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ABSTRACT

EFFECTS OF DISCRETE TIME DELAYS AND PARAMETERS

VARIATION ON DYNAMICAL SYSTEMS

IBRAHIM OUMAR DIAKITE, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Benito M. Chen-Charpentier

To understand the effects of discrete time delays and of parameters variation

on certain biological system models, we first consider a Delay Differential Equation

model of human immunodeficiency virus (HIV). We investigate the effects of the

discrete time on the virulence of the HIV strain, and present sufficient and necessary

condition for the virulence of the pathogen to change as the time delay changes.

We also consider the same delay differential model for HIV infection, and we

investigate analytically and numerically the stability of the endemically infected equi-

librium. Our analysis shows that certain key parameters, such as the rate of infection,

play a crucial role on how the discrete time may affect the dynamics of the system.

We carry out a bifurcation analysis of systems of delay differential equations.

We present general results for one equation with one and two delays and study a

specific example of one equation with one delay. We then establish the procedure for

n equations with multiple delays and do a specific example for two equations with two

delays. We investigate the stability of the steady states as both chosen bifurcation

parameters, the discrete time delay τ and a local equation parameter µ, cross critical
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values. Our analysis shows that while changes in both parameters can destabilize the

steady state, the discrete time delay can cause stability switches of the steady state

for certain values of µ, while the effects of the local equation parameter on the steady

state do not necessarily depend on the value of τ . While µ may cause the system to

go through different type of bifurcations, the discrete time delay can only introduce

a Hopf bifurcation for certain values of µ.

We finally consider a delay partial differential equation of a Holling type predator-

prey model. It is well known that the distribution of species is generally heterogeneous

spatially, and therefore the species will migrate towards regions of lower population

density to increase the possibility of survival. Thus, partial differential equations

with delay became the subject of a considerable interest in recent years. We consider,

simultaneously, time delays and spatial diffusion to model the predator prey model

presented in chapter 4. The discrete time delays are introduced in order to consider

the time maturation for both the predator and prey populations. We mainly investi-

gate, analytically and numerically, the effects of the spatial diffusion, the time delays

and parameters variation on the dynamics of the system.
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CHAPTER 1

INTRODUCTION

To understand the effects of discrete time delays and of parameter variations on

certain biological system models, we first consider in chapter 3 a Delay Differential

Equation of cell-free viral spread of human immunodeficiency virus (HIV) in a well-

mixed compartment such as the bloodstream. A discrete time delay is introduced to

take into account the time between infection of a CD4+ T-cell and the emission of

viral particles at the cellular level. The time delay is due to reverse transcription,

integration, and the production of capsid proteins. We investigate the effects of the

discrete time on the virulence of the HIV strain, and present sufficient and necessary

condition in theorem 3.5.2 for the virulence of the pathogen to change as the time

delay changes.

In chapter 4 we consider the same delay differential model for HIV infection.

We investigate analytically and numerically the stability of the endemically infected

equilibrium. Our analysis shows that certain key parameters such as the rate of

infection play a crucial role on how the discrete time may introduce stability switch

of the steady state (or equilibrium) and cause the system to go through a Hopf

bifurcation near that steady state (Lemmas 4.3.1 and 4.3.2). This motivates chapter

5.

We carry out in chapter 5 a bifurcation analysis of systems of delay differential

equations. We present general results for one equation with one and two delays

and study a specific example of one equation with one delay. We then establish

the procedure for n equations with multiple delays and do a specific example for

1



two equations with two delays. We investigate the stability of the steady states as

both chosen bifurcation parameters, the discrete time delay τ and a local equation

parameter µ, cross critical values. Our analysis shows that while changes in both

parameters can destabilize the steady state, the discrete time delay can cause stability

switches of the steady state for certain values of µ, while the effects of the local

equation parameter on the steady state do not necessarily depend on the value of

τ . While µ may cause the system to go through different type of bifurcations, the

discrete time delay can only introduce a Hopf bifurcation for certain values of µ.

We finally consider a delay partial differential equation of a Holling type predator-

prey model. We investigate the effects of the diffusion, the time delays and parameters

variation on the system. We show that the diffusion highly impacts the effects of the

time delays on the system. We present both analytical and numerical analysis of the

stability and Hopf bifurcation process of the system.
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CHAPTER 2

DELAY DIFFERENTIAL EQUATIONS

Most processes take time to complete. While physical processes such as accel-

eration and deceleration take little time compared to the times needed to travel most

distances, the times involved in biological processes such as gestation and maturation

can be substantial when compared to the data-collection times in most population

studies. Therefore, it is often imperative to explicitly incorporate these process times

into mathematical models of population dynamics. These process times are often

called delay times, and the models that incorporate such delay times are referred as

delay differential equation (DDE) models.

2.1 Delay Differential Equations (DDE’s)

DDE’s are differential equations in which the derivatives of some unknown func-

tions at present time are dependent on the values of the functions at previous times.

Mathematically, a general delay differential equation for x(t) ∈ Rn takes the form:

dx

dt
= f(x(t), x(t− τ)), (2.1)

where x ∈ Rn, τ ≥ 0 is a constant discrete time, f ∈ C1 and is assumed to be smooth

enough to guarantee existence and uniqueness of solutions to (2.1) under the initial

value condition. f : Rn × C → Rn, where C = C([−τ, 0],Rn), with initial condition

x(θ) = φ(θ), θ ∈ [−τ, 0].

Observe that x(θ) with −τ ≤ θ ≤ 0 represents the solution trajectory in a recent past.

The reason of incorporating discrete time delays to model certain dynamical systems

3



is for the model to be more realistic. However delay differential equations reveal more

complex dynamics than ordinary differential equations. A discrete time delay may

cause stability changes of the system and also raise Hopf bifurcations, that is a family

of periodic solutions. A steady state or equilibrium point for the system (2.1) is any

(x∗, x∗) such that f(x∗, x∗) = 0. In the following sections we will introduce the notion

of stability of such equilibrium and point out the necessary and sufficient conditions

for the equilibrium to be stable.

2.2 Stability of an equilibrium of a DDE’s system

Similarly to the Ordinary differential equations (ODE’S) systems, the stability

of an equilibrium point of a DDE’s system is determined by the location of the roots

of the characteristic equation. Consider the following system of non-linear delay

differential equations:

dx

dt
= f(x(t), x(t− τ1), ..., x(t− τk)), (2.2)

where x ∈ Rn, τj ≥ 0, 1 ≤ j ≤ k are constant discrete times. To linearize system

(2.2) around the steady state x∗ ∈ Rn, assume that x(t) = x(t)− x∗ ∈ Rn is solution

of (2.2). Apply the Taylor formula to the vector function f(x(t) + x∗, x(t − τ1) +

x∗, . . . , x(t− τk) + x∗). We have

dx

dt
=
dx(t)

dt
= f(x(t) + x∗, x(t− τ1) + x∗, . . . , x(t− τk) + x∗) (2.3)

= f(x∗, . . . , x∗) + A0x(t) +
k∑
j=1

Ajx(t− τj) +O(‖x‖2) (2.4)

with

f(x∗, . . . , x∗) = 0, Aj =
∂f

∂xj
|(x∗,x∗,...,x∗), j = 0, 1, . . . , k.

4



Therefore the linearization of (2.2) at (x∗, ..., x∗) has the form (Ruan [1]):

dX

dt
= A0X(t) +

k∑
j=1

AjX(t− τj), (2.5)

where X ∈ Rn, each Aj (0 ≤ j ≤ k) is an n × n constant matrix defined as above.

If X(t) = Ieλt is solution to the system (2.5), where I is the identity matrix of Rn,

then system (2.5) is equivalent to :

λIeλt = A0e
λt +

k∑
j=1

Aje
−λτjeλt,

or [
λI − A0 −

k∑
j=1

Aje
−λτj

]
eλt = 0

then [
λI − A0 −

k∑
j=1

Aje
−λτj

]
= 0.

(λI − A0 −
k∑
j=1

Aje
−λτj) is a non invertible matrix, therefore its determinant is zero.

The transcendental equation or characteristic equation associated with system (2.5)

is given as :

det

[
λI − A0 −

k∑
j=1

Aje
−λτj

]
= 0 (2.6)

Driver et al [2] have shown the following two very important theorems

Theorem 2.2.1.

Given any real number ρ, the characteristic equation (2.6) has at most a finite number

of roots λ such that Re(λ) ≥ ρ.

Loosely speaking, the preceding theorem says that most of the roots of the

equation (2.6) have negative real part. Furthermore, the roots cannot accumulate

except about Re(λ) = −∞ . In much of our future analysis, we will be interested

5



in the space C([−τ, 0],R), representing all initial functions. When endowed with the

norm

‖φ‖ = sup
t∈[−τ,0]

|φ(t)|

This is a Banach Space.

Theorem 2.2.2.

If Re(λ) < ρ for every solution of the characteristic equation (2.6), then there exists

a constant M > 0 such that, for each φ ∈ C([t0 − τ, t0],R), the solution to (2.2)

satisfies

‖x(t, φ)‖ ≤M‖φ‖eρ(t−t0)

So the behavior of linear delay differential equations is given an upper bound

by the location of the eigenvalue with the largest real part. By combining these two

results, we arrive at the following result proposed by J. Forde [3], which forms the

foundation of the stability analysis for a DDE’s system.

Corollary 2.2.1.

If Re(λ) < 0 for every solution of the characteristic equation (2.6), then there exist

constants M, γ > 0 such that, for each φ ∈ C([t0 − τ, t0],R), the solution to (2.2)

satisfies

‖x(t, φ)‖ ≤M‖φ‖e−γ(t−t0).

In other words, if all of the eigenvalues have negative real part, then solutions

to the delay differential equation decay exponentially to 0, exactly as it is the case

for ordinary differential equations.

When there are no delays i.e τ1 = ... = τk = 0 then the characteristic equation

(2.6) is just a polynomial equation of degree n. A nice result known as the Routh-

Hurwitz stability criterion present necessary and sufficient conditions for all the roots

6



of the characteristic equation to have a negative real part ([4], [5], [6]). We present

the result for n = 3.

Theorem 2.2.3 (Routh-Hurwitz stability criterion).

Let f(z) = a3z
3 + a2z

2 + a1z + a0 be a polynomial with real coefficients. If all the

coefficients satisfy ai > 0, i = 0, . . . , 3 and a2a1−a3a0 > 0 then the equation f(z) = 0

has all its roots with negative real part.

In our future analysis we investigate how the discrete time delay may introduce

stability change of a steady state point. To do so, we consider the eigenvalues of the

characteristic equation (2.6) as functions of the discrete time delay. A very important

theorem also known as the Rouche’s theorem presented by Dieudonne [7] (theorem

9.17.4) is used as the backbone of our analysis. For the proof of the theorem please

see Dieudonne [7] (theorem 9.17.4)

Theorem 2.2.4 (Continuity of the roots of an equation as a function of parameters).

Let A be an open set in C, M a metric space, f a continuous complex valued function

in A×M , such that for each α ∈M , z → f(z, α) is analytic in A. Let B be an open

subset of A, whose closure B ∈ C is compact and contained in A, and let α0 ∈M be

such that no zero of f(z, α0) is on the frontier of B. Then there exists a neighborhood

W of α0 such that:

• for any α ∈ W , f(z, α) has no zeros on the frontier of B,

• for any α ∈ W , the sum of the orders of the zeros of f(z, α) belonging to B is

independent of α.

In other words the Rouche’s theorem gives us an idea of the location of the

zeros of an analytic function, and also the number of its zeros independently of a

parameter that the function may depend on. Using the Rouche’s theorem we can

now formulate the following important result

7



Lemma 2.2.1.

Consider the transcendental equation

λn +
n∑
i=1

an−iλ
n−i +

n∑
i=1

bn−ie
−λτλn−i = 0, (2.7)

if there exists a τc > 0 such that λ(τc) is a purely imaginary eigenvalue of (2.7), then

for τ > τc the transcendental equation (2.7) has at least one eigenvalue with a strictly

positive real part.

Before we prove the above lemma, let just first consider a much simpler case.

Consider the analytic function

h(λ, a) = λ+ e−λτ + a,

with τ ≥ 0, and a ∈ R.

Then h(λ, 0) = 0 if and only if

λ = −e−λτ . (2.8)

Equation (2.8) has purely imaginary roots if and only if τ = τc = 2jπ + π
2
,

j = 0, 1, 2, . . .

The proof of the following lemma can be found in Cooke and Van den Driessche

[8]; see also Bellman and Cooke [9].

Lemma 2.2.2.

If τ ∈ [0, π
2
), then all roots of equation (2.8) have strictly negative real parts. If

τ ∈
(
2jπ + π

2
, (2j + 1)π + π

2

]
, then equation (2.8) has exactly 2j+1 roots with strictly

positive real parts.

We have h(λ, a) is an analystic function in λ, a. When τ 6= 2jπ+ π
2
, the function

h(λ, 0) has no zeros on the boundary of Ω, where Ω = {λ, |Re(λ) ≥ 0, |λ| ≤ ρ}. Thus,

Rouche’s theorem implies that there exists a δ > 0 such that :

8



(1) for any a < δ, h(λ, a) has no zero on the boundary of Ω

(2) for any a < δ, h(λ, a) and h(λ, 0) have the same sum of the orders of zeros

belonging to Ω.

It follows from lemma 2.2.2 that when τ > π
2
, the sum of the orders of the zeros

of h(λ, 0) belonging to Ω is at least 1. Thus when τ > π
2
, τ 6= 2jπ + π

2
, and a < δ

then h(λ, a) has at least a root with strictly positive real part.

Now we can prove the more general form which is lemma 2.2.1

Proof : Consider the analytic function in λ, A

h(λ,A) = λn +
n∑
i=1

an−iλ
n−i +

n∑
i=1

bn−ie
−λτλn−i, (2.9)

where λ ∈ C, and A = (an−1, ..., a1, a0, bn−1, ..., b1) ∈ Rn×(n−1). Then

h(λ,A0) = λn + b0e
−λτ

where A0 = (0, ..., 0) is the null vector. h(λ,A0) has purely imaginary roots if and

only if

τ = τ jc =
2jπ

b
1/n
0

j = 1, 2, ... when n is even,

or

τ = τ jc =
(4j + 1)π

2b
1/n
0

j = 0, 1, 2, ... when n is odd,

and here we assume that b0 > 0, otherwise we multiple by a − sign. When τ 6= τ jc the

function h(λ,A0) has no zero on the boundary of Ω, where Ω = {λ, |Re(λ) ≥ 0, |λ| ≤ ρ}.

Thus, Rouche’s theorem implies that there exists a δ > 0 such that :

(1) when ‖A‖∞ < δ, h(λ,A) has no zero on the boundary of Ω

(2) when ‖A‖∞ < δ, h(λ,A) and h(λ,A0) have the same sum of the orders of zeros

belonging to Ω.

It follows from lemma 2.2.2 that when τ > τc = 2π

b
1/n
0

and τ 6= 2jπ

b
1/n
0

(or τ > τc =

1π

2b
1/n
0

and τ 6= (4j+1)π

2b
1/n
0

), the sum of the orders of the zeros of h(λ,A0) belonging to Ω
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is at least 1. Thus when τ > τc , τ 6= τ jc and ‖A‖∞ < δ then h(λ,A) has at least a

root with strictly positive real part. �

Definition 2.2.1.

In the mathematical theory of bifurcations, a Hopf or Poincare-Andronov-Hopf bifur-

cation, named after Henri Poincare, Eberhard Hopf, and Aleksandr Andronov, is a

local bifurcation in which a fixed point of a dynamical system loses stability as a pair

of complex conjugate eigenvalues of the linearization around the fixed point cross the

imaginary axis of the complex plane. Under reasonably generic assumptions about the

dynamical system, we can expect to see a small-amplitude limit cycle branching from

the fixed point. [10], [11]

One of the most important features of DDE’s is the notion of Hopf bifurcation.

When a discrete time delay causes stability switch of steady state, and if further the

transversality condition is satisfied then the delay will cause the system to go through

a Hopf bifurcation, near the steady state. Here we formulate the Hopf bifurcation

theorem, see Culshaw [12].

2.3 Hopf bifurcation theorem

Consider the 3-dimensional autonomous system of differential equations given

by

dx

dt
= F (x, y, z, τ), (2.10)

dy

dt
= G(x, y, z, τ), (2.11)

dz

dt
= H(x, y, z, τ), (2.12)

which depends on the real parameter τ . If

(i) F (x∗, y∗, z∗, τ) = G(x∗, y∗, z∗, τ) = H(x∗, y∗, z∗, τ) = 0 for τ in an open interval

containing τc, and (x∗, y∗, z∗) is a steady state solution of the system (2.10-2.12),
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(ii) F, G, an H are analytic in x, y, z and τ in a neighbourhood of (x∗, y∗, z∗, τc),

(iii) The Jacobian matrix of (2.10-2.12) at (x∗, y∗, z∗, τc) has a pair of complex con-

jugate eigenvalues λ and λ∗ such that:

λ(τ) = α(τ) + iω(τ),

where

ω(τc) = ωc > 0, α(τc) = 0,
dα(τ)

dτ
|τ=τc 6= 0,

(iv) The remaining eigenvalue of the Jacobian matrix at (x∗, y∗, z∗, τc) has strictly

negative real part, then the system (2.10-2.12) has a family of periodic solutions:

there is an εH > 0 and an analytic function, τH(ε) =
∑∞

2 τH(εi), (0 < ε < εH)

such that for each ε ∈ (0, εH) there exits a periodic solution pε(t) occurring for

τ = τH(ε). The period TH(ε) of pε(t) is an analytic function

TH(ε) =
2π

ωc
(1 +

∞∑
2

τH(εi)), (0 < ε < εH)

2.4 Numerical Methods for DDEs

In this section we discuss few aspects of two main tools for DDE’s, a Matlab

delay differential equation solver dde23, and a stability and bifurcation’s analysis tool

DDE-BIFTOOL for DDE.

2.4.1 DDE’s solver dde23

A popular approach to solving DDEs is to extend one of the methods used to

solve ODEs. Most of the codes are based on explicit Runge-Kutta methods. dde23
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takes this approach by extending the method of the MATLAB ODE solver ode23, see

[13]. For instance consider

dx

dt
= f(x(t), x(t− τ)),

with given initial condition φ : [−τ, 0]→ Rn. Then the solution on the interval

[0, τ ] is given by ψ(t) which is the solution to the inhomogeneous initial value problem

dψ(t)

dt
= f(ψ(t), φ(t− τ)),

with ψ(0) = φ(−τ). This can be continued for the successive intervals by using the

solution to the previous interval as inhomogeneous term. In practice, the initial value

problem is often solved numerically using the numerical tool such as Matlab solver

dde23 [13] , FORTRAN DDE solver [13], DMRODE [14].

Examle: Malthus growth (Allen, 2007)

Consider

dx

dt
= x(t− 1) + 1

with initial condition: x(t) = 0 = φ0(t), t ∈ [−1, 0]. First solve from t = 0 to t = 1

replacing x(t− 1) by φ0(t− 1):

dx

dt
= φ0(t− 1) + 1 = 1, x(0) = φ0(−1) = 0.

The Solution is

x(t) = t = φ1(t), t ∈ [0, 1].

Step 2 is solve:

dx

dt
= φ1(t− 1) + 1 = t, x(1) = φ1(t), t ∈ [0, 1].

12



The Solution is

x(t) =
t2

2
+

1

2
= φ2(t), t ∈ [1, 2].

Figure 2.1. Plot of solutions with (green) and without delay (blue)..

2.4.2 DDE-BIFTOOL

DDE-BIFTOOL is a Matlab package for numerical bifurcation analysis of sys-

tems of delay differential equations with several fixed, discrete delays. The package

implements continuation of steady state solutions and periodic solutions and their

stability analysis. It also computes and continues steady state fold and Hopf bi-

furcations, see [15]. A steady state solution x∗ ∈ Rn of (2.2) is determined from

(n × n)-dimensional determining system f(x∗, . . . , x∗) = 0 using Newton iterations.

Once a steady state solution is obtained, stability is determined by computing the

rightmost roots of its characteristic equation. These roots are first approximated

using a linear multi- step method (LMS-method) applied to (2.5). Please refer to

[15] for computation and continuation of the Hopf branches and more details on the

package.
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2.5 DDE’s Model for Human Immunodeficiency Virus (HIV)

Delay differential equations are commonly use to model biological systems such

as population models, epidemiological models, infectious models.... One of our main

application for DDE’s is the mathematical model for the human immunodeficiency

virus (HIV). It is well known that HIV targets CD4+ T-cells lymphocytes, the most

abundant white blood cells of the immune system . A protein called gp120 protein

on the viral particle binds to the CD4+ receptors on the CD4+ T-cell and injects its

core. After an intracellular delay associated with reverse transcription, integration,

and the production of capsid proteins, the infected cell releases hundreds of virions.

These virions can infect other CD4+ T-cells. Based on this understanding we write

the following DDE’s for the infection

dT

dt
= s− µTT − k1V T, (2.13)

dI

dt
= k2V (t− τ)T (t− τ)− µII, (2.14)

dV

dt
= NµbI − k1V T − µV V, (2.15)

under the initial values

T (θ) = T0, I(θ) = 0, V (θ) = V0, θ ∈ [−τ, 0].

Where the discrete time delay τ represent the viral eclipse phase.

The parameter’s values and description are given as in Culshaw [12], see table

2.1:
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Table 2.1. Variables and parameters for viral spread

Parameters and variables Description Values

T Uninfected CD4+ T-cell population size 1000 mm−3

I Infected CD4+T-cell density 0
V Initial density of HIV RNA 10−3 mm−3

µT Natural death rate of CD4+T-cells 0.02 day−1

µI Blanket death rate of infected CD4+T-cells 0.26 day−1

µb Lytic death rate for infected cells 0.24 day−1

µV Death rate of free virus 2.4 day−1

k1 Rate of CD4+T-cell to become infected by virus 2.4 ∗ 10−5 mm3day−1

k2 Rate infected cells become active 2 ∗ 10−5 mm3day−1

N Number of virions produced by infected CD4+T-cells Varies
s Source term for uninfected CD4+T-cells 10 day−1mm−3

τ Discrete time delay due to viral eclipse phase Varies
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CHAPTER 3

EFFECTS OF DISCRETE TIME DELAY ON THE VIRULENCE

3.1 The Basic Reproduction Number

The basic reproduction number, R0, is defined as the expected number of sec-

ondary cases produced by a single (typical) infection in a completely susceptible

population. It is important to note that R0 is a dimensionless number and not a

rate, which would have units of time−1. Some authors incorrectly call R0 the basic

reproductive rate. We can use the fact that R0 is a dimensionless number to help us

in calculating it, see [16].

R0 ∝
(
infection

contact

)
×
(
contact

time

)
×
(

time

infection

)
.

Note that R0 is a dimensionless quantity. More specifically :

R0 = γ × c× d,

where γ is the transmissibility (i.e., probability of infection given contact between a

susceptible and infected individual), c is the average rate of contact between suscep-

tible and infected individuals, and d is the duration of infectiousness. If R0 > 1 then

the disease will propagate, otherwise the disease will eventually die and a fraction of

the population will escape infection.

3.2 Next Generation Matrix Method

There are several methods of computing R0. The most formal and most popular

approach is the next generation matrix approach. Many papers such as Hefferman
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et al [17] , and James [16] provide a nice introduction for calculating R0 using this

method. The notation we use here follows their usage. Consider the next generation

matrix G. It is comprised of two parts: F and V −1, where

F =

[
∂Fi(x0)

∂xj

]
and

V =

[
∂Vi(x0)

∂xj

]
The Fi are the new infections, while the Vi transfers of infections from one

compartment to another. x0 is the disease-free equilibrium state. R0 is the dominant

eigenvalue of the matrix G = FV −1.

3.3 Evolutionary Stable Strategy (ESS) of Virulence

It is instructive to think about epidemics from the pathogen’s perspective.

Pathogens bear biological information in their nucleic acids. This information varies

from one copy of a pathogen to another, and the ability of a pathogen to persist and

multiply can be a function of this variability (Jones [16], Baalen et al [18]), known

as Virulence. In other word virulence is the pathogen ability to transmit disease to a

host .

Note that more copies of a virus (say) means that conditional on contact with an in-

fected individual, the pathogen is more likely to be transmitted. However, more viral

copies means the host is sicker, and potentially dead. Dead hosts do not transmit

and very sick hosts are less likely to be up and interact with susceptible.
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An Evolutionary Stable Strategy (ESS) is a phenotype that can not be invaded

by a rare mutant. Loosely speaking, it represents the optimal phenotype. The ESS

virulence occurs where the fitness gradient equal zero (Jones [16]), meaning :

dR0

dx
= 0,

where x denoted the virulence.

3.4 Change in Selective Pressures

Researches (Basu et al [19], Otto and Day [20]) have proved that the direction

of virulence evolution around an ESS as selective pressures change will be determined

by the sign of the derivative of the fitness gradient with respect to the parameter that

is changing. In other word the virulence will increase (decrease) when we increase

(decrease) a selected parameter n if :

∂

∂n

[
∂R0(x, n)

∂x

]
> 0. (< 0)

3.5 Effects of Discrete Time Delay on Virulence

Consider a delay differential equation of HIV model:

dT

dt
= s− µTT − k1V T, (3.1)

dI

dt
= k2V (t− τ)T (t− τ)− µII, (3.2)

dV

dt
= NµbI − k1V T − µV V, (3.3)

under the initial values

T (θ) = T0, I(θ) = 0, V (θ) = V0, θ ∈ [−τ, 0].

The parameter values and description are given in table 2.1.
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To investigate the effects of the discrete time delay τ on the virulence, we

compute the basic reproduction number R0 (see appendix A):

R0(x, τ) =
log r0(x)τ

τ
,

where,

r0(x) =
Nµbk2(x)

µIµV (x)

is the basic reproduction number when there is no delay i.e. τ = 0, and x denoted the

virulence. k2(x), and µV (x) denote the dependence of the rate infected cells become

active and the death rate of free virions on the virulence respectively.

Theorem 3.5.1.

The Evolutionary Stable Strategy (ESS) of the virulence is independent of the discrete

time delay.

Proof:

The fitness gradian of the system is given by :

∂R0(x, τ)

∂x
=

dk2(x)
k2(x)

− dµv(x)
µv(x)

τ
. (3.4)

The ESS virulence occurs where

dR0

dx
= 0,

that is if and only if :

dk2(x)

dµv(x)
=
k2(x

∗)

µv(x∗)
, (3.5)

where x∗ denoted the ESS of x (virulence).

When there is no delay (τ = 0) the fitness gradient is given by :

dr0(x)

dx
=
Nµb [µvk

′
2(x)− k2µ′v(x)]

µIµv
, (3.6)
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therefore the ESS occurs when

µvk
′
2(x)− k2µ′v(x) = 0,

which is equivalent to equation (3.5). �

Equation (3.5) has a nice geometric interpretation. The ESS virulence occurs

where a line (L1) is tangent to the curve that relates k2 to µv. This result is known as

the Marginal Value Theorem and has applications in economics and ecology as well

as epidemiology.

Theorem 3.5.2.

The virulence of the HIV strain of the system (3.1-3.3) increases when we increase

the discrete time delay τ due to the viral eclipse if and only if

k2 < µv.

Proof: The derivative of the fitness gradient (equation (3.4)) with respect to τ

is given as :

∂

∂τ

[
∂R0(x, τ)

∂x

]
= −

dk2(x)
k2(x)

− dµv(x)
µv(x)

τ 2
.

And

∂

∂τ

[
∂R0(x, τ)

∂x

]
> 0,

if and only

dk2(x)

k2(x)
<
dµv(x)

µv(x)
,

take the integral of both side and notice that k2(0) = µv(0) = 0, then we obtain

k2 < µv. �

3.6 Results

To illustrate the effects of the delay on the virulence of the infection, we com-

pute numerically the solution of system (3.1-3.3) using Matlab package dde23. The
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parameter values are given in table 2.1. The discrete time delay only introduces a

time shift , but has no effect on the number of copy of the CD4+T-cell as shown on

figure 3.1.

Figure 3.1. Time variance of uninfected CD4+ T-cell without delay (left) and with
delay (right) τ = 5 days.

As we increase the delay, the virulence of the disease increases excessively there-

fore decrease the number of copy of infected CD4+T-cell see figure 3.2 and the number

of copy of free virions see figure 3.3.
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Figure 3.2. Time variance of infected CD4+ T-cell without delay (left) and with delay
(right) τ = 5 days.

Figure 3.3. Time variance of free HIV virions without delay(left) and with delay
(right) τ = 5 days.
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CHAPTER 4

EFFECTS OF DISCRETE TIME DELAY ON STABILITY

4.1 Introduction

In this section we investigate the effects of a discrete time delay on the stability

of a steady state of a given dynamical system. To do so, we consider the same delay

differential equation for a HIV infection (system 3.1- 3.3) as in chapter 1. We first

describe the stability of the steady states of the system as there is no delay i.e τ = 0,

and then investigate the changes in stability as we introduce the delay. We also

point out necessary and sufficient conditions for the delay to affect the stability of

the steady states, and to introduce possible Hopf bifurcations.

4.2 Ordinary Differential model for HIV

Assume that all the infected cells are capable of producing virus

dT

dt
= s− µTT − k1V T, (4.1)

dI

dt
= k2V T − µII, (4.2)

dV

dt
= NµbI − k1V T − µV V, (4.3)

where

• T (t) concentration of healthy CD4+ cells

• I(t) concentration infected CD4+ cells

• V (t) concentration of free HIV cells

All the other parameter descriptions and values are given in table 2.1
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Proposition 4.2.1.

i) If R ≤ 1, then the non-negative steady state of the system (4.1-4.3) is (T ∗0 , I
∗
0 , V

∗
0 ) =

( s
µT
, 0, 0).

ii) If R > 1 and β > 0 (ie N > Ncrit = µI(k1s+µvµT )
µbk1s

), then the non-negative steady

states are giving as : (T ∗0 , I
∗
0 , V

∗
0 ) = ( s

µT
, 0, 0), (T ∗1 , I

∗
1 , V

∗
1 ) = (

µvµ2I
k1(R−1) ,

βµI
k1(R−1) ,

β
k1µvµI

)

Where

R =
Nµb
µI

, β = (Nµb − µI)k1s− µvµIµT .

Notice that the threshold parameter R could be interpreted as the basic repro-

ductive number. If R > 1 then the disease will spread into the system, otherwise if

R ≤ 1 then the disease will eventually die. The parameter N is clearly a bifurcation

parameter

4.2.1 Stability Analysis of the equilibria

The Jacobian matrix of the model system evaluated at (T ∗, I∗, V ∗) is

J =


−µT − k1V ∗ 0 −k1T ∗

k2V
∗ −µI k2T

∗

−k1V ∗ Nµb −k1T ∗ − µv


We will study the stability of our model base on the eigenvalues of the Jacobian

matrix.

Proposition 4.2.2.

(i) If R ≤ 1 and β < 0 (ie N < Ncrit = µI(k1s+µvµT )
µbk1s

), then the steady state

(T ∗0 , I
∗
0 , V

∗
0 ) = ( s

µT
, 0, 0) is stable.
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(ii) If R ≤ 1 and β > 0, then the steady state (T ∗0 , I
∗
0 , V

∗
0 ) is unstable.

(iii) If R > 1, β > 0, a1 > 0, a4 + a5 > 0 and a1(a2 + a3) − (a4 + a5) > 0 then the

steady state (T ∗1 , I
∗
1 , V

∗
1 ) = (

µvµ2I
k1(R−1) ,

βµI
k1(R−1) ,

β
k1µvµI

) is stable.

where

a1 : = k1(T
∗ + V ∗) + µv + µI − µT (4.4)

a2 : = (µI + k1V
∗)k1T

∗ + µIµv (4.5)

a3 : = Nµbk2T
∗ (4.6)

a4 : = (µT + k1V
∗)Nµbk1k2T

∗V ∗ (4.7)

a5 : = (µT + k1V
∗)[(Nµb − k2V ∗ − µI)k1T ∗ − µIµv] (4.8)

Proof: we first remark that the characteristic equation of matrix J is given by :

λ3 + a1λ
2 + (a2 + a3)λ+ (a4 + a5) = 0. (4.9)

(i) In this case, we substitute the steady state (T ∗0 , I
∗
0 , V

∗
0 ) into the equation (4.9)

and find:

(λ+ µT )(λ2 + b1λ+ b2) = 0,

where

b1 :=
µIµT + k1s+ µV µT

µT
and b2 :=

−β
µT

– If β < 0 then ζ = b21 − 4b2 ≤ 0 therefore the eigenvalues of J are

λ1 = −µT , λ2 = −b1
2
−
√
ζ
2
i and λ3 = −b1

2
+
√
ζ
2
i

Thus the steady state is stable.

– If β > 0 then ζ = b21 − 4b2 > 0 therefore the eigenvalues of J are:

λ1 = −µT < 0, λ2 = −b1
2
−
√
ζ
2
< 0 and λ3 = −b1

2
+
√
ζ
2
> 0

Thus the steady state is unstable.
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(ii) Since R > 1 and β > 0, the steady state (T ∗1 , I
∗
1 , V

∗
1 ) exists. By the Routh-

Hurwitz criterion, it follows that all roots of the characteristic equation have

negative real parts if and only if

a1 > 0, a4 + a5 > 0 and a1(a2 + a3)− (a4 + a5) > 0. �

4.3 Delay Differential Equation Model for HIV

Now we consider the system with a time delay to represent the viral eclipse

phase. The model is given as follow:

dT

dt
= s− µTT − k1V T, (4.10)

dI

dt
= k2V (t− τ)T (t− τ)− µII, (4.11)

dV

dt
= NµbI − k1V T − µV V, (4.12)

under the initial values

T (θ) = T0, I(0) = 0, V (θ) = V0, θ ∈ [−τ, 0].

Noticed that the delay system has the same steady states as the ODE model.

To study the stability of those steady states, let us define solution of the delay

system of the form:


T ′

I ′

V ′

 = e−λτ


T

I

V


then the Jacobian of the system is given by :
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M =


−µT − k1V ∗ 0 −k1T ∗

e−λτk2V
∗ −µI e−λτk2T

∗

−k1V ∗ Nµb −k1T ∗ − µv


the characteristic equation of the DDE model is given by :

λ3 + a1λ
2 + a2λ+ a3e

−λτλ+ a4e
−λτ + a5 = 0, (4.13)

where ai, i = 1, ..., 5 are defined as in equations (4.4) to (4.8).

Proposition 4.3.1.

The stability of the non infected steady state does not depend on the delay. Therefore

the steady state (T ∗0 , I
∗
0 , V

∗
0 ) stability conditions remain the same as of proposition

4.2.2

Proof: Notice that when consider (T ∗0 , I
∗
0 , V

∗
0 ), then the coefficients

a3 = a4 = 0 and the characteristic equation of the DDE system becomes

(λ+ µT )(λ2 + b1λ+ b2) = 0 , and this for all τ > 0. �

Recall that for the ODE model the steady state (T ∗1 , I
∗
1 , V

∗
1 ) is stable for the

parameter values satisfying conditions in proposition 3.2.1(ii). Here, we are interested

in determining whether there exists a critical delay τc > 0 so that Re(λ) > 0 for

τ > τc. In other words, τc is the value of τ s.t Re(λ) = 0, at which the transition

from stability to instability occurs.

For the steady state (T ∗1 , I
∗
1 , V

∗
1 ), if we let λ(τ) = α(τ)+iω(τ), where α and ω are real,

then we have α(0) < 0. Suppose α(τc) = 0 for some τc > 0, then by the continuity

in τ of α, α(τ) < 0 for values of τ such that 0 ≤ τ < τc . Therefore the steady state

remains stable for these values of τ .
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If such τc > 0 exists, with α(τc) = 0 and α(τ) < 0 for 0 ≤ τ < τc, then by

Rouche’s Theorem (Dieudonne[7], Theorem 9.17.4) the steady state will lose stability

at τ = τc. In fact such τc exists if and only there exists ω(τc) > 0 such that λ(τc) =

iω(τc) = iωc is a root of the characteristic equation (4.13), and that is :

−iω3
c − a1ω2

c + a2iωc + a5 + (a4 + a3iωc)(cosωcτc − i sinωcτc) = 0.

Equating real parts and imaginary parts of the equation to zero, one obtains:

a1ω
2
c − a5 = a4 cosωcτc + a3ωc sinωcτc, (4.14)

−ω3
c + a2ωc = a4 sinωcτc − a3ωc cosωcτc. (4.15)

Adding up the square of equations (4.14) and (4.15), one obtains

u(ωc) := ω6
c + (a21 − 2a2)ω

4
c + (a22 − 2a1a5 − a23)ω2

c + a25 − a24 = 0. (4.16)

For simplification, we introduce the quantities

z := ω2
c , p := a21 − 2a2, q := a22 − 2a1a5 − a23, r := a25 − a24

Then equation (4.16) reduces to

K(z) := z3 + pz2 + qz + r = 0. (4.17)

Lemma 4.3.1.

Suppose that equation (4.17) has no positive roots. Then , all the roots of the char-

acteristic equation have negative real parts for all τ > 0.

We present conditions that ensure that equation (4.17) has a positive root or

has no positive roots. Consider

K ′(z) = 3z2 + 2pz + q
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and

3z2 + 2pz + q = 0,

has the roots:

Z0 :=
−p+

√
p2 − 3q

3
, Z1 :=

−p−
√
p2 − 3q

3

Lemma 4.3.2.

i) If either (a) r < 0, or (b) r ≥ 0, p2 − 3q > 0, p < 0 and K(Z0) < 0, then

equation (4.17) has a positive root.

ii) If r ≥ 0 and p2 − 3q < 0, then equation (4.17) has no positive roots.

Proof:

(i) Suppose that condition (a) holds, that is, r < 0. Then we have K(0) = r < 0.

On the other hand, since

lim
z→+∞

K(z) =∞,

by the intermediate value theorem, then equation (4.17) must have a positive

root z0, that is, K(z0) = 0. Now suppose that condition (b) holds. Since r ≥ 0,

p < 0, and p2 − 3q > 0, we find that Z0 is real and Z0 > 0. Since K(0) = r ≥ 0

and k(Z0) < 0, again by the intermediate value theorem , K has a zero between

the origin and Z0.

(ii) Since p2 − 3q < 0, both zeros Z0 and Z1 are not real . That is, K ′(z) = 0 has

no real root. Noting that

K ′(0) = q >
p2

3
≥ 0

We conclude that the quadratic polynomial K’ is strictly positive on the real

numbers.This implies that K is increasing on the real numbers. Moreover, since
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K(0) = r ≥ 0, we observe that K(z) does not vanish for z > 0 and thus,

equation (4.17) has no positive roots.

Noticed that, Lemma 4.3.2(ii) implies that there is no positive ω such that iω

is a solution of the characteristic equation (4.13). Therefore the real parts of all the

eigenvalues of (4.13) are negative for all delay τ ≥ 0. �

Next, we will provide the conditions on the parameters to ensure that Hopf

bifurcation occurs. Suppose conditions in Lemma 4.3.2(i) hold, then equation (4.17)

has a positive root. We denote, without loss of generality the positive roots of (4.17)

by mj, j ∈ {0, 1, 2} depending on the number of positive roots (4.17) has. Equation

(4.16), therefore has at most six roots, ±√mj forj = 0, 1, 2.

If the solution of equation (4.16) exists, it is among these ±√mj for j = 0, 1, 2. If

λ = iω is a root of equation (4.13) so is −iω.

Substituting ωj into equations (4.14) and (4.15) and solving for τ , we obtain

τ
(n)
j =

1

ωj
arccos

a3ω
4
j + (a1a4 − a2a3)ω2

j − a4a5
a24 + a23ω

2
j

+
2nπ

ωj
,

where

j = 0, 1, 2 and n = 0, 1, 2, . . .

Now, let τc > 0 be the smallest of such τ for which α(τc) = 0. Thus,

τc = min τ
(n)
j > 0, 0 ≤ j ≤ 2, n ≥ 1, ωc = ωjc (4.18)

Theorem 4.3.1.

For the time lag τ , let the critical time lag τc and ωc be defined as in (4.18) , and

suppose that (E2E3 −E1E4) sinωcτc − (E2E4 +E1E3) cosωcτc 6= 0 then the system of

delay differential equations (4.10-4.12) exhibits a Hopf bifurcation at the steady state

(T ∗1 , I
∗
1 , V

∗
1 ). Whith

E1 := a3 sinωcτc − 2a1ωc, E2 := a3 cosωcτc + a2 − 3ω2
c ,
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E3 := a4ωc, E4 := a3ω
2
c .

Proof. We will show that

dα(τ)

dτ
|τ=τc 6= 0,

which guarantees that the Hopf bifurcation occurs. First we equate real parts and

imaginary parts of the characteristic equation to zero:

α3 − 3αω2 + a1α
2 − a1ω2 + a2α + a5 + e−ατ [(α cosωτ + ω sinωτ)a3 + a4 cosωτ ] = 0,

(4.19)

3α2ω − ω3 + 2a1αω + a2ω + e−ατ [(ω cosωτ − α sinωτ)a3 − a4 sinωτ ] = 0

(4.20)

We differentiate equations (4.19) and (4.20) with respect to τ and evaluate at

τ = τc for which α(τc) = 0 and ω(τc) = ωc. We then obtain

E1
dω(τ)

dτ
|τ=τc + E2

dα(τ)

dτ
|τ=τc = E3 sinωcτc − E4 cosωcτc, (4.21)

E2
dω(τ)

dτ
|τ=τc − E1

dα(τ)

dτ
|τ=τc = E3 cosωcτc + E4 sinωcτc. (4.22)

By solving equations (4.21) and (4.22), we therefore obtain

dα(τ)

dτ
|τ=τc =

(E2E3 − E1E4) sinωcτc − (E2E4 + E1E3) cosωcτc
E2

1 + E2
2

6= 0.

Hence, the Hopf bifurcation occurs when τ passes through the critical value τc.

4.4 Numerical Methods for HIV

Using the DDE-BIFTOOL we will examine the stability and the bifurcation

process of the steady state (T ∗1 , I
∗
1 , V

∗
1 ) = (

µvµ2I
k1(R−1) ,

βµI
k1(R−1) ,

β
k1µvµI

).
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We compute the eigenvalues of the characteristic equation (4.13), and display their

real parts versus imaginary parts as shown on the figure 4.1.

Figure 4.1. Roots of the characteristic equation (4.13) with τ = 10 days (left) and
τ = 15 days (right).

All eigenvalues have negative real part , therefore the steady state (T ∗1 , I
∗
1 , V

∗
1 )

is stable for those values of τ . But as we increase the delay, we obtain
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Figure 4.2. Roots of the characteristic equation (4.13) with τ = 20 days (left), and
Real part Vs k1 (right).

We see that there exists a critical delay τc such that the steady state is desta-

bilizes (some of the eigenvalues of the characteristic equation (4.13) have strictly

positive real parts) as τ passes through τc.

Figure 4.3. A pair of pure eigenvalues is clearly visible (Hopf bifurcation) and also a
real eigenvalue (returning point or Hold bifuraction).
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One can plot the time lagτ versus the rate of infection of the CD4+ T-cells with

free virus, and notice that as τ passes through the critical delay τc the steady state

is destabilize through a second Hoph bifurcation branch.

Figure 4.4. Hopf bifurcation branches: τ vs k1.
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CHAPTER 5

EFFECTS OF DELAY AND PARAMETERS VARIATION

5.1 Introduction

It is well known, that the values of the parameters play a crucial role in the

behavior of dynamical systems and that changes in the values can change the behavior

significantly. It has been shown that there is a need to incorporate discrete time delays

in dynamical systems (biological systems, physical systems,...) as studied by many

researchers (Perelson[21],Allen[22],Bellen[23]). Published papers have shown that the

incorporation of discrete time delays can highly impact the dynamics of the system,

since they can switch the stability of a steady state point, and also cause the system to

go through a Hopf bifurcation near that steady state point (Culshaw[12], Bellen[23]).

In our study we consider a system of n delay differential equations (DDE’s) with

one parameter µ as the bifurcation parameter and also with one or more discrete

time delays, τ , which can also behave as bifurcation parameters. We are interested in

investigating how the parameters µ and τ affect the stability of the steady state points

of the system, and, more important, how their effects on the system are correlated to

each other. We present general results in the one dimensional case for necessary and

sufficient conditions for a stability switch and present a specific example to illustrate

these conditions. For the n dimensional case (n ≥ 2) we establish the main ideas, but

as there are multiple possible cases, we consider only a specific example. We present

a non-Kolmogorov type of predator-prey model similar to the model presented by

Ruan [1]. In this model we introduce two delays, τ1 > 0 and τ2 > 0, to represent

the time lag in the growth to maturity of the prey, and the time lag in the growth
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to maturity of the predator respectively. We show how the dynamics of the system

change depending on certain conditions on τ1 and on another bifurcation parameter

R. We also point out conditions for the system to go through stability changes when

both delays τ1 and τ2 are non-zero. We present necessary conditions for the system

to go through a Hopf bifurcation for τ1 > 0 and τ2 = 0. Finally we show numerical

results illustrating the theoretical results.

5.2 One Dimensional Field

5.2.1 One Equation with One Delay

Consider the one dimensional delay differential equation with the time delay τ ,

and the parameter µ as bifurcation parameters:

dX

dt
= f(X(t), X(t− τ), µ), (5.1)

where f is assumed to be smooth enough to guarantee the existence and uniqueness

of solutions to (5.1) under the initial condition (R. Bellman and K. L. Cooke [9])

X(θ) = φ(θ), θ ∈ [−τ, 0].

We rewrite equation (5.1) as :

dX

dt
= f1(X(t), µ) + f2(X(t− τ), µ). (5.2)

We choose to write the delay equation in this form for analytical reasons and also

because many population dynamical models involving delays are of this form. The

DDE (5.2) may or may not have equilibrium points (or steady states) and these will

depend on the value of µ. Let µ∗ be a value for which the DDE has an equilibrium

point X∗, i.e., f(X∗, X∗, µ∗) = 0. We are interested in studying the stability of such

equilibrium point. In particular, in studying the effect of the parameter µ∗ and of
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the discrete time τ on its stability. To do this we linearize the DDE around the

equilibrium point. The characteristic equation is (Culshaw [12]):

λ− df1
dX
|(X∗,µ∗) −

df2
dX
|(X∗,µ∗)e−λτ = 0, (5.3)

and the stability of the equilibrium point (X∗, µ∗) is determined by the sign of the

real part of the eigenvalues λ of equation (5.3).

5.2.1.1 Stability of the Steady State

If τ = 0 then the characteristic equation (5.3) becomes

λ− df1
dX
|(X∗,µ∗) −

df2
dX
|(X∗,µ∗)=0.

The stability of the steady state then depends only on the value of µ∗. We have two

cases:

(a) The steady state (X∗, µ∗) is stable if df1
dX
|(X∗,µ∗) + df2

dX
|(X∗,µ∗) < 0.

(b) The steady state (X∗, µ∗) is unstable if df1
dX
|(X∗,µ∗) + df2

dX
|(X∗,µ∗) > 0.

Assume that condition (a) holds, namely the steady state (X∗, µ∗) is stable

when there is no delay (τ = 0). We want to know if there exists τ > 0 for which

the steady state will lose stability. So for τ ≥ 0, let λ(τ) = α(τ) + iω(τ). The

characteristic equation (5.3) becomes:

α + iω =
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗)e−ατcosωτ + i

df2
dX
|(X∗,µ∗)e−ατsinωτ, (5.4)

where for clarity in the notation we have not explicitly shown the dependence on τ .

Separating the real and imaginary parts, we have:
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α =
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗)e−ατcosωτ, (5.5)

ω =
df2
dX
|(X∗,µ∗)e−ατsinωτ. (5.6)

The steady state will lose stability when the real part of the eigenvalue λ crosses

the zero axis from negative to positive as τ passes a critical value. By Rouche’s The-

orem (Dieudonne[7], Theorem 9.17.4) and by the continuity in τ , the transcendental

equation (5.3) has roots with positive real parts if and only if it has pure imaginary

roots. Therefore, we look at when the real part of the eigenvalue λ becomes zero. In

other words, we want to find if there exists a τc > 0 such that α(τc) = 0. Since

α(0) =
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗),

and α(0) < 0 by assumption (a) , therefore if τc > 0 exists such that α(τc) = 0 then

by the continuity (Michael Y. Li and Hogying Shu [24]) of α we have:

• α(τ) < 0 for any 0 ≤ τ < τc,

• α(τ) > 0 for any τ > τc.

Namely the steady state (X∗, µ∗) will lose stability as the delay parameter τ crosses

a critical value τc. Such τc exists if and only if α(τc) = 0 and ω(τc) = ωc satisfies :

df1
dX
|(X∗,µ∗) = − df2

dX
|(X∗,µ∗)cosωcτc (5.7)

ωc =
df2
dX
|(X∗,µ∗)sinωcτc. (5.8)

Squaring equations (5.7) and (5.8), and adding them up, we obtain:

ω2
c =

[
df2
dX
|(X∗,µ∗)

]2
−
[
df1
dX
|(X∗,µ∗)

]2
. (5.9)
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If equation (5.9) has at least a positive root ωc, then there exists a τc > 0 such that

α(τ) > 0 whenever τ > τc. An important question we want to address is, since equa-

tion (5.9) depends on the bifurcation parameter µ∗, can one chose µ∗ so that equation

(5.9) does not have a positive root ωc? That is, are there values of µ such that the

delay does not have any effect on the stability of the steady state (X∗, µ∗). This

question motivates the following propositions.

Proposition 5.2.1.

Consider the one dimensional delay differential equation

dX

dt
= f1(X(t), µ) + f2(X(t− τ), µ).

And assume that the steady state (X∗, µ∗) is stable for τ = 0 then we have

(i) If df1
dX
|(X∗,µ∗) < 0 and df2

dX
|(X∗,µ∗) > 0 then the steady state (X∗, µ∗) remains stable

for all τ ≥ 0.

(ii) If df1
dX
|(X∗,µ∗) > 0 and df2

dX
|(X∗,µ∗) < 0 then there exists a critical value of the delay

such that the steady state loses stability as the delay crosses its critical value.

(iii) If df1
dX
|(X∗,µ∗) < 0 and df2

dX
|(X∗,µ∗) < 0 then:

(a) the steady state remains stable for all τ ≥ 0 if

∣∣∣∣ df2dX
|(X∗,µ∗)

∣∣∣∣ < ∣∣∣∣ df1dX
|(X∗,µ∗)

∣∣∣∣ ,
(b) there exists a τc > 0 such that the steady state becomes unstable for all

τ > τc if

∣∣∣∣ df2dX
|(X∗,µ∗)

∣∣∣∣ > ∣∣∣∣ df1dX
|(X∗,µ∗)

∣∣∣∣ .
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Proof: We already have the characteristic equation of the one dimensional DDE given

by (5.3) and because the steady state is assumed to be stable at τ = 0 then

α(0) =
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗) < 0. (5.10)

If (i) holds then equation (5.10) implies
∣∣ df2
dX
|(X∗,µ∗)

∣∣ < ∣∣ df1
dX
|(X∗,µ∗)

∣∣
therefore equation (5.9) has no positive root meaning the steady state remains stable

for all τ ≥ 0.

If (ii) holds then equation (5.10) implies
∣∣ df2
dX
|(X∗,µ∗)

∣∣ > ∣∣ df1
dX
|(X∗,µ∗)

∣∣
therefore equation (5.9) has a positive root then there exists a τc > 0 such that

α(τ) > 0 whenever τ > τc.

If (iii)(a) holds then again equation (5.9) has no solution therefore α(τ) < 0 for

all τ ≥ 0 meaning the steady state remains stable.

If (iii)(b) holds then equation (5.9) has a positive root then there exists a τc > 0

such that α(τ) > 0 whenever τ > τc. �

Proposition 5.2.2.

Consider the one dimensional delay differential equation

dX

dt
= f1(X(t), µ) + f2(X(t− τ), µ).

And assume that the steady state (X∗, µ∗) is stable for τ = 0, that conditions of

Proposition 5.2.1 (iii) hold, and that further more we have:

df1
dX
|(X∗,µ∗) ' g(X∗)µ∗,

df2
dX
|(X∗,µ∗) '

h(X∗)

µ∗
,
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then there exists a critical value for µ∗ such that the steady state (X∗, µ∗) will stay

stable for all τ ≥ 0 when µ∗ > µ∗c .

Proof: If conditions of Proposition 5.2.1(iii)(a) hold then there is nothing to prove.

Assume that conditions of Proposition 5.2.1(iii)(b) hold then equation (5.9) has a

positive solution, therefore the delay can affect the stability of the equilibrium point.

But if we do have the extra condition

df1
dX
|(X∗,µ∗) ' g(X∗)µ∗

and

df2
dX
|(X∗,µ∗) '

h(X∗)

µ∗
,

then one can rewrite equation (5.9) as

ω2
c =

[
h(X∗)

µ∗

]2
− [g(X∗)µ∗]2 .

Then there exists a critical value µ∗c of µ∗ such that

h(X∗)

µ∗
≈ 0 as µ∗ → µ∗c .

Therefore the equation (5.9) becomes

ω2
c = − [g(X∗)µ∗c ]

2 < 0,

which has no real positive root ωc, therefore α(τ) < 0 for all τ ≥ 0. This implies the

delay does not have any effect on the stability of the equilibrium point when µ∗ > µ∗c .

�
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5.2.1.2 Example

Consider the one dimensional DDE


dY
dt

= µ Y (t)
Y (t)+1

− 1
µ
Y (t− τ)2, if µ 6= 0

Y (t) = 0, if µ = 0

where µ is a bifurcation parameter and τ ≥ 0 is a discrete time delay. The equation

has two non-negative equilibrium points: the trivial one Y ∗0 = 0, and the positive

equilibrium point Y ∗1 =
−1+
√

1+4µ2

2
. The characteristic equation is given as

λ− µ 1

(Y ∗ + 1)2
− 2

µ
Y ∗e−λτ = 0. (5.11)

• For the trivial equilibrium point Y ∗ = 0, its stability only depends on µ since

equation (5.11) evaluated at Y ∗ = 0 becomes λ = µ.

The trivial equilibrium is unstable for µ > 0 and all τ ≥ 0.

The trivial equilibrium is stable for µ < 0 and all τ ≥ 0.

• At Y ∗1 =
−1+
√

1+4µ2

2
, equation (5.11) becomes:

λ− 4µ

(1 +
√

1 + 4µ2)2
+

√
1 + 4µ2 − 1

µ
e−λτ = 0, (5.12)

then the stability of Y ∗1 depends on both µ and τ .

1) If τ = 0 then equation (5.12) becomes

λ = − 4µ
√

1 + 4µ2

(1 +
√

1 + 4µ2)2

then
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λ < 0 if µ > 0, therefore the equilibrium Y ∗1 is stable (Fig 5.2)

λ > 0 if µ < 0, therefore the equilibrium Y ∗1 is unstable (Fig 5.2).

Remark: To better understand the situation, the stability of both equilib-

ria when there is no delay is shown in the following table:

Table 5.1. Stability regions

Case Y ∗0 = 0 Y ∗1 =
−1+
√

1+4µ2

2

µ < 0 stable unstable
µ = 0 stable stable
µ > 0 unstable stable

At the equilibrium (Y, µ) = (0, 0), there is an exchange of stability. This is

a transcritical bifurcation (Rohan[?]). Geometrically, there are two curves

of equilibria which intersect at the origin and lie on both sides of µ = 0.

Stability of the equilibrium changes along either curve on passing through

µ = 0.

Figure 5.1. Transcritical bifurcation around µ = 0. Unstable equilibrium , red and
Stable equilibrium, blue.
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2) If τ > 0 and λ(τ) = α(τ)+iω(τ), there exists a critical τc such that α(τc) =

0 and λ(τc) = ±iω(τc) = ±iωc (a pair of pure imaginary eigenvalues) is

solution of equation (5.11) if and only if

ω2
c =

16
[
µ2(1 +

√
1 + 4µ2)2 − 1

]
(1 +

√
1 + 4µ2)4

has a positive root ωc, and that is the case if and only if

µ2(1 +
√

1 + 4µ2)2 − 1 > 0.

(2a) If µ ≥ 1
2

then µ2(1 +
√

1 + 4µ2)2 − 1 > 0 therefore there exists τc > 0

such that the equilibrium loses stability whenever τ > τc (Fig 5.3 left).

(2b) If µ ≤ −1
2

then µ2(1+
√

1 + 4µ2)2−1 > 0 therefore there exists τc > 0

such that the equilibrium gains stability whenever τ > τc .

(2c) If −1
2
< µ < 1

2
then µ2(1 +

√
1 + 4µ2)2−1 < 0 therefore the delay has

no effect on the stability of the equilibrium.

Figure 5.2. The positive equilibrium is stable for τ = 0 and µ = 2, left graph. The
equilibrium still remains stable for τ = 0.4 (τ < τc = 0.55) and µ = 2, right graph .
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For µ ≥ 1
2
, the equilibrium is unstable for all τ > 0.55, and for 0 < µ < 1

2
the

equilibrium remains stable for all τ .

0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time t 

Y
(t

)

Unstable around Yeq=3.5311

Figure 5.3. For µ = 4 and τ = 0.9 the equilibrium is unstable, left graph. For µ = 0.2
and τ = 1 the equilibrium is stable, right graph.

5.2.2 One Equation with Multiple Delays

Consider the one dimensional delay differential equation with the time lags

τk, k = 1, 2, ..., and µ as bifurcation parameters:

dX

dt
= f1(X(t), µ) + f2(X(t− τ1), X(t− τ2), ..., X(t− τk), µ). (5.13)

Let (X∗, µ∗) = (X∗, X∗, ..., X∗, µ∗) be the steady state of equation (5.13), i.e., f1(X
∗, µ∗)+

f2(X
∗, X∗, ..., X∗, µ∗) = 0. To study the stability of the steady state we compute the

characteristic equation:

λ− df1
dX
|(X∗,µ∗) −

k∑
j=1

df2
dX
|(X∗,µ∗)e−λτj = 0. (5.14)
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For clarity of the presentation we consider the case of only two delays. Therefore the

characteristic equation is written as

λ− df1
dX
|(X∗,µ∗) −

df2
dX
|(X∗,µ∗)(e−λτ1 + e−λτ2) = 0. (5.15)

Note that if τ1 = τ2 = τ or τ1 = 0 or τ2 = 0 then we are back to the previous

case of one equation with one delay. We will assume that τ1 is in its stable domain,

i.e., 0 < τ1 < τ1c and τ2 > 0. We now examine how variation of τ2 and µ∗ affects

the stability of the steady state. Consider λ(τ2) = α(τ2) + iω(τ2) as solution of

equation (5.15). We look for a critical value τ2c of τ2 such that α(τ2c) = 0 and

λ(τ2c) = iω(τ2c) = iω2c is solution of equation (5.15). Such τ2c exists if and only if:

iω2c −
df1
dX
|(X∗,µ∗) −

df2
dX
|(X∗,µ∗)(cosω2cτ1 − i sinω2cτ1 + cosω2cτ2c − i sinω2cτ2c)

Separate real and imaginary parts:

− df2
dX
|(X∗,µ∗) cosω2cτ2c =

df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗) cosω2cτ1, (5.16)

df2
dX
|(X∗,µ∗) sinω2cτ2c = −ω2c −

df2
dX
|(X∗,µ∗) sinω2cτ1. (5.17)

Adding the square of (5.16) and (5.17) we have[
df2
dX
|(X∗,µ∗)

]2
=

[
ω2c +

df2
dX
|(X∗,µ∗) sinω2cτ1

]2
+

[
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗) sinω2cτ1

]2
Clearly τ2c exists if and only the function:

H(ω2c) =

[
ω2c +

df2
dX
|(X∗,µ∗) sinω2cτ1

]2
+

[
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗) cosω2cτ1

]2
−
[
df2
dX
|(X∗,µ∗)

]2
has at least a positive root.

Proposition 5.2.3.

Consider the one dimensional delay differential equation with the time lag τ1, τ2, and

µ as bifurcation parameters:

dX

dt
= f1(X(t), µ) + f2(X(t− τ1), X(t− τ2), µ). (5.18)
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Assume that the steady state (X∗, µ∗) = (X∗, X∗, µ∗) of (5.18) is stable for 0 < τ1 <

τ1c. If df2
dX
|(X∗,µ∗) > 0 and df1

dX
|(X∗,µ∗) < 0, then there exists a critical value τ2c > 0 for

τ2 such that (X∗, µ∗) losses stability as τ2 crosses τ2c.

Proof: Such τ2c exists if and only if equation H(ω2c) = 0 has at least a positive

equation. Or If df2
dX
|(X∗,µ∗) > 0 and df1

dX
|(X∗,µ∗) < 0 then

H(0) =

[
df1
dX
|(X∗,µ∗) +

df2
dX
|(X∗,µ∗)

]2
−
[
df2
dX
|(X∗,µ∗)

]2
< 0.

And also H(ω2c) → ∞ as ω2c → ∞. Then the intermediate value theorem assures

that equation H(ω2c) = 0 has at least a positive root. �

We now extend our analysis to a system of n-delay differential equations with

multiple discrete time delays τ1, τ2, ..., τk, and a local bifurcation parameter µ.

5.3 n Dimensional Field

Consider the following system non-linear delay differential equations:

dx

dt
= f(x(t), x(t− τ1), ..., x(t− τk), µ), (5.19)

where x ∈ Rn, τj ≥ 0, 1 ≤ j ≤ k are constant discrete times,

f : Rn+1 × Ck → Rn is assumed to be smooth enough to guarantee existence and

uniqueness of solutions to (5.19) under the initial value condition (R. Bellman and

K. L. Cooke [9] and J. K. Hale and S. M. Verduyn Lunel [25])

x(θ) = φ(θ), θ ∈ [−τ, 0],

where C = C([−τ, 0],Rn), τ = max
1≤j≤k

τj.

Suppose f(x∗, x∗, ..., x∗, µ∗) = 0, that is, (x∗, µ∗) is a steady state of system (5.19).

We are interested in studying the stability of such equilibrium point. In particular
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studying the effect of the parameter µ∗ and the discrete time delays τ1, τ2, ..., τk on

its stability. The linearization of (5.19) at (x∗, µ∗) has the form (Ruan [1]):

dX

dt
= A0(µ

∗)X(t) +
k∑
j=1

Aj(µ
∗)X(t− τj), (5.20)

where X ∈ Rn, each Aj(µ
∗) (0 ≤ j ≤ k) is an n× n constant matrix that depends

on µ∗. The transcendental equation associated with system (5.19) is given as :

det

[
λI − A0(µ

∗)−
k∑
j=1

Aj(µ
∗)e−λτj

]
= 0. (5.21)

Equation (5.21) has been studied by many researchers

(Ruan [1], R. Bellman and K. L. Cooke [9] and J. K. Hale and S. M. Verduyn Lunel

[25]). The following result, which was proved by Chin [26] for k = 1 and by Datko

[27] and Hale et al. [25] for k ≥ 1, gives a necessary and sufficient condition for the

absolute stability of system (5.20).

Lemma 5.3.1.

System (5.20) is stable for all delays τj(1 ≤ j ≤ k) if and only if

(i) Reλ(
∑k

j=0Aj(µ
∗)) < 0;

(ii) det
[
iωI − A0(µ

∗)−
∑k

j=1Aj(µ
∗)e−iωτj

]
6= 0 for all ω > 0

Clearly, the stability of the steady state (x∗, µ∗) and the effects of the discrete

times τj on its stability depend on values of µ∗. To further investigate the effects of

µ∗, and the discrete time delays τj on the stability of (x∗, µ∗), the exact entries of

the matrices Aj(µ
∗) are needed to avoid doing a large number of cases. Note that

the difficulty of the analysis is not due to the number of delays but to the number of

equations. Even in the case of two equations with one delay, one needs to consider:

det
[
λI − A0(µ

∗)− A1(µ
∗)eλτ = 0

]
,

where

Ai(µ
∗) =

∂f

∂Xi

|(X∗,µ∗), i = 0, 1.
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So the stability depends on all the entries of the Ai, i = 0, 1, we have many different

cases.

Therefore to present the ideas we consider a specific example with n = 2, k = 2,

that is a two dimensional delay differential equations with two discrete time delays,

and a local bifurcation parameter.

5.3.1 Two Dimensional Field Example

Consider the non-Kolmogorov type (Holling) predator-prey model

dx

dt
= r1x(t− τ1)− a1

x(t)y(t)

x(t) + 1
, (5.22)

dy

dt
= −r2y(t) + a2

x(t− τ2)y(t− τ2)
x(t− τ2) + 1

, (5.23)

where the parameters are described in the following table:

Table 5.2. Parameter values

Parameters Description Values

x(t) the prey population
y(t) the predator population
r1 the growth rate of the prey in the absence of predators 0.5
r2 the death rate of predators in the absence of the prey 0.5
a1 the predation rate of the prey by the predators 0.5
a2 the conversion rate for the predators 5
τ1 the time lag in the growth to maturity of the prey varies
τ2 the time lag in the growth to maturity of the predators varies

Note that r1 > 0, r2 > 0, a1 > 0, a2 > 0, τ1 > 0, τ2 > 0.

Proposition 5.3.1.

If the basic reproductive ratio (Ameh[28]) R > 1, the system has two non-negative

steady states:
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(x∗0, y
∗
0) = (0, 0), and (x∗1, y

∗
1) = ( 1

R−1 ,
RR′

R−1),

where

R =
a2
r2
, R′ =

a1
r1
.

We consider R, τ1 and τ2 as the bifurcation parameters for the system (5.22-5.23) since

changes of them may affect the existence and stability of the equilibrium points.

5.3.2 Stability Analysis

Proposition 5.3.2.

There exists a critical value for τ1 such that

(i) The steady state (x∗0, y
∗
0) is unstable for 0 ≤ τ1 < τ1c, and all τ2 ≥ 0.

(ii) The steady state (x∗0, y
∗
0) is stable for τ1 ≥ τ1c, and all τ2 ≥ 0.

Proof: The Jacobian matrix of the system (5.22-5.23) is given by :

J =

r1e−λτ1 − a1y∗

(x∗+1)2
− a1x∗

x∗+1

a2y∗

(x∗+1)2
e−λτ2 −r2 + a2x∗

x∗+1
e−λτ2


Evaluating at (x∗, y∗) = (0, 0), the characteristic equation is given as

(λ− r1e−λτ1)(λ+ r2) = 0.

We note that the stability of (x∗, y∗) = (0, 0) depends only on τ1.

• If τ1 = 0 then the eigenvalues are :

λ = r1 > 0 and λ = −r2 < 0. Therefore the (0, 0) is unstable.

• If τ1 > 0, we have λ = r1e
−λτ1 , let λ(τ) = α(τ) + iω(τ) then we have

λ = r1e
−ατ1(cosωτ1 − i sinωτ1).

One can choose ωcτ1c = π(2n+1)
2

(n=0,1,2,...) or τ1c = π(2n+1)
2ωc

such that the real

part of λ(τ) = α(τ)+ iω(τ) at τ1c is zero (α(τ1c) = 0) and λ(τ1c) = iω(τ1c) = iωc
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is a solution of the characteristic equation.

Then by the continuity of α we have :

– α(τ) > 0 for τ1 < τ1c,

– α(τ) < 0 for τ1 > τ1c. �

Proposition 5.3.3.

If [(b− d)2 − r21 − 2a1f ] < 0 and

Λ = [(b− d)2 − r21 − 2a1f ]2 − 4a21f
2 ≥ 0 then there exists a critical τ ′1c such that

(i) The steady state (x∗1, y
∗
1) = ( 1

R−1 ,
RR′

R−1) is unstable for 0 ≤ τ1 < τ ′1c and τ2 = 0.

(ii) The steady state (x∗1, y
∗
1) is stable for τ1 > τ ′1c and τ2 = 0.

Proof: The characteristic equation of the system evaluating at (x∗1, y
∗
1) is given by

λ2 + (b− r1e−λτ1 − r2e−λτ2)λ+ (f − f1e−λτ1 + (a1 − 1)fe−λτ2 + f1e
−λ(τ1+τ2)) = 0,

(5.24)

where

b = r2 +
r1

x∗1 + 1
, f =

r1r2
x∗1 + 1

, f1 = r1r2.

• If τ1 = τ2 = 0 we have:

λ2 + (b− r1 − r2)λ+ a1f = 0

with

b− r1 − r2 = −r1
R
< 0, and a1f > 0.

Then the characteristic equation has at least a positive eigenvalue

(if the eigenvalues are real) λ = r1
2R

+
√
δ
2

where

δ = (b− r1 − d)2 − 4a1f,
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or, all its eigenvalues (if complex) have a positive real part ( r1
2R

). Therefore the

steady state (x∗1, y
∗
1) is unstable.

• If τ1 > 0 and τ2 = 0 Then the characteristic equation becomes:

λ2 + (b− r2)λ− r1e−λτ1λ+ a1f = 0.

Since we know that the steady state is unstable when τ1 = τ2 = 0, the question

becomes: does there exist a τ ′1c such that the steady state stabilizes as τ1 crosses

τ ′1c? In other words if λ(τ1) = α(τ1) + iω(τ1), does there exist τ ′1c such that

α(τ ′1c) = 0 and ω(τ ′1c) = ω′c which satisfies

−ω′2c + i(b− r2)ω′c − ir1ω′c(cosω′cτ
′
1c − i sinω′cτ

′
1c) + a1f = 0.

Setting the real and imaginary parts equal zero, we obtain:

−ω′2c + a1f = r1ω
′
c sinω′cτ

′
1c (5.25)

(b− r2)ω′c = r1ω
′
c cosω′cτ

′
1c. (5.26)

Adding the square of both equations, we obtain:

ω′4c + [(b− r2)2 − r21 − 2a1f ]ω′2c + a21f
2 = 0. (5.27)

Such τ ′1c exists if and only if the above equation has at least a positive root ω′c.

Let M = ω′2c , then we have the quadratic equation:

M2 + [(b− r2)2 − r21 − 2a1f ]M + a21f
2 = 0 (5.28)

which has at least a positive root if:

C(0) : [(b−r2)2−r21−2a1f ] < 0 and Λ = [(b−r2)2−r21−2a1f ]2−4a21f
2 ≥ 0,
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consequently, equation (5.27) has at least a positive root ω′c.Which implies there

exist a τ ′1c > 0 such that the steady state changes stability as τ1 crosses τ ′1c for

τ2 = 0. In fact τ ′1c is the smallest of :

τ ′j1c =
1

ω′c
arccos

b− r2
r1

+
2πj

ω′c
, j = 1, 2, ... �

Note that τ1 affects the stability of the positive equilibrium only for values of R such

that conditions C(0) are satisfied.

Remark: For our parameter values, we have

[(b− r2)2 − r21 − 2a1f ] = −0.9475 < 0 and

Λ = [(b− r2)2 − r21 − 2a1f ]2 − 4a21f
2 = 0.0878 > 0.

Proposition 5.3.4.

Consider system (5.22-5.23) with τ1 in its unstable interval (0 ≤ τ1 < τ ′1c). If a1 ≥ 2,

then there exists a critical τ2c > 0, such that the positive equilibrium becomes stable

for τ2 > τ2c.

Proof: We consider system (5.22-5.23) with τ1 in its unstable interval (0 ≤ τ1 < τ ′1c).

Regarding τ2 as a parameter, consider λ(τ2) = α(τ2) + iω(τ2). does there exist a τ2c

such that α(τ2c) = 0 and λ(τ2c) = iω2c is solution of equation (5.24)? Such τ2c exists

if and only if:

ω4
2c + k1ω

3
2c + k2ω

2
2c + k3ω2c + k4 = 0, (5.29)
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has at least a positive root ω2c, with

k1 = 2r1(sinω2cτ1 + b cos2 ω2cτ1),

k2 = b2 + r21 sin2 ω2cτ1 − 2(f − f1 cosω2cτ1)− r2,

k3 = 2bf 2
1 sin2 ω2cτ1 − 2r1(f − f1 cosω2cτ1) + 2r2f1 sinω2cτ1,

k4 = (f − f1 cosω2cτ1)
2 − (a1 − 1)2f 2 − f 2

1 − 2(a1 − 1)ff1 cosω2cτ1.

Denote

H(ω2c) = ω4
2c + k1ω

3
2c + k2ω

2
2c + k3ω2c + k4.

It is easy to check that H(0) < 0 if a1 ≥ 2 and limω2c→+∞H(ω2c) = +∞. Therefore

by the mean value theorem equation (5.29) has at least a positive root ω2c. �

Note that the effect of τ2 on the stability of the positive equilibrium does not depend

on the values of R.

5.3.3 Hopf Bifurcation Analysis

According to the Hopf Bifurcation Theorem (Culshaw [12]), the discrete time

delay τ1 will cause the system to go through a Hopf bifurcation near the steady state

(x∗1, y
∗
1), if the following transversality condition is satisfied:

dα(τ1)

dτ1
|τ1=τ ′1c 6= 0. (5.30)

To check this condition we recall that the characteristic equation of the system at

(x∗1, y
∗
1) when τ2 = 0 is given as :

λ2 + (b− r2)λ− r1e−λτ1λ+ a1f = 0. (5.31)

Substituting λ(τ1) = α(τ1) + iω(τ1) in equation (5.31), we have :

α2−ω2 + 2αωi+ (b− r2)α+ (b− r2)ωi− r1eατ1(cosωτ1− i sinωτ1)(α+ iω) + a1f = 0.
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We equate the real and the imaginary parts to zero, and we have :

α2 − ω2 + (b− r2)α + a1f + r1e
ατ1(α cosωτ1 + ω sinωτ1) = 0, (5.32)

2αω + (b− r2)ω − r1eατ1(ω cosωτ1 − α sinωτ1) = 0. (5.33)

We differentiate equations (5.32) and (5.33) with respect to τ1 and evaluate at

τ1 = τ ′1c for which α(τ ′1c) = 0 and ω(τ ′1c) = ω′c. We obtain

A
dω(τ1)

dτ1
|τ1=τ ′1c −B

dα(τ1)

dτ1
|τ1=τ ′1c = C cosω′cτ

′
1c +D sinω′cτ

′
1c, (5.34)

B
dω(τ1)

dτ1
|τ1=τ ′1c + A

dα(τ1)

dτ1
|τ1=τ ′1c = C sinω′cτ

′
1c −D cosω′cτ

′
1c, (5.35)

where

A := 2ω′c − r1τ ′1c sinω′cτ
′
1c, B := (b− r2) + r1τ

′
1c cosω′cτ

′
1c

C := r1τ
′
1c(ω

′2
c + ω′cτ

′
1c), D := r1τ

′
1cω
′
c sinω′cτ

′
1c.

By solving equations (5.34) and (5.35) we have:

dα(τ1)

dτ1
|τ1=τ ′1c =

(AC −BD) sinω′cτ
′
1c − (AD +BC) cosω′cτ

′
1c

A2 +B2
. (5.36)

The system goes through a Hopf bifurcation near (x∗1, y
∗
1) if:

(AC −BD) sinω′cτ
′
1c − (AD +BC) cosω′cτ

′
1c 6= 0.

5.3.4 Numerical Results

To illustrate the effect of the parameter R and the discrete time delay on the

stability of the steady state (x∗, y∗), and to support the theoretical predictions dis-

cussed above, we conducted numerical simulations for the system (5.22-5.23). We
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used DDE-BIFTOOL (Engelborghs[15]) for the stability and bifurcation analysis and

also used the Matlab solver ode23 and dde23 (Shampine[?],Shampine[29]) to see the

behavior of the predator and prey population through time. All the parameter values

are given in Table 5.2.

For the given parameters values we have R = 10 > 1, and a positive equilibrium

exists and is given as (x∗1, y
∗
1) = (0.111, 1.111). When there is no delay the prey and

predator populations variation through time is shown on Figure 5.4.

Figure 5.4. The positive equilibrium is unstable for τ1 = τ2 = 0 and R = 10 > 1.The
system exhibits a spiral out from the equilibrium (x∗1, y

∗
1) = (0.111, 1.111)..
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For our parameter values we have:

[(b− d)2 − r21 − 4f ] = −0.9475 < 0 and

Λ = [(b− d)2 − r21 − 4f ]2 − 16f 2 = 0.0878 > 0.

Then there exists a τ1c = 6 such that the steady state remains unstable for 0 ≤ τ1 < τ1c

and τ2 = 0 (see Figure 5.5), it becomes stable as τ1 crosses τ1c and τ2 = 0 as shown

on Figure 5.6.

Figure 5.5. The positive equilibrium remains unstable for τ1 = 1 < τ1c = 6 and
τ2 = 0..
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Figure 5.6. The positive equilibrium is stable for τ1 = 7 > τ1c = 6 and τ2 = 0..

We examine closely the stability switch introduces by τ1. We use DDE-BIFTOOL

to compute the eigenvalues of the characteristic equation (5.24) for τ2 = 0 and

0 ≤ τ1 ≤ 10. In Figure 5.7 we plot the real parts versus the imaginary parts of

these eigenvalues.

We see that the equilibrium (x∗1, y
∗
1) stabilizes as τ1 crosses the critical value τ ′1c = 6.

We also plot in Figure 5.7 the eigenvalues of equation (5.24) for τ1 = τ ′1c = 6 and

observe a pair of two pure imaginary eigenvalues.

The system goes through a Hopf bifurcation as τ1 crosses τ ′1c. We compute the

Hopf bifurcations branches using Matlab and show them in Figure 5.8.
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Figure 5.7. The eigenvalues of the characteristic equation (5.24) for τ1 = 3 (left) and
τ1 = 8(center) with τ2 = 0.At τ1 = τ ′1c = 6 we can clearly observe a pair of 2 pure
imaginary eigenvalues (right)..

Figure 5.8. Global Hopf bifurcations branches as we vary τ1 and a1 (same as varying
R)..
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For the case of two non-zero delays, we use Matlab to compute numerical simu-

lations illustrating the effects of the two delays. The analysis is summarized in Table

5.3

Table 5.3. Stability regions in case of two non-zero delays

Unstable Stable Stable Unstable{
0 ≤ τ1 < τ ′1c,

0 ≤ τ2 < τ2c

{
τ1 > τ ′1c,

0 ≤ τ2 < τ2c

{
0 ≤ τ1 < τ ′1c,

τ2 > τ2c

{
τ1 > τ ′1c,

τ2 > τ2c
see Fig 5.4 and Fig5.9 see Fig5.6 and Fig5.10 see Fig5.11 see Fig5.12

Note τ ′1c = 6 and τ2c = 2.5

For τ1 = 2 and τ2 = 0.5 the equilibrium is unstable as shown in Figure 5.9.

Figure 5.9. The positive equilibrium is unstable for τ1 = 2 and τ2 = 0.5..

For τ1 = 7 and τ2 = 1.2 the equilibrium becomes stable as shown in Figure 5.10.
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Figure 5.10. The positive equilibrium is stable for τ1 = 7 and τ2 = 1.2.The system
exhibits a spiral in toward the equilibrium (x∗1, y

∗
1) = (0.111, 1.111)..

Figure 5.11. The positive equilibrium is stable for τ1 = 0.7 and τ2 = 8..
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For τ1 = 7 and τ2 = 3.1 the equilibrium becomes unstable again as shown in Figure

5.12.

Figure 5.12. The positive equilibrium is unstable for τ1 = 7 and τ2 = 3.1.The system
exhibits an unstable periodic solutions..

5.4 Conclusions and Discussion

It is well known that changes in the parameters play a crucial role in under-

standing dynamical systems. There is a need to incorporate discrete time delays

in dynamical systems (Biological systems, physical systems,...) as has been shown

and studied by many researchers (Perelson[21],Bellen[23],..). Published papers have

shown that the incorporation of discrete time delays can highly impact the dynamics

of the system, since they can cause stability switches of a steady state point, and can
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also cause the system to go through a Hopf bifurcation near that steady state point

(Culshaw[12], Bellen[23],...). To understand the effects of discrete time delays and

parameter variations on certain biological system models, we carried out a bifurca-

tion analysis of a system of delay differential equations in detail for n=1 with specific

examples, gave the procedure for higher n, and did a concrete example for n=2. We

investigated the stability of the steady states as both bifurcation parameters, the

discrete time delay τ and a local bifurcation parameter µ, cross critical values. Our

analysis shows that while both parameters can destabilize the steady state, the dis-

crete time delay can cause stability switches of the steady state only upon certain

values of µ. The local bifurcation parameter effects on the stability of the steady

state do not depend on the value of τ . We also showed that both parameters act

differently in term of bifurcation. While the discrete time delay may only introduce

a Hopf bifurcation, the parameter µ can introduce other type of bifurcations.
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CHAPTER 6

DELAY PARTIAL DIFFERENTIAL EQUATIONS OF A HOLLING TYPE

PREDATOR-PREY MODEL

6.1 Introduction

It is well known that the distribution of species is generally heterogeneous spa-

tially, and therefore the species will migrate towards regions of lower population

density to add the possibility of survival. Thus, partial differential equations with

delay became the subject of a considerable interest in recent years. In this section we

consider simultaneously time delays and spatial diffusion to model the predator prey

model presented in chapter 4. Our main focus is to investigate analytically and nu-

merically the effects of the spatial diffusion, the time delays and parameters variation

on the dynamic of the system.

6.2 Delay PDE’s Model

The growth dynamics of two species with spatial diffusion corresponding to

system (5.22-5.23) can be described by the following diffusion system with delays:

∂u(t, x)

∂t
= d1∆u(t, x) + r1u(t− τ1, x)− a1

u(t, x)w(t, x)

u(t, x) + 1
, t > 0, x ∈ (0, π),

(6.1)

∂w(t, x)

∂t
= d2∆w(t, x)− r2w(t, x) + a2

u(t− τ2, x)w(t− τ2, x)

u(t− τ2, x) + 1
, t > 0, x ∈ (0, π)

(6.2)

with Neumann boundary conditions:
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∂u(t, x)

∂x
=
∂w(t, x)

∂x
= 0, t ≥ 0, x = 0, π,

and history functions:

u(t, x) = φ(t, x) ≥ 0, w(t, x) = ψ(t, x) ≥ 0, (t, x) ∈ [−τ, 0]×(0, π), τ = max {τ1, τ2} .

Where u(t, x) and w(t, x) can be interpreted as the densities of prey and predator

populations at time t and space x, respectively; d1 > 0, d2 > 0 denote the diffusion

coefficients of prey and predator species, respectively; ∆ is the Laplacian operator.

Neumann boundary conditions imply that the two species have zero flux across the

domain boundary, meaning no individuals can enter or leave the enclosed area [0, π].

(φ, ψ) ∈ C = C([−τ, 0], X), and X is defined by :

X =

{
(u,w) : u,w ∈ V 2,2(0, π) :

du

dx
=
dw

dx
= 0, x = 0, π

}
with the inner product < �, � >.

In the remaining part of this section, we focus on the system (6.1-6.2). The

main purpose is to investigate the effects of the diffusion and the time delays on the

dynamics of the system (6.1-6.2) under parameter variation. To do so, we investigate

the stability of the positive spatially homogeneous steady state. We prove that when

there is no diffusion and no time delays the steady state point is globally unstable just

as in chapter 5. When the species diffuse and both maturation times are zero, then the

steady state becomes stable for all parameter values. We also prove that when there

is diffusion and the maturation time for the predator is zero, then the maturation

time for the prey population has no effect on the dynamic of the system, namely the

steady state remains stable. Finally when both species diffuse and the time delays

are both positive, then the steady state can be destabilize for a small diffusivity and
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a large maturation’s time for the predator population. This stability changes may

cause a Hoph bifurcation near the steady state depending on the parameter values.

6.3 Stability and Hoph Bifurcation Analysis

It is relatively easy to see that the system (6.1-6.2) has :

• only the trivial steady state E0(0, 0) and the non-zero spatially heterogeneous

steady state E1(ϕ cos

√
r1d1
d1

x, 0) when R < 1, with R = a2
r2

and ϕ ∈ R.

• the trivial steady state E0(0, 0), the non-zero spatially heterogeneous steady

state E1(ϕ cos

√
r1d1
d1

x, 0), and the positive spatially homogeneous steady state

E∗(u∗, w∗) when R > 1, with

u∗ =
1

R− 1
, w∗ =

RR′

R− 1
, R =

a2
r2
, R′ =

a1
r1
.

We will focus on the positive spatially homogeneous steady state E∗(u∗, w∗).

Let u(t, x) = u(t, x)− u∗, and w(t, x) = w(t, x)− w∗, replace this in system (6.1-6.2)

and only consider the terms linear in u(t, x) and w(t, x) we can write the linearized

matrix form of system (6.1-6.2) as (Zhang [30]):

∂U(t, x)

∂t
= d∆U(t, x) + L(U∗)U(t, x), (6.3)

For convenience of notation , we have replaced U(t, x) by U(t, x) in the above equation.

where

U(t, x) = (u(t, x), w(t, x))T , d = (d1, d2)
T , ∆ =

 ∂
∂x2

0

0 ∂
∂x2

 ,

and

L(U∗) =

r1e−λτ1 − a1w∗

(u∗+1)2
− a1u∗

u∗+1

a2w∗

(u∗+1)2
e−λτ2 −r2 + a2u∗

u∗+1
e−λτ2

 .
Equation (6.3) has characteristic equation :
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det [λI − d∆λ− L(U∗)] = 0.

It is well known that the linear operator ∆ on (0, π) with homogeneous Neumann

boundary conditions has the eigenvalues −k2 (k ∈ N0 = {0, 1, 2, · · · }) and the corre-

sponding eigenfunctions are :

β1
k =

 γk

0

 , β2
k =

 0

γk

 , γk =
cos kx

‖ cos kx‖2,2
, k ∈ N0.

The characteristic equation is therefore equivalent to :

det


 λ+ d1k

2 0

0 λ+ d2k
2

−
 r1e

−λτ1 − a1w∗

(u∗+1)2
− a1u∗

u∗+1

a2w∗

(u∗+1)2
e−λτ2 −r2 + a2u∗

u∗+1
e−λτ2


 = 0,

which can be rewrite as :

0 = λ2 +
[
b− r1e−λτ1 − r2e−λτ2 + (d1 + d2)k

2
]
λ

+ (f + Ak − (f1 +Bk)e
−λτ1 + ((a1 − 1)f + Ck)e

−λτ2 + f1e
−λ(τ1+τ2)),

(6.4)

where

b = r2 +
r1

u∗ + 1
, f =

r1r2
u∗ + 1

, f1 = r1r2,

Ak = d1d2k
4 − d1r2k2 − d2(b− r2)k2,

Bk = d2r1k
2, Ck = d1r2k

2, k ∈ N0.

Proposition 6.3.1.

If the wave number k = 0 (that is neither specie diffuse), and the discrete time delays

τ1 = τ2 = 0, then the equilibrium (u∗, w∗) is unstable.

Proof: when k = 0, and τ1 = τ2 = 0 we are in the case of proposition 9 and the

equilibrium (u∗, w∗) has been shown to be unstable. �
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Proposition 6.3.2.

If the wave number k ∈ N = {1, 2, . . . }, the discrete time delays τ1 = τ2 = 0, and

Ak −Bk + Ck > 0 then the equilibrium (u∗, w∗) becomes stable.

Proof: If τ1 = τ2 = 0 and k > 0, the characteristic equation (6.4) becomes

λ2 +
[
(b− r1 − r2) + (d1 + d2)k

2
]
λ+ a1f + Ak −Bk + Ck = 0. (6.5)

Notice that b−r1−r2 = − r1
R
< 0 is relatively very small compare to (d1+d2)k

2,

also a1f > 0, and by assumption Ak−Bk+Ck > 0. Therefore all the roots of equation

(6.6) have strictly negative real parts. �

Remark: In general for large wave number k,

Ak + Ck −Bk = d1d2k
4 − d2(b− r2 + r1)k

2 > 0.

For our parameter values :

Ak + Ck −Bk = 2k4 − 1.9k2 > 0, k ∈ N = {1, 2, . . . }.

Proposition 6.3.3.

if the wave number k ∈ N = {1, 2, . . . }, the discrete time delay τ2 = 0, and Ak−Bk +

Ck > 0 then the equilibrium (u∗, w∗) remains stable for all τ1 ≥ 0.

Proof: Assume that k ≥ 1, Ak −Bk +Ck > 0, and τ2 = 0. We want to check if

there exist τ1c > 0 such that λ(τ1c) = iω(τ1c) = iω1c is solution of the characteristic

equation (6.4). That is the case if and only if there exists a ω1c > 0 such that:

0 = −ω2
1c +

[
(b− r2) + (d1 + d2)k

2
]
iω1c − (cosω1cτ1c − sinω1cτ1c)ir1ω1c

− (cosω1cτ1c − sinω1cτ1c)Bk + a1f + Ak + Ck.

(6.6)

Separating the real and imaginary parts, we have :

−ω2
1c + a1f + Ak + Ck = r1ω1c sinω1cτ1c +Bk cosω1cτ1c (6.7)[

(b− r2) + (d1 + d2)k
2
]
ω1c = r1ω1c cosω1cτ1c −Bk sinω1cτ1c. (6.8)
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Square both equations (6.7) and (6.8) and add them up, we have :

ω4
1c +mkω

2
1c + lk = 0, (6.9)

with

mk = d1d2k
4 + [d1 + d2 − d2(b− r2)]k4 − (a1f − r21 + r2 − b), k = 1, 2, . . .

lk = (a1f + Ak + Ck)
2 −Bk, k = 1, 2, . . .

and equation (6.9) has no positive root since

mk = 2k4 + 2.1k2 + 0.58 > 0, for k = 1, 2, . . .

and

lk = (2k4 − 0.9k2 + 0.112)2 − k4 > 0, for k = 1, 2, . . .

therefore there exists no critical τ1c > 0 such that λ(τ1c) = iω1c is solution of the

characteristic equation (6.9). Which means the equilibrium (u∗, w∗) remains stable

for all τ1 > 0. �

Proposition 6.3.4.

if the wave number k ∈ N = {1, 2, . . . }, the discrete time delay τ1 > 0, and Ak−Bk +

Ck > 0 then there exists a critical τ2c > 0 such that the equilibrium (u∗, w∗) becomes

unstable when τ2 crosses τ2c.

Proof: Assume that k ≥ 1, Ak − Bk + Ck > 0, and τ1 > 0. Let λ(τ2) =

α(τ2)+iω(τ2) be solution of the characteristic equation (6.9). We know by proposition

13 that when τ2 = 0, then α(0) < 0. We want to check if there exist τ2c > 0 such that

α(τ2c) = 0 or in other word λ(τ2c) = iω(τ2c) = iω2c is solution of the characteristic

equation (6.4). If such τ2c exists, then by continuity of α on τ2, and by the Rouche’s

theorem the equilibrium (u∗, w∗) loses stability when τ2 > τ2c. Such τ2c exists if and

only if there exists a ω2c > 0 such that:
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0 = −ω2
2c +

[
b+ (d1 + d2)k

2
]
iω2c − (r1 cosω2cτ1 + r2 cosω2cτ2c)iω2c − (r1 sinω2cτ1 + r2 sinω2cτ2c)ω2c

− (f1 +Bk) cosω2cτ1 + (f1 +Bk)i sinω2cτ1 + [(a1 − 1)f + Ck] cosω2cτ2c

− i[(a1 − 1)f + Ck] sinω2cτ2c + f1 cos(τ1 + τ2c)ω2c − if1 sin(τ1 + τ2c)ω2c + f + Ak.

(6.10)

Setting real and imaginary parts to zero we have :

−ω2
2c + f + Ak = (r1 sinω2cτ1 + r2 sinω2cτ2c)ω2c + (f1 +Bk) cosω2cτ1 − f1 cos(τ1 + τ2c)ω2c

− [(a1 − 1)f + Ck] cosω2cτ2c

(6.11)

[
b+ (d1 + d2)k

2
]
iω2c = (r1 cosω2cτ1 + r2 cosω2cτ2c)ω2c + [(a1 − 1)f + Ck] sinω2cτ2c

+ f1 sin(τ1 + τ2c)ω2c − (f1 +Bk) sinω2cτ1

(6.12)

Square both equations (6.11) and (6.12), add them up and apply some basic

trigonometric identities :

ω4
2c + Pkω

2
2c −Qk = 0,

with

Pk = [b+ (d1 + d2)k
2]2 + (r21 + r22)− 2(f + Ak + r1r2 cos(τ1 − τ2c)ω2c,

Qk = (f1 +Bk)
2 + f 2

1 + [(a1 − 1)f + Ck]
2.

Let set

H(ω2c) = ω4
2c + Pkω

2
2c −Qk,

then H(0) = −Qk < 0 and H(ω2c)→∞ when ω2c →∞. Therefore the Intermediate

Value Theorem assures that H(ω2c) has a positive zero. In conclusion there exists
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a τ2c such that the positive equilibrium loses stability when τ2 crosses τ2c. Solving

equation (6.11) for τ2c, then we obtain that τ2c is the minimum of :

τ j2c = τ1 −
[
arccos

ω4
2c − (Qk +Mk)

2r1r2ω3
2c

+ 2πj

]
, j = 0, 1, 2 . . .

with

Mk =
[
2(f + Ak)− [b+ (d1 + d2)k

2]2 − (r21 + r22)
]
. �

Let

λ(τ2) = α(τ2) + iω(τ2),

be a root of the characteristic equation (6.4) with k ∈ N = {1, 2, . . . }, near τ2 = τ j2c

satisfying α(τ j2c) = 0, ω(τ j2c) = ω2c, j ∈ N0. Then the following result holds

Lemma 6.3.1.

The following transversality conditions hold :

dα(τ2)

dτ2
|τ2=τ j2c > 0, j ∈ N0.

From the previous discussion we have the following theorem on the stability of

the positive spatially homogenous steady state (u∗, w∗) of the system (6.1-6.2) and

the existence of Hopf bifurcation near (u∗, w∗).

Theorem 6.3.1.

Assume that Ak −Bk + Ck > 0, then

• If k = 0, τ1 = τ2 = 0, the positive constant steady state (u∗, w∗) is unstable;

• if k ≥ 1, τ1 = τ2 = 0, the positive constant steady state (u∗, w∗) is asymptotically

stable;

• if k ≥ 1, τ2 = 0, the positive constant steady state (u∗, w∗) remains stable for

all τ1 ≥ 0;
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• k ≥ 1, τ1 > 0, the positive constant steady state (u∗, w∗) is unstable when

τ2 > τ j2c;

• The system undergoes through Hopf bifurcations near (u∗, w∗), and τ2 = τ j2c are

the Hopf bifurcation values of system (6.1-6.2).

6.4 Numerical Methods

The most often applied numerical techniques for delay partial differential equa-

tions are composed of two consecutive steps:

• discretization in the variable x,

• integration in t.

.

In the first step, the partial derivatives with respect to x are replaced by some

approximations. To do so, we applied the finite difference method, namely we replace

the partial derivative with respect to x by the approximating operator:

∂2u(t, xi)

∂x2
≈ u(t, xi−1)− 2u(t, xi) + u(t, xi+1)

h2
,

∂2w(t, xi)

∂x2
≈ w(t, xi−1)− 2w(t, xi) + w(t, xi+1)

h2
.

Here, h is a step-size in x-direction and xi are grid-points defined by:

xi = ih, i = 0, 1, 2, . . . , n, h =
π

n
.

This discretization in x results in the following system of ordinary delay differential

equations:
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du(t, xi)

dt
= d1

[
u(t, xi−1)− 2u(t, xi) + u(t, xi+1)

h2

]
+ r1u(t− τ1, xi)− a1

u(t, xi)w(t, xi)

u(t, xi) + 1
,

(6.13)

dw(t, xi)

dt
= d2

[
w(t, xi−1)− 2w(t, xi) + w(t, xi+1)

h2

]
− r2w(t, xi) + a2

u(t− τ2, xi)w(t− τ2, xi)
u(t− τ2, xi) + 1

,

(6.14)

when

t > 0, xi ∈ (xi−1, xi+1), i = 1, . . . , n− 1.

and history functions:

u(t, xi) = φ(t, xi) ≥ 0, w(t, xi) = ψ(t, xi) ≥ 0, (t, xi) ∈ [−τ, 0]×(xi−1, xi+1), τ = max {τ1, τ2} .

Notice that u(t, x0), w(t, x0), and u(t, xn), w(t, xn) are determined from the Neu-

mann boundary conditions, where x0 = 0, and xn = π.

We investigate the system numerically with the parameters value given in table

5.2 and d1 = 1, and d2 = 2. We use the Matlab solvers dde-23 and pde-23 to display

the following graphs.

The propagation of both species through time and space when there is no delay,

that is τ1 = τ2 = 0 is shown on fig 6.1

73



0
1

2
3

4

0
50

100
150

200
0

0.1

0.2

Distance x

Time and spatial variance of Prey population

Time t

0
1

2
3

4

0
50

100
150

200
0

1

2

Distance x

Time and spatial variance of Predator population

Time t

0
1

2
3

4

0
50

100
150

200
0.1

0.11

0.12

0.13

Distance x

Time and spatial variance of Prey population

Time t

0
1

2
3

4

0
50

100
150

200
1.1

1.12

1.14

Distance x

Time and spatial variance of Predator population

Time t

Figure 6.1. The system is unstable when there is no diffusion, and stabilize around
the positive equilibrium (u∗, w∗) = (0.111, 1.111) when both species diffuse for τ1 =
τ2 = 0.

When we keep the time lag τ2 = 0, and let both species diffuse then the positive

equilibrium (u∗, v∗) remains stable for all τ1 > 0 as shown on fig 6.2 and fig 6.3.
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Figure 6.2. The system remains stable through time around the positive equilibrium
(u∗, w∗) = (0.111, 1.111) when both species diffuse for τ2 = 0 and τ1 = 10..

74



0 0.5 1 1.5 2 2.5 3 3.5
0.1

0.105

0.11

0.115

0.12

0.125

Distance x

U
(t

)

Prey pop distribution over distance

 

 

t = 106.66

t =93.33

t =53.33

t =40

0 0.5 1 1.5 2 2.5 3 3.5
1.102

1.104

1.106

1.108

1.11

1.112

1.114

1.116

1.118

1.12

1.122

Distance X

U
(t

)

Predator pop distribution over distance

 

 

t = 106.66

t =93.33

t =53.33

t =40

Figure 6.3. The system remains stable through space around the positive equilibrium
(u∗, w∗) = (0.111, 1.111) when both species diffuse for τ2 = 0 and τ1 = 10..

We finally destabilize the positive equilibrium when both species diffuse, and

have time of maturations τ1 = 10, and τ2 = 6, as shown on figure 6.4 and 6.5
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Figure 6.4. Prey and predator distribution over time for τ1 = 10 and τ1 = 6. The
positive equilibrium (u∗, w∗) = (0.111, 1.111) is unstable.
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Figure 6.5. Prey and predator distribution over space for τ1 = 10 and τ1 = 6. The
positive equilibrium (u∗, w∗) = (0.111, 1.111) is unstable.
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CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

The use of delay differential equations in the modeling of biological phenomena

has become more prevalent in recent years ([31], [32], [33]). Many works have been

done in terms of the effects of discrete time delays on the dynamic of a delay system

([12], [1], [23]). In this dissertation we focused on the relationship between parameters

variation and the effects of the discrete time delays on such delayed systems. We first

considered, in chapter 3, a Delay Differential Equation model of human immunodefi-

ciency virus (HIV). We investigated the effects of the discrete time on the virulence of

the HIV strain, and presented sufficient and necessary condition for the virulence of

the pathogen to change as the time delay changes. We showed that the delay affects

the virulence of the pathogen only upon certain values of the rate at which infected

CD4+ T- cells become infected.

In chapter 4, we also investigated analytically and numerically the stability of

the endemically infected equilibrium of the same delay model for HIV. Our analysis

showed that certain key parameters, such as the rate of infection, play a crucial role on

how the discrete time may affect the dynamic of the system. The effects of the delay

on the stability of the system were shown to be conditional to certain parameters

values.

This motivated chapter 5, where we carried out a bifurcation analysis of systems

of delay differential equations. We presented general results for one equation with

one and two delays and study a specific example of one equation with one delay. We

then established the procedure for n equations with multiple delays and did a specific
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example for two equations with two delays. We investigated the stability of the steady

states as both chosen bifurcation parameters, the discrete time delay τ and a local

equation parameter µ, crossed critical values. Our analysis shows that while changes

in both parameters can destabilize the steady state, the discrete time delay can cause

stability switches of the steady state for certain values of µ, while the effects of the

local equation parameter on the steady state do not necessarily depend on the value

of τ . While µ may cause the system to go through different types of bifurcations, the

discrete time delay can only introduce a Hopf bifurcation for certain values of µ.

We finally considered a delay partial differential equation of a Holling type

predator-prey model. We considered, simultaneously, time delays and spatial diffu-

sion to model the predator prey model presented in chapter 5. The discrete time

delays were introduced in order to consider the time maturation for both the preda-

tor and prey populations. We mainly investigated, analytically and numerically, the

effects of the spatial diffusion, the time delays, and parameters variation on the dy-

namic of the system. Once again the effects of the delays were proven to be related

to parameters values, but also to the diffusion term. In conclusion, for one to under-

stand the effects of discrete time delays on dynamical systems, a rigorous parameter’s

sensitivity analysis is necessary. Since delayed systems are very complicated to ana-

lyze analytically for bigger dimension, numerical tools are crucial to understand the

dynamics of delayed systems.
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APPENDIX A

COMPUTATION OF R0
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In this appendix we compute the basic reproductive number by the method of

next generation matrix.

System (3.1-3.3) has matrix of newly raised infections

F =

0 k2e
−λτ

0 0

 (A.1)

and the matrix of transferred infections :

V =

 µ1 0

−Nµb µv

 . (A.2)

The next generation matrix is

FV −1 =

e−λτ k2Nµbµ1µb
e−λτ k2

µv

0 0

 , (A.3)

which has characteristic equation:

λ

(
λ− e−λτ k2Nµb

µ1µv

)
= 0. (A.4)

If τ = 0, then the dominant eigenvalue is

r0 =
k2Nµb
µ1µv

(A.5)

If τ > 0, then he dominant eigenvalue is

R0 =
ln r0τ

τ
. (A.6)
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