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Abstract 

DETECTION OF FINGERS WITH A DEPTH BASED HAND-DETECTOR IN STATIC 

FRAMES 

Sanjay Vasudeva Iyer 

Masters of Science in Computer Science 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Dr. Vassilis Athitsos 

This thesis presents a method for a finger detection system. It is assumed that 

the user taps their fingers on a table and the camera is placed on the same table in front 

of their fingers. This setup is motivated by an application of analyzing the movement of 

fingers in patients engaging in physical therapy. Fingers are detected in static images, 

which is a more challenging task than detecting and tracking fingers in videos which are 

based on motion. 

The Microsoft Kinect sensor has been used as the source to collect data, and it 

provides color and depth images at each video frame. OpenNI framework version 1.5 

was used to capture data as it allows alignment between color and the depth frames. 

Detection of fingers is performed using two different methods: Template Matching and 

Principal Component Analysis (PCA). Additional information present in the image, such 

as skin color and depth data, is used to improve accuracy and efficiency. The depth 

frames are used to separate the foreground from the background, and also to provide 
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information for detecting hands. A face detector is also utilized and the position of face is 

used as a reference to determine where the hands are located. 

An additional contribution of the thesis is a graphical interface developed in 

MATLAB for annotating finger positions. This tool provides abilities for users to load 

various sequences of images and manually annotate the position of fingers in those 

images. Using this tool, we have annotated a large number of video frames, and these 

annotations have been used for training and testing the proposed method. In addition, 

these annotations remain as a valuable resource for future research on finger detection 

and tracking. For testing purposes, the MATLAB system also allows running the 

proposed method and measuring the accuracy of the results, based on the manual 

annotations. The thesis includes a comprehensive study on the effect of possible design 

decisions, as well as accuracy of user-dependent and user-independent settings. 
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Chapter 1 

Introduction 

 
One of the most successful applications of image analysis and understanding 

has been detection. Detection involves identifying occurrences of a particular object, 

person or a feature. A related concept is that of Recognition, which involves detection 

and then matching them to personal or objects information stored in a database. Face 

detection has been a popular technique now for several years in commercial and law 

enforcement applications. Technologies available after decades of research have also 

made it possible for recognition systems of smaller objects with equal precision e.g. body 

parts such as the gesturing arm in an American Sign Language (ASL) Recognition 

System. The invention of motion sensing devices like Kinect by Microsoft and other 3D 

sensors like Primesense have bought depth frames into popularity amongst research in 

detection and recognition. Each pixel of the depth frame contains the Cartesian distance, 

in millimeters, from the camera plane to the nearest object at that particular (x, y) 

coordinate. The (x, y) coordinates of a depth frame do not represent physical units in the 

room; instead, they represent the location of a pixel in the depth frame. Open source 

libraries like OpenCV and OpenNI SDK also aid in solving Computer Vision problems.  

Here, as part of research for study on patients undergoing physical therapy, a 

finger detection system was developed. Microsoft’s Kinect for Windows has been used as 

a source for data, i.e., it provides RGB images and the depth frames. Data has been 

captured using the OpenNI 1.5 framework which enables aligning depth and the RGB 

frames. This alignment of depth and RGB frames is called Registration and is an inbuilt 

feature in OpenNI framework. When registration mode is turned on, the depth image is 

transformed to have the same apparent vantage point as the RGB image. This shift 

causes the depth frames to have border values of zero. 
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This thesis involves 3 parts – a finger detection system, a hand detector and the 

GUI annotation tool. The detection system provides 2 popular methods for detection of 

fingers of both hands – Template Matching and Principal Component Analysis (PCA).  

In Template Matching, templates for all types of fingers were created (thumb, 

index, middle, ring and little). A template is an average over the training instances. The 

training samples for each of the fingers were created by extracting a piece of that 

particular finger from training images manually. They are then rotated as required to align 

them in a particular way and resized to a standard size. Average over the total number of 

such training examples results in a template and this was done for all the finger types. 

When the detection algorithm runs, one template is searched at a time for top 5 matches 

in an image. For this we use an algorithm called Normalized Correlation with multi - 

scale, which is explained in detail later. [Section 6.2.1] 

PCA is a dimensionality reduction method. The results from template matching 

method along with a predefined number of eigenvectors and the average of fingers are 

used to detect fingers. 

Skin Detection is used to filter the results of detection algorithms. The skin 

detection method used in this work is a histogram based skin detection, which is 

described in detail in another section [Section 6.1]. A threshold is used to decide the 

minimum probability of skin presence. The system allows user to select this particular 

parameter.  

The user can analyze the detection and check for true positives and false 

positives. For this purpose the system provides annotation of the fingers. 

The annotation tool is developed as a GUI in MATLAB. It provides abilities for 

users to load various sequences of RGB and depth frames. Once a sequence is loaded, 

an individual frame in the sequence can be selected by providing its frame number. The 



 

3 

user can now annotate various fingers in this image. The tool uses different colors to 

annotate different fingers. The same can be used to annotate up to 5 objects in an image 

while collecting data for research purposes. The tool also provides options to mark base 

and tip of different annotations. The GUI tool also has provisions to save the annotated 

objects which can be used later. 

Depth frames are used to avoid background. The system includes a face 

detector which was used to obtain the position of face and its depth. All pixels having 

greater depth than the depth of face are considered background. Depth frames also form 

an important role in detecting the hands. Hands are detected by considering all depth 

segments having lesser depth than that of the face. This is based on the assumption that 

hands are placed between camera and the face. The work here improves on a method 

devised earlier for detecting hands for American Sign Language Recognition 
[19]

. While 

that method relied on detecting hands using motion, here the hands are detected on 

static frames.  
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Chapter 2  

Related Work 

There have been research papers in the past which discuss finger detection. 

Many of these works were either done for gesture recognition systems using motion or 

security systems. Here are some of the works which are closely related to work done in 

this paper.  

One such work involved detection of finger tips based on depth information
 [2]

. 

This method could robustly detect single fingertip regardless of the position and direction 

of the hand. With depth information of front view, depth map of top view and side view 

were generated. Thickness histograms are then used to segment the finger from the fist. 

This system could detect the fingertips with robustness and accuracy using a depth 

sensor. In this paper we use depth as an option to improve accuracy and the system 

does not rely purely on having a depth sensor. Another similar work was done to detect 

fake fingers based on skin elasticity analysis 
[6]

. 

A paper from Yeo, Lee and Yim
 [14]

 presents a robust marker-less hand/finger 

tracking and gesture recognition system using low-cost hardware like webcam. This 

method would allow hand tracking despite complex background and motion blur. The 

method is able to translate the detected hands or gestures into different functional inputs 

which was used to interface with other applications. A system is implemented which 

begins by detecting face and eliminates the background. Next, skin color contours are 

extracted. For the skin contour, the convex hull and convexity defects points are then 

found. The maximum inscribed circle and the minimum enclosing circle are decided as 

the location of the palms. There are assumptions to decide shapes to be considered as 

fingertip. The largest convexity defect which fulfills the fingertip assumptions is detected 

as the thumb. Based on the vector between thumb and the nearest finger, left or the right 
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hand is determined. Some implementations of this paper are designed to work only when 

palms are facing the camera and detect only the fingertips using contours. In the paper 

presented here, locations of the palms are not required while obtaining position of fingers 

and aims to detect fingers directly. 

Software for hand detection was developed at MIT to create a graphical interface 

inspired by the movie "Minority Report". User stands in front of a screen with Kinect 

placed under it (camera facing the user). The user raises his hands and his palms get 

detected. Fingertips are obtained and tracked when the user moves the hand. User 

interacts with a graphical interface and can select an image by pointing at it. Image can 

be zoomed in or out by moving the palms closer or apart. The selected image can be 

discarded with the flick of the hand. It uses the Kinect sensor and the libfreenect driver to 

interface the Kinect on Linux. The graphical interface and the hand detection software 

were written to interface with the open source robotics package 'ROS'. This hand 

detection software displays the ability of the Point Cloud Library (PCL). This hand 

detection software is able to distinguish hands and fingers in a cloud of more than 60,000 

points at 30 frames per second, allowing natural and real time interaction. Though this 

software detects fingertips, majority of the operations are done by the palm. The setup for 

the system described in this paper is that of a patient placing his hands on the table with 

palms facing downwards. So hand detection software could not be used. 

Ravikiran’s paper 
[3]

 involved a fast and an efficient algorithm for identification of 

the number of fingers opened in a gesture representing an alphabet of the American Sign 

Language. Finger Detection is accomplished based on the concept of boundary tracing 

and finger tip detection. The system does not require the hand to be perfectly aligned to 

the camera or use any special markers like input gloves on the hand. This is closely 

related to this paper but involves motion and work here is focused on static frames. 
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Another paper
 [1]

 provided methods to stop attacks on fingerprint-based biometric 

systems by presenting fake fingers at the sensor. It introduces a new approach for 

discriminating fake fingers from real ones, based on the analysis of skin distortion. The 

user is required to move their fingers while pressing it against the scanner surface, 

thereby deliberately exaggerating the skin distortion. Though this involves finger 

detection there is no camera involved and designed for a fingerprint scanner. 

 Kang’s work 
[4] 

presents a methodology for hand and finger detection. The 

detected hand and fingers can be used to implement a non-contact mouse. This 

technology can be used to control home devices such as curtain and television. Skin 

color is used to segment the hand region from background and counter is extracted from 

the segmented hand. This paper is based on gesture recognition for device-free 

communication.  

 Leap Motion, a gesture-control technological company has released a 

commercial device called Leap which provides finger tracking
 [5]

. This device can be used 

to interface with computers as an input device. Leap motion controller enables multiple 

finger tip detection and tracking of these multiple fingers. Work from Chan 
[10]

 also talks 

about multi finger detection for images captured using an IR camera and a single diffuser. 

 Another work
 [7] 

uses depth sensors, i.e., the Kinect sensor for human-computer 

interaction (HCI). This work focuses on building a robust hand gesture recognition system 

using Kinect sensor. To handle the noisy hand shape obtained from the Kinect sensor, a 

novel distance metric for hand dissimilarity measure, called Finger-Earth Mover's 

Distance (FEMD) is proposed. This is a gesture recognition system based on depth 

images rather than finger detection on images. 

Another paper
 [8]

 introduces a fast decision tree based finger detection method 

where feature classification for hand gesture recognition and pose estimation is 



 

7 

proposed. Training of the decision trees is performed using synthetic data and 

classification is performed on images of real hands. The presence of each finger is 

individually classified and gesture classification is performed by parts. The attributes used 

for training and classification are simple ratios between the foreground and background 

pixels of the hand silhouette. This is a very useful concept in Augmented Reality 

applications and its mainly focused on detecting gestures. 

Some other research papers mention use of hand contours to search hand 

postures
 [9]

. There is also an interface proposed in a paper 
[11]

 for mixed reality, which 

consists of a stereo camera to track the user's hands and fingers robustly in the 3D 

space.  

Most finger detection papers are done for 2 reasons –first  for devices which use 

fingers as an input like fingerprint scanners and the second being for gesture recognition 

[12][13][15] 
,where motion or video is part of the input and not static images. 
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Chapter 3 

Contributions 
 

As discussed in the last chapter, there are many finger detection systems with 

different approaches proposed and implemented. This thesis provides a new approach to 

build a finger detection system. It aims at detecting fingers directly without the help of 

gestures or motion. 

The first contribution of our work is a finger detection system which implements 

two detection algorithms to find fingers. When one of the algorithms is run, the system 

allows use of additional data like skin and depth to filter results.  

The second contribution of this work is to provide depth based hand detector in 

static frames.  Locating hands when the hand motion is involved is an easier task. Here 

we provide a simple method which can be used to detect hands in a static frame. The 

system also includes a face detector which detects position of the face and its depth. 

After locating the hands, those sub windows can be used to run finger detection 

algorithms. 

The final contribution of this work is to provide a GUI annotation tool. Annotation 

of dataset can be a time consuming task. This GUI gives is user friendly and simple to 

use Annotation Tool.  Annotations can be done by drawing polygons around the objects 

we intend to annotate using a mouse or a track pad. The annotation tool also provides 

options to mark the top and bottom of the annotated object. These annotations can be 

stored and later be used for testing the system. 
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Chapter 4 

The Dataset 

4.1 Source for Data Collection 

Data was collected using the device Kinect for Windows. OpenNI framework 

version 1.5 was used to capture the data. OpenNI can collect frames at a rate of about 1-

30 frames per second (fps). The exact fps is not fixed as it depends on the time 

complexity of the video capture application. The user may also select a target frame rate 

and achieving this frame rate depends on system configuration. The OpenNI viewer 

shows the depth frame on the left and the RGB frame on the right.  

 

Figure 4-1 – OpenNI viewer 

For data to be aligned, the registration mode should be on before capturing the 

data. Since the depth camera is aligned to RGB, border values appear as 0 for depth. 

 

Figure 4-2 Registration mode on. 
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The output of the data capture is an ONI video file. Using the OpenNI framework, 

ONI files were converted to binary files for RGB and the depth streams. The program 

which converts the ONI files is made available with the code. These binary files were 

then converted to sequences of RGB and depth. The RGB stream collected were of the 

size 640*480 resolution. 

4.2 Setup 

The users sit on a chair with their hands placed on a table in with the Kinect. The 

Kinect sensor should not be placed too far or close from the person. The system treats 

objects behind face as background. An ideal distance for user to sit is somewhere 

between 1.5 - 2 feet from the Kinect with their hands placed on the table such that all the 

fingers are clearly visible. 

The users were then made to move their fingers by tapping on the table to form a 

sequence. Each sequence had a certain number of frames which were determined by the 

amount of the time the capture was allowed to run and also the fps. The proximity of the 

palm to the table was varied in different datasets. 

4.3 Converting the sequences into mat files 

On collecting the images from Kinect, they had to be converted into mat files to 

be used in the MATLAB GUI tool. In MATLAB, a 4-D matrix of size 480*640*3*number-of-

frames-in-sequence and 480*640*1* number-of-frames-in-sequence was created for the 

RGB frames and depth frames respectively. After collecting the filenames of individual 

RGB and Depth frames in the sequence, each of the images were then read and then 

inserted in the 4-D array at the same position as the frame in the sequence. All frames 

belonging to one particular sequence have to be put under the same 4-D array. This 

avoids errors in the GUI tool as it automatically picks up the depth frame at the position 

specified.   
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Figure 4-3 RGB data captured of a user. 

 

Figure 4-4 Depth Frame of a user 
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4.4 People in Datasets and No of Images in the sequence 

There are 3 people in the datasets. Each person has contributed to 2 sequences 

of images. Below are the list of sequences (with their names) and the number of frames 

in each. 

 

Table 4-1 Dataset (Person, Sequence and No of Files) 

Person Sequence1(No of Frame) Sequence2(No of Frames) 

Sachin 201 210 

Shreyas 251 163 

Sushruth 163 280 
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Chapter 5 

GUI Annotation Tool 

A MATLAB GUI was created to include all functionalities. This GUI makes all 

operations user-friendly and easy to use. Detection algorithms can be initiated by clicking 

on buttons and annotations can be made by dragging the cursor and creating shapes in 

the required manner. It also has functionalities like zoom and pan.  

 

Figure 5-1 Initial Screen. 

The initial screen allows only one operation – clicking of the ‘RGB Frames’ 

button. All the other fields and buttons are disabled. On clicking this button, a pop up 

window opens which can be used to select the file to be loaded. This file has to have a 

sequence of RGB frames of 640*480 or 320*240 resolution. The resolution can be 

chosen next by selecting the radio buttons of the ‘Select Resolution’ panel at the bottom 

right corner of the tool. 

Once the file is loaded and the resolution is selected, the variables in the file 

loaded are shown in the top box under ‘Variables’ panel. On selecting one of these 

variables, the ‘Image Selection’ panel shows the number of images in the sequence 
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selected next to ‘Total Number of Images Available’. If there are no images available it 

displays the message “No Images Available”. User may input the frame number to load 

under ‘Enter image number to load’ and click on ‘Load Image’ button. That brings up the 

actual image onto the main window (Figure 5-2). In case a wrong resolution is selected, 

the user can select the correct resolution radio button and then select the sequence 

under ‘Variables’ again to reload the sequence.  

 

Figure 5-2 On Click of Load Image Button 

The main window where in the user can view the image for annotation or after 

detection. This action of clicking ‘Load Image’ also brings up few other buttons. On top of 

the main window there are 5 buttons – Annotation Image, Detection Image, Original 

Image, Detection (Hand Locations) and Detection (Skin and Depth). If the user clicks on 

‘Original Image’ button it brings up the original image onto the main window. The user 

can also choose to view -  

1. ‘Annotation Image’ (Image on which annotation are done and have to be 

done)  

2. ‘Detection Image’ (Image after detection using one of the methods along with 

Skin)  
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3.  ‘Detection Image(Hand Locations)’ (Image after detection using the location 

of hands)  

4.  ‘Detection Image(Skin or Depth)’ (Image after detection using one of the 

methods, applying Skin Detection and removing background based on face 

depth information)  

If no operation has been done all of them show the Original Image. To perform 

annotation the user must click on ‘Annotation Image’ button. 

5.1 Annotation 

The GUI tool allows annotation of fingers. The user can select the finger he 

wants to annotate in the panel ‘Finger to Annotate’ (Figure 5-2), a ‘+’ mark appears as a 

cursor on the main window, acts as a drawing tool to draw the polygon. The user can 

then draw a polygon around that particular finger by –  

• Single click to mark a vertex.  

• Dragging to make a line. 

• Single click again to mark another side and complete the side. 

To complete the entire polygon, user must connect the first vertex made. The tool 

cursor changes from a ‘+’ to a ‘O’ (circle) on clicking of which completes the polygon. The 

user can now drag the vertices to make the polygon bigger or smaller. Once the user 

feels the annotation is complete, clicking on ‘Esc’ on keyboard completes the annotation.  

Before user completes the annotation, the polygons appear blue in color and on 

completion (pressing Esc) are shown in different colors. User can move to annotating a 

different finger only when he completes annotating a finger completely. User can do this 

by selecting the radio button of the intended finger under the ‘Finger to Annotate’ panel. 
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On the left, user may modify the annotation by dragging the vertices to enlarge or 

compress the polygon. User draws polygon around the thumb and hits the Esc key to 

complete annotation and the polygon turns green. It cannot be modified now. 

 

Figure 5-3 Drawing a polygon around the finger 

On completing the annotation, different fingers are represented in different 

colors. Thumb annotation is shown in green color and index finger is shown in yellow 

color. Complete annotation of middle finger is shown in red, ring finger in blue and the 

little finger in cyan color. 

 

Figure 5-4 Fingers annotated in different colors 

Later the user can also mark the base and the tip of the tool. To mark base and 

the tip, the user must click on the ‘Finish’ button at the bottom of the ‘Finger to Annotate’ 
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Panel. It loads the annotated image on to the main panel, in which the completed 

annotations are shown. The user can select either of ‘Mark Base’ and ‘Mark Tip’ radio 

buttons to mark base and tip respectively for a particular finger. 

 

Figure 5-5 Marking Base-Tip 

At all times the Annotated Image and the Detected Image appears on the right 

side of the tool. It is shown only when it is available, i.e., image loaded and at least one 

finger annotated and detection run at least once. Annotations can be saved by clicking on 

the ‘Store Annotation’ button and giving the file a name. 

5.2 Other Operations 

The user may also load the depth frames for an RGB sequence loaded. User clicks on 

the ‘Depth Frames’ button in the ‘Load Operations’ panel. A window pops up with the disk 

drives where user can select a mat file with the sequence. Care should be taken not to 

load wrong sequences with same number of frames as it will load the wrong depth frame. 

The variables in this file are shown in the bottom box of ‘Variables’ panel.User can select 

one of these sequences to load the depth file, which will be picked up by frame number 

specified for RGB image. In case, the user loads a wrong variable an error message 

“Depth sequence loaded is incorrect” is displayed. 
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Figure 5-6 Annotation Image on the right 

In the GUI tool, the user can zoom in on the main window. User can click on the 

‘Zoom Scroll’ button next to the main window to make the scroll bar appear and use the 

scroll bar to perform zoom on main window. The user can zoom in on main window by 

either drag the scroll bar under the main window or click on the sides of the scroll bar. 

Pan automatically appears on the main window once user drag zoom scroll bar.  

There are two more buttons ‘Zoom On’ and ‘Zoom Off’ which offer zooming on 

the main window. A magnifying glass appears on the main window on clicking ‘Zoom On’ 

button which can be used to zoom in. To turn off this zoom, user should click on ‘Zoom 

Off’ button. User may click on ‘Pan’ button anytime to bring in pan ability on to main 

window. 
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Figure 5-7 Zoom feature using scroll bar 

 The tool also has buttons to initiate the finger detection algorithms and analyze 

the detections. These are the ‘Template Matching’, ‘PCA’ and ‘Analyze’ buttons 

respectively. To enable these buttons, user has to select the parameters for these 

algorithms. The parameters used for these detection algorithms are present at the bottom 

left panel called ‘Parameters’. It includes 2 dropdowns   

1. Skin Detection: This is the parameter of skin detection threshold. The dropdown 

provides values from 0.5 to 1. The selected value will be used as the threshold 

for all the detection operations 

2. Area Percentage: This parameter is used for skin detection. Value denotes in 

percentage the amount of pixels with skin in a particular detection box. This 

values ranges from 50% to 100%. Also in annotation vs. detection, it denotes 

what percentage of pixels co-inside in a given annotation with detection. 

To run the detection algorithms, there is a panel ‘Run Detection Method’. It 

includes 3 buttons – ‘Template Matching’ which initiates the template matching method 

on the given image with the templates obtained from training, ‘PCA’ which initiates the 
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PCA method on the results of template matching method and ‘Analyze’ which analyzes 

the detection made by an algorithm and returns the true positive and false positive count 

for the selected parameters. These results are displayed in the ‘Result Panel’. The 

‘Analyze’ button is enabled only once one of the two detection algorithms is run. 

 

Figure 5-8 Running the Detection Algorithm 
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Chapter 6 

Detection 

In this chapter we describe the different detection algorithms we have used. The main 

focus of this work was to achieve finger detection. There are 2 algorithms used to detect 

fingers in this work – Template Matching and Principal Component Analysis (PCA). There 

are 2 other detection techniques used to support finger detection, namely skin detection 

and hand detection. We use a histogram based
 [18]

 skin detection to filter results from 

finger detection. Depth frames with skin data are used to detect hand locations and 

perform finger detection in the hand sub windows. 

6.1 Skin Detection 

Skin Detection refers to detecting the presence of skin pixels in an image. 

Training for skin detection involves extracting sub windows consisting only of skin pixels 

from many training images. Probability that we observe intensity values of RGB when we 

know a pixel is a skin pixel is calculated.  The probability that we observe the same 

intensity values of RGB when a given pixel is non-skin is also calculated (from sub 

windows with no skin). This gives two values for all combinations of RGB values at the 

end of training  

                                       

 For every pixel in a test image, probability that a pixel is skin given its intensity 

values of RGB is estimated using Bayes Rule, i.e., P(Skin | RGB) probability that pixel is 

skin given its RGB values. 

            
                  

      
 

P(RGB) is calculated with P(RGB|Skin) and P(RGB|Non-Skin) values using 
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. There are 2 models to get P(RGB|Skin) and P(RGB|Non-Skin). They are 

Parametric Models and Non-Parametric Models. 

6.1.1 Parametric and Non Parametric Models 

In a Parametric Model, Gaussian method of estimation is used. It is assumed that 

the RGB colors are mutually independent. The 2 parameters on which the estimation is 

based are the mean and standard deviation of each of RGB streams. Given the mean 

and standard deviation for each color stream, P(RGB|Skin) can be calculated as 

                                          

P(R│Skin), P(G│Skin) and P(B|Skin) are the Gaussian probabilities of RGB 

streams given by the formula 

 

 

Here μ is the mean and σ is the standard deviation of the color band. A similar 

approach is taken to estimate P(RGB|Non-Skin) by calculating P(R|Non-Skin), P(G│Non-

Skin) and P(B|Non-Skin)  . 

A non-parametric model is a model which does not depend on any parameters. It 

produces a more robust system than a parametric model. To overcome the Gaussian 

assumption of independence, we require large training data. Estimation of P(RGB|Skin) 

and P(RGB|Non-Skin) for each RGB is done explicitly. For this purpose we use the color 

histogram based model. 

In Histogram based model we create histograms for skin and non skin. Training 

is done by counting how many pixels have color RGB for skin and non skin in the training 

samples. The count is stored in a histogram for those RGB values in histogram for skin 

and non-skin respectively. For example, if 100 pixels were skin and 200 pixels were non-

skin for R=213, G=133 and B=144, the value in the skin histogram at (213,133,144) will 
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be 100 and in the non-skin histogram value at (213,133,144) will be 200. The range of 

values for RGB is a decision which must be made before creating histograms. For 

example, if 8 bits are used to represent a color, RGB can have a range from 0 to 256. 

The histogram will be an array of 256*256*256 for both skin and non-skin. Creation of 

coarser histograms is preferred to creating histograms of large size like 256*256*256. 

Section 7.1.2 will describe how these histograms were created and used for the work 

here. For every pixel in a test image with value of RGB, the P(Skin|RGB) is given by 

            
                  

                                               
 

The values of P(RGB|Skin) and P(RGB|Non-Skin) are obtained from the skin and 

non-skin histograms respectively.  

Since Histogram based skin detection is a non-parametric model and thereby 

more robust, we have chosen to use that as the method of skin detection over the 

Gaussian model. This method is combined with the use of threshold, a minimum 

probability of P(Skin|RGB) required in the image to be classified as skin. All instances of 

skin detection mentioned in this work use histograms for skin detection
 [16]

. 

6.1.2 Creation of Histograms for Skin Detection 

 Histograms were created for skin and non-skin. The size of the histograms for 

both skin and non-skin was 32*32*32 arrays. Since the intensity values range from 0 to 

256 and we have used 32*32*32 size for histograms, every intensity value for R, G or B 

will be divided by a factor of 8. The resultant values for the 3 color bands will be used as 

index to get the P(RGB|Skin) value in the histogram. We also need to decide on the 

P(Skin) and P(Non-Skin). We have used a value of 0.5 for P(Skin) and P(Non-Skin). 

Thereby the P(Skin|RGB) can be derived as 
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Therefore the value of P(Skin|RGB) is value from the skin histogram for RGB 

divided by the sum of values from skin and the non-skin histogram for RGB. 

  
6.2 Finger Detection 

6.2.1 Template Matching for Finger Detection 

One of the detection methods used for finger detection in the work here is 

Template Matching. Template matching method requires templates, which are usually an 

average over the samples from the training examples. Then using Normalized 

Correlation, matches similar to the templates in an image are detected. The Normalized 

Correlation method implemented here uses the normxcorr2 function inbuilt in MATLAB to 

do Template Matching. The use of Normalized Correlation or Cross-Correlation for 

template matching is motivated by the distance measure (squared Euclidean distance) 
[17]

 

 

(where f is the image and the sum over x,y under the window containing the 

feature t positioned at u,v). In the expansion of d
2
 

 

 

The term            is constant and if the term          is 

approximately constant then the remaining cross-correlation term 

 

is a measure of the similarity between the image and the feature 
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The correlation coefficient normalizes the image and feature vectors to unit 

length, yielding a cosine-like correlation coefficient  

  
 

 

 

where     is the mean of the feature and         is the mean of f(x,y) in the region 

under the feature. We refer to this equation as normalized cross-correlation.
[20]

  

In order to create templates training examples had to be selected. To select the 

training examples, all possible hand positions were analyzed. The basic criteria for 

deciding the hand positions were based on the position of the palms and wrist with 

respect to the table. There are 3 possible cases here – 

Case 1: Palm entirely on the table – This is a case where the person’s palms lie 

entirely on the table. The fingers appear flat in these cases. 

Case 2: Wrists placed on the table – This is a case where person’s wrist is 

placed on the table and only the edge of the palms was in contact with the table. The 

fingers in this case appear completely. 

  Case 3: Palms not in contact with the table – This is a case where neither the 

person’s palms nor the wrist is in contact with the table. The fingers in this case appear to 

be raised. 

 

Figure 6-1Hand Positions 
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Based on this idea, 3 hand positions were decided. They are  

1. Flat (Case 1) 

2. Normal (Case 2) 

3. Raised (Case 3) 

  The idea behind considering the 3 different hand positions is to assess different 

type of possible finger lengths, orientation and shapes.  To achieve templates of all 

possible finger shapes – samples from the training examples in which fingers appear in 3 

possible cases were collected. For example, consider the little finger. Templates of little 

finger from Case 1, Case 2 and Case 3 were collected. In order to consider the lengths 

multi-scale search is used. Orientation is achieved through rotation of samples and taking 

their average. Based on all these templates a finger detection system for the most hand 

positions and finger shapes was achieved. 

In template matching method, one should also consider the number of classes of 

templates which needs to be created. One possible approach here was to make 

templates of each of the finger for different hand positions. That makes it 10 possible 

classes for 3 hand position cases and a total of 30 templates. Along with rotation, that 

creates a very large number of templates. At first, this approach was taken. During initial 

testing on the validation set, it was found that the ring, middle and index finger templates 

of one hand will work to detect the same finger of the other hand. E.g. – Ring finger 

template of right hand was useful in detecting ring finger of left hand and vice versa. A 

significant reduction in the number of templates was achieved if same templates were 

used for detection of these 3 fingers on both hands. Therefore it was decided to have 

only 7 classes of fingers – 

1. Ring finger 

2. Middle finger 
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3. Index Finger 

4. Right Thumb 

5. Left Thumb 

6. Right little 

7. Left little 

For the first 3 classes, the template used for each of the finger class is same for 

both hands. The last 4 classes required individual templates for each hand. Also in all of 

them, rotation and resizing was required. The number of possible ways in which the last 4 

classes of fingers appear was significantly larger than the first 3 classes.  A detailed 

analysis on how templates for these 4 classes were collected appear later in this chapter. 

To collect the samples, training images were required. On viewing the different 

datasets a particular sequence was selected which consisted of all possible finger 

positions. This sequence was from a dataset collected from one single user and 

contributed to all hand position types. From this sequence 20 training examples were 

selected. Each of the training example consisted fingers in different possible shapes and 

orientation. Training samples were collected from these 20 training images by extracting 

pieces of all the fingers .All training samples of a particular finger were aligned for one 

particular hand position and resized to 20*10. A template was then created for that 

particular hand position for that finger by taking their average. For example, if some of the 

samples for little finger were created in raised hand position, it was rotated   in the 

required direction and by a required angle to make samples of flat position. All the 

samples of little finger were made to look like little fingers in flat position, resized and their 

average was taken. This rotation of training example ensured alignment in training 

samples for a particular hand positions from the 20 training samples for that particular 

finger. Snapshots below show how a sample for raised hand position of left little finger on 
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the left was rotated to get sample flat hand position of little finger. All the samples of left 

little finger were rotated as required for a flat position, the extra pixels were removed on 

the sides to align them. It was then resized and averaged to create a template for left little 

finger at flat position. 

 

Figure 6-2 Rotation of training examples 

Also, each of the samples collected was from the base of the finger to the tip of 

the finger.  The first image above of the left little finger shows how the sample is taken 

from base to the tip of the finger. Every valid sample must consist of the finger from base 

of the finger (knuckles) to the fingertip. After rotating each sample, it was resized to 20*10 

sizes, since not all training examples were of the same dimensions. Rotation of training 

examples was done to form an alignment between all training samples. 

For template matching method, another parameter which had to be decided was 

the number of top matches for templates. The template matching method here tries to 

find top 5 matches for each of the template in the image.  The number of 5 for the top 

matches was decided after tests on a validation set which consisted of 20 images. After 

initial training was done by creating templates, template matching method was run on 

these 20 validation images. At first only one top match for each template was selected. 

Since the images are of 640*480 resolution, templates which are of the size 20*10 did not 

find a particular finger from a template as a top match at all times. This method of finding 

the top match was accurate when hand position was applied but was not successful in 

detecting fingers when the entire image was considered. Since the user can run the 

detection method without using the hand detector, the number of matches must be 

increased. The number of matches was then increased to 5. Top 5 matches in most 
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validation images had detected the particular finger intended for detection. Therefore 

detection of top 5 matches of the template in the image for Template Matching method is 

done. The top 5 matches were filtered again using skin, depth and hand information. 

There are also depth frame associated with each of the images. After finding all 

the results using Template Matching, there is an option of using the depth frame. At first 

the average depth of the finger detection box was compared to the average depth of the 

face. If the average depth was lesser than of the face it was considered as a true 

positive. But on observing the depth frames, the sides along the fingers had zero depth. 

Please refer figure 6-3 below where the sides along a finger have zero depth. 

In case pixels like this appear in the detection box the average depth was 

affected. Therefore to avoid these outliers, median of the detection boxes was considered 

rather than the average. All the detection boxes have a median depth associated . If the 

median happens to be zero then it is considered background since zero depth means the 

detection box is present too far away from the camera. This is explained in detail in the 

experiments section 

In order to achieve more accuracy a hand detector was included. This hand 

detector (discussed later in this chapter 6.3) when done before running the finger 

detection Template Matching method, employs the position of hands and applies 

template detection only at the location of hands. The hand detector requires the depth 

frames to be loaded. After loading the depth frame, face detector should also should be 

run since the position of the hands are based on the median depth of the face. If the 

median depth of the finger detection box is not zero but greater than that of median depth 

of face detection box, then it is also considered background and is ignored. 
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Figure 6-3 Sides of finger having depth zero. 

6.2.2 Training and class wise template collection 

To collect templates first training examples had to be selected. Using the 

sequence mentioned above, 20 training images were collected. In each of the image, 

fingers were in different positions. For example, in one image if the left little finger was 

placed on the table, in another it was raised. In yet another image, it was raised only mid 

way. Below are some images which explain the same example. All images are from the 

same user. 

 

Figure 6-4 Different positions of the same finger. 

Similar cases were considered for all fingers. Importance was given to dissimilar 

positioning of thumb and the little finger, since they had the most variation in positioning. 

It was also made sure that the middle, index and ring fingers were as distinct as possible. 

From the training images, samples of different fingers were collected by extracting them 

individually. This was achieved in MATLAB by - first reading the image and then 

extracting the position using the co-ordinates where the particular finger was in that 

image. An ideal sample should contain the sample subject right in the middle with no 

extra pixels read along the sides. But for some samples, especially thumb and little finger 

examples, there were extra pixels on the side. This happens for 2 reasons - as MATLAB 

considers everything as matrix if the sample subject lies along the diagonals some extra 
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pixels were read and also because these samples were usually small. To avoid such 

cases the sample was rotated in the direction requires and then the sub window of the 

image without the extra pixels was considered as samples. The samples were then 

resized so that they fit the actual dimensions of template of 20*10 pixels. In experiments, 

it was noticed that sometimes because of the template having these extra pixels, finding 

a top match for a particular finger was very difficult. But this accuracy was improved when 

hand position was used. 

6.2.2.1 Template collection for Ring, Middle and Index Finger. 

Samples of each of these fingers based on the 3 cases of hand positions were 

made. From the training examples, these samples were extracted manually. Each 

sample collected contained the finger from base to the tip of the finger. For these 3 

template classes, after samples of the fingers from the image were extracted, it was 

rotated to hand position desired and resized to 20*10. The average on each finger on 

both hands was taken separately. For example, average over the left index finger 

samples and right index finger samples were taken separately. The right hand and left 

hand average was then averaged to get the final template for that particular finger. 

Therefore for the earlier index finger example, the final index finger template was an 

average over the combination of the left index finger average and right index finger 

average. Similarly, the other templates were created for middle and ring fingers. 

Rotation of training examples was not required for these 3 fingers since they 

cannot be bent sideways while the user taps these fingers on the table. The flat hand 

position these 3 fingers results in a finger tip; therefore samples of just normal and raised 

hand positions were considered. For index and ring fingers, rotations were considered for 

cases where the hands were positioned sideways (not facing front-on to the camera) or 

fingers appear slanted at an angle. An example of hand in such a case is shown below in 
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the left, notice the ring finger is at an angle instead of facing front on like the example 

shown on the right side. To cover such cases rotation of ring and the index fingers were 

considered. Those rotations were achieved by rotation of final templates at an angle of 30 

degrees both clockwise and anti-clockwise. 

 

Figure 6-5 Need for rotated templates 

Here are some examples of the samples and averages collected as templates for 

Template Matching for these 3 classes – Index Finger, Middle Finger and Ring Finger 

 

Figure 6-6 Samples and Templates of Ring, Middle and Index Finger 

6.2.2.2 Rotation, Aligning and Resizing of training examples 

As explained above, not all training examples looked similar and were of the 

same dimensions. For example, the little finger samples varied from sizes of 13*11 to 

9*15, based on the class of the hand position it belonged to.  In order to create unified 

samples, resizing had to be done. Also a decision had to be made on what size the 

resizing should be done. Most of the samples extracted for middle, ring or the index 

finger were of the size 20*10. That size was consistently able to find good matches for 
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template detection and also formed good samples covering base to tip of a given finger. 

Therefore for simplicity and consistency, 20*10 was decided to be the size in which all 

templates will be made. Resizing was lesser of a problem for all the templates created for 

ring, middle and index fingers. Although, all of the samples in these 3 classes were not of 

the same size, the sizes of samples were somewhere close with either of the dimensions 

being off by a maximum of 5 pixels. 

For the little finger and thumb the range and the type of possible occurrences 

varied a lot. For example, here are some cases of how a left little finger can appear 

(these are not samples). The first image is where the little finger is lifted; the second one 

is that of a normal hand position and the third one being another possibility for normal 

position. The last one is an example where it is raised. 

 

Figure 6-7 Little Finger Appearance 

In order to bring such samples of different sizes to 20*10, imresize command of 

MATLAB was used. Here is an example of how a training example of left hand little finger 

was resized. The resulting resized sample was of the size 20*10. The first parameter of 

imresize is the grayscale image of the sample and the second parameter is that of the 

target resolution. 

resized_raised_left_little_sample_1=imresize (raised_left_little_sample_1, [20 10]); 

Before resizing some training examples required rotation. For example, in the 

case of left little finger explained above, the first sample wherein the finger is raised 

cannot be aligned with a sample in which the little finger is in raised hand position. The 

sample has to be rotated in order to align it with the other samples of raised little finger. 
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For this purpose, imrotate command of MATLAB is used. Here is how the example 

explained above can be aligned with the other samples. 

raised_left_little_sample_1 = imrotate (gray_left_little_sample_1,-90,'bilinear','crop'); 

This function imrotate has 4 input parameters- the resized sample, the degree by 

which the sample should be rotated anti-clockwise, the method used for interpolation and 

size of the image box returned.  

The work here uses resizing of the images first and then rotates the training 

examples. Resizing is done first since rotation of very small samples truncates some of 

the edges. In order to retain most of the sample image, resizing to 20*10 was done first. 

To retain the size after the rotation, the last parameter here is used as ‘crop’ and the 

output image after rotation is of the same size 20*10. The method used for rotation here 

is Bilinear Interpolation. Bilinear Interpolation uses a weighted average of the four nearest 

pixels and the range of output image is always within the same range of values as the 

input image. In the example explained above, the lifted little finger sample has to be 

rotated by 90 degrees clockwise to be aligned with the raised left little finger training 

sample. So a value of -90 degrees under the degree parameter of imrotate was given. 

Likewise all training samples of thumb and little fingers were rotated to form 

sample of raised, normal and flat positions. In case of thumb and little fingers, samples of 

the flat position were a case when the finger was lifted (as shown in the first image in the 

left little example samples shown earlier in the same section).Every sample required a 

different angle to align with the required hand position. Each sample was rotated in the 

required direction (clockwise or anticlockwise) and in the required angle (in degrees) to 

align the training samples. By rotating and making all the samples of the same size, 

alignment of all the training samples was achieved. Extra pixels were removed on the 

sides so that the sample was as pure as possible. It was then resized and average over 
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all the resized sample of one type formed the final template for each hand position in 

each class. Therefore after rotating, aligning and resizing these training examples 

samples for raised, normal and flat positions were obtained for all the 7 classes of 

fingers.  

6.2.2.3 Template collection for Thumb and Little Finger. 

The cases of detection and template creation of thumb and little fingers are 

different to that of ring, middle and index fingers. In this section a study on why the left 

and the right hand was made into separate classes, how the templates are achieved for 

this purpose and how accuracy can be improved there. 

An earlier section (section 6.2.2.1) discussed how templates are created for ring, 

middle and index fingers. For these 2 fingers – thumb and little finger, the amount of 

variation of possible finger shapes are large. These 2 fingers on each hand were in 

different direction, so templates for these were separated out into 4 different classes. A 

decision was taken to make it into separate classes for 2 hands. Except for the 3 hand 

positions, the earlier 3 classes didn’t have any sideways shape. While thumb and little 

fingers posses sideway shapes. The pictures below show the sideway shapes of thumb 

and little fingers. 

 

Figure 6-8 Sideway shapes of Little Finger and Thumb 

Thumb is placed sideways, flat on its side during both the normal and the flat 

hand position. For raised position the thumb is at an angle with the fingertip on the table. 

First, samples of thumb from both the hands separately from all the 20 training images 

were collected and resized to 20*10. The samples where in the thumb was in raised 

position was rotated as described in the previous section and made to look like a sample 
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of other 2 classes. After rotation, sub windows with just the fingers were extracted and 

resized. Average of these resized samples was collected to form flat and normal 

template. The sample of normal and flat hand positions were then rotated to form 

samples of raised hand position. Average of these samples were now formed the 

template for raised hand position. This process was done for thumbs of both the hands to 

create templates for right and the left thumb. So it consists of 2 templates each – one for 

flat and raised hand positions together and another one for raised hand position. 

Therefore there are 4 different templates for thumb. 

For the little finger though the case is different. For the flat hand position, the little 

fingers are placed sideways (3
rd

 and the 4
th
 picture above) and for the other 2 hand 

positions the samples look different. But during testing on validation set, it was found that 

for the raised position templates from middle, index or ring finger can detect the raised 

little finger. So template for raised hand position for little finger was not created. 

Therefore a total of 4 templates were created for little fingers like the case of thumb with 

2 each for both the hands. The process of rotation, resizing and aligning was similar to 

that explained for thumb. 

This system of template matching improved the accuracy in detection of the 

thumb and little fingers. Further using the hand detector increases performance of the 

system even more. Using the hand location reduces the search space for template to a 

very small section of the image and therefore is more accurate. Further increase in 

performance can be achieved by creating more number of templates in which all the 

variations in shape and orientation is captured. 
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Figure 6-9 Samples and Templates for Little and Thumb 

6.2.2 PCA for Finger Detection 

Principal Component Analysis (PCA) is an unsupervised learning algorithm. 

Dimensionality reduction is an unsupervised learning problem which allows data 

compression and increases speed. Inputs to a learning algorithm are called features. In 

some problems, the number of features is large and sometimes redundant. Reduction in 

dimensions reduces the total data involved in the process and thereby increases the 

speed. Consider a problem of n features where n is a large number. To simplify this 

problem a reduction in the number of features is required. PCA provides a method to 

project n-features onto k-features (where k is a very small number compared to n) with 

least projection error. For a set of data points x1, x2, x3 ……. xn 

      where i != j 

In PCA the aim is to preserve the distance between data points unlike linear 

regression where the motive is to minimize the squared error from data point to 

projection.  If the distances between data points are preserved the error is zero.  

 PCA requires preprocessing of training data. It involves mean normalization, 

which involves computing the mean of each feature and then replace each training 

example for a feature with the difference with the feature mean. 
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    replace each feature x
i
j with x

i
j − μj 

If features are on different scales, scale each features to have comparable range 

of values. This is called as Feature Scaling. This should be done only when features take 

on different range of values. 

    where sj is the standard deviation for the feature 

To reduce from n-features to k- features, we first compute the Covariance Matrix 

denoted by Sigma (∑) 

where x
(i) 

are n –feature vectors( n * 1 matrix)  

∑ is therefore a n*n matrix 

We compute Eigenvectors (U) and Eigenvalues (S) using Singular Value 

Decomposition (SVD) 

[U, S, V]=svd(∑)  or [U, S, V]=eig(∑) 

Eigenvectors (U) is an n*n matrix. We use the first k columns of the Eigenvectors 

matrix to reduce from n-features to k-features. Therefore an n*k matrix is considered (Ur).  

Eigenvalues is an n*n matrix with values only at the diagonal. Eigenvalues at a column 

depicts the value for that particular Eigenvectors. Higher value in a column of 

Eigenvalues indicates that particular Eigenvector (feature) has higher importance. 

Projection using the reduced Eigenvectors matrix Ur is given by 

     x is feature vector 

  The dimensions of Ur is n*k and Ur
T 

 is k*n. The dimensions of x feature vector is 

n*1.  The projection z, is therefore of the size k*1, a representation of n-features using k-

features.  

The projection is then back projected to convert it back into the dimensions we 

started with we use      

(n*k and k*1 yielding n*1) 
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6.2.2.1 Training for Finger Detection 

The samples of fingers collected for template matching are used as training 

examples. The 7 class approach described for Template Matching is the same for PCA. 

Mean normalization was carried out by taking average of the training examples of one 

type of class and deducting the average of those training examples and dividing it by the 

standard deviation.  Eigenvectors and Eigenvalues were computed using the eig function. 

The number of eigenvectors to use is fixed as 10.  The results of template matching were 

used as a starting point for PCA method. All detections from Template Matching were 

projected using the top 10 eigenvectors. The projection is then back projected using the 

projection and the top 10 eigenvectors, to convert it back into the dimensions we started 

with of n*1. The projection error is calculated as the difference between the detection we 

started with and the back projection. 

6.3 Depth Based Hand Detector 

Each RGB frame has an associated depth frame. These frames are aligned; 

therefore the value at every pixel in the depth frame is the distance from the camera. This 

system works on the assumption that hands are placed in front of the face and in 

between camera and the face. Hands combined with the arm are the only region where 

skin is present between face and the camera. We have used a face detector to locate the 

position of the face and its center. Depth frame gives us the depth at the center of the 

face.  We use this as the threshold for the depth frame. All the pixels in the depth frame 

with the value of depth greater than the face are removed. We also use histogram based 

skin detection and fixed threshold of 0.5 the result to find areas with skin. The 2 threshold 

results are multiplied (element-by-element) to get the areas with skin having lesser depth. 

The 2 largest connected components from the resultant image are identified as hand 

locations. 
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The user can load sequences of depth frames and on selection of a particular 

sequence tries to match the corresponding depth sequence. If an incorrect sequence is 

loaded, the system provides an error saying “Depth Sequence loaded is incorrect” in a 

message box. On loading the correct sequence, the system automatically picks up the 

frame from that sequence. Note that, the loading of the frame depends on the number of 

frames in the sequence. So loading another sequence with the same number of frames 

as the current sequence may cause loading the incorrect frame.  

The most use of the depth frames comes in increasing the accuracy of the 

system. The baseline system of detection algorithm using Template Matching or PCA 

along with skin detection does prove to be effective. But sometimes the system might find 

some matches which might be in the background. The depth frames are also very useful 

in detection of hands. The system includes a face detector. The assumption made here 

for detection of hands is that – Both the hands are placed before the face. It means that 

the depth of the face is more when compare to that of the hands or in turn the hands are 

much closer to the Kinect camera than the face.  

There is an additional button added on top of the main window Detection(Skin 

and Depth). This uses Depth and Skin to find the presence of fingers in the given image. 

The input for this method is the result of one of the algorithms for detection combined 

with Skin Detection. Another thing to note is that, this button can only be triggered when 

depth frames of the sequence are loaded.  
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Chapter 7 

Experiment and Results 

7.1 Experiments with Skin  

In experiments with skin we run the detection algorithm and apply skin detection 

with threshold to the results.  The 2 parameters on which the results depend are the 

Template Matching threshold and Area Percentage. Here as the first experiment we vary 

the skin detection threshold from 0 to 1, set area percentage to 0.5 and set the template 

matching threshold to 0.5. The cumulative results for True Positives and False Positives 

for Template Matching and PCA is given by 

 

Figure 7-1 Experiments with Skin – Varying Skin Threshold 

In a second experiment with skin, we set the Template Matching threshold to 0.5 

and Skin detection Threshold to 0.5. We vary the area percentage from 0% to 100%.  

 

Figure 7-2 Experiments with Skin – Varying Area Percentage 
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7.2 Experiments with Hand Detector 

In experiments with hand detector, we run the detection algorithm only on the 

hand location sub windows and apply skin detection with threshold to the results.  Here 

similar to the first experiment with skin we vary the skin detection threshold from 0 to 1, 

set area percentage to 0.5 and set the template matching threshold to 0.5. The 

cumulative results for True Positives and False Positives for Template Matching and PCA 

is given by 

 

Figure 7-3 Experiments with Hand Detector – Varying Skin Threshold 

In a second experiment with hand detector, we set the Template Matching 

threshold to 0.5 and skin detection threshold to 0.5. By varying the area percentage from 

0% to 100%, we get cumulative results for Template Matching and PCA displayed by this 

plot. 

 

Figure 7-4 Experiments with Hand Detector – Varying Area Percentage 
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7.3 Experiments with Depth  

In experiments with depth, we run the detection algorithm and apply skin 

detection with threshold to the results similar to experiments in 7.1. To filter the results 

further more we use the depth information. The median value of each of the detection 

boxes are calculated and checked if the median value is less than the depth of the face. 

The results show lesser false positives.  

 

Figure 7-5 Experiments with Depth – Varying Skin Threshold 

In a second experiment with hand detector, we set the Template Matching 

threshold to 0.5 and skin detection threshold to 0.5. By varying the area percentage from 

0% to 100%, we get cumulative results for Template Matching and PCA displayed by this 

plot. 

 

Figure 7-6 Experiments with Depth – Varying Area Percentage 
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Table 7-1 Template Matching Cumulative Results of Experiments 

 

TP-True Positives TEMPLATE MATCHING 

FP- False Positives Skin Detection Hand Detection Depth 

Skin Threshold TP FP TP FP TP FP 

0 88 230 97 159 88 71 

0.1 88 195 96 147 88 68 

0.2 86 175 93 134 86 57 

0.3 85 142 93 123 85 49 

0.4 82 103 89 105 82 42 

0.5 77 80 85 85 77 38 

0.6 73 66 80 79 73 35 

0.7 70 47 76 64 70 29 

0.8 65 24 68 53 65 20 

0.9 29 1 33 11 29 0 

1 0 0 0 0 0 0 

Area Percentage TP FP TP FP TP FP 

0 93 242 107 179 93 81 

10 90 201 104 167 90 71 

20 89 197 96 142 89 63 

30 87 144 91 127 87 54 

40 79 115 88 112 79 43 

50 77 80 85 85 77 38 

60 77 66 75 80 77 31 

70 73 54 71 74 73 27 

80 64 36 66 62 64 22 

90 26 13 36 14 26 11 

100 0 3 1 2 0 2 
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Table 7-2 PCA Cumulative Results of Experiments 

 

TP-True Positives PCA 

FP-False 
Positives Skin Detection Hand Detection Depth 

Skin Threshold TP FP TP FP TP FP 

0 46 178 35 92 46 44 

0.1 45 149 35 81 45 38 

0.2 44 126 35 73 44 31 

0.3 44 106 33 61 44 27 

0.4 42 90 30 53 42 24 

0.5 42 74 28 40 42 20 

0.6 41 57 21 29 41 15 

0.7 40 20 5 15 40 10 

0.8 37 7 3 12 37 6 

0.9 7 2 0 2 7 2 

1 0 0 0 0 0 0 

Area Percentage TP FP TP FP TP FP 

0 53 197 44 94 53 56 

10 50 154 42 81 50 48 

20 48 132 39 73 48 43 

30 47 114 35 61 47 36 

40 44 95 30 52 44 28 

50 42 74 28 40 42 20 

60 42 45 28 30 42 13 

70 41 29 18 23 41 10 

80 33 12 15 16 33 9 

90 12 8 13 10 12 6 

100 0 0 0 0 0 0 
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