
ADVANCED COMBINATORIAL TESTING

ALGORITHMS AND APPLICATIONS

by

LINBIN YU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2013

ii

Copyright © by Linbin Yu

All Rights Reserved

iii

Acknowledgements

I would like to thank lots of people for their help and encouragement in the past

few years. First I want to thank my supervisor Dr. Yu Lei for his thoughtful and instructive

mentoring in my research. I cannot finish my PhD work without his support, help and

encouragement. I would like to thank all my committee members, including Hao Che,

Christoph Csallner and Huang Heng for their support. I would also like to thank all

faculties and staffs who ever taught or helped me in the past years for their dedication to

the profession.

I would like to thank my fellow doctoral students and other friends in UTA for their

generous support and friendship. I would like to thank my wife, my unborn child, and my

parents. Without their support, I cannot finish this dissertation. At last, I want to thank all

researchers in the references for their creative idea and remarkable results.

July 10, 2013

iv

Abstract

ADVANCED COMBINATORIAL TESTING

ALGORITHMS AND APPLICATIONS

Linbin Yu, PhD

The University of Texas at Arlington, 2013

Supervising Professor: Yu Lei

Combinatorial testing (CT) has been shown to be a very effective testing

strategy. Given a system with n parameters, t-way combinatorial testing, where t is

typically much smaller than n, requires that all t-way combinations, i.e., all combinations

involving any t parameter values, be covered by at least one test. This dissertation

focuses on two important problems in combinatorial testing, including constrained test

generation and combinatorial sequence testing.

For the first problem, we focus on constraint handling during combinatorial test

generation. Constraints over input parameters are restrictions that must be satisfied in

order for a test to be valid. Constraints can be handled either using constraint solving or

using forbidden tuples. An efficient algorithm is proposed for constrained test generation

using constraint solving. The proposed algorithm extends an existing combinatorial test

generation algorithm that does not handle constraints, and includes several optimizations

to improve the performance of constraint handling. Experimental results on both

synthesized and real-life systems demonstrate the effectiveness of the propose algorithm

and optimizations.

v

For the second problem, the domain of t-way testing is expanded from test data

generation to test sequence generation. Many programs exhibit sequence-related

behaviors. We first formally define the system model and coverage for t-way

combinatorial sequence testing, and then propose four algorithms for test sequence

generation. These algorithms have their own advantages and disadvantages, and can be

used for different purposes and in different situations. We have developed a prototype

tool that applies t-way sequence testing on Antidote, which is a healthcare data exchange

protocol stack. Experimental results suggest that t-way sequence testing can be an

effective approach for testing communication protocol implementations.

vi

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations .. ix

List of Tables .. xi

Chapter 1 Introduction... 1

Chapter 2 Constrained Test Generation ... 4

2.1 Preliminaries ... 6

2.2 The IPOG Algorithm ... 8

2.3 The IPOG-C Algorithm ... 10

2.3.1 The Base Version of Algorithm IPOG-C .. 10

2.3.2 Validity Check .. 12

2.3.3 Optimizations ... 12

A. Avoiding Unnecessary Validity Checks of Target Combinations 12

B. Checking Relevant Constraints Only .. 13

C. Recording the Solving History ... 15

2.3.4 Applying Optimizations to Other Algorithms .. 16

2.4 Experiments .. 17

2.4.1 Subject Systems .. 18

2.4.2 Evaluation of the Optimizations ... 20

2.4.3 Evaluation of Different Factors .. 23

A. Test Strength ... 23

B. Number of Parameters .. 24

C. Domain Size .. 24

D. Number of Forbidden Tuples... 25

vii

2.4.4 Comparison with Other Tools .. 26

2.5 Related Work .. 29

Chapter 3 Combinatorial Sequence Testing ... 33

3.1 Preliminaries ... 34

3.1.1 System Model .. 34

3.1.2 T-way Sequence Coverage ... 37

3.2 Target Sequence Generation ... 39

3.3 Test Sequence Generation ... 41

3.3.1 A Target-Oriented Algorithm ... 42

3.3.2 A Brute Force Algorithm .. 44

3.3.3 An Incremental Extension Algorithm ... 45

3.3.4 An SCC-Base Algorithm .. 49

A. Build Acyclic LTS ... 49

B. Find Abstract Paths ... 50

C. Generate Test Sequences .. 51

3.3.5 Comparison of Test Generation Algorithms .. 53

3.4 Experiments .. 53

3.4.1 Case Study: The Java Threads System .. 54

3.4.2 Synthesized Systems .. 55

3.4.3 Results and discussions .. 55

3.5 Related Work .. 58

3.5.1 Combinatorial Test Data Generation ... 59

3.5.2 Test Sequence Generation ... 59

3.5.3 Test Sequence Coverage Criteria ... 60

Chapter 4 Case Study: Testing IEEE 11073 PHD .. 61

viii

4.1 IEEE 11073 PHD STANDARDS ... 62

4.1.1 Agent and Manager ... 62

4.1.2 Architecture ... 64

4.1.3 IEEE 11073-20601 .. 64

4.2 The General Conformance Testing Framework ... 67

4.2.1 Test Sequence Generator ... 68

4.2.2 Test Data Generator .. 69

4.2.3 Test Executor .. 70

4.2.4 Test Evaluator ... 71

4.3 A Prototype Tool ... 71

4.4 Preliminary Results ... 74

4.5 Related Work .. 76

Chapter 5 Conclusion and Future Work .. 78

References .. 81

Biographical Information ... 87

ix

List of Illustrations

Figure 1 Illustration of the IPOG Algorithm ... 9

Figure 2 The base version of the IPOG-C algorithm .. 11

Figure 3 An example CSP problem .. 12

Figure 4 Illustration of Constraint Group ... 14

Figure 5 Illustration of using constraint solving history ... 16

Figure 6 Performance w.r.t. different numbers of parameters .. 24

Figure 7 Performance w.r.t. different domain sizes .. 25

Figure 8 Performance w.r.t. different numbers of forbidden tuples 25

Figure 9 Comparison of Execution Time (2-way) ... 29

Figure 10 An example LTS graph and its exercised-after matrix...................................... 35

Figure 11 Real Example: JavaThread .. 39

Figure 12 Algorithm for t-way sequences generation ... 40

Figure 13 A target-oriented algorithm for test sequences generation 43

Figure 14 A brute force algorithm for test sequences generation 45

Figure 15 Illustration of test sequence extension ... 47

Figure 16 Illustration of test sequence extension ... 48

Figure 17 Example of SCC in an LTS graph... 49

Figure 18 An algorithm for t-touring path generation .. 51

Figure 19 An SCC-base algorithm for test sequences generation 52

Figure 20 A Scenario of Using IEEE 11073 PHD Devices ... 63

Figure 21 Three Major Models in IEEE 11073 PHD ... 64

Figure 22 Manager State Machine (Flattened) ... 65

Figure 23 An Example Scenario of Data Exchange ... 67

Figure 24 An Overview of the Proposed Framework .. 68

x

Figure 25 The Architecture of Antidote ... 72

Figure 26 An Example of Transition Path (Manager) ... 74

Figure 27 Code Coverage Results .. 75

xi

List of Tables

Table 1 Configurations of Real-Life Systems ... 18

Table 2 Configurations of Synthesized Systems .. 19

Table 3 Configurations of Optimization Options ... 20

Table 4 Comparison of Number of Constraint Solving Calls (2-way) 20

Table 5 Comparison of Execution Time (In Seconds) .. 21

Table 6 Test Generation with Different Test Strengths ... 23

Table 7 Comparison of Constrained Test Generation .. 27

Table 8 Comparison of Test Generation Algorithms ... 53

Table 9 Result of the Java Threads System ... 54

Table 10 Characteristics of Synthesized Systems .. 56

Table 11 Results of T-way Target Sequence Generation for Synthesized Systems 56

Table 12 Results of test sequence generation for synthesized systems (3-way) 57

1

Chapter 1

Introduction

Combinatorial testing (CT) has been shown to be a very effective testing strategy

[1] [2] [3]. Given a system with n parameters, t-way combinatorial testing requires that all

t-way combinations, i.e., all combinations involving any t parameter values, be covered

by at least one test, where t is referred to as test strength and is typically a small number.

A widely cited NIST study of several fault databases reports that all the faults in these

databases are caused by no more than six factors [1]. If test parameters are modeled

properly, t-way testing can expose all the faults involving no more than t parameters. This

dissertation focuses on two important problems in combinatorial testing, including

constrained test generation and combinatorial sequence testing.

First we study the problem of constrained test generation. Practical applications

often have constraints on how parameter values can be combined in a test [4]. For

example, one may want to ensure that a web application can be executed correctly in

different web browsers running on different operating systems. Consider that Internet

Explorer (or IE) 6.0 or later cannot be executed on MacOS. Thus, if the web browser is IE

6.0 or later, the operating system must not be MacOS. This constraint must be taken into

account such that IE 6.0 or later and Mac OS do not appear in the same test.

The main challenge of constrained combinatorial test generation is dealing with

this complexity, since both combinatorial testing and constraint solving are computation-

intensive processes. We present an efficient algorithm, called IPOG-C, to address this

challenge. Algorithm IPOG-C modifies an existing combinatorial test generation algorithm

called IPOG [7] and employs a constraint solver to handle constraints. To optimize the

performance of constraint handling, algorithm IPOG-C tries to reduce the number of calls

2

to the constraint solver. In case that such a call cannot be avoided, algorithm IPOG-C

tries to simplify the solving process as much as possible.

We implemented algorithm IPOG-C in a combinatorial test generation tool called

ACTS [8]. The experimental results on a set of real-life and synthesized systems indicate

that the three optimizations employed in algorithm IPOG-C increased the performance by

one or two orders of magnitude for most subject systems. Furthermore, the optimizations

significantly slow down the increase in the number of calls to the constraint solver and the

execution time as test strength, number of parameters, domain size, or number of

forbidden tuples increases. Finally, a comparison of ACTS to three other tools suggests

that ACTS can perform significantly better for systems with more complex constraints.

For the second problem, we study combinatorial sequence testing. Most work on

combinatorial testing focuses on t-way test data generation, where each test is an

(unordered) set of values for parameters. However, many programs exhibit sequence-

related behaviors. Testing efforts for these programs should not only focus on data

inputs, but also sequences of actions or events. The problem of t-way test sequence

generation is fundamentally different from the problem of t-way test data generation in

several aspects: (1) most t-way test data generation techniques assume that all the tests

are of fixed length, which often equals the total number of parameters that are modeled.

In contrast, test sequences are typically of various lengths, and this must be taken into

account during t-way test sequence generation; (2) by the definition of “sequence”, t-way

test sequence generation must deal with an extra dimension, i.e., “order”, which is

insignificant in t-way test data generation; (3) sequencing constraints are different from,

and typically more complex than, non-sequencing constraints. In particular, sequencing

constraints need to be represented and checked in a way that is different from non-

sequencing constraints.

3

In order to address the above challenges, we first introduce our system model,

i.e., a labeled transition system, based on which we give a formal definition of t-way

sequence coverage. This system model uses a graph structure to encode sequencing

constraints. We divide the problem of t-way test sequence generation into two smaller

problems, i.e., target sequence generation and test sequence generation. The first

problem deals with how to generate the test requirements, i.e., all valid t-way sequences

that must be covered. The second problem deals with how to generate a small set of test

sequences to cover all the test requirements. We systematically explore different

strategies to solve these problems and present a set of algorithms as the result of our

exploration. We compare these algorithms both analytically and experimentally, with

special attention paid to scalability. The experiment results show that while these

algorithms have their own advantages and disadvantages, one of them is more scalable

than others while exhibiting very good performance in test sequence generation.

The proposed t-way sequence coverage for a general system model can be used

to model different types of programs, such as GUI applications, web applications, and

concurrent programs. A set of algorithms for t-way test sequence generation is proposed,

including an efficient algorithm for generating valid t-way sequences that must be

covered, and four algorithms for generating a small set of test sequences that achieve

the t-way sequence coverage. These algorithms are implemented in a Java application.

We report an experimental evaluation of the proposed test generation algorithms that

provides important insights about the advantages and disadvantages of these proposed

algorithms. We point out t-way test sequence generation is the first stage of a larger effort

that tries to expand the domain of t-way testing from test data generation to test

sequence generation. Empirical studies on fault detection effectiveness of t-way test

sequences are planned as the next stage of this larger effort.

4

Chapter 2

Constrained Test Generation

Practical applications often have constraints on how parameter values can be

combined in a test [4]. For example, one may want to ensure that a web application can

be executed correctly in different web browsers running on different operating systems.

Consider that Internet Explorer (IE) cannot be executed on MacOS. Thus, if the web

browser is IE, the operating system must not be MacOS. This constraint must be taken

into account such that IE and Mac OS do not appear in the same test.

Constraints must be specified by the user before they are handled during test

generation. One approach is to specify constraints as a set of forbidden tuples. A

forbidden tuple is a value combination that should not appear in any test. When there are

a large number of forbidden tuples, it can be difficult for the user to enumerate them.

Alternatively, constraints can be specified as a set of logical expressions. A logical

expression describes a condition that must be satisfied by every test. Logical expressions

are more concise than explicit enumeration of forbidden tuples. In this paper, we assume

that constraints are specified using logical expressions.

A major step in constraint handling is validity check, i.e., checking whether all the

constraints are satisfied by a test. One approach to performing this check is to ensure

that a test contains no forbidden tuples. This approach needs to maintain the complete

list of all the forbidden tuples, which can be expensive when there are a large number of

forbidden tuples. Alternatively, we can employ a constraint solver to perform this check.

In this approach, we encode the problem of validity check as a constraint satisfaction

problem. In this paper we focus on the latter approach, since it avoids maintaining the

complete set of forbidden tuples and is thus a more scalable approach.

5

It is important to note that the way in which validity check is performed is

independent from the way in which constraints are specified. For example, a tool called

mAETG [5] uses forbidden tuples to specify constraints. Forbidden tuples are converted

into a set of Boolean logic expressions, which are then solved by a SAT solver. In

contrast, a tool called PICT [6] uses logic expressions to specify constraints. A list of

forbidden tuples are first generated from the specified logic expressions and then used to

perform validity check during test generation.

Both combinatorial testing and constraint solving are computation-intensive

processes. The main challenge of constrained combinatorial test generation is dealing

with this complexity. In this dissertation, we present an efficient algorithm, called IPOG-C,

to address this challenge. Algorithm IPOG-C modifies an existing combinatorial test

generation algorithm called IPOG [7] and employs a constraint solver to handle

constraints. To optimize the performance of constraint handling, algorithm IPOG-C tries

to reduce the number of calls to the constraint solver. In case that such a call cannot be

avoided, algorithm IPOG-C tries to simplify the solving process as much as possible.

Specifically, algorithm IPOG-C includes the following three optimizations:

1) Avoiding unnecessary validity checks on t-way combinations. A t-way

test set must cover all the valid t-way combinations. A t-way combination is valid if it can

be covered by at least one valid test. Checking the validity of each t-way combination can

be expensive since there often exist a large number of t-way combinations. The key

insight in our optimization is that if a test is found valid, then all the combinations covered

by this test would be valid, and thus do not have to be explicitly checked.

2) Checking relevant constraints only. When we perform a validity check,

some constraints may not be relevant and thus do not have to be checked. We use a

notion called constraint relation graph to identify groups of constraints that are related to

6

each other, which are then used to identify relevant constraints in a validity check.

Algorithm IPOG builds a test set incrementally, i.e., covering one parameter at a time.

This incremental framework is leveraged in this optimization to further reduce the number

of relevant constraints that have to be involved in a validity check.

3) Recording the solving history. This optimization tries to reduce the

number of calls to the constraint solver by saving previous solving results. This

optimization works together with 2) to maximize reduction in the number of calls to the

constraint solver.

For the purpose of evaluation, we implemented algorithm IPOG-C in a

combinatorial test generation tool called ACTS. ACTS is freely available to the public [8].

We conducted experiments on a set of real-life and synthesized systems. The

experimental results indicate that the three optimizations employed in algorithm IPOG-C

increased the performance by one or two orders of magnitude for most subject systems.

For example, for a real-life system GCC, the optimizations reduced the number of calls to

the constraint solver from 34613 to 631 and the execution time from 683.599 seconds to

1.139 seconds. Furthermore, the optimizations significantly slow down the increase in the

number of calls to the constraint solver and the execution time as test strength, number

of parameters, domain size, or number of forbidden tuples increases. Finally, a

comparison of ACTS to three other tools suggests that ACTS can perform significantly

better for systems with more complex constraints.

2.1 Preliminaries

In this section, we formally define the problem of constrained combinatorial test

generation.

Definition 1 (Parameter). A parameter p is a set of values, i.e., p = {v1, v2, , vp}.

7

Value v for parameter p can be denoted as p.v. For ease of notation, we assume

that different parameters are disjoint. This implies that each parameter value belongs to a

unique parameter. This allows us to refer to a parameter value by itself, i.e., without

mentioning which parameter it belongs to.

Definition 2 (Tuple). Let G = {p1, p2, …, pm} be a set of parameters. A tuple  =

{v1, v2, , vm} of G is a set of values where vi ∈ pi. That is,  ∈ p1  p2 …  pm.

Intuitively, a tuple  consists of a value v for each parameter p in a given set of

parameters. We refer to a tuple of size t as a t-tuple. We also refer to v as the value of p

in  if there is no ambiguity. This effectively overloads the notion of a parameter, which

may represent a set of values or may take a particular value, depending on its context.

We use Π({p1, …, pm}) to denote p1  p2 …  pm.

Definition 3 (SUT). A System Under Test (SUT) M = <P, C> consists of a set P =

{p1, p2, , p|P|} of parameters, where pi is a parameter, and a set C = {c1, c2, , c|C|} of

constraints, where each constraint ci is a function: Π (P)  {true, false}.

We refer to each tuple in Π(P) as a test of M. In other words, a test is a special

tuple whose size equals the number of parameters in a system. A constraint is a function

that maps a test to a Boolean value true or false.

Definition 4. (Covering). A tuple  is said to be covered by another tuple ’ if  ⊆

’.

Note that a tuple is covered by itself. In this paper, we are particularly interested

in the case where a tuple is covered by a test.

Definition 5. (Validity). Given a SUT M = <P, C>, a tuple  of M is valid if  ’ ∈

Π(P), such that  ⊆ ’, and c ∈ C, c(’) = true. Otherwise,  is invalid.

8

 If  is a test,  is valid if it satisfies all constraints. If  is a t-tuple, where t < |P|,

then  is valid if there exists at least one valid test ’ that covers .

Definition 6. (Constrained T-Way Test Set). Let M = <P, C> be a SUT. Let Σ be

the set of all valid t-tuples. A t-way constrained test set is a set Ω ⊆ Π(P) of tests such

that,   ∈ Σ, there exists  ∈ Ω such that  is valid and  ⊆ .

Intuitively, a constrained t-way test set is a set of valid tests in which each valid t-

tuple is covered by at least one test. The problem of constrained t-way test generation is

to generate a constrained t-way test set of minimal size. In practice, a tradeoff is often

made between the size of the resulting test set and the time and space requirements.

2.2 The IPOG Algorithm

In this section, we introduce the original IPOG algorithm without constraint

handling [5]. Due to space limit, we only present the major steps relevant to constraint

handling. Refer to the original paper [5] for more details.

Algorithm IPOG works as follows: For a system with t or more parameters, we

first build a t-way test set for the first t parameters. We then extend this test set to a t-way

test set for the first (t+1) parameters, and continue to do so until it builds a t-way test set

for all the parameters.

Assume that we already covered the first k parameters. To cover the (k+1)-th

parameter, say p, it is sufficient to cover all the t-way combinations involving parameter p

and any group of (t-1) parameters among the first k parameters. These combinations are

covered in two steps, horizontal growth and vertical growth. Horizontal growth adds a

value of p to each existing test. Each value is chosen such that it covers the most

uncovered combinations. During vertical growth, the remaining combinations are covered

one at a time, either by changing an existing test or by adding a new test. When we add a

new test to cover a combination, parameters that are not involved in the combination are

9

given a special value called don’t care. These don’t care values can be later changed to

cover other combinations.

Figure 1 illustrates how algorithm IPOG works. Assume that the system contains

4 parameters p1, p2, p3, and p4, and each parameter has 2 values {0, 1}. The test

strength is 2. Assume that the 2-way test set for the first 3 parameters has been

generated, as shown in Figure 1(a).

Figure 1 Illustration of the IPOG Algorithm

To cover the last parameter p4, we first generate all 2-way combinations that

need to be covered. Figure 1(b) shows 12 2-way combinations to be covered. During

horizontal growth, we add value 0 of P4 into the first test since it covers the most

uncovered tuples {p1.0, p4.0}, {p2.0, p4.0} and {p3.0, p4.0}. Similarly, we add values 1, 0

and 0 of P4 into the next three tests, respectively, as shown in Figure 1(c). There are still

3 uncovered 2-way combinations, {p1.1, p4.1}, {p2.0, p4.1} and {p3.0, p4.1}. During

vertical growth, we first generate a new test to cover {p1.1, p4.1}. Then we add p2.0 and

10

p3.0 into the same test to cover {p2.0, p4.1} and {p3.0, p4.1}, respectively. Figure 1(d)

shows the complete 2-way test set.

2.3 The IPOG-C Algorithm

In this section, we modify algorithm IPOG to handle constraints. We refer to the

new algorithm as IPOG-C. We first present a base version of algorithm IPOG-C. Then we

propose three optimizations. The final version of algorithm IPOG-C is obtained by

applying these optimizations to the base version. We also discuss how to apply these

optimizations to other test generation algorithms.

2.3.1 The Base Version of Algorithm IPOG-C

Figure 2 shows the base version of the IPOG-C algorithm. The modifications

made to the original IPOG algorithm are highlighted. These modifications do not change

the main structure of the original IPOG algorithm. If no constraints are specified, the

modified algorithm will generate the same test set as the original IPOG algorithm does.

Algorithm IPOG-C modifies the original IPOG algorithm to make sure: (1) all the

valid t-way target tuples are covered; and (2) all the generated tests are valid. In line 5,

we perform validity check on each t-way combination to identify all the valid t-way

combinations that need to be covered. In lines 8 & 13, we perform the validity check to

ensure that every test is valid. Since the algorithm terminates only when  is empty (line

12), all the valid t-way combinations must be covered upon termination.

11

Algorithm IPOG-C (int t, ParameterSet ps)

{

1. initialize test set ts to be an empty set

2. sort the parameters in set ps in a non-increasing order of their

 domain sizes, and denote them as P1, P2, …, and Pk

3. add into test set ts a test for each valid combination of values

 of the first t parameters

4. for (int i = t + 1; i ≤ k; i ++){

5. let  be the set of all valid t-way combinations of values

 involving parameter Pi and any group of (t-1) parameters

 among the first i-1 parameters

6. // horizontal growth for parameter Pi

7. for (each test  = (v1, v2, …, vi-1) in test set ts) {

8. choose a value vi of Pi and replace  with ’ = (v1, v2, …,

 vi-1, vi) so that ’ is valid and it covers the most

 number of combinations of values in 

9. remove from  the combinations of values covered by ’

10. } // end for at line 7

11. // vertical growth for parameter Pi

12. for (each combination  in set ){

13. if (there exists a test  in test set ts that can be changed to

 a valid test ’ that covers both  and  {

14. change test  to ’

15. } else {

16. add a new test only contains  to cover 

17. } // end if at line 13

18. } // end for at line 12

19. }// end for at line 4

20. return ts;

}

Figure 2 The base version of the IPOG-C algorithm

12

2.3.2 Validity Check

Assume that we want to check the validity of a combination (or test)  for a

system S. This validity check problem is converted to a Constraint Satisfaction Problem

(CSP), in which the variables are the parameters of S. The constraints include the

constraints specified by the user and some constraints derived from , where each

parameter value p.v in  is represented by a constraint expression p = v. (Alternatively,

one may change the parameter domain to a fixed value if it is supported by the solver.) A

third party constraint solver is then used to solve this CSP.

Consider that a system consists of 3 parameters a, b, c, each having 3 values,

and one constraint “a + b > c”. Figure 3 shows the CSP for checking the validity of

combination {a.0, b.0}. Note that two constraints “a = 0” and “b = 0” are added for

parameter values a.0 and b.0, in addition to the user-specified constraint, i.e., “a + b > c”.

 [Variable] [Constraints]

a: 0, 1, 2 (1) a + b > c

b: 0, 1, 2 (2) a = 0

c: 0, 1, 2 (3) b = 0

Figure 3 An example CSP problem

2.3.3 Optimizations

In this section, we propose several schemes to optimize the performance of

constraint handling in algorithm IPOG-C.

A. Avoiding Unnecessary Validity Checks of Target Combinations

In line 5 of Figure 2, we first compute the complete set of all valid t-way

combinations that need to be covered. This involves performing validity check on each t-

way combination. This computation can be very expensive since there are typically a

large number of t-way combinations.

13

We propose an optimization to reduce the number of validity checks on target

combinations. The key observation is that there exists significant redundancy between

validity checks for finding valid target tuples, and validity checks for choosing a valid

parameter value during horizontal growth. That is, when we choose a new value, we

perform validity check to ensure that the resulting test is valid. Since all the tuples

covered in a test must be valid, this check implicitly checks validity of every tuple covered

in this test. As a result, even though we do not have the list of all valid tuples, it is

guaranteed that any tuple covered in a test, and removed from the target set , must be

valid.

The above observation suggests the following optimization. That is, we do not

need to check the validity of target tuples (line 5 of Figure 2) before horizontal growth. It

is important to note that the existence of invalid tuples in the target set () will not affect

the greedy selection in horizontal growth (line 8 of Figure 2). This is because if a

candidate test covers any invalid t-tuple, it must be an invalid test and will not be

selected. So the effective comparison only happens between valid candidates.

After horizontal growth is finished, validity check needs to be performed on the

remaining target combinations. That is, line 12 of Figure 2 should be changed to “for

(each valid combination  in set )”. At this point, many combinations are likely to have

already been covered by horizontal growth. This means that the number of validity

checks can be significantly reduced.

B. Checking Relevant Constraints Only

For a given validity check, some constraints may not be relevant, and thus do not

need to be checked. In this optimization, we identify constraints that are relevant to a

validity check and ignore the other ones. This helps to simplify the corresponding

constraint solving problem.

14

We first divide constraints into non-intersecting groups. To do this, we use a

graph structure called constraint relation graph, to represent relations between different

constraints. In a constraint relation graph, each node represents a constraint, and each

(undirected) edge indicates that two constraints have one or more common parameters.

Then we find all the connected components in the graph. The constraints in each

connected components are put into one group. Intuitively, constraints that share a

common parameter, directly or indirectly, are grouped together.

Figure 4 Illustration of Constraint Group

Figure 4(a) shows a system that contains 7 parameters and 4 constraints. Figure

4(b) shows the constraint relation graph for the system. There are two connected

components. Figure 4(c) shows two constraint groups identified from the constraint

relation graph. Note that this process only needs to be executed once. Similar

techniques, which are often referred to as slicing, are used inside many constraint

solvers.

Now we explain how to use constraint groups to identify irrelevant constraints. To

check the validity of a test (or combination) , we identify relevant constraints as follows.

For each parameter in , if it is involved in a constraint c, all the constraints in the same

constraint group as c are identified to be relevant to this validity check. Only these

constraints are encoded in the CSP sent to the constraint solver.

15

This optimization can be very effective considering that algorithm IPOG-C builds

a test set incrementally. That is, we build a t-way test set for the first t parameters, and

then extend this test set to cover the first t+1 parameters, and so on. When we try to

cover a new parameter p, we only need to check the constraints in the same group as p.

Consider the example system in Figure 4(a). Assume we add a new parameter

value f.0 to an existing test {a.0, b.1, c.0, d.0, e.1}, which must be valid. To check the

validity of the new test, i.e., {a.0, b.1, c.0, d.0, e.1, f.0}, we only need to consider c3.

Constraints c1, c2 and c4 are not relevant in this case.

C. Recording the Solving History

In this optimization, we record the solving history for each constraint group to

avoid solving the same CSP multiple times. As discussed earlier, a CSP is encoded from

a set of parameter values in the test that needs to be checked, and is then solved by a

constraint solver. A Boolean value “true” or “false” that indicates the validity of the test will

be returned. For each constraint solving call, we save solving history, i.e., the set of

parameters values send to the CSP solver and the Boolean value returned by the CSP

solver. Next time when a constraint solving call is going to make, we first search for the

same set of parameters values in the solving history, and if a match is found, we can

reused the cached result to avoid this solving call. Recall that in the previous

optimization, we divide constraints into several non-intersecting groups. To increase the

hit rate of the cached solving history, we divide a CSP problem into several independent

sub-problems based on constraint groups, and then save the solving history for each of

them.

Consider the example system in Figure 4(a). Assume that parameters a, b, c, d

and e have been covered and we are trying to cover parameter f. Figure 5(a) shows 2

different candidate tests. As discussed earlier, the only relevant constraint is c3, which

16

involves parameters e and f. Therefore the validity of the two candidate tests is

essentially determined by the combinations of values of parameters e and f in the two

tests. Whereas the 2 tests that need to be checked are different, their validity is

determined by the same value combination, i.e. {e.0, f.1}. Thus after checking the first

test, we have the solving history for {e.0, f.1} (which is invalid), as shown in Figure 5(b).

This allows us to derive that the second test is invalid without making a call to the

constraint solver.

Figure 5 Illustration of using constraint solving history

2.3.4 Applying Optimizations to Other Algorithms

Our optimizations can be applied to other test generation algorithms. Due to

space limitations, we discuss how to apply our optimizations to the AETG algorithm [12].

Like algorithm IPOG, the AETG algorithm adopts a greedy framework. However, it builds

a test set one-test-at-a-time, instead of one-parameter-at-a-time.

 The key to apply the first optimization is dealing with the existence of invalid t-

way combinations in the target set, which is supposed to contain only valid t-way

combinations. This could affect the greedy selection of a test value. In AETG, a test value

is selected such that it covers the most valid combinations in the target set. According to

the principle of the first optimization, all the combinations covered by a valid test are

guaranteed to be valid. Thus, as long as the validity of the resulting test is checked after

the selection of a test value, the existence of invalid combinations would not affect the

17

selection process. However, there is an exception with the selection of the first t - 1

values in a test. In the AETG algorithm, these values are selected such that they appear

in the most number of combinations in the target set.

One approach to dealing with this exception is to change the AETG algorithm as

follows. Instead of choosing the first t - 1 values one by one, we choose the first t values

in a test altogether. This is done by finding the first valid t-way combination that remains

in the target set, and then assign the t values in this combination to the test. This change

makes the selection of the first t values less greedy. However, we note that t is typically

small, and the selection of the other values remains unchanged.

The existence of invalid t-way combinations in the target set may also affect the

termination condition. In the AETG algorithm, the test generation process terminates

when the target set is empty. However, some invalid t-way combinations may never be

covered, and thus the target set may never be empty. It is interesting to note that this

problem can be resolved by the same change suggested earlier. That is, if we select the

first t values of a test altogether by finding a valid t-way combination in the target set, the

test generation process comes to a natural stop when no valid combination can be found.

The second and third optimizations do not interact with the core test generation

process. That is, they take effect only during valid checks. Thus, they can be applied to

the AETG algorithm without modifications.

2.4 Experiments

We implemented algorithm IPOG-C and integrated it into a combinatorial test

generation tool called ACTS [6], which is freely available to the public. An open source

CSP solver called Choco [13] is used for constraint solving.

Our experiments consist of three parts. The first part is designed to evaluate the

effectiveness of the three optimizations. The second part is to investigate how the

18

performance of algorithm IPOG-C is affected by several factors, including test strength,

number of parameters, size of domain and the number of forbidden tuples. The third part

compares ACTS with other combinatorial test generation tools. All these experiments

were performed on a laptop with Core i5 2410M 2.30GHz CPU and 4.0 GB memory,

running 64-bit Windows 7.

2.4.1 Subject Systems

We use both real-life and synthesized systems in our experiments. The real-life

systems include the five systems introduced in [14], and a system called TCAS

introduced in [15]. We adopt the exponential notation in [14] to denote parameter

configurations, where d
n
 means that there are n parameters with domain size d. The

constraints in these systems were given in the form of forbidden tuples in [14] and [15].

We also use an exponential notation to denote constraints, where d
n
 means there are n

forbidden tuples each of which involves d parameters. We manually convert each

forbidden tuple to an equivalent constraint expression. For example, a forbidden tuple

{a.0, b.1} is converted to a logic expression “! (a=0 && b=1)”. The configurations of 6 real-

life systems are listed in Table 1.

Table 1 Configurations of Real-Life Systems

Name
Num. of

Parameters
Num. of

Constraints
Parameter

Configuration
Constraint

Configuration

Apache 172 7 2
158

3
8
4

4
5

1
6

1
 2

3
3

1
4

2
5

1

Bugzilla 52 5 2
49

3
1
4

2
 2

4
3

1

GCC 199 40 2
189

3
10

 2
37

3
3

SPIN-S 18 13 2
13

4
5
 2

13

SPIN-V 55 49 2
42

3
2
4

11
 2

47
3

2

TCAS 12 3 2
7
3

2
4

1
10

2
 2

3

19

We created 10 synthesized systems, all of which consist of 10 parameters of

domain size 4. We denote the parameters as p1, p2, …, and p10. Each system contains

a single constraint which is carefully designed to control the number of forbidden tuples.

The number of forbidden tuples is an important measure of the complexity of a constraint.

Note that the number of constraints is not important as different constraints can be joined

together.

Some existing tools only support forbidden tuples as constraints. To compare to

these tools, we derive all the forbidden tuples encoded by each constraint. Take system

C1 as an example, we enumerate all 3-way value combinations of parameter p1, p2 and

p3, and found 30 combinations that violate the constraint (p1>p2 || p3>p2) as forbidden

tuples. We list the configurations, the number of derived forbidden tuples and detailed

constraints for these synthesized systems in Table 2.

Table 2 Configurations of Synthesized Systems

Name
Param.
Config.

Num. of
Forbidd.
Tuples

Constraint

C1 4
10

 30 p1>p2 || p3>p2

C2 4
10

 100 p1>p2 || p3>p4

C3 4
10

 200 p1>p2 || p3>p4 || p5>p1

C4 4
10

 300 p1>p2 || p3>p4 || p5>p2

C5 4
10

 1000 p1>p2 || p3>p4 || p5>p6

C6 4
10

 2000 p1>p2 || p3>p4 || p5>p6 || p7>p1

C7 4
10

 3000 p1>p2 || p3>p4 || p5>p6 || p7>p2

C8 4
10

 10000 p1>p2 || p3>p4 || p5>p6 || p7>p8

C9 4
10

 20000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p1

C10 4
10

 30000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p2

20

2.4.2 Evaluation of the Optimizations

To evaluate the effectiveness of individual optimizations and their combination,

we tested multiple configurations. Table III shows five different configurations of the

optimization options, where a tick denotes that the corresponding optimization is enabled,

and dash means not. The first configuration represents the base version of IPOG-C, i.e.,

without any optimization, and the last one contains all the optimizations.

Table 3 Configurations of Optimization Options

Optimization Base O1 O2 O3 All

Avoiding unnecessary validity checks on
 t-way combinations

-  - - 

Checking relevant constraints only - -  - 

Recording the solving history - - -  

Table 4 Comparison of Number of Constraint Solving Calls (2-way)

System
IPOG-C with Different Optimizations

Base O1 O2 O3 All

Apache 15751 3903 12314 284 155

Bugzilla 2843 732 2352 57 50

GCC 34613 4753 31250 1032 631

SPIN-S 1183 478 1002 293 171

SPIN-V 10770 3679 9609 766 546

TCAS 828 597 535 59 42

C10 991 287 954 796 246

We use 6 real-life systems and the synthesized system with the most complex

constraint, i.e., C10. The test strength is set to 2. We measure the performance of

constrained test generation in terms of number of constraint solving calls (i.e., the

21

number of times the constraint solver is called) and execution time. The number of

constraint solving calls is an importance metric because it is independent from the

program implementation, the hardware configuration or different constraint solvers. The

comparison results are shown in Table 4 and Error! Not a valid bookmark self-

reference.. We do not show the number of tests, which is not affected by these

optimizations.

Table 5 Comparison of Execution Time (In Seconds)

System

IPOG-C with Different Optimizations

Base O1 O2 O3 All

Apache 105.411 6.225 9.403 0.687 0.577

Bugzilla 2.808 0.904 1.763 0.328 0.296

GCC 683.599 24.462 59.429 1.809 1.139

SPIN-S 1.545 0.92 1.31 0.749 0.53

SPIN-V 81.323 18.239 11.169 1.124 0.889

TCAS 0.874 0.749 0.702 0.36 0.328

C10 1.014 0.53 0.89 0.828 0.515

The results in Table 4 and We use 6 real-life systems and the synthesized

system with the most complex constraint, i.e., C10. The test strength is set to 2. We

measure the performance of constrained test generation in terms of number of constraint

solving calls (i.e., the number of times the constraint solver is called) and execution time.

The number of constraint solving calls is an importance metric because it is independent

from the program implementation, the hardware configuration or different constraint

solvers. The comparison results are shown in Table 4 and Error! Not a valid bookmark

22

self-reference.. We do not show the number of tests, which is not affected by these

optimizations.

Table 5 suggest that the optimizations are very effective. Recall that the first

optimization avoids validity check for all t-way target tuples in the beginning of test

generation. This optimization is very effective when the system has a large number of t-

way target tuples. For example, Apache contains 172 parameters and GCC has 199

parameters. They both have a large number of target tuples. With this optimization, the

generation process runs 17 times faster for Apache, and 28 times faster for GCC.

The second optimization reduced the execution significantly, but not the number

of constraint solving calls. This is because this optimization is aimed to simplify the actual

constraint solving process by only considering relevant constraints. Note that the number

of constraint solving classes is also slightly decreased. This is because a parameter may

not be involved in any constraint. In this case, no relevant constraints are found and thus

no constraints need to be solved.

The third optimization seems to be the most effective optimization in the

experiments. Recall that it records the solving history based on constraint groups to

reduce redundant solvings. This optimization is more effective with small constraint

groups, where redundant solvings are more likely to happen. On the other hand, this

optimization is less effective with large constraint groups. For example, for system C10,

where 9 of 10 parameters belong to the same constraint group, this optimization is not

very effective.

The three optimizations are complementary to each other and can be combined

to further reduce the number of constraint solving calls and the execution time. In

particular, for all of the real-life systems, the number of constraint solving calls was

reduced by one or two orders of magnitude.

23

2.4.3 Evaluation of Different Factors

In this section, we explore how the performance of the entire test generation

process is affected by different factors, including test strength, number of parameter,

domain size and number of forbidden tuples. Each time we fix all the factors but one. We

compare the test generation performance of our algorithm between with all the

optimizations (i.e., the optimized version of algorithm IPOG-C) and without any

optimization (the base version of algorithm IPOG-C).

A. Test Strength

We use system C1 to evaluate the performance of constrained test generation

using different test strengths. Recall that C1 has 10 parameters of domain size 4. We

record number of validity checks, number of times the constraint solver is called, and

execution time in Table 6.

Table 6 Test Generation with Different Test Strengths

Test
Strength

Num. of
Target
Tuples

Base Optimized

Num. of Solving
Calls

Time
(sec)

Num. of Solving
Calls

Time
(sec)

2 683 644 0.67 77 0.31

3 7062 6869 3.9 121 0.32

4 47656 51787 64.17 122 0.40

5 218848 267421 1368.01 124 1.35

6 690816 Out of Memory Out of Memory 124 14.39

One may find that as the test strength increases, the number of target tuples

increase very fast. However, after those optimizations are applied, the number of

constraint solving calls increases very slowly, and is even unchanged from strength 5 to

6. This is mainly due to the third optimization, which records the solving history for each

24

constraint group. This system contains a single constraint group involving only 3

parameters. After all of the possible 4
3
 = 64 value combinations, have been checked, all

validity checks can be handled by looking up the solving history. That is, no more solving

calls are needed.

B. Number of Parameters

In this section, we evaluate the performance of the test generation process with

respect to different numbers of parameters. We built 8 systems with the number of

parameters ranging from 4, 6, 8 to 18. The constraint “(p1>p2 || p3>p2)” in system C1 is

used for all of these 8 systems. The test strength is set to 3.

Figure 6 show that as the number of parameters increases, the number of

constraint solving calls and the execution time increase very fast for the base version, but

very slow for the optimized version.

Figure 6 Performance w.r.t. different numbers of parameters

C. Domain Size

In this experiment, we still use system C1, but change the domain size to build 8

different systems. These systems have the same number of parameters and the same

constraint, but the domain size increases from 2, 3, 4 until 9. The test strength is set to 3.

25

Figure 7 Performance w.r.t. different domain sizes

Again, Figure 7 shows that as the domain size increases, the number of

constraint solving calls and the execution time increase very fast for the base version, but

very slow for the optimized version.

D. Number of Forbidden Tuples

We use all of the 10 synthesized systems in this section to evaluate how the

performance of the test generation process changes when the number of forbidden

tuples changes. As discussed earlier, these systems have the same parameter

configuration but different constraints. Those constraints are carefully designed to control

the number of forbidden tuples. The test strength is set to 3.

Figure 8 Performance w.r.t. different numbers of forbidden tuples

26

Figure 8 shows that as the number of forbidden tuples increases, the number of

constraint solving calls and the execution time increase very fast for the base version, but

very slow for the optimized version.

2.4.4 Comparison with Other Tools

In this section, we compare ACTS [6] (using the optimized IPOG-C algorithm) to

other test generation tools. First we briefly introduce several existing test generation tools

with constraint support.

CASA [14] integrates a SAT solver into a simulated annealing algorithm.

Constraints are specified as Boolean formulas. We record the best result among five runs

since this algorithm is not deterministic.

mAETG [10] integrates a SAT solver into an AETG-like algorithm. However, we

did not make a comparison in this paper since mAETG is not available to public.

Ttuples [16] uses a greedy algorithm based on a property of (unconstrained) t-

way test set, i.e., if two parameters have the same domain, it’s safe to exchanging all

their values. Constraints are specified as a set of forbidden tuples.

PICT [11] also adopts an AETG-like greedy algorithm. Constraints are specified

in the form of logical expressions, but forbidden tuples are derived from the constraints to

perform validity check.

These tools are compared in two dimensions: size of test set and execution time.

However, it is important to note that size of test set mainly depends on the core test

generation algorithms. Also even without constraints, the performances of different test

generation algorithms are different. Furthermore, we did not make a comparison on the

number of constraint solving calls or the number of validity checks, since we cannot

obtain them from other tools.

27

Our comparison uses the 6 real-life systems and 10 synthesized systems

introduced earlier. Since CASA and Ttuples cannot handle constraint expressions, we

derived all forbidden tuples for 10 synthesized systems. The number of generated tests

and the execution time for each system are shown in

Table 7. The number of forbidden tuples is also listed. The test strength is set to

3. We limit the execution time no more than 1000 seconds.

Table 7 Comparison of Constrained Test Generation

System
Num. of
Forbid.
Tuples

Ttuples PICT CASA ACTS

size time(s) size time(s) size time(s) size time(s)

Apache 7 - >1000 202 176.01 - >1000 173 25.2

Bugzilla 5 62 4.55 70 0.7 71 507.76 68 0.61

GCC 40 - >1000 134 170.26 - >1000 108 35.52

SPIN-S 13 127 0.3 113 0.09 103 187.51 98 1.82

SPIN-V 49 306 12.1 345 4.92 - >1000 284 5.09

TCAS 3 402 0.27 409 0.11 405 99.7 405 0.55

C1 30 207 0.53 163 0.06 146 26.2 158 0.36

C2 100 202 1.31 171 0.06 164 47.23 168 0.58

C3 200 191 1.35 166 0.07

163 0.71

C4 300 200 2.69 166 0.08

161 0.74

C5 1000 196 5.03 170 0.18

160 0.87

C6 2000 195 7.12 163 0.96

161 0.97

C7 3000 188 14.94 162 1.09

160 1.00

C8 10000 196 257.75 163 17.34

164 1.11

C9 20000 - >1000 162 242.1

157 1.06

C10 30000 - >1000 161 461.5

158 1.21

28

We make several observations from Table 7. In the results for the 6 real-life

systems, the execution time of CASA is much longer than others. This is because the

simulated annealing algorithm is able to find a more optimal solution, but is usually much

slower than greedy algorithms. Ttuples runs very fast, since it uses forbidden tuples

instead of constraint solving to perform validity checks. PICT is also fast and generates

good results. ACTS also generates relatively small test sets. ACTS runs slightly slower

than Ttuples and PICT, but is still much faster than CASA. This is because the number of

forbidden tuples for the real-life systems used in our experiments is very small. In this

case, the strategy of using forbidden tuples is more efficient.

Compared to real-life systems, some synthesized systems have a large number

of forbidden tuples. As the number of forbidden tuples increases, the execution time of

Ttuples and PICT increases very fast. In contrast, the execution times of CASA and

ACTS do not change much. This can be a significant advantage when we deal with

systems with more complex constraints Note that the numbers of tests generated by

these algorithms are very close.

Figure 9 shows how execution time changes as number of forbidden tuples

increases. When the number of forbidden tuples is small, Ttuples, PICT and ACTS have

similar execution time, while CASA takes much more time to finish. However, as the

number of forbidden tuples increases, the execution time of Ttuples and PICT increases

significantly. In contrast, the execution time of CASA increases slowly, and the execution

time for ACTS remains almost unchanged. The reason is that CASA and ACTS use

constraint solver for validity checks, and do not have to maintain a large number of

forbidden tuples during test generation. This demonstrates a major advantage of using a

constraint solver instead of forbidden tuples.

29

Figure 9 Comparison of Execution Time (2-way)

2.5 Related Work

We focus our discussion on work that handles constraints using a constraint

solver. Garvin et al. integrated a SAT solver into a meta-heuristic search algorithm, called

simulated annealing, for constrained combinatorial test generation [17] [18]. It was found

that integration with the original version of the search algorithm did not produce

competitive results, both in terms of number of tests and test generation time. Thus, a

couple of changes were made to the original search algorithm to improve the results. The

modified search algorithm could produce a different test set than the original search

algorithm. This is in contrast to our work, where our optimizations do not change the

original test generation algorithm, i.e., IPOG. In particular, our optimizations reduce the

execution time spent on constraint handling, but the size of the test set will not be

changed.

Cohen et al. integrated a SAT solver into an AETG-like test generation algorithm

[10] [14]. They also proposed two optimizations to improve the overall performance. In

their optimizations, the history of the SAT solver is exploited to reduce the search space

of the original test generation algorithm. Like the work in [17], their optimizations require

changes to the original test generation algorithm, and thus could produce a different test

30

set. In addition, their optimizations require access to the solving history and are thus

tightly coupled with the SAT solver. This is in contrast with our optimizations, which do

not change the original test generation algorithm and are independent from the constraint

solver.

Recent work has applied combinatorial testing to software product lines. A

software product line is a family of products that can be created by combining a set of

common features. In this domain, constraint handling is a must because dependencies

naturally exist between different features. Hervieu et al [19] developed a constraint

programming approach for pairwise testing of software product lines. The focus of their

work is on the conversion of the pairwise test generation problem to a constraint-

programming problem. In particular, they formulated a global constraint to achieve

pairwise coverage. Their work relies on the underlying constraint solver to achieve the

best result. That is, they do not explicitly address the optimization problem.

Perrouin et al. [20] addressed the scalability of a constraint solver in the context

of t-way testing of software product lines. Specifically, they address the problem that

current constraint solvers have a limit in the number of clauses they can solve at once.

They use a divide-and-conquer strategy to divide the t-way test generation problem for

the entire feature model into several sub-problems. Their work addresses a different

problem than, and is complementary to, our work, which tries to reduce the number of

calls to a constraint solver and to remove constraints that are not relevant in a constraint

solving call.

Johansen et al. [21] developed an algorithm called ICPL that applies t-way

testing to software product lines. Similar to our algorithm, algorithm ICPL includes several

optimizations to reduce the number of calls to a constraint solver. There are two major

ideas in their optimizations that are closely related to our optimizations. The first idea is to

31

postpone removal of invalid target combinations (called t-sets in [21]). This achieves an

effect similar to our first optimization, i.e., avoiding unnecessary validity checks of target

combinations. However, there are two important differences. First, algorithm ICPL uses a

heuristic to determine at which point to remove invalid target combinations. In contrast,

our algorithm, IPOG-C, removes invalid target combinations during vertical growth,

without using any heuristic condition. Second, they have very different motivations.

Algorithm ICPL adopts a target combination-oriented framework, where the main loop

iterates through the set of target combinations and covers them as they are encountered.

Removing invalid combinations up front would cause two constraint solving calls for many

valid combinations. (The other call is needed when a valid combination is actually

covered in a test.) In contrast, our algorithm largely uses a test-oriented framework,

where we try to determine each value in a test such that it covers as many combinations

as possible. The key insight in our optimization is that if a test is found valid, then all the

combinations covered by this test would be valid, and thus do not have to be explicitly

checked.

The second optimization idea in algorithm ICPL that is closely related to ours is

trying to check the validity of a t-way combination without actually calling the constraint

solver. Algorithm ICPL is recursive in which a t-way test set is built by extending a (t-1)-

way test set. The set of invalid combinations is maintained at each strength in the

recursive process. An invalid t-way target combination is identified if it is an extension of

an invalid (t-1)-way combination. In contrast, our algorithm records the solving history,

which is used to determine the validity of a target combination as well as a test without

calling the constraint solver. Also, our algorithm is not recursive, and does not maintain a

set of invalid target combinations.

32

It is important to note that work on testing software product lines assumes

Boolean parameters and constraints in the form of Boolean logic expressions. In contrast,

our work does not have this restriction. Furthermore, software product lines typically have

a large number of constraints but a small t-way test set. As a result, some optimizations

that are effective for software product lines may not be very effective for general systems,

and vice versa.

Finally we note that many optimization techniques are employed inside existing

constraint solvers. In principle, our second and third optimizations are similar to constraint

slicing and caching strategies used in some constraint solvers like zChaff [22] and STP

[23]. These optimizations are also used outside a constraint solver in program analysis

tools such as EXE [23]. However, we differ in that our optimizations work together with

the combinatorial test generation algorithm and leverage its incremental framework to

achieve maximal performance improvements. To our best knowledge, this is the first time

these techniques are applied in a way that is integrated with the combinatorial test

generation framework.

33

Chapter 3

Combinatorial Sequence Testing

Most work on combinatorial testing focuses on t-way test data generation, where

each test is an (unordered) set of values for parameters. T-way combinatorial testing, or

t-way testing, requires every combination of values for any t parameters be covered by at

least one test. The rationale behind t-way testing is that many faults involve only a few

parameters, thus testing all t-way combinations can effectively detect these faults.

However, many programs exhibit sequence-related behaviors. For example, faults in

graphical user interface (GUI) programs may only be triggered by a certain sequence of

user actions [9]; faults in web applications may only be exposed when some pages are

viewed in a certain order [10]; and faults in concurrent programs may not manifest unless

some events are exercised in a particular order [11]. Testing efforts for these programs

should not only focus on data inputs, but also sequences of actions or events.

In this dissertation, we study the problem of t-way test sequence generation. This

problem is fundamentally different from the problem of t-way test data generation in

several aspects: (1) Most t-way test data generation techniques assume that all the tests

are of fixed length, which often equals the total number of parameters that are modeled.

In contrast, test sequences are typically of various lengths, and this must be taken into

account during t-way test sequence generation. (2) By the definition of “sequence”, t-way

test sequence generation must deal with an extra dimension, i.e., “order”, which is

insignificant in t-way test data generation. (3) Sequencing constraints are different from,

and typically more complex than, non-sequencing constraints. In particular, sequencing

constraints need to be represented and checked in a way that is different from non-

sequencing constraints.

34

We first introduce our system model, i.e., a labeled transition system, based on

which we give a formal definition of t-way sequence coverage. This system model uses a

graph structure to encode sequencing constraints. We divide the problem of t-way test

sequence generation into two smaller problems, i.e., target sequence generation and test

sequence generation. The first problem deals with how to generate the test requirements,

i.e., all valid t-way sequences that must be covered. The second problem deals with how

to generate a small set of test sequences to cover all the test requirements. We

systematically explore different strategies to solve these problems and present a set of

algorithms as the result of our exploration. We compare these algorithms both analytically

and experimentally, with special attention paid to scalability. The experiment results show

that while these algorithms have their own advantages and disadvantages, one of them is

more scalable than others while exhibiting very good performance in test sequence

generation.

We point out that we currently focuses on t-way test sequence generation, which

is the first stage of a larger effort that tries to expand the domain of t-way testing from test

data generation to test sequence generation. Empirical studies on fault detection

effectiveness of t-way test sequences are planned as the next stage of this larger effort.

3.1 Preliminaries

3.1.1 System Model

We model a system under test as a labeled transition system (LTS).

Definition 1. A labeled transition system M is a tuple <S, Sl, Sf, L, R>, where S is

a set of states, Sl ⊆ S is a set of initial states, Sf ⊆ S is a set of final states, L is a set of

event labels, and R ⊆ S × L × S is a set of labeled transitions.

An LTS can be built from system requirements, high-/low-level designs, or

implementations at a certain level of abstraction. The size of an LTS can be controlled by

35

choosing an appropriate level of abstraction and by modeling system parts that are of

interest, instead of the whole system. Initial states in an LTS represent states where an

execution of system could start, and final states represent states where a system could

safely stop.

For ease of reference, we will refer to a labeled transition as a transition, and

refer to an event label as an event. For a transition r, we use src(r) ∈ S to denote the

source state of r, dest(r) ∈ S to denote the destination state of r, and event(r) ∈ L to

denote the event label of r.

An LTS can be represented by a directed graph, in which each vertex represents

a state, and each directed edge represents a transition between two states and is labeled

with an event. An example graph is shown in Figure 10(a). We refer to such a graph as

an LTS graph.

Figure 10 An example LTS graph and its exercised-after matrix

Definition 2. A transition sequence p= r1 • r2 • …• rn is a sequence of n transitions

< r1 , r2 ,… , rn > such that dest(ri) = src(ri+1), for i=1,2, …, n-1.

Intuitively, a transition sequence represents a path in an LTS graph. We use

these two terms interchangeably. Given a transition sequence P = r1 • r2 • …• rn, we

denote the corresponding event sequence event(P) = event(r1) • event(r2) • …• event(rn).

We use event(P) to represent P if there is no ambiguity, i.e., only one test sequence can

36

be represented by event(P). We distinguish the notion of transition sequence from the

notion of sequence of transitions. The former requires transitions to be consecutive in a

sequence, whereas the latter does not require so. In the rest of this paper, we use r1 • r2

• …• rn to indicate a transition sequence, and use < r1 , r2 ,… , rn > to indicate a sequence

of transitions.

Definition 3. Let r and s be two transitions in a labeled transition system M.

Transition s can be exercised after r, denoted as r  s, if there exists a transition

sequence P = r1 • r2 • …• rn, where n > 0, such that r1 = r and rn = s.

As a special case, if r • s is a transition sequence, i.e., dest(r) = src(s), it is said

that transition s can be exercised immediately after r. If transition s can be exercised after

transition r, it is also said that transition r can be exercised before transition s. Consider

the example system in Figure 1(a). Transition r2 can be exercised before r3, r4 and r5. A

transition may be exercised after (or before) itself, implying the existence of a cycle in the

LTS graph.

Definition 4. Let e and f be two events in an LTS M. Event f can be exercised

after event e, denoted as e  f, if there exist two transitions r and s such that event(r)=e,

event(s)=f, and r  s.

While the exercised-after relation between transitions is transitive, the exercised-

after relation between events is not. For example, in Figure 1(a), for events a, b and d,

we have ab, bd, but ad is inconsistent with the LTS graph.

Assume that there are n transitions in a labeled transition system. We can build a

nn matrix E, where E(i,j)=1 if ri rj , and E(i,j)=0 otherwise. This exercised-after matrix

can be constructed in O(n
3
) time, using Warshall’s algorithm [25]. Figure 10 shows the

exercised-after matrix for the LTS graph.

37

3.1.2 T-way Sequence Coverage

We define the notion of t-way sequence coverage in terms of t-way target

sequences and test sequences. T-way target sequences are test requirements, i.e.,

sequences that must be covered; test sequences are test cases that are generated to

cover all the t-way target sequences.

Definition 5. A t-way target sequence is a sequence of t events <e1, e2, …, et>

such that there exists a single sequence of t transitions <r1, r2, …, rt> where ri  ri+1, and

ei=label(ri) for i=1,2, …, t.

Intuitively, a t-way target sequence is a sequence of t events that could be

exercised in the given order, consecutively or inconsecutively, by a single system

execution. The same event could be exercised for multiple times in a t-way target

sequence. Note that not every sequence of t events is a t-way target sequence. For

example, in Figure 1(a), <a, c>, <a, d>, and <c, d> are not 2-way target sequences.

One may attempt to define a t-way target sequence as a sequence of t events

<e1, e2, …, et> in which ei  ei+1, for i=1,2, …, t. This definition is however incorrect. For

example, consider a sequence of 3 events <a, b, c> in Figure 1(a). We have ab and

bc. However, <a, b, c> cannot be executed in a single transition sequence, and

therefore is not a t-way target sequence.

Definition 6. A test sequence is a transition sequence r1 • r2 • …• rn, where src(r1)

∈ Si, dest(rn) ∈Sf.

Definition 7. A test sequence P = r1 • r2 • …• rn covers a t-way target sequence

Q=<e1, e2, …, et>, if there exist 1≤ i1< i2< ...< it ≤ n such that event(
ki
r) = ek, where k

=1,2,…, t.

38

A test sequence is a transition sequence that starts from an initial state and ends

with a final state in the LTS graph. Intuitively, a test sequence is a (complete) transition

sequence that can be exercised by a test execution. A target sequence Q is covered by

a test sequence P if all the events in Q appear in event(P) in order. For example, in

Figure 1(a), a test sequence r2 • r3 • r4 covers three 2-way target sequences: <b, c>, <c,

b>, and <b, b>.

Definition 8. Given an LTS M, let Σ be the set of all t-way target sequences. A t-

way test sequence set Π is a set of test sequences such that for ∀Q ∈ Σ, ∃ P ∈ Π that P

covers Q. Integer t is referred as the test strength.

The t-way sequence coverage requires that every t-way target sequence be

covered by at least one test sequence. Consider the example in Figure 10(a). Three test

sequences, r1•r4, r2•r5 and r2•r3•r4 covers all 2-way target sequences <b, b>, <b, c>, <b,

d>, <c, b> and <a, b>.

The notion of t-way sequence coverage is similar to all-transition-k-tuples

coverage for web applications [24] and length-n-event-sequence coverage for GUI

applications [21]. All these coverage criteria require sequences of a certain number of

events be covered. However, they differ in that t-way sequence coverage does not

require events in a target sequence to be covered consecutively by a test sequence

whereas the other two require so. This difference has a significant implication on test

sequence generation, which is illustrated below.

Figure 11 shows a labeled transition system that represents the life cycle of Java

threads. This system is later used as a subject system in our experiments in Section V.A.

Assume that a fault can be exposed only if a sequence of three events, “start”, “IO

completes”, “notify” (or event sequence <a, h, g>), is exercised. A shortest path

(transition sequence) that covers <a, h, g>is a•b•d•e•h•f•b•d•g, which is of length 9. If

39

length-n-event-sequence coverage is used, all paths of length 9 must be covered in order

to cover this faulty sequence <a, h, g>. This can significantly increase the number of test

sequences. In contrast, 3-way sequence testing may generate a transition sequence of

length 9 for this target sequence, but it does not require all paths of length 9 be covered.

This significantly reduces the number of test sequences while still detecting this fault.

Figure 11 Real Example: JavaThread

3.2 Target Sequence Generation

Assume that a system contains n events. There are at most n
t
 t-way target

sequences. Some t-way sequences, i.e., sequences of t events, are not valid target

sequences due to constraints encoded by the transition structure. One approach is to first

generate all possible t-way sequences and then filter out those sequences that are not

valid target sequences. A t-way sequence is a valid target sequence if there exists a

transition sequence that covers this sequence. This approach is however not efficient. In

the following we describe a more efficient, incremental approach to generate target

sequences.

The main idea of our approach is to first generate all 2-way target sequences,

and then extend them to generate all 3-way target sequences, and continue to do so until

we generate all the t-way target sequences. Given an LTS M, we first build the exercised-

after matrix for all the transitions of M. Next we find the set of all possible transition pairs

40

<r, r’> that r’ can be exercised after r. We refer to this set as the 2-way transition

sequence set. For each 2-way transition sequence <r, r’>, and for each transition r’’ that

can be exercised after r’, we generate a 3-way transition sequence <r, r’, r’’>. These 3-

way transition sequences constitute the 3-way transition sequence set. We repeat this

process until we build the t-way transition sequence set. At this point, we convert each t-

way transition sequence to a t-way target sequence. Figure 12 shows the detailed

algorithm that implements this approach.

Algorithm: GenTargetSeqs

Input: a LTS M, test strength t

Output: a set Σ consisting of all the t-way target sequences

1. Let r1, r2, …, rn be all the transitions in M

2. build the exercised-after matrix E such that E(i,j)=true if

 rirj , and E(i,j)=false otherwise

3. let Ωi, 1 <= i <= t, be an empty set

4. add into Ω1 each transition r1, r2, …, rn as a single-transition sequence

5. for (k = 2 to t){

6. for (each sequence of transitions R in Ωk-1) {

7. let rj be the last transition of R

8. for(i = 1 to n) {

9. if (E(j, i) == true)

10. add sequence of transitions <R, ri> to Ωk

11. }

12. }

13. }

14. for (each sequence of transitions R = <rj1, rj2, …, rjt>in Ωt){

15. add into Σ an event sequence <event(rj1), event(rj2), …

 event(rjt)> if not exists

16. }

17. return Σ

Figure 12 Algorithm for t-way sequences generation

41

Complexity analysis: Assume there are n transitions, and the test strength is t.

There are at most n
t
 t-way transition sequences. As we discussed earlier, the time

complexity for line 2 is O(n
3
), The time complexity for line 5 to 13 is dominated by the last

iteration, which is O(n
t
). Line 14 to 16 takes O(tn

t
) time. The time complexity of the entire

algorithm is O(n
3
+tn

t
), which is O(n

3
) when t<3, and O(tn

t
) otherwise. The space

complexity is O(n
2
+tn

t
) since we store the exercised-after matrix and all t-way transition

sequences.

In the next section we will present four test sequence generation algorithms

based on t-way target sequences generated by GenTargetSeqs.

3.3 Test Sequence Generation

The objective of test sequence generation is to generate a set of test sequences

that covers all t-way target sequences and that requires minimal test effort. There are

different factors to be considered. The more transitions exist in a test sequence, the

longer time it takes to execute. Thus, it is typically desired to minimize the total length of

these test sequences. Also, we often need to set up the environment before we execute

a test sequence, and tear down the environment after we finish. Thus, in order to

minimize such setup and teardown costs, it is often desired to reduce the number of test

sequences.

In this section, we present four algorithms for test sequence generation. While

these algorithms are mainly designed to minimize the total length of test sequences, they

can be modified to support other types of cost optimization. These algorithms are

resulted from a systematic exploration of possible strategies for test sequence

generation.

42

3.3.1 A Target-Oriented Algorithm

Recall that in algorithm GenTargetSeqs, each t-way target sequence is derived

from a sequence of t transitions. The main idea of this test generation algorithm is that,

for each target sequence Q, we find a shortest test sequence to cover Q by extending the

sequence of transitions from which Q is derived. Since a test sequence typically covers

many target sequences, a greedy algorithm is then used to select a small subset of these

test sequences that also covers all the target sequences.

The key challenge in this algorithm is how to generate a shortest test sequence

to cover each target sequence. Let Q be a target sequence and C be the sequence of

transitions from which Q is derived. We first extend C to a transition sequence P by

inserting a transition sequence between every two adjacent transitions that are not

consecutive. For example, assume C = <r1 , r2 , …, rt>. If ri+1 cannot be exercised

immediately after ri, we insert a shortest transition sequence between dest(ri) and

src(ri+1). This path always exists, as otherwise Q cannot be a t-way target sequence.

Next, we make P a test sequence by inserting a shortest path from an initial state to the

beginning state of P and a shortest path from the ending state of P to a final state, if

necessary. The test sequence P, as constructed so, is a shortest test sequence that

covers Q. Figure 13 shows the details of this algorithm.

Note that in line 2, all shortest paths between two nodes in a graph can be

effectively calculated using Floyd-Warshall algorithm [25]. During target sequence

generation, we keep all the sequences of transitions from which the target sequences are

derived. These sequences are used in line 5. A greedy algorithm is used in line 17 to

select a subset of test sequences that can cover all the target sequences. This algorithm

is similar to a classic greedy set cover algorithm [25]. It works iteratively, i.e., at each

43

iteration we choose a test sequence that covers the most number of uncovered target

sequences, and remove covered ones, until all target sequences are covered.

Algorithm: GenTestSeqsFromTargets

Input: an LTS M, a set Σ of target sequences, test strength t

Output: a t-way test sequence set Π

1. let Π and Ω be an empty set of test sequences

2. find a shortest path for every pair of states

3. for each target sequence Q = <e1, e2, …, et> in Σ {

4. let P be an empty transition sequence

5. let C = <r1, r2, …, rt> be a sequence of transitions such

that Q is derived from C

6. for (i = 1 to t - 1){

7. append to P a shortest path from dest(ri) to src(ri+1)

8. }

9. if (src(r1) is not an initial state) {

10. append to P a shortest path from an initial state to

 src(r1)

11. }

12. if (dest(rt) is not a final state){

13. append to P a shortest path from dest(ri) to a final state

14. }

15. add test sequence P into Ω.

16. }

17. use a greedy algorithm to select a subset Π of Ω that can

 cover all the target sequences in Σ

18. return Π

Figure 13 A target-oriented algorithm for test sequences generation

Complexity analysis: Assume there are n transitions and |Σ| target sequence in

an LTS. Assume the test strength is t, and m test sequences are generated. Finding all

pair-wise shortest paths takes O(n
3
) time [25]. In order to build a shortest test sequence

for each target sequence, we have to append at most (t+1) shortest paths, which takes

44

O(t) time. Thus the total time from line 3 to 16 is O(t|Σ|). The greedy algorithm in line 17

takes O(m|Σ|
2
) time. Therefore the time complexity for the entire algorithm is

O(n
3
+t|Σ|+m|Σ|

2
) = O(n

3
+ m|Σ|

2
). The space complexity is O(n

2
+|Σ|).

3.3.2 A Brute Force Algorithm

This algorithm finds all test sequences of length up to h, in a brute force manner.

Then it selects a subset of these test sequences to cover as many target sequences as

possible. Note that the value of h is specified by the user. This algorithm is used as a

baseline in our effort to develop more efficient algorithms.

 The first step of this algorithm uses a strategy similar to the breadth-first search

(BFS) to generate all test sequences of length up to h. The difference is that in BFS, a

node is only explored once, while in our strategy, a node is explored multiple times as it

may lead to different test sequences. After all test sequences of length up to h are found,

we apply the same greedy algorithm as mentioned early to select a subset of test

sequences to cover as many target sequences as possible. If there are any target

sequences that remain uncovered, we use algorithm GenTestSeqsFromTargets to cover

them. Figure 14 shows the detailed algorithm, named GenTestSeqsBF.

For each target sequence, we can generate a shortest test sequence to cover it.

This information can be used to select a proper value for h. In particular, if we set h to the

maximal length of all these shortest test sequences, then all the target sequences are

guaranteed to be covered, because all test sequences of length up to h will be found in

this algorithm. However the number of test sequences of length up to h increases

exponentially with respect to h, so do the execution time and memory cost.

45

Algorithm: GenTestSeqsBF

Input: a LTS M, a target sequence set Σ, test strength t, max

 test sequence length h

Output: a t-way test sequence set Π

1. use a BFS-like algorithm to generate the set Ω of all the test

 sequences of length up to h

2. use a greedy algorithm to select a subset Π  Ω that covers

 all the target sequences in Σ that could be covered.

3. remove from Σ the target sequences covered by Π

4. if (Σ is not empty) {

5. use algorithm GenTestSeqsFromTargets to generate a test

 sequence set Π’ to cover the target sequences in Σ

6. Π = Π  Π’

7. }

8. return Π

Figure 14 A brute force algorithm for test sequences generation

Complexity analysis: Assume there are n transitions, and |Σ| target sequences in

an LTS. Assume the test strength is t, maximal length is h, and m test sequences are

generated. There are at most n
h
candidates of length up to h, which takes O(n

h
) to

generate. The greedy algorithm in line 2 takes O(|Σ|mn
h
) time, as discussed earlier. The

entire algorithm is dominated by line 2, and the total time complexity is O(|Σ|mn
h
). We

have to store all n
h
 candidate test sequences, so the total space complexity is O(|Σ|+n

h
).

3.3.3 An Incremental Extension Algorithm

This new algorithm is motivated by the observation that, a longer test sequence

covers more t-way targets. However, when the length of test sequence increases, the

number of all possible test sequences increases exponentially. Thus, it is not practical to

generate long test sequences using algorithm GenTestSeqsBF. This new algorithm is

designed to generate longer test sequences by adopting an incremental framework. In

46

this framework, a test sequence is generated in multiple steps. At each step, we generate

all test sequences of a given length, which is often small, and then select one of these

sequences such that appending this sequence to the sequence obtained from the

previous steps will cover the most target sequences. Once a complete test sequence is

generated, either because we reach a final state or can no longer make progress, we

remove the target sequences covered by this sequence and then repeat the same

process to generate the next test sequence. We keep doing so until no more targets can

be covered. The remaining targets, if exist, are covered by algorithm

GenTestSeqsFromTarget.

The incremental extension is performed as follows. Given a transition sequence

P = r1 •r2 •…• rn, we generate the set Q of all maximal transition sequences that start from

the ending state of this sequence, i.e., dest(rn), and that are of length up to h. A maximal

transition sequence of length up to h is a transition sequence that is not a prefix of any

other transition sequence of length up to h. A transition sequence P’ is selected from Q

such that sequence P • P’ covers the most number of target sequences. Then we set P =

P • P’, i.e., appending P’ to P. An example of incremental extension is illustrated in Figure

15. In the previous extension (step k-1), a transition sequence that ends with transition a

being the last transition was found. Now we explore all maximal transition sequences

staring from dest(a) and of length up to 3. A transition sequence b•c•d is selected as it

covers the most number of target sequences. This process is then repeated and the next

extension will start from dest(d). This extension is terminated when it reaches a final

transition (successfully generated a long test sequence), or no targets can be covered

(terminated).

47

Figure 15 Illustration of test sequence extension

Figure 16 shows the detailed GenTestSeqsInc algorithm. The parameter h>t

indicates the search depth in each extension. Due to the incremental nature, the value of

h in algorithm GenTestSeqsInc can be much smaller than in algorithm GenTestSeqsBF.

Note that the extension process may get stuck in a long cycle, thus making no progress

(line 9). In this case, the extension process is terminated and the

GenTestSeqsFromTargets algorithm is used to cover any remaining targets.

Complexity analysis: Assume that there are n transitions and |Σ| t-way target

sequences in an LTS. Also assume that the test strength is t, the search depth for each

extension is h. Assume that there is a total of d extensions. For each extension, there are

at most n
h
possible transition sequence of length up to h, and it takes O(|Σ|n

h
) to find the

best one. Therefore the time complexity for the entire algorithm is O(|Σ|dn
h
). The space

complexity is O(|Σ|+n
h
), since we only have to keep the possible transition sequences for

one extension at a time.

48

Algorithm: GenTestSeqsInc

Input: an LTS M, a set Σ of target sequences, test strength t,

search depth h

Output: a t-way test sequence set Π

1. initialize Π to be empty

2. let S be a set consisting of all the initial states

3. let P be an empty test sequence

4. while (true){

5. use a BFS-like algorithm to generate the set Ω of all

maximal transition sequences that begins with a state in S

and that are of length up to h

6. select a transition sequence P’ in Ω such that the

extended transition sequence P • P’ covers the most targets

7. let P = P • P’, and s be the last transition of P

8. clear S and add s to S

9. if (P covers no target sequence) {

10. break //may be stuck in a cycle

11. }else if (s is a final state) {

12. add P to Π

13. remove target sequences covered by P from Σ

14. reset S to a set consisting of all the initial states

15. reset P to an empty test sequence

16. }

17. }

18. if (Σ is not empty) {

19. use algorithm GenTestSeqsFromTargets to generate

a test sequence set Π’ to cover remaining targets

 20. Π = Π  Π’

 21. }

 22. return Π

Figure 16 Illustration of test sequence extension

49

3.3.4 An SCC-Base Algorithm

One of the biggest challenges in test sequence generation is how to handle

transition cycles, as they could cause transition sequences to be extended infinitely. To

address this problem, algorithm GenTestSeqsBF limits the maximal length of each test

sequence, and algorithm GenTestSeqsInc terminates the extension process when no

progress is made due to a cycle. We use a different strategy to treat cycles in this SCC-

based algorithm, which has three major steps. In the first step, we build an acyclic LTS M’

from the original LTS M. In the second step, we generate test sequences for the acyclic

LTS M’, referred as abstract paths as they need to be mapped back to the original LTS

later. In the last step, we extend all the abstract paths to test sequences for the original

LTS M, such that all target sequences are covered. We will explain each step with more

details.

A. Build Acyclic LTS

In graph theory, a strongly connected component (SCC) is defined as a graph in

which every two nodes can reach each other. An SCC detection algorithm can be found

in [25]. We can collapse each SCC in a LTS graph to a special node, called an SCC

node. Doing this converts the original LTS to an acyclic LTS. An example is shown in

Figure 17.

Figure 17 Example of SCC in an LTS graph

50

We point out some important properties for SCCs which will be used later: (1)

There exists a path from a node to any other node in an SCC; (2) Any sequence of t

events involved in an SCC is a valid t-way target sequence; (3) All the t-way target

sequences in an SCC can be covered by a single transition sequence. Property (1) is

derived from the definition of SCC. For property (2), given a sequence of t events, there

exists a path that traverses t transitions corresponding to the t events in the given order

and thus covers the given sequence of t events. Property (3) is the key point for the last

step of this SCC-based algorithm. We denote a single transition sequence that covers all

t-way target sequences in an SCC as a t-touring path, which can be generated using the

following approach. First we build a 1-touring path P1, i.e., a path that traverses all

transitions at least once in an SCC. Note that it’s different from an Eulerian path which

requires every edge to be visited exactly once. Then starting from the last transition of P1,

we build another 1-touring path P2 and append P2 to P1. By doing this, we make a 2-

touring path. This process is repeated until we have a t-touring path. It can be verified

that a t-touring path contains a sequence of t 1-touring paths, and therefore it covers all

sequences of t events in the given SCC. For example, in Figure 17(a), a 3-touring path

for SCC2 is x•y•z•x•y•z•x•y•z which covers all 3-way target sequences consisting of

events x, y and z. A detailed algorithm for t-touring path generation is described in Figure

18.

B. Find Abstract Paths

The abstract paths are actually test sequences of the acyclic LTS M’, which can

be generated using any test generation algorithm such as algorithm GenTestSeqsBF and

GenTestSeqsInc.

51

Algorithm: GenTouringPath

Input: an SCC M, strength t, state p, state q

Output: a t-touring path P from state p to state q

1. find a shortest path between any two states in M

2. let P be an empty transition sequence

3. let state s = p

4. for (i = 1 to t) {

5. let T be all transitions in M

6. while (T is not empty){

7. let r be a transition in T

8. add into P a shortest path H from s to src(r)

9. remove from T any transitions traversed by H

10. let s be the last state of P

11. }

12. }

13. add into P a shortest path H from s to r

14. return P

Figure 18 An algorithm for t-touring path generation

C. Generate Test Sequences

As we discussed in step 2, we extend each abstract path by inserting a t-touring

path after each transition ends with an SCC node, to extend it to a test sequence for M.

Let S = s1 • s2 • …• sn be an abstract path of M’. If dest(si) is an SCC node, we insert a t-

touring path P from dest(si) to src(si+1). In Figure 17(b), there are five abstract paths:

a•d•f, a•c•e•f, a•c•g, b•e•f and b•g. Assume the test strength is 3. For path b•g, we insert

a 3-touring path x•y•z•x•y•z•x•y•z•x•y after transition b, making a test sequence of the

original LTS b•x•y•z•x•y•z•x•y•z•x•y•g. Similar insertions are made for other abstract

paths. The whole SCC-based algorithm GenTestSeqsSCC is presented in Figure 19.

52

Algorithm: GenTestSeqsSCC

Input: an LTS M, a set Σ of target sequences, test strength t

Output: a t-way test sequence set Π for M

1. build an acyclic graph M’ by finding and collapsing all

SCCs in M

2. generate a set Ω consisting of abstract paths in M’

3. for (each abstract path P = c1 • c2 • …• cn in Ω){

4. for(i = 1 to n-1) {

5. if(dest(ci) is an SCC node){

 6. use algorithm GenTouringPath to generate a t-

touring path T from dest(ci) to src(ci+1),

7. insert T into P after transition ci

8. }

9. }

10. if (the length of P is no less than t)

11. add P to Π

12. remove target sequences covered by P from Σ

13. }

14. if (Σ is not empty) {

15. use algorithm GenTestSeqsFromTargets to generate a

test sequences set Π’ to cover remaining targets

16. Π = Π  Π’

17. }

18. return Π

Figure 19 An SCC-base algorithm for test sequences generation

Complexity analysis: The complexity of this algorithm highly depends on the

structure of graph. Assume that the original LTS contains n transitions. Finding SCCs

takes O(n). Assume there are d transitions that end with an SCC nodes in m selected

abstract paths, and there are in total k abstract paths. Assume each SCC contains ns

transitions. For each SCC, it takes O(tns) to build a t-touring path. The time complexity of

line 2 is O(|Σ|mk). There are d t-touring paths are inserted, therefore the total time is

53

O(dtns). The time complexity for the entire algorithm is O(n+|Σ|mk+dtns). The space

complexity is O(|Σ|mk +dtns).

3.3.5 Comparison of Test Generation Algorithms

We provide an comparison of the four test sequence generation algorithms in

Table 8.

Table 8 Comparison of Test Generation Algorithms

Algorithm
Time
cost

Space
Cost

Length of
individual

test
sequences

Number of
generated

test
sequences

GenTestSeqsFromTargets low low short many

GenTestSeqsBF high high depends few

GenTestSeqsInc high low long few

GenTestSeqsSCC low low very long very few

Algorithm GenTestSeqsFromTargets tends to generate many short test

sequences, while algorithms GenTestSeqsInc and GenTestSeqsSCC tend to generate a

small number of long test sequences. Algorithm GenTestSeqsBF has the highest time

and space complexity but it can generate a small number of test sequences, when h is

sufficiently large. Algorithm GenTestSeqsSCC has the lowest time and space complexity.

3.4 Experiments

We have built a tool that implements the proposed algorithms. To evaluate the

performance of the proposed algorithms, we conducted experiments on both real and

synthesized systems on a laptop with Core i5 2410M (2.30GHz) CPU and 4GB memory,

running Windows 7 (64-bit) and Java 6 SE (32-bit) with the default heap size. The

performance of the test generation algorithms is measured in terms of the total length of

54

generated test sequences, the number of generated test sequences, and the execution

time taken to generate the test sequences.

3.4.1 Case Study: The Java Threads System

In this study we used the labeled transition system shown in Figure 11. Recall

that this system describes the lifecycle of a Java thread, and it contains 7 states, 9 events

and 16 transitions. The test strength is set to 3 in the experiments. There are 448 unique

3-way target sequences. Table 9 shows the results of applying the four test generation

algorithms to this system. The columns in Table II are self-explanatory. For algorithm

GenTestSeqsInc, we set h=5. For algorithm GenTestSeqsBF, we use h=16, 18, 20 in

three different runs, since 16 is the critical length, i.e., the smallest h such that all target

sequences will be covered by test sequences of length up to h.

Table 9 Result of the Java Threads System

JavaThreads
(448 3-way targets)

total
length

num. of
test seqs

avg.
length

time
(s)

GenTestSeqsFromTargets 399 36 11.1 0.02

GenTestSeqsBF(h=16) 174 11 15.8 5.7

GenTestSeqsBF(h=18) 146 9 16.2 34.5

GenTestSeqsBF(h=20) 116 6 19.3 461.9

GenTestSeqsInc (h=5) 128 5 25.6 0.05

GenTestSeqsSCC 35 1 35.0 0.03

It is clear that, algorithm GenTestSeqsBF generates better test sequences as h

increases, but execution time increases very fast. Algorithm GenTestSeqsSCC works

very well for this system. In particular, it has the lowest number and total length of test

sequences while running as fast as the fastest algorithm, i.e., algorithm

GenTestSeqsFromTarget.

55

3.4.2 Synthesized Systems

In this study, we implemented a random LTS generator to generate synthesized

systems. This generator takes three parameters, i.e., number of states, number of

transitions, and number of events. The generation process consists of three major steps.

First, it generates the given number of states and transitions, where each transition is

placed between two random states. Second, it randomly assigns the given number of

event labels to the transitions. Finally, it checks whether the generated graph is

connected. A system is discarded if it is not connected.

We randomly generated 10 different systems, as shown in Table 10. Note that

SYS-n denotes a system with n transitions. We also report the number of transitions

which belong to any SCC in Table 10.

3.4.3 Results and discussions

Table 12 shows the test generation results of synthesized systems using four

proposed algorithms. The test strength t is set to 3. Note that “-” indicates the process of

test sequence generation took more than one hour to complete or ran out of memory. For

algorithm GenTestSeqsBF, we set h to the critical length and increase it until timeout or

out-of-memory. The h finally used in the first four systems is 30, 25, 15 and 13,

respectively. For algorithm GenTestSeqsInc, we set h=5. For algorithm

GenTestSeqsSCC we use GenTestSeqsInc to generate abstract paths, and the search

depth is set to 10.

56

Table 10 Characteristics of Synthesized Systems

System # of states # of events
of

transitions

of
transitions

in SCC

SYS-10 8 10 10 5

SYS-15 8 10 15 9

SYS-20 8 15 20 17

SYS-25 10 20 25 19

SYS-30 10 20 30 26

SYS-40 10 30 40 33

SYS-50 15 35 50 45

SYS-60 15 40 60 56

SYS-80 20 50 80 75

SYS-100 20 60 100 96

Table 11 Results of T-way Target Sequence Generation for Synthesized Systems

System
of 2-way
target seqs

of 3-way
target seqs

of 4-way
target seqs

of 5-way
target seqs

SYS-10 55 276 1380 6900

SYS-15 60 360 2160 12960

SYS-20 210 2940 41160 576240

SYS-25 303 4545 68175 1022625

SYS-30 360 6480 116640 2099520

SYS-40 750 18750 468750 11718750

SYS-50 1085 33635 1042685 32323235

SYS-60 1480 54760 2026120 74966440

SYS-80 2400 115200 5529600 265420800

SYS-100 3420 194940 11111580 633360060

57

Table 12 Results of test sequence generation for synthesized systems (3-way)

System

GenTestSeqsFromTargets GenTestSeqsBF

total
length

of test
seqs

avg.
length

time
(s)

total
length

of test
seqs

avg.
length

time
(s)

SYS-10 184 16 11.5 0.01 55 3 18.3 4.1

SYS-15 273 26 10.5 0.01 80 4 20 9.6

SYS-20 5346 547 9.8 0.09 2083 164 12.7 84.5

SYS-25 5049 446 11.3 0.1 1534 104 14.8 693.9

SYS-30 8833 890 9.9 0.2 - - - -

SYS-40 35432 4163 8.5 3.0 - - - -

SYS-50 60047 5192 11.2 5.4 - - - -

SYS-60 113391 11097 10.0 30.7 - - - -

SYS-80 211975 18829 11.3 110.8 - - - -

SYS-100 500022 47166 10.6 526.0 - - - -

System

GenTestSeqsInc GenTestSeqsSCC

total
length

of test
seqs

avg.
length

time
(s)

total
length

of test
seqs

avg.
length

time
(s)

SYS-10 123 11 11.1 0.01 55 3 18.3 0.01

SYS-15 297 22 13.5 0.03 84 4 21.0 0.08

SYS-20 477 16 29.8 1.3 74 1 74.0 0.2

SYS-25 1066 62 19.4 2.6 188 4 47.0 0.2

SYS-30 1381 55 25.1 32.5 132 2 66.0 0.4

SYS-40 7832 729 10.7 412.8 132 2 66.0 0.2

SYS-50 44058 1680 26.2 1080.7 439 4 109.8 2.4

SYS-60 - - - - 403 3 134.3 6.2

SYS-80 - - - - 354 2 177.0 10.2

SYS-100 - - - - 557 3 185.7 14.6

58

Some observations can be made from these results. First, algorithm

GenTestSeqsFromTargets is relatively fast, but it generates a large number of test

sequences as well as the total length. Algorithm GenTestSeqsBF is very slow, but for

small systems such as SYS-10 and SYS-15, it generates the best results in terms of the

number of test sequences and total length. The GenTestSeqsInc algorithm achieves a

good trade-off between total length and execution time. The GenTestSeqsSCC algorithm

has very good performance, i.e., it generates very few test sequences in a very short

time, and displays good scalability on large systems.

These algorithms have their own advantage and disadvantages, and can be

used for different purposes and in different situations. Algorithm

GenTestSeqsFromTargets is a useful strategy in general cases, and is preferred to be

used in conjunction with other algorithms for covering remaining targets or speeding up

the final stage. Algorithm GenTestSeqsBF can generate good test sequences for small

systems. However the time and space complexity is very high and thus does not scale for

large systems. Algorithm GenTestSeqsInc has small memory cost and reasonable

performance. It is very flexible to work with various requirements. Algorithm

GenTestSeqsSCC has the best scalability and performance among these algorithms and

is suitable for larger systems. However, its performance highly depends on the structure

of system graph. Furthermore, it generates long test sequences, which are not effective

for fault localization, i.e., it’s hard to identify which event sequence actually triggered the

fault.

3.5 Related Work

In this section, we discuss related work in three areas, including combinatorial

test data generation, combinatorial test sequence generation, and coverage criteria for

test sequence generation.

59

3.5.1 Combinatorial Test Data Generation

Different strategies for combinatorial test data generation have been proposed in

recent years. These strategies can be roughly classified into two groups, computational

methods and algebraic methods [26] [27]. Computational methods usually involve an

explicit enumeration of all possible combinations, and employ a greedy or heuristic

search strategy to select tests. Examples of these methods include AETG [9], IPOG [5],

and methods based on simulated annealing and hill climbing [27]. In contrast, algebraic

methods build a t-way test set based on some pre-defined formulas, without enumerating

any combinations. Examples of algebraic methods include orthogonal arrays [28] and

doubling-construction [29]. A survey on combinatorial test generation methods can be

found in [30]. Nonetheless, test data generation methods cannot be directly applied to

test sequence generation, due to some fundamental differences between the two

problems discussed earlier.

3.5.2 Test Sequence Generation

Several efforts have been reported that try to apply the idea of combinatorial

testing to test systems that exhibit sequence-related behaviors. Wang et al. [31] [22]

introduced a combinatorial approach to test dynamic web applications, which mainly

investigates the fault detection effectiveness of a notion called pairwise interaction

coverage on web applications. This is different from our work in that our focus is on

efficient algorithms for test sequence generation. Kuhn et al. [32] presented several

algorithms for t-way test sequence generation. Their algorithm requires constraints to be

specified as prohibited sequences, and requires that each event occur exactly once in a

test sequence. Thus, all the test sequences are of fixed length, which equals the total

number of events. Our approach implicitly encodes constraints in a graph structure, and

allows an event to occur an arbitrary number of times in a test sequence. Yuan et al.

60

introduced a covering array method for GUI test case generation in [33], and a more in-

depth study on GUI testing [34]. Similar to the work in [31] [22], their work mainly

investigates the fault detection effectiveness of different coverage criteria. The test

generation methods are based on covering arrays, and all test sequences are extended

from some fixed-length smoke tests. Our algorithms do not impose similar restrictions.

3.5.3 Test Sequence Coverage Criteria

We focus on coverage criteria that require “sequence of elements” to be covered.

We do not consider coverage criteria such as all-nodes and all-branches [35]. Pairwise

interaction coverage is used in some literatures such as Wang et al. [31] [22], which

requires all possible pair of web page interactions to be covered by at least once. This is

the special case of t-way sequence testing when t=2. Lucca and Penta [24] applied

several coverage criteria for web application testing from [36]. One of their criteria is all-

transition-k-tuples, which requires all possible sequence of k consecutive transitions to be

covered. Similarly, a coverage criterion, called length-n-event-sequence coverage, was

proposed for GUI testing [21]. These coverage criteria require a sequence of elements to

be covered consecutively. This is different from our t-way sequence coverage criterion,

which only requires a sequence of elements to be covered in the same order, not

necessarily consecutively. The coverage criterion that is most closely related to ours is

called t*-coverage [34]. This coverage is proposed for GUI interaction testing and

requires all permutation of t events are executed consecutively at least once and

inconsecutively at least once. In t-way sequence coverage proposed in this paper, a

sequence of elements is considered to be covered as long as it is covered once,

consecutively or inconsecutively.

61

Chapter 4

Case Study: Testing IEEE 11073 PHD

Personal healthcare is a rapidly growing market nowadays. Various personal

healthcare devices such as weighing scales, blood pressure monitors, blood glucose

monitors, and pulse oximeters have been developed in recent years. However, most of

them cannot easily interoperate with each other. To address this problem, ISO/IEEE

11073 Personal Health Data (IEEE 11073 PHD) standards are developed to achieve

interoperability between different personal healthcare devices. These standards are

based on an earlier set of standards, i.e., ISO/IEEE 11073, which mainly focused on

hospital medical devices. Compared to hospital medical devices, which are typically

connected with an external power source, personal healthcare devices are normally

portable, energy-limited, and have limited computing capacity. IEEE 11073 PHD

standards adapt the earlier 11073 standards to take into account these unique

characteristics of personal healthcare devices.

IEEE 11073 PHD has been adopted by many personal healthcare devices in the

market. These devices typically have Bluetooth or ZigBee connectivity, and are able to

transmit measured health data to healthcare professionals for remote health monitoring

or health advising. To ensure that these products can interoperate with each other, it is

important to ensure that these products conform to the standard communication behavior

as specified by IEEE 11073 PHD. Many conformance testing procedures have been

developed by organizations such as Continua Health Alliance [2].

As a case study of sequence testing, we propose a general conformance testing

framework for the IEEE 11073-20601 protocol (Optimized Exchange Protocol) [3]. IEEE

11073-20601 is a core component in the standards family of IEEE 11073 PHD.

62

Specifically, IEEE 11073-20601 defines a communication model that allows personal

healthcare devices to exchange data with computing resources like mobile phones, set-

top boxes, and personal computers. The proposed framework consists of four major

components, test sequence generator, test data generator, test executor, and test

evaluator, each of which corresponds to a major step in the test process. The test

generator adopts a technique called t-way testing, which has been shown to be a very

effective software testing strategy [4] [5] [6]. The test executor is responsible for actually

executing the tests generated by the test generator. The test evaluator is responsible for

checking whether the actual outcome of each test execution is consistent with the

expected outcome.

4.1 IEEE 11073 PHD STANDARDS

IEEE 11073 PHD defines an efficient data exchange protocol as well as the

necessary data models for communication between two types of devices, i.e., agent and

manager devices.

4.1.1 Agent and Manager

Agents are personal healthcare devices that are used to obtain measured health

data from the user. They are normally portable, energy-efficient and have limited

computing capacity. Examples of agent devices include blood pressure monitors,

weighing scales and blood glucose monitors. Managers are designed to manage and

process the data collected by agents. Examples of manager devices include personal

computers, mobile phones and set top boxes. Manager devices are typically connected

with an external power source. Data collected by agent devices can be used for further

purpose like fitness advising, health monitoring and aging service provided by remote

professionals. A typical scenario of using IEEE 11073 PHD personal healthcare devices

and remote healthcare services is shown in Figure 20. In the left area of Figure 20, there

63

are various personal healthcare devices (agents) like blood pressure monitors, weighing

scales and blood glucose monitors. Agents communicate with managers such as mobile

phones, PCs, and set top boxes. The collected data can be sent to professionals for

various remote services. IEEE 11073 PHD focuses the communication between agents

and managers, as shown in the red box in Figure 20.

Figure 20 A Scenario of Using IEEE 11073 PHD Devices

IEEE 11073 PHD emphasizes the interoperability between various devices. That

is, different devices should be able to communicate with each other out-of-box. In

addition to data exchange, an agent device typically provides certain interface that allows

a manager device to configure the device. For example, the operating frequency of a

pulse oximeter can be adjusted by a manager device. IEEE 11073 PHD takes into

account the different characteristics of agent and manager devices and treats them

differently. In particular, communication between an agent and a manager is typically

initiated and terminated by the agent when the measured data is available. This helps to

reduce power consumption of the agent device as otherwise the agent would have to

keep listening to incoming requests which could consume more energy. Also, since agent

64

devices typically have limited processing capability, they typically perform minimal data

process and the data exchange between agent and manager devices is designed to be

very concise.

4.1.2 Architecture

IEEE 11073 PHD consists of three major models, i.e., the domain information

model (DIM), the service model, and the communication model, as shown in Figure 21. In

the domain information model, a personal healthcare device is modeled as an object with

multiple attributes. These attributes indicate configuration options, measured data and

other particular functionalities. The service model defines data access procedures such

as GET, SET, ACTION and Event-Report between agent and manager. For example, an

agent is able to measure data and report it to the manager. On the other hand, the

manager can configure certain agent attributes such as the frequency of operating. The

communication model describes general point-to-point connection between an agent and

a manager in terms of the agent state machines and the manager state machine.

Figure 21 Three Major Models in IEEE 11073 PHD

4.1.3 IEEE 11073-20601

In this paper, we focus on IEEE 11073-20601, which is a core component of

IEEE 11073 PHD. Multiple agents are allowed to establish connections to a single

65

manager. The point-to-point connection between an agent and a manager is independent

with different transport layers such as Bluetooth, USB or ZigBee. The behavior of agent

and manager are described in the agent state machine and the manager state machine,

which is well defined in IEEE 11073-20601.

Figure 22 Manager State Machine (Flattened)

Figure 22 shows an overview of the manager state machine diagram. There are

7 states in this diagram, and we briefly introduce these states. When the personal

healthcare device (agent) is turned on, it enters the Disconnected state and is ready to

connect. When the transport connection between agent and manager is established, both

agent and manager enter the Unassociated state. The agent then requires association

with the manager by sending a request, and enters the Associating state. The manager

will check the configuration of the agent, and then either accept this association request,

or ask the agent for more information, or deny this request due to some failure or

66

unsupported protocol version. If the manager accepts association request, then both

agent and manager enter the Operating states, and exchange data normally. Otherwise

they enter the Sending config state and the agent needs to send the complete

configuration profile to the manager, so that the manager can interoperate with the agent.

State transitions are triggered by specific events. For example, “assocReq”

represents that the agent sends an association request to the manager. “RxAssocRsp

(accepted)” represents that the agent receives the positive response of association from

the manager. For more details about each event, one may refer to the protocol

specification [3].

We use an example scenario to explain how the agent and manager exchange

data. In Figure 23, the agent device is a weighting scale. It sends an association request

to the manager. The association request contains the weighting scale’s system ID,

protocol version number and other device configurations. The manager may be

configured to support certain devices. If the manager recognizes the system ID, it sends

a response of association acceptance to the agent. Then both devices enter the

Operation states. The agent sends a measurement data (weight) to the manager using a

service type called “Conformed Event Report” defined in the service model. It requires

the recipient to send an acknowledgement for that sent data. The manager successfully

receives the weight value and sends back the acknowledgement. Finally the agent

requests association release and the manager responds to this request. Both devices are

now unassociated.

67

Figure 23 An Example Scenario of Data Exchange

4.2 The General Conformance Testing Framework

Figure 24 shows an overview of the proposed testing framework. The test

sequence generator first generates test sequences from the state machine model as

specified by IEEE 11073 PHD. Then the test data generator generates test data for each

test sequence. The test data generator takes as input the domain information model

which is supplied by the user. In the next step, the generated test sequences and data

are executed by the test executor, and the test evaluator generates evaluation results

from execution outcomes.

There are two state machines in the communication model. The agent state

machine is maintained by the agent application, and the manager state machine is

maintained by the manager application. We test them separately. A test driver is

employed to interact with the agent or manager state machine that is being tested. When

68

we test an agent, the test driver acts like a manager. When we test a manager, the test

driver acts like an agent.

Figure 24 An Overview of the Proposed Framework

4.2.1 Test Sequence Generator

To apply sequence testing on IEEE 11073-20601, we first build two system

models from the agent and manager state machine, respectively. The hierarchical

structure of the state machines need to be flattened.

We generate test sequence using an existing test generation algorithm

GenTargetSeqs. This algorithm builds test sequences from each target sequence that

needs to be covered, and then select a small set of test sequences using a greedy

algorithm. For the flattened agent LTS, we generated 249 test sequences for 2-way

69

testing. The same number of test sequences is generated for the manager state

machine. The length of each test sequence ranges from 6 to 12.

4.2.2 Test Data Generator

A test sequence only specifies the types of the events that need to be exercised.

To execute these events, test data must be generated for each test event. There are four

types of events in the state machines, i.e., application requests, condition indications,

receives event and sent events. Application requests like association request and

association release request are triggered by higher level end-user application. Condition

indications like transport connect indication and transport disconnect indication are

triggered by lower level transports like TCP/IP connection. These events can be

exercised by invoking certain API functions, and no data are needed. However, test data

are need for executing the last two kinds of events.

For a send event, data is sent from the test driver. The test driver is responsible

for constructing the concrete message, and sending it to the system under test. These

messages are constructed according to information like message type, current state, and

the domain information model, which is provided by the user though a XML file. For

example, assume we are testing the manager state machine, and we need a send event

RxAssocReq. This event means the agent sends a request of association. The test driver

builds a message using user-provided information like device config-ID, and then sends it

to the manager under test to execute this event.

For receive event, data is sent from the system under test itself. The message is

constructed by the underlying protocol stack, thus only some system configuration like

system ID are needed. For example, assume we are testing the agent, and it just sends

an association request to the test driver (manager). The current state of agent is

Associating. The next state could be either Unassociated, if the manager rejects the

70

association request; or be Associated, if the manager accepts this request. The decision

is based on the configuration of agent. Thus in order to exercise the particular event, we

have to generate correct configurations for the system under test.

4.2.3 Test Executor

The main challenge of performing sequence testing is how to execute the

specific test sequences on the manager and agent, i.e., how to make events been

actually exercised in order. As we discussed earlier, there are 4 types of events in state

machines. These events are executed in different ways.

Application requests are normally triggered by the end-user applications, which

interface with the state machine. How to execute these events highly depends on the

application under test.

Condition indications come from low level software layer like transport plug-in.

The standards require these indications to be triggered through well-defined APIs.

Send events are driven by the current state and certain conditions. These

conditions are defined by the standard specifications. As discussed earlier, we generate

test data for send events. If these data are correctly generated, these events will be

exercised as expected.

Receive events are triggered by incoming messages sent from another

application. If we are testing an agent device, we can use a manager application to

communicate with it. Alternatively we can directly send the expected message to the

agent. In this case, the test executor will read the data and then package them into

messages, and then communicate with the system under test.

There are two methods to execute send/receive events, i.e., through transport

layer or through API exposed to the user. The former method is more general, since we

can use a standalone program to communicate with the system under test through

71

transport protocol such as USB, TCP/IP or Bluetooth. The latter one is more efficient

since we invoke certain APIs to directly supply messages to the system under test,

without network transmission. Since different IEEE 11073 applications may have different

implementations, we provide a set of common interfaces for exercising protocol events.

Then for different protocol implementations, we just use different adapters to trigger these

events.

4.2.4 Test Evaluator

After the events are executed, we have to evaluate the result to check whether

the device under test works as expected. First, we need to evaluate individual messages

to check their format and verify certain data. Existing tools like ValidatePDU [7]

developed by NIST can be used for this task. Second, we need to check if the messages

are exchanged in the correct sequence. We check if each message received from the

agent or manager state machine under test is expected. For example, the value 0xE200

in the message header indicates this message is an association request sent by the

agent. We also have to check certain data field if user-defined evaluation rules are

provided.

The evaluation results for each test sequence are aggregated and analyzed in

order to generate a test report containing summaries and statistics of test execution, such

as the number of correct event execution, the number of failed events, and the results for

user-defined evaluation rules.

4.3 A Prototype Tool

A prototype tool is built by applying the proposed testing framework on Antidote,

an open source implementation of IEEE 11073-20601. Antidote [1] is an open source

implementation of IEEE 11073-20601. Antidote is a library that can be used to develop

IEEE 11073 applications. The main design goal of Antidote is to provide a set of

72

convenient APIs that can handle communications for IEEE 11073 PHD Agent and

Manager. The architecture of Antidote [8] is illustrated in Figure 25.

Figure 25 The Architecture of Antidote

In Figure 25, green components, i.e., manager application, communication plug-

in and transcoding plug-in do not belong to Antidote implementation. They are

implemented by the user for developing a real IEEE 11073 PHD application. Components

in the dark blue area are IEEE 11073 PHD stack, including domain information model,

service model and communication model, as we introduced earlier. They are well defined

in the standards specification. Other components are Antidote specific components which

facilitate the development for IEEE 11073 PHD applications. We briefly introduce some

major components as follows. Manager and agent APIs include useful functions to the

user for dealing with communication for IEEE 11073 PHD applications. Data encoders

are used to encode data such as measurements and configuration in an independent

format like XML and JSON, so that the developer does not need to be familiar with the

73

data format used in IEEE 11073 PHD. The communication plug-ins offer different choices

for the transport. Antidote provides an interface for communication plug-ins, and allows

the user to implement customized plug-ins. The transcoding plug-in allows devices that

do not support IEEE 11073 PHD to communicate with Antidote.

As shown in Figure 24, the general framework has four major components, test

sequence generator, test data generator, test executor, and test evaluator. Only the test

executor component needs to be implemented in a way that is specific to Antidote, while

the other components can be implemented in a way that is independent from Antidote. In

the following, we focus on the implementation of the test executor for Antidote.

Test data are needed for executing test sequences. In order to execute each

event in a test sequence, we have to invoke corresponding functions provided by

Antidote, or communicate with the system under test using certain messages. Since in

Antidote, the function for receiving messages is provided by the communication plug-in,

we can construct messages and feed them directly to the system under test, without

actually sending and receiving messages across a network.

We use an example to explain how to execute a test sequence. The test

sequence for the manager state machine consists of 5 events. The state transition path is

shown in Figure 26.

The first event “Transport connect indication” is triggered by a manager API

function called “manager_start”. By executing this function, the transport (TCP/IP in this

example) is established. Then the agent requests association (RxAssocReq). For the

manager, this event is an incoming message sent from the agent. The test driver then

builds a correct message msg, and then sends it to the manager using function

“communication_process_apdu” provided by the TCP/IP communication plug-in. Then

the manager should accept this request automatically based on the agent configuration, if

74

we generated correct configuration data. A correct message containing “known

configuration” will lead the manager to the Operating state, while an incorrect message

containing “unknown configuration” will lead the manager to the Waiting for configure

states. Then in the next event, the manager requests association release (assocRelReq)

and this can be done by calling an API “manager_request_association_release” provided

by Antidote. In the last step, the communication transport is disconnected by invoking

another API “manager_stop”.

 Figure 26 An Example of Transition Path (Manager)

4.4 Preliminary Results

In this section we report some preliminary results of testing Antidote using the

prototype tool. We only tested the manager state machine. The flattened manager state

machine shown in Figure 22 contains 7 states, 32 transitions and 15 unique events.

Using the t-way sequence generation algorithm in [9], we generated 249 2-way test

sequences with length ranging from 6 to 12. Each test sequence starts from the

disconnected state, and ends with the same state. We executed these sequences and

collected code coverage using a tool LCOV [10].

75

Since we focus on the communication model, we only present code coverage

data for the source files in the communication folder of Antidote. This folder contains files

that implement the communication model, in terms of state machines, transition rules,

event handling, etc. The files in the sub-directories like parser and plugin are not counted,

since they are not at the core of the communication model and thus are not the target of

our experiment. Also we removed all functions related to agent operations since focus on

manager state machine.

Figure 27 Code Coverage Results

Figure 27 shows the code coverage results. For 6 files, i.e., association.c,

communication.c, configuring.c, context_manager.c, fsm.c, and stdconfigurations.c, we

achieved more than 80% coverage. Whereas the coverage results for other files are low,

these results are consistent with or even better than our expectation because of the

limited scope of our preliminary study. In particular, we only tested the implementation of

the manager state machine, and we did not consider all events like error handling or

operations defined in the service model. We emphasize that this is only a preliminary

76

experiment and it is our plan to test the entire implementation, including the agent state

machine, the service mode, and the error handling mechanism.

4.5 Related Work

In recent years, many researches have been conducted on conformance and

interoperability testing for medical/healthcare devices. These works can be divided into

two categories, i.e., testing health information systems and testing medical or healthcare

devices.

Snelick et. al. [11] compared conformance testing strategies for HL-7, a widely

used standard for healthcare clinical data exchange. They analyzed two techniques for

conducting conformance testing, i.e., using Upper Tester and Lower Tester, and using an

actor based strategy. Namli [12] proposed a complete test execution framework for HL7-

based systems. The framework is built up on an extensible test execution model. This

model is represented by an interpretable test description language, which allows dynamic

setup of test. Berube and Pambrun [13] presented a web application for testing

interoperability in healthcare for sharing images between different institutions. Compared

to their work, we focus on the communication model of IEEE 11073 PHD, and proposed

a general framework for testing devices and applications that communicate using IEEE

11073 PHD standards.

Garguilo et. al. [7] developed conformance testing tools based on an XML

schema derived directly from IEEE 11073 standard and corresponding electronic

representations. The proposed conformance testing approach allows users to abstractly

define devices using device profiles and implementation conformance statements. They

are subsequently used to provide syntactic and semantic validation of medical device

messages, according to IEEE 11073. This is complementary to our work. We focus on

testing event sequences and their tool can be used to evaluate the execution results. Lim

77

et. al. [14] proposed a toolkit that can generate standard PHD messages using user-

defined device information. This facilitates users who are not familiar with the standards

details. This is similar to our test data generator, which generates individual messages

from the domain information model.

78

Chapter 5

Conclusion and Future Work

This dissertation focuses on two important problems in combinatorial testing,

including constrained test generation and combinatorial sequence testing.

For the first problem, we present an efficient algorithm, called IPOG-C, for

constrained combinatorial test generation. The major contribution of our work is three

optimizations employed by algorithm IPOG-C to improve the performance of constraint

handling. These optimizations try to reduce the number of calls to a constraint solver.

When such a call cannot be avoided, these optimizations try to reduce the number of

constraints that have to be solved. We show that these optimizations can be applied to

other test generation algorithms. Experiment results show that these optimizations can

achieve performance improvements of up to two orders of magnitude. The IPOG-C

algorithm is implemented in a combinatorial test generation tool, i.e., named ACTS, which

is freely available to public. A comparative evaluation suggests that ACTS can perform

significantly better than other tools for systems that have more complex constraints.

There are several directions to continue our work. First, we want to conduct more

experiments to evaluate the effectiveness of our algorithm. In particular, the real-life

systems in our experiments have a very small number of forbidden tuples. We want to

investigate whether this is the case in general and if possible, apply our algorithm to real-

life systems with a large number of forbidden tuples. Second, we want to develop

efficient schemes to parallelize our algorithm. For example, we could divide the complete

set of target combinations into several subsets, and then assign these subsets to

different cores or processors. As another example, when we try to select the best value

of a parameter, we could employ multiple cores or processors to determine the weight of

each value. Finally, we plan to investigate how to integrate our algorithm into an existing

79

test infrastructure. Most work on combinatorial testing only addresses the test generation

problem. Combinatorial testing can generate a large number of tests. It is thus particularly

important to streamline the entire test process, i.e., integrate our test generation tool with

other tools that automate test execution and test evaluation.

For the second problem, we presented our work on the problem of t-way test

sequence generation. Our system model is defined in a general manner and can be used

to model different types of systems, e.g., GUI applications, web applications and

concurrent systems. We proposed an efficient algorithm for generating t-way target

sequences that avoids redundant computations in checking the validity of all t-

permutations of given events. We also presented several algorithms for generating test

sequences to achieve t-way sequence coverage. We believe that these algorithms

represent the first effort to systematically explore the possible strategies for solving the

problem of t-way test sequence generation in a general context.

This work is the first stage of a larger effort that tries to expand the domain of

combinatorial testing from test data generation to test sequence generation. In the next

stage, we plan to conduct controlled experiments and case studies to investigate the fault

detection effectiveness of t-way sequence testing for practical applications. In particular,

we plan to apply and adapt the algorithms reported in this paper to test concurrent

programs. Concurrency-related faults are notoriously difficult to detect because a

concurrent program may exercise different synchronization behaviors due to the

existence of race conditions. We believe that t-way sequence testing can be an effective

technique to explore the different sequences of synchronization events that could be

exercised by a concurrent program. Also we will complete our study of testing Antidote

using the proposed framework. In particular, we will generate test sequences from the

complete state machine, and also measure the effectiveness of the framework using real

80

and/or seeded faults in addition to code coverage. Furthermore, we will apply our

framework to test some real devices to check their compliance with the IEEE 11073 PHD

standards. The goal of our project is to develop a set of tools that can automate, as much

as possible, the conformance testing process of medical devices designed to be IEEE

11073 PHD compliant.

81

References

[1] D. R. Kuhn and M. J. Reilly, "An investigation of the applicability of Experiments to

Software Testing," in 27th NASA/IEEE Software Engineering Workshop, 2002.

[2] D. R. Wallace and D. R. Kuhn, "Failure modes in medical device software: An

analysis of 15 years of recall data," International Journal of Reliability, Quality and

Safety Engineering, pp. 301-311, 2001.

[3] D. R. Kuhn, D. R. Wallace and A. J. Gallo Jr., "Software fault interactions and

implications for software testing," IEEE Transactions on Software Engineering , vol.

30, no. 6, pp. 418-421 , 2004.

[4] M. Grindal, J. Offutt and J. Mellin, "Managing conficts when using combination

strategies to test software," in the 2007 Australian Software Engineering Conference

(ASWEC 2007), 2007.

[5] Y. Lei, R. Kacker, D. Kuhn, V. Okun and J. Lawrence, "IPOG: A general strategy for

t-way software testing," Engineering of Computer-Based Systems, 2007.

[6] ACTS. [Online]. Available: http://csrc.nist.gov/groups/SNS/acts/.

[7] M. Cohen, M. Dwyer and J. Shi, "Interaction testing of highly-configurable systems in

the presence of constraints," in 5th international symposium on software testing and

analysis, 2007.

[8] J. Czerwonka, "Pairwise testing in real world," in 10th Pacific northwest software

quality conference, 2006.

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, "“The AETG system: An

approach to testing based on combinatorial design," IEEE Transactions On Software

Engineering, vol. 23, no. 7, p. 437–444, 1997.

[10] "Choco Solver," [Online]. Available: http://www.emn.fr/z-info/choco-solver/.

[11] M. Cohen, M. Dwyer and J. Shi, "Constructing interaction test suites for highly-

configurable systems in the presence of constraints: a greedy approach," IEEE

Transactions On Software Engineering, vol. 34, p. 633–650, 2008.

[12] D. Kuhn and V. Okum, "Pseudo-exhaustive testing for software," in IEEE/NASA

Software Engineering Workshop, 2006.

[13] A. Calvagna and A. Gargantini, "T-wise combinatorial interaction test suitees

82

construction based on coverage inheritance," in Software Testing, Verification and

Reliability, 2009.

[14] B. Garvin, M. Cohen and M. Dwyer, "An improved meta-heuristic search for

constrained interaction testing," in 1st International Symposium on Search Based

Software Engineering, 2009.

[15] B. Garvin, M. Cohen and M. Dwyer, "Evaluating Improvements to a Meta-Heuristic

Search for Constrained Interaction Testing," Empirical Software Engineering

(EMSE), vol. 16, no. 1, pp. 61-102, 2011.

[16] A. Hervieu, B. Baudry and A. Gottlieb, "PACOGEN : Automatic Generation of Test

Configurations from Feature Models," in Int. Symp. on Soft. Reliability Engineering,

2011.

[17] G. Perrouin, S. Sen, J. Klein, B. Baudry and Y. L. Traon, "Automated and Scalable

T-wise Test Case Generation Strategies for Software Product Lines," in IEEE

International Conference on Software Testing Validation and Verification, 2010.

[18] M. F. Johansen, O. Haugen and F. Fleurey, "An Algorithm for Generating T-wise

Covering Arrays from Large Feature Models," in the 16th International Software

Product Line Conference, 2012.

[19] Y. S. Mahajan, Z. Fu and S. Malik, "Zchaff2004: An efficient sat solver," in SAT 2004,

2004.

[20] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill and D. Engler, "EXE: Automatically

Generating Inputs of Death," ACM Transactions on Information and System Security

(TISSEC), vol. 12, no. 2, 2008.

[21] A. M. Memon, M. L. Soffa and M. E. Pollack, "Coverage criteria for GUI testing," the

8th European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, pp. 256-267, 2001.

[22] W. Wang, S. Sampath, Y. Lei and R. Kacker, "An Interaction-Based Test Sequence

Generation Approach for Testing Web Applications," in High Assurance Systems

Engineering Symposium, 2008.

[23] C. E. McDowell and D. P. Helmbold, "Debugging concurrent programs," ACM

Computing Surveys (CSUR), p. 21(4):593–622, 1989.

[24] G. D. Lucca and M. D. Penta, "Considering Browser Interaction in Web Application

83

Testing," in 5th International Workshop on Web Site Evolution, 2003.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,

2nd edition, The MIT Press, 2001.

[26] A. Hartman and L. Raskin, "Problems and algorithms for covering arrays," Discrete

Mathematics, p. 149–156, 2004.

[27] M. B. Cohen, C. J. Colbourn, P. B. Gibbons and W. B. Mugridge, "Constructing test

suites for interaction testing," in 25th IEEE International Conference on Software

Engineering, 2003.

[28] R. Mandl, "Orthogonal Latin squares: An application of experiment design to

compiler testing," Communications of the ACM, 1985.

[29] M. A. Chateauneuf, C. J. Colbourn and D. L. Kreher, "Covering arrays of strength 3,"

in Designs, Codes, and Cryptography, 1999.

[30] M. Grindal, J. Offutt and S. F. Andler, "Combination Testing Strategies: A Survey,"

Journal of Software Testing, Verification and Reliability, pp. 97-133, 2005.

[31] W. Wang, Y. Lei, S. Sampath, R. Kacker, D. Kuhn and J. Lawrence, "A

Combinatorial Approach to Building Navigation Graphs for Dynamic Web

Applications," in 25th IEEE International Conference on Software Maintenance,

2009.

[32] D. R. Kuhn, J. Higdon, J. Lawrence, R. Kacker and Y. Lei, "Combinatorial Methods

for Event Sequence Testing," in The 1st workshop on Combinatorial Testing in

conjunction with the fifth International Conference on Software Testing, 2012.

[33] X. Yuan, M. B. Cohen and A. M. Memon, "Covering Array Sampling of Input Event

Sequences for Automated GUI Testing," in 22nd IEEE/ACM international conference

on Automated Software Engineering, 2007.

[34] X. Yuan, M. B. Cohen and A. M. Memon, "GUI Interaction Testing: Incorporating

Event Context," IEEE Transactions on Software Engineering, 2011.

[35] A. Mathur, Foundations of Software Testing, Pearson Education, 2008.

[36] R. Binder, Testing Object-Oriented Systems, Addison Wesley, 2000.

[37] "Continua Health Alliance," [Online]. Available: http://www.continuaalliance.org/.

[38] IEEE Std 11073-20601™, Health informatics – Personal health

84

devicecommunication– Part 20601: Optimized exchange protocol.

[39] D. R. Kuhn, D. R. Wallace and A. J. Gallo Jr., "Software fault interactions and

implications for software testing," IEEE Transactions on Software, 2004.

[40] D. R. Kuhn and M. J. Reilly, "An investigation of the applicability of," in 27th

NASA/IEEE Software Engineering Workshop, 2002.

[41] D. R. Wallace and D. R. Kuhn, "Failure modes in medical device software: An

analysis of 15 years of recall data," International Journal of Reliability, Quality and

Safety Engineering, 2001.

[42] J. Garguilo, S. Martinez and M. Cherkaoui, "Medical Device Communication: A

Standards-based Conformance Testing Approach," in the 9th International HL7

Interoperability Conference, 2008.

[43] "Antidote Program Guide," 2012. [Online]. Available:

http://oss.signove.com/index.php/File:AntidoteProgramGuide.pdf.

[44] L. Yu, Y. Lei, R. Kacker, D. R. Kuhn and J. Lawrence, "Efficient Algorithms for T-way

Test Sequence Generation," in 2012 IEEE 17th International Conference on

Engineering of Complex Computer Systems, 2012.

[45] "LCOV: graphical GCOV front-end," [Online]. Available:

http://ltp.sourceforge.net/coverage/lcov.php.

[46] R. Snelick, L. Gebase and M. Skall, "Conformance Testing and Interoperability: A

Case Study in Healthcare Data Exchange," in International Conference on Software

Engineering Research and Practice, 2008.

[47] T. Namli, G. Aluc and A. Dogac, "An Interoperability Test Framework for HL7-Based

Systems, Information Technology in Biomedicine," in IEEE Transactions on

Information Technology in Biomedicine, 2009.

[48] R. Berube and J. Pambrun, "Interoperability Testing Software for Sharing Medical

Documents and Images," in Fifth International Conference on Internet and Web

Applications and Services, 2010.

[49] J. Lim, C. Park, S. Park and K. Lee, "ISO/IEEE 11073 PHD message generation

toolkit to standardize healthcare device," in Engineering in Medicine and Biology

Society, 2011.

[50] D. Kuhn and M. Reilly, "An investigation of the applicability of design of experiments

85

to software testing," in 27th NASA/IEEE Software Engineering Workshop, 2002.

[51] L. Yu, M. Nouroz Borazjany, Y. Lei, R. Kacker and D. R. Kuhn, "An Efficient

Algorithm for Constraint Handling in Combinatorial Test Generation," in IEEE

International Conference on Software Testing, Verification and Validation (ICST

2013), 2013.

[52] L. Yu, Y. Lei, R. Kacker and D. R. Kuhn, "ACTS: A Combinatorial Test Generation

Tool," in IEEE International Conference on Software Testing, Verification and

Validation (ICST 2013 Tools Track), 2013.

[53] T. Thüm, C. Kästner, F. Benduhn and J. Meinicke, "FeatureIDE: An extensible

framework for feature-oriented software development," Science of Computer

Programming, 2012.

[54] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker and R. Kuhn, "Combinatorial Testing of

ACTS: A Case Study," 2012.

[55] D. Kuhn, J. Higdon, J. Lawrence, R. Kacker and Y. Lei, "Combinatorial Methods for

Event Sequence Testing," in FIrst Intl Workshop on Combinatorial Testing, 2012.

[56] J. Lim, C. Park, S. Park and K. Lee, "ISO/IEEE 11073 PHD message generation

toolkit to standardize healthcare device," in IEEE Engineering in Medicine and

Biology Society, 2011.

[57] R. Berube and J. Pambrun, "Interoperability Testing Software for Sharing Medical

Documents and Images," in Fifth International Conference on Internet and Web

Applications and Services, 2010.

[58] M. Voelter, "Using Domain-Specific Languages for Product Line Engineering,"

Tutorial at SPLC 2009, 2009.

[59] T. Namli, G. Aluc and A. Dogac, "An Interoperability Test Framework for HL7-Based

Systems, Information Technology in Biomedicine," IEEE Transactions on Information

Technology in Biomedicine, vol. 13, no. 3, pp. 389- 399 , 2009.

[60] P. Brooks, B. Robinson and A. M. Memon, "An initial characterization of industrial

graphical user interface systems," in the 2nd IEEE International Conference on

Software Testing, Verification and Validation, 2009.

[61] M. Mendonca, M. Branco, Cowan and Donald, " S.P.L.O.T. - Software Product Lines

Online Tools," in In Companion to the 24th ACM SIGPLAN International Conference

86

on Object-Oriented Programming, Systems, Languages, and Applications, 2009.

[62] M. Forbes, J. Lawrence, Y. Lei, R. Kacker and D. R. Kuhn, "Refining the In-

Parameter-Order Strategy for Constructing Covering Arrays," 2008.

[63] J. Czerwonka, "Pairwise testing in real world," in 10th Pacific northwest software

quality conference, 2006.

[64] K. Pohl, G. Böckle and F. J. v. d. Linden, Software Product Line Engineering:

Foundations, Principles and Techniques, Springer-Verlag New York, Inc., 2005.

[65] A. W. Williams, "Determination of test configurations for pair-wise interaction

coverage," in 13th International Conference on the Testing of Communicating

Systems, 2000.

[66] Y. Tung and W. S. Aldiwan, "Automating test case generation for the new generation

mission software system," in IEEE Aerospace Conference, 2000.

[67] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-

oriented domain analysis," Carnegie-Mellon University Software Engineering, 1990.

[68] R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," IEEE

Transactions on Computers, 1986.

[69] S. Warshall, "A theorem on boolean matrices. Journal of the ACM," Journal of the

ACM, 1962.

[70] "Antidote Program Guide," [Online]. Available:

http://oss.signove.com/index.php/File:AntidoteProgramGuide.pdf.

[71] [Online]. Available: http://oss.signove.com/index.php/Antidote:_IEEE_11073-

20601_stack.

87

Biographical Information

Linbin Yu received his B.S. degree in Electronic Science and Technology and

M.S degree in Computer Science from the University of Science and Technology of

China in 2004 and 2009 respectively. He received his PhD degree in Computer Science

and Engineering from the University of Texas at Arlington in August 2013.

	Acknowledgements
	Abstract
	List of Illustrations
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Constrained Test Generation
	2.1 Preliminaries
	2.2 The IPOG Algorithm
	2.3 The IPOG-C Algorithm
	2.3.1 The Base Version of Algorithm IPOG-C
	2.3.2 Validity Check
	2.3.3 Optimizations
	A. Avoiding Unnecessary Validity Checks of Target Combinations
	B. Checking Relevant Constraints Only
	C. Recording the Solving History

	2.3.4 Applying Optimizations to Other Algorithms

	2.4 Experiments
	2.4.1 Subject Systems
	2.4.2 Evaluation of the Optimizations
	2.4.3 Evaluation of Different Factors
	A. Test Strength
	B. Number of Parameters
	C. Domain Size
	D. Number of Forbidden Tuples

	2.4.4 Comparison with Other Tools

	2.5 Related Work

	Chapter 3 Combinatorial Sequence Testing
	3.1 Preliminaries
	3.1.1 System Model
	3.1.2 T-way Sequence Coverage

	3.2 Target Sequence Generation
	3.3 Test Sequence Generation
	3.3.1 A Target-Oriented Algorithm
	3.3.2 A Brute Force Algorithm
	3.3.3 An Incremental Extension Algorithm
	3.3.4 An SCC-Base Algorithm
	A. Build Acyclic LTS
	B. Find Abstract Paths
	C. Generate Test Sequences

	3.3.5 Comparison of Test Generation Algorithms

	3.4 Experiments
	3.4.1 Case Study: The Java Threads System
	3.4.2 Synthesized Systems
	3.4.3 Results and discussions

	3.5 Related Work
	3.5.1 Combinatorial Test Data Generation
	3.5.2 Test Sequence Generation
	3.5.3 Test Sequence Coverage Criteria

	Chapter 4 Case Study: Testing IEEE 11073 PHD
	4.1 IEEE 11073 PHD STANDARDS
	4.1.1 Agent and Manager
	4.1.2 Architecture
	4.1.3 IEEE 11073-20601

	4.2 The General Conformance Testing Framework
	4.2.1 Test Sequence Generator
	4.2.2 Test Data Generator
	4.2.3 Test Executor
	4.2.4 Test Evaluator

	4.3 A Prototype Tool
	4.4 Preliminary Results
	4.5 Related Work

	Chapter 5 Conclusion and Future Work
	References
	Biographical Information

