‖ = ‖x‖2 =
√

∑

i x2
i . ‖x‖1 =

∑

i |xi |. ℓ2/ℓ1-norm of a matrixA is

‖A‖ℓ2/ℓ1 =
∑

i

√
∑

j

A2
i j . (3.8)

ℓ2/ℓ1-norm was first proposed in [35] as rotational invariantℓ1 norm for the purpose of

robust subspace learning. It is a validnorm because it satisfies the triangle inequality

‖A‖ℓ2/ℓ1 + ‖B‖ℓ2/ℓ1 ≥ ‖A+ B‖ℓ2/ℓ1 and two other conditions. On should notice that in literacy

(e.g. [57]), we also use the‖ · ‖p,q norm, which is defined as,‖A‖p,q = maxx ‖Ax‖p/‖x‖q.

And notice that thisp,q-norm (with p = 2,q = 1) is different from the one we used in

our chapter. Thus we use “ℓ2,1-norm” instead of “2,1-norm” to distinguish them. How-

ever,ℓ2/ℓ0-norm is not a valid norm because it does not satisfy the positive scalarbility:

‖αA‖ℓ2/ℓ0 = |α|‖A‖ℓ2/ℓ0 for any scalarα. The term “norm” here is for convenience. Another

structural norm we are interested in is the groupℓ2/ℓ1 norm
∑

g

√
∑

i∈g x2
i =

∑

g ‖xg‖, where

g here is groups of the indexes ofx. The corresponding groupℓ2/ℓ0 norm is
∑

g ‖‖xg‖‖0.

3.3 Related Work

We begin with a brief discussion of the related work.

3.3.1 Related Sparsity Models

LASSO (Least Absolute Shrinkage and Selection Operator)[11] imposes flatℓ1 spar-

sity regularize on the model and is a natural yet simple way toselect related variables.

A cousin to the Lasso is thegroup Lasso[47], where the covariates are assumed to be

clustered in groups, and instead of summing the absolute values of each individual loading,

the sum of Euclidean norms of the loadings in each group is used. When Reproducing

Kernel Hilbert Spaces (RKHS) is used to measure the group fitting function, group Lasso
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turns out to be equivalent to learn the best convex combination of a set of basis kernels,

where each kernel corresponds to one Hilbertian norm used for regularization [58].

Along theseℓ1 norms approaches, some variants have been developed. For example,

Bachet al. employ bootstrap approach to learn multiple Lasso models ondata subsets,

then use the intersection of the active variables to maintain a stable feature set [59]. And

Meinshausen and Buehlmann use the same bootstrap strategy but select frequent enough

variables. Adaptive Lasso [60] approximate the SCAD penalty[61] using data dependent

weights with convex constraints.

Another direction of the sparsity is joint covariates selection [48, 50, 51, 53]. These

models consider multi-task learning problems in feature selection, which incorporate mul-

tiple domain knowledge to learn common covariates.

Besides the linear and convex constraints, other nonlinear penalties are also devel-

oped to derive sparse solutions. Zuoet al. use elastic net to make the penalty more smooth

and to allow the model to select more variable thann (the number of data points) [3].

Tibshiraniet al. developed the fused Lasso model which favors smoothness along natu-

ral ordering of variables [62] and enhance understanding ofthe active features in many

applications [63].

3.3.2 Related Optimization Techniques

In most cases of the previous models, the optimization problems are convex. Yet,

simple algorithms,e.g.quadratic programming, are not efficient in many real world appli-

cations. Extensive techniques have been developed to tackle the optimization problems.

LARS (Least Angle Regression) obtains entire solution path,i.e. all solution for

all features under all possible regularization parameterλ, by making use of the piecewise

linear property of Lasso [26]. Osborneet al. made uses of the property of the dual of Lasso

problem which leads to new insights into the characteristics of Lasso estimator and to an
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improved method of estimating the covariance matrix [56]. Mallat and Zhang solved the

problem by greedy search [64], while other researchers tried to employ coordinate descend

and soft thresholding,e.g. [65, 66, 67, 46]. Matching pursuit and orthogonal matching

pursuit are also widely used in the sparse optimization problems [68, 69].

3.4 Structural Sparsity via Structural Regularizer

3.4.1 Structural Sparsity Regularizer

A typical sparse learning problem can be written as the following problem,

min
X

J(X) = f (X) + λΦ(X), (3.9)

where f is aconvexfitting function which measures how good the model fits the observa-

tion,Φ(X) is the sparsity regularizer, andλ is the parameter balancing between the fitting

function and the regularizer. The regularizerΦ(X) can be in various forms for different

purposes. Here we list 6 of them:

Φ1(X) = ‖X‖1 =
∑

i

∑

j

|X i j |, (3.10a)

Φ0(X) = ‖X‖0 =
∑

i

∑

j

‖X i j‖0, (3.10b)

Φ21(X) = ‖X‖ℓ2/ℓ1 =
∑

i

√
∑

j

X2
i j , (3.10c)

Φ20(X) = ‖X‖ℓ2/ℓ0 =
∑

i

‖
√

∑

j

X2
i j‖0, (3.10d)

Φg21(x) = ‖x‖gℓ2/ℓ1 =
∑

g

‖xg‖, (3.10e)

Φg20(x) = ‖x‖gℓ2/ℓ0 =
∑

g

‖‖xg‖‖0, (3.10f)

56



among which Eqs. (3.10a) and (3.10b) are for the purpose of flat sparsity and Eqs. (3.10c)

– (3.10f) are for structural sparsity.

The purpose of the convex norms is to approximate the cardinality. For example, in

feature selection problems, the feature we are interested in is a subset of the whole feature

space. For this purpose, the most natural constraint is the cardinality constraint as presented

Eqs. (3.10d) and (3.10f), which are our contributions on this direction.

These explicitℓ2/ℓ0 and groupℓ2/ℓ0 norm problems are NP-hard. Fortunately, in this

chapter we develop an optimization technique (the Lipschitz Auxiliary Function Approach)

by reducing this problem into tractable sub-problems whichcan be solved optimally and

efficiently. Empirical results show that our approaches outperform the ℓ2/ℓ1 and group

ℓ2/ℓ1 relaxation.

For convenient discussion, without confusion, we sometimes useX to represent both

cases matrix and vector in Eqs. (3.10c) – (3.10f) in the rest of the chapter. WhenX is a

vector, the Frobenius norm is reduced to theℓ2 norm of the vector.

3.4.2 Optimization Overview

We show later that Eq. (3.9) can be reduced to the following problem by our Lipschitz

Auxiliary Function approach,
1
2
‖X − A‖2F + λΦ(X). (3.11)

And Eq. (3.11) can be further reduced to the following

1
2
‖x − a‖2 + λφ(x), (3.12)

which has close form solutions in all the sparse regularizers listed above. We will show the

reduction from Eq. (3.11) to Eq. (3.11) in Sections 3.6.1.2,and 3.6.2.1.
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3.5 Lipschitz Auxiliary Function Approach

In machine learning and data mining, auxiliary function method is wide employed,

including in the optimization of maximum likelihood estimation [70] and matrix factoriza-

tion [71, 72]. In this chapter, we first present a novel Lipschitz auxiliary function which is

a variant of the proximal [67] and is a general framework to solve the structural sparsity

problems.

An auxiliary function for problem

min
X

J(X), (3.13)

is a function which satisfies the following,

Z(X,X) = J(X) (3.14)

Z(X, X̃) ≥ J(X), ∀X, X̃. (3.15)

Then the iterative updating algorithm is,

Xk+1 = arg min
X

Z(X,Xk), k = 0,1, · · · , (3.16)

whereXk is the result of thek-th iteration. Using this algorithm one can easily show that

the objective function value ofJ(X) will monotonically decrease:

J(Xk+1) = Z(Xk+1,Xk+1) ≤ Z(Xk+1,Xk) ≤ Z(Xk,Xk) = J(Xk). (3.17)

The first inequality (3.17) comes from the auxiliary function property of (3.15), while the

second inequality (3.17) is achieved by the definition ofXk+1 in (5.6).
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In the rest of this chapter, without further explanation,valid auxiliary functionmeans

any function which satisfies (3.14) and (3.15). Notice that given any functionJ(X), the

auxiliary functions are not unique.

A function f : R
n×m → R is Lipschitz continuous with constantp if the following

holds [73],

f (X) ≤ f (X̃) + 〈X − X̃,▽ f (X̃)〉 + p
2
‖X − X̃‖2F , (3.18)

In this chapter, we consider optimization the type of objective functionsf (X) which

is Lipschitz continuous. We propose a valid auxiliary function which can simplify norm

regularization to an easier format, and thus the original regularization problem can be

solved efficiently. We also provide convergent guarantee of the algorithms. If the norm

is convex, we further provide the convergent rate guaranteeof the algorithms.

As the foundation of this chapter, we provide the following theorem:

Theorem 3.5.1 Consider the optimization problem in (3.9), if function f: R
n×m → R

is Lipschitz continuous smooth loss function with constant p, then the following function

satisfies (3.14) and (3.15),

Z(X, X̃) =
p
2
‖X − A‖2F + λΦ(X) +C, (3.19)

whereA = X̃ − 1
p▽ f (X̃), and C= f (X̃) − 1

2p‖▽ f (X̃)‖2F.

We call the auxiliary function in (3.19) asLipschitz auxiliary function.
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Proof First we prove inequality Eq.(3.14)

Z(X,X) =
p
2
‖X − (X − 1

p
▽ f (X))‖2F + λΦ(X) +C

=
1

2p
‖▽ f (X)‖2F + λΦ(X) + f (X) − 1

2p
‖▽ f (X)‖2F

= f (X) + λΦ(X)

= J(X).

Second, we prove inequality Eq. (3.15) as

Z(X,X) = f (X) + λΦ(X)

≤ f (X̃) + 〈X − X̃,▽ f (X̃)〉 + p
2
‖X − A‖2F + λΦ(X)

= Z(X, X̃),

where the inequality comes from the Lipschitz continuous condition of Eq. (3.18).

Now settingX̂ = Xk in the auxiliary function of Eq. (3.19), the convergence guar-

antee Eq. (3.17) lead to the algorithm in Algorithm 1. The most important features of the

algorithm are (A1)A in Line 3 is readily available becausef (X) is differentiable (A2) The

difficult non-differential regularization termΦ(X) are now handled in Line 4 together with

amuch simplified objectivein Line 4 (as explained in Section 3B), which haveclosed-form

solutionsand therefore can be easily and efficiently computed.

From this, one can easily develop new algorithms by utilizing the proposed auxil-

iary function according to the above observations. In this chapter, we provide a series of

examples, includingℓ2/ℓ1-norms, trace norm, andℓ2/ℓ0-norms.

Further discussions on Algorithm 1.
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In general Lipschitz continuous Function is bounded by quadratic function. How-

ever, the constantp is not always easy to determine. This is not a problem in designing the

algorithm, because we can use an initial guess ofp and update it when necessary. we have

the following algorithm and theorem.

Algorithm 2 TheGLAF (General Lipschitz Auxiliary Function) Algorithm.
Require: f (·), λ,Φ(·), p0,X0, γ

1: p← p0,X ← X0,X̃ ← X,
2: while Not convergeddo
3: A ← X − 1

p▽ f (X)
4: SolveXb← arg minU ‖U − A‖2F + λΦ(U),
5: if J(Xb) < J(X) then
6: X ← Xb ⊲ Lipschitz condition satisfied.
7: else
8: p← γp ⊲ Lipschitz condition not satisfied.
9: end if

10: end while
11: return X

Here f (·), λ, andΦ(·) define the learning model,p0 is the initial guess of the Lipschitz

continues constant, andX0 is the initialization. The only optimization parameter in the

algorithm isγ, which is set to 1.1 in all our applications. Since the initial guess of the

Lipschitz continues constantp0 might be too small such that the inequality of (3.18) is not

satisfied, which leads toJ(Xb) > J(X) (line 8 inGLAFAlgorithm). Thus we increasep by

a factorγ until (3.18) is satisfied. Hence the parameterγ does not change the converged

solution, indicating that our algorithm requires no optimization parameter. Further more,

we have the following guarantee of the convergence for our algorithm.

Theorem 3.5.2 For any lower bounded Lipschitz continues function f , Algorithm 2 con-

verges.

Notice that we have no requirement on the penalty function ofΦ.

61



Line 4 of theGLAF Algorithm is a sub-problem of optimizing (3.19), which needs

to be solved. We fucus on this optimization in the rest of the chapter.

Our algorithm makes use of the Lipschitz continues properties of the objective func-

tions in the auxiliary function point of view. In previous related work, researchers have also

developed algorithms using Proximal Gradient Method, suchas [49].

3.6 Two Examples of Application

We use group lasso and multi-task learning as two examples toillustrate the appli-

cation of our optimization techniques on non-smooth and non-convex norms for structural

learning problems.

We first develop a new algorithm using the auxiliary functionapproach developed in

the previous section to solves the group lasso and multi-task learning problem. Then we

employ the auxiliary function approach in a more challenging non-convex version of the

corresponding learning problems.

3.6.1 Group Lasso

3.6.1.1 Group Lasso by Lipschitz Auxiliary Function

In group lasso, we are interested in solving the following problem,

min
β

J(β) = ‖y −
∑

g

∑

i∈g
xiβi‖2 + λ

∑

g

‖βg‖, (3.20)

whereX = [x1, x2, · · · , xp]. One simple algorithm to solve the group LASSO problem is

quadratic programming, which is not efficient here. Due to the piecewise linearity of the

set of solutions as a function of the regularization parameter λ [26]. For the group Lasso,

however, the path is only piecewise differentiable, and following such a path is not as
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efficient as for the Lasso. Recently, researchers have been putting effort on new algorithms

to solve (3.20),e.g. [47, 58, 74].

As an example of the Lipschitz auxiliary function, we here develop a new algorithm

to solve (3.20).

Obviously, since∪K
i=1gi = {1,2, · · · ,n}, (3.20) can be rewritten as,

min
β

J(β) = ‖y − XTβ‖2 + λ
∑

g

‖βg‖, (3.21)

For (3.21) the Lipschitz auxiliary function is

Z(β, β̃) =
p
2
‖β − a‖2 + λ

∑

g

‖βg‖ +C, (3.22)

where

a = β̃ −
2
(

XXTβ̃ − Xy
)

p
, (3.23)

and

C = ‖y − Xβ̃‖2 − 2‖XXTβ̃ − Xy‖2
p

. (3.24)

Notice thata andC are constantsw.r.t. β. In order to employ the general framework of

Algorithm 2, we need to solve the following sub-problem,

min
β

JZ(β) = Z(β, β̃) =
p
2
‖β − a‖2 + λ

∑

g

‖βg‖, (3.25)
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where the constantC is ignored. Notice that both of theℓ2-norm andℓ2/ℓ1-norm can be

group-wise decoupled:

min
β

JZ(β) =
p
2

∑

g

‖βg − ag‖2 + λ
∑

g

‖βg‖

=
∑

g

( p
2
‖βg − ag‖2 + λ‖βg‖

)

. (3.26)

In general, we have the following,

Theorem 3.6.1 The optimal solution of (3.26) is given by,

βg =






0 if λ ≥ p‖ag‖
p‖ag‖−λ

p‖ag‖ ag if λ < p‖ag‖
. (3.27)

The proof utilizes the following lemma (withµ = λ/p),

Lemma 3.6.2 The global optimal solution of

J(u) =
1
2
‖u − a‖2 + µ‖u‖ (3.28)

is given by

u =






0 if λ ≥ ‖a‖
‖a‖−µ
‖a‖ a if µ < ‖a‖

. (3.29)

The proof of the lemma will be given in the Appendix A.
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3.6.1.2 ℓ2/ℓ0-norm Group Lasso by Lipschitz Auxiliary Function

In this subsection,we first present the explicitℓ2/ℓ0-norm Group Lasso, then an effi-

cient algorithm is developed to solve the induced optimization problem.

In the ℓ2/ℓ0-norm group Lasso, we are interested the group Lasso problemin two

forms,

min
β

J(β) = ‖y −
∑

g

∑

i∈g
xiβi‖2 + λ

∑

g

‖‖βg‖‖0, (3.30)

and

min
α

J(α) = ‖y −
∑

g

∑

i∈g
xiβi‖2

s.t.
∑

g

‖‖βg‖‖0 ≤ ξ (3.31)

3.6.1.3 ℓ2/ℓ0-norm as Penalty

For (3.30) the Lipschitz auxiliary function is

Z(β, β̃) =
p
2
‖β − a‖2 + λ

∑

g

‖‖βg‖‖0 +C, (3.32)

wherea andC are defined as the same as (3.23) and (3.24). Then one needs to solve

min
β

JZ(β) =
p
2

∑

g

‖βg − ag‖2 + λ
∑

g

‖‖βg‖‖0

=
∑

g

( p
2
‖βg − ag‖2 + λ‖‖βg‖‖0

)

.

(3.33)

For this problem, we have the following theorem,
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Theorem 3.6.3 The optimal solution of (3.33) is given by,

βg =






0 if λ ≥ p‖ag‖/2

ag if λ < p‖ag‖/2
, G ∈ G. (3.34)

Proof Since (3.34) can be decoupledw.r.t. G, without loss of generation, we solve the

following problem,

min
β

J(β) =
p
2
‖β − a‖2 + λ‖‖β‖‖0. (3.35)

Obviously,∀β , 0, λL0(‖β‖) = λ. In this case, the minimum of the first termp2‖β − a‖2 is

zeros, whenβ = a. ThenJ(β) = λ. And if β = 0, λL0(‖β‖) = 0, andJ(β) = p‖a‖/2. Thus

whenλ ≥ p‖a‖/2, α = 0 gives the lowest objective value, whileλ < p‖a‖/2, β = a gives

the lowest objective value. Thus, by considering the decoupling property of (3.33), (3.34)

gives the optimal solution.

Notice that the solution of (3.34) is not continuous on the boundaryλ = p‖ag‖2.

However, on this boundary, whichever of the two solutions gives the same objective value.

3.6.1.4 ℓ2/ℓ0-norm as Constraint

For (3.31), the Lipschitz auxiliary function is

Z(β, β̃) =
p
2
‖β − a‖2 +C, (3.36)
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wherea andC are defined as the same as (3.23) and (3.24). In order to employAlgorithm

2, by ignoring the constant termC and the positive coefficient p/2, we need to solve the

following constrained problem,

min
β
‖β − a‖2

s.t.
∑

g

‖‖βg‖‖0 ≤ ξ (3.37)

Unlike, other problems in previous discussion, this problem cannot be decoupled with re-

spective tog. However, we provide the following,

Theorem 3.6.4 The solution of problem (3.37) is given by,

βi =






ai if i ∈ gπ(k), k ≤ ξ

0 if i ∈ gπ(k), k > ξ
, (3.38)

whereπ is the sorting index such that‖agπ(1)‖ ≥ ‖agπ(2)‖, · · · ,≥ ‖agπ(K)‖, and‖agk‖ =
√

∑

i∈gk
a2

i .

Proof We rewrite the objective and constraint of (3.37) as,

J(β) = ‖β − a‖2 =
∑

g

‖βg − ag‖2 ,
∑

g

∆g, (3.39)

and
∑

g

‖βg‖0 ,
∑

g

τg ≤ ξ. (3.40)

For anyβg
, 0, ‖βg‖0 = 1. In such case, the optimalβG which gives the lowest objective

value isβg
= ag. And for anyβg

= 0, ∆g = ‖βg − ag‖2. Thus, in order to give the lowest

objective value, we have to select the first⌊ξ⌋ (the largest integer not larger thanξ) largest

∆G and set the correspondingβg
= ag, which gives the solution of (3.38).
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3.6.2 Multi-Task Learning

3.6.2.1 Multi-Task Learning Withℓ2/ℓ1-norm Regularization

Let us consider (3.5a). Due to the piecewise linearity of theset of solutions as a

function of the regularization parameterλ [26]. For multi-task learning, however, the path

is only piecewise differentiable, and following such a path is not as efficient as for the

Lasso. Recently, researchers have been putting effort on new algorithms to solve (3.5a),

e.g. [53].

As an example of the Lipschitz auxiliary function, we here develop a new algorithm

to solve (3.5a).

Z(B, B̃) =
p
2
‖B − A‖2F + λ

∑

i

√
∑

j

B2
i j +C, (3.41)

where

A = B̃ − XXTB̃ − XY
p

, (3.42)

and

C =
1
2
‖Y − XTB̃‖2F −

‖XXTB̃ − XY‖2F
2p

. (3.43)

Notice thatA andC are constantsw.r.t. B. In order to employ the general framework of

GLAFAlgorithm, we only need to solve the following sub-problem,

min
B

p
2
‖B − A‖2F + λ

∑

i

√
∑

j

B2
i j , (3.44)
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where the constantC is ignored. Notice that both of theℓ2-norm andℓ2/ℓ1-norm can be

row-wise decoupled:

min
B

JZ(B) =
p
2

∑

i

∑

j

(Bi j − A i j )
2 + λ

∑

i

∑

j

√

B2
i j

=
∑

i

( p
2
‖bi − ai‖2 + λ‖bi‖

)

.

whereB =
(

b1,b2, · · · bp
)T
,A =

(

a1,a2, · · · ap
)T
, andxi andai are thei-th row ofB andA,

respectively. By directly using Lemma 3.6.2, we have

Theorem 3.6.5 The optimal solution of (3.44) is given by,

bi =






0 if λ ≥ p‖ai‖
p‖ai‖−λ

p‖ai‖ ai if λ < p‖ai‖
(3.45)

This gives an effective algorithm forℓ2/ℓ1-norm regularization problems.

3.6.3 Multi-Task Learning Withℓ2/ℓ0-norm Regularization

In theℓ2/ℓ0-norm multi-task learning, we are interested the regression problem in the

following form,

min
X

1
2
‖Y − XTB‖2F + λ

∑

i

‖‖bi‖‖0, (3.46)

The corresponding Lipschitz auxiliary function is

Z(B, B̃) =
p
2
‖B − A‖2F + λ

∑

i

‖‖bi‖‖0 +C, (3.47)
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whereA and C are defined as in (3.42) and (3.43). ThenGLAF Algorithm requires a

solution to the following problem,

min
B

JZ(X) =
p
2
‖B − A‖2F + λ

∑

i

‖‖bi‖‖0

=
∑

i

( p
2
‖bi − ai‖2 + λ‖bi‖0

)

. (3.48)

By applying Theorem 3.6.3 we have

Theorem 3.6.6 The optimal solution of (3.48) is given by,

bi =






0 if λ ≥ p‖ai‖2/2

ai if λ < p‖ai‖2/2,
(3.49)

3.6.4 ℓ2/ℓ0-norm as Constraint

One can also impose theℓ2/ℓ0-norm as constraint,

min
X

1
2
‖Y − XTB‖2F

s.t.
∑

i

‖‖bi‖‖0 ≤ ξ, (3.50)

The corresponding Lipschitz auxiliary function is equivalent to

min
B

JZ(B) =
1
2
‖B − A‖2F s.t.

∑

i

‖‖bi‖‖0 ≤ ξ, (3.51)

whereA is defined as same as (3.42). Following the similar techniques in Theorem 3.6.4

we have the following,
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Theorem 3.6.7 The following gives the global optimal solution of (3.51).

xπ( j) =






aπ( j) j ≤ ξ

0 j > ξ,
(3.52)

where X=
(

x1, x2, · · · xp
)T

, A =
(

a1,a2, · · · ap
)T

andπ is the sorting index such that‖aπ(1)‖ ≥

‖aπ(2)‖, · · · , ‖ ≥ aπ(p)‖.

3.7 Optimization Algorithm Analysis

In this section, we provide more theoretical properties of our algorithms.

3.7.1 Convergent Rate ofGLAFAlgorithm

Theorem 3.7.1 Let X0 be the initialization of AlgorithmGLAF and X1, · · · ,XT be the

updating results of first T iterations. Assume that there exist a point setD and T0 < T such

that Xt ∈ D, t = T0,T0+ 1, · · ·T, andΦ(X) is convex onD, then the following bound holds,

J(XT) − J(X∗) ≤
pT‖XT0 − X∗‖2F

2(T − T0)
,

whereX∗ is the local optimal of Eq. (3.9) inD, pT is the p value in T-th iteration.

The proof will be given in the Appendix B.

Theorem 3.7.1 suggests that when the solution is close to thelocal minimum, the

convergent rate isO(1/t) wheret is the iteration number. The requirement of the convexity

of Φ(X) onD is easy to satisfy, since that in a small region around local minimum, the

norm functions can be precisely approximated by quadratic functions.
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3.7.2 Computational Complexity Analysis

For multi-task learning, the computation cost comes from two parts: The computa-

tion of matrixA and the optimization of Lipschitz auxiliary function.

3.7.2.1 The computation ofA

A is defined in (3.42). Notice thatX is a p× n matrix andB is a p× K matrix, where

p,n,K are the number of dimension, data points, and tasks, respectively. If p is large, one

can first computẽY = XTB̃ then computeXXTB = XỸ, both of which costO(npK). If n

is large and we do not want to computeXXTB in each iteration of the main loop inGLAF

Algorithm, we can computeXXT before the main loop. Then in each iteration, the cost of

computingXXTB is p2K, which isO(1) with respect ton.

3.7.2.2 The optimization of Lipschitz auxiliary function

For ℓ2/ℓ1-norm, the solution of Lipschitz auxiliary function is given by Theorem

3.6.5. It is easy to check that the computational cost isO(pK). Forℓ2/ℓ0-norm penalty (see

(3.46)) form, the computation cost of Lipschitz auxiliary function isO(pK) (see Theorem

3.6.6). And forℓ2/ℓ0-norm constraint (see (3.50)) form, the cost of Lipschitz auxiliary

function isO(pK + log(p)) (see Theorem 3.6.7).

3.8 Accelerated Lipschitz Auxiliary Function Optimization

Nesterov shows that gradient method is capable to reach the convergent rate of

O(1/t2) [75, 73]. More recently, many optimization techniques demonstrate that for some

non-smooth function, similar convergent rate can also be derived. In this section, we de-

velop an accelerated version of GLAF (AGLAF) by following the techniques in [67] or

[53].
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Again, theAGLAF algorithm requires no optimization parameters (the choiceof γ

does not change the convergency of the algorithm). For this algorithm, we have the follow-

ing property,

Theorem 3.8.1 Let X0 be the initialization of AlgorithmAGLAF and X1, · · · ,XT be the

updating result of first T iterations. Assume that there exists a setD and T0 < T such that

Xt ∈ D, t = T0,T0 + 1, · · ·T, andΦ(X) is convex onD, then the following bound holds,

J(XT) − J(X∗) ≤
2pT‖XT0 − X∗‖2F

(T − T0 + 1)2
,

whereX∗ is the local optimal of Eq. (3.9) inD, pT is the p value in T-th iteration.

The proof is similar to that in Appendix of [53]. We omit the proof here. The convergent

property ofGLAFandAGLAFwill be studies in the experimental section.

3.9 Experimental Results

In this section, we validate the efficiency of the presented algorithms. We first test our

algorithm in an SNPs (Single Nucleotide Polymorphisms) data set in the 21st chromosome

of H. sapiens2, After that four image data sets ( MSRC3, AT&T face database4, barcelona

dataset5, and theTrecVideo 2006[76]) and one music data [77] are used to compare the

efficiency of theℓ2/ℓ0-norm withℓ2/ℓ1-norm group Lasso and multi-task learning.

3.9.1 Group Lasso

Data mining techniques are widely used in Bioinformatics, such as [78, 79]. Here

we use the SNPs for the application of Group Lasso.

2http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_phaseI/full/genotypes_

chr21_CEU.phased.gz
3http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
4http://www.cl.cam.ac.uk/research/dtg/attarchive/ facedatabase.html
5http://mlg.ucd.ie/content/view/61
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Table 3.1. Objective value, feature recovery recall and precision comparison on SNPs data
under different number of selected SNP blocks.

Objective Recall Precision
#Block ℓ2/ℓ1 ℓ2/ℓ0 ℓ2/ℓ1 ℓ2/ℓ0 ℓ2/ℓ1 ℓ2/ℓ0

10 41679.10 6434.77 29.85 55.22 86.96 100.00
15 14816.15 2597.58 49.25 65.67 81.67 93.62
30 1560.54 1513.90 70.15 74.63 75.81 80.51
60 338.58 238.2 85.07 88.06 53.27 58.82

For this experiment, we solve the problem of (3.21) and (3.30). To generate the data

matrix X, we select 200 SNPs in the 21st chromosome ofH. sapiensfor 120 patients,i.e.

X is a 120× 200 matrix.

In order to generate the grouping of the SNPs, first detect theblocks using Linkage

Disequilibrium (LD) of SNPs, see Figure 3.1 A. We first calculate the LD values of neigh-

bor SNPs:vi = LD (i, i + 1), which is plotted in Figure 3.1 B. Then we cutv using 0.2

to split the 200 SNPs into 79 blocks, see Figure 3.1 C. We use theblock structure as the

groups in group Lasso. To get the responsey, we randomly select 10, 15, 30, and 60 blocks

and we let

y =
N∑

k=1

∑

i∈gk

xiβi + ǫ,

whereǫ ∼ N(0,0.1) is drawn from normal distribution (withµ = 0 andσ = 0.1) and

N = 10,15,30,60. With theX, y, and the selected groups, we trained the model of group

Lasso usingℓ2/ℓ1-norm andℓ2/ℓ0-norm.

We evaluate the objective values (‖y−XTβ‖2), the precision and recall of the feature

recovered under different number of selected blocks. The results are shown in Table 3.1.

One can observe that theℓ2/ℓ0-norm group Lasso achieve much lower objective. As a

byproduct, it also generate higher recall and precision under the same number of selected

blocks.
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Figure 3.1. [5] SNP dataset used in our experiment. A: the Linkage disequilibrium (LD)
values of pairwise SNPs. B: The LD values of neighbor SNPs. C: The block structure split
using threshold of 0.2 in B. .
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From Table 3.1 we see thatℓ2/ℓ0 norms are consistently better thanℓ2/ℓ1 norms in

all the measurements we are interested.

3.9.2 Multi-Task Learning on SNP Data

In this experiment, we solve the following problem,

min
X
‖Y − XT B‖2F + λΦ(B), (3.53)

where eitherΦ(B) = ‖B‖ℓ2/ℓ1 or Φ(B) = ‖B‖ℓ2/ℓ0. We employ bothGLAF and AGLAF

algorithms to solve these problems. The data is generated asfollowing. We select 100

single nucleotide polymorphisms (SNPs) from the 21st humanChromosome across 120

patients [80], which forms a 100×120 matrix (denoted byXt). Then we randomly generate

a 100× 20 matrix (denoted byBt) and letYt = XTBt +σz, whereσ = 0.05 andz∼ N(0,1)

is a Gaussian noise. Here we are simulating a multi-task learning problem with 20 tasks

in which only the selected 100 SNPs are related to the target.We also randomly select

otherTn SNPs from the same chromosome to form aTn × 120 matrix (denoted byXn)

and letX = [XT
t ,X

T
n ]T ,Y = Yt. HereXt is relevant to the tasks andXn is the noise. In

this experiment, we try to recover the correlated SNPs fromX andY. We setλ = 1 and

Tn = 300 in this experiment. We apply bothGLAF andAGLAF for 200 iterations and

measure the error at each iteration, which are plotted in Figure 5.3. The error is computed

asError = ‖Y − XTB‖2F/‖Y‖2F . One can observe thatAGLAFalways converges faster than

GLAF in both cases, even for non-convexℓ2/ℓ0-norm shown in Figure 3.2(b).

We also compare theℓ2/ℓ1 norm andℓ2/ℓ0 norm under differentTn = 100,300,900.

For each norm and everyλ we have different‖Y − XTB‖2F/‖Y‖2F values and different num-

bers of selected SNPs, which are plotted in Figure 3.3. We cansee from the figure using

the same number of SNPs,ℓ2/ℓ0 norm method gives much lower error.
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Figure 3.2. [5] The convergence ofℓ2/ℓ1-norm (left), andℓ2/ℓ0-norm (right) forGLAFand
AGLAFmethods..

3.9.3 Multi-Task Learning on Image Data

Here we try to solve (3.53) as multi-task feature learn.Xp×n andYn×K are obtained as

following. For AT&T andBarcelona, we use pixels as features. ForTrecVideoandMSRC

we evenly divide each image into 8× 8 = 64 blocks and compute the first and second

moments (mean and variance) of each color band and total get 64× 2× 3 = 384 moment

featuresxi. Let X = [x1, x2, · · · ,dp]T , p = 384. AndY ik = 1 if the i-th image belongs to

thek-th group,Y ik = 0 otherwise,k = 1, · · · ,K whereK is the number of groups.AT&T

: n = 400, p = 10304,K = 40; Barcelona: n = 139, p = 10000,K = 4; TrecVideo: n =

384, p = 3718,K = 39; MSRC: n = 591, p = 380,K = 23,Music: n = 593, p = 78,K = 6.

We compare the error of‖Y −XTB‖2F/‖Y‖2 under different selected number of pixels using

ℓ2/ℓ1-norm andℓ2/ℓ0-norm learning, which are plotted in Figure 3.4. For all the datasets,

ℓ2/ℓ0-norm obtains much lower objective thanℓ2/ℓ1-norm.

We also solve the model in (3.50) withξ = 1000,2000, · · · ,6000. We select three

columns ofX and plot them as images in left panel of Figure 3.5 under different choice of

ξ. Some discriminant areas are highlighted in rectangles. For example, the third person

has long hair on the top left of her head, the corresponding area has negative values. For
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Figure 3.3. [5] Error comparisons under different number of selected SNPs forℓ2/ℓ1 norm
andℓ2/ℓ0 norm in three synthetic data sets. In each data set, we add 100(left), 300 (middle),
and 900 (right) irrelevant SNPs. .

all other persons, this area is not dark, and thus has large negative values in the decision

functionbT
k d, wherebk is decision weight vector for 3rd person. A heat map of the covari-

ance of theb are also plotted in the right panel. From Figure 3.5, one can observe that the

sparsity of the multi-task learning problem obtained by ouralgorithm is quite consistent

with human interpretation.

We also compare the running time forℓ2/ℓ1 norm (which is implemented using Eu-

clidian Projection method [53]) and our method in Figure 3.4(f). The computational time
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Figure 3.4. [5] Error comparison under different number of selected pixels/moments for
MSRC(a), Yahoo (b),AT&T (c), Barcelona (d), and TrecVideo (e) data set. (f) is the com-
putational time comparison of Projected Gradient method and our method on TrecVideo.
.
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Figure 3.5. [5] Visualization of columns ofX of solution in multi-task learning with
by ℓ2/ℓ0-norm constraint. The left most column in the left panel are example im-
ages for each person. From the second column to the last column are the results for
ξ = 1000,2000, · · · ,6000. Red color represents positive values, dark blue represents nega-
tive values, and white color for 0. The discriminative areasof the corresponding people are
highlighted by black arrows. Right panel are the variance ofxi over different tasks. Higher
variance indicates higher discriminative capability..

is calculated using 10%, 20%,· · · , 100% of the data. For Euclidian Projection method,

we use the software (version 3.0) downloaded at web site6 with default settings. For our

method, the computation time includes the gradient computation and the updating time of

Eq. (5.6). One can see that the computation time for our algorithm remains approximately

constant with respective to the number of data points while the Euclidian Projection method

grows linearly. These results indicate that our method is much more efficient for large-scale

data.

3.9.4 Experiments on TCGA Data

We continue to make use of the TCGA data described in Section 2.6.5. We use

the subtype of ovarian cancer as the multi-tasks and analysis the bio-marker patterns in

discriminating the cancer subtypes. The results indicate that bothhas-mir-200candPI3K

6http://www.public.asu.edu/ jye02/Software/SLEP/download.htm
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have high coefficients to discriminate subtype 1 and subtypes 2/3. And this is consistent

with results in Section 2.6.5.
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CHAPTER 4

ORTHOGONAL REGRESSION FOR NON-REDUNDANCY FEATURE SELECTION

4.1 Motivations

Recent trends in healthcare and medicine enhance traditional knowledge driven ap-

proaches with data extracted information, considered together with knowledge for making

treatment and other decisions. As more and more comprehensive EHR data become avail-

able, a diverse set of clinical features can be constructed and potentially leveraged for

clinical decision support applications. From both theoretical and application perspectives,

feature selection is a key component with a lot of challenges.

From statistics and machine learning research, feature selection provides many bene-

fits: 1) speed up the subsequent learning process, 2) improvethe model generalizability and

alleviate the effect of the curse of dimensionality [81] and overfitting [82].A large num-

ber of feature selection methods have been proposed in the literature [83, 84, 85, 86, 87]

and there are many recent reviews and workshops devoted to this topic,e.g., NIPS Confer-

ence [88]. Despite the vast literature on feature selection, the problem is by no algorithms

solved. Many practical feature selection are developed in the context of concrete applica-

tions, such as Bioinformatics applications[89, 90]. A survey on various feature selection

methods and applications are presented in Section 4.2.

Our motivating healthcare application and its associated new challenges for feature

selection are presented next.

Motivating example:EHR data provide a longitudinal view of patients. This typically in-

cludes diagnosis info such as ICD9 codes, medication info such as drug names, lab results

and symptoms. EMR data have been growing rapidly in quantityover the past few years,
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and are increasingly considered to be a valuable asset by leading medical institutions. Pre-

dictive modeling using EHRs for targeted high cost diseases has become highly valuable in

modern healthcare. One high cost disease is Heart Failure (HF). The clinical and societal

implications of HF are truly staggering. One in 5 US citizensover age 40 is expected to

develop HF in their lifetime and HF is the leading cause of hospitalization among Medicare

beneficiaries. With the aging population, HF will continue to be a leading cause of health-

care use. The hope is that through mining the longitudinal EHR data, predictive features

can be identified from a large number of input features that will aid us predict HF with high

accuracy. Furthermore, the selected features should be parsimonious (i.e., non-redundant).

Often there is a known set of features (risk factors) that leads to HF. Any additional features

should not only have great predictive value to HF but also complement to the known risk

factors in order to minimize redundancy.

Motivated by this clinical application, we propose Scalable Orthogonal Regression

(SOR)1 to address the aforementioned requirements. In particular, SOR has the following

properties:

• Scalable:SOR achieves nearly linear scale-up with respect to the number of input

features and the number of samples;

• Optimal: SOR is formulated as a sparse learning problem that can be solved effi-

ciently using alternative convex optimization with theoretical convergence and global

optimality guarantee;

• Non-redundant:SOR is designed specifically to select less redundant features with-

out sacrificing the quality, where redundancy is measured byan orthogonality mea-

sure added as a penalty term in the objective function;

• Extensible:SOR can enhance an existing set of preselected features by adding addi-

tional features that complement the existing set but still with strong predictive power.

1Most of the major results in this chapter have been publishedin paper [91].
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In order to evaluate our algorithm, we compare other state-of-the-art feature selection

algorithms in 9 real data sets from various domains, including gene expression, general UCI

benchmark data, and multimedia data. Extensive experimental results confirmed that SOR

significantly outperforms several state of the art feature selection methods with respect to

various quality metrics. In particular, SOR achieves orders of magnitude improvement of

speed compared to several other methods. Besides overall competitive AUC measure, SOR

can also achieve less redundancy and better stability in terms of selected features.

As a case study, we apply SOR to a clinical application on predictive modeling of HF.

The study is done on over 20 million real EHR records on 30K patients over 7 years from

a large healthcare provider network. The data contain diagnosis, medication, lab results

and HF diagnostic symptoms. The goal is to predict the onset of HF x months before the

actual diagnosis. In our cross validation evaluation, we achieve increased AUC measure in

comparison to knowledge driven baseline which is provided by clinical experts.

The rest of the chapter is organized as the follows. A brief survey on various feature

selection methods and applications are presented in Section 4.2. We then introduce our

method and the related optimization algorithms in Section 4.3. Theoretical analysis for our

method is given in Section 4.4. We demonstrate the quality and scalability of our algorithm

in Section 4.5. Finally we highlight a case study on EHR data in the experimental section.

4.2 Related Work

In feature selection, our purpose is to select a subset ofK informative features where

K is the number of required features. There are two major sub-problems in feature selec-

tion. One is the measurement ofhow informative a given subset of features is, and the

other one is how to obtain the subset of features. Given a measurement of the quality of

features, the feature selection problem is essentially a combinatorial optimization problem,
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and is usually solved by an approximation or greedy search. In general, there are two types

of feature selection methods in the literature: (1) filter methods [83] where the selection

is independent of classifiers and (2) wrapper methods [84] where the selection is tightly

coupled with a specific classifier.

The filter methods evaluate features one by one, then select the topK features ac-

cording to their scores. This type of scheme can be interpreted as a greedy approach by

iteratively selecting one feature from the remaining unselected feature set. Within this cat-

egory, one can implement it using two approaches. Univariate filtering,e.g. Information

Gain, or multivariate filtering,e.g.Minimum Redundancy-Maximum Relevance (mRMR)

[90].

Feature selection using wrapper methods provides an alternative way to obtain mul-

tivariate subset selection by incorporating the classifiers, e.g. directly approximating the

area under the ROC curve [92] or optimization of the LASSO (Least Absolute Shrinkage

and Selection Operator) model [93, 94].

The learning of non-redundant features has also been discussed in literature. For ex-

ample, mRMR explicitly prefers low redundant features [90],and non-redundant codebook

feature learning method was also proposed [95].

4.3 Sparse Orthogonal Regression

This section presents theSparse Orthogonal Regression(SOR) algorithm in detail.

First we will introduce some notation and symbols that will be used throughout the chapter.

4.3.1 Notations

We useX to denote the data matrix containingn observations on thep covariates:

X = [x1, x2, · · · , xp] ∈ R
n×p. Without the loss of generality, we assume all covariate vectors

are normalized, i.e.,‖xi‖2 = 1 (i = 1, · · · , p). As we only care about the supervised setting
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in this chapter, we are further given the corresponding response vectory ∈ R
n, then the

feature selection problem is alinear regressionundersquare loss, which takes the following

form.

min
α

Jr (α), Jr (α) =
1
2
‖y − Xα‖2 = 1

2
‖y −

∑

j
α jx j‖2, (4.1)

whereα = [α1, α2, · · · , αp]T ∈ R
p is the regression coefficient vector. The absolute value

of |α j | can be regarded as the importance of covariatej, j = 1,2, · · · , p. If αi = 0, then that

means covariatei is not selected.

4.3.2 Othogonality of Features

As nonredundancyis one of the major claims of the method we proposed in this

chapter, we first give the definition of theredundancybetween two covatiates.

Definition 1 (Redundancy).Given two covariatesxi andx j, as well as their corresponding

regression coefficientsαi andα j (which are fixed) as in Eq.(4.1), we define theredundancy

between them as follows,

Ri j =
(

αiα jxT
i x j

)2
. (4.2)

Obviously, ifxi andx j are orthogonal to each other, thenxT
i x j = 0 andRi j = 0, indi-

cating that they are totally non-redundant. Ifxi andx j are identical, thenxT
i x j is maximized.

In this case,xi andx j are redundant.

Based on definition 1, in order to obtain a set of non-redundantcovariates, we can

minimize the following objective

Jo(α) =
1
2
‖y − Xα‖2 + β

4

∑

i j

(

αixT
i x jα j

)2
, (4.3)
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where the term
∑

i j Ri j =
∑

i j

(

αixT
i x jα j

)2
is the summation of the redundancies over all

pairwise features, andβ is a tradeoff parameter which controls the importance of the redun-

dancy.

In feature selection, we also want the number of selected features to be as small as

possible, thus we further impose the sparsity penalty term of ‖α‖1 on the objective function.

Then our goal becomes to minimize the following objective.

J(α) =
1
2
‖y − Xα‖2 + λ‖α‖1 +

β

4

∑

i j

(

αixT
i x jα j

)2
, (4.4)

where‖α‖1 is theℓ1 norm ofα : ‖α‖1 =
∑

j |α j |. We will show later thatJ(α) is convex and

develop an efficient algorithm to minimizeJ(α) with respect toα.

Hereλ is a model parameter which controls the sparsity. One can easily show that

if λi ≥ maxi |(XTy)i |, α = 0 gives the optimal solution of Eq. (4.4). Thus the parameterλ

has a natural range of 0∼ λmax = maxi |(XTy)i |. In the rest of the chapter, without loss of

generalization, we use a normalizedλ (ranging from 0∼ 1, whereλ = 1 indicate we use

λmax). Once the optimal solution ofα∗ is obtained, we use the absolute values of|α∗i | as the

importance of features.

Our method performs particularly well in cases where the problem includes iden-

tifying a set of relevant predictors from a really large collection of variables that are not

necessarily independent. We will provide detailed evidence in the experimental section.
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4.3.3 Preliminaries

In this section we will present some preliminaries on how to minimize Eq. (4.4). For

notational convenience, we will use

f (α) = Jo(α) =
1
2
‖y − Xα‖2 + β

4

∑

i j

(

αixT
i x jα j

)2
, (4.5)

through the rest of this chapter. Before diving into the details, first we need to prove that

f (α) is locally Lipschitz continuous, which is defined as follows.

Definition 2 (Lipschitz continuous) [96]. A function f : R
d −→ R

m is Lipschitz continu-

ous if for∀a,b ∈ R
d, we can find a constant L satisfying the following inequality

‖a− b‖ 6 L ‖ f (a) − f (b)‖ (4.6)

The function f is calledlocally Lipschitz continuous, if for eachc ∈ R
m, there exists an

L > 0 such that f is Lipschitz continuous on the open ball of centerc and radius L.

BL(c) = {x ∈ R
m : ‖x − c‖ < L}. (4.7)

In our case, asf (α) is continuously smooth, the gradient is locally Lipschitzcontinuous

[97]. Then we have the following inequality [96].

f (α) ≤ f (α̃) + (α − α̃)T ∇ f (α̃) +
L
2
‖α − α̃‖2, (4.8)

which immediately leads to

f (α) + λ‖α‖1 (4.9)

≤ f (α̃) + (α − α̃)T ∇ f (α̃) +
L
2
‖α − α̃‖2 + λ‖α‖1.
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In this section, we will employ Eq. (4.10) and derive an efficient iterative algorithm

which is guaranteed to converge to the global solution of minimizing Eq. (4.4). Denote the

right hand side of Eq. (4.10) byZ(α, α̃), i.e.

Z(α, α̃)= f (α̃)+(α − α̃)T ∇ f (α̃)+
L
2
‖α − α̃‖2+λ‖α‖1, (4.10)

where∇ f is the gradient off . Bringing J(α) in Eq.(4.4) into Eq.(4.10), we can easily find

that

J(α) = Z(α,α) ≤ Z(α, α̃). (4.11)

Then letα̃ = αt and

αt+1 = arg min
α

Z(α,αt), (4.12)

thus we have

J(αt+1)=Z(αt+1,αt+1)≤Z(αt+1,αt)≤Z(αt,αt)= J(αt) (4.13)

This suggests that we can iteratively updateα by solving problem (5.6) (i.e., minimizing

Z(α, α̃) with α̃ = αt) to decrease the objective function monotonically.

4.3.4 Algorithm Details

Based on the contents in last subsection, in order to minimizeEq.(4.4), we need to

solve the following sub-problem iteratively

min
α

Z(α,αt). (4.14)

As f (αt) is constant with respect toα, we can minimize the following objective instead

with respect toα

Jm(α)=
(

α − αt)T ∇ f (αt)+
L
2
‖α − αt‖2+λ‖α‖1, (4.15)
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where the gradient off (α) is

[∇ f (α)
]

i=
[

XTXα
]

i
+β

∑

j

(

αiα jxT
i x j

)

xT
i x jα j , (4.16)

which can be written in its matrix form as

∇ f (α) = (G + βA ⊙G ⊙G)α, (4.17)

whereA = ααT ,G = XTX, and⊙ is the matrix Hadamard (elementwise) product.

Next we will show that the minimization of Eq. (4.15) has closed form solution. First,

as‖∇ f (αt)‖ is a constant with respect toα, then minimizeJm(α) in Eq. (4.15) is equivalent

to minimize

Jm(α) +
1

2L2
‖∇ f (αt)‖2

=
(

α−αt
)T∇ f (αt)+

L
2
‖α−αt‖2+ 1

2L2
‖∇ f (αt)‖2+λ‖α‖1

=
L
2

∥
∥
∥
∥
∥
∥
α−

(

αt− 1
L
∇ f (αt)

)∥
∥
∥
∥
∥
∥

2

+λ‖α‖1.

Furthermore, we can easily prove the following Lemma.

Lemma 1. The global minimum solution of minimizing the following objective overu

J(u) =
1
2
‖u − a‖2 + µ‖u‖1, (4.18)

where whereu = [u1,u2, · · · ,up]T anda = [a1,a2, · · · ,ap]T are p× 1 vectors, is given by

ui =






0 if µ ≥ |ai |
|ai |−µ
|ai | ai if µ < |ai |

, i = 1,2, · · · , p,
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or equivalently,

ui = (|ai | − µ)+sign(ai), (4.19)

where(x)+ = x if x > 0, (x)+ = 0 if x <= 0 and sign(·) is the sign function (sign(0) is

defined as 0 here).

By applying the above lemma, and lettingµ = λ/L,u = α,a = αt− 1
L∇ f (αt), one can easily

obtain the following close form optimal solution for minimizing Eq. (4.15),

αi =

(∣
∣
∣
∣
∣
∣

[

αt− 1
L
∇ f (αt)

]

i

∣
∣
∣
∣
∣
∣
− λ

L

)

+

sign
([

αt− 1
L
∇ f (αt)

]

i

)

, (4.20)

wherei = 1,2, · · · , p.

The following Algorithm summarizes the whole procedure of our Scalable Orthogo-

nal Regression(SOR) algorithm. In the algorithmγ is a optimization parameter to increase

L when the Lipschitz condition is not satisifed and is set to be1.2 in all experiments. Next

section presents some analysis of the algorithm and its extensions.

Algorithm 3 SOR (Scalable Orthogonal Regression)
Require: λ, L0,α0, γ

1: while Not convergeddo
2: Compute∇ f (α) using Eq. (4.17)
3: a← α − ∇ f (α)/L
4: Solveα̃← arg minα ‖α − a‖2 + λ‖α‖1 (Eq. (4.20))
5: if J(α̃) < J(α) then
6: α← α̃
7: else
8: L← γL
9: end if

10: end while
11: return α
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4.4 Analysis and Extension

In this section, we will provide some analysis and extensions of the SOR algorithm.

First we show that the objective Eq. (4.4) is convex with respect toα.

4.4.1 Convexity

We have the following theorem.

Theorem 4.4.1 (Convexity). Eq. (4.4) is convex w.r.t.α.

Proof: See Appendix C.

Based on the convexity, we can prove the following theorem, which serves as the founda-

tion of the follow up analysis on convergence rate.

Theorem 2 (Lipschitz Continuity). f in Eq. (4.5) is locally Lipschitz continuous. Furth-

more, there exists a global L such that Eq. (4.5) is Lipschitzcontinuous atαt with Lipschitz

continuity constant L, whereαt is the solution of Algorithm 3 at the t-th iteration.

Proof: f(α) is continuously smooth, thus it is locally Lipschitz [97].On the other hand,

f (α) is convex and lower bounded, then the setS = {α : f (α) ≤ f (α0)} is close convex set.

Obviously,αt ∈ S. As f (α) is locally Lipschitz with constantLα atα, L = maxα∈S Lα is

obviously the global Lipschitz constant for the solutions of Algorithm 3.

4.4.2 Convergence

As discussed in section 4.3.3, SOR can monotonically decrease the value ofJ(α),

and it is obvious thatJ(α) is lower bounded by zero, thus SOR will converge. Based on

Theorem 1 and 2, we can prove the following theorem analyzingthe convergence rate of

Algorithm 1.
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Theorem 4.4.2 (Convergence Rate of SOR). Algorithm 1 converges to global solution of

Problem in Eq. (4.4). Furthermore,

J(αT) − J(α∗) ≤ LT‖α0 − α∗‖2
2T

,

T is number of iterations in Algorithm 3,LT is the value ofL in the last iteration ,α∗ is the

global optimal of Eq. (4.4), andαT is the output of Algorithm 3.

Proof: See the Appendix D.

Theorem 3 also guarantees that Algorithm 3 converges to the global solution, sinceJ(αT)−

J(α∗) → 0 asT → ∞ (notice thatLT ≤ L because of the locally Lipschitz continuity of

f (α) guaranteed by Theorem 2.

4.4.3 Accelerated Algorithm

As it is obvious that theJm(α) in Eq. (4.15) is convex, we can also derive an accel-

erated algorithm shown in Algorithm 4.4.3, with much higherconvergence rate. For the

accelerated SOR(aSOR), we have the following theorem.

Theorem 4 (Convergence Rate of aSOR).Algorithm 1 converges to global solution of

Problem in Eq. (4.4). Furthermore,

J(αT) − J(α∗) ≤ LT‖α0 − α∗‖2
2T2

,

T is number of iterations in Algorithm 4.4.3, LT is the value of L in the last iteration ,α∗ is

the global optimal of Eq. (4.4), andαT is the output of Algorithm 3.

The theorem can be proved using similar tricks as in [98], andwe omit the details

here due to limited space.
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By comparing the convergence rate of SOR and aSOR, one should notice that the

gap to the optimal solution in aSOR decreases as1
T2 , which is much faster than in SOR

with 1
T , whereT is the number of iterations. We will demonstrate the convergence speed

comparison of these two algorithms in the experimental section.

Require: λ, p0,α0, γ

1: p← p0,α← α0, η← α0,α̃← α, ζ ← 1,
2: while Not convergeddo
3: a← η − ∇ f (η)/p,
4: Solveα̃← arg minα ‖α − a‖2 + λ‖α‖1 (Eq. (4.20))
5: if J(α) < J(η) then
6: η← α + 2(ζ − 1)(α − α̃)/(1+

√

1+ 4ζ2)
7: α̃← α
8: ζ ← (1+

√

1+ 4ζ2)/2
9: else

10: p← γp
11: end if
12: end while
13: return α

4.4.4 Computational Complexity

We will analyze the computational complexity of SOR in this section. Specifically,

solvingα at Step 5 in Algorithm 3 needsO(p) time, wherep is the dimension ofα. The

computational bottleneck of the Algorithm 1 is the evaluation of the gradient off (α) in

Eq. (4.17), which needsO(np2) time at the first glance. However, we can develop a more

efficient way to obtain the gradient inO(np) time. Specifically, we can first computeB =

X ⊙ (αeT), wheree = [1,1, · · · 1]T with proper size. ThenBℓ j = α jxℓj wherexℓj is theℓ-th
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Table 4.1. Complexity comparison of SOR, Information Gain (IG), LARS, and mRMR.
For sparse features,α is the average proportion of nonzeros.

Dense

SOR IG LARS mRMR
Time np np np2 np3

Storage np np np+ p2

Sparse

SOR IG LARS mRMR
Time αnp αnp np2 αnp3

Storage αnp αnp αnp+ p2 αnp

element ofx j or b j = α jx j, whereb j is the j-th column ofB. Obviously, the computation

of B only needsO(np) time. Then

∑

j

(

αiα jxT
i x j

)

xT
i x jα j = αi(xT

i

∑

j
b j)

2,

the summation ofv =
∑

j b j takesO(np) time, which does not depends on the indexi.

Notice that computingxT
i v only requiresO(n) time. One the other handXTXy = XT(Xy)

also requiresO(np), thus the whole complexity of computing the gradient isO(np).

We also compare the computational and storage complexity ofSOR with some other

state-of-the-art approaches (Information Gain, LARS, and mRMR), which are summarized

in Table 4.1.

4.4.5 SOR with Preselected Features

In some real world scenarios, we may already have a set of features preselected

with prior knowledge. For example, physicians in hospitalshave years of experience on

some specific diseases, they have their own knowledge on which features (factors) are
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more important. In this case, we may want to select a set of features (with data driven

approaches) complementary to those preselected features.

Fortunately our SOR algorithm can easily adapted to incorporate this prior knowl-

edge. Assume the preselected feature set isP and the remaining feature set isQ, then we

can partition the whole data matrix asX = [XP,XQ], whereXP, XQ only contains the ob-

servations on the features inP andQ and our goal is to select features fromQ. For the

feature setP, we first compute their regression coefficients with simple least squares:

αP = arg min
α
‖y − XPα‖2 = (XT

PXP)−1XT
Py. (4.21)

Then we define

fp(α) =
1
2
‖y − XQα‖2

+
β

4





∑

i j∈Q

(

αixT
i x jα j

)2
+

∑

i∈Q, j∈P

(

αixT
i x jα j

)2




,

whereα = [αT
P,α

T
Q]T is the concatenated regression coefficient vector withαP computed

using Eq.(4.21). Note that there are two terms to punish the feature redundancy. One mea-

sures the feature redundancy selected fromQ, the other measures the redundancy between

the feature selected fromQ and the preselected feature setP. Then we can minimize the

following objective with respect toαQ.

Jp(α) = fp(α) + λ‖α‖1. (4.22)

Comparing Eq. (4.4) and Eq. (4.22), one can immediately see that Algorithm still applies

for the minimization of Eq. (4.22). The only step we need to change is the computation of
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Table 4.2. Data Description

Data # Pos #Neg #Sample #Features Type
heart 150 120 270 13 UCI
vehicle 416 430 846 18 UCI
coil 720 720 1440 1024 Image
jaffe 108 105 213 4096 Image
SRBCT 40 43 83 2308 Gene Expression
MLL 24 48 72 12582 Gene Expression

gradient. Notice that in this optimization,α j is a constant forj ∈ P. The corresponding

gradient is

∇ fp(α) = (G + βA ⊙GQ ⊙GQ)α + β(XT
QXPαP) ⊙ α.

4.5 Experimental Results

In this section, will first demonstrate the convergence ofSORand aSORand the

scalability of the algorithm, then evaluate the quality (measured by AUC and stability) and

orthogonality of the features selected by our algorithm.

4.5.1 Datasets

We evaluate our algorithm on various kinds of data. The first kind is the general

datasets from UCI data mining and machine learning repository [99], which include heart

and vehicle data sets. The second kind of data are image data,including Columbia object

image library ( coil) [100] and the Japanese Female Facial Expression ( jaffe) Database2.

The third type is gene expression data including MLL [101], and SRBCT [102]. We sum-

marize the data description in Table 4.2.

2Available at http://www.kasrl.org/jaffe.html
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4.5.2 Convergence

We now present the experiment on the convergence speed in Figure 4.2. For our

algorithms 3 and 4.4.3, we setλ = 0.1 andβ = 0.1. Figure 4.2 shows the objective function

vs. number of iterations. It confirms that aSOR converges much faster than SOR on all

data sets3. Next we will present the evaluation results compared to other feature selection

methods.

4.5.3 Baselines

We compare with several feature selection methods with verydifferent design:

• InfoGain: Information gain is a greedy approach that uses mutual information to

select features.

• LARS gives the entire solution path of LASSO. For this method,we rank the features

according to their order of turning from zero to nonzero in the solution path [93].

• mRMR: mRMR is another widely used feature selection method which aims at ob-

taining a set of non-redundant features by greedy search [90].

We have witnessed many other feature selection methods which are designed for

various purposes as we discussed in Section 2. The purpose inour experiments here is

to compare with the close related and representative feature selection methods in each

category. Since we focus more in feature selection methods designed for general purpose,

some other methods designed for specific classifiers (such asSVM-RFE [103, 104]) are

not considered here.

4.5.4 Scalability

To test scalability, we generate different datasets by subsampling from a large dataset

by varying the number of samples and features. The data dependent parameters include the

3We only present the results on 3 datasets, but the same trend persist on others
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number of featuresp and the number of samplesn. Figure 4.1 shows CPU time vsp or n.

For our method, we use the following stop criteria. If (Jt − Jt+1)/Jt < 10−5 then we stop

the algorithm, whereJt and Jt+1 are the objective function values at thet-th andt + 1-th

iterations, respectively. For the other method, we use the default settings. We observe aSOR

is orders of magnitudes more efficient than LARS and mMRMR. Among them, only aSOR

and InfoGain can apply to large datasets with over 10K features and samples. In particular,

despite its sophisticated optimization mechanism, aSOR achieves similar computational

performance to InfoGain, which is a very simple and greedy method.
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Figure 4.1. [91] CPU time comparison of Information Gain (InfoGain), LARS, aSOR, and
mRMR. Left: fix he number of samples to 5000, and vary the number of features. Right:
fix the number of features to 400, and vary the number of samples. .

4.5.5 Classification Accuracy

In all the comparison evaluation, we conduct a standard 80-to-20 split of the data at

random at T times (in our case, T=20).
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Figure 4.2. [91] Convergent rate comparison between algorithm SOR and aSOR on three
data sets,vehicle(p = 18,n = 846),coil, (p = 1024,n = 1440) andMLL, (p = 12582,n =
72), wherep is the number of dimensions andn is the number of samples. .

Table 4.3. [91] AUC and feature stability comparison with SOR, LARS, mRMR, and
Information Gain. The best results on each data are highlighted in bold.

Our LARS mRMR Information Gain

AUC Stable AUC Stable AUC Stable AUC Stable
MLL 0.990± 0.0240.579 0.977±0.044 0.450 0.965±0.054 0.246 0.966±0.0470.589
PROS0.967± 0.041 0.8420.956±0.044 0.794 0.944±0.056 0.422 0.959±0.046 0.755
SRBC0.990± 0.025 0.7740.978±0.039 0.699 0.960±0.059 0.352 0.946±0.066 0.486
coil 0.931± 0.0510.671 0.911±0.053 0.509 0.915±0.041 0.645 0.890±0.0460.689
hear 0.846± 0.0580.935 0.775±0.0850.9380.827±0.057 0.737 0.785±0.084 0.858
isol 0.829± 0.0430.853 0.798±0.053 0.716 0.803±0.059 0.436 0.711±0.0770.884
jaff 0.981± 0.024 0.5120.954±0.057 0.346 0.976±0.027 0.350 0.945±0.052 0.319
vehi 0.891± 0.047 0.9910.846±0.055 0.918 0.776±0.082 0.964 0.773±0.045 0.893
yale 0.778± 0.103 0.2880.709±0.105 0.250 0.730±0.082 0.147 0.706±0.097 0.154

Classification accuracy is captured in terms of Area Under Curve (AUC) measure.

To compute AUC, we use a SVM classifier with Gaussian kernel:

K i j = e
−
‖xi−x j ‖2

2(ar̄2) , (4.23)

wherexi and x j are data samples and ¯r is the average of pairwise distances among all

the data samples anda is chosen from [2−3,2−2,2−1,1,21,22,23]. The SVM trade off pa-

rameterC is chosen from [0.01,0.1,1,10,100]. For all data and feature selection meth-
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ods, we report the best results among all the combinations ofa andC. We directly use

the LIBSVM [105] software in our experiments. For SOR, we further chooseλ from

[0.001,0.01,0.1,0.5] andβ from [0.001,0.01,0.1,0.5].

We compare the average of AUC in Figure 4.3 while varying the number of features

selected. We observe the AUC of SOR is clearly above most of the other methods. More

specifically, among all 119 comparisons, SOR outperforms the best of the other methods

in 88, tie in 17. Our method is only worse than the best of the other methods in 4 cases.

To compare the variability of the AUC, we present the average and standard devia-

tion of the AUC when 5 features are selected in Table 5.1. For all the 6 data sets, SOR

outperforms the other methods in terms of AUC.
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Figure 4.3. [91] AUC comparison on 6 data sets (heart, vehicle, jaffe, coil, MLL and
SRBCT). .
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4.5.6 Stability

We are interested in two types of stability measures: 1) Selection stability measures

the overlap of selected features when we run it on different subsets of the data, and 2) Pa-

rameter stability measures how much the performance variesas we change the parameters

of the algorithms.

Selection stability is defined as

Stability =
1

T(T − 1)

T∑

i=1

T∑

j=1, j,i

|Si ∩ S j |
|Si ∪ S j |

, (4.24)

whereT is the number of runs. Table 5.1 shows the selection stability in column “stable”,

in which SOR performs the best in 5 out of 6 datasets.

In terms of parameter stability, SOR requires only two parametersλ andβ. We show

that our method is stable to those parameters in Table 4.4, where the maximum, minimum,

average, and the range of the AUC are reported. One can observe that though the parameters

change dramatically in wide ranges, the AUC measure only changes about 1% – 5% for

most of the data except for the heart, PROSTATE, and yaleB data sets. In our experiments,

we looked into the value ofλwhich gives the best AUC, and we found that the typical value

has a relative narrow range (around 0.1) after the normalization, indicating thatλ is not a

sensitive parameter.

4.5.7 Redundancy

Next we compare the redundancy of the features selected by different methods. Re-

dundancy is measured by orthogonality between sets of selected featuresS:

Redundancy=
1

T(T − 1)

∑

i, j∈S,i, j

xT
i x j

‖xi‖ ‖x j‖
. (4.25)
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Table 4.4. [91] Stability to parameters of SOR. Reported are the AUCs of SOR whileλ and
β vary from [0.001,0.01,0.1,0.5]

Data min max average range
MLL 0.9480 1.0000 0.9900 0.0520
PROSTATE 0.8571 0.9939 0.9514 0.1369
SRBCT 0.9789 1.0000 0.9969 0.0211
coil 0.9441 0.9836 0.9641 0.0395
heart 0.7572 0.9532 0.8514 0.1959
isolet 0.8542 0.9073 0.8734 0.0530
jaffe 0.9849 0.9993 0.9939 0.0144
vehicle 0.8912 0.9353 0.9149 0.0441
yaleB 0.6656 0.9088 0.8003 0.2432
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Figure 4.4. [91] Redundancy comparison of features selectedby SOR, mRMR, Lars, and
Information Gain (InfoGain) 6 data sets (heart, vehicle, jaffe, coil, MLL and SRBCT) .
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It measures the average cosine similarity between all pairsof features. As shown

in Figure 4.4, SOR clearly has the lowest redundancy in selected features across all set-

tings. In particular, the only scalable method InfoGain performs badly with respect to this

measure.

4.5.8 Applications to TCGA Data

We perform the experiments on the data described in Section 2.6.5 and apply the SOR

algorithm. BothPI3K andhas-mir-200care selected but the correlation ofPI3K andhas-

mir-200c is low. This result is consistent with multi-task learning and also indicates that

low redundancy dose not destroy the results. Further more, it enhances the interpretability

with higher accuracy.
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CHAPTER 5

GRAPH EVOLUTION VIA SOCIAL DIFFUSION PROCESS

5.1 Introduction of Graph Clustering

Data clustering, assignment, and dimensional reduction have been the focuses for ex-

ploring unknown data [106, 107]. Among them, graph-based data analysis techniques have

recently been investigated extensively in traditional machine learning problems. One rea-

son for the popularity of graph-based approaches is the broad availability of graph data. For

example, social objects (users, blog items, photos) are generated with relational links, and

for objects represented in Euclidean space, one can easily obtain a graph by using similarity

measurements (e.g. Gaussian kernels). Graph-based approaches fall into two categories.

The first one isspectral graph partitioningmethods which address the group detection

problem by identifying an approximately minimal set of edges to remove from the graph

to achieve a given number of groups [108, 109, 110, 111]. Impressive results have been

shown in these methods which have been applied in many practical applications. These

approaches relax NP-hard combinatorial problems into continuous optimization problems

which can be solved by eigenvector decompositions.

Another approach category isstochastic modeling. In stochastic models, the ob-

served data are assumed to be drawn from some distribution and generative assumptions

[112, 113, 114, 115, 116]. These approaches often lead to a maximum likelihood problems

that can be solved by Expectation Maximization (EM) or approximately Variational EM

algorithms [117].

Among these models, the Chinese Restaurant Processes (CRPs) consider a sequence

of customers coming to a restaurant according to the convention of Chinese people: one
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tends to stay in a place where there are more people. Each customer seeks some previously

occupied table and the probability is proportional to the number of customers already sitting

there. The new customer also sits in a new table with probability proportional to some

parameter. CRP and its variations have been theoretically andempirically studied in many

previous researches [115, 116, 118, 119]

In a CRP mixture, customers are data points, and customers sitting at the same table

belong to the same cluster. Since the number of occupied tables is random, the resulting

posterior distribution of seating assignments provides a distribution of clusterings where

the number of clusters is determined by the data.

In this chapter1, we propose a novel stochastic process which further considers the

social events among social members as a metaphor of the intrinsic stochastic process for

broad range of data. We call this process as Social Diffusion Process. The basic assumption

in this model is that two social members tend to communicate if they are familiar with each

other or have many common friends, and that the more times they communicate, the more

they are familiar with each other.

Based on our model, we derive an iterative evolution algorithm to model the social

structures of the members. The major characteristic of our algorithm which differs from

most of previous research is that we do not need to impose latent variables which leads to

maximum likelihood estimation. Instead, our evolutionaryalgorithm iteratively generates

a new relational graph among social members in which the social structures become more

and more clear, please see Figure 5.1 for a toy example. In this example, our algorithm

starts from a random binary network and ends with clearly separated subgraphs.

The similar algorithm which is closest to our intuition is Markov Clustering (MCL)

[121] from the point of view of graph evolution. However, MCL is not suitable for the

purpose in this chapter. We perform the MCL evolution on the same graph in Figure 5.1

1Most of the results in this chapter have been published in paper [120].
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(a) Initialization (b) 1st iteration

(c) 3rd iteration (d) 10th iteration

(e) 15th iteration (f) 20th iteration

Figure 5.1. [120] Graph evolution results on the grid toy data based on Social Diffusion
Process. Each point (blue dot) represents a social member and the edge between two social
members represents the familiarness between them. (a): theoriginal graph. (b)– (f): the
condensation results of the 1st, 3rd, 10th, 15th, and 20th iterations of our evolution algo-
rithm. The darkness of the edge represents the familiarnessbetween the social members
(the darker the higher).. 107



(a) Initialization (b) 1st iteration

(c) 3rd iteration (d) 10th iteration

(e) 15th iteration (f) 20th iteration

Figure 5.2. [120] Graph evolution results based on Markov Clustering. .
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(a) and the results for MCL are demonstrated in Figure 5.2. Onecan observe that the result

in Figure 5.1 is much more reasonable than that in Figure 5.2.

The results of the evolution algorithm can be viewed as a special case of theMatthew

effect, in which “The rich get richer”. This is a general phenomenonin nature and societies

[122, 123, 124]. One interesting observation in our algorithm is that the evolution of a

graph by the SDP enhance thequalitiesof the graph in a wide range of applications. This

phenomenon suggests that the SDP assumptions are natural ingeneral. Due to the broad

availability of graph-based data, our new model and algorithm have potential applications

in various areas.

5.2 Social Diffusion Process for Friendship Broadening

In this section we introduce the Social Diffusion Process based on the notations of

graph.

5.2.1 Preliminaries

Let G = {V,W} denote an undirected weighted graph, whereV = {v1, v2, · · · , vn} is

the set of nodes,W ∈ R
n×n is an×n matrix, andWi j denotes the weight of the edge between

nodesvi andvj. Wi j = 0, if there is no edge betweenvi andvj.

5.2.2 Social Events and Broadening of Friendship

We consider the following scenario:A andB are friends. SupposeA brings a friend

Af and meets withB. Now Af andB become known to each other. IfB also brings a friend

Bf to the meeting, i.e., the four (A,Af , B, Bf ) meet. ThenAf become known to bothB also

Bf , i.e., the friendship circle forAf is broadened. This happens toA, B, Bf as well.

In graph terminology, the initial friendship betweenA and B is represented by an

edge connectingA andB. The broadened friendship betweenAf andB (assuming they are
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not connected at initial stage) has a connection strength somewhere between 0 and 1. In

other words, if two personsC andD don’t know each other, the existence of a mutual friend

connectsC andD. Further more, even ifA andB are friends (i.e., an edge exists betweenA

andB), their friendship is further enhanced due to the existenceof mutual friends. Our main

goal is to formally define this friendship broadening process and compute thefriendship

enhancement probability. We expect this enhanced friendship provide a more clear social

community structure as shown in Figure 1.

Formally, we define the following events among social members: (1)Date(vi , vj): vi

andvj initial a dating. (2)Bring(vi , vk): vi bringsvk after the eventDate(vi , vj) for some j.

(3) Meet(vp, vq): vp andvq meet in the same table.

We further impose the following rules: (1) IfDate(vi , vj) happens,Meet(vi , vj) hap-

pens, or (2) IfDate(vi , vj) andBring(vi , vk) happen,Meet(vk, vj) happens. (3)IfDate(vi , vj),

Bring(vi , vk), andBring(vj , vl) happen,Meet(vj , vl) happens.

Here we assumeDate(vi , vj) is equivalent toDate(vj , vi) andMeet(vk, vl) is equivalent

to Meet(vl , vk).

We use the following to denote the rules above

Rule 1: Date(vi , vj) ⇒ Meet(vi , vj) (5.1)

Rule 2:
Date(vi , vj)

Bring(vi , vk)






⇒ Meet(vj , vk) (5.2)

Rule 3:

Date(vi , vj)

Bring(vi , vk)

Bring(vj , vl)






⇒ Meet(vk, vl) (5.3)
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5.2.3 Social Diffusion Process

Now we are ready to introduce the Social Diffusion Process. The process starts with a

graphG = {V,W}whereV = {v1, v2, · · · , vn} denotes a set of social members andW denotes

the familiarness between social members,i.e. Wi j represents the familiarness betweenvi

andvj, i, j = 1,2, · · · ,n. We assume thatWi j =Wji . The SDP happens as following,

(1) Choose a thresholdt ∼ U(0, µ) whereµ = maxi j Wi j andU denotes the uniform

distribution.

(2) Date(vi , vj) happens with a constant probabilityδ if Wi j ≥ t.

(3) Bring(vi , vk) and Bring(vj , vl) happen with probabilityp(i, k, t), p( j, l, t), respectively,

where

p(i, k, t) =






1
|Ni,t | if vk ∈ Ni,t

0 otherwise
,

p( j, l, t) =






1
|N j,t | if vk ∈ N j,t

0 otherwise
,

Ni,t = {q : Wiq ≥ t},N j,t = {q : Wjq ≥ t}, and| · | denotes the cardinality of the set.

(4) Apply rules (1)–(3). For anyp,q, if Meet(vp, vq), Wpq←Wpq+ αµ.

The thresholdt can be interpreted as the importance of the dating event. Twofriends

do not date if they are not familiar with each other enough (thresholded byt)2. When a

social member brings some friend, he/she only considers those friends who are familiar

2The reason why we use a thresholding ofWi j instead of directly usingWi j for event Date(vi , v j) is
following. Assume we want to date with some one on the weddingof Royal wedding for William and Kate,
who are we going to date? Probably one of our most important friends. In the same event, if we want to bring
guest to meet our friend in the date, who are we going to bring?Probably another one of our most important
friends. In reality, social events happen according to their importance, denoted as thresholdt in the chapter.
We believe this model is much accurate than directly usingWi j as the probability ofDate(vi , v j).
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enough with (thresholded byt). The setNi,t is the friends the social membervi can bring

with this thresholdt. Eq. (5.4) indicates that social membervi chooses friends inNi,t with

uniform distribution. Notice that there are two parametersin this modelδ andα. In section

3, we will introduce an algorithm based on the SDP, in which the two parameters can be

eliminated by natural normalization.

5.3 Graph Evolution Based on Social Diffusion Process

5.3.1 The Evolution Algorithm

We first denoteAt as the following

(At)i j =






1 if Wi j ≥ t

0 otherwise
(5.4)

wheret is a positive threshold. Consider two social membersvi andvj. The events in which

they meet each other can be divided into three cases:

Case (1).Date(vi , vj). In this case the probability that they meet is

P(Meet(vi , vj)) = δ(A
t)i j .

Case (2).Date(vi , vk) andBring(vk, vj). By definition |Nk,t| =
∑

j At
jk = dt

k, wheredt
k

is the degreek in At. In this case,

P(Meet(vi , vj))

=
∑

k

P(Meet(vi , vj)|Date(vi , vk), Bring(vk, vj))

=
∑

k

δ(At)ik

At
jk

dk
= δ(AtD−1At)i j ,
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whereD = diag(d1,d2, · · · ,dn).

Case(3).Date(vk, vl), Bring(vk, vi), andBring(vl , vj). Similar with case (2), we have

P(Meet(vi , vj)) =
∑

kl

δ(At)kl

At
ik

dk

At
jl

dl

= δ(AtD−1AtD−1At)i j .

By summing up the three cases, we have

P(Meet(vi , vj))

= δAt
i j + δ(A

tD−1At)i j + δ(A
tD−1AtD−1At)i j .

From the definition of updating ofW, we have

E(∆Wi j )

=αµδ
(

At
i j + (AtD−1At)i j + (AtD−1AtD−1At)i j

)

,αµδMt
i j .

(5.5)

Here At
i j + (AtD−1At)i j + (AtD−1AtD−1At)i j is denoted byMt

i j . This suggests that the ex-

pectationE(∆Wi j ) is proportional toMt
i j . In our implementation we normalizeMt

i j by

Mt
i j ← Mt

i j/
∑

i′ j′ Mt
i′ j′ , which leads to the following algorithm,
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Algorithm 4 W̃ = GraphEvolution(W)
Input : GraphW
Output: GraphW̃
µ = maxi j Wi j , W̃ = 0
for i = 1 : T do

t = iµ/T
CalculateMt using Eq. (5.5)
NormalizeMt : Mt

i j ← Mt
i j/

∑

i′ j′ Mt
i′ j′

W̃← W̃+ Mt

end for
Output: W̃

In this algorithm, we use an evenly distributed thresholdt to approximate the uniform

distribution from whicht should be drawn from. In our experiments, we setT = 50. One

should notice that no matter what the choice of the normalization is, the algorithm has the

following properties.

Property 5.3.1 The result ofGraphEvolutionis scale invariant,i.e. ∀β > 0,

GraphEvolution(W) = GraphEvolution(βW).

This is because the thresholdt is always evenly distributed in the interval [0,maxi j Wi j ] and

Mt remains the same. In other words, the choice of the normalization does not change any

terms inMt.

Property 5.3.2 If W is a set of disconnected full cliques with same size and same weight,

i.e. there is a partitionΠ = {π1, π2, · · · , πK}, πk∩πl = Φ,1 ≤ k, l ≤ K,∪kπk = {v1, v2, · · · , vn}

such that∀i, j ∈ πk,Wi j = c where c is a constant, and∀i ∈ πk, j ∈ πl , k , l,Wi j = 0, then

W ∝ GraphEvolution (W).
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This is easy to show since ifW is a set of disconnected full cliques with the same weight,

At is the same for everyt : At
i j = 1 if Ai j , 0, At

i j = 0 otherwise. ThusMt ∝ W, which

leads toW ∝ GraphEvolution(W). This property shows a hint of conditions in which the

algorithm ofW← GraphEvolution(W) converges, which will be discussed later.

5.3.2 Application of Graph Evolution

The algorithmGraphEvolutioncan be used in different purposes. The basic idea is

that it improves the quality in terms of the natural structure underlying the graph data. In

this chapter, we investigate two applications: clusteringand semi-supervised learning.

For the purpose of clustering, one can simply iteratively perform the following

W← GraphEvolution(W). (5.6)

As iterations continue, the structures of the graph is clearer and clearer. We show results of

the evolution algorithm on a toy grid data, see Figure 5.1.

In this example, we randomly generate 198 points in a 20× 20 grid. We obtain an

unweighted graph as follows. If nodei is one ofK-nearest neighbors of nodej, or nodej is

one of theK-nearest neighbors of nodei, we setWi j = 1, andWi j = 0 otherwise.K = 7 in

this example and the neighborhood is computed using the Euclidean distance of the nodes

on the 2-dimensional grid coordinate. The original graph isshown in Figure 5.2(a).

Starting from this graph, we run theGraphEvolutionalgorithm for 20 iterations and

the results of the first, third, 10th, 15th, and 20th iterations are shown in Figure 5.1 (b)–(d).

In the third iteration (Figure 5.2(c)), the structure of thedata is observable. In the 10th

iteration (Figure 5.2(d)), the structure is even more clear. Finally, in the 20th iteration,

(Figure 5.2(f)), the clusters are completely separated.
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After the graph evolution iterations, the cluster structure encoded in the edge weight

matrix is usually obvious to human. In practice, the number of clusters discovered by the

algorithm is different from expected number of clusters. We use the followingpartition

scheme to reach a desired number of cluster. We run algorithmin Eq. (5.6) until there are

two disconnected subgraphs. Then pick up the subgraph whichhas a large number nodes

to run algorithm in Eq. (5.6), and do the same strategy until we reach a specified number

of clusters.

For the purpose of semi-supervised learning, we just useW̃ = GraphEvolution(W)

as preprocessing, whereW is the input of andW̃ is the output. Instead of performing semi-

supervised learning onW, we do it onW̃. We show that the qualities of thẽW are much

higher thanW.

5.4 Experimental Results

In this section, we first demonstrate the convergence of algorithm and then show

experimental evidence of the quality improvement by apply our graph evolution algorithm.

In the clustering comparison, we specify the number of clusters. However, in a microRNA

pattern discovery application, we run our algorithm until convergence and let the algorithm

determine the number of clusters.

5.4.1 Convergence Analysis

We first demonstrate the convergence of our algorithm on a toydata, which is a

9 × 9 binary graph, shown in the left most panel of the bottom row of Figure 5.3. There

are two cliques in this graph: nodes 1–4 and nodes 5–9. We add some noise by setting

W13 = W58 = W79 = 0 andW45 = 1. We run algorithm in Eq. (5.6) for 30 iterations. One

can observe that our algorithm converges fast and at the convergent graph, all edges within
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the same clique have the same value. Also as highlighted in Figure 5.3, the noise values of

W13,W58,W79, andW45 are corrected by our algorithm.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

# iteration

W
ij

W45

W79

W58

W13

0 2 4 6 8 10 12 14 16 18

Figure 5.3. [120] Convergence curves and adjacency matrix ofour algorithm on a 9× 9
toy data. The left most panel of the bottom row is the initial binary graph (black represents
1 and white represents 0) and the rest of the bottom row is the evolution result of 2nd,
4th, · · · , 18th iterations. Initially, nodes 1–4 is a pseudo-clique,as well as nodes 5–9.
W13 = W58 = W79 = 0 andW45 = 1. After around 18 iterations, the two cliques become
separated and the nodes within the two cliques become full connected. The top panel show
the convergence of all the elements inW. Highlighted are the values ofW13,W58,W79, and
W45, which are corrected by our algorithm. .
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Table 5.1. [120] Accuracy, normalized mutual information (NMI), and purity comparison
of K-mean (Km), Spectral Clustering (SC), Normalized Cut (Ncut), and Graph Evolution
(GE). Both Spectral Clustering and Normalized Cut are achievedby tuning the graph con-
struction parameters and the best results are reported.

Accuracy NMI Purity

Km SC Ncut GE Km SC Ncut GE Km SC Ncut GE
UMI 0.458 0.471 0.4980.644 0.641 0.646 0.6490.763 0.494 0.505 0.5050.667
COI 0.570 0.614 0.7920.839 0.734 0.750 0.8600.879 0.623 0.658 0.8170.840
ION 0.707 0.702 0.6840.880 0.123 0.193 0.1070.446 0.707 0.730 0.6840.880
JAF 0.744 0.799 0.9650.967 0.809 0.849 0.9590.962 0.774 0.819 0.9650.967
MNI 0.687 0.713 0.8200.833 0.690 0.698 0.7480.769 0.705 0.733 0.8200.833
ORL 0.582 0.683 0.7560.775 0.786 0.834 0.8660.891 0.624 0.713 0.7730.802
PR1 0.716 0.675 0.5620.899 0.129 0.176 0.1020.458 0.726 0.757 0.7080.899
PR2 0.580 0.566 0.5690.706 0.019 0.017 0.0130.136 0.580 0.566 0.5690.706
SOY 0.908 0.8711.000 1.0000.903 0.8591.000 1.0000.924 0.8931.000 1.000
SRB 0.480 0.6220.699 0.639 0.232 0.4110.454 0.421 0.512 0.6450.699 0.639
YEA 0.132 0.327 0.3020.395 0.013 0.129 0.1260.231 0.328 0.430 0.4360.540
ZOO 0.264 0.674 0.6290.723 0.116 0.615 0.5700.751 0.423 0.750 0.7370.871
AML 0.688 0.678 0.6590.847 0.100 0.100 0.0730.394 0.696 0.692 0.6660.847
CAR 0.623 0.729 0.7190.799 0.655 0.743 0.7380.779 0.691 0.789 0.7880.822
WIN 0.961 0.936 0.9780.983 0.863 0.845 0.9070.926 0.961 0.943 0.9780.983
LEU 0.879 0.840 0.9580.972 0.559 0.513 0.7350.806 0.879 0.860 0.9580.972
LUN 0.663 0.6720.748 0.704 0.495 0.4850.547 0.473 0.864 0.8600.911 0.828
DER 0.766 0.848 0.9550.964 0.838 0.818 0.9050.931 0.853 0.876 0.9550.964
ECO 0.552 0.496 0.5050.631 0.467 0.458 0.4870.549 0.739 0.770 0.8080.851
GLA 0.452 0.446 0.4530.565 0.320 0.298 0.3330.399 0.549 0.5720.652 0.650
GLI 0.585 0.548 0.5590.700 0.465 0.410 0.3980.505 0.619 0.569 0.6010.700
IRI 0.802 0.746 0.8430.953 0.640 0.514 0.6550.849 0.815 0.758 0.8430.953
MAL 0.911 0.731 0.9020.929 0.569 0.299 0.5440.624 0.911 0.743 0.9020.929
MLL 0.669 0.637 0.6870.861 0.435 0.376 0.4260.681 0.692 0.651 0.6870.861

5.4.2 Clustering

In this experiment, we extensively compare our algorithm with standard clustering

algorithms (K-means, Spectral Clustering, Normalized Cut3) in 20 data sets. These data

3We also compared with MCL. However the accuracies are much (more than 10%) lower than all the
method we compare here. We believe MCL is not suitable for thepurpose in this chapter. One can find visual
evidence in Figure 5.2.
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sets come from a wide range of domains, including gene expressions including gene ex-

pressions (PR1,SRB, LEU, LUN, DER, AML, GLI, MAL, MLL), images (ORL, UMI,

COI, JAF, MNI) and other standard UCI data sets (ION, PR2, SOY, ECO, GLA, YEA,

ZOO, CAR, WIN, IRI)4. We use accuracy, normalized mutual information (NMI) and pu-

rity as the measurement of the clustering qualities and the results are shown in Table 5.1.

Our method achieves the best results in 22 out of 24 data sets.Here notice that for Spectral

Clustering and Normalized Cut, we tune the graph constructionparameters. More explic-

itly the graph is constructed asWi j = exp
(

−‖xi − xj‖2/(γr̄2)
)

where ¯r denotes the average

pairwise Euclidean distances among the data points andγ is chosen from [2−2,2−1, · · · ,25]

and the best results are reported.

5.4.3 Semi-supervised Learning

We first run graph evolution algorithm (Eq. (5.6)) for one iteration. After that we use

the result weights as input to run Zhuet al.’s [125] (marked as HF in the Figure 5.5) and

Zhouet al.’s [126] (marked as GC) approaches. We compare four methods, HF, GC, HF on

resulting graph (HFGE), GC on resulting graph (GCGE), on four face image datasets. We

tested the methods on AT&T5, BinAlpha 6, JAFFE7, and Sheffield 8 data sets. For all the

methods and datasets, we randomly selectN labeled images for each class,N = 1,2,3,4,5,

and use the rest as unlabled images. We try 50 random selections for each dataset, and

computer the average of the semi-supervised classificationaccuracy.

The results are shown in Figure 5.5.

4All the mentioned data can be downloaded at parchive.ics.uci.edu/ml/ or csie.ntu.edu.tw/ cjlin/.
5http://people.cs.uchicago.edu/˜dinoj/vis/ORL.zip
6http://www.cs.toronto.edu/˜roweis/data.html
7http://www.cs.toronto.edu/˜roweis/data.html
8http://www.shef.ac.uk/eee/vie/face.tar.gz
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Figure 5.4. [120] 6 miRNA cliques found by Graph Evolution. Top panel is the miRNA
graph in which the values denotes the number of common targeting genes of two miRNAs.
The bottom panel is the top 10 targeting genes for each clique. The cliques are separated
by different colors. The left top part of the top panel is thelet-7 miRNA family and the
right bottom part of the top panel is thehsa-mir-200family. .
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In all these case, we always obtain higher classification accuracy by applying graph

condensation. For datasets BinAlpha, JAFFE, and Sheffield, our methods are consistently

5%–10% better than the standard semi-supervised learning methods.
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Figure 5.5. [120] Semi-supervised learning on 4 datasets(from left to right): AT&T, BinAl-
pha, JAFFE, and Sheffield datasets. Classification accuracies are shown for four methods:
HF, GC, HF using condensated graph (HFGE), GC using condensated graph (GCGE).
For each dataset, number of labeled data per class are set to 1, 2, 3, 4, 5. Using the graph
evolution consistently improves over original methods. .

5.4.4 Graph Evolution for microRNA Functionality Analysis

In this experiment, we are interested in the interaction network between microRNAs

(miRNAs) and genes. MiRNAs play important regulatory roles bytargeting messenger

RNAs (mRNAs) for degradation or translational repression, and have become one of the

focuses of post-transcriptional gene regulation in animals and plants[127, 128, 129] and

have been an active research topic in various domains [130, 131, 132, 133]. A database

of verified miRNA/target gene relationship can be found in [134]. Here we applyour
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algorithm to investigate the relationships between the miRNAs and the genes. The main

purpose is to discover new interaction patterns in the miRNA regulatory network.

We use the data with version of Nov. 6, 2010. We use the number of targeting genes

as the weights of two miRNAs,i.e. Wi j =
∑

k BikBjk whereBik = 1 indicates miRNAi

targets genek, Bik = 0 otherwise. We select the largest disconnected component which has

103 miRNAs and run theGraphEvolutionalgorithm until converges. Finally, we discover

6 separated subgroups of miRNAs, which are shown in Figure 6.6. The following is the

outline of our discovery in this experiment. (1) thelet-7 [135, 136] miRNA family is

correctly clustered into the same group. (2) Thehsa-mir-200family are highly connected

with each other, which is not reported in literature so far.
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CHAPTER 6

REGULATORY ELEMENTS VISUALIZATION

6.1 Background and Motivation

Regulatory elements such as MicroRNAs (miRNAs) are important components in

the cell processes. MiRNAs are small non-coding RNAs of 20∼22 nucleotides, which

were first discovered in [137], and now have been found to be present and highly conserved

among species [138]. Like other regulatory RNAs, miRNAs are generally involved in post-

transcriptional gene regulation, which control the eukaryotic gene expression by reducing

the protein yield from specific target mRNAs. MiRNA genes are synthesized in the nucleus

as a double stranded precursor, which is processed by two enzymes, Drosha and Pasha, into

a precursor (pre)-miRNA, then exported to the cytoplasm by exportin 5 [139, 140]. Once

the pre-miRNA reaches the cytoplasm, it is cleaved by Dicer into a∼22 nt long functional

mature miRNA. The mature miRNA can then assemble into a ribonucleoprotein complex

known as the RNA-induced silencing complexes to participatein RNA interference [141].

Recent studies indicate that miRNAs may be essential in biological processes, such as cell

growth, cell proliferation, tissue differentiation, embryonic development, apoptosis, and

cellular signaling networks[142].

MiRNAs have attracted exponentially more research interests in recent years. One

of the main reasons is that miRNAs have been discovered to be involved in disease regu-

lations, playing the role of targeting key mRNAs in disease pathways. For example, Cim-

mino et al. [143] showed that bothmiR-15aandmiR-16-1negatively regulateBCL2 at

a post-transcriptional level, which induces apoptosis in aleukemic cell line model. Sim-

ilar mechanisms are found in many other cases [144, 129, 145,128, 146, 147, 148, 149].

123



Though the over all mechanisms remains unclear, studies have linked miRNAs to several

important types of diseases, such as cancers [150, 151, 152], heart diseases [153, 154]

which strongly suggests that miRNAs could be useful as diagnostic and prognostic mark-

ers [155, 156, 157, 158, 159, 160, 161, 162, 163], and even novel therapy approaches

[153, 164, 165, 166, 167].

However, more and more studies indicate that the targeting patterns between miR-

NAs and mRNAs are complicated. First, one miRNA can target a large number (up to

thousands) of mRNAs [168, 169]. Second, on the other hand, multiple miRNAs are found

to work synergistically to control individual genes. For example,lin-4 and let-7 are co-

operative and are the earliest miRNA pair to be experimentally verified [170]. Kreket al.

(9) also demonstrated thatmiR-375, miR-124and let-7b jointly regulateMtpn, providing

evidence for coordinate miRNA control [169]. Further more, it was demonstrated that the

majority of all human genes are modulated by miRNAs [171, 127].

Though these discoveries offer deeper insights of disease regulation and open a wide

direction on diagnostic and therapy, they also bring a challenging problem in the analysis

of genes, disease, and miRNAs as a whole network. Obviously the independent study of

miRNAs, their targets, and the related diseases do no suffice in fully understanding the

their functions and in exploring other potential unknown mechanisms. The challenge here

is how to incorporate the known evidences to establish a big picture. This chapter provides

visualization tool for this purpose usingin-silico analysis of publicly available data.

To be more specific, we offer a global view of of miRNAs by visualize all miRNAs

in a single shot. The basic idea is to incorporate simultaneously all the directing targeting

relationship (local relationship) and obtain a global visualization of the miRNAs. The vi-

sualization results visually answer questions like the following, (1) does one miRNA func-

tion similarly to another miRNA? (2) does one miRNA function differently from another

miRNA? (3) do a set of miRNAs function as a group? We establish a novel visualization
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system based on solely computational targeting predictions, and interestingly, our visual-

ization results are verified by a series of experimental studies from other investigators.

By providing a big picture of the whole interaction network, our visualization tool

helps miRNA research in the several ways. (1) Discovery of miRNA complexes. By

miRNA complex, we mean a group of miRNAs which function similarly to each other

in the whole regulatory network. Similar to protein complexes [172, 173, 174, 175, 176,

177, 178], miRNA complexes play important roles in functional analysis. However, in

contrast to proteins, miRNAs do not directly interact with each other; instead, they inter-

acts with mRNAs. Further more, the interaction networks among miRNAs and targeting

mRNAs are complicated, a visualization tool is essential at the beginning of the analysis.

Surprisingly, we discover several miRNA complexes, two of which have been verified by

independent research groups and two of which of which are notreported yet. (2) To verify

results of biological experiments. We highlight 234 miRNAs which are verified to func-

tion in AML (Acute Myeloid Leukemia), prostate cancer, lungcancer, breast cancer, and

ovarian cancer in the global visualization of 711 miRNAs of human beings using a single

picture. We discover that miRNAs are often close to each otherif they have similar func-

tion(s). And based on these observation, our visualizationtool (3) provides a reasonable

range if miRNAs on which researchers should focus. The visualization tool systematically

offers a series of candidates for some specific diseases. Instead of blindly testing the func-

tions of all the miRNAs, the visualization tool helps to narrow down the search range to

some candidates. (4) We also predict miRNA regulatory candidate of the five diseases by

combining the causally verified miRNAs and unverified miRNAs near them.

Our techniques can also be employed in other networks for other purposes. As an

example, we build a miRNA predictor by considering the globalinformation of miRNAs.

To be specific, we combine local and global miRNA structures toestablish detect novel

miRNAs. By validating in human miRNAs, we show that our predictor is accurate, robust,
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and stable. We also apply our predictor inD. Melanogasterand successfully discovery 30

novel miRNAs, 14 of which are conserved in other species.

6.2 Results and Discussions

6.2.1 Notations

In order to present the results in a more convenient way, we first introduce a set of

notations, details of which will be given in the “Materials”sections.

Data point. By data point, we mean the objects we are interested in, which means

miRNAs in the whole chapter if there is no further explanation. Without confusion, we also

call a data point anobject.

Embedding. In order to obtain a visualization of data points, we compute a Euclidian

coordinate system for all the data points from some non-Euclidian system, for example, a

graph in this chapter. The resulting Euclidian coordinate system is calledembedding space

in which each object is represented as data point in Euclidian coordinates (3-dimensional

Euclidian coordinates in our chapter).

Graph. A graphin this chapter is a weighted graph, in which each vertex represent a

miRNA and the weights of the edges represent the similarity between miRNAs which the

corresponding edges connect. In this chapter, we useW to represent a weight graph, where

W i j represents the weight between objecti and j, i, j = 1,2, · · · ,n andn is the number of

objects we consider.

Bipartite graph. Bipartite graph is a special graph, in which there are two disjoint

group of vertices. In this chapter, the two groups are miRNAs and mRNAs and the edge be-

tween a miRNA and a mRNA represent that the miRNA directly interacts with the mRNA.

In the whole chapter, we use a matrixB ∈ R
m×n to represent the bipartite graph, wherem
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andn are the number of miRNA and mRNA, respectively, andBi j = 1 if miRNA i directly

interact with mRNAj, i = 1, · · · ,m and j = 1, · · · ,n.

Local information. By local informationof objects we mean the direct interaction

or similarity of objects. For example, consider two miRNAs (say a andb). The the local

information of the might meana andb interact with 10 mRNAs in common. We saylocal

because the information does no change no matter we considerthe other miRNAs or not.

This is in contrast toglobal information, which consider all the objects as a whole. Con-

sider a local resistor network, where resistors connect among nodes. The local information

for this network are the individual resistors, connecting pairs of nodes, which are inde-

pendent to each other. And the global information here is theeffective electric resistance

between nodes, considering all the resistors together. Themain purpose of this chapter is

to incorporate the individual and local information to derive global information and obtain

a bigger picture which demonstrates theeffectiverelationships among objects we consider.

Distance profile. In our analysis, use the distance profile to estimate the howclose

a pair of miRNAs are to each other in the embedding space. Consider a pair of miRNAs

m1 andm2. We use four numbersd(x%,a,b) to represent the distance profile. By “distance

betweenm1 andm2 is d(x%,a,b)” we mean: (1) the Euclidean distance ofm1 andm2 in

the embedding space isd, (2) there arex% of the miRNA pairs have closer distance thand,

(3) m2 is thea-th nearest neighbor ofm1, and (4),m1 is theb-th nearest neighbor ofm2 in

the embedding space, using the Euclidean distance. Obviously, the smallerd is, the closer

the pair of miRNAs are to each other. However, we do not know thescale of the distances,

we use the other three numbers of the distance ranking to represent the relative distance.

Sequence alignment profileis the same except that the neighborhoods are computed using

the sequence alignment score.

Naming system. In the whole chapter, the miRNAs represent themature miRNAs

and without other notations, they mean miRNAs inHomo sapiens. For example, bymiR-
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21a, we mean the mature miRNAhsa-miR-21a. For those miRNAs which come from

different precursors but have identical mature sequence, we consider them a unique object.

For example three separate precursors in different locations,let-7a-1, let-7a-2andlet-7a-3,

produce the maturelet-7asequence.

6.2.2 Embedding Results of WholeHomo sapiensmiRNAs

We use new computational tools, the Green’s functions with the corresponding Dirich-

let Boundary Conditions, to incorporate local information and derive a global embedding

coordinates of 711 miRNAs ofHomo sapiens. We compute the embedding from a weighted

graphW where the weights represents the number of common mRNAs two miRNAs inter-

act with. To be more precise, we use the following to computeW:

W i j =

K∑

k=1

BikB jk, (6.1)

whereB is a bipartite graph by considering the interactions between 711 miRNAs and

21199 mRNAs. Details can be found in the “Materials” section.Notice that interactions

between miRNAs and mRNAs are derive from computational tools by only considering

the sequences of the miRNAs and mRNAs, which means that we can still make use of the

visualization when we have no prior knowledge from experimental results. We will show

that the embedding results are consistent with the experimental results done independently

by other researchers.

The embedding results are shown in Figure 6.1. Each sphere represents one miRNA.

We color the miRNAs according to their functions,i.e. whether they are involved in one

or some of the 5 diseases (Acute Myeloid Leukemia, prostate cancer, lung cancer, breast

cancer, and ovarian cancer). Since one miRNA can be involved in multiple diseases, there
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Figure 6.1. 3D embedding visualization results for 711 miRNAs ofH. sapiens. Each sphere
represents one miRNAs. The color of MiRNAs represent the functions in 5 diseases,i.e.
whether they are involved in the diseases. AML: Acute Myeloid Leukemia; Ovar Canc:
ovarian cancer; Brea Canc: breast cancer; Lung Canc: lung cancer; Pros Cans: prostate
cancer. For those miRNAs which are involved in multiple diseases, we use “+” to combine
the diseases,e.g. O+A means the miRNAs are involved in both Ovarian cancer and AML.
“NC” representNot Classified, i.e. not involved in any of the 5 diseases. The size of the
sphere represents the number of diseases the miRNA is involved. The embedding results
are derived from sequence of miRNAs and the functions are verified by causal biological
experiments or microarray experiments. .

are 25 = 32 possible configurations. The configuration ofBreast Cancer+Ovarian Cancer

+ AML is not found, thus there are total 31 configurations.

We also list the distributions of the miRNAs over 23 chromosomes in Figure 6.2.

Notice that the embedding coordinates are obtained only using the sequence infor-

mation and the functions of miRNAs (the coloring) are obtained by biological experiments.

In the rest of this section, we will introduce the propertiesof the embedding result and the

usage of the visualization in miRNA research.
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Figure 6.2. Distribution of the miRNAs over 23 chromosomes for prostate cancer, lung
cancer, breast cancer, ovarian cancer, and AML (Acute Myeloid Leukemia)..

6.2.3 Over All Observations of The Visualization Result

We first highlight some of the observations. Then introduce other discovery from the

visualization in details later.

If a pair of miRNAs have the involved in the same disease, theyare often embedded

together. Thus the embedding is consistent with the experiment validation, which suggests

that it is useful to investigate the visualization to obtainfurther analysis. Some examples

will be shown later in the section.

If two miRNAs are very similar in sequence, they are often embedded in a small

distance. But the other way does not hold,i.e. if two miRNAs are embedded ia a small

distance, they are not necessarily similar in sequence.We can see this observation in Fig-
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ure 6.3. The reason is that the sequence similarity only capture the local information of

miRNAs, and our embedding considers all the possible relationships of miRNAs and the

embedding distance reflect theeffectivefunctional relationship among miRNAs. For exam-

ple, assume that two miRNAs are both involved in a key pathway in some disease, but the

sequences of the two miRNAs are not necessarily similar, however, theeffectivefunctional

similarity should be high, and the embedding distance reflects such functional similarity.

We demonstrate the difference between embedding distances and sequence similarity in

Figure 2 in which one can observe serval issues. (1) They showthat miRNAs which have

high number in common target mRNAs are often embedded in smalldistances. (2) If two

miRNAs are very similar in sequence, they are often embedded in a small distance. But the

other way does not hold. (3) If two miRNAs are very similar to each other, say the BLAST

score is higher than 29, then the number of common target mRNAsmust be high and the

embedding distance must be small.

These observations also suggest thatthe embedding distance reflects the functional

similarity more accurately than the sequence similarity.We will demonstrate this effect

using more examples later in the section.

In Figure 6.1, we also see that there are several groups of miRNAs (B1 – B4) in which

miRNAs are close to each other and far away from miRNAs outside the group. Two of the

four groups have been been well investigated. According to our functional analysis, we

believe the other two groups, which have not been reported yet, are equivalently important

in studies of miRNAs.

6.2.4 Four Functional Groups of Human miRNAs

We first introduce the four functional groups in human miRNAs,the members of

which are listed in Table 6.1.
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Figure 6.3. A demonstration of the difference between embedding distance and sequence
similarity. For each pair of miRNAs, we compute three values:the embedding distance,
the sequence similarity, and the number of putative mRNAs they interact in common. The
embedding distance are the Euclidean distance of some pair of miRNAs in the embedding
space, the sequence similarity is measured by BLAST score of the given pair of mature
miRNAs, and the number of common putative target mRNAs is computed using Eq. (6.1).
In both plots ((A) and(B)), each dot represents a pair of miRNAs. In (A), we plot the dots
using embedding distance and the number of common putative target mRNAs as x-axis
and y-axis, respectively, and color the dots with sequence similarity. In (B), we plot the
dots using sequence similarity and embedding distance as x-axis and y-axis, respectively,
and color the dots with the number of common putative target mRNAs. (A) shows that
miRNAs which have high number in common target mRNAs are often embedded in small
distances. (B) indicate that if two miRNAs are very similar in sequence, they are often
embedded in a small distance. But if two miRNAs are embedded ia asmall distance, they
are not necessarily similar in sequence. Both of the plots suggest that if two miRNAs are
very similar to each other, say the BLAST score is higher than 29, then the number of
common target mRNAs is high and the embedding distance is small. .

6.2.4.1 B1: Let-7/miR-98family

In our visualization, thelet-7/miR-98family includes 9 miRNAs:hsa-let-7a, hsa-let-

7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, andhsa-miR-98.

Memberslet-7/miR-98family are found to express in late mammalian embryonic develop-

ment [179, 180]. Instead of studying thelet-7/miR-98family case by case [179, 181, 180],
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Table 6.1. Members of the four miRNAs groups found by visualization. The embedding
results of the four group are highlighted in Figure 6.1.

Group miRNA members Mature sequence Chromosome

Group B1

hsa-let-7a UGAGGUAGUAGGUUGUAUAGUU 9, 11, 22
hsa-let-7b UGAGGUAGUAGGUUGUAUGGUU 22
hsa-let-7c UGAGGUAGUAGGUUGUAUGGUU 21
hsa-let-7d AGAGGUAGUAGGUUGCAUAGUU 9
hsa-let-7e UGAGGUAGGAGGUUGUAUAGUU 19
hsa-let-7f UGAGGUAGUAGAUUGUAUAGUU 9, X
hsa-let-7g UGAGGUAGUAGUUUGUACAGUU 3
hsa-let-7i UGAGGUAGUAGUUUGUGCUGUU 12
hsa-miR-98 UGAGGUAGUAAGUUGUAUUGUU X

Group B2 hsa-miR-106a AAAAGUGCUUACAGUGCAGGUAG X
hsa-miR-106b UAAAGUGCUGACAGUGCAGAU 7
hsa-miR-17 CAAAGUGCUUACAGUGCAGGUAG 13
hsa-miR-20a UAAAGUGCUUAUAGUGCAGGUAG 13
hsa-miR-20b CAAAGUGCUCAUAGUGCAGGUAG X
hsa-miR-93 CAAAGUGCUGUUCGUGCAGGUAG 7

Group B3

hsa-miR-302a UAAGUGCUUCCAUGUUUUGGUGA 4
hsa-miR-302b UAAGUGCUUCCAUGUUUUAGUAG 4
hsa-miR-302c UAAGUGCUUCCAUGUUUCAGUGG 4
hsa-miR-302d UAAGUGCUUCCAUGUUUGAGUGU 4
hsa-miR-519d CAAAGUGCCUCCCUUUAGAGUG 19
hsa-miR-520a-3p AAAGUGCUUCCCUUUGGACUGU 19
hsa-miR-520b AAAGUGCUUCCUUUUAGAGGG 19
hsa-miR-520c-3p AAAGUGCUUCCUUUUAGAGGGU 19
hsa-miR-520d-3p AAAGUGCUUCUCUUUGGUGGGU 19
hsa-miR-520e AAAGUGCUUCCUUUUUGAGGG 19
hsa-miR-520g ACAAAGUGCUUCCCUUUAGAGUGU 19
hsa-miR-520h ACAAAGUGCUUCCCUUUAGAGU 19
hsa-miR-526b* GAAAGUGCUUCCUUUUAGAGGC 19

Group B4 hsa-miR-374a UUAUAAUACAACCUGAUAAGUG X
hsa-miR-374b AUAUAAUACAACCUGCUAAGUG X
hsa-miR-548a-5p CAAAACUGGCAAUUACUUUUGC 6
hsa-miR-548b-5p AAAAGUAAUUGUGGUUUUGGCC 6
hsa-miR-548c-5p AAAAGUAAUUGCGGUUUUUGCC 12
hsa-miR-548d-5p AAAAGUAAUUGUGGUUUUUGCC 8
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in this chapter, we utilize the our visualization results and establish more comprehensive

understanding of this family.

We first summarize the verified targeting genes of thelet-7/miR-98family in Figure

6.6 in which we show the cross analysis of thelet-7/miR-98family andmiR-106/miR-20

family. Here we focus on thelet-7/miR-98family, and themiR-106/miR-20family will be

discussed later. In the left panel of the figure, the color represents the number of com-

mon targeting genes of pairs of miRNAs. One can see that between the two families, the

interaction is weak, while they strongly interact with eachother within the same family.

The targeting genes of thelet-7/miR-98family includeHMGA2, CDC25A, CDK6, KRAS,

BCL2, RAS, BFNF, Cdc34,andFUS1. Notice that HMGA2 (High-mobility group AT-hook

2) itself is a transcriptional regulating factor the 3’ UTR of which has seven conserved sites

complementary to the members oflet-7/miR-98family [182].

6.2.4.2 B2: MiR-106/miR-20family

The miR-106/miR-20family in our study includes 6 miRNAs:hsa-miR-106a, hsa-

miR-106b, hsa-miR-17, hsa-miR-20a, hsa-miR-20b, andhsa-miR-93. Their targeting re-

lationships are also shown in Figure 6.6. Their targeting mRNAs includeE2F2, p21,

CDKN1A, Mylip, PCAF, APP, BMPR2, CCL1,andFBX031.

TheMiR-106/miR-20family comes from three paralog groupsmir-17miRNA clusters[183],

locating in Chromosome 7, 13, and X, which are shown in Figure 6.7. MiRNA cluster is

a set of miRNAs which are located very close to each in chromosome (often within one

thousand nt), and are often transcribed together as polycistronic primary transcripts and are

then processed into multiple individual mature miRNAs. [184, 185]. The genomic organi-

zation of these miRNA clusters is often highly conserved, suggesting an important role for

coordinated regulation and function.
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The polycistronmiR-25, miR-93, andmiR-106bare located at Chromosome 7, within

intron 13 of the minichromosome maintenance protein 7 (MCM7) gene on chromosome

7q22.1, see Figure 6.7 (A). Among them,miR-93and miR-106bare in Mir-106/mir-20

family we discovered using our visualization tool, which ismarked by “@B2” in the figure.

The second cluster includesmiR-17, miR-18a, miR-19a, miR-10a, miR-19b-1, andmiR-

92a-1, among whichmiR-17andmiR-20aare in theMir-106/mir-20 family. This cluster is

located at intron 3 of open reading frame (ORF) 25 in Chromosome13 (C13orf25). The

third cluster is located at Chromosome X q26.2, which includesmiR-393, miR-92a-2, miR-

19b-2, miR-20b, miR-18b, andmiR-106a, among whichmiR-20bandmiR-106aare in the

Mir-106/mir-20 family.

The local embedding region ofMir-106/miR-20family in Figure 6.1 is highlighted

in Figure 6.7 (B). The clear separation of theMir-106/mir-20 family from all the other

miRNAs suggests that they might play some particular functions which are different from

the other miRNAs. The seed sequences, shown Figure 6.7 (C), partially supports that their

functions in targeting miRNAs, pathways, and disease might be similar. We will discuss

more about this miRNA family in the “Discussion” section.

6.2.4.3 B3: miR-302/miR-502family

ThemiR-302/miR-502family we found in our visualization tool includes 13 miRNAs

which are listed in Table 6.1. For this group of miRNAs, several evidences are discovered

by previous researches.miR-302dis found to be involved in AML [186], and Huanget al.

found thatmiR-520cis causally involved in breast cancer and thatmiR-520ctargetsCD44

and promotes tumor invasion and metastasis [187]. Toet al. discovered thatmiR-520h

targetsABCG2[188]. Li et al. found thatmiR-302dtargetsKLF13, MBNL2,andTRPS1.

Though the function mechanisms are reported less clearly byliteracy comparing with

the previous two groups (B1andB2), we can clearly see that the members ofmiR-302/miR-
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502 family are close to each other and are far away from other miRNAs in the embedding

results.

The cluster ofmiR-302a, miR-302b, miR-302c, miR-302dare located as a cluster in

Chromosome 4 and themiR-520cluster is located in the Chromosome 19. Interestingly,

miR-302a, miR-302b, miR-302c, miR-302d, miR-519b, miR-519c, miR-520a, miR-520b,

miR-520c, miR-520d, andmiR-520ehave a consensus seed sequence:AAGUGC, and the

were reported to be simultaneously highly expressed in undifferentiated human embryonic

stem cells [189].

6.2.4.4 B4: miR-374/miR-548family

miR-374/miR-548family includes 6 mature miRNAs:miR-374a, miR-374b, miR-

548a-5p, miR-548b-5p, miR-548c-5p,and miR-548d-5p. The functional targets of this

family are less well explored. Yet, Meeset al. showed evidence thatmiR-374a/b potentially

targetE1Abinding gene p300, orEP300[190]. Piriyapongsa suggested that the family of

mir-548are derived fromMade1transposable elements [191].

6.2.5 Functional Analysis With Global Embedding

Here we combine the visualization results and the biological experiments done by

other researches together and study interesting cases one by one. We investigate the miR-

NAs which are close to each other and which are both verified toinvolved in some same

disease. Notice that the visualization results do not rely the biological experiments. Thus

the analysis can be done before any biological experiments.For example, if miRNAa1 is

verified to be involved in diseaseA, and we find that miRNAa2 is close toa1, then accord-

ing to our functional analysis,a2 is hypothetically related to diseaseA. There have been

many miRNAs which are causally verified to be involved in various diseases1, however,

1http://www.mir2disease.org/
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Figure 6.4. Two cases in which the embedding distance of the visualization is close and the
sequences are dissimilar in alignment score.A: hsa-miR-7andhsa-miR-9. The symbols
in parentheses represent the function of the correspondingmiRNA, which uses the same
notations as Figure 6.7. The embedding distance profile of this pair is 0.0286(0.2%,2,5)
which indicates they are close to each other. Their sequencealignment similarity profile is
−3.8824(45.87%,360,336) indicating that they are far away from each other in sequence
similarity. These tow miRNAs are both causally verified to be involved in breast cancer.B:
hsa-miR204andhsa-miR-205. The embedding distance and sequence alignment similarity
profile of this pair are 0.0250(0.14%,3,2) and−0.2773(18.13%,80,98), respectively. .

there are also many other cases which are not yet explored. The usage of our tool is to

narrow the list of candidate miRNAs in our biological studies.

In the section, we (1) first test the cases in which both miRNAs are causally verified

and are close to each other in our visualization, and then (2)highlight cases in which

miRNA is causally verified and one is verified by large scale micro array studies. The first

test is to show that miRNAs which are close to each other often share the same functions.

The second task is to offer a set of potential miRNA candidates which we can focus on in

biological experiment design.

6.2.5.1 Causal miRNAs

Here we test the consistency of the visualization results and the biological experi-

ments for 5 diseases: AML, prostate cancer, lung cancer, breast cancer, and ovarian cancer.
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Figure 6.5. MiRNAs which are hypothetically involved in diseases.A: hsa-miR-9is verified
to be involved in breast cancer by causal experiments. The nearby miRNAshsa-miR-
152b and hsa-miR-136have been identified to be correlated to breast cancer by micro
array experiments.B: hsa-miR-145causally verified for prostate cancer, whilehsa-miR-
10b is verified by micro array experiments.C: hsa-miR-155causally verified for breast
cancer, whilehsa-miR-203is verified by micro array experiments.D: hsa-miR-141causally
verified for breast cancer, whilehsa-miR-181band hsa-miR-181dare verified by micro
array experiments..

In Table 6.2 we list 20 pairs of miRNAs which are both causally verified by biological

experiments. Listed are the name of the pairs of miRNAs, the references, the embedding

distance, and the sequence BLAST score.
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For the “Embedding distance” column, the numbers of a pair ofmiRNAs are listed

asd(x%,a,b) whered is the embedding distance in our visualization result,x% means that

the distance this pair of miRNAs ranks bottomx% among all the possible pairs of miRNAs,

a andb are the ranks of the second, first miRNA to the first, second miRNA, respectively.

For example, in the first item in Table 6.2,d = 0.0298 means that the Euclidean distance

of miRNAs hsa-miR-200aandhsa-miR-141is 0.0298 in our visualization result. But we

do not know whether this is a small number, we use three relative numbers to show that

they are close to each other.x = 0.23% means that there are only 0.23% of the pairs of

miRNAs are closer than this pair out of 711× (711− 1)/2 = 273705 pairs of miRNAs.

a = 4 means thathsa-miR-200ahas 710 neighbors among whichhsa-miR-141is the 4-th

closest tohsa-miR-200a. b = 4 means thathsa-miR-141has 710 neighbors among which

hsa-miR-200ais the 4-th closest tohsa-miR-141.

For the “Sequence Alignment Score” column, we use the same notations, except

that the ranking is sorted using descend order, because the higher Alignment score is, the

closer the sequences are. The sequence alignment score is computed by MATLAB function

nwalign. Details can be found in the “Materials and methods” section.

Among the 20 pairs of miRNAs, 11 pairs were discovered in the same chapter. For

example Gibbonset al. discoveredhsa-miR-200aandhsa-miR-141were critically involved

in lung cancer [192]. The reason they simultaneously testedthese two miRNAs might be

that they are very similar to each other (0.03%, 1,1). The cases are similar for the other

10 pairs:hsa-miR-200b/ hsa-miR-429[192], hsa-miR-200b/ hsa-miR-200c[192], hsa-miR-

20a/ hsa-miR-17[193],hsa-miR-29b/ hsa-miR-29c[194] for lung cancer,hsa-miR-16/ hsa-

miR-15a[195] for AML, hsa-miR-146a/ hsa-miR-146b-5p[196], hsa-miR-200b/ hsa-miR-

200c[197], hsa-miR-221/ hsa-miR-222[198] for breast cancer,hsa-miR-16/ hsa-miR-15a

[195] for prostate cancer, andhsa-miR-200b/ hsa-miR-429[199] for ovarian cancer.
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These discoveries indicates that we can narrow the list of miRNA candidates using

the sequence alignment similarity,i.e. if a miRNA is hypothetically involved in some

diseases or interact with some genes, we can also test the miRNAs which are very similar

to the miRNA we consider.

However, there are also many cases in which we cannot exploreby using the se-

quence alignments an our visualization tool helps in these cases. For the other 9 pairs, the

sequences are not similar to each other, but the are close in our visualization. For example

the alignment score forhsa-miR-7andhsa-miR-9is -0.38824, which ranks about 45% ac-

cording to the alignment similarity, however, they are functionally similar and are close to

each other in our visualization. The local embedding results of these pair and another case

(hsa-miR-204/hsa-miR-205) for breast cancer are highlighted in Figure 6.4. These cases

suggests that the global embedding reflects the functional relationships among miRNAs

more accurate than the local sequence similarity do.

6.2.5.2 Functional Prediction Using Causal miRNAs

In our studies, we also discover that we can often find some miRNAs which might

be potentially involved in some diseases, and there is another miRNAs near by which is

causally verified by biological experiments. According to our analysis above, these miR-

NAs might strongly hypothetically be involved in the same diseases, too. For example, in

Figure 6.5B, miRNA hsa-miR-145is verified to be involved in prostate cancer by causal

experiments [200], while large scale micro-array experiments by other independent group

support thathsa-miR-10bis correlated to the same disease [201]. Notice that the embed-

ding distance profile betweenhsa-miR-145andhsa-miR-10bis 0.0223(0.10%,2,3) while

the sequence alignment similarity profile is−4.7144(52.17%,214,302), indicating that the

two miRNAs are close to each other in embedding distance and dissimilar in sequence

alignment. We highlight 3 other cases in Figure 6.5 and list more cases in Table 6.3.
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One should notice that in Table 6.3, most of the miRNAs are dissimilar to each other

according to the sequence alignment profiles. We believe in previous studies, researchers

have already employ the sequences to guide how to select miRNAcandidates and most of

the possible similar miRNAs have been tested. Table 6.3 also suggests that we can discover

many more candidates using our visualization tool while direct sequence comparison does

not work.
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Table 6.2. MiRNA pairs causally verified by biological experiments for AML, breast can-
cer, Prostate cancer, ovarian cancer. For the “Reference” column, the first number is the
year in which the relationship of between the disease and themiRNA is verified, and the
second number is the reference number. Details can be found in the main text.

Disease miRNA Reference Embedding Distance Sequence BLAST Score

L

hsa-miR-200a 2009 [192]
0.0298 (0.23%, 4, 4) 25.5131 (0.03%, 1, 1)

hsa-miR-141 2009 [192]
hsa-miR-200b 2009 [192]

0.0520 (1.05%, 3, 2) 15.5297 (0.21%, 4, 3)
hsa-miR-429 2009 [192]
hsa-miR-200b 2009 [192]

0.0666 (1.89%, 6, 13) 25.7904 (0.02%, 1, 1)
hsa-miR-200c 2009 [192]

hsa-miR-20a
2005 [193]

0.0724 (2.29%, 4, 3) 26.8997 (0.01%, 2, 2)2007 [202]
hsa-miR-17 2005 [193]
hsa-miR-29b 2007 [194]

0.0293 (0.22%, 2, 2) 23.2945 (0.04%, 1, 2)
hsa-miR-29c 2007 [194]

A
hsa-miR-16 2007 [195]

0.0482 (0.86%, 3, 3) 15.5297 (0.21%, 2, 3)
hsa-miR-15a 2007 [195]

B

hsa-miR-200a 2009 [192]
0.0298 (0.23%, 4, 4) 25.5131 (0.03%, 1, 1)

hsa-miR-141 2009 [192]

hsa-miR-7
2008 [203]

0.0286 (0.20%, 2, 5) -3.8824 (45.87%, 360, 336)
2008 [204]
2009 [205]

hsa-miR-9 2009 [206]
hsa-miR-127-3p 2006 [207]

0.0632 (1.68%, 9, 6) -0.2773 (18.13%, 142, 80)
hsa-miR-193b 2008 [208]
hsa-miR-128a 2008 [203]

0.0720 (2.26%, 11, 29) -2.2185 (29.98%, 228, 193)
hsa-miR-510 2008 [209]

hsa-miR-146a
2006 [210]

0.0765 (2.60%, 16, 42) 25.5131 (0.03%, 1, 1)
2008 [196]
2008 [211]

hsa-miR-146b-5p 2008 [196]
hsa-miR-335 2008 [212]

0.0729 (2.33%, 29, 38) -4.4371 (50.26%, 254, 301)
hsa-miR-182 2009 [213]

hsa-miR-200b
2008 [197]

0.0666 (1.89%, 6, 13) 25.7904 (0.02%, 1, 1)
2010 [214]

hsa-miR-200c
2008 [197]
2009 [215]
2009 [216]

hsa-miR-204 2008 [209]
0.0250 (0.14%, 3, 2) -0.2773 (18.13%, 80, 98)

hsa-miR-205 2008 [197]
hsa-miR-221 2008 [198]

0.0687 (2.05%, 40, 28) 13.8658 (0.25%, 1, 1)
hsa-miR-222 2008 [198]
hsa-miR-510 2008 [209]

0.0426 (0.63%, 10, 10) -6.6556 (70.61%, 500, 509)
hsa-miR-199b-5p 2008 [217]

P

hsa-miR-16 2007 [195]
0.0482 (0.86%, 3, 3) 15.5297 (0.21%, 2, 3)

hsa-miR-15a 2007 [195]

hsa-miR-21
2009 [218]

0.0487 (0.89%, 19, 15) 0.2773 (14.05%, 152, 136)
2009 [219]

hsa-miR-101
2008 [220]
2009 [221]
2010 [222]

Ovarian Cancer

hsa-miR-200b 2009 [199]
0.0520 (1.05%, 3, 2) 15.5297 (0.21%, 4, 3)

hsa-miR-429 2009 [199]
hsa-miR-200b 2009 [199]

0.0666 (1.89%, 6, 13) 25.7904 (0.02%, 1, 1)
hsa-miR-200c 2009 [215]
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Table 6.3. 64 miRNAs which are near a causal verified miRNA and which have been tested
using micro-array experiments. The “Causal” column is the miRNA which are causally
verified. The corresponding reference is also given. The “Candidate” column is the miRNA
which are tested using micro-array experiments and corresponding reference(s). Details
can be found in the main text.

Disease Causal Candidate Embedding Distance Sequence BLAST Score

L

miR-183[223]

miR-192[180] 0.0416 (0.59%, 3, 2) -0.5546 (19.19%, 178, 108)
miR-377[224] 0.0678 (1.99%, 22, 27) -1.1093 (22.98%, 214, 153)
miR-126[180, 225, 226] 0.0460 (0.76%, 6, 23) -2.7732 (36.15%, 323, 245)
miR-224[180] 0.0585 (1.40%, 16, 23) 4.4371 (2.96%, 33, 19)

miR-197[227] miR-150[180] 0.0322 (0.28%, 2, 2) 3.8824 (3.73%, 13, 15)
miR-19a[193] miR-101[225] 0.0504 (0.98%, 18, 18) 3.8824 (3.73%, 21, 26)
miR-429[192] miR-338-5p[225] 0.0566 (1.30%, 4, 6) -1.1093 (22.98%, 145, 229)

A

miR-126*[228] miR-130b[229] 0.1632 (12.34%, 18, 90) -3.8824 (45.87%, 268, 343)
miR-16[195] miR-195[186] 0.0459 (0.76%, 2, 2) 21.9080 (0.06%, 1, 1)
miR-204[230] miR-22[229] 0.0491 (0.91%, 11, 16) -11.9246 (96.82%, 670, 685)
miR-210[231] miR-342-3p[195] 0.0404 (0.54%, 4, 5) -6.6556 (70.61%, 543, 414)
miR-23a[231] miR-23b[229] 0.0350 (0.37%, 8, 12) 26.6223 (0.02%, 1, 1)
miR-320[232] miR-331-5p[186] 0.0332 (0.32%, 5, 2) -5.2690 (58.99%, 338, 375)

miR-34b[233]
miR-182[186] 0.0520 (1.06%, 15, 20) -6.3783 (68.70%, 492, 418)
miR-451[229] 0.0516 (1.04%, 13, 14) 3.0505 (5.03%, 33, 53)

B

miR-10b[234]
miR-145[235] 0.0223 (0.10%, 3, 2) -4.7144 (52.17%, 302, 214)
miR-887 0.0041 (0.00%, 2, 2) -10.8153 (93.96%, 650, 623)

miR-126[212, 236] miR-148a[237, 238] 0.0317 (0.27%, 10, 10) -1.1093 (22.98%, 147, 234)

miR-141[197]
miR-181b[158, 239] 0.0214 (0.10%, 2, 3) 0.0000 (15.66%, 119, 136)
miR-181d[239] 0.0248 (0.14%, 3, 4) 0.0000 (15.66%, 120, 118)

miR-146a[210, 196, 211] miR-143[235] 0.0858 (3.37%, 18, 37) 3.6051 (4.24%, 34, 28)
miR-146b-5p[196] miR-191[235] 0.0348 (0.36%, 7, 8) 0.8319 (12.12%, 93, 50)
miR-155[240] miR-203[235] 0.0334 (0.32%, 2, 2) -6.6556 (70.61%, 503, 440)
miR-205[197, 241] miR-22[242] 0.0608 (1.53%, 12, 22) -6.1010 (66.21%, 423, 526)

miR-221[198]
miR-148a[237, 238] 0.0391 (0.49%, 9, 15) -6.6556 (70.61%, 525, 580)
miR-143[235] 0.0563 (1.28%, 27, 11) -5.2690 (58.99%, 453, 488)

miR-222[198]
miR-202[235] 0.0479 (0.85%, 16, 6) 2.2185 (7.53%, 66, 43)
miR-136[235] 0.0266 (0.16%, 3, 4) 1.3866 (10.07%, 85, 58)
miR-152[237, 238] 0.0617 (1.58%, 22, 31) -2.4958 (32.43%, 315, 314)

miR-27a[243, 213] miR-365[239] 0.0815 (3.02%, 34, 40) -7.2102 (74.50%, 546, 444)
miR-661[244, 213] miR-328[245] 0.0608 (1.53%, 6, 4) 7.7648 (0.76%, 4, 3)

miR-7[203, 204, 205]
miR-148a[237, 238] 0.0768 (2.63%, 32, 50) 2.4958 (6.21%, 60, 69)
miR-152[237, 238] 0.0674 (1.95%, 22, 37) -6.1010 (66.21%, 475, 565)

miR-9[206]

miR-136[235] 0.0119 (0.02%, 2, 2) 3.6051 (4.24%, 25, 20)
miR-152[237, 238] 0.0515 (1.03%, 17, 22) -0.2773 (18.13%, 134, 186)
miR-202[235] 0.0507 (0.99%, 15, 11) -7.2102 (74.50%, 522, 447)
miR-148a[237, 238] 0.0681 (2.00%, 26, 39) 0.0000 (15.66%, 112, 190)

miR-96[213] miR-365[239] 0.0791 (2.81%, 16, 36) 2.4958 (6.21%, 42, 19)
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Table 6.4. Cont. of Table 6.3.

Disease Causal Candidate Embedding Distance Sequence BLAST Score

P

miR-145[246] miR-10b[201] 0.0223 (0.10%, 2, 3) -4.7144 (52.17%, 214, 302)

miR-125b[246]
miR-937 0.0940 (4.11%, 17, 10) 1.3866 (10.07%, 58, 70)
miR-125a-5p[247] 0.0284 (0.19%, 3, 3) 23.5719 (0.04%, 1, 1)

miR-126*[248] miR-26a[247] 0.1060 (5.28%, 5, 13) -0.5546 (19.19%, 102, 126)
miR-145[200] miR-10b[201] 0.0223 (0.10%, 2, 3) -4.7144 (52.17%, 214, 302)

miR-146a[249]
miR-143[247] 0.0858 (3.37%, 18, 37) 3.6051 (4.24%, 34, 28)
miR-373*[247] 0.0969 (4.38%, 26, 66) -11.0926 (94.99%, 675, 558)

miR-15a[250] miR-31[251] 0.0800 (2.89%, 5, 4) -1.3866 (25.04%, 224, 202)

miR-16[250]
miR-195[247, 201] 0.0459 (0.76%, 2, 2) 21.9080 (0.06%, 1, 1)
miR-31[247] 0.0686 (2.04%, 4, 3) -3.0505 (37.82%, 285, 328)
miR-182*[251] 0.1600 (11.92%, 15, 93) -10.5380 (93.44%, 667, 654)

miR-221[252] miR-126[201] 0.0670 (1.92%, 39, 35) -6.6556 (70.61%, 524, 517)

miR-222[252, 253]
miR-202[247] 0.0479 (0.85%, 16, 6) 2.2185 (7.53%, 66, 43)
miR-224[196] 0.0846 (3.28%, 42, 52) -2.4958 (32.43%, 318, 279)

miR-21[218, 219]
miR-513-3p[247] 0.0199 (0.08%, 3, 5) 0.0000 (15.66%, 170, 101)
miR-19b[247] 0.0539 (1.15%, 23, 13) 0.0000 (15.66%, 163, 101)
miR-181a[201] 0.0670 (1.93%, 33, 23) -0.8319 (20.27%, 218, 161)

miR-23b[253]
miR-23a[247] 0.0350 (0.37%, 12, 8) 26.6223 (0.02%, 1, 1)
miR-491-3p[247] 0.0524 (1.08%, 19, 17) -8.8741 (86.43%, 609, 574)

miR-330-3p[254]
miR-96[251] 0.0531 (1.11%, 15, 6) -11.3700 (95.69%, 663, 669)
miR-27a[247, 201] 0.1012 (4.79%, 47, 53) -11.0926 (94.99%, 654, 672)

miR-34a[255] miR-503[247] 0.0513 (1.02%, 3, 3) -2.4958 (32.43%, 320, 267)

miR-521[256]
miR-375[251] 0.0386 (0.48%, 7, 7) -1.9412 (28.45%, 204, 175)
miR-96[251] 0.0572 (1.33%, 16, 7) -2.4958 (32.43%, 222, 241)

O
miR-34b[257] miR-487b[258] 0.0862 (3.41%, 50, 45) -1.9412 (28.45%, 188, 210)
miR-34c-3p[257] miR-221[258] 0.0454 (0.74%, 17, 15) -7.4875 (76.66%, 444, 582)

6.2.6 Novel MiRNA Detection

By combining local information we obtain a global effective relationships for miR-

NAs and enhance the understanding. Here we are also interested in applying the sim-

ilar technique to establish a novel miRNA predictor,i.e. to incorporate the local rela-

tionship together and to detect novel miRNAs given some knownmiRNAs. To be more

specific, we sample candidates from the whole genome of some species (H. sapiensand

D. Melanogasterin our studies), and pool them together with known miRNAs in the same

species, compute thelocal similaritiesamong all the known and candidate miRNAs, and

use the global effective similarities to retrieve novel miRNAs from the candidates. The

detail retrieval algorithms can be found in the “Materials and Methods” section.
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Figure 6.6. Cross analysis oflet-7/miR-98family andmir-106/mir-20 family. Left panel:
the number of common targeting genes of pair of miRNAs. Right panel: the targeting genes
of the members of the two family. White grid means no interaction is found and colored
grid means interaction is found. All the targeting relationships are verified by biological
experiments. .

We first test our algorithm, which is named, miRNAPred (miRNA gReen fuNction

Affinity Prediction), on human miRNAs to see the prediction accuracies then apply it inD.

Melanogasterto detect novel miRNAs.

6.2.6.1 H. sapiensmiRNA Prediction Evaluation

We evaluate the performance of our miRNAPred algorithm onH.sapiensdata based

on the known miRNA precursors mixed with the pool of putative candidates to be ranked.

The prediction quality is assessed by the recall and precision, which are, respectively, de-

fined as:

Recall =
T P

T P+ FN
(6.2)

Precision =
T P

T P+ FP
, (6.3)
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Figure 6.7. Members of miRNAs groupB2 found by our visualization.A: The chromosome
positions of the members of groupB2, which are located in three paralog miRNAs clusters,
themiR-25cluster,miR-17cluster, andmir-106acluster. “@B2” means the corresponding
miRNA is in groupB2. (B): The embedding result of the members of groupB2. The
symbols in the parentheses represent the function of the corresponding miRNA.B: breast
cancer,L: Lung cancer,O ovarian cancer,P: prostate cancer. Upper case of the disease
name means the function is verified by causal experiments, lower case means the function
is verified by micro array experiments.C: The sequences of the members of miRNA group
B2. The highlighted region is seed sequence which is used to silence the targeting mRNAs.
.

where TP, FP and FN are numbers of true positive predictions,false positive predictions,

and false negative predictions, respectively.

Our miRNAPred method is compared to the state-of-the-art miRank method [259]

that has been proved to outperform previous Support Vector Machine (SVM) based super-

vised methods [130, 260]. The number of query samples is the most critical parameter

for algorithm miRank. We perform the two methods, miRank and miRNAPred, onH.

sapiensdata with 4, 8, 16, and 32 known miRNA precursors that are randomly selected

(we do it for 30 times) as query samples. To reiterate, in eachof these experiments, the

rest known miRNA precursors are combined with the 1000 hairpin sequences extracted
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Figure 6.8. Novel miRNA prediction evaluation onH. sapiensfor miRank and miR-
NAPred.A: Prediction precision with different numbers (4, 8, 16, and 32) of query (known)
miRNAs onHSA1533andHSA1720. B: ROC curve with different numbers of query miR-
NAs on HSA1533and HSA1720. C: The precision distributions of both methods with
different numbers of query miRNAs and different numbers (50, 100, 150, and 200) of re-
trieved miRNAs onHSA1533andHSA1720. Each dot is for one random choice of the
selected query miRNAs. Thep values indicate the significance of miRNAPred is better
than miRank. When the number of known miRNAs is small, miRank is unstable in predic-
tion precision, while miRNAPred remains robust..
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from the genome to form the pool of candidates to be ranked. The recall and precision are

computed by averaging the measurements over 30 random trials. In each experiment, we

choosen topmost ranked candidates, and determine the precision andrecall of the result

by comparing the chosen candidates with the known human miRNAs that are hidden in the

candidate pool. We test two algorithms in both HSA1533 (533 miRNAs in miRBase with

the version of September 1, 2007, mixed by 1000 putative candidates) and HSA1720 (720

miRNAs in miRBase with the version of Release 16: Sept. 2010, mixed by 1000 putative

candidates). By varying the numbern, we obtain the Receiver Operating Characteristic

(ROC) curves ([261]) for both methods and plot results in Figure 6.8B.

With 8 known miRNAs, our first 50 predictions are 100% correct,much higher than

miRank (87.45%) in HSA1533. As an extreme example, we use 4 known miRNAs to

predict 200 top ranked miRNAs in HSA1720, 98.21% of them are correctly retrieved. In the

same scenario, miRank only achieves 79.83%. Detailed comparisons on the two datasets

in different settings can be found in Supplementary materials (Table S–1).

We are also interested in the precision with small number of retrieved miRNAs. This

is useful in biological experimental design. With different small numbers of retrieval miR-

NAs, the prediction precisions of two methods are drawn in Figure 6.8A. From the figure,

we see that miRNAPred is significantly better than miRank in precisions.

In Figure 6.8C, we plot the distribution of the prediction precision with different

numbers of query miRNAs and different numbers of retrieved miRNAs. One can observe

that our method miRNAPred is significantly better than miRank with P values ranging from

1.14× 10−3(Q = 16, # retrieval=200,HSA1553) to 1.09× 10−10(Q = 16, # retrieval=150,

HAS1720). We also notice that when the number of known miRNAs is small,miRank is

unstable in prediction precision, while miRNAPred remains robust.
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6.2.6.2 Novel miRNAs detection inD. melanogaster

D. melanogasteris a species of Diptera, in the family Drosophilidae. The species is

known as the common fruit fly which is one of the most frequently used model organisms in

biology, including studies in genetics, physiology, microbial pathogenesis, and life history

evolution. In the latest version of miRBase (Sept. 2010), there are 176 miRNAs found.

By applying miRNAPred on the mixed pool of 176 known miRNAs and 1000 pu-

tative candidates which are closest to known miRNAs, we retrieve 200 novel miRNAs.

Out of the first 30 candidates, associate with the 30 highest ranking scores, 14 of them

are conserved in other animal species. By conserved, we mean there are at least 21 nt are

conserved in at least one other species.

We list the first 30 miRNAs detected by miRNAPred in Table 6.5. The putative

miRNAs are sorted according to ranking scores. The positions(including the name of the

chromosome, starting position and ending position) are also listed.

We show the hairpin structures of the first two putative miRNAs(dme-putative1and

dme-mir-519) in Figure 6.9A. The hairpin structures and the entropy are computed by the

RNAFold web server2. Shown are also the alignment result ofdme-mir-519and conserved

miRNAs in other species.

6.2.7 Discussion

In causal studies of biological mechanisms, we often need toestablish some potential

hypothesis than design biological experiments to support them. With the fast growing

biological techniques, we have exponentially accumulatedpublicly available experimental

data. Putting expensive biological experiments on one handand the free abundant data on

the other hand, we often come up with one simple question: canwe guide how to design

2http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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Figure 6.9. First two putative miNRAs (dme-putative1and dme-mir-519) predicted by
miRNAPred. A: The hairpin structures of the two predicted miRNAs, computed by
RNAFold. B: The alignment ofdme-mir-519and other conserved miRNAs in other species.
C: the conservation score with corresponding location ofB. D: A view of the chromosome
atdme-putative1, located at Chromosome X: 5656849–5656938. .
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Table 6.5. Top 20D. melanogastercandidate miRNAs discovered by miRNAPred.

IDa Chr Start Stop Strand Ranking Score Conservedb

dme-putative1 X 5656849 5656938 + 0.4957 No
dme-mir-519 U 1627351 1627450 − 0.4951 Yes
dme-putative2 2R 10410083 10410172 + 0.4949 No
dme-mir-548 3R 503941 504025 − 0.4945 Yes
dme-mir-792 X 14550110 14550189 − 0.4944 Yes
dme-miR1134 X 9961014 9961113 − 0.4944 Yes
dme-mir-669 X 19194916 19195015 + 0.4943 Yes
dme-putative3 2R 17987368 17987457 + 0.4940 No
dme-putative4 X 3964388 3964477 + 0.4938 No
dme-putative5 2R 11048444 11048533 + 0.4937 No
dme-mir-29 3L 11920039 11920138 − 0.4935 Yes
dme-putative6 2R 1409430 1409519 + 0.4930 No
dme-putative7 X 20008745 20008834 + 0.4923 No
dme-putative8 3L 5856504 5856593 + 0.4921 No
dme-putative9 3R 26690572 26690661 + 0.4912 No
dme-putative10 3R 27475642 27475731 + 0.4906 No
dme-putative11 2L 21231648 21231737 + 0.4896 No
dme-putative12 3L 6641688 6641777 + 0.4886 No
dme-putative13 2L 17962072 17962161 + 0.4879 No
dme-mir-1375 2R 19389491 19389570 − 0.4877 Yes

a For those putative miRNAs which are conserved in other species, we use the known
conserved miRNAs to name the putative miRNAs.b ‘Conserved’ indicates we can find
conservation miRNAs in other species. The criterion is that if there are at least 21 nt which
are conserved in at least one other species, the candidate isconsidered as ‘conserved’.

our experiments by making use of the available data such thatour biological experiments

have lower cost or higher chance to succeed? Many previous computational research have

provided positive and successful answers. However, when come to the research miRNAs,

the contribution from computation techniques to real biological communities is limited,

due to the much higher complexity level among miRNAs, genes, pathways, and diseases.

Here we give a bigger picture by briefly reviewing related research and further dis-

cuss the potential usage of our techniques presented in thischapter.

6.2.7.1 The Complexity of the MiRNA/gene/disease Network

In history, we first discovery the functions of proteins, then discovered that genes,

which express proteins, are much more important. After that, we found that the regula-

tors, which govern the genes are also critical in biologicalstudies. When more factors
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being considered, we have wider view and deeper understanding on the hidden biological

mechanisms. But what is the next step? The answer also becomesmore and more difficult.

One of the difficulties is that the complexity of the regulatory network hasbeen

raised to a much higher level when regulatory components like miRNAs are being taken

into account: tiny regulators have huge impacts. Imagine a whole network of the triangle

relationships among genes, diseases, and miRNAs. Since the large number of target genes

of single miRNAs, thedensityof the connection becomes much high than the network

without miRNAs. We plot the distribution of number of targetsof miRNAs in Figure 6.11

to illustrate what the complexity level of miRNAs regulatorynetworks. If we put them in

the triangle network, we can imagine that for each nodes of miRNAs, they have hundreds

of connections coming out and there are hundreds of such nodes.

The complexity level of the interaction network of miRNAs have also been supported

by the discoveries by Lewiset al. [168] and Kreket al. [169].

6.2.7.2 Narrowing the List of Candidates

The computational techniques are applied in biological studies, among which candi-

dates selection has been widely accepted.

Cozmaet al. applied a bioinformatics-based strategy to identify thatc-Myc and

Cdc25A Apmtmammary tumor latency modifiers [262]. In their argument they used se-

quences comparison and pathway analysis, which strongly support thatc-Mycis theApmt1

tumor latency modifier locus. In plat research, Mitchellet al. developed a novel compu-

tational approach to discover candidate genes for the synthesis and feruloylation of ara-

binoxylan. They provided strong evidences which strongly support for genes withinthe

GT43, GT47, GT61, andPF02458families being responsible for the synthesis of arabi-

noxylans and its side chains. In their research, sequence similarity was the original evi-

dence. Wu developed an analyzing technique to identify candidate genes from DNA mi-
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croarrays gene expression data. [263]. He used individual test to identify the significance

of every considered gene under different conditions and to rank the genes to obtain a list of

candidate genes. His method nowadays can be interpreted asfeature selectionin machine

learning and bioinformatics communities [264].

The all these computational methods mentioned above, they all considered the ob-

jects independently, one case by one case. To use the notations in this chapter, they only

made use oflocal informationof the available data. Obviously, in the studies of miRNA,

especially considering the regulatory network, such techniques do not suffice. From Table

6.2, we observe that there are many cases in which the nearby miRNAs have already been

simultaneously discovered in the same paper, suggesting that most of the close (in terms

of sequence) by miRNAs have already been explored. We have to find something else to

narrow the list of candidates in our studies.

On the other hand we discovered 20 pairs of miRNAs which are both causally verified

by biological experiments and are nearby in the visualization results. Out of the 20 pairs,

9 of them are dissimilar in sequences and are discovered by different independent groups.

This suggest that these research groups were not able to identify the tight patterns of these

miRNAs. So they should be benefited from our visualization.

One should also notice that in Table 6.3, the sequence alignment similarities are

often too low to use local pairwise comparison cannot discover any of the item in the

table. Another interesting case ishsa-miR-204andhsa-miR-205in Figure 6.4B. The aign-

ment similarity profile for this pair of miRNA is−0.2773(18.13%,80,98), showing that

they are actually very dissimilar in sequences, however, visualization distance profile is

0.0250(0.14%,3,2), which is very close. This can also be observed by sight in Figure 6.4

B.

These evidences suggest that the visualization has clear superiority when we consider

a whole network which involved complicated miRNAs interactions.
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6.2.7.3 Discovering Interesting Patterns

In our visualization results, Figure 6.7 demonstrates a good example of the miRNA

pattern we discovered. The 6 miRNAs (hsa-miR-93, hsa-miR-106b, hsa-miR-17, hsa-miR-

20a, hsa-miR-20bandhsa-miR-106a) are very close to each other and far away from most

of the other miRNAs (see Figure 6.1 (B2) for a bigger picture) and have a clear common

sequence signature (AAAGUG) in their 5’-end. Further more they are actually located

at three paralog miRNAs clusters (Figure 6.7A). More evidence suggests that these six

miRNAs should be functionally tight to each other, see the interaction network with genes

in Figure 6.6.

ThemiR-17-92 clustersare a prototypical example of a polycistronic miRNA gene

and have been well explored by other independent research groups [265, 193]. However,

notice that our discoveries solely relies onin silico studies on publicly available data.

6.2.7.4 Potential Applications of Our Visualization Tool

Our visualization cannot automatically discovered new patterns. Instead, it provides

a novel way in which we can analysis the available data. Besides the discoveries above, we

believe that there are still many un-explored interesting patterns and other useful knowledge

in our visualization results, which requires more careful investigation.

On the other hand, notice that the input of our visualizationare the local and direct

similarities of the objects we considered and the output is the visualization embedding coor-

dinates of the objects. Thus we can employ our technique in any other network. Nowadays,

the gene-gene [266], miRNA-gene [267], miRNA-disease [267, 268], and gene-disease

[269] networks have been well established. Can we put all of them together? Since the best

advantage of the global embedding is the integration of all kind of local information, our

visualization tool shall offer an clear and positive answer.

154



6.2.7.5 Novel miRNAs Identification

Experimental cloning efforts have successfully identified highly expressed miRNAs

from various tissues. In cloning-based approaches, distinct ∼22 nt RNA transcripts are

first isolated and then intensively cloned and sequenced. Novel miRNAs identification

by such biological experiments highly biased towards abundantly and/or ubiquitously ex-

pressed miRNAs; only abundant miRNA genes can be easily detected ([270, 133]). The

found miRNAs are collected in the miRBase website3([267]). Alternative computational

approaches have been developed to complement experimentalmethods as a powerful aid

for finding tissue-specific or lowly expressed miRNAs. A number of computational meth-

ods for miRNA prediction were introduced using supervised learning [130, 260] and semi-

supervised learning [259]).

6.3 Methods and Materials

We first introduce the whole computational protocol then explain the details of each

component in the protocol one by one later. The whole protocol, including the visualiza-

tion and miRNAPred is illustrated in Figure 6.10. The main part is the Green’s Function

Affinity, in which objects are modeled by partial differential equations which are solved by

Green’s function method. The input of the “Green’s FunctionAffinity” is a matrix measur-

ing the pairwise similarities among objects, which are computed by different ways for two

different purposes: visualization (A) and novel miRNA prediction (B).

6.3.1 Laplacian Operator and Green’s Function Affinity

The continuous Laplacian operator

3http://www.mirbase.org/
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Figure 6.10. Computational protocol used in our miRNA analysis. A: Data flow chart for
the visualization. The “Bipartite Graph B” block represent the bipartite graphB between
human miRNAs and human genes. “Similarity matrix” representthe matrixW computed
using Eq. (6.1). The “Green’s Function Affinity” method will be introduced in the main
text. B: The protocol used inmiRNAPred. The features of known miRNAs and candidate
miRNAs are extracted, then the similarity matrix is computedusing Eq. (6.16). All the
known miRNAs and candidates are considered to be precursors.Then the candidate miR-
NAs are ranked by “Green’s Function Affinity”. In the main text, we will explain how the
candidates are obtained and how the feature extraction is done. .

L f (x) = ∇2 f (x1, x2, · · · , xd) =

(

∂2

∂x2
1

+ · · · + ∂2

∂x2
d

)

f (x) (6.4)

describes the second-order partial differential equation. Heref is a second-order differen-

tiable function in ad-dimension space,f : Rd → R. Given a partial differential equation,

L f (x) = y(x). (6.5)

The solution can be given by

f (x) = L−1y(x) ≡
∫

G(x, x′)s(x′)dx′, (6.6)
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Figure 6.11. Distribution of number of targets of 711 miRNAs.Most of the miRNAs
(93.81%) target more than 600 genes. .

whereG(r , r ′) is the Green’s function, which captures the field response at x due to a single

source atx′ represented byδ(r − r ′):

LG(x, x′) = δ(x − x′). (6.7)

If the differential operatorL admits a set of eigenvectors

L ψi = λiψi , i = 1,2, · · ·

then

G(x, x′) =
∞∑

i=1

ψi(x)ψi(x′)
λi

.
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The discrete Laplace operator is an analog of the continuousLaplace operator, and is de-

fined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional

graph (with a finite number of edges and vertices), the discrete Laplace operator is more

commonly called as the Laplacian matrix. Green’s function for the Laplace operator repre-

sents the propagation of influence from all points. On a graphof pairwise similarities, the

Green’s function is the inverse of the combinatorial Laplacian. Will see later that the effect

of Green’s function is to incorporate all the connections together and enhance the local con-

nection through the neighbors, like an affinity propagation. We name the method “Green’s

function affinity”. In this chapter, we employ Green’s function affinity to solve two prob-

lems in miRNAs: (1) visualization,i.e. to embed pairwise network data into Euclidian

space, and (2) miRNAs predictions.

6.3.2 Network Embedding for MiRNAs Visualization

We seek a linear subspace to visualize the functional relationships of miRNAs ac-

cording to the miRNAs:target information. Our aim is to see how one miRNA is close to

or far away from another miRNA according to their functions inspecies. In our model, we

define miRNAs as nodes of a graph. By embedding, miRNAs are represented by points

in the vector space. The Euclidian distance between each pair of miRNAs in embedding

space reflects their biological relationships.

Let G = (V,E) be a graph with verticesV and edgesE, and f : E → R be a ring-

valued function of the vertices. Then, the discrete Laplacian L acting on f is defined by

L f (v) =
∑

u:d(u,v)=1

[ f (v) − f (u)]. (6.8)

whered(u, v) is the distance operator ofu andv on the graph.d(u, v) = 1 can be interpreted

as that nodeu andv are neighbors.
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Let V = {v1, v2, ..., vn} representn miRNAs, and pairwise connectivity is given by

W i j , 1 ≤ i, j ≤ n. In our visualization method,W i j is the number of common targets

between two miRNAsi and j. The relationship between random walks on a graph and

electric resistors network has been shown in [271]. One of the main results is the relation-

ship between global resistance and the expected commute time is:

τi j = CRi j , (6.9)

whereτi j is the expected number of steps a random walker walks fromi to j and comes

back toi, Ri j is the global resistance between nodei and j, andC is a constant. In order to

illustrate the model in a more grounded way, we use the electric resistor network instead

of random walk models. LetrL
i j denote thelocal electric resistorbetween nodei and j. In

other word, the electric resistor network is established byconnecting all pair nodes (i, j)

via an electric resistorrL
i j . Our goal is to compute theglobal or effectiveelectric resistance

between nodei and j.

The global electric resistor can be derived as the followingway. We impose different

electric potentials between nodei and j by adding an electric current source (assumingi is

positive, j is negative, and the current isc0) on them and all other nodes are free. Letuk be

the electric potential of nodek, k = 1,2, ...,n. According to Kirchhoff Law,

ci =
∑

j,i

κi j (ui − u j), (6.10)

whereκi j is thelocal electric conductivity(κi j = 1/rL
i j ) andci is thenet currencyof nodei.

In order to visualize the functional relationship among miRNAs in a meaningful way, we

use the number of common target genes as thelocal conductivity, i.e. κi j = W i j . Using the

Laplacian operator, Equation (6.10) can be rewritten as,
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Lu = c (6.11)

whereu = [u1,u2, · · · ,un] andL is the Laplacian matrix,

L = D − κ,

D = diag(κe), κi j = κi j , ande is a column vector with all elements 1. Sincei and j

are applied with a current sourcec0 and all other nodes are free,ci = c0, cj = −c0, and

ck = 0, k , i, j. Let
∑

i λiqiqT
i = L be the eigenvector decompositions ofL. Similarly to

continues case, we have

u = Gc = L−1c =





n∑

k=2

qkqT
k

λk



 c, (6.12)

whereG is the discrete Green’s function. Notice that eigenvectorq1 associating with the

smallest eigenvalueλ1 is ignored here. Becauseq1 is a constant vector andqT
1 c = 0. Thus

ui =

n∑

k=2

c0qi
k − c0q

j
k

λk
qi

k,

and

u j =

n∑

k=2

c0qi
k − c0q

j
k

λk
q j

k,

whereqi
k andq j

k are thei-th and j-th component ofqk, respectively. According to Ohm’s

Law,

Ri j =
ui − u j

c0
=

n∑

k=2

(c0qi
k − c0q

j
k)(q

i
k − q j

k)

c0λk
=

n∑

k=2

(qi
k − q j

k)
2

λk
.

Let

pi = [qi
2/

√

λ2,qi
3/

√

λ3, ...,qi
n/

√

λn]
T

and

p j = [q j
2/

√

λ2,q
j
3/

√

λ3, ...,q j
n/

√

λn]
T ,
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we have

Ri j = ‖pi − p j‖2,

which means the effective resistance is the squared distance between two points in a vector

space. More generally, alln miRNAs are embedded into a linear space:

[p2,p3, · · · ,pn] =

[

q2√
λ2

,
q3√
λ3

, · · · , qn√
λn

]T

, (6.13)

where the squared Euclidean distance represents the effective resistance. Notice thatλ2 ≤

λ3 ≤ · · · ≤ λn, andq2, · · · ,qn are orthogonal to each other, thus [q2/
√
λ2,q3/

√
λ3,q4/

√
λ4]T

are the first threeprinciple componentsin the embedding space. In our study, we use these

three components to visualize the functional relationshipamong miRNAs.

6.3.3 Green’s function for miRNAs prediction

We use the electric resistor network model to illustrate ourmiRNAs prediction ap-

proach – miRNA gReen’s functioN Affinity Prediction (miRNAPred). LetG = ({V, ∂V},E)

denotes a graph, in which each vertexv ∈ V represents a putative candidate andv ∈ ∂V

represents a known miRNA precursor, an edgee ∈ E captures the relation between two

vertices linked bye, and the weightw of edgeequantifies the relation. More explicitly, we

write the weights in the following order:

W =





W∂V∂V,W∂VV

WV∂V,WVV





We use∂V to represent the known miRNAs, because the known nodes can be interpreted

as the boundary conditions of the partial differential equations. [272] showed that they are

under Dirichlet boundary conditions.
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Let the nodes corresponding to known miRNAs be imposed with a positive electric

current sourcec+ and putative candidates be imposed with negativec−. We chosec+ and

c− such thatmc− = −nc+, wheren andm are the number of known miRNAs and putative

candidates, respectively. Then the electric current vector is

c = (

n
︷      ︸︸      ︷

c+, · · · , c+,
m

︷      ︸︸      ︷

c−, · · · , c−)T . (6.14)

Let u be electric potential results of the nodes. According to Kirchhoff Law, Eqs.

(6.10) and (6.11) hold, which lead to the solution:

u = Gc,

or explicitly

ui =
∑

j∈∂V

Gi j c
+ +

∑

j∈V
Gi j c

−, i ∈ V. (6.15)

The electric potentialui provides a natural way to rank the putative candidate miRNAs,i.e.

we pick up the candidates which have highest potential.

miRNAPred Algorithm

We explicitly summarize miRNAPred algorithm as following:

1) Construct the local similarity matrix

W i j = e−‖xi−x j‖2/2σ2
, (6.16)

wherexi andx j are the feature vectors of (putative) miRNAsi and j, (described in§6.3.6),

i, j = 1,2, · · · ,N, whereN is the total number of miRNAs, includingn labeled miRNAs

(denoted by∂V) andm putative candidates (denoted byV), and compute the graph Lapla-

cian Ł= D −W, whereD = diag (We).
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2) ComputeG =
∑N

k=2 qkqT
k /λk, whereλk andqk are the eigenvalues and eigenvectors of

graph LaplacianL, see Equation (6.12).

3) Compute ranking scores for all unlabeled (putative candidate) miRNAs.ui =
∑

j∈∂V Gi j c++
∑

j∈V Gi j c−, i ∈ V. Here we setc+ = 1 andc− = −n/m.

4) Rank the putative candidates. Sort the ranking scoresui of candidates, and select top

ranked candidates as the final predicted miRNAs.

We should notice theW is calculated by different ways in visualization and miR-

NAPred, because the aims of visualization and prediction are different: miRNAPred uses

the structural similarity to predict the miRNAs, while visualization utilizes the targeting

genes to analyze miRNA functionality.

6.3.4 Data Sources

Here we introduce how the data are prepared for the Green’s function affinity com-

ponent in Figure 6.10.

6.3.4.1 MiRNAs-target bipartite graph

For human miRNAs visualization, we use the collection of miRNAs:target pairs

which can be found in website [273]. The data used in this chapter are downloaded on

Sept. 20th, 2010. There are 851 unique miRNAs, 21,199 unique genes, and 685,813 tar-

geting pairs in theHomo sapiensspecies. MiRNAs which are not found in the same species

in miRBase (http://www.mirbase.org/) are ignored. Considering miRNAs and target genes

as two sets of vertices, we construct a bipartite graphB as following: Bi j = 1 if the i-th

miRNA has thej-th target gene. The final size ofB is 711×21199 indicating 711 miRNAs

are selected. The total number of targeting pairs is 568,070.
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6.3.4.2 Human MicroRNA Prediction

The precursor sequences ofH. sapiensare downloaded from the miRBase4 ([267]).

Genome sequences of H.sapiens are retrieved from UCSC GenomeBrowser5. We verify

two versions of miRNAs datasets, one is the version of September 1, 2007, and the other

one is that of Release 16 ( Sept, 2010). The first one has 533 miRNAs, and this number

increased to 720 in the second version.

We randomly extract non-overlapping fragments of 90 nt fromthe genome so that

no genome annotation information is used. We first discard all fragments overlapping with

known miRNA precursors in miRBase (Release 15, Sept, 2010). For the extracted frag-

ments, we further predict their secondary structures usingRNAfold ([274]). We select

fragments with the following criteria: minimum 18 base pairings on the stem of the hairpin

structure, maximum−0.25kcal/molaverage free energy of the secondary structure and no

multiple loops. These fragments (putative candidates) arepooled together with two ver-

sions of known human miRNA precursors (533 miRNAs and 720 miRNAs, respectively)

which are all known human miRNA precursors except the ones serve as query samples in

our experiments to form the pool of candidates. The two versions of datasets are name

HSA1533 and HSA1720, respectively. The reason we add those known human miRNA

precursors to this pool of samples is to evaluate the prediction performance of the miR-

NAPred algorithm in terms of both precision and recall.

The reason why we choose 90 nt and a threshold of−0.25 kcal/mol for average free

folding energy is that most of the miRNA precursors are about 90 nt in length and have

lower average free energy than−0.25 kcal/mol, see Figure 6.12 for the statistics for the

precursor length and average free folding energy for all themiRNAs in all species available

at miRBase.
4http://www.mirbase.org/
5http://genome.ucsc.edu/
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Figure 6.12. Statistics for precursor length and average free folding energy of the all miR-
NAs in all species available at miRBase.A: the distribution of average free folding energy.
96.92% of the miRNAs have lower average free folding free energy than -0.25.B: The
correlation between average free folding energy and precursor length.C: Distributions of
sequence length of miRNA precursors. Most of the miRNA precursors are about 90 nt in
length. .

6.3.5 Drosophila melanogaster

The precursor sequences ofDrosophila melanogasterare downloaded from the miR-

Base (http://www.mirbase.org/) with Release 16 (Sept, 2010). Every chromosome ofD.

melanogasteris fragmented, from 5’-end to 3’-end, by a sliding window of 90 nt and a

shift increment of 45 nt. These fragments are folded by RNAfold ([274]), and hairpinned

fragments are selected by the same criteria described above. The chosen hairpin sequences

formed the initial candidate pool. In the fragmentation step, some putative candidates might

be cut into two pieces, and have lost their hairpin structures, hence were excluded from the

165



candidate pool. To avoid this, we further fragment, with thesame sliding window and in-

crement, the sequences between each pair of hairpinned fragments next to each other. The

secondary structures of the new set of fragments are predicted and selected by the same

tool and criteria. This process is iterated until no hairpinned fragment could be found.

6.3.6 Features used in miRNA prediction

We use the features introduced by [259] to describe miRNAs in avector space. The

entire hairpin structure of a miRNA precursor is characterized by 36 global and local in-

trinsic attributes that capture sequence, structural and topological properties of the miRNA

precursor. Details can be found in [259].
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CHAPTER 7

CONCLUSION

Interpretability is crucial to TCGA data analysis. The wholedissertation is dedicated

to developVunderstandable Data Mining and Machine Learning techniques for TCGA data

analysis.

We present the multi-subspace representation and discovery model, which is moti-

vated by the multi-subspace discovery problem. We solve themulti-subspace discovery

problem by providing block diagonal representation matrixwhere the data points are con-

nected in the same subspace and disconnected for different subspace. We then extend our

approach to handle noisy real world data which leads to the Multi-Subspace Representa-

tion. We develop an efficient algorithm for the presented model and a global optimizer is

guaranteed. Empirical studies suggest that our method improves the quality of the data

by sparse and low rank representation and the induced standalong classifier outperforms

standard sparse representation approach.

In this dissertation, we also propose the explicitℓ2/ℓ0-norm penalties and constraints

to obtain structural sparsity models in multi-task learning and group sparsity learning. The

induced learning problems are tackled by a novel general Lipschitz Auxiliary Function

framework, which reduces the learning problem into simple iterative algorithms. We pro-

vide theoretical convergent guarantee, as well as the convergence rate guarantee. Empirical

studies suggest that the explicitℓ2/ℓ0-norm and groupℓ2/ℓ0-norm models achieve much

lower objective values thanℓ2/ℓ1-norms under the same number selected joint variables.
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It is also natural to extend our optimization techniques foreven overlapped structural

sparsity, such as grouped tree structure learning, or combined our methods with some other

machine learning techniques such Structured Sparse Principal Component Analysis.

Our optimization techniques which are written in a general form, could also be useful

in other machine learning models which involved both smoothand non-smooth objective

functions. On the other hand, the concept of group lasso and the related groupℓ2/ℓ1 and

ℓ2/ℓ0 norms can be extended to more general cases,e.g. for grouping in matrices and

tensors, where our optimization techniques remain applicable.

We also present the Social Diffusion Process, which is motivated from the Matthew

effect in social phenomenons. We develop the stochastic model by the assumption that

social members tend to be together with someone who is familiar with. We also derive an

graph evolution algorithm based on the presented mode. Empirical studies show significant

improvement of the qualities of the graph data by the Social Diffusion Process, indicating

that the assumptions in our model are natural in general. We also discover a new miRNA

family in the experiment on miRNA functionality analysis.

In this dissertation, we proposeScalable Orthogonal Regression(SOR) to select low

redundancy features. We propose an efficient iterative algorithm to resolve the problem

and analyze its convergence rate. Furthermore, we also propose an extension of SOR to

incorporate preselected features according to prior expertise knowledge. The effectiveness

and efficiency of SOR is demonstrated on several benchmark data sets. Finally we also

validate the usefulness of SOR on a real world clinical data set.

We also proposed novel computation tool to visualize and predict (miRNAPred)

miRNAs using Green’s function approach. The visualization tool embeds miRNAs into

an Euclidean space, where the squared Euclidean distances naturally represent the func-

tional relationship. We discover four tightly connected miRNAs patterns, two of which

have been well studied in previous literature and two of which have not been explored yet.
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By investigating the visualization results and combining with existing causal biological re-

search and large scale micro-array experimental data, we discovered 20 pairs of miRNAs

which are both causally verified by biological experiments to be involved in one or more

in AML, prostate cancer, lung cancer, breast cancer, and ovarian cancer, and are nearby

in the visualization results. Out of the 20 pairs, 9 of them are dissimilar in sequences and

are discovered by different independent groups. We further discover 64 miRNAs which are

near a causal verified miRNA and which have been tested using micro-array experiments.

According to our analysis, these miRNAs are hypothesized involved in the corresponding

five diseases we considered. The miRNAPred predictor, was tested to be robust even when

few proportion of the miRNAs are used to retrieve unknown miRNAs. We successfully

apply miRNAPred onD. melanogaster, and discover 30 novel miRNAs, out of which 14

are conserved in other animal species.

To summarize, we developed several integrative machine learning and data mining

approaches from different point of views and it turns out that these approaches are consis-

tent in discovering interesting and understandable patterns in TCGA data.

169



APPENDIX A

PROOF OF LEMMA 3.6.2
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Proof Denote

Ja,µ(u) =
1
2
‖u − a‖2 + µ‖u‖, (A.1)

then,

Ja,µ(u) =
1
2

uTu − aTu +
1
2

aTa+ µ
√

uTu, (A.2)

∂Ja,µ(u)

∂u
= u − a+

µ
√

uTu
u, (A.3)

By setting∂Ja,µ(u)
∂x = 0, and by denotingb = 1√

puTu
, we have

u − a+ µbu/p = 0,

or

u =
a

1+ µb
, (A.4)

Equation (A.4) does not solve foru, sinceb is unknown. But we know that the optimalu

can be always represented by the following form,

u = βa, (A.5)

whereβ is scaler. By substituting (A.5) into (A.2), we have

Ja,µ(β) =
1
2
‖a‖2β2 + (µ‖a‖ − ‖a‖2)β + 1

2
‖a‖2. (A.6)
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‖a‖2

2

‖a‖ − λ

‖a‖

β

Ja,λ(β)

Ja,λ(β∗)

‖a‖2

2

‖a‖ − λ

‖a‖

β

Ja,λ(β)

Ja,λ(β∗)

Figure A.1. The optimal solution ofJa,µ. Left: the case ofp‖a‖ − µ ≤ 0. Right: the case of
p‖a‖ − µ ≥ 0. .

One can easily prove that whenu is the optimal solution of (A.1),β is non-negative. To

show this, we just assumeu = β̄a, β̄ < 0 is the optimal solution of (A.1). Then letu′ = −β̄a,

and

Ja,µ(u′) =
1
2

(1+ β̄)2‖a‖2 + |β̄|‖a‖

<
1
2

(1− β̄)2‖a‖2 + |β̄|‖a‖

=Ja,µ(u),

which is impossible, sinceu is the optimal solution. Thus the optimization problem in

(A.1) is to seek theβ ≥ 0, such thatu = βa gives the optimal solution, which leads to the

following problem,

Ja,µ(β) =
1
2
‖a‖2β2 + (µ‖a‖ − ‖a‖2)β + 1

2
‖a‖2, β ≥ 0. (A.7)
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One can check (see Figure A.1) that the optimal solution of (A.7) β∗ is given the

following,

β∗ =






0 if µ ≥ ‖a‖
‖a‖−µ
‖a‖ if µ < ‖a‖

(A.8)

or

u∗ =






0 if µ ≥ ‖a‖
‖a‖−µ
‖a‖ a if µ < ‖a‖

(A.9)

which completes the proof.
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APPENDIX B

PROOF OF THEOREM 3.7.1
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For two consecutive solutionsXt,Xt+1, since f (X) is convex andΦ(X) is convex on

D,

f (X∗) ≥ f (Xt) + 〈X∗ − Xt,▽ f (Xt)〉, (B.1)

λΦ(X∗) ≥ λΦ(Xt+1) + λ〈X∗ − Xt+1,G〉,

whereG ∈ ∂Φ(Xt+1) is any element in the sub-gradient ofΦ(X) at Xt+1. SinceXt+1 is the

optimal solution of

Z(X,Xt) =
p
2
‖X − A‖2F + λΦ(X) +C,

0 ∈ ∂Z(Xt+1,Xt), or

0 ∈ p(Xt+1 − A) + ∂λΦ(Xt+1).

Obviously,G = p(A − Xt+1)/λ must be in∂Φ(Xt+1). Thus we have

λΦ(X∗) ≥ λΦ(Xt+1) + λ〈X∗ − Xt+1, p(A − Xt+1)/λ〉. (B.2)

By combining (D.1) and (D.2) , we have

f (X∗) + λΦ(X∗) ≥〈X∗ − Xt,▽ f (Xt)〉 + λΦ(Xt+1) + λ〈X∗ − Xt+1, p(A − Xt+1)/λ〉,

By considering the fact thatZ(Xt+1,Xt+1) ≤ Z(Xt+1,Xt), and thatZ(Xt+1,Xt) ≤ Z(Xt,Xt),

we have

f (X∗) + λΦ(X∗) ≥ f (Xt+1) + λΦ(Xt+1) +
p
2
‖Xt+1 − Xt‖2F + p〈Xt − X∗,Xt+1 − Xt〉,
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or

J(Xt+1) − J(X∗) ≤p〈X∗ − Xt,Xt+1 − Xt〉 − p
2
‖Xt+1 − Xt‖2F

=p
(

〈X∗,Xt+1〉 + 〈Xt,Xt〉 − 〈X∗,Xt〉 − 〈Xt,Xt+1〉
)

− p
2

(

‖Xt+1‖2F + ‖Xt‖2F − 2〈Xt,Xt+1〉
)

=
p
2

(

‖Xt − X∗‖2 − ‖Xt+1 − X∗‖2
)

.

According to Theorem 3.5.2, we have

J(XT) ≤ J(XT−1) ≤ J(XT−2) ≤ · · · ≤ J(XT0).

Thus

T−1∑

t=T0

J(XT) − J(X∗) ≤
T−1∑

t=T0

p
2

(

‖Xt − X∗‖2F − ‖Xt+1 − X∗‖2F
)

=
p
2

(

‖XT0 − X∗‖2F − ‖XT − X∗‖2F
)

≤ p
2
‖XT0 − X∗‖2F ≤

pT

2
‖XT0 − X∗‖2F ,

or

J(XT) − J(X∗) ≤ pT

2(T − T0)
‖XT0 − X∗‖2. (B.3)

Notice here we use the relation of

pT ≥ pt, t = 1,2, · · · ,T − 1.
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APPENDIX C

PROOF OF THEOREM 4.4.1
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We first introduce the following Lemma.

Lemma 2. If A andB are semi-positive definite, thenA ⊙ B is also semi-positive definite.

Proof. We first notice that ifu andv are vectors, then

[

(uuT) ⊙ (vvT)
]

i j
= uiujvivj = (uivi)(ujvj),

Let wi = uivi, or w = u ⊙ v then

[

(uuT) ⊙ (vvT)
]

= wwT .

SinceA is semi-positive definite, there existU such thatA = UUT . For the same reason,

let B = VVT . Let U = [u1,u2, · · · ur ],V = [v1, v2, · · · , vs] wherer ands are the ranks ofA

andB, respectively, andwi j = ui ⊙ v j, then

A ⊙ B =
∑

i j
uiuT

i ⊙ v jvT
j =

∑

i j
wi j wT

i j =WWT ,

whereW = [w11, · · · ,w1s,w21, · · · ,wrs]. ThusA ⊙ B is semi-positive definite. �

Then we can prove the convexity off (α) by showing the Hessian matrix off (α) is

positive semi-definite. From the gradient of Eq. (4.17), we can compute the Hessian of

f (α) as

Hpq =
∂ (∇ f (α))p

∂αq
= Gpq+ β

∂
∑

j αpα j(xT
px j)2α j

∂αq
(C.1)

Let H̃pq =
∂
∑

j αpα jxT
i x jα j

∂αq
, then

H̃pq =






2α2
p(x

T
pxp)

2 +
∑

j
α2

j (x
T
px j)

2 if p = q

2αpαq(xT
pxp)

2 if p , q
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Thus the Hessian matrix is

H = G + 2βA ⊙G ⊙G + 2βdiag(a1,a2, · · · ,an),

whereA = ααT andai =
∑

j α j(xT
i x j)2, i = 1,2, · · · ,n. Sincea1 ≥ 0, diag(a1,a2, · · · ,an)

is positive semi-definite. And according to Lemma 2,A ⊙ G ⊙ G is also positive semi-

definite. ThusH is positive semi-definite. ThusH is positive semi-definite, andf (α) is

convex. Obviously,‖α‖1 is convex, henceJ(α) is convex.
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APPENDIX D

PROOF OF THEOREM 4.4.2
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The following proof is similar to paper [5]. For two consecutive solutionsαt,αt+1,

since f (α) is convex and‖α‖1 is convex,

f (α∗) ≥ f (αt) + (α∗αt)T∇ f (αt), (D.1)

λ‖α∗‖1 ≥ λ‖αt+1‖1 + λα∗ − gTαt+1,

whereg ∈ ∂‖α‖1 is any element in the sub-gradient of‖α‖1 atαt+1. Sinceαt+1 is the optimal

solution of

Z(α,αt) =
L
2
‖α − a‖2 + λ‖α‖1 +C,

0 ∈ ∂Z(αt+1,αt), or

0 ∈ L(αt+1 − a) + ∂λφ(at+1).

Obviously,G = L(a− αt+1)/λ must be in∂φ(αt+1). Thus we have

λ‖α∗‖1 ≥ λ‖αt+1‖ + L(α∗ − αt+1)T(a− αt+1). (D.2)

By combining (D.1) and (D.2) , we have

f (α∗) + λ‖α∗‖

≥(α∗ − αt)T∇ f (αt) + λ‖αt+1‖1 + L(α∗ − αt+1)T(a− αt+1),

By considering the fact thatZ(αt+1,αt+1) ≤ Z(αt+1,αt), and thatZ(αt+1,αt) ≤ Z(αt,αt), we

have

f (α∗) + λ‖α∗‖1 ≥ f (αt+1) + λ‖αt+1‖1 (D.3)

+
L
2
‖αt+1 − αt‖2 + L(αt − α∗)T(αt+1 − αt),
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then

J(αt+1) − J(α∗) ≤ L(α∗ − αt)T(αt+1 − αt) − L
2
‖αt+1 − αt‖2

= L
(

α∗Tαt+1 + αtTαt − α∗Tαt − αtTαt+1
)

−L
2

(

‖αt+1‖2 + ‖αt‖2 − 2αtTαt+1
)

=
L
2

(

‖αt − α∗‖2 − ‖αt+1 − α∗‖2
)

.

According to Eq. (4.13), we haveJ(αT) ≤ J(αT−1) ≤ · · · ≤ J(α0). Thus

∑T−1

t=T0
J(αT)−J(α∗)≤

∑T−1

t=0

L
2

(

‖αt−α∗‖2F−‖αt+1−α∗‖2F
)

=
L
2

(

‖α0−α∗‖2F−‖αT−α∗‖2F
)

≤ L
2
‖α0−α∗‖2F ≤

LT

2
‖α0−α∗‖2F ,

or

J(αT) − J(α∗) ≤ LT

2T
‖α0 − α∗‖2. (D.4)

Notice here we use the relation of

LT ≥ Lt, t = 1,2, · · · ,T − 1.
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[176] G. Hannum, R. Srivas, A. Guénoĺe, H. Van Attikum, N. Krogan, R. Karp, and

T. Ideker, “Genome-wide association data reveal a global map of genetic interac-

tions among protein complexes,”PLoS Genet, vol. 5, no. 12, p. e1000782, 2009.

[177] C. Choudhary, C. Kumar, F. Gnad, M. Nielsen, M. Rehman, T. Walther, J. Olsen,

and M. Mann, “Lysine acetylation targets protein complexesand co-regulates major

cellular functions,”Science’s STKE, vol. 325, no. 5942, p. 834, 2009.

[178] V. Spirin and L. Mirny, “Protein complexes and functional modules in molecular

networks,”Proceedings of the National Academy of Sciences of the UnitedStates of

America, vol. 100, no. 21, p. 12123, 2003.

[179] S. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier,

K. Reinert, D. Brown, and F. Slack, “RAS is regulated by the let-7microRNA fam-

ily,” Cell, vol. 120, no. 5, pp. 635–647, 2005.

200



[180] N. Yanaihara, N. Caplen, E. Bowman, M. Seike, K. Kumamoto, M. Yi, R. Stephens,

A. Okamoto, J. Yokota, T. Tanaka,et al., “Unique microRNA molecular profiles in

lung cancer diagnosis and prognosis,”Cancer cell, vol. 9, no. 3, pp. 189–198, 2006.

[181] J. Takamizawa, H. Konishi, K. Yanagisawa, S. Tomida, H. Osada, H. Endoh, T. Ha-

rano, Y. Yatabe, M. Nagino, Y. Nimura,et al., “Reduced expression of the let-7

microRNAs in human lung cancers in association with shortened postoperative sur-

vival,” Cancer Research, vol. 64, no. 11, p. 3753, 2004.

[182] C. Mayr, M. Hemann, and D. Bartel, “Disrupting the pairing between let-7 and

Hmga2 enhances oncogenic transformation,”Science, vol. 315, no. 5818, p. 1576,

2007.

[183] Y. Lee, K. Jeon, J. Lee, S. Kim, and V. Kim, “MicroRNA maturation: stepwise

processing and subcellular localization,”The EMBO journal, vol. 21, no. 17, pp.

4663–4670, 2002.

[184] Y. Altuvia, P. Landgraf, G. Lithwick, N. Elefant, S. Pfeffer, A. Aravin, M. Brown-

stein, T. Tuschl, and H. Margalit, “Clustering and conservation patterns of human

microRNAs,”Nucleic acids research, vol. 33, no. 8, p. 2697, 2005.

[185] G. Stefani and F. Slack, “Small non-coding RNAs in animal development,”Nature

Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008.

[186] A. Dixon-McIver, P. East, C. Mein, J. Cazier, G. Molloy, T. Chaplin, T. Lister,

B. Young, and S. Debernardi, “Distinctive patterns of microRNA expression associ-

ated with karyotype in acute myeloid leukaemia,”PLoS One, vol. 3, no. 5, p. 2141,

2008.

[187] Q. Huang, K. Gumireddy, M. Schrier, C. Le Sage, R. Nagel, S. Nair, D. Egan, A. Li,

G. Huang, A. Klein-Szanto,et al., “The microRNAs miR-373 and miR-520c pro-

mote tumour invasion and metastasis,”Nature cell biology, vol. 10, no. 2, pp. 202–

210, 2008.

201



[188] K. To, R. Robey, T. Knutsen, Z. Zhan, T. Ried, and S. Bates, “Escape from hsa-miR-

519c enables drug-resistant cells to maintain high expression of ABCG2,”Molecular

cancer therapeutics, vol. 8, no. 10, p. 2959, 2009.

[189] J. Ren, P. Jin, E. Wang, F. Marincola, and D. Stroncek, “MicroRNA and gene ex-

pression patterns in the differentiation of human embryonic stem cells,”Journal of

Translational Medicine, vol. 7, no. 1, p. 20, 2009.

[190] S. Mees, W. Mardin, C. Wendel, N. Baeumer, E. Willscher, N. Senninger, C. Schle-

icher, M. Colombo-Benkmann, and J. Haier, “EP300 – A miRNA-regulated metasta-

sis suppressor gene in ductal adenocarcinomas of the pancreas,” International Jour-

nal of Cancer, vol. 126, no. 1, pp. 114–124, 2010.

[191] J. Piriyapongsa and I. Jordan, “A family of human microRNA genes from miniature

inverted-repeat transposable elements,”PLoS One, vol. 2, no. 2, p. 203, 2007.

[192] D. Gibbons, W. Lin, C. Creighton, Z. Rizvi, P. Gregory, G. Goodall, N. Thila-

ganathan, L. Du, Y. Zhang, A. Pertsemlidis,et al., “Contextual extracellular cues

promote tumor cell EMT and metastasis by regulating miR-200 family expression,”

Genes& development, vol. 23, no. 18, p. 2140, 2009.

[193] Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa, S. Tomida,

Y. Yatabe, K. Kawahara, Y. Sekido, and T. Takahashi, “A polycistronic microRNA

cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell pro-

liferation,” Cancer research, vol. 65, no. 21, p. 9628, 2005.

[194] M. Fabbri, R. Garzon, A. Cimmino, Z. Liu, N. Zanesi, E. Callegari, S. Liu, H. Alder,

S. Costinean, C. Fernandez-Cymering,et al., “MicroRNA-29 family reverts aberrant

methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,”Pro-

ceedings of the National Academy of Sciences, vol. 104, no. 40, p. 15805, 2007.

[195] R. Garzon, F. Pichiorri, T. Palumbo, M. Visentini, R. Aqeilan, A. Cimmino,

H. Wang, H. Sun, S. Volinia, H. Alder,et al., “MicroRNA gene expression dur-

202



ing retinoic acid-induced differentiation of human acute promyelocytic leukemia,”

Oncogene, vol. 26, no. 28, pp. 4148–4157, 2007.

[196] D. Bhaumik, G. Scott, S. Schokrpur, C. Patil, J. Campisi, and C. Benz, “Expression

of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential

in breast cancer cells,”Oncogene, vol. 27, no. 42, pp. 5643–5647, 2008.

[197] P. Gregory, A. Bert, E. Paterson, S. Barry, A. Tsykin, G. Farshid, M. Vadas, Y. Khew-

Goodall, and G. Goodall, “The miR-200 family and miR-205 regulate epithelial to

mesenchymal transition by targeting ZEB1 and SIP1,”Nature cell biology, vol. 10,

no. 5, pp. 593–601, 2008.

[198] J. Zhao, J. Lin, H. Yang, W. Kong, L. He, X. Ma, D. Coppola,and J. Cheng,

“MicroRNA-221/222 negatively regulates estrogen receptorα and is associated with

tamoxifen resistance in breast cancer,”Journal of Biological Chemistry, vol. 283,

no. 45, p. 31079, 2008.

[199] X. Hu, D. Macdonald, P. Huettner, Z. Feng, I. El Naqa, J.Schwarz, D. Mutch,

P. Grigsby, S. Powell, and X. Wang, “A miR-200 microRNA clusteras prognostic

marker in advanced ovarian cancer,”Gynecologic oncology, vol. 114, no. 3, pp.

457–464, 2009.

[200] X. Chen, J. Gong, H. Zeng, N. Chen, R. Huang, Y. Huang, L. Nie, M. Xu, J. Xia,

F. Zhao,et al., “MicroRNA145 Targets BNIP3 and Suppresses Prostate Cancer Pro-

gression,”Cancer research, vol. 70, no. 7, p. 2728, 2010.

[201] R. Prueitt, M. Yi, R. Hudson, T. Wallace, T. Howe, H. Yfantis, D. Lee,et al., “Ex-

pression of microRNAs and protein-coding genes associated with perineural inva-

sion in prostate cancer,”The Prostate, vol. 68, no. 11, pp. 1152–1164, 2008.

[202] H. Matsubara, T. Takeuchi, E. Nishikawa, K. Yanagisawa, Y. Hayashita, H. Ebi,

H. Yamada, M. Suzuki, M. Nagino, Y. Nimura,et al., “Apoptosis induction by anti-

203



sense oligonucleotides against miR-17-5p and miR-20a in lungcancers overexpress-

ing miR-17-92,”Oncogene, vol. 26, no. 41, pp. 6099–6105, 2007.

[203] J. Foekens, A. Sieuwerts, M. Smid, M. Look, V. De Weerd,A. Boersma, J. Klijn,

E. Wiemer, and J. Martens, “Four miRNAs associated with aggressiveness of lymph

node-negative, estrogen receptor-positive human breast cancer,”Proceedings of the

National Academy of Sciences, vol. 105, no. 35, p. 13021, 2008.

[204] S. Reddy, K. Ohshiro, S. Rayala, and R. Kumar, “MicroRNA-7,a homeobox D10

target, inhibits p21-activated kinase 1 and regulates its functions,”Cancer research,

vol. 68, no. 20, p. 8195, 2008.

[205] R. Webster, K. Giles, K. Price, P. Zhang, J. Mattick, andP. Leedman, “Regulation of

epidermal growth factor receptor signaling in human cancercells by microRNA-7,”

Journal of Biological Chemistry, vol. 284, no. 9, p. 5731, 2009.

[206] P. Hsu, D. Deatherage, B. Rodriguez, S. Liyanarachchi, Y. Weng, T. Zuo,

J. Liu, A. Cheng, and T. Huang, “Xenoestrogen-induced epigenetic repression of

microRNA-9-3 in breast epithelial cells,”Cancer research, vol. 69, no. 14, p. 5936,

2009.

[207] Y. Saito, G. Liang, G. Egger, J. Friedman, J. Chuang, G. Coetzee, and P. Jones,

“Specific activation of microRNA-127 with downregulation ofthe proto-oncogene

BCL6 by chromatin-modifying drugs in human cancer cells,”Cancer cell, vol. 9,

no. 6, pp. 435–443, 2006.

[208] X. Li, P. Yan, and Z. Shao, “Downregulation of miR-193b contributes to enhance

urokinase-type plasminogen activator (uPA) expression and tumor progression and

invasion in human breast cancer,”Oncogene, vol. 28, no. 44, pp. 3937–3948, 2009.

[209] V. Findlay, D. Turner, O. Moussa, and D. Watson, “MicroRNA-mediated inhibition

of prostate-derived Ets factor messenger RNA translation affects prostate-derived

204



Ets factor regulatory networks in human breast cancer,”Cancer Research, vol. 68,

no. 20, p. 8499, 2008.

[210] K. Taganov, M. Boldin, K. Chang, and D. Baltimore, “NF-κB-dependent induction

of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune

responses,”Proceedings of the National Academy of Sciences, vol. 103, no. 33, p.

12481, 2006.

[211] J. Shen, C. Ambrosone, R. Dicioccio, K. Odunsi, S. Lele, and H. Zhao, “A func-

tional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer

diagnosis,”Carcinogenesis, 2008.
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