
DETECTION OF FINGERS WITH A DEPTH BASED HAND-DETECTOR IN STATIC

FRAMES

by

SANJAY VASUDEVA IYER

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements for the Degree of

MASTER of SCIENCE in COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2013

ii

Copyright © by Sanjay Vasudeva Iyer 2013

All Rights Reserved

iii

Acknowledgements

I would like to convey my heartfelt gratitude to my supervising professor Dr.

Vassilis Athitsos for giving me the opportunity to work on a research project under him. I

also thank him for his guidance, support and encouragement from the beginning of my

thesis till the end. I wish to thank my committee members Dr. Gian-Luca Mariottini and

Mr. David Levine for their interest in my research and for taking time to serve in my thesis

committee.

I would also like to thank students of the VLM lab especially Christopher Conly,

Zhong Zhang, Paul Doliotis and Alexios Kotsifakos, who have helped me in collection of

data and also in my work whenever I needed them.

I would also like to thank the Computer Science and Engineering department of

University of Texas at Arlington for providing all the facilities and infrastructure necessary

to carry out my Master’s studies.

I would like to thank my beloved parents, who have always inspired me to work

hard. I would like to thank all my friends for supporting me through my graduate studies.

Finally, I would like to thank everyone whose direct and indirect support has

helped me in completing my thesis on time.

August 12, 2013

iv

Abstract

DETECTION OF FINGERS WITH A DEPTH BASED HAND-DETECTOR IN STATIC

FRAMES

Sanjay Vasudeva Iyer

Masters of Science in Computer Science

The University of Texas at Arlington, 2013

Supervising Professor: Dr. Vassilis Athitsos

This thesis presents a method for a finger detection system. It is assumed that

the user taps their fingers on a table and the camera is placed on the same table in front

of their fingers. This setup is motivated by an application of analyzing the movement of

fingers in patients engaging in physical therapy. Fingers are detected in static images,

which is a more challenging task than detecting and tracking fingers in videos which are

based on motion.

The Microsoft Kinect sensor has been used as the source to collect data, and it

provides color and depth images at each video frame. OpenNI framework version 1.5

was used to capture data as it allows alignment between color and the depth frames.

Detection of fingers is performed using two different methods: Template Matching and

Principal Component Analysis (PCA). Additional information present in the image, such

as skin color and depth data, is used to improve accuracy and efficiency. The depth

frames are used to separate the foreground from the background, and also to provide

v

information for detecting hands. A face detector is also utilized and the position of face is

used as a reference to determine where the hands are located.

An additional contribution of the thesis is a graphical interface developed in

MATLAB for annotating finger positions. This tool provides abilities for users to load

various sequences of images and manually annotate the position of fingers in those

images. Using this tool, we have annotated a large number of video frames, and these

annotations have been used for training and testing the proposed method. In addition,

these annotations remain as a valuable resource for future research on finger detection

and tracking. For testing purposes, the MATLAB system also allows running the

proposed method and measuring the accuracy of the results, based on the manual

annotations. The thesis includes a comprehensive study on the effect of possible design

decisions, as well as accuracy of user-dependent and user-independent settings.

vi

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... viii

List of Tables ... x

Chapter 1 Introduction... 1

Chapter 2 Related Work.. 4

Chapter 3 Contributions .. 8

Chapter 4 The Dataset .. 9

4.1 Source for Data Collection .. 9

4.2 Setup .. 10

4.3 Converting the sequences into mat files .. 10

4.4 People in Datasets and No of Images in the sequence ... 12

Chapter 5 GUI Annotation Tool ... 13

5.1 Annotation ... 15

5.2 Other Operations .. 17

Chapter 6 Detection .. 21

6.1 Skin Detection ... 21

 6.1.1 Parametric and Non Parametric Models .. 22

 6.1.2 Creation of Histograms for Skin Detection ... 23

6.2 Finger Detection ... 24

 6.2.1 Template Matching for Finger Detection ... 24

 6.2.2.1 Template collection for Ring, Middle and Index Finger. 31

 6.2.2.2 Rotation, Aligning and Resizing of training examples 32

 6.2.2.3 Template collection for Thumb and Little Finger. 35

vii

 6.2.2 PCA for Finger Detection ... 37

6.3 Depth Based Hand Detector ... 39

Chapter 7 Experiment and Results ... 41

7.1 Experiments with Skin .. 41

7.2 Experiments with Hand Detector .. 42

7.3 Experiments with Depth .. 43

References .. 46

Biographical Information ... 50

viii

List of Illustrations

Figure 4-1 OpenNI Viewer .. 9

Figure 4-2 Registration mode on .. 9

Figure 4-3 RGB data captured of a user .. 11

Figure 4-4 Depth Frame of a user ... 11

Figure 5-1 Initial Screen .. 13

Figure 5-2 On click of Load Image Button .. 14

Figure 5-3 Drawing a ploygon around the finger .. 16

Figure 5-4 Fingers annotated in different colors. .. 16

Figure 5-5 Marking Base-Tip. ... 17

Figure 5-6 Annotation Image on the right. .. 18

Figure 5-7 Zoom feature using scroll bar. ... 19

Figure 5-8 Running the Detection Algorithm. .. 20

Figure 6-1 Hand Positions. ... 26

Figure 6-2 Rotation of Training Examples. ... 28

Figure 6-3 Sides of finger having depth zero. ... 30

Figure 6-4 Different positions of the same finger. ... 30

Figure 6-5 Need for rotated templates. ... 32

Figure 6-6 Samples and Templates of Ring, Middle and Index Finger. 32

Figure 6-7 Little Finger Appearance ... 33

Figure 6-8 Sideway shapes of Little Finger and Thumb. .. 35

Figure 6-9 Samples and Templates for Little and Thumb... 37

Figure 7-1 Experiments with Skin – Varying Skin Threshold. ... 41

Figure 7-2 Experiments with Skin – Varying Area Percentage. .. 41

Figure 7-3 Experiments with Hand Detector – Varying Skin Threshold 42

ix

Figure 7-4 Experiments with Hand Detector – Varying Area Percentage. 42

Figure 7-5 Experiments with Depth – Varying Skin Threshold. .. 43

Figure 7-6 Experiments with Depth – Varying Area Percentage. 43

x

List of Tables

Table 4-1 Dataset (Person, Sequence and No of Files). .. 12

Table 7-1 Template Matching Cumulative Results of Experiments. 44

Table 7-2 PCA Cumulative Results of Experiments. .. 45

1

Chapter 1

Introduction

One of the most successful applications of image analysis and understanding

has been detection. Detection involves identifying occurrences of a particular object,

person or a feature. A related concept is that of Recognition, which involves detection

and then matching them to personal or objects information stored in a database. Face

detection has been a popular technique now for several years in commercial and law

enforcement applications. Technologies available after decades of research have also

made it possible for recognition systems of smaller objects with equal precision e.g. body

parts such as the gesturing arm in an American Sign Language (ASL) Recognition

System. The invention of motion sensing devices like Kinect by Microsoft and other 3D

sensors like Primesense have bought depth frames into popularity amongst research in

detection and recognition. Each pixel of the depth frame contains the Cartesian distance,

in millimeters, from the camera plane to the nearest object at that particular (x, y)

coordinate. The (x, y) coordinates of a depth frame do not represent physical units in the

room; instead, they represent the location of a pixel in the depth frame. Open source

libraries like OpenCV and OpenNI SDK also aid in solving Computer Vision problems.

Here, as part of research for study on patients undergoing physical therapy, a

finger detection system was developed. Microsoft’s Kinect for Windows has been used as

a source for data, i.e., it provides RGB images and the depth frames. Data has been

captured using the OpenNI 1.5 framework which enables aligning depth and the RGB

frames. This alignment of depth and RGB frames is called Registration and is an inbuilt

feature in OpenNI framework. When registration mode is turned on, the depth image is

transformed to have the same apparent vantage point as the RGB image. This shift

causes the depth frames to have border values of zero.

2

This thesis involves 3 parts – a finger detection system, a hand detector and the

GUI annotation tool. The detection system provides 2 popular methods for detection of

fingers of both hands – Template Matching and Principal Component Analysis (PCA).

In Template Matching, templates for all types of fingers were created (thumb,

index, middle, ring and little). A template is an average over the training instances. The

training samples for each of the fingers were created by extracting a piece of that

particular finger from training images manually. They are then rotated as required to align

them in a particular way and resized to a standard size. Average over the total number of

such training examples results in a template and this was done for all the finger types.

When the detection algorithm runs, one template is searched at a time for top 5 matches

in an image. For this we use an algorithm called Normalized Correlation with multi -

scale, which is explained in detail later. [Section 6.2.1]

PCA is a dimensionality reduction method. The results from template matching

method along with a predefined number of eigenvectors and the average of fingers are

used to detect fingers.

Skin Detection is used to filter the results of detection algorithms. The skin

detection method used in this work is a histogram based skin detection, which is

described in detail in another section [Section 6.1]. A threshold is used to decide the

minimum probability of skin presence. The system allows user to select this particular

parameter.

The user can analyze the detection and check for true positives and false

positives. For this purpose the system provides annotation of the fingers.

The annotation tool is developed as a GUI in MATLAB. It provides abilities for

users to load various sequences of RGB and depth frames. Once a sequence is loaded,

an individual frame in the sequence can be selected by providing its frame number. The

3

user can now annotate various fingers in this image. The tool uses different colors to

annotate different fingers. The same can be used to annotate up to 5 objects in an image

while collecting data for research purposes. The tool also provides options to mark base

and tip of different annotations. The GUI tool also has provisions to save the annotated

objects which can be used later.

Depth frames are used to avoid background. The system includes a face

detector which was used to obtain the position of face and its depth. All pixels having

greater depth than the depth of face are considered background. Depth frames also form

an important role in detecting the hands. Hands are detected by considering all depth

segments having lesser depth than that of the face. This is based on the assumption that

hands are placed between camera and the face. The work here improves on a method

devised earlier for detecting hands for American Sign Language Recognition
[19]

. While

that method relied on detecting hands using motion, here the hands are detected on

static frames.

4

Chapter 2

Related Work

There have been research papers in the past which discuss finger detection.

Many of these works were either done for gesture recognition systems using motion or

security systems. Here are some of the works which are closely related to work done in

this paper.

One such work involved detection of finger tips based on depth information
 [2]

.

This method could robustly detect single fingertip regardless of the position and direction

of the hand. With depth information of front view, depth map of top view and side view

were generated. Thickness histograms are then used to segment the finger from the fist.

This system could detect the fingertips with robustness and accuracy using a depth

sensor. In this paper we use depth as an option to improve accuracy and the system

does not rely purely on having a depth sensor. Another similar work was done to detect

fake fingers based on skin elasticity analysis
[6]

.

A paper from Yeo, Lee and Yim
 [14]

 presents a robust marker-less hand/finger

tracking and gesture recognition system using low-cost hardware like webcam. This

method would allow hand tracking despite complex background and motion blur. The

method is able to translate the detected hands or gestures into different functional inputs

which was used to interface with other applications. A system is implemented which

begins by detecting face and eliminates the background. Next, skin color contours are

extracted. For the skin contour, the convex hull and convexity defects points are then

found. The maximum inscribed circle and the minimum enclosing circle are decided as

the location of the palms. There are assumptions to decide shapes to be considered as

fingertip. The largest convexity defect which fulfills the fingertip assumptions is detected

as the thumb. Based on the vector between thumb and the nearest finger, left or the right

5

hand is determined. Some implementations of this paper are designed to work only when

palms are facing the camera and detect only the fingertips using contours. In the paper

presented here, locations of the palms are not required while obtaining position of fingers

and aims to detect fingers directly.

Software for hand detection was developed at MIT to create a graphical interface

inspired by the movie "Minority Report". User stands in front of a screen with Kinect

placed under it (camera facing the user). The user raises his hands and his palms get

detected. Fingertips are obtained and tracked when the user moves the hand. User

interacts with a graphical interface and can select an image by pointing at it. Image can

be zoomed in or out by moving the palms closer or apart. The selected image can be

discarded with the flick of the hand. It uses the Kinect sensor and the libfreenect driver to

interface the Kinect on Linux. The graphical interface and the hand detection software

were written to interface with the open source robotics package 'ROS'. This hand

detection software displays the ability of the Point Cloud Library (PCL). This hand

detection software is able to distinguish hands and fingers in a cloud of more than 60,000

points at 30 frames per second, allowing natural and real time interaction. Though this

software detects fingertips, majority of the operations are done by the palm. The setup for

the system described in this paper is that of a patient placing his hands on the table with

palms facing downwards. So hand detection software could not be used.

Ravikiran’s paper
[3]

 involved a fast and an efficient algorithm for identification of

the number of fingers opened in a gesture representing an alphabet of the American Sign

Language. Finger Detection is accomplished based on the concept of boundary tracing

and finger tip detection. The system does not require the hand to be perfectly aligned to

the camera or use any special markers like input gloves on the hand. This is closely

related to this paper but involves motion and work here is focused on static frames.

6

Another paper
 [1]

 provided methods to stop attacks on fingerprint-based biometric

systems by presenting fake fingers at the sensor. It introduces a new approach for

discriminating fake fingers from real ones, based on the analysis of skin distortion. The

user is required to move their fingers while pressing it against the scanner surface,

thereby deliberately exaggerating the skin distortion. Though this involves finger

detection there is no camera involved and designed for a fingerprint scanner.

 Kang’s work
[4]

presents a methodology for hand and finger detection. The

detected hand and fingers can be used to implement a non-contact mouse. This

technology can be used to control home devices such as curtain and television. Skin

color is used to segment the hand region from background and counter is extracted from

the segmented hand. This paper is based on gesture recognition for device-free

communication.

 Leap Motion, a gesture-control technological company has released a

commercial device called Leap which provides finger tracking
 [5]

. This device can be used

to interface with computers as an input device. Leap motion controller enables multiple

finger tip detection and tracking of these multiple fingers. Work from Chan
[10]

 also talks

about multi finger detection for images captured using an IR camera and a single diffuser.

 Another work
 [7]

uses depth sensors, i.e., the Kinect sensor for human-computer

interaction (HCI). This work focuses on building a robust hand gesture recognition system

using Kinect sensor. To handle the noisy hand shape obtained from the Kinect sensor, a

novel distance metric for hand dissimilarity measure, called Finger-Earth Mover's

Distance (FEMD) is proposed. This is a gesture recognition system based on depth

images rather than finger detection on images.

Another paper
 [8]

 introduces a fast decision tree based finger detection method

where feature classification for hand gesture recognition and pose estimation is

7

proposed. Training of the decision trees is performed using synthetic data and

classification is performed on images of real hands. The presence of each finger is

individually classified and gesture classification is performed by parts. The attributes used

for training and classification are simple ratios between the foreground and background

pixels of the hand silhouette. This is a very useful concept in Augmented Reality

applications and its mainly focused on detecting gestures.

Some other research papers mention use of hand contours to search hand

postures
 [9]

. There is also an interface proposed in a paper
[11]

 for mixed reality, which

consists of a stereo camera to track the user's hands and fingers robustly in the 3D

space.

Most finger detection papers are done for 2 reasons –first for devices which use

fingers as an input like fingerprint scanners and the second being for gesture recognition

[12][13][15]
,where motion or video is part of the input and not static images.

8

Chapter 3

Contributions

As discussed in the last chapter, there are many finger detection systems with

different approaches proposed and implemented. This thesis provides a new approach to

build a finger detection system. It aims at detecting fingers directly without the help of

gestures or motion.

The first contribution of our work is a finger detection system which implements

two detection algorithms to find fingers. When one of the algorithms is run, the system

allows use of additional data like skin and depth to filter results.

The second contribution of this work is to provide depth based hand detector in

static frames. Locating hands when the hand motion is involved is an easier task. Here

we provide a simple method which can be used to detect hands in a static frame. The

system also includes a face detector which detects position of the face and its depth.

After locating the hands, those sub windows can be used to run finger detection

algorithms.

The final contribution of this work is to provide a GUI annotation tool. Annotation

of dataset can be a time consuming task. This GUI gives is user friendly and simple to

use Annotation Tool. Annotations can be done by drawing polygons around the objects

we intend to annotate using a mouse or a track pad. The annotation tool also provides

options to mark the top and bottom of the annotated object. These annotations can be

stored and later be used for testing the system.

9

Chapter 4

The Dataset

4.1 Source for Data Collection

Data was collected using the device Kinect for Windows. OpenNI framework

version 1.5 was used to capture the data. OpenNI can collect frames at a rate of about 1-

30 frames per second (fps). The exact fps is not fixed as it depends on the time

complexity of the video capture application. The user may also select a target frame rate

and achieving this frame rate depends on system configuration. The OpenNI viewer

shows the depth frame on the left and the RGB frame on the right.

Figure 4-1 – OpenNI viewer

For data to be aligned, the registration mode should be on before capturing the

data. Since the depth camera is aligned to RGB, border values appear as 0 for depth.

Figure 4-2 Registration mode on.

10

The output of the data capture is an ONI video file. Using the OpenNI framework,

ONI files were converted to binary files for RGB and the depth streams. The program

which converts the ONI files is made available with the code. These binary files were

then converted to sequences of RGB and depth. The RGB stream collected were of the

size 640*480 resolution.

4.2 Setup

The users sit on a chair with their hands placed on a table in with the Kinect. The

Kinect sensor should not be placed too far or close from the person. The system treats

objects behind face as background. An ideal distance for user to sit is somewhere

between 1.5 - 2 feet from the Kinect with their hands placed on the table such that all the

fingers are clearly visible.

The users were then made to move their fingers by tapping on the table to form a

sequence. Each sequence had a certain number of frames which were determined by the

amount of the time the capture was allowed to run and also the fps. The proximity of the

palm to the table was varied in different datasets.

4.3 Converting the sequences into mat files

On collecting the images from Kinect, they had to be converted into mat files to

be used in the MATLAB GUI tool. In MATLAB, a 4-D matrix of size 480*640*3*number-of-

frames-in-sequence and 480*640*1* number-of-frames-in-sequence was created for the

RGB frames and depth frames respectively. After collecting the filenames of individual

RGB and Depth frames in the sequence, each of the images were then read and then

inserted in the 4-D array at the same position as the frame in the sequence. All frames

belonging to one particular sequence have to be put under the same 4-D array. This

avoids errors in the GUI tool as it automatically picks up the depth frame at the position

specified.

11

Figure 4-3 RGB data captured of a user.

Figure 4-4 Depth Frame of a user

12

4.4 People in Datasets and No of Images in the sequence

There are 3 people in the datasets. Each person has contributed to 2 sequences

of images. Below are the list of sequences (with their names) and the number of frames

in each.

Table 4-1 Dataset (Person, Sequence and No of Files)

Person Sequence1(No of Frame) Sequence2(No of Frames)

Sachin 201 210

Shreyas 251 163

Sushruth 163 280

13

Chapter 5

GUI Annotation Tool

A MATLAB GUI was created to include all functionalities. This GUI makes all

operations user-friendly and easy to use. Detection algorithms can be initiated by clicking

on buttons and annotations can be made by dragging the cursor and creating shapes in

the required manner. It also has functionalities like zoom and pan.

Figure 5-1 Initial Screen.

The initial screen allows only one operation – clicking of the ‘RGB Frames’

button. All the other fields and buttons are disabled. On clicking this button, a pop up

window opens which can be used to select the file to be loaded. This file has to have a

sequence of RGB frames of 640*480 or 320*240 resolution. The resolution can be

chosen next by selecting the radio buttons of the ‘Select Resolution’ panel at the bottom

right corner of the tool.

Once the file is loaded and the resolution is selected, the variables in the file

loaded are shown in the top box under ‘Variables’ panel. On selecting one of these

variables, the ‘Image Selection’ panel shows the number of images in the sequence

14

selected next to ‘Total Number of Images Available’. If there are no images available it

displays the message “No Images Available”. User may input the frame number to load

under ‘Enter image number to load’ and click on ‘Load Image’ button. That brings up the

actual image onto the main window (Figure 5-2). In case a wrong resolution is selected,

the user can select the correct resolution radio button and then select the sequence

under ‘Variables’ again to reload the sequence.

Figure 5-2 On Click of Load Image Button

The main window where in the user can view the image for annotation or after

detection. This action of clicking ‘Load Image’ also brings up few other buttons. On top of

the main window there are 5 buttons – Annotation Image, Detection Image, Original

Image, Detection (Hand Locations) and Detection (Skin and Depth). If the user clicks on

‘Original Image’ button it brings up the original image onto the main window. The user

can also choose to view -

1. ‘Annotation Image’ (Image on which annotation are done and have to be

done)

2. ‘Detection Image’ (Image after detection using one of the methods along with

Skin)

15

3. ‘Detection Image(Hand Locations)’ (Image after detection using the location

of hands)

4. ‘Detection Image(Skin or Depth)’ (Image after detection using one of the

methods, applying Skin Detection and removing background based on face

depth information)

If no operation has been done all of them show the Original Image. To perform

annotation the user must click on ‘Annotation Image’ button.

5.1 Annotation

The GUI tool allows annotation of fingers. The user can select the finger he

wants to annotate in the panel ‘Finger to Annotate’ (Figure 5-2), a ‘+’ mark appears as a

cursor on the main window, acts as a drawing tool to draw the polygon. The user can

then draw a polygon around that particular finger by –

• Single click to mark a vertex.

• Dragging to make a line.

• Single click again to mark another side and complete the side.

To complete the entire polygon, user must connect the first vertex made. The tool

cursor changes from a ‘+’ to a ‘O’ (circle) on clicking of which completes the polygon. The

user can now drag the vertices to make the polygon bigger or smaller. Once the user

feels the annotation is complete, clicking on ‘Esc’ on keyboard completes the annotation.

Before user completes the annotation, the polygons appear blue in color and on

completion (pressing Esc) are shown in different colors. User can move to annotating a

different finger only when he completes annotating a finger completely. User can do this

by selecting the radio button of the intended finger under the ‘Finger to Annotate’ panel.

16

On the left, user may modify the annotation by dragging the vertices to enlarge or

compress the polygon. User draws polygon around the thumb and hits the Esc key to

complete annotation and the polygon turns green. It cannot be modified now.

Figure 5-3 Drawing a polygon around the finger

On completing the annotation, different fingers are represented in different

colors. Thumb annotation is shown in green color and index finger is shown in yellow

color. Complete annotation of middle finger is shown in red, ring finger in blue and the

little finger in cyan color.

Figure 5-4 Fingers annotated in different colors

Later the user can also mark the base and the tip of the tool. To mark base and

the tip, the user must click on the ‘Finish’ button at the bottom of the ‘Finger to Annotate’

17

Panel. It loads the annotated image on to the main panel, in which the completed

annotations are shown. The user can select either of ‘Mark Base’ and ‘Mark Tip’ radio

buttons to mark base and tip respectively for a particular finger.

Figure 5-5 Marking Base-Tip

At all times the Annotated Image and the Detected Image appears on the right

side of the tool. It is shown only when it is available, i.e., image loaded and at least one

finger annotated and detection run at least once. Annotations can be saved by clicking on

the ‘Store Annotation’ button and giving the file a name.

5.2 Other Operations

The user may also load the depth frames for an RGB sequence loaded. User clicks on

the ‘Depth Frames’ button in the ‘Load Operations’ panel. A window pops up with the disk

drives where user can select a mat file with the sequence. Care should be taken not to

load wrong sequences with same number of frames as it will load the wrong depth frame.

The variables in this file are shown in the bottom box of ‘Variables’ panel.User can select

one of these sequences to load the depth file, which will be picked up by frame number

specified for RGB image. In case, the user loads a wrong variable an error message

“Depth sequence loaded is incorrect” is displayed.

18

Figure 5-6 Annotation Image on the right

In the GUI tool, the user can zoom in on the main window. User can click on the

‘Zoom Scroll’ button next to the main window to make the scroll bar appear and use the

scroll bar to perform zoom on main window. The user can zoom in on main window by

either drag the scroll bar under the main window or click on the sides of the scroll bar.

Pan automatically appears on the main window once user drag zoom scroll bar.

There are two more buttons ‘Zoom On’ and ‘Zoom Off’ which offer zooming on

the main window. A magnifying glass appears on the main window on clicking ‘Zoom On’

button which can be used to zoom in. To turn off this zoom, user should click on ‘Zoom

Off’ button. User may click on ‘Pan’ button anytime to bring in pan ability on to main

window.

19

Figure 5-7 Zoom feature using scroll bar

 The tool also has buttons to initiate the finger detection algorithms and analyze

the detections. These are the ‘Template Matching’, ‘PCA’ and ‘Analyze’ buttons

respectively. To enable these buttons, user has to select the parameters for these

algorithms. The parameters used for these detection algorithms are present at the bottom

left panel called ‘Parameters’. It includes 2 dropdowns

1. Skin Detection: This is the parameter of skin detection threshold. The dropdown

provides values from 0.5 to 1. The selected value will be used as the threshold

for all the detection operations

2. Area Percentage: This parameter is used for skin detection. Value denotes in

percentage the amount of pixels with skin in a particular detection box. This

values ranges from 50% to 100%. Also in annotation vs. detection, it denotes

what percentage of pixels co-inside in a given annotation with detection.

To run the detection algorithms, there is a panel ‘Run Detection Method’. It

includes 3 buttons – ‘Template Matching’ which initiates the template matching method

on the given image with the templates obtained from training, ‘PCA’ which initiates the

20

PCA method on the results of template matching method and ‘Analyze’ which analyzes

the detection made by an algorithm and returns the true positive and false positive count

for the selected parameters. These results are displayed in the ‘Result Panel’. The

‘Analyze’ button is enabled only once one of the two detection algorithms is run.

Figure 5-8 Running the Detection Algorithm

21

Chapter 6

Detection

In this chapter we describe the different detection algorithms we have used. The main

focus of this work was to achieve finger detection. There are 2 algorithms used to detect

fingers in this work – Template Matching and Principal Component Analysis (PCA). There

are 2 other detection techniques used to support finger detection, namely skin detection

and hand detection. We use a histogram based
 [18]

 skin detection to filter results from

finger detection. Depth frames with skin data are used to detect hand locations and

perform finger detection in the hand sub windows.

6.1 Skin Detection

Skin Detection refers to detecting the presence of skin pixels in an image.

Training for skin detection involves extracting sub windows consisting only of skin pixels

from many training images. Probability that we observe intensity values of RGB when we

know a pixel is a skin pixel is calculated. The probability that we observe the same

intensity values of RGB when a given pixel is non-skin is also calculated (from sub

windows with no skin). This gives two values for all combinations of RGB values at the

end of training

 For every pixel in a test image, probability that a pixel is skin given its intensity

values of RGB is estimated using Bayes Rule, i.e., P(Skin | RGB) probability that pixel is

skin given its RGB values.

P(RGB) is calculated with P(RGB|Skin) and P(RGB|Non-Skin) values using

22

. There are 2 models to get P(RGB|Skin) and P(RGB|Non-Skin). They are

Parametric Models and Non-Parametric Models.

6.1.1 Parametric and Non Parametric Models

In a Parametric Model, Gaussian method of estimation is used. It is assumed that

the RGB colors are mutually independent. The 2 parameters on which the estimation is

based are the mean and standard deviation of each of RGB streams. Given the mean

and standard deviation for each color stream, P(RGB|Skin) can be calculated as

P(R│Skin), P(G│Skin) and P(B|Skin) are the Gaussian probabilities of RGB

streams given by the formula

Here μ is the mean and σ is the standard deviation of the color band. A similar

approach is taken to estimate P(RGB|Non-Skin) by calculating P(R|Non-Skin), P(G│Non-

Skin) and P(B|Non-Skin) .

A non-parametric model is a model which does not depend on any parameters. It

produces a more robust system than a parametric model. To overcome the Gaussian

assumption of independence, we require large training data. Estimation of P(RGB|Skin)

and P(RGB|Non-Skin) for each RGB is done explicitly. For this purpose we use the color

histogram based model.

In Histogram based model we create histograms for skin and non skin. Training

is done by counting how many pixels have color RGB for skin and non skin in the training

samples. The count is stored in a histogram for those RGB values in histogram for skin

and non-skin respectively. For example, if 100 pixels were skin and 200 pixels were non-

skin for R=213, G=133 and B=144, the value in the skin histogram at (213,133,144) will

2

2

2

)(

2

1
)(

x

exf

23

be 100 and in the non-skin histogram value at (213,133,144) will be 200. The range of

values for RGB is a decision which must be made before creating histograms. For

example, if 8 bits are used to represent a color, RGB can have a range from 0 to 256.

The histogram will be an array of 256*256*256 for both skin and non-skin. Creation of

coarser histograms is preferred to creating histograms of large size like 256*256*256.

Section 7.1.2 will describe how these histograms were created and used for the work

here. For every pixel in a test image with value of RGB, the P(Skin|RGB) is given by

The values of P(RGB|Skin) and P(RGB|Non-Skin) are obtained from the skin and

non-skin histograms respectively.

Since Histogram based skin detection is a non-parametric model and thereby

more robust, we have chosen to use that as the method of skin detection over the

Gaussian model. This method is combined with the use of threshold, a minimum

probability of P(Skin|RGB) required in the image to be classified as skin. All instances of

skin detection mentioned in this work use histograms for skin detection
 [16]

.

6.1.2 Creation of Histograms for Skin Detection

 Histograms were created for skin and non-skin. The size of the histograms for

both skin and non-skin was 32*32*32 arrays. Since the intensity values range from 0 to

256 and we have used 32*32*32 size for histograms, every intensity value for R, G or B

will be divided by a factor of 8. The resultant values for the 3 color bands will be used as

index to get the P(RGB|Skin) value in the histogram. We also need to decide on the

P(Skin) and P(Non-Skin). We have used a value of 0.5 for P(Skin) and P(Non-Skin).

Thereby the P(Skin|RGB) can be derived as

24

Therefore the value of P(Skin|RGB) is value from the skin histogram for RGB

divided by the sum of values from skin and the non-skin histogram for RGB.

6.2 Finger Detection

6.2.1 Template Matching for Finger Detection

One of the detection methods used for finger detection in the work here is

Template Matching. Template matching method requires templates, which are usually an

average over the samples from the training examples. Then using Normalized

Correlation, matches similar to the templates in an image are detected. The Normalized

Correlation method implemented here uses the normxcorr2 function inbuilt in MATLAB to

do Template Matching. The use of Normalized Correlation or Cross-Correlation for

template matching is motivated by the distance measure (squared Euclidean distance)
[17]

(where f is the image and the sum over x,y under the window containing the

feature t positioned at u,v). In the expansion of d
2

The term is constant and if the term is

approximately constant then the remaining cross-correlation term

is a measure of the similarity between the image and the feature

yx

tf vyuxtyxfvud
,

22

,)],(),([),(

yx

tf vyuxtvyuxtyxfyxfvud
,

222

,)],(),(),(2),([),(

),(2 vyuxt),(2 yxf

yx

vyuxtyxfvuc
,

),(),(),(

25

The correlation coefficient normalizes the image and feature vectors to unit

length, yielding a cosine-like correlation coefficient

where is the mean of the feature and is the mean of f(x,y) in the region

under the feature. We refer to this equation as normalized cross-correlation.
[20]

In order to create templates training examples had to be selected. To select the

training examples, all possible hand positions were analyzed. The basic criteria for

deciding the hand positions were based on the position of the palms and wrist with

respect to the table. There are 3 possible cases here –

Case 1: Palm entirely on the table – This is a case where the person’s palms lie

entirely on the table. The fingers appear flat in these cases.

Case 2: Wrists placed on the table – This is a case where person’s wrist is

placed on the table and only the edge of the palms was in contact with the table. The

fingers in this case appear completely.

 Case 3: Palms not in contact with the table – This is a case where neither the

person’s palms nor the wrist is in contact with the table. The fingers in this case appear to

be raised.

Figure 6-1Hand Positions

5.0

,

22

, ,

, ,

}]),([]),([{

]),(][),([
),(

yxyx vu

yx vu

tvyuxtfyxf

tvyuxtfyxf
vu

t vu
f

,

26

Based on this idea, 3 hand positions were decided. They are

1. Flat (Case 1)

2. Normal (Case 2)

3. Raised (Case 3)

 The idea behind considering the 3 different hand positions is to assess different

type of possible finger lengths, orientation and shapes. To achieve templates of all

possible finger shapes – samples from the training examples in which fingers appear in 3

possible cases were collected. For example, consider the little finger. Templates of little

finger from Case 1, Case 2 and Case 3 were collected. In order to consider the lengths

multi-scale search is used. Orientation is achieved through rotation of samples and taking

their average. Based on all these templates a finger detection system for the most hand

positions and finger shapes was achieved.

In template matching method, one should also consider the number of classes of

templates which needs to be created. One possible approach here was to make

templates of each of the finger for different hand positions. That makes it 10 possible

classes for 3 hand position cases and a total of 30 templates. Along with rotation, that

creates a very large number of templates. At first, this approach was taken. During initial

testing on the validation set, it was found that the ring, middle and index finger templates

of one hand will work to detect the same finger of the other hand. E.g. – Ring finger

template of right hand was useful in detecting ring finger of left hand and vice versa. A

significant reduction in the number of templates was achieved if same templates were

used for detection of these 3 fingers on both hands. Therefore it was decided to have

only 7 classes of fingers –

1. Ring finger

2. Middle finger

27

3. Index Finger

4. Right Thumb

5. Left Thumb

6. Right little

7. Left little

For the first 3 classes, the template used for each of the finger class is same for

both hands. The last 4 classes required individual templates for each hand. Also in all of

them, rotation and resizing was required. The number of possible ways in which the last 4

classes of fingers appear was significantly larger than the first 3 classes. A detailed

analysis on how templates for these 4 classes were collected appear later in this chapter.

To collect the samples, training images were required. On viewing the different

datasets a particular sequence was selected which consisted of all possible finger

positions. This sequence was from a dataset collected from one single user and

contributed to all hand position types. From this sequence 20 training examples were

selected. Each of the training example consisted fingers in different possible shapes and

orientation. Training samples were collected from these 20 training images by extracting

pieces of all the fingers .All training samples of a particular finger were aligned for one

particular hand position and resized to 20*10. A template was then created for that

particular hand position for that finger by taking their average. For example, if some of the

samples for little finger were created in raised hand position, it was rotated in the

required direction and by a required angle to make samples of flat position. All the

samples of little finger were made to look like little fingers in flat position, resized and their

average was taken. This rotation of training example ensured alignment in training

samples for a particular hand positions from the 20 training samples for that particular

finger. Snapshots below show how a sample for raised hand position of left little finger on

28

the left was rotated to get sample flat hand position of little finger. All the samples of left

little finger were rotated as required for a flat position, the extra pixels were removed on

the sides to align them. It was then resized and averaged to create a template for left little

finger at flat position.

Figure 6-2 Rotation of training examples

Also, each of the samples collected was from the base of the finger to the tip of

the finger. The first image above of the left little finger shows how the sample is taken

from base to the tip of the finger. Every valid sample must consist of the finger from base

of the finger (knuckles) to the fingertip. After rotating each sample, it was resized to 20*10

sizes, since not all training examples were of the same dimensions. Rotation of training

examples was done to form an alignment between all training samples.

For template matching method, another parameter which had to be decided was

the number of top matches for templates. The template matching method here tries to

find top 5 matches for each of the template in the image. The number of 5 for the top

matches was decided after tests on a validation set which consisted of 20 images. After

initial training was done by creating templates, template matching method was run on

these 20 validation images. At first only one top match for each template was selected.

Since the images are of 640*480 resolution, templates which are of the size 20*10 did not

find a particular finger from a template as a top match at all times. This method of finding

the top match was accurate when hand position was applied but was not successful in

detecting fingers when the entire image was considered. Since the user can run the

detection method without using the hand detector, the number of matches must be

increased. The number of matches was then increased to 5. Top 5 matches in most

29

validation images had detected the particular finger intended for detection. Therefore

detection of top 5 matches of the template in the image for Template Matching method is

done. The top 5 matches were filtered again using skin, depth and hand information.

There are also depth frame associated with each of the images. After finding all

the results using Template Matching, there is an option of using the depth frame. At first

the average depth of the finger detection box was compared to the average depth of the

face. If the average depth was lesser than of the face it was considered as a true

positive. But on observing the depth frames, the sides along the fingers had zero depth.

Please refer figure 6-3 below where the sides along a finger have zero depth.

In case pixels like this appear in the detection box the average depth was

affected. Therefore to avoid these outliers, median of the detection boxes was considered

rather than the average. All the detection boxes have a median depth associated . If the

median happens to be zero then it is considered background since zero depth means the

detection box is present too far away from the camera. This is explained in detail in the

experiments section

In order to achieve more accuracy a hand detector was included. This hand

detector (discussed later in this chapter 6.3) when done before running the finger

detection Template Matching method, employs the position of hands and applies

template detection only at the location of hands. The hand detector requires the depth

frames to be loaded. After loading the depth frame, face detector should also should be

run since the position of the hands are based on the median depth of the face. If the

median depth of the finger detection box is not zero but greater than that of median depth

of face detection box, then it is also considered background and is ignored.

30

Figure 6-3 Sides of finger having depth zero.

6.2.2 Training and class wise template collection

To collect templates first training examples had to be selected. Using the

sequence mentioned above, 20 training images were collected. In each of the image,

fingers were in different positions. For example, in one image if the left little finger was

placed on the table, in another it was raised. In yet another image, it was raised only mid

way. Below are some images which explain the same example. All images are from the

same user.

Figure 6-4 Different positions of the same finger.

Similar cases were considered for all fingers. Importance was given to dissimilar

positioning of thumb and the little finger, since they had the most variation in positioning.

It was also made sure that the middle, index and ring fingers were as distinct as possible.

From the training images, samples of different fingers were collected by extracting them

individually. This was achieved in MATLAB by - first reading the image and then

extracting the position using the co-ordinates where the particular finger was in that

image. An ideal sample should contain the sample subject right in the middle with no

extra pixels read along the sides. But for some samples, especially thumb and little finger

examples, there were extra pixels on the side. This happens for 2 reasons - as MATLAB

considers everything as matrix if the sample subject lies along the diagonals some extra

31

pixels were read and also because these samples were usually small. To avoid such

cases the sample was rotated in the direction requires and then the sub window of the

image without the extra pixels was considered as samples. The samples were then

resized so that they fit the actual dimensions of template of 20*10 pixels. In experiments,

it was noticed that sometimes because of the template having these extra pixels, finding

a top match for a particular finger was very difficult. But this accuracy was improved when

hand position was used.

6.2.2.1 Template collection for Ring, Middle and Index Finger.

Samples of each of these fingers based on the 3 cases of hand positions were

made. From the training examples, these samples were extracted manually. Each

sample collected contained the finger from base to the tip of the finger. For these 3

template classes, after samples of the fingers from the image were extracted, it was

rotated to hand position desired and resized to 20*10. The average on each finger on

both hands was taken separately. For example, average over the left index finger

samples and right index finger samples were taken separately. The right hand and left

hand average was then averaged to get the final template for that particular finger.

Therefore for the earlier index finger example, the final index finger template was an

average over the combination of the left index finger average and right index finger

average. Similarly, the other templates were created for middle and ring fingers.

Rotation of training examples was not required for these 3 fingers since they

cannot be bent sideways while the user taps these fingers on the table. The flat hand

position these 3 fingers results in a finger tip; therefore samples of just normal and raised

hand positions were considered. For index and ring fingers, rotations were considered for

cases where the hands were positioned sideways (not facing front-on to the camera) or

fingers appear slanted at an angle. An example of hand in such a case is shown below in

32

the left, notice the ring finger is at an angle instead of facing front on like the example

shown on the right side. To cover such cases rotation of ring and the index fingers were

considered. Those rotations were achieved by rotation of final templates at an angle of 30

degrees both clockwise and anti-clockwise.

Figure 6-5 Need for rotated templates

Here are some examples of the samples and averages collected as templates for

Template Matching for these 3 classes – Index Finger, Middle Finger and Ring Finger

Figure 6-6 Samples and Templates of Ring, Middle and Index Finger

6.2.2.2 Rotation, Aligning and Resizing of training examples

As explained above, not all training examples looked similar and were of the

same dimensions. For example, the little finger samples varied from sizes of 13*11 to

9*15, based on the class of the hand position it belonged to. In order to create unified

samples, resizing had to be done. Also a decision had to be made on what size the

resizing should be done. Most of the samples extracted for middle, ring or the index

finger were of the size 20*10. That size was consistently able to find good matches for

33

template detection and also formed good samples covering base to tip of a given finger.

Therefore for simplicity and consistency, 20*10 was decided to be the size in which all

templates will be made. Resizing was lesser of a problem for all the templates created for

ring, middle and index fingers. Although, all of the samples in these 3 classes were not of

the same size, the sizes of samples were somewhere close with either of the dimensions

being off by a maximum of 5 pixels.

For the little finger and thumb the range and the type of possible occurrences

varied a lot. For example, here are some cases of how a left little finger can appear

(these are not samples). The first image is where the little finger is lifted; the second one

is that of a normal hand position and the third one being another possibility for normal

position. The last one is an example where it is raised.

Figure 6-7 Little Finger Appearance

In order to bring such samples of different sizes to 20*10, imresize command of

MATLAB was used. Here is an example of how a training example of left hand little finger

was resized. The resulting resized sample was of the size 20*10. The first parameter of

imresize is the grayscale image of the sample and the second parameter is that of the

target resolution.

resized_raised_left_little_sample_1=imresize (raised_left_little_sample_1, [20 10]);

Before resizing some training examples required rotation. For example, in the

case of left little finger explained above, the first sample wherein the finger is raised

cannot be aligned with a sample in which the little finger is in raised hand position. The

sample has to be rotated in order to align it with the other samples of raised little finger.

34

For this purpose, imrotate command of MATLAB is used. Here is how the example

explained above can be aligned with the other samples.

raised_left_little_sample_1 = imrotate (gray_left_little_sample_1,-90,'bilinear','crop');

This function imrotate has 4 input parameters- the resized sample, the degree by

which the sample should be rotated anti-clockwise, the method used for interpolation and

size of the image box returned.

The work here uses resizing of the images first and then rotates the training

examples. Resizing is done first since rotation of very small samples truncates some of

the edges. In order to retain most of the sample image, resizing to 20*10 was done first.

To retain the size after the rotation, the last parameter here is used as ‘crop’ and the

output image after rotation is of the same size 20*10. The method used for rotation here

is Bilinear Interpolation. Bilinear Interpolation uses a weighted average of the four nearest

pixels and the range of output image is always within the same range of values as the

input image. In the example explained above, the lifted little finger sample has to be

rotated by 90 degrees clockwise to be aligned with the raised left little finger training

sample. So a value of -90 degrees under the degree parameter of imrotate was given.

Likewise all training samples of thumb and little fingers were rotated to form

sample of raised, normal and flat positions. In case of thumb and little fingers, samples of

the flat position were a case when the finger was lifted (as shown in the first image in the

left little example samples shown earlier in the same section).Every sample required a

different angle to align with the required hand position. Each sample was rotated in the

required direction (clockwise or anticlockwise) and in the required angle (in degrees) to

align the training samples. By rotating and making all the samples of the same size,

alignment of all the training samples was achieved. Extra pixels were removed on the

sides so that the sample was as pure as possible. It was then resized and average over

35

all the resized sample of one type formed the final template for each hand position in

each class. Therefore after rotating, aligning and resizing these training examples

samples for raised, normal and flat positions were obtained for all the 7 classes of

fingers.

6.2.2.3 Template collection for Thumb and Little Finger.

The cases of detection and template creation of thumb and little fingers are

different to that of ring, middle and index fingers. In this section a study on why the left

and the right hand was made into separate classes, how the templates are achieved for

this purpose and how accuracy can be improved there.

An earlier section (section 6.2.2.1) discussed how templates are created for ring,

middle and index fingers. For these 2 fingers – thumb and little finger, the amount of

variation of possible finger shapes are large. These 2 fingers on each hand were in

different direction, so templates for these were separated out into 4 different classes. A

decision was taken to make it into separate classes for 2 hands. Except for the 3 hand

positions, the earlier 3 classes didn’t have any sideways shape. While thumb and little

fingers posses sideway shapes. The pictures below show the sideway shapes of thumb

and little fingers.

Figure 6-8 Sideway shapes of Little Finger and Thumb

Thumb is placed sideways, flat on its side during both the normal and the flat

hand position. For raised position the thumb is at an angle with the fingertip on the table.

First, samples of thumb from both the hands separately from all the 20 training images

were collected and resized to 20*10. The samples where in the thumb was in raised

position was rotated as described in the previous section and made to look like a sample

36

of other 2 classes. After rotation, sub windows with just the fingers were extracted and

resized. Average of these resized samples was collected to form flat and normal

template. The sample of normal and flat hand positions were then rotated to form

samples of raised hand position. Average of these samples were now formed the

template for raised hand position. This process was done for thumbs of both the hands to

create templates for right and the left thumb. So it consists of 2 templates each – one for

flat and raised hand positions together and another one for raised hand position.

Therefore there are 4 different templates for thumb.

For the little finger though the case is different. For the flat hand position, the little

fingers are placed sideways (3
rd

 and the 4
th
 picture above) and for the other 2 hand

positions the samples look different. But during testing on validation set, it was found that

for the raised position templates from middle, index or ring finger can detect the raised

little finger. So template for raised hand position for little finger was not created.

Therefore a total of 4 templates were created for little fingers like the case of thumb with

2 each for both the hands. The process of rotation, resizing and aligning was similar to

that explained for thumb.

This system of template matching improved the accuracy in detection of the

thumb and little fingers. Further using the hand detector increases performance of the

system even more. Using the hand location reduces the search space for template to a

very small section of the image and therefore is more accurate. Further increase in

performance can be achieved by creating more number of templates in which all the

variations in shape and orientation is captured.

37

Figure 6-9 Samples and Templates for Little and Thumb

6.2.2 PCA for Finger Detection

Principal Component Analysis (PCA) is an unsupervised learning algorithm.

Dimensionality reduction is an unsupervised learning problem which allows data

compression and increases speed. Inputs to a learning algorithm are called features. In

some problems, the number of features is large and sometimes redundant. Reduction in

dimensions reduces the total data involved in the process and thereby increases the

speed. Consider a problem of n features where n is a large number. To simplify this

problem a reduction in the number of features is required. PCA provides a method to

project n-features onto k-features (where k is a very small number compared to n) with

least projection error. For a set of data points x1, x2, x3 ……. xn

 where i != j

In PCA the aim is to preserve the distance between data points unlike linear

regression where the motive is to minimize the squared error from data point to

projection. If the distances between data points are preserved the error is zero.

 PCA requires preprocessing of training data. It involves mean normalization,

which involves computing the mean of each feature and then replace each training

example for a feature with the difference with the feature mean.

 For a training set : x
1
,x

2
,…,x

m
 of m examples

and n features.

nn

ji

ji XXErrorPError
,

1,1

),()(

38

 replace each feature x
i
j with x

i
j − μj

If features are on different scales, scale each features to have comparable range

of values. This is called as Feature Scaling. This should be done only when features take

on different range of values.

 where sj is the standard deviation for the feature

To reduce from n-features to k- features, we first compute the Covariance Matrix

denoted by Sigma (∑)

where x
(i)

are n –feature vectors(n * 1 matrix)

∑ is therefore a n*n matrix

We compute Eigenvectors (U) and Eigenvalues (S) using Singular Value

Decomposition (SVD)

[U, S, V]=svd(∑) or [U, S, V]=eig(∑)

Eigenvectors (U) is an n*n matrix. We use the first k columns of the Eigenvectors

matrix to reduce from n-features to k-features. Therefore an n*k matrix is considered (Ur).

Eigenvalues is an n*n matrix with values only at the diagonal. Eigenvalues at a column

depicts the value for that particular Eigenvectors. Higher value in a column of

Eigenvalues indicates that particular Eigenvector (feature) has higher importance.

Projection using the reduced Eigenvectors matrix Ur is given by

 x is feature vector

 The dimensions of Ur is n*k and Ur
T

 is k*n. The dimensions of x feature vector is

n*1. The projection z, is therefore of the size k*1, a representation of n-features using k-

features.

The projection is then back projected to convert it back into the dimensions we

started with we use

(n*k and k*1 yielding n*1)

Ti
n

i

i xx
n

)()(
1)(

1

)(

m

i

i

jj x
m 1

1

j

j

i

ji

j
s

x
x

)(

xUz T

r

zUx r

39

6.2.2.1 Training for Finger Detection

The samples of fingers collected for template matching are used as training

examples. The 7 class approach described for Template Matching is the same for PCA.

Mean normalization was carried out by taking average of the training examples of one

type of class and deducting the average of those training examples and dividing it by the

standard deviation. Eigenvectors and Eigenvalues were computed using the eig function.

The number of eigenvectors to use is fixed as 10. The results of template matching were

used as a starting point for PCA method. All detections from Template Matching were

projected using the top 10 eigenvectors. The projection is then back projected using the

projection and the top 10 eigenvectors, to convert it back into the dimensions we started

with of n*1. The projection error is calculated as the difference between the detection we

started with and the back projection.

6.3 Depth Based Hand Detector

Each RGB frame has an associated depth frame. These frames are aligned;

therefore the value at every pixel in the depth frame is the distance from the camera. This

system works on the assumption that hands are placed in front of the face and in

between camera and the face. Hands combined with the arm are the only region where

skin is present between face and the camera. We have used a face detector to locate the

position of the face and its center. Depth frame gives us the depth at the center of the

face. We use this as the threshold for the depth frame. All the pixels in the depth frame

with the value of depth greater than the face are removed. We also use histogram based

skin detection and fixed threshold of 0.5 the result to find areas with skin. The 2 threshold

results are multiplied (element-by-element) to get the areas with skin having lesser depth.

The 2 largest connected components from the resultant image are identified as hand

locations.

40

The user can load sequences of depth frames and on selection of a particular

sequence tries to match the corresponding depth sequence. If an incorrect sequence is

loaded, the system provides an error saying “Depth Sequence loaded is incorrect” in a

message box. On loading the correct sequence, the system automatically picks up the

frame from that sequence. Note that, the loading of the frame depends on the number of

frames in the sequence. So loading another sequence with the same number of frames

as the current sequence may cause loading the incorrect frame.

The most use of the depth frames comes in increasing the accuracy of the

system. The baseline system of detection algorithm using Template Matching or PCA

along with skin detection does prove to be effective. But sometimes the system might find

some matches which might be in the background. The depth frames are also very useful

in detection of hands. The system includes a face detector. The assumption made here

for detection of hands is that – Both the hands are placed before the face. It means that

the depth of the face is more when compare to that of the hands or in turn the hands are

much closer to the Kinect camera than the face.

There is an additional button added on top of the main window Detection(Skin

and Depth). This uses Depth and Skin to find the presence of fingers in the given image.

The input for this method is the result of one of the algorithms for detection combined

with Skin Detection. Another thing to note is that, this button can only be triggered when

depth frames of the sequence are loaded.

41

Chapter 7

Experiment and Results

7.1 Experiments with Skin

In experiments with skin we run the detection algorithm and apply skin detection

with threshold to the results. The 2 parameters on which the results depend are the

Template Matching threshold and Area Percentage. Here as the first experiment we vary

the skin detection threshold from 0 to 1, set area percentage to 0.5 and set the template

matching threshold to 0.5. The cumulative results for True Positives and False Positives

for Template Matching and PCA is given by

Figure 7-1 Experiments with Skin – Varying Skin Threshold

In a second experiment with skin, we set the Template Matching threshold to 0.5

and Skin detection Threshold to 0.5. We vary the area percentage from 0% to 100%.

Figure 7-2 Experiments with Skin – Varying Area Percentage

42

7.2 Experiments with Hand Detector

In experiments with hand detector, we run the detection algorithm only on the

hand location sub windows and apply skin detection with threshold to the results. Here

similar to the first experiment with skin we vary the skin detection threshold from 0 to 1,

set area percentage to 0.5 and set the template matching threshold to 0.5. The

cumulative results for True Positives and False Positives for Template Matching and PCA

is given by

Figure 7-3 Experiments with Hand Detector – Varying Skin Threshold

In a second experiment with hand detector, we set the Template Matching

threshold to 0.5 and skin detection threshold to 0.5. By varying the area percentage from

0% to 100%, we get cumulative results for Template Matching and PCA displayed by this

plot.

Figure 7-4 Experiments with Hand Detector – Varying Area Percentage

43

7.3 Experiments with Depth

In experiments with depth, we run the detection algorithm and apply skin

detection with threshold to the results similar to experiments in 7.1. To filter the results

further more we use the depth information. The median value of each of the detection

boxes are calculated and checked if the median value is less than the depth of the face.

The results show lesser false positives.

Figure 7-5 Experiments with Depth – Varying Skin Threshold

In a second experiment with hand detector, we set the Template Matching

threshold to 0.5 and skin detection threshold to 0.5. By varying the area percentage from

0% to 100%, we get cumulative results for Template Matching and PCA displayed by this

plot.

Figure 7-6 Experiments with Depth – Varying Area Percentage

44

Table 7-1 Template Matching Cumulative Results of Experiments

TP-True Positives TEMPLATE MATCHING

FP- False Positives Skin Detection Hand Detection Depth

Skin Threshold TP FP TP FP TP FP

0 88 230 97 159 88 71

0.1 88 195 96 147 88 68

0.2 86 175 93 134 86 57

0.3 85 142 93 123 85 49

0.4 82 103 89 105 82 42

0.5 77 80 85 85 77 38

0.6 73 66 80 79 73 35

0.7 70 47 76 64 70 29

0.8 65 24 68 53 65 20

0.9 29 1 33 11 29 0

1 0 0 0 0 0 0

Area Percentage TP FP TP FP TP FP

0 93 242 107 179 93 81

10 90 201 104 167 90 71

20 89 197 96 142 89 63

30 87 144 91 127 87 54

40 79 115 88 112 79 43

50 77 80 85 85 77 38

60 77 66 75 80 77 31

70 73 54 71 74 73 27

80 64 36 66 62 64 22

90 26 13 36 14 26 11

100 0 3 1 2 0 2

45

Table 7-2 PCA Cumulative Results of Experiments

TP-True Positives PCA

FP-False
Positives Skin Detection Hand Detection Depth

Skin Threshold TP FP TP FP TP FP

0 46 178 35 92 46 44

0.1 45 149 35 81 45 38

0.2 44 126 35 73 44 31

0.3 44 106 33 61 44 27

0.4 42 90 30 53 42 24

0.5 42 74 28 40 42 20

0.6 41 57 21 29 41 15

0.7 40 20 5 15 40 10

0.8 37 7 3 12 37 6

0.9 7 2 0 2 7 2

1 0 0 0 0 0 0

Area Percentage TP FP TP FP TP FP

0 53 197 44 94 53 56

10 50 154 42 81 50 48

20 48 132 39 73 48 43

30 47 114 35 61 47 36

40 44 95 30 52 44 28

50 42 74 28 40 42 20

60 42 45 28 30 42 13

70 41 29 18 23 41 10

80 33 12 15 16 33 9

90 12 8 13 10 12 6

100 0 0 0 0 0 0

46

References

[1] A Antonelli, Forli Biometrika s.r.l, R Cappelli , D Maio and DMaltoni , “Fake

Finger detection by Skin Distortion," IEEE Transactions in Information Forensics

and Security , 2006. Page 360 - 373

[2] Weixin Yang, Zhengyang Zhong, Xin Zhang, Lianwen Jin, Chenlin Xiong,

Pengwei Wang, “Depth Camera Based Real-Time Fingertip Detection using

Multi-View Projections”. 15th International Conference, HCI International 2013,

Las Vegas, NV, USA, July 21-26, 2013, Proceedings, Part V.Pages 254-261

[3] Ravikiran J, Kavi Mahesh, Suhas Mahishi, Dheeraj R, Sudheender S, Nitin V

Pujari., “Finger Detection for Sign Language Recognition," in Proceedings of the

International MultiConference of Engineers and Computer Scientists 2009 Vol I

IMECS 2009, March 18 - 20, 2009, Hong Kong.

[4] Sung Kwan Kang ; Dept. of Comput. Sci. & Eng., Inha Univ., Incheon ; Mi Young

Nam ; Phill Kyu Rhee, “Color Based Hand and Finger Detection Technology for

User Interaction" in International Conference on Convergence and Hybrid

Information Technology, 2008. ICHIT '08 Pages 229 - 236

[5] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak and Denis Fisseler,

“Analysis of the Accuracy and Robustness of the Leap Motion Controller”.

Sensors 13, Accepted 6 May 2013 no. 5: 6380-6393

47

[6] Jia Jia, Lianhong Cai, Kaifu Zhang, Dawei Chen, “A New Approach to Fake

Finger Detection Based on Skin Elasticity Analysis,” International Conference,

ICB 2007, Seoul, Korea, August 27-29, 2007. Proceedings

[7] Zhou Ren, Junsong Yuan and Zhengyou Zhang , “Robust hand gesture

recognition based on finger-earth mover’s distance with a commodity depth

camera” MM '11 Proceedings of the 19th ACM international conference on

Multimedia Pages 1093-1096.

[8] J. Mackie and B. McCane. “Finger Detection with Decision Trees,” University of

Otago, Dept. of Computer Science

[9] A. Corradini, “Finger Detection based on hand contour and color information” in

2011 6th IEEE International Symposium on Applied Computational Intelligence

and Informatics (SACI) [97 - 100]

[10] Li-wei Chan, Yi-fan Chuang, Yi-wei Chia, Yi-ping Hung, Jane Hsu, “A new

method for multi-finger Detection using a regular diffuser,” in 12th International

Conference, HCI International 2007, Beijing, China, July 22-27, 2007,

Proceedings, Part III

[11] Peng Song, Hang Yu and Stefan Winkler, “Vision-based 3D finger interaction for

mixed reality games with physical simulation” VRCAI '08 Proceedings of The 7th

ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its

Applications in Industry. Article No. 7

48

[12] Oka, K.; Sato, Y.; Koike, H., “Real time fingertip tracking and gesture

recognition,” Computer Graphics and Applications, IEEE.2002 [64 - 71]

[13] Ravikiran J, Kavi Mahesh, Suhas Mahishi, Dheeraj R, Sudheender S, Nitin V

Pujari, “Finger Detection for Sign Language Recognition,” Proceedings of the

International MultiConference of Engineers and Computer Scientists 2009 Vol I

IMECS 2009, March 18 - 20, 2009, Hong Kong.

[14] Hui-Shyong Yeo, Byung-Gook Lee, Hyotaek Lim, “Hand tracking and gesture

recognition system for human-computer interaction using low-cost hardware,” in

Multimedia Tools and Applications Journal(2013)

[15] Wei-Yun Yau, Hoang-Thanh Tran, Eam-Khwang Teoh, Jian-Gang Wang, “Fake

Finger Detection by Finger Color Change Analysis,” in International Conference,

ICB 2007, Seoul, Korea, August 27-29, 2007. Proceedings. pp 888-896

[16] Michael J. Jones and James M. Rehg, “Statistical Color Models with Application

to Skin Detection,” in Cambridge Research Laboratory. International Journal of

Computer Vision.January 2002, Volume 46, Issue 1, pp 81-96

[17] J. P. Lewis, “Normalized Cross-Correlation,” Industrial Light & Magic, Pages[120-

123]. This is an expanded version of apaper from Vision Interface,

1995(reference [10])

49

[18] M. Jones and J. Rehg,n, “Statistical color models with application to skin

detection,” Intenational Journal of Computer Vision, vol. 46, no. 1, pp. 81–96,

January 2002.

[19] Paul Doliotis, Vassilis Athitsos, Dimitrios Kosmopoulos, and Stavros Perantonis.

“Hand Shape and 3D Pose Estimation using Depth Data from a Single Cluttered

Frame”. International Symposium on Visual Computing (ISVC), July 2012.

[20] Kai Briechle ; Uwe D. Hanebeck “Template matching using fast normalized cross

correlation” Optical Pattern Recognition XII, 95 (March 20, 2001)

50

Biographical Information

Sanjay Vasudeva Iyer was born in Bangalore, India in 1986. He completed his

B.E in Computer Science and Engineering from Visvesvaraya Technological University,

India in 2008. Following his bachelor’s degree, Sanjay was working a Software Engineer

and late as Senior Software Engineer at Infosys Technologies Limited, Mangalore over a

span of 3 years. In 2011, he joined University of Texas at Arlington for his masters in

Computer Science. His current research interests are in the area of Computer Vision,

Data mining, Data Analysis & Modeling and Machine Learning.

