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ABSTRACT

TRAJECTORY GENERATION AND CONSTRAINED CONTROL

OF QUADROTORS

CARLOS ALBERTO TULE, M.S.

The University of Texas at Arlington, 2012

Supervising Professor: Kamesh Subbarao

Unmanned Aerial Systems, although still in early development, are expected to

grow in both the military and civil sectors. As part of the UAV sector, the Quadrotor

helicopter platform has been receiving a lot of interest from various academic and

research institutions because of their simplistic design and low cost to manufacture,

yet remaining a challenging platform to control.

Four different controllers were derived for the trajectory generation and con-

strained control of a quadrotor platform. The first approach involves the linear version

of the Model Predictive Control (MPC) algorithm to solve the state constrained opti-

mization problem. The second approach uses the State Dependent Coefficient (SDC)

form to capture the system non linearities into a pseudo-linear system matrix, which

is used to derive the State Dependent Riccati Equation (SDRE) based optimal con-

trol. For the third approach, the SDC form is exploited for obtaining a nonlinear

equivalent of the model predictive control. Lastly, a combination of the nonlinear

MPC and SDRE optimal control algorithms is used to explore the feasibility of a

near real-time nonlinear optimization technique.
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CHAPTER 1

INTRODUCTION

1.1 The Quadrotor Helicopter platform

Figure 1.1. Draganflyer V Quadrotor.

A Quadrotor helicopter platform (often just called Quadrotor), is an under-

actuated helicopter with two pairs of rotors in cross configuration capable of spinning

at different angular velocities in order to achieve motion. Rotor pair (1,3) spins in

one direction while the pair (2,4) spins in the opposite (see Figure 1.2). The different

motions the quadrotor can perform are

• Vertical motion: Achieved by simultaneous change in rotor speed

• Roll motion: Achieved by imbalance in the rotor speed of pair (2,4).

• Pitch motion: Achieved by imbalance in the rotor speed of pair (1,3).
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• Yaw motion: Achieved by rotor speed imbalance between all rotors.

Figure 1.2. Diagram of a Quadrotor top view, image courtesy of
https://pixhawk.ethz.ch/.

Quadrotors have been gaining popularity as research platforms because of their

simplicity of design, their low cost of manufacturing compared to other unmanned

aerial vehicles. Because they are challenging vehicles to control, wherever operated in

an indoor environment or in the open field, they make a great platform for research

and development. They also possess many advantages over standard helicopters in

terms of safety and efficiency at small sizes [1], and unlike normal helicopters, the

rotor pitch is fixed as they rotate.

There are many applications for a quadrotor platform, both in the military and

the civil sectors. Some of their possible applications are [2]:

Military applications

2



• Surveillance and Reconnaissance

• Search and Rescue

• Communications

• Logistics missions

Civil applications:

• Search and Rescue

• Surveillance

• Wildlife monitoring

• Terrain mapping

• Cave exploring

• Network and Communications

• Research and Development

• Entertainment

Currently, unmanned aerial vehicles applications are mostly in the military

field. [3] However, due to having a very promising application in research an develop-

ment, the quadrotor makes a good platform for testing new technological advances.

One of the most recent experiments on quadrotors involved forty nine quadrotors in

formation flight from ARS Electronica performing a choreographed dance [4] (Figure

1.3).

1.2 Literature review

There has been some research performed in the area of trajectory generation

and constrained control of unmanned vehicles. A. de Luca [5, 6] has worked on gen-

erating trajectories for robots, where he discusses a spline interpolation method to

solve a minimum time optimization problem, while staying under torque and veloc-

ity constraints. Y. Bouktir [7] also used a spline interpolation method to generate

optimal-time trajectories and applied it to a micro quadrotor.

Daniel Mellinger and Nathan Michael [8] from the University of Pennsylvania

have been working with quadrotors. They have rewritten the equations of motion as

algebraic functions of a flat output: outputs that can express the states and inputs of

3



Figure 1.3. Quadrotor formation flight, image courtesy of http://www.aec.at.

the system in terms of its outputs and their derivatives [9]. This approach facilitates

the automatic trajectory generation for the system. They also included position

constraints and generated trajectories that require large, feasible accelerations for the

quadrotor. In [10] they generate trajectories by designing a sequence of controllers to

drive the system to a desired goal state G.

H. Huang in [11, 12] discusses the design of safe, aggressive maneuvers and

control for a back flip trajectory. Hoffmann in [13] constructed a dynamically fea-

sible, desired speed profile for a given sequence of waypoints. M. Hehn and R.

D’Andrea [14, 15] from ETH Zurich have worked on trajectory generation for quadro-

tors. They implemented dynamic constraints to an optimal control method and ver-

ified the existence of optimal trajectories.

I. Palunko, R. Fierro, and P. Cruz [16] address the problem of quadrotor tra-

jectory generation and tracking while carrying a suspended payload. They solved

this by developing an optimal controller based on the dynamic programming tech-

4



nique: breaking down a problem into several subproblems. H. Kim, D. Shim and S.

Sastry [17] looked into nonlinear model predictive tracking control (NMPTC), and

applied it generate trajectories to unmanned rotorcraft while staying under input and

state constraints.

1.3 Thesis outline

This thesis derives the equations of motion for the quadrotor, the linearization

of the system, and the use of an optimal control algorithm to constrain the input

and outputs of the system and develop a feasible trajectory. Chapter 3 focuses on

the development of the Model Predictive Control (MPC) formulation to derive an

optimal controller and feasible trajectories. Chapter 4 addresses the State Dependent

Coefficient (SDC) form which allows the representation of the system in a pseudo-

linear form, as well as the use of a Ricatti controller. Chapter 5 deals with a nonlinear

version of the MPC by using the SDC form from Chapter 4. Chapter 6 discusses the

effect of combining the Riccati controller and the nonlinear MPC. Finally, chapter 7

addresses the overall results from all schemes and provides some final remarks on the

research presented in this thesis.

5



CHAPTER 2

THE QUADROTOR MODEL

2.1 Reference frames

In order to formulate an appropriate mathematical model of the quadrotor, it is

first required to define a set of coordinate systems for specifying the position, velocity,

forces and moments acting on the vehicle [18]. Let the inertial reference frame be the

surface of the earth, and the body frame to be fixed to the body of the quadrotor. For

the body axes system the center of gravity is selected to be the origin of the frame,

the positive x direction points toward rotor 1, positive y direction points toward its

right or rotor 2, and the positive z axis direction of the frame points downward so as

to complete the form of a right-hand system, as shown in Fig. (2.1).

Figure 2.1. Quadrotor coordinate frames.
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2.2 Rotational matrix

In the mathematical formulation of the vehicle, it is necessary to relate the

body frame to the inertial frame. This can be achieved by using a rotation matrix

that translates the body dynamics into another frame [19], which for the quadrotor

case is some reference in the surface. Such orientation can be described by using the

Euler angles method [20], where three consecutive rotations about the three Euler

angles φ, θ and ψ make the inertial frame coincide with the Body axes frame. A 3-2-1

Euler angle sequence is used to construct the rotation matrix such that the rotation

from inertial frame to the body frame is defined as

T bI = R(φ)R(θ)R(ψ) (2.1)

where

R(φ) =


1 0 0

0 C(φ) S(φ)

0 −S(φ) C(φ)

 , R(θ) =


C(θ) 0 −S(θ)

0 1 0

S(θ) 0 C(θ)

 , R(ψ) =


C(ψ) S(ψ) 0

−S(ψ) C(ψ) 0

0 0 1


such that

T bI =


C(θ)C(ψ) C(θ)S(ψ) −S(θ)

S(θ)S(φ)C(ψ)− S(ψ)C(φ) S(ψ)S(θ)S(φ) + C(ψ)C(φ) S(φ)C(θ)

S(θ)C(φ)C(ψ) + S(ψ)S(φ) S(ψ)S(θ)C(φ)− C(ψ)S(φ) C(φ)C(θ)


(2.2)

Where C(·) and S(·) denote Cos(·) and Sin(·).

In order to avoid ambiguities and prevent possible singularities in the equations

of motion due to the Euler angles technique, it is necessary to restrict the range that

each angle is able to take. Let the maximum and minimum value of each angle be

7



−π ≤ φ ≤ π

−π
2

< θ < π
2

−π < ψ < π

(2.3)

2.3 System Modeling

Several assumptions need to be made in order to derive the equations of motion

governing the quadrotor helicopter. Such assumptions are:

• Center of gravity of the vehicle and the body frame origin coincide.

• Earth is flat and non rotating.

• Structure is rigid.

• Vehicle is symmetric.

• Vehicle has a fixed mass.

With these assumptions it is now possible to obtain the kinematics and dynam-

ics equations of motion.

2.3.1 Quadrotor kinematics

2.3.1.1 Rotational kinematics

The rotational kinematics are the vehicle angular velocity components and are

usually expressed in the body frame (p, q, r), so it is necessary to map them to the

derivatives of the Euler angles by a series of rotations. Therefore:


p

q

r

 = R(φ)R(θ)


0

0

ψ̇

+R(φ)


0

θ̇

0

+


φ̇

0

0

 (2.4)

Substituting R(φ) and R(θ)

8




p

q

r

 =


1 0 −S(θ)

0 C(φ) S(φ)C(θ)

0 −S(φ) C(φ)C(θ)



φ̇

θ̇

ψ̇

 (2.5)


φ̇

θ̇

ψ̇

 =


1 0 −S(θ)

0 C(φ) S(φ)C(θ)

0 −S(φ) C(φ)C(θ)


−1 

p

q

r

 (2.6)


φ̇

θ̇

ψ̇

 =


1 T (θ)S(φ) T (θ)C(φ)

0 C(φ) −S(θ)

0 −S(φ)
C(θ)

C(φ)
C(θ)



p

q

r

 (2.7)

2.3.1.2 Translational kinematics

Let VI denote the velocity components in the inertial frame (ẋ,ẏ,ż) and VB the

velocity vector of the rigid body (u,v,w). It is possible to translate the motion in the

Body frame to the Inertial frame by using the rotational matrix of equation (2.2),

such that

VI = [T bI ]TVB (2.8)

Therefore
ẋ

ẏ

ż

 =


C(θ)C(ψ) S(θ)S(φ)C(ψ)− C(φ)S(ψ) S(θ)C(φ)C(ψ) + S(φ)S(ψ)

C(θ)S(ψ) S(θ)S(φ)S(ψ) + C(φ)C(ψ) S(θ)C(φ)S(ψ)− S(φ)C(ψ)

−S(θ) C(θ)S(φ) C(θ)C(φ)



u

v

w


(2.9)
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2.3.2 Quadrotor dynamics

2.3.2.1 Translational dynamics

The translational dynamics are based on Newton’s second law of motion

FI = m

(
dVI
dt

)
(2.10)

we can obtain the velocity component VI in terms of the body frame velocity such

that

[T bI ]TFb = m
d

dt
([T bI ]TVb) (2.11)

taking its derivative with respect to time

m
(

˙[T bI ]TVb + [T bI ]T V̇b

)
= [T bI ]TFb (2.12)

Premutiplying by [T bI ]

m[T bI ] ˙[T bI ]
T
Vb +mV̇b = Fb (2.13)

Solving for V̇b

mV̇b = mS(ωB)Vb + Fb (2.14)

where S(ωB) is the skew symmetric form of the angular velocity vector in the body

frame (p,q,r)

Expanding equation (2.14), the translational dynamics in the body frame can

be defined as 
u̇

v̇

ẇ

 =
1

m


Fx

Fy

Fz

+ [T bI ]


0

0

g

−

q · w − r · v

r · u− p · w

p · v − q · u

 (2.15)

where m is the mass, g is the gravity, and Fx, Fy and Fz are the forces in the x, y

and z axis respectively.
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2.3.2.2 Rotational dynamics

Euler’s equation for rotationa dynamics relates the change in angular momen-

tum in a specific point to the sum of external moments acting around that point,

such that

d

dt
(IIωI) = MI (2.16)

where II is the inertia matrix given in the inertial frame, ωI is the angular velocity

in the inertial frame, and MI is the representation of the external moment vector in

the inertial frame.The rotation matrix [T bI ] can then be used to translate the Inertia

matrix and angular velocity in the inertial frame to the body frame, allowing to write

equation (2.16) as

d

dt

(
[T bI ]T Ib[T

b
I ][T bI ]Tωb

)
= [T bI ]TMb (2.17)

d

dt

(
[T bI ]T Ibωb

)
= [T bI ]TMb (2.18)

Taking its time derivative

˙[T bI ]
T
Ibωb + [T bI ]T Ibω̇b = [T bI ]TMb (2.19)

Premultiplying everything by [T bI ]

[T bI ] ˙[T bI ]
T
Ibωb + Ibω̇b = Mb (2.20)

and

[T bI ] ˙[T bI ]
T

= −S(ωb) (2.21)

Therefore

−S(ωb)Ibωb + Ibω̇b = Mb (2.22)

Solving for ω̇b

ω̇b = I−1b (Mb + S(ωb)Ibωb) (2.23)
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Equation (2.23) can also be written as

ω̇b = I−1b (Mb + ωb × (Ibωb)) (2.24)

Where the Inertia matrix is given by

Ib =


Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

 (2.25)

and the moment vector is given by

Mb =


L

M

N

 (2.26)

where L,M and N are the roll, pitch and yaw moments in the body frame around

the vehicle center of gravity.

2.4 Simplification of the equations of motion

The equations of motion previously derived represent the general state of the

quadrotor with respect to the surface of the Earth. However, since most control

systems are derived based on a linear model, these governing equations need to be

further simplified or linearized around some reference condition. One possible way

to simplify the equations of motion is by using the Small Disturbance Theory. This

method assumes that the general motion of the vehicle consists of small amplitude
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deviations or disturbances from a steady operating point. Therefore, the disturbed

motion becomes

u = u0 + ∆u v = v0 + ∆v w = w0 + ∆w

p = p0 + ∆p q = q0 + ∆q r = r0 + ∆r

φ = φ0 + ∆φ θ = θ0 + ∆θ ψ = ψ0 + ∆ψ

x = x0 + ∆x y = y0 + ∆y z = z0 + ∆z

Fx = Fx0 + ∆Fx Fy = Fy0 + ∆Fy Fz = Fz0 + ∆Fz

L = L0 + ∆L M = M0 + ∆M N = N0 + ∆N

Where the suffix 0 denotes the steady operating point.

For the purpose of this research, it is necessary to linearize the quadrotor around

a trim condition. Such trim condition was chosen to be hover. While hovering, all

the steady operating points are zero except for the vertical force Fz, which must

compensate for the gravity effect. Therefore

u = ∆u v = ∆v w = ∆w

p = ∆p q = ∆q r = ∆r

φ = ∆φ θ = ∆θ ψ = ∆ψ

x = ∆x y = ∆y z = ∆z

Fx = ∆Fx Fy = ∆Fy Fz = m · g + ∆Fz

L = ∆L M = ∆M N = ∆N
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The next step is to substitute those values into the equations of motion. By ignoring

higher order terms and taking the sine of a small angle to be equal to itself, and the

cosine of a small angle to be equal to one, the equations of motion then become

∆u̇ = −g∆θ + ∆Fx/m

∆v̇ = g∆φ+ ∆Fy/m

∆ẇ = ∆Fz

∆ṗ = ∆L/Ix

∆q̇ = ∆M/Iy

∆ṙ = ∆N/Iz

∆φ̇ = ∆p

∆θ̇ = ∆q

∆ψ̇ = ∆r

∆ẋ = ∆u

∆ẏ = ∆v

∆ż = ∆w

(2.27)

14



CHAPTER 3

THE MODEL PREDICTIVE CONTROL APPROACH

3.1 Introduction

Model predictive control (MPC) which can also be called Receding Horizon

Control (RHC), is a technique in which a mathematical model of a system is used

to solve a finite, moving horizon, closed loop optimal control problem [21] by using

the current states of the system [22]. MPC is able to take into account the physical

and mechanical limitations of the plant during the design process [23], and predict

a number of future outputs of the system (called Prediction Horizon), in order to

formulate an optimal controller effort to bring the system to a desired state given a

reference trajectory.

This optimization problem is solved at each sampling interval but only the first

part of the solution to the optimization problem is applied to the system until the next

sampling interval. This routine is repeated for each subsequent time intervals [24].

3.2 Model Predictive Control Formulation

3.3 Plant Model and Prediction Horizon

Let a nonlinear system of the form

ẋ = f(x(t), u(t)) (3.1)

Where x(t) ∈ <n are the system states, and u(t) ∈ <m are the system inputs.
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The system can then be modeled as a linear, discrete-time system form

xk+1 = Adxk +Bduk

yk = Cdxk +Dduk

(3.2)

Where k is the current sample,Ad ∈ <nxn is the state matrix, Bd ∈ <nxm is the input

matrix, Cd ∈ <pxn is the output matrix, and Dd ∈ <pxm is the feedforward matrix.

The objective is to drive the system towards a desired state. For this, the

controller uses a Prediction Horizon N to predict a number of future states of the

system. In order to estimate such outputs the current measurements of the system

are employed within an estimator in order to predict its future behavior.

To predict such future states of the system, it is required to implement a state

observer in the controller formulation. For this approach, a Linear Quadratic Esti-

mator (Kalman filter) is used. It uses the current state to compute a Kalman gain

for the discrete-time problem of equation (3.2) [25].

x̂k+1+i = Adx̂k+i +Bduk+i

ŷk+i = Cdx̂k+i +Dduk+i

(3.3)

where

i = 1, 2 ... N (3.4)

By expanding equation (3.3), the predicted states and predicted outputs can

be obtained based only on the initial state of the system and its future control input

uk+j

x̂k+2 = Adx̂k+1 +Bduk+1

x̂k+3 = Adx̂k+2 +Bduk+2

= Ad(Adx̂k+1 +Bduk+1) +Bduk+2

= A2
dx̂k+1 + AdBduk+1 +Bduk+2

...

x̂k+N = AN−1d x̂k+1 +
∑N−1

j=1 A
N−j−1Bduk+j

(3.5)
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Once the state predictions have been derived, the output state equations can be

derived in a similar way as equation (3.5).

ŷk+1 = Cdx̂k+1 +Dduk+1

ŷk+2 = Cdx̂k+2 +Dduk+2

= Cd(Adx̂k+1 +Bduk+1) +Dduk+2

= CdAdx̂k+1 + CdBduk+1 +Dduk+2

...

ŷk+N = CdA
N−1
d x̂k+1 + Cd(

∑N−1
j=1 A

N−j−1
d Bduk+j) +Dduk+N

(3.6)

Thus, the standard prediction matrix is of the form

x̂k+2

x̂k+3

x̂k+4

...

x̂k+N+1


=



A

A2

A3

...

AN


x̂k+1 +



B 0 ... 0

AB B ... 0

A2B AB ... 0

...
...

. . .
...

AN−1B AN−2 ... B





uk+1

uk+2

uk+3

...

uk+N


(3.7)



yk+1

yk+2

yk+3

...

yk+N


=



C

CA

CA2

...

CAN−1


x̂k+1 +



D 0 ... 0

CB D ... 0

CAB CB ... 0

...
...

. . .
...

CAN−2B CAN−3 ... D





uk+1

uk+2

uk+3

...

uk+N


(3.8)

Or, in its short form

X̄k = Āx̂k+1 + B̄Ūk

Ȳk = C̄x̂k+1 + D̄Ūk

(3.9)
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3.4 Controller Design

The MPC algorithm requires the use of an objective function in its control for-

mulation in order to calculate the optimal solution at each sampling interval. It must

be chosen in a way such that the predicted outputs, derived from the prediction hori-

zon N (equation 3.9) drive the system to a desired state or track a desired trajectory

yd, while at the same time, it should minimize the controller effort uk required [26].

For the quadrotor scenario, the penalty function for the states in the objective

function is chosen such that it penalizes the norm of the difference between the current

output states and the desired trajectory ||yk − yd||2. In addition, we can choose a

similar way to penalize quick changes in the actuator dynamics. This can be done by

including the term ||uk − uk−1||2.

Therefore, the penalty function for the entire prediction horizon is of the form

J(x̂k+1, uk) =
1

2

N∑
j=1

(
||ŷk+j − ydk+j ||2Q + ||uk+j − uk+j−1||2R

)
(3.10)

It is important to note that usually, the reference trajectory yd is known in

advance. This implies that the controller is able to react beforehand and predict a

series of adequate inputs that will drive the system towards the desired goal.

In the quadratic form of equation (3.10) the term ||ŷk+j − ydk+j ||2Q can be ex-

panded into (yk − ydk)TQ(yk − ydk), where Q is a diagonal, positive definite matrix.

Similarly we can expand the term ||uk+j − uk+j−1||2R into (uk+j − uk+j−1)TR(uk+j −

uk+j−1), where R is also a diagonal, positive definite matrix.

Expanding the summation terms of equation (3.10)

J(x̂k+1, Uk) =
1

2

[
(Ȳk − Ȳd)T Q̄(Ȳk − Ȳd) + (Ūk − uk−1)T R̄(Ūk − uk−1)

]
(3.11)
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with Q̄ and R̄ being block diagonal matrices defined as

Q̄ =



Q

Q

. . .

Q


(3.12)

R̄ =



2R −R

−R 2R −R
. . .

−R R


(3.13)

Substituting Ȳk from equation (3.9) into equation (3.11) the objective function

can be expressed as [27]:

J(x̂k+1, Uk) = 1
2
UT
k HUk + UT

t f (3.14)

where

H = D̄T Q̄D̄ + R̄ (3.15)

f =
[
D̄T Q̄C̄ − D̄T Q̄

]  x̂k+1

Ȳd

−


Ruk

0

...

0


(3.16)

3.5 Quadratic Programming

Since the cost function from equation (3.14) is of quadratic form, a Linear

Quadratic Programming method can be used to solve the optimization problem. The

Linear Quadratic Programming method solves optimization problems of the form [28]:

19



f(x) = 1
2
xTHx+ fTx

s.t. Ax ≤ b

Aeqx = Beq

(3.17)

The idea behind QP is to minimize the quadratic function of equation (3.14)

by looking for a feasible search direction

3.5.1 Input and State Constraint handling

Special attention can be given to the constraint handling capabilities of the

MPC problem formulation now that the objective function has been specified (equa-

tion 3.14).In the case of the quadrotor, it is needed to constrain both the total thrust

force of each rotor and restrict the magnitude of the angles in order to stay within

the limits allowed by the Euler angles formulation discussed in Chapter 2.

3.5.2 Input Constraints

It is needed to constrain the maximum force each rotor is able to deliver in our

mathematical model in order to make it perform in such a way that it resembles a

realistic physical model. The forces need to be within some lower bound lb and some

upper bound ub

lb ≤ Fi ≤ ub (3.18)

These constraints can be expressed in matrix form as follows

 I

−I

Uk ≤
 ub

lb

 (3.19)

Where ub and lb denote upper bound and lower bound respectively, and I is an identity

matrix.
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3.5.3 Output State Constraints

It is also of high importance to limit the angles so that no singularities are en-

countered due to the limitations in the model description.In the case of the quadrotor,

the angles need to be within

−π ≤ φ ≤ π

−π
2
≤ θ ≤ π

2

−π ≤ ψ ≤ π

(3.20)

Angular constraints can be interpreted as output variable constraints [29] of

the form  −D̄
D̄

Uk ≤
 C̄x̂k+1 − Ȳk − αu

C̄x̂k+1 − Ȳk + αl

 (3.21)

Where αu and αl are the upper and lower constraints for the output variables.

3.5.4 Combining Input and Output State Constraints

Both the input and output variable constrains can be integrated into one only

equation of the form

ΓȲ = Γ(C̄x̂k+1 + D̄Uk) ≤ δ (3.22)

where δ is a matrix containing both input and output variable constrains, and

Γ is a matrix that relates the outputs with its constraints.

The constraints of equation (3.22) can be expressed in terms of Uk as follows
I

−I

ΓD̄

Uk ≤


bu

−bl

α− Γ(C̄x̂k+1 + Ȳk)

 (3.23)
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In summary, the Model Predictive Control algorithm can be represented with

the following flow chart

SYSTEM

Obtain the system
matrices Ā,B̄,C̄,D̄

Compute the Kalman gain L

Compute the H matrix

measure the states

compute the f matrix

Solve the optimization problem
J = 1

2U
T
k HUk + UTt f

Input/State constraints
Desired trajectory xd

apply the solution
U∗k

Figure 3.1. MPC Algorithm Flow Chart.

3.6 Results

3.6.1 Choice of N and M

One of the key parameters in the Model Predictive Control optimization prob-

lem is choosing an appropriate Prediction Horizon (N) and Control Horizon (M).

Their values will directly impact the performance of the controller; choosing a high

Prediction Horizon will improve the performance, but will increase the computational
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time, while the value of the Control Horizon will determine how fast the system will

react.

It is desired to select an appropriate Prediction and Control Horizon. For this

reason, a ten second simulation of different cases of N and M for a smooth reference

trajectory was run, and the Root Mean Square (RMS) of the error on the position

was obtained.

The RMS of X,Y and Z axis position error for the benchmark is shown by the

following graphs

Figure 3.2. MPC RMS of the X position error benchmark.
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Figure 3.3. MPC RMS of the Y position error benchmark.

Figure 3.4. MPC RMS of the Z position error benchmark.
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It is also desired to know the total computation time for each N and M scenario.

This is illustrated by Figure 3.5.

Figure 3.5. MPC simulation time benchmark.

These results show that for values on N > 20 the computational time increases

significantly, but the RMS of the position error only improves slightly. A good choice

of N and M would be N = 11, M = 5. This combination has a small RMS and

an overall fast computational time. However, for the purpose of this thesis, N was

chosen to be 40, and M to be 25.
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3.6.2 Simulation Results

To illustrate the results of the MPC algorithm, four scenarios will be considered.

Each scenario involves different types of reference trajectories and uses the previously

established values of N and M.The output state constraints are the ones defined in

section (4.5), while the force constraint on each motor are set to be as 1
2
mg ≈ 2.5[N ].

The four scenarios are the following

• Scenario 1: Smooth trajectory

• Scenario 2: Helicoidal trajectory

• Scenario 3: Straight lines trajectory

• Scenario 4: Spherical Spiral trajectory

The results of the four scenarios are presented below
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(a) 3D position

(b) Angular position (c) Computational time

Figure 3.6. MPC Scenario 1: Smooth trajectory.
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(a) Position

(b) Forces

Figure 3.7. MPC Scenario 1: Position and Forces.

28



(a) 3D position

(b) Angular position (c) Computational time

Figure 3.8. MPC Scenario 2: trajectory.
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(a) Position

(b) Forces

Figure 3.9. MPC Scenario 2: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 3.10. MPC Scenario 3: Straight lines trajectory.
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(a) Position

(b) Forces

Figure 3.11. MPC Scenario 3: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 3.12. MPC Scenario 4: Spherical spiral trajectory.
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(a) Position

(b) Forces

Figure 3.13. MPC Scenario 4: Position and Forces.
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CHAPTER 4

THE STATE DEPENDENT RICCATI EQUATION APPROACH

4.1 Introduction

The MPC formulation worked well as a linear approach for the quadrotor. How-

ever, it is now desired to expand the concept of trajectory generation and constrain

handling to the nonlinear version of the system. This can be accomplished by using

the State Dependent Riccati Equation (SDRE) formulation.

The SDRE technique requires the manipulation of the nonlinear equations of

motion previously derived in Chapter 2. It uses a State Dependent Coefficient (SDC)

form to factorize the nonlinear equations of motion into matrix form and fully capture

the model nonlinearities [30]. Thus, a state space representation of the quadrotor sys-

tem can be created, where each of its system matrices are now expressed as functions

of the current state [31].

This method uses the quadratic form performance index of equation (3.10)

to solve for an infinite horizon optimal problem, for which its solution is locally

stable [32]. It can also be considered to be an improvement over the Linear Quadratic

Control formulation [33].

4.2 SDRE Method

Let a nonlinear system be of the following form

ẋ = f(x(t), u(t)) (4.1)

The State Dependent Riccati Equation formulation involves transforming the

nonlinear system of equation (4.1) into the following state space form
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ẋ = A(x)x+B(x)u (4.2)

Where x ∈ <n is the state vector, u ∈ <m is the input vector, and A(x) ∈ <n×n

and B(x) ∈ <n×m are the pseudo-linear system matrices in the state dependent

coefficient form. The SDC form is obtained by the factorization of the equations of

motion.

It is important to note that this representation of A(x) and B(x) is not unique.

Different state dependent matrices can be obtained from the equations of motion,

and a solution to the optimization problem may or may not exist.

The State Dependent Riccati Equation formulation minimizes the infinite hori-

zon objective function

min J(x, u) =

∫ ∞
0

(xTQ(x)x+ uTR(x)U)dt (4.3)

Where Q(x) ≥ 0 is a positive semidefinite matrix and R(x) > 0 is a positive

definite matrix.

For the quadrotor case, the discrete-time equivalent of equation (4.2) is required.

This is obtained by evaluating both A(x) and B(x) matrices at each sample interval

and then performing the discretization using a zero order hold.

Let the discrete-time equivalent of the system be of the following form

xk = Ak(xk)xk +Bk(xk)uk (4.4)

Since the equation (4.4) is of pseudo-linear form, the system matrices can be

considered to be constants at each sampling interval[34]. This allows the SDRE opti-

mization problem to solve for the Discrete-time Algebraic Riccati Equation (DARE)

which is of the form

ATkPkAk − Pk − ATkPkB(BTPkB +R)−1BTPkAk +Q = 0 (4.5)
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Where Q and R are weight matrices.

The solution Pk from equation (4.5) is then used to compute the Kalman gain

sequence[35].

Kk =
(
Bk(xk)

TPkBk(xk) +R
)−1

Bk(xk)
TPkAk(xk) (4.6)

So that

uk = −Kkxk (4.7)

is the optimal solution to the SDRE problem formulation.

The State Dependent Riccati Equation algorithm can be summarized as follow-

ing

SYSTEM

Obtain the SDC form

Measure the states

Obtain the DARE
solution Pk

Compute the
Kalman gain Kk

U = −Kk(xk − xd) Desired trajectory xd

apply the input U∗k

Figure 4.1. SDRE Algorithm Flow Chart.
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4.3 Results

For the quadrotor case, one possible way to factorize the equations of motion

into SDC form is presented below. However, this choice of A(x) and B(x) is not

an unique representation of such equations of motion. Different choices of A(x) and

B(x) can impact the performance and stability of the system.

A(x) =



0 r −q 0 0 0 0
−gS(θ)

θ
0 0 0 0

−r 0 p 0 0 0
gC(θ)S(φ)

φ
0 0 0 0 0

q −p 0 0 0 0 0 0 0 0 0 0

0 0 0 0
(Iz−Iy)r

Ix
0 0 0 0 0 0 0

0 0 0 0 0
−(Ix−Iz)p

Iy
0 0 0 0 0 0

0 0 0
(Ix−Iy)q

Iz
0 0 0 0 0 0 0 0

0 0 0 1 T (θ)S(φ) T (θ)C(φ) 0 0 0 0 0 0
0 0 0 0 C(φ) −S(φ) 0 0 0 0 0 0

0 0 0 0
S(φ)
C(θ)

C(φ)
C(θ)

0 0 0 0 0 0

a1 a2 a3 0 0 0 0 0 0 0 0 0
a4 a5 a6 0 0 0 0 0 0 0 0 0
−S(θ) S(φ)C(θ) C(φ)C(θ) 0 0 0 0 0 0 0 0 0


(4.8)

and

B(x) =



0 0 0 0
0 0 0 0
1
m

1
m

1
m

1
m

0 −d
Ix

0 d
Ix

d
Iy

0 −d
Iy

0

k
Iz

−k
Iz

k
Iz

−k
Iz

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(4.9)

Where C(·), S(·) and T (·) denote Cos(·), Sin(·) and Tan(·). a1 = C(θ)C(φ),

a2 = −C(φ)S(ψ) + S(φ)S(θ)C(ψ), a3 = S(φ)S(ψ) + C(φ)S(θ)C(ψ), a4 = C(θ)S(ψ),

a5 = C(φ)C(ψ) + S(φ)S(θ)S(ψ), a6 = −S(φ)C(ψ) + C(φ)S(θ)S(ψ), g is the gravity,

m is the mass of the system, Ix, Iy and Iz are the principal moments of inertia of the

quadrotor, d is the distance from the CG of the quadrotor to the motors, and k is the

torsional constant of the motors.
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These SDC form matrices are used in the simulation of the four different scenar-

ios described in Chapter 4.The simulation information for each scenario is presented

in table 4.1 and the summary of results is given in table 4.2 and figures (4.2) to (4.9).

Table 4.1. SDRE Scenario information

Scenario Ts simulation time
Smooth 0.01 s 10 s
Helicoidal 0.01 s 10 s
Straight Lines 0.01 s 20 s
Spherical Spiral 0.01 s 20 s

Table 4.2. SDRE RMS of the position error results

Scenario X RMS Y RMS Z RMS Average RMS
Smooth 1.8916 m 1.8898 m 1.4606 m 1.7473 m
Helicoidal 2.3423 m 2.1470 m 2.7304 m 2.4066 m
Straight Lines 0.6418 m 0.6441 m 0.4972 m 0.5944 m
Spherical Spiral 1.5530 m 1.3305 m 1.1539 m 1.3458 m
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(a) 3D position

(b) Angular position (c) Computational time

Figure 4.2. SDRE Scenario 1: Smooth trajectory.
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(a) Position

(b) Forces

Figure 4.3. SDRE Scenario 1: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 4.4. SDRE Scenario 2: Helicoidal trajectory.
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(a) Position

(b) Forces

Figure 4.5. SDRE Scenario 2: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 4.6. SDRE Scenario 3: Straight lines trajectory.
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(a) Position

(b) Forces

Figure 4.7. SDRE Scenario 3: Position and Forces.

45



(a) 3D position

(b) Angular position (c) Computational time

Figure 4.8. SDRE Scenario 4: Spherical spiral trajectory.
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(a) Position

(b) Forces

Figure 4.9. SDRE Scenario 4: Position and Forces.
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CHAPTER 5

The Nonlinear Model Predictive Control

5.1 Introduction

The idea behind creating a nonlinear controller is that, since many systems are

inherently nonlinear, it should be possible to formulate a type of controller that takes

into account such nonlinearities and outperforms a linear type of controller, which

are sometimes inadequate to describe some dynamical processes properly [36].

5.2 NMPC Problem Formulation

Consider a nonlinear system of the form

ẋ = f(x(t), u(t)) (5.1)

Where x(t) ∈ <n are the system states and u(t) ∈ <m are the system inputs.

The formulation for the Nonlinear Model Predictive Control is very similar to

the linear formulation discussed previously on Chapter 4. The difference relies in

that the A and B matrices of equation 3.2 are going to be expressed into the State

Dependent Coefficient (SDC) form discussed in Chapter 5.

By using the SDC form, the A(x) and B(x) matrices are now calculated at

each sampling interval and then used to compute a new Ā(x) and B̄(x), which now

depend on the current states, allowing the representation of the system in the following

pseudo-linear form

X̄k = Ā(x)x̂k+1 + B̄(x)Ūk (5.2)

Ȳk = C̄(x)x̂k+1 + D̄(x)Ūk (5.3)
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Where

Ā(x) =



A(x)

A(x)2

A(x)3

...

A(x)N


B̄(x) =



B(x) 0 ... 0

A(x)B(x) B(x) ... 0

A(x)2B(x) A(x)B(x) ... 0

...
...

. . .
...

A(x)N−1B(x) A(x)N−2B(x) ... B(x)



C̄(x) =



C

CA(x)

CA(x)2

...

CA(x)N−1


D̄(x) =



D 0 ... 0

CB(x) D ... 0

CA(x)B(x) CB(x) ... 0

...
...

. . .
...

CA(x)N−2B(x) CA(x)N−3B(x) ... D



5.3 Controller Design

The nonlinear MPC uses the same algorithm as the linear MPC to calculate the

optimal solution to the optimization problem of equation (3.14). The main difference

between the linear and nonlinear version of the MPC is that, now, our objective

function depends on the current states of the system and needs to be calculated at

each sample interval.

The objective function then becomes

J(x̂k+1, Uk) = 1
2
UT
k H(x)Uk + UT

t f(x) (5.4)

H(x) = D̄(x)T Q̄D̄(x) + R̄ (5.5)

f(x) =
[
D̄(x)T Q̄C̄(x)− D̄(x)T Q̄

]  x̂k+1

Ȳd

−


Ruk

0

...

0


(5.6)
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where H(x) and f(x) are now state dependent.

The cost function can then be considered to be quasi-linear, and the regular

quadratic programming optimization method can be used to solve the optimization

problem (equation 5.4).

In summary, the Nonlinear Model Predictive Control algorithm can be repre-

sented with the following flow chart

SYSTEM

Obtain the SDC form

measure the states

Obtain the system matrices
Ā(x),B̄(x),C̄(x), and D̄(x)

Compute the Kalman gain L

Compute the H(x) and
f(x) matrices

Solve the optimization problem
J = 1

2U
T
k H(x)Uk + UTt f(x)

Input/State constrains
Desired trajectory xd

apply the solution
U∗k

Figure 5.1. NMPC Algorithm Flow Chart.
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5.4 Results

Using the previously defined SDC form system matrices A(x) and B(x) from

equation (4.8), the nonlinear MPC algorithm performance can be evaluated by using

the four scenarios defined in Section 4 results. The simulation information for each

scenario is the following

Table 5.1. NMPC Scenario information

Scenario Ts N M simulation time
Smooth 0.01 s 40 25 10 s
Helicoidal 0.01 s 40 25 10 s
Straight Lines 0.01 s 40 25 20 s
Spherical Spiral 0.01 s 40 25 20 s

And the summary of results for each scenario:

Table 5.2. NMPC RMS of the position error results

Scenario X RMS Y RMS Z RMS Average RMS
Smooth 1.0632 m 0.9317 m 0.4905 m 0.8285 m
Helicoidal 0.3296 m 0.5430 m 0.2768 m 0.3831 m
Straight Lines 0.4583 m 0.4500 m 0.3736 m 0.4273 m
Spherical Spiral 1.6234 m 0.8325 m 0.5090 m 0.9883 m
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(a) 3D position

(b) Angular position (c) Computational time

Figure 5.2. NMPC Scenario 1: Smooth trajectory.
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(a) Position

(b) Forces

Figure 5.3. NMPC Scenario 1: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 5.4. NMPC Scenario 2: Helicoidal trajectory.
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(a) Position

(b) Forces

Figure 5.5. NMPC Scenario 2: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 5.6. NMPC Scenario 3: Straight lines trajectory.

56



(a) Position

(b) Forces

Figure 5.7. NMPC Scenario 3: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 5.8. NMPC Scenario 4: Spherical Spiral.
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(a) Position

(b) Forces

Figure 5.9. NMPC Scenario 4: Position and Forces.
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CHAPTER 6

COMBINATION OF THE NMPC AND SDRE APPROACHES

6.1 Introduction

The goal of this approach was to combine both the State Dependent Riccati

Equation (SDRE) and the Nonlinear Model Predictive Control (NMPC) in order

to obtain a more robust [37], optimal control response of the system. The SDRE

approach would provide a faster and robust response of the system, while the MPC

would provide an optimal solution over a specified prediction horizon.

6.2 Formulation

The procedure consists on obtaining the system matrices A(x),B(x), C(x) and

D(x) in the SDC form from the nonlinear set of equations, and use them to compute

the solution to the minimization problem of the NMPC of equation (5.4), and the

solution of equation (4.7) from the SDRE problem formulation.

Both solutions must then be combined into one single solution. This is done

by multiplying the optimal solution from the NMPC by α, and the solution to the

SDRE problem by a factor of (1− α), so that

U∗ = αU∗NMPC + (1− α)U∗SDRE (6.1)

Where U∗NMPC is the optimal solution to the NMPC optimization problem,

U∗SDRE is the optimal solution to the SDRE, and U∗ is the total force to be applied

to the system.
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The algorithm to compute this procedure can be represented with the following

flow chart

SYSTEM

Obtain the SDC form

Measure current states

compute A(x),
B(x), C(x) and D(x)

Solve the SDRE
optimization problem

Solve the NMPC
optimization problem

combine both
optimal solutions

Apply the input
to the system

Figure 6.1. SDRE and NMPC combination Flow Chart.

And the block diagram representation of the system is depicted in figure (6.2).

NMPC α Σ Quadrotor

SDRE 1−α

U∗
NMPC

U∗
SDRE

Measurements

U∗ref e y

−

ym

Figure 6.2. SDRE and NMPC block diagram.
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6.3 Results

Using again the previously defined SDC form system matrices A(x) and B(x)

from equation 4.8, it is now desired to evaluate the performance of the combination

of both the SDRE and the NMPC algorithms. The same four scenarios are consid-

ered again in order to provide a comparison between the combined system, and each

one working independently. As it will later be shown, the designed spherical spiral

trajectory still continues to be a challenge for the quadrotor. Table 6.1 provides the

simulation information and the simulation results are presented in table 6.2. It can

be seen that the designed spherical spiral trajectory still continues to be a challenge

for the quadrotor.

Table 6.1. Combined control scenario information

Scenario Ts N M α simulation time
Smooth 0.01 s 40 25 0.90 10 s
Helicoidal 0.01 s 40 25 0.75 10 s
Straight Lines 0.01 s 40 25 0.90 20 s
Spherical Spiral 0.01 s 40 25 0.95 20 s

Table 6.2. Combined control RMS of the position error results

Scenario X RMS Y RMS Z RMS Average RMS
Smooth 0.8677 m 0.7090 m 0.4798 m 0.6855 m
Helicoidal 0.3417 m 0.5544 m 0.2998 m 0.3986 m
Straight Lines 0.4475 m 0.4345 m 0.3429 m 0.4083 m
Spherical Spiral 1.6785 m 1.4725 m 0.5334 m 1.2281 m
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(a) 3D position

(b) Angular position (c) Computational time

Figure 6.3. Combined Scenario 1: Smooth trajectory.
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(a) Position

(b) Forces

Figure 6.4. Combined Scenario 1: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 6.5. Combined Scenario 2: Helicoidal trajectory.
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(a) Position

(b) Forces

Figure 6.6. Combined Scenario 2: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 6.7. Combined Scenario 3: Straight lines trajectory.
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(a) Position

(b) Forces

Figure 6.8. Combined Scenario 3: Position and Forces.
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(a) 3D position

(b) Angular position (c) Computational time

Figure 6.9. Combined Scenario 4: Spherical spiral trajectory.
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(a) Position

(b) Forces

Figure 6.10. Combined Scenario 4: Position and Forces.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Summary of Results

This research discussed different methods of generating trajectories for a quadro-

tor helicopter platform. For the linear case, the six degree of freedom equations of

motion were linearized and implemented into the MPC algorithm, which optimized

the actuator effort based on the constrains imposed. For the nonlinear case, the

SDC form was used to capture the system nonlinearities into a pseudo-linear system

matrix. This allows the use of nonlinear techniques like SDRE, and even allows to

implement them in the MPC algorithm to create a nonlinear version of it.

the quadrotor parameters are given in table 7.1, while the various parameters

used in the simulation are presented in table 7.2. Q and R are the weight matrices,

N and M are the prediction and control horizon, and Ts is the sampling time.

Table 7.1. Quadrotor Parameters

Mass (kg) 0.482
Ix (kgm2) 0.0066
Iy (kgm2) 0.0066
Iz (kgm2) 0.0131
Length (m) 0.53
Width (m) 0.53
Height (m) 0.15
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Table 7.2. Simulation Information

Q R N M Ts (s) Sim Length (s)

MPC

Smooth 1 0.05 40 25 0.01 10
Helicoidal 1 0.05 40 25 0.01 10
Straight Lines 1 0.01 40 25 0.01 20
Spherical Spiral 1 0.05 40 25 0.01 20

SDRE

Smooth 30 1 - - 0.01 10
Helicoidal 0.35 0.01 - - 0.01 10
Straight Lines 100 3 - - 0.01 20
Spherical Spiral 100 0.1 - - 0.01 20

NMPC

Smooth 100 0.1 40 25 0.01 10
Helicoidal 100 0.5 40 25 0.01 10
Straight Lines 100 1 40 25 0.01 20
Spherical Spiral 20 0.1 40 25 0.01 20

NMPC+SDRE

Smooth 100 0.1 40 25 0.01 10
Helicoidal 100 0.5 40 25 0.01 10
Straight Lines 100 1 40 25 0.01 20
Spherical Spiral 20 0.1 40 25 0.01 20

The average root mean square (RMS) of the position error of the four control

algorithms are shown in Figure (7.1). Even though the RMS of the position error are

within acceptable limits, it can be seen that, with exception for the SDRE controller,

the MPC, NMPC and NMPC and SDRE combination performed similarly for a fixed

N and M. It could also be possible to improve the performance of the MPC and

NMPC algorithm by tailoring the N and M accordingly for a specific scenario, like

figures (3.2) to (3.5). By doing so it is possible to reduce the computational time

required to run the optimization algorithm and have a similar, or better tracking

response.
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Figure 7.1. Average RMS of the position error.

Overall, the SDC proved to be an useful way to capture the model nonlinearities

and derive an optimal controller. It can be seen from Figure (7.1) that out of the

nonlinear techniques, the SDRE is the one with the biggest RMS. This is because

it tries to keep the actuator effort in its minimum. The combination of the NMPC

and SDRE seems to be a very feasible controller. It combined the fast reaction from

the NMPC and the smooth response of the SDRE to provide overall better tracking,

with the exception of the spiral trajectory. Furthermore, by reducing M, it is possible

to make the NMPC respond more aggressively and provide a faster response, thus

increasing the performance of the control algorithm.
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7.2 Future Work

There are some aspects that could benefit from additional work. Including some

rotor dynamics could improve the overall performance of the system. Currently, the

simulation is for the case of an indoor flight, but in case it is desired to fly the

quadrotor in an outside environment a wind/gust model should be implemented.

Another interesting approach could be the use of differential flatness to model

the system dynamics and develop feasible trajectories. In addition, the time to com-

pute the nonlinear MPC is higher than the required sampling time; another method

could be researched to develop a nonlinear MPC and see how it behaves compared

to the SDC approach used in this research.
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Técnica de Lisboa.

[20] W. F. Phillips, Mechanics of flight. Wiley, 2010.

[21] Model Predictive Control applied to tracking and attitude stabilization of a VTOL

quadrotor aircraft, COBEM. 21st International Congress of Mechanical Engi-

neering, october 2011.

[22] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive

control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789 – 814,

2000.

[23] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive control scheme

for the autonomous flight of an unmanned quadrotor,” in Industrial Electronics

(ISIE), 2011 IEEE International Symposium on, june 2011, pp. 2243 –2248.

[24] R. Findeisen, T. Raff, and F. Allgower, “Sampled-data model predictive con-

trol for constrained continuous time systems,” Advanced Strategies in Control

Systems with Input and Output Constraints, pp. 207–235, 2007.

[25] A. Wills and W. P. Heath, “Application of barrier function model predictive

control to an edible oil refining process,” Journal of Process Control, vol. 15,

no. 2, pp. 183–200, mar 2005.

77



[26] E. F. Camacho and C. Bordons, Model Predictive Control. Springer, 1999.

[27] A. Wills, “Technical report ee04025 - notes on linear model predictive control,”

Department of Electrical and Computer Engineering, University of Newcastle,

Australia, Tech. Rep. EE04025, jan 2004.

[28] L. V. Stephen Boyd, Convex Optimization. Cambridge University Press, 2004.

[29] C. E. Garcia, J. H. Lee, D. Prett, and M. Moravi, Model Predictive Control.

Prentice Hall PTR, 2004.
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