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ABSTRACT

VARIANTS OF MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS):

CONVEX VS. NONCONVEX, PIECEWISE-LINEAR VS. SMOOTH

AND SEQUENTIAL ALGORITHMS.

DIANA LUISA MARTINEZ CEPEDA, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Victoria C. P. Chen

Multivariate adaptive regression splines (MARS) is a statistical modeling method

used to represent high-dimensional data with interactions. It uses different algorithms

to select the terms to be included in the approximation model that best represent

the data. In addition, it performs a variable selection, therefore the most significant

predictors are shown in the final model.

Design and analysis of computer experiments (DACE) is a statistical technique

for creating approximations (called metamodels) of computer models. The goal of

DACE is to efficiently predict the response value of a computer model. MARS has

been used as a metamodel in DACE techniques. One of the most important properties

of MARS is that, it is flexible in its structure, but it can still be restricted to satisfy

certain characteristics. For optimization problems in which there is an unknown

function that must be approximated, DACE approach could be applied. In stochastic

dynamic programming (SDP) for example, MARS could be used to approximate the

unknown future value function. However if the function to optimize is known to
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follow certain properties such as convexity, then the statistical metamodel, in this

case MARS should seek to satisfy these properties.

Based on the original MARS structure, different variants have been developed

including the ability to model a convex function or a piecewise-linear function, or a

smoothing option using a quintic routine. By enabling these variants, MARS model-

ing facilitates the optimization process.

DACE has had an enormous contribution for studying complex systems, how-

ever one consistent concern for researchers is computational time. As researchers seek

to study more and more complex systems, corresponding computer models continue

to push the limits of computing power. To overcome this drawback and to reduce

computational effort, efficient sequential approaches have been studied.

This research focuses its efforts on the development of sequential approaches

based on the MARS model. The objective is to sequentially update the approxima-

tion function using current and new input data points. Additionally, by using fewer

input data points, an accurate prediction of the unknown function could be obtained

faster. This could also facilitate the computational effort of an optimization process.

Different case studies are shown in order to test the different MARS variants and

sequential MARS approaches proposed in this dissertation. These cases include an

inventory forecasting problem, an automotive crash safety design problem and an air

pollution SDP problem.

vii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Regression-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 MARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Convex MARS . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Polynomial Regression Models . . . . . . . . . . . . . . . . . . 14

2.1.4 Principal Component Regression . . . . . . . . . . . . . . . . 15

2.1.5 Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.6 Projection Pursuit Regression . . . . . . . . . . . . . . . . . . 17

2.1.7 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 18

2.1.8 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Interpolating Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . 21

viii



2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Sequential Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. VARIANTS OF MARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Convex MARS Review . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Model for Interaction Basis Functions . . . . . . . . . . . . . . 28

3.1.2 Convexity Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Variants of MARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Convex vs. Nonconvex MARS . . . . . . . . . . . . . . . . . . 40

3.2.2 Piecewise-Linear vs. Smooth . . . . . . . . . . . . . . . . . . . 42

3.2.3 Piecewise-Linear MARS for Binary Variables . . . . . . . . . . 47

4. SEQUENTIAL MARS ALGORITHMS . . . . . . . . . . . . . . . . . . . . 56

4.1 Sequential MARS 1 - Fit a MARS Function from Scratch. . . . . . . 60

4.2 Sequential MARS 2 - Update the Estimated Model Coefficients. . . . 62

4.3 Sequential MARS 3 - Build on an Existing MARS Function: Sum of

MARS Approximations Based on Residuals. . . . . . . . . . . . . . . 66

4.4 Sequential MARS 4 - Build on an Existing MARS Function: Sum of

MARS Approximations. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Sequential MARS 5 - Build on an Existing MARS Function: One

MARS Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Inventory Forecasting Problem . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Convex MARS . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 MARS Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Safety System Design of Automotive Vehicle: Nonconvex Piecewise-

Linear MARS with Binary Variables . . . . . . . . . . . . . . . . . . 102

5.3 Air Quality Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



5.3.1 Sequential MARS . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.2 Convex MARS Applied in Dynamic Programming . . . . . . . 129

6. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 140

Appendix

A. MARS ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 162

x



LIST OF ILLUSTRATIONS

Figure Page

3.1 Original MARS two-way interaction basis function . . . . . . . . . . . 27

3.2 Possible directions of a two-way interaction term in original MARS . . 30

3.3 Possible directions of a two-way interaction term in convex MARS when

φ = +1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Possible directions of a two-way interaction terms in convex MARS

when φ = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Two-way interaction term in (a) original MARS vs. (b) convex MARS

from Shih [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Nonconvex (a) vs. convex (b) approximation functions . . . . . . . . . 43

3.7 Two-way interaction term with (a) piecewise-linear fit vs. (b) quintic fit 46

3.8 Directions for a pair of univariate terms for binary variables in piecewise-

linear MARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Possible directions of a two-way interaction terms with binary variables

in piecewise-linear MARS when φ = +1 . . . . . . . . . . . . . . . . . 52

3.10 Possible directions of a two-way interaction terms with binary variables

in piecewise-linear MARS when φ = −1 . . . . . . . . . . . . . . . . . 53

3.11 Possible directions of a two-way interaction terms with a binary variable

and a continuous variable with k2 = −0.5 in piecewise-linear MARS

when φ = +1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



3.12 Possible directions of a two-way interaction terms with a binary variable

and a continuous variable with k2 = −0.5 in piecewise-linear MARS

when φ = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Sequential MARS approach . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Four-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points: (1) MARS, (2) Convex

MARS (τ = 0), (3) Convex MARS (τ > 0) . . . . . . . . . . . . . . . . 89

5.2 Nine-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 1000 points: (1) MARS, (2) Convex

MARS (τ = 0), (3) Convex MARS (τ > 0) . . . . . . . . . . . . . . . . 90

5.3 Four-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points. Data sets include random

noise, CV=0.01: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Four-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points. Data sets include random

noise, CV=0.05: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Four-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points. Data sets include random

noise, CV=0.10: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Nine-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 1000 points. Data sets include random

noise, CV=0.01: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



5.7 Nine-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 1000 points. Data sets include random

noise, CV=0.05: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Nine-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 1000 points. Data sets include random

noise, CV=0.10: (1) MARS, (2) Convex MARS (τ = 0), (3) Convex

MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.9 Four-dimensional inventory forecasting problem. Comparison of me-

dian absolute error from different data sets (original and with noise,

CV=0.01, CV=0.05 and CV=0.10). (1) MARS, (2) Convex MARS

(τ = 0), (3) Convex MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . 103

5.10 Nine-dimensional inventory forecasting problem. Comparison of me-

dian absolute error from different data sets (original and with noise,

CV=0.01, CV=0.05 and CV=0.10). (1) MARS, (2) Convex MARS

(τ = 0), (3) Convex MARS (τ > 0) . . . . . . . . . . . . . . . . . . . . 104

5.11 Four-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points. (1) Original MARS, (2)

Nonconvex piecewise-linear, (3) Nonconvex piecewise-linear using origi-

nal backward algorithm, (4) Nonconvex smooth, (5) Nonconvex smooth

using original backward algorithm, (6) Convex piecewise-linear (τ > 0)

and (7) Convex smooth (τ > 0) . . . . . . . . . . . . . . . . . . . . . . 105

xiii



5.12 Nine-dimensional inventory forecasting problem. Comparison of box-

plots based on a validation set of 100 points. (1) Original MARS, (2)

Nonconvex piecewise-linear, (3) Nonconvex piecewise-linear using origi-

nal backward algorithm, (4) Nonconvex smooth, (5) Nonconvex smooth

using original backward algorithm, (6) Convex piecewise-linear (τ > 0)

and (7) Convex smooth (τ > 0) . . . . . . . . . . . . . . . . . . . . . . 106

5.13 Residual plots of the models that showed curvature of the automotive

vehicle case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.14 MSE results from the different sequential MARS algorithms . . . . . . 129

5.15 Last period of the air quality SDP optimal value function from Yang

et al. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.16 Last period of the air quality SDP optimal solution value function

estimated by sequential MARS 1 (iteration 14) (Table 5.24) . . . . . . 131

5.17 Last period of the air quality SDP optimal value function from Ariya-

junya [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.18 Last period of the air quality SDP optimal solution value function

estimated by convex MARS . . . . . . . . . . . . . . . . . . . . . . . . 138

xiv



LIST OF TABLES

Table Page

3.1 General parameter settings to generate the variants of MARS . . . . . 40

3.2 Variants of MARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Input parameter settings for the initial MARS approximation. . . . . 58

4.2 Initial input points for variables i = 1, ..., n, N = 10. . . . . . . . . . . 72

4.3 Selected knots for variables i = 1, ..., n. . . . . . . . . . . . . . . . . . 73

4.4 Existing knots (yellow) and preliminary new selected knots (blue) for

variables i = 1, ..., n, N = 20. . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Final knots selection. Existing knots (yellow), preliminary new selected

knots (blue) and knots that needed to be relocated (magenta) for vari-

ables i = 1, ..., n, N = 20. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Parameter settings for the versions of MARS on the four-dimensional

inventory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Parameter settings for the versions of MARS on the nine-dimensional

inventory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Main effect terms of the original MARS function for the four-dimensional

inventory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Main effect terms of the original MARS function for the nine-dimensional

inventory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Comparison of various threshold values based on different percentages of

the maximum absolute coefficient from original MARS. Median absolute

error is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



5.6 Four-dimensional case. Comparison of various threshold values based

on different percentages of the maximum absolute coefficient from origi-

nal MARS tested in data sets containing random noise. Median absolute

error is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Nine-dimensional case. Comparison of various threshold values based

on different percentages of the maximum absolute coefficient from origi-

nal MARS tested in data sets containing random noise. Median absolute

error is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Median of the absolute error (four-dimensional case). . . . . . . . . . 96

5.9 Median of the absolute error (nine-dimensional case). . . . . . . . . . 96

5.10 Parameter settings for MARS variants on the four-dimensional inven-

tory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 Parameter settings for MARS variants on the nine-dimensional inven-

tory forecasting problem. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.12 MARS variants absolute error boxplot numerical results on the four-

dimensional inventory forecasting problem. . . . . . . . . . . . . . . . 101

5.13 MARS variants absolute error boxplot numerical results on the nine-

dimensional inventory forecasting problem. . . . . . . . . . . . . . . . 102

5.14 Description and details of the input variables of the automotive vehicle

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.15 R-squared of the multiple linear regression models of the automotive

vehicle case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.16 Variance inflation factor of the regressors of the automotive vehicle case.110

5.17 Minimum distance measures between design points. . . . . . . . . . . 110

5.18 Minimum distance measures between design points for different input

data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xvi



5.19 Stepwise linear and MARS approximation models for two different data

sets (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.20 Stepwise linear and MARS approximation models for two different data

sets (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.21 MARS results for approximating the SDP future value functions and

corresponding computational times. . . . . . . . . . . . . . . . . . . . 118

5.22 State variables for the last stage of the air quality SDP problem. . . . 120

5.23 General and constant input parameters for sequential MARS approaches.120

5.24 Sequential MARS 1 applied to the last stage of the SDP air quality

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.25 Sequential MARS 2 applied to the last stage of the SDP air quality

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.26 Sequential MARS 3 applied to the last stage of the SDP air quality

problem. Note: the cumulative number of candidate knots is the number

of candidate knots from previous iterations plus the current number of

eligible knots; however, to generate the approximation function at each

iteration only 10 knots were candidates to choose from. . . . . . . . . . 123

5.27 Sequential MARS 4 applied to the last stage of the SDP air quality

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.28 Sequential MARS 5 applied to the last stage of the SDP air quality

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.29 Other results for sequential MARS 3 and 4 applied to the last stage of

the SDP air quality problem. . . . . . . . . . . . . . . . . . . . . . . . 126

5.30 Preliminary results for sequential MARS 5 applied to the last stage of

the SDP air quality problem. . . . . . . . . . . . . . . . . . . . . . . . 127

xvii



5.31 Cumulative computational times (hr:min:sec) for sequential MARS ap-

proaches applied to the last stage of the SDP air quality problem. . . . 128

5.32 MARS results for approximating the SDP future value functions and

corresponding computational times. . . . . . . . . . . . . . . . . . . . 133

5.33 Results using different thresholds (τ) for modeling the last stage of the

SDP air quality problem. . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.34 Calculating the threshold value using the proposed approach based on

the mean for the inventory forecasting case. . . . . . . . . . . . . . . . 136

5.35 Calculating the threshold value using the proposed approach based on

the median for the inventory forecasting case. . . . . . . . . . . . . . . 136

xviii



List of Algorithms

4.1 Sequential MARS 1 Algorithm . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Sequential MARS 2 Algorithm . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Sequential MARS 3 Algorithm . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Sequential MARS 4 Algorithm . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Algorithm for setting knots . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Algorithm for assigning number of new knots. . . . . . . . . . . . . . 76

4.7 Algorithm to determine the final set of knots. . . . . . . . . . . . . . 77

4.8 Sequential MARS 5 Algorithm . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Convex MARS Interaction Transformation Algorithm (CIT) . . . . . 147

A.2 Convex MARS Forward Coefficient Restriction Algorithm (FCR) . . . 148

A.3 Convex MARS backward Iteration of Pruning and Refitting Algorithm

(BIPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xix



CHAPTER 1

INTRODUCTION

1.1 Motivation

The purpose of a statistical model is to estimate the relationship between a

set of predictor or factor variables and one or more response variables through a

mathematical expression and enable the prediction of future responses. Typically,

statistical models utilize data that come from observational studies or from designed

experiments. In designed experiments, the conditions of the factor variables are

controlled, while in observational studies, they are not. However, there are complex

situations for which performing a physical experiment is impractical, for example if

it is too costly or simply impossible to perform. If we consider the case of identifying

control strategies for reducing ozone pollution, it is impractical to create a study that

manipulates emissions leading to ozone and then observes the resulting pollution

levels. In such cases, it may be possible to develop a computer model to represent the

performance of the system, and then use this computer model to study the system.

A simulation is the most common type of computer model used for computer

experiments. Often a deterministic simulation is used, but random variation that

might exist in the real system can be added by simulating external noise and internal

variations in the input variables (Chen et al. [4]). Computer models have been used

for decades with many fields of research applying them extensively. Some applications

include Vorwerg et al. [5], Wei et al. [6], Drignei and Popescu [7]. For computer model

validation see Bayarri et al. [8].
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For complex systems, an accurate computer model may be computationally

expensive, making it difficult to conduct a comprehensive exploration of the system

via a näıve trial and error process. To overcome this difficulty, a statistical model can

be used to estimate the relationship between the input and output of the simulation

model. This is known as a surrogate model or metamodel of the computer model.

In design and analysis of computer experiments (DACE), metamodel construc-

tion has two components, an experimental design and a statistical approximation

model. The experimental design is chosen to efficiently explore the input space of

the computer model, while the statistical model seeks to provide a computationally

quick representation of some aspect of the computer model output, such as a partic-

ular performance measure of interest. An important objective of the approximation

model is to be able to represent the system accurately. This will definitely rely on the

input information given and the objective of the application; therefore, selecting the

type of experiment and the statistical model is an important task that will depend

on the nature of the system. Sacks et al. [9] emphasizes this in his work and provides

an efficient design and analysis of computer experiments (DACE) framework applied

to an electronic-circuit simulator example. Other research on computer experiments

includes Barton [10], Morris et al. [11], Tu and Barton [12], Barton [13], Wang and

Tang [14], Alvarez et al. [15].

The designs of experiments often used for DACE are response surface model

(RSM) designs, orthogonal arrays (OA), and Latin hypercube (LH). Other used de-

signs are the ones considered low-discrepancy sequences such as Sobol [16] and Ham-

mersley sequences [17]. Examples of the approximation models are polynomial re-

sponse surface models, Kriging, Gaussian processes, regression trees, artificial neural

network (ANN) and multivariate adaptive regression splines (MARS).
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The particular focus of this dissertation is on the MARS method. MARS, in-

troduced by Friedman in 1991 [18] is a flexible statistical modeling technique that

can represent nonlinear complex structures with high-dimensional data and interac-

tions. MARS has different important properties that are suitable for both statistical

and optimization objectives. It builds the model parsimoniously via stepwise pro-

cedures and most importantly, MARS is flexible in its structure that is, the base

model can be modified relatively easy. However, it can still be restricted to satisfy

certain characteristics required by the underlying function. Other statistical methods

such as polynomial models and artificial neural networks present similar properties,

in particular flexibility, but their structure is not as easy to manipulate as it is for

the MARS model.

Considering this advantage, the MARS method has become very attractive.

Different researchers have concentrated their efforts on this method and have modified

the original structure seeking to satisfy certain properties (Chen et al. [19], Bakin et

al. [20], Tsai and Chen [21], Shih [1] and Weber et al. [22]). The use of the MARS

method has been extended in past years and has been applied in diverse research

areas such as science, technology, transportation, finance and healthcare. MARS has

also been used as a metamodel in DACE approaches (Chen [23], Chen et al. [24], Tsai

and Chen [21], Cervellera et al. [25], Siddappa [26], Pilla [27], Yang et al. [2]).

In optimization problems, selecting the right method to use in order to find an

optimal solution is a critical task. This method selection primarily depends on the

function structure, for example, if it is desired to optimize a function that presents

nonconvexity, using an optimization method that can handle nonconvexity is favor-

able. Now, in situations where the function to optimize needs to be approximated

by a statistical model (surrogate method), it is favorable to use an approximation
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model that can meet the function needs. This motivated the development of different

MARS variants that can satisfy different structural properties.

The original MARS method employs a forward and a backward procedure;

the variants of MARS follow the same logic to construct the model, however some

alterations are made to adapt convexity, linearity and a smoothing routine. By being

able to select the model that best corresponds to the underlying function, a more

accurate prediction can result from the approximation function. This is advantageous

not only for optimization purposes to help finding a local or global optima, but also

for statistical purposes where the objective is to obtain the best possible fit.

The variants of MARS use a linear transformation for the interaction terms

proposed by Shih [1], who created the convex version of MARS. The quintic func-

tion introduced by Chen [28] for smoothing the function is also used in some of the

variants. By combining the modifications made by Shih [1] and the smoothing rou-

tine, four different variants are derived, convex with a piecewise-linear fit, convex

with smoothing routine, nonconvex with a piecewise-linear fit and nonconvex with

smoothing routine. The last two have the option to reduce the complexity of the

function by selecting the original MARS backward algorithm. An additional advan-

tage is incorporated to the variants that require a piecewise-linear fit, which is the

ability to handle binary variables.

The DACE approach has had an enormous contribution for studying complex

systems; however, one consistent concern for researchers in optimization is to stream-

line the process by reducing the computational time. Although computers have be-

come more powerful over the years resulting in a growing use of computer models,

optimization of computer models requires running the computer model at many in-

puts. As researchers seek to study more and more complex systems, corresponding

computer models continue to push the limits of computing power.
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A strategy to overcome this problem and to reduce the computational time,

and thus the computational cost, is to use sequential approaches. A sequential ap-

proach refers to the iterative evaluation of a model’s performance using a non-fixed

sample size that is gradually collected. To quote Fan [29]: “Sequential DACE can

be used for metamodel-based design optimization or for global metamodeling (Jin et

al. [30]).” Sequential design for optimization searches for the optimal set of points for

the design while simultaneously exploring other potentially important regions with

the purpose of finding a global optimum. On the other hand, sequential approaches

for metamodels have the purpose of improving the accuracy at each iteration.

This research introduces efficient sequential algorithms that are based on the

MARS model structure. An initial sample size considered to be small is used to

obtain a coarse approximation model. Then the sample size is increased at each

iteration, enabling the use of current and new points to update the approximation.

The accuracy of the model is evaluated at each iteration with a testing data set.

The overall approach is then stopped by a criterion that could be based on either

statistical or optimization purposes.

The objective of these approaches is to increase the prediction accuracy by

updating the approximation function once new data are received. Five different al-

gorithms are proposed:

• Sequential MARS 1 - fit a MARS function from scratch at each iteration,

• Sequential MARS 2 - update the estimated model coefficients at each iteration,

• Sequential MARS 3 - build on an existing MARS function: sum of MARS

approximations based on residuals,

• Sequential MARS 4 - build on an existing MARS function: sum of MARS

approximations,
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• Sequential MARS 5 - build on an existing MARS function: one MARS approx-

imation.

These approaches have been tested on an air pollution problem and have shown

efficient results in terms of accuracy and computational time.

1.2 Research Framework

The dissertation is organized as follows. Chapter 2 provides a literature re-

view of different statistical models that are specifically used for high dimensional

cases. It also provides a background of existing sequential approaches. Chapter 3

contains an extended review of convex MARS and the explanation of the variants

of MARS including the usage of binary variables. Chapter 4 provides the details of

the purposed approaches for sequential MARS. Chapter 5 contains three different

case studies where both the variants of MARS and sequential MARS approaches are

applied. Finally chapter 6 shows the conclusions and future work.
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CHAPTER 2

LITERATURE REVIEW

The present section discusses different statistical modeling methods that are

well known in the literature; it also distinguishes their main properties. The objec-

tive is to review statistical models that can handle high dimensionality with inter-

actions, contain numerical responses, and that can model complex structures. The

complexity of a model is the number of degrees of freedom used to fit it (Friedman

and Stuetzle [31]).

The different methods can be classified in diverse manners based on their prop-

erties, such as parametric vs. nonparametric or regression vs. classification. However

the property that is of more interest to this work is the ability to interpolate. There-

fore, the classification of the presented methods is divided into two groups, regression-

based approaches (which are non-interpolating) vs. interpolating approaches.

Interpolation is used to estimate new values by using the existing information

to cover certain regions that are not fully represented in the space by the known

values. The estimation must be within the existing ranges. Interpolating may be

appropriate in certain occasions; however, there are observed or experimental data

for which interpolation should not be used. Some examples would be categorical data

or data with noise (unexplained variation or randomness).

The task of a statistical model is to estimate the relationship between input

variables and one or more response variables. The mathematical expression that

describes this relationship is:

Y = f(x) + ε
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where f(x) indicates the corresponding value of Y , which is approximated by f̂(x),

x is the vector of input variables and ε is the random error, which is assumed to be

independent of x and normally distributed (E(ε) = 0). In the data-driven statistical

approaches the error distribution is not assumed. For consistency in the terminology,

the input variables of a statistical model are called factor variables.

2.1 Regression-Based Approaches

There are many types of regression methods such as linear and nonlinear re-

gression, weighted regression (Atkenson [32]), regression by rule induction (Weiss

and Indurkhya [33, 34]), additive models (Stone [35], Wahba [36], Hastie and Tib-

shirani [37]), among others which can perform well; however, not all the regression

models can deal with the course of dimensionality phenomenon. The regression mod-

els described below are capable of handling this.

Regression models can be described with the following linear function:

f̂(x) = β0 +
M

∑

m=1

βmxm, (2.1)

where f̂(x) is the predicted value given by the constant term β0 and the sum of the

linear combination of βm coefficients multiplied by their corresponding predictor value

xm. M represents the number of regression coefficients.

This section includes the explanation of different regression-based methods,

beginning with the description of MARS models; the rest of the models appear in

chronological order.

2.1.1 MARS

The MARS statistical method developed by Friedman [18] owns different char-

acteristics that make it suitable for many applications, and for such reason, MARS
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has gained popularity over the last few years. It is a flexible statistical method,

that is, it is capable of fitting nonlinear functions without knowing in advance the

properties of such functions. MARS is considered as a nonparametric method (Kuh-

nert and McClure [38], Psichogios et al. [39], Ben-Ari and Steinberg [40]). It is used

for high dimensional data and can handle interaction. MARS can model curvature

by bending the function at certain knot locations, which are appropriately selected,

and simultaneously choose the most significant variables to be included in the final

model. The method involves two main stepwise algorithms: forward algorithm, which

selects the possible candidates for the basis functions and backward algorithm, which

prunes and refines the model function (the algorithms are shown in appendix A). The

approximation model is represented with the following equation:

f̂M(x; β) = β0 +
M

∑

m=1

βmBm(x), (2.2)

where β0 is the intercept term, Bm(x) represents the basis functions that depend on

the x factor variables, and βm is the unknown coefficient for such functions. M repre-

sents the maximum number of basis function. The basis functions can be univariate

or of a higher degree. The interaction terms are created by multiplying an existing

basis function by a new univariate term. To represent the univariate terms, MARS

uses piecewise-linear functions of the form:

b+(x; k) = [+(x − k)]+, or b−(x; k) = [−(x − k)]+, (2.3)

where k represents an univariate knot which is selected for each of the factor variables

x. The functions are truncated at zero, and thus they only consider the positive side.

These functions are known as truncated linear functions or hinge functions. The

interaction functions are then represented by:

Bm(x) =
Lm
∏

l=1

[sl,m · (xv(l,m) − kl,m)]+ , (2.4)
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where the degree order Lm of the interaction term is user defined. The most common

it to use two- to three-way interaction terms. It is not recommendable to use higher

interaction terms unless the underlying function requires it. This is because MARS

method works by partitioning the data into different regions and having higher in-

teraction terms will cause the creation of many regions (basis functions) that can be

sensitive to the extreme points. In Equation 2.4, sl,m represents the direction of the

univariate term, which could be positive or negative. MARS selects basis function

that are added in pairs in the forward algorithm based on generalized cross-validation

(GCV) lack-of-fit (LOF) criterion:

LOF (f̂M) = GCV (M)

∑N

i=l(yi − f̂M(xi))
2

(

1 − c(M)
N

)2 (2.5)

where the numerator is the average-squared residual of the fit to the data and the

denominator is a penalty associated with the number of basis functions M . In this

selection the knots are tested and thus selected. The forward algorithm tends to

overfit the data, therefore the backward algorithm is responsible of removing those

basis functions that contribute least to the overall model function, in other words, the

basis functions that produce the smallest increase in the residual squared error are

eliminated. The βm coefficients are estimated using least squares procedure. Once

the basis functions are selected, the truncated linear terms are replaced by a cubic

function to provide continuity. The details for the cubic function are presented in

Chapter 3 Section 3.2.2.

After the introduction of MARS, various researchers have shown interest sug-

gesting modifications to the method to satisfy certain structural properties. In 1993,

Chen [28] proposed a quintic function for smoothing the truncated linear functions.

The cubic function used by Friedman has a continuous second derivative everywhere

except at the side knots. By using the quintic function, the MARS model has a
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continuous second derivative throughout the function as well as the region contain-

ing the side knots. An example of the MARS model using the quintic function was

applied by Chen [23] to estimate the future value function of a SDP inventory fore-

casting problem. The details for the quintic function are presented in Chapter 3

Section 3.1.2.

In 2000, Bakin et al. [20] proposed the use of second-order B-splines instead of

the truncated linear functions (Equation 2.3) with the purpose of numerical stability.

In 2005, Tsai and Chen [21] developed automatic stopping rules (ASR) based on the

coefficient of determination R2 and R2
a (adjusted) instead of allowing the forward

algorithm to reach the maximum number of basis functions (Mmax). This parameter

is selected by the user and as for now, it is basically defined based on a trial-error

approach. ASR reduces the computational effort and helps avoiding over-fitting. Ad-

ditionally, Tsai and Chen implemented a robust version of MARS guaranteeing the

selection of lower-order interaction terms over higher-order based on the fit contri-

bution of the function term. It is called robust, since it reduces the sensibility to

extreme points. An application includes the estimation of the future value function

of a wastewater treatment SDP problem (Tsai and Chen [21]).

Shih in 2006, [1] developed convex versions of MARS transforming the interac-

tion terms to a one-dimensional term and constraining the βm coefficients to accommo-

date convexity rules for optimization purposes. In the following section (Section 2.1.2)

a detailed explanation of this method is provided.

More recently, Weber et al. [22] proposed an approach called CMARS, where the

backward algorithm is modified by constructing a penalized residual sum of squares

as a Tikhonov regularization problem, i.e., ridge regression. This is later solved by

continuous optimization techniques, in particular conic (C) quadratic programming,

although “C” can also stand for convex or continuous. Different data sets were used
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for evaluating its performance; some of them include metal casting, Parkinson tele-

monitoring, and red wine quality. Two other studies are derived from CMARS, these

are boostraping CMARS (BCMARS) and robust CMARS (RCMARS). In BCMARS

proposed by Yazici et al. [41] an empirical distribution is fitted to each parameter of

the CMARS model by using a computational method called bootstrap. In RCMARS

introduced by Özmen et al. [42] the capability of CMARS is enhanced to be able to

handle random input and output variables. A more recent study by Kartal [43] mod-

ifies the forward algorithm using a new knot selection procedure based on a mapping

approach.

Some studies that include the use of MARS method are Lewis and Stevens [44],

Chen [23], Deichmann et al. [45], ShieuMing et al. [46], TianShyug et al. [47, 48],

Crino and Brown [49], Yang et al. [2], Pilla et al. [50],

2.1.2 Convex MARS

Convex MARS created by Shih [1] provides the flexibility to model a convex

function, even though when the data present some nonconvexity, the algorithms forces

a convex fit. To achieve this, two main modifications were implemented in the original

MARS; (1) coefficients are constrained, such that pairs of basis functions are guaran-

teed to jointly form convex functions; (2) the form of interaction terms is altered to

eliminate the inherent nonconvexity caused by the product of unviariate terms. The

sum of the coefficients needs to be nonnegative, however by restricting this sum by

a positive value called threshold (τ), reduces the possibility of convexity violations.

Shih proposed to obtain this value by taking a percentage from the maximum absolute

coefficient from the original MARS model or from a multiple linear regression model.

The percentage range suggested is between 2% and 20%. MARS is then guaranteed
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to be convex by the fact that the sum of convex functions is convex (Shih [1]). Convex

MARS uses three different algorithms (see appendix A for details):

• CIT: Convex Interaction Transformation, creates convex forms of the interaction

basis function;

• FCR: Forward Coefficient Restriction, selects model terms; and

• BIPR: Backward Iteration of Pruning and Refitting, prunes model terms.

The original form for the interaction terms (Equation 2.4) is replaced by:

Bm(x) =
Lm
∑

l=1

[

sl,m·
(xv(l,m) − kl,m)

(1 − sl,mkl,m)

]

+

(2.6)

To represent the parent term (existing term) and the split term separately with their

corresponding parameters, Equation (2.6) can be detailed as follows:

ω0(x) =
Lm−1
∑

l=1

sl,m ·
(xv(l,m) − kl,m)

(1 − sl,mkl,m)
, (2.7)

ω1(x; φm) = φm ·
(xv(Lm,m) − kLm,m)

(1 − φm kLm,m)
. (2.8)

Sign φm (−1 or +1) determines two distinct one-dimensional variable directions:

z+(x) = ω0(x) + ω1(x; φm = +1) ; z−(x) = ω0(x) + ω1(x; φm = −1) . (2.9)

Equations (2.7) and (2.8), can be re-write:

ω0(x) = a0,m +
Lm−1
∑

l=1

al,m · xv(l,m), (2.10)

where

a0,m =
Lm−1
∑

l=1

sl,m · kl,m

(sl,m · kl,m − 1)
, al,m =

sl,m

(1 − sl,mkl,m)
. (2.11)

and

ω1(x; φm) =
φm · kl,m

(φm · kl,m − 1)
+

φm · xv(l,m)

(1 − φm · kl,m)
. (2.12)
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The pairs of univariate truncated linear functions for convex MARS will then

be:

b+(z+; τ) = [+(z+ − τ)]+ , b−(z+; τ) = [−(z+ − τ)]+ or (2.13)

b+(z−; τ) = [+(z− − τ)]+ , b−(z−; τ) = [−(z− − τ)]+ . (2.14)

where the multivariate knot k in the original variables x is also transformed and takes

the value of τ = 0. The two candidate pairs of interaction basis functions for convex

MARS that are considered in the forward algorithm are:

Bm(x) = [sL,m = +1 · z+]+ , Bm+1(x) = [sL,m = −1 · z+]+ or (2.15)

Bm(x) = [sL,m = +1 · z−]+ , Bm+1(x) = [sL,m = −1 · z−]+ . (2.16)

Another method that achieves convexity proposed in the literature is the multi-

variate convex regression with adaptive partitioning (CAP) introduced by Hannah in

2011 [51]. The method consists of fitting linear models within each set of local obser-

vations and assures convexity by taking the maximum over supporting hyperplanes.

2.1.3 Polynomial Regression Models

Polynomial models are one of the most traditional methods used in response

surface methodology (RSM), which was developed by Box and Wilson in 1951 [52].

One of the first records of design of experiments for polynomial regression is the

study of Gergonee in 1815, discussed by Stigler in 1974 [53]. Design of experiments

is a main element for RSM, however this part is not discussed in the presented work.

Information about this can be seen in Box and Draper [54, 55], Myers and Mont-

gomery [56]. Although the polynomial models are parametric approaches, they can
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be used to achieve more flexible representations for f(x) using different order degrees;

the mathematical representation of a polynomial of degree d is:

f̂(x) = β0 +
∑

j

βjxj +
∑

j

∑

k>j

βjkxjxk +
∑

j

βjjx
2
j +

∑

j

∑

k>j

∑

l>k

βjklxjxkxl + ... +
∑

j

βj,j,...,jx
d
j . (2.17)

where β represents the polynomial coefficients and xd denotes the design variables.

On the other hand, a disadvantage is that, if the selected model to represents the data

does not coincide with the true structure can yield misleading results. Additionally,

when the data include several variables, using a high-degree polynomial may result

computational expensive. Another drawback from the optimization perspective is

that, cubic or higher-order polynomial models may contain one or more inflection

points (Giunta [57]). Regression surfaces are not represented well by low-order poly-

nomials. The use of higher-order polynomials is limited by considerations of sample

size and computational feasibility (Friedman and Stuetzle [31]).

2.1.4 Principal Component Regression

Principal component regression (PCR) is usually employed for large data sets

that may present correlation. PCR was originated from the principal component

analysis (PCA) and in fact, PCR requires the use of PCA in its algorithm. Kendall

[58] and Hotelling [59] suggested the use of PCR, these authors’ concept relies on the

replacement of the factor variables by their principal components. The principal com-

ponent is a linear combination of the factor variables which explains the variability.

PCA employs an orthogonal transformation that is applied to a set of data points of

possibly correlated variables to eliminate the correlation. The principal component

depends on the scaling of the factor variables, therefore a standardization process
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should be applied first. Jolliffe [60] remarks various alternatives for the original PCR

idea.

2.1.5 Regression Trees

Regression trees approach introduced by Breiman et al. in 1984 [61] is commonly

called recursive partitioning or classification and regression trees (CART). It is a

similar approach to MARS and in fact, MARS can be viewed as a continuous versions

of CART. It is also considered to be flexible and a nonparametric technique (Kuhnert

and McClure [38]). Regression trees can represent complex relationship between the

factor variables and the response variables without making assumptions about the

true function. This method can also identify the variables that contribute the most

to the model for representing the relationship of the true function. The idea is to

perform a binary recursive partition and split the information into different regions.

This method also employs forward and backward algorithms. The forward algorithm

selects what variable to split on, and the split point; in the same manner, it constructs

the tree topology. The backward algorithm has the purpose to avoid overfitting and

captures the important information of the structure. Similarly as other methods,

there are parameters that are data driven, in this case the size of the tree should

be adaptively chosen by the data. The model can be represented by the linear form

presented in Equation 2.2 except that it does not use truncated linear functions,

instead it uses step functions, also called indicator functions of the form:

b+(x; k) = 1(x > k), b−(x; k) = 1(x ≤ k) (2.18)

where k represents the split point, the constant β0 = 1 for regression trees. Another

difference with respect to MARS is that when an univariate or an interaction existing

term is involved in a multiplication by a new term, the existing term is replaced by
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the new term, and is no longer available for future interactions. This procedure leads

to a disadvantage, that is, regression trees find difficult to model additive structures

since a node may not split more than once. MARS on the other hand can consider

additive effects (Hastie et al. [62]). However, additive models are not the main interest

of this research. Another drawback is that the model tends to select terms of high

order producing a non-robust model and thus, the model may be difficult to interpret.

Interpretability is often seen as an important characteristic.

2.1.6 Projection Pursuit Regression

Projection pursuit regression (PPR) was implemented by Friedman and Stuet-

zle in 1981 [31]. It is considered as a nonparametric ([31], [40]) multiple adaptive

regression method with a successive refinement property. PPR generates the model

based on projections of the data using a smoothed representation. It estimates the

model by reflecting the training set onto lower dimensional projections as a solution

for high-dimensional data sets facing the course of dimensionality problem (Uysal and

Güvenir [63]). It has a successive refinement property since it selects the best model

at each iteration. The approximation model is represented by the following equation:

f̂(x) =
M

∑

m=1

Sβm
(βm · x) (2.19)

where M is the number of smooth univariate functions Sβm. The parameter βm

represents the projections for the factor variables x. The algorithm stops selecting

terms when the new candidate does not contribute to improving the model fit. It exists

flexibility to select the smoothing procedure, however local regression and smoothing

splines are recommended. The idea is similar compared to recursive partitioning,

however PPR does not split the data, allowing a complex model when necessary; it

also allows interaction. PPR model is most useful for prediction, and not very useful
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for producing an understandable model for the data (Hastie et al. [62]). Research

work utilizing projection pursuit involves Mayer [64, 65], Zhang et al. [66], Fu et

al. [67], Du et al. [68].

2.1.7 Artificial Neural Networks

Artificial neural networks or neural networks approach was motivated from the

actual neural connection from the human brain with the purpose of finding the rela-

tionship between the factor variables and response variables, specifically for nonlinear

relationships. ANN has been studied for decades initially from the medical perspec-

tive. In 1989, White [69] presented neural network from an statistical perspective.

ANN is a nonlinear parameterized regression function that can be applied for regres-

sion and classification problems. The formulation uses nodes at different layers to

interpret the model that are connected via weights. The factor variables are repre-

sented by input nodes and the response variables by output nodes. In between their

connection, there are hidden nodes that can be in one or more layers and are induced

by an activation function. This function can vary depending on the application. Sig-

moid and radial basis functions network are the most popular used. The following

equation shows the ANN model using sigmoid as the activation function:

σ(x) =
1

1 + e−x
, (2.20)

then the ANN approximation model with one hidden layer is:

f̂k(x; w; v; θ; γ) = σ

(

H
∑

h=1

whk · Zh + γk

)

(2.21)
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where H is the number of hidden nodes, the term whk links the hidden nodes h to

the output nodes k, γk is a constant term called bias node and for each hidden node

h, Zh is equal to the following equation:

Zh = σ

(

n
∑

i=1

vih · xi + θh

)

(2.22)

where n is the number of factor variables, the term vih links the input nodes i to

the hidden nodes h, and θh is also a bias node. An important decision to take when

using ANN is the structure of the model, that is, the activation function, and other

parameters such as the number of hidden layers. By increasing the number of hidden

layers, the complexity of the structure increases as well as the computational effort.

ANN method is considered to be flexible; and similarly as other statistical methods, it

can provide a high-precision fit on the training data but a poor fit on new predictions

if the model parameters are not properly selected. Research work that includes the

use of ANN can be seen in Cervellera et al. [25].

2.1.8 Kernel Regression

Kernel regression is a nonlinear, nonparametric technique for estimating regres-

sion functions from noisy data (Bishop [70]). Kernel methods use weights that de-

crease smoothly to zero with distance from the target point; and in high-dimensional

spaces the distance kernels are modified to emphasize some variables more than oth-

ers (Hastie et al. [62]). In Kernel regression, the data can come from a fixed design or

random design. A common kernel (weighting function) interpolator is the Nadaraya-

Watson estimator ([71, 72]), which has the form of a normalized expansion in Gaussian

radial basis functions defined in the input space (Bishop [70]). The selection of the

smoothing function is critical for having a good fit. Studies in the literature that use

kernel methods include Cervellera et al. [73], Dharmasena et al. [74].
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Mühlenstädt and Kuhnt [75] introduced a Kernel interpolation method using

inverse distance weighting with a piecewise-linear function, where the basic idea is

to combine many locally fitted linear functions in order to obtain an interpolator.

Kernel interpolation is an alternative to Kriging (Section 2.2.1) for situations with

small sample sizes and situations with non-stationary behavior (Mühlenstädt and

Kuhnt [75]).

2.2 Interpolating Approaches

2.2.1 Kriging

Kriging also known as a spatial correlation model is a continuous interpolating

and flexible method that was originated in geostatistics by Matheron in 1963 [76].

It was introduced into the modeling and computer experiments by Sacks et al. in

1989 [9] and later studied by Santner et al. [77] from a Bayesian perspective. This

method can be seen as an adaption of least square regression to the interpolation

task (Mühlenstädt and Kuhnt[78]). It assumes a correlation structure and it uses

this correlation to predict responses values between observed points (Chen et al. [4]).

The general form of the model is:

Y (x) =
M

∑

m=1

βmbm(x) + Z(x) (2.23)

where bm is the known function for each unknown βm coefficients, and Z(x) is the

random process commonly assumed to be Gaussian. A major advantage of Kriging

over other interpolating methods is that, it provides an uncertainty estimate that can

be used for judging the local fit of the interpolator (Mühlenstädt and Kuhnt [75]).

Modifications to Kriging have been proposed by Li and Sudjianto [79], Xiong et al. [80]

to deal with small sample sizes and Hoessjer and Hartman [81] for large sample sizes

using Gaussian Markov random fields.
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2.2.2 Radial Basis Functions

Radial Basis Function (RBF) is a data-driven method, which is considered as a

tool for the interpolation of multidimensional scattered data. Radial basis functions

has been extensively studied by Powell since 1987 [82]. It consists of the sum of scalar

parameters λi combined with n number of radial basis functions θ. The function

approximation is of the form:

Y (x) =
n

∑

i=1

λiθ(‖ x − xi ‖) x ∈ Rd (2.24)

where each radial basis function is related with a norm ‖ · ‖, which is typically rep-

resented by the Euclidean distance between the basis points (or center points) xi, at

which a function is known, and the points x, at which the approximation is evaluated.

Other distance functions can also be employed. Each RBF is also associated with a

coefficient λi that represents its weight. This parameter can be estimated using lin-

ear least squares. Examples of radial univariate basis functions are linear, cubic and

thin plate splines functions. Other examples of radial basis functions can also include

parametric basis functions such as Gaussian, inverse quadric, multiquadric, and in-

verse multiquadric. The selection of the precise shape of the radial basis function is

important to determine how good or bad the approximation is. This method can be

considered flexible since it has the ability to fit a variety of different functions. and

thus, an advantage of it is that it can be applied to almost any dimensional set of data;

Powell [83] studied the RFB for functions of many variables, Buhmann [84] provided

a theoretical analysis of radial basis functions and included implementations.

2.3 Summary

Previous sections have presented a general review of different statistical meth-

ods divided into two different categories, regression-based approaches and interpolat-
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ing approaches. The approaches included in the former category are MARS and its

variants, polynomial regression, PCR, regression trees, PPR, ANN and Kernel regres-

sion; while the later category presented RBB, Kriging and a variant of a Kernel for

interpolation. The question arises as to which method is most appropriate to use; un-

fortunately there is no straightforward answer to that. The number of options could

be reduced after knowing more about the system where it is desired to be used. The

more information about the underlying function, the more advantageous. However,

there is no perfect model, a method can be just as good as the input data.

There are many comparisons and review papers that focus on the properties

and performance of certain methods. For non-interpolating approaches, Psichogios

et al. [39] compared MARS and neural networks; both methods showed promising

results for fitting general nonlinear multivariate functions; MARS however, seemed

to be more accurate and faster than neural networks. Conlin et al. [85] reviewed

different statistical projection techniques: PCA, PCR, and projection to latent struc-

tures (PLS); and nonlinear modeling techniques: MARS and ANN. Uysal et al. [63]

provided an overview of regression techniques for knowledge discovery and compared

different methods, where rule-based regression and MARS outperformed other meth-

ods such as CART. Chen et al. [4] offered a review of design and modeling in computer

experiments with extensive research of previous works. Muñoz and Felićısimo [86]

compared the performance of logistic multiple regression (LMR), PCA, CART and

MARS applied to two different data sets, where MARS and CART achieved the best

prediction success. Leathwick et al. [87] made a comparative study of generalized

additive models and MARS showed a strong performance. Ben-Ari and Steinberg

[40] compared Kriging, MARS and PPR on high-dimensional data finding Kriging as

the best performer.
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For interpolating approaches, Mühlenstädt and Kuhnt [78] compared different

interpolation methods on two dimensional test functions; the methods included were

Kriging, thin plate spline, natural neighbor interpolation and Kernel interpolation.

The results showed that no method is always preferable for every situation and that

the performance can also depend on the experimental design.

More generally, Jin et al. [88] made an extensive comparative study evaluating

the performance of polynomial regression, MARS, RBF and Kriging using fourteen

test problems. The comparison was made based on accuracy and robustness criteria

using large and small sample sets. He also talked about the computational effort for

constructing the models and pointed out that the experimental design may have some

influence on the methods performance.

Jin et al. [88] recommended to compare the performance of the methods based

on multiple metrics such as accuracy, efficiency, robustness, model transparency and

simplicity.

For any statistical estimation method, an important metric is its accuracy,

which can be seen from the fitting accuracy on the training data and from the accuracy

on future predictions. However, one cannot say that a technique is superior to others

in terms of accuracy, since a certain method may not work well for specific problems.

It is also true that the more complex the structure, the higher the computational

effort, and studies make this comparison; however it may not be fair to compare if

the programming code or software used is not the same for all the methods. Another

reason that may affect the selection of a method is the level of popularity of the

method. This may be due to the limitations on the computer’s capacity by the time

the methods were originated or perhaps the availability of commercial software to

construct certain models.
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In summary, in order to achieve better results, the experimental design and

the approximation method should be cautiously selected based on the user criterion;

and a comparison with at least two different methods is recommended. From the

optimization perspective, it is possible to reduce the alternatives. To quote Jin et

al. [88]: “The computational cost of complex simulation makes it impractical to rely

exclusively on simulation codes for the purpose of design optimization.” A strategy

to overcome this problem is the usage of metamodels. There are some models that

are more suitable to use for optimization. A regression-based approach is preferable

over interpolating models since they can be sensitive to the noise. The risk of using

interpolating models for optimization is that, the search of the optimization method

may be limited and thus, may not explore all regions for finding the optimal solution.

If the interpolation is based on existing points that are not close to the optimal point,

the space is discarded by the optimization search.

From the models that do not interpolate, flexibility is the next most impor-

tant property preferred for optimization. Polynomial models and ANN may present

different alternatives that conduce flexibility, however their structure is not as easy

to modify as it is for the MARS model; this may be the case as well for PCR and

PPR. Additionally PPR might be difficult to interpret. The regression trees structure

may be modified, however in high-dimensional problems robustness is relevant; and

regression trees technique may not always provide a robust model since it tends to

select higher order terms. The options are limited to Kernel and MARS. These two

methods seem to have more potential for optimization based on surrogate models.

Studies that compare metamodels include Booker et al. [89] who presented a

framework for generating a sequence of approximations to the objective functions and

managing the use of these approximations as surrogates optimization. A review of
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metamodeling applications can be seen in Barthelemy and Haftka [90], Sobieszczanski-

Sobieski and Haftka[91].

2.4 Sequential Approaches

Sequential DACE approaches can be developed in the sampling (design of com-

puters experiments) phase or in the metamodeling phase. Sequential approaches are

iterative methods that use fewer data points than conventional practices that use all

the generated sample points. The purpose is to sequentially update the model once

new data are received and stop when it is deemed that there is adequate information

to represent the system.

The idea in sequential experimental designs is to strategically select the points

based on optimal criteria and update the model. In sequential metamodeling the

objective is to improve the accuracy of the model by updating the approximation

function once new data are received. These data have no particular order.

One of the earliest sequential design approaches is a simple two-stage optimal

design produced by the integrated mean squared error criterion by Sacks et al. [9]

where kriging was used as the metamodel. Other sequential design approaches are

given by Osio and Amon [92], who proposed the use of nonlinear regression models

as surrogates fitted with data coming from a deterministic numerical simulation us-

ing optimal sampling based on Bayesian approaches and A-optimal criteria. Jin et

al. [30] proposed an efficient algorithm for constructing optimal design of computer

experiments. The method employs an enhanced stochastic evolutionary algorithm

and efficient methods for evaluating different optimality criteria. This work was con-

centrated but not limited to optimizing Latin Hypercube designs.

Other numerous studies have been made on sequential designs Huang et al. ([93],

Christen and Sansó [94], Crombecq et al. [95] and Quan et al. [96]). Researchers have

25



been focused on sequential design approaches using different techniques for selecting

the optimal points and using different metamodels, however approaches for sequential

metamodeling are lacking in the research literature.

Fan [29] developed sequential algorithms for feed-forward neural networks to

both identify the approximating model structure and determine sample size. The

algorithm builds an adaptive value function approximation within a dynamic program

while the size of the state space sample grows. He employed low-discrepancy sequence

sampling techniques to increment the sampling of the state space.
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CHAPTER 3

VARIANTS OF MARS

3.1 Convex MARS Review

Convexity for the purposes of optimization refers to a function that is either

purely convex or purely concave, since a concave function can be made convex by mul-

tiplying by a negative scalar. If a function simultaneously has convex and concave

structure, then this is considered to be a nonconvex function, which is different to

optimize. Original MARS follows this structure in its algorithms, that is it compen-

sates the function approximation with both convex and nonconvex basis functions;

therefore, the existence of nonconvexity is possible. However, for an underlying con-

vex function an approximation only of convex univariate pairs in theory should be

possible using the original MARS. Figure 3.1 illustrates a two-way interaction term

from the original MARS that clearly shows nonconvexity.
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Figure 3.1. Original MARS two-way interaction basis function.
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The following proofs demonstrate that convexity and nonconvexity might be

present in an original MARS two-way interaction term. Considering the interaction

term from Figure 3.1, b(x) = [+(x1 + 0.5)]+ · [−(x2 − 0)]+, b(x) is computed from

different selected points to show such cases. To prove nonconvexity:

A : x1 = 1, x2 = −0.2 ; b(xA) = 0.3,

B : x1 = −0.2, x2 = −1 ; b(xB) = 0.3, and a point between these ranges:

C : x1 = 0, x2 = −0.7 ; b(xC) =0.35.

By linear interpolation, we estimate b̂(xC),

b̂(xC) = b(xA) +
b(xB) − b(xA)

x2B − x2A

· (x2C − x2A) = 0.3

By having b(xC) = 0.35 > b̂(xC) = 0.3, shows that the plot is concave at point C.

Similarly, to show convexity:

D : x1 = 0, x2 = −0.5 ; b(xD) = 0.25,

E : x1 = 0, x2 = 0.5 ; b(xE) = 0, and a point between these ranges:

F : x1 = 0, x2 = 0 ; b(xF ) =0.

By linear interpolation, we estimate b̂(xF ),

b̂(xF ) = b(xD) +
b(xE) − b(xD)

x2E − x2D

· (x2F − x2D) = 0.125

By having b(xF ) = 0 < b̂(xF ) = 0.125, shows that the plot is convex at point F.

In response to the nonconvexity issue, convex MARS was developed guaranteeing

convexity.

3.1.1 Model for Interaction Basis Functions

The initial approach for convex MARS approximation adds the parameter φ

to provide additional different options for the direction of the interaction term be-

ing the possibilities Equations (2.15) and (2.16) previously explained in Chapter 2 in
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Section 2.1.2. However to better represent the structure of original MARS, the param-

eters φ and s are swapped. An adjusted and refined formulation for the interaction

terms is shown below:

Bm(x) = [φm · zm]+. (3.1)

where, φm can be either + or -, and zm can take the positive z+
m or negative z−m side.

zm is defined as:

zm = a0,m +
Lm
∑

l=1

al,m · xv(l,m), (3.2)

where,

a0,m =
Lm
∑

l=1

sl,m · kl,m

(sl,m · kl,m − 1)
, al,m =

sl,m

(1 − sl,mkl,m)
. (3.3)

Following the updated notation, the candidate pairs for interaction basis functions

are:

Bm(x) = [φm = +1 · z+]+ , Bm+1(x) = [φm = −1 · −z+]+ or (3.4)

Bm(x) = [φm = +1 · z−]+ , Bm+1(x) = [φm = −1 · −z−]+ . (3.5)

The following plots (Figure 3.2) show the possible direction for the interaction

terms of original MARS. The knot value for x1 is k1,m = 0.25 and k2,m = −0.5 for

x2. The two upper plots have s2,m = +1, and s1,m = −1 and s1,m = +1 respectively.

In the same manner, the lower plots set s2,m = −1, and s1,m = −1 and s1,m = +1

respectively. An example of a candidate two-way interaction pair would be the left

upper plot and the right lower plot.

By switching the parameters φ and s, the directions for interaction terms are

represented in Figures (3.3) and (3.4). The values used for the knots are the same

as in Figure 3.2. Figure 3.3 represents the possible directions when φ = +1 and

Figure 3.4 when φ = −1.
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Figure 3.2. Possible directions of a two-way interaction term in original MARS.

3.1.2 Convexity Proof

To guarantee convexity in the approximation, the βm coefficients for the basis

functions are constrained and the interaction basis functions are transformed to a

one-dimensional term. However, the transformed univariate truncated linear terms

(Equations 2.13 and 2.14) employ a quintic function to smooth their shape after

they are selected to be in the final model. Therefore a convexity proof for the pairs
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Figure 3.3. Possible directions of a two-way interaction term in convex MARS when
φ = +1.

of convex MARS univariate terms is required. We first show the original quintic

function derived by Chen [28]:

Q(x|s = +1, k−, k, k+) =






























0, x ≤ k−

α+(x − k−)3 + β+(x − k−)4 + γ+(x − k−)5, k− < x < k+

x − k, x ≥ k+,

(3.6)
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Figure 3.4. Possible directions of a two-way interaction terms in convex MARS when
φ = −1.

where,

α+ =
6k+ − 10k + 4k−

(k+ − k−)3
,

β+ =
−8k+ + 15k − 7k−

(k+ − k−)4
,

γ+ =
3k+ − 6k + 3k−

(k+ − k−)5
,
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and

Q(x|s = −1, k−, k, k+) =






























k − x, x ≤ k−

α−(x − k+)3 + β−(x − k+)4 + γ−(x − k+)5, k− < x < k+

0, x ≥ k+,

(3.7)

where,

α− =
(−1)(4k+ − 10k + 6k−)

(k− − k+)3
,

β− =
(−1)(−7k+ + 15k − 8k−)

(k− − k+)4
,

γ− =
(−1)(3k+ − 6k + 3k−)

(k− − k+)5
.

Without loss of generality, a center knot of zero is specified. And to simplify the proof,

the knots can be defined in terms of deltas as follow: ∆ = k+ − k−, ∆1 = k+ − k, and

∆2 = k − k−. Then the equalities from the quintic functions (Equations 3.6 and 3.7)

respectively can be written as:

α+ =
[6∆1 − 4∆2]

∆3
,

β+ =
[−8∆1 + 7∆2]

∆4
,

γ+ =
[3∆1 − 3∆2]

∆5
,

and

α− =
[4∆1 − 6∆2]

∆3
,

β− =
[7∆1 − 8∆2]

∆4
,

γ− =
[3∆1 − 3∆2]

∆5
.
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The forward algorithm adds terms in pairs, so the purpose of the convex proof

is to show that the sum of the univariate terms:

Q = β1Q(x|s = +1, k−, k, k+) + β2Q(x|s = −1, k−, k, k+)

is a convex function on [k−, k+], where β1 and β2 are the unknown coefficients of the

basis functions. A twice differentiable function is convex if and only if its second

derivative is ≥ 0. To prove that the quintic function from Equations (3.6) and (3.7)

is a convex function on [k−, k+], the second derivative of Q with respect to x is

calculated. Let be:

Q1 = Q(x|s = +1, k−, k, k+); Q2 = Q(x|s = −1, k−, k, k+) (3.8)

The first derivative of Q1 and Q2 is:

Q1
′ =

(

3[6∆1 − 4∆2][(x − k−)2]

∆3
+

4[−8∆1 + 7∆2][(x − k−)3]

∆4

)

+

(

5[3∆1 − 3∆2][(x − k−)4]

∆5

)

.

and

Q2
′ =

(

3[4∆1 − 6∆2][(x − k+)2]

∆3
+

4[7∆1 − 8∆2][(x − k+)3]

∆4

)

+

(

5[3∆1 − 3∆2][(x − k+)4]

∆5

)

.

Second derivative is then:

Q1
′′ =

(

6[6∆1 − 4∆2][(x − k−)]

∆3
+

12[−8∆1 + 7∆2][(x − k−)2]

∆4

)

+

(

20[3∆1 − 3∆2][(x − k−)3]

∆5

)

. (3.9)

and

Q2
′′ =

(

6[4∆1 − 6∆2][(x − k+)]

∆3
+

12[7∆1 − 8∆2][(x − k+)2]

∆4

)

+

(

20[3∆1 − 3∆2][(x − k+)3]

∆5

)

. (3.10)
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Nonconvexities are produced in the quintic basis functions when the center knot k is

not close enough to the midpoint between k− and k+ [28]. To avoid such nonconvex-

ities, we must constrain

∆1

∆
≥

2

5
and

∆2

∆
≥

2

5
. (3.11)

Since it is possible to have different scenarios for the βm coefficients:

• β1 + β2 ≥ 0 and

• β1 + β2 = 0.

The following cases are derived:

CASE I:

β1 + β2 ≥ 0; β2 > −β1; β2 = −β1 + d, where d ≥ 0.

so we need to prove that

Q′′ = β1Q
′′

1 + (−β1 + d)Q′′

2 ≥ 0. (3.12)

also, it is constrained to:

∆1

∆
=

2

5
and

∆2

∆
=

3

5
. (3.13)

First, by substituting deltas in Equations (3.9) and (3.10), Q1
′′ and Q2

′′ can be

simplified to:

Q1
′′ =

(

12[(x − k−)2]

∆3
−

12[(x − k−)3]

∆4

)

. (3.14)

and

Q2
′′ =

(

−12[(x − k+)]

∆2
−

24[(x − k+)2]

∆3
−

12[(x − k+)3]

∆4

)

. (3.15)
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Then, by plugging Equations (3.14) and (3.15) into Equation 3.12 we have:

Q′′ = β1

(

12[(x − k−)2]

∆3
−

12[(x − k−)3]

∆4

)

−

β1

(

12[(x − k+)]

∆2
+

24[(x − k+)2]

∆3
+

12[(x − k+)3]

∆4

)

+

d

(

12[(x − k+)]

∆2
+

24[(x − k+)2]

∆3
+

12[(x − k+)3]

∆4

)

.

which in order to assure convexity need to be Q′′ is ≥ 0. To simplify, let α = 12
∆3 then

we have,

Q′′ =
β1α

∆

(

(x − k−)2[∆ − (x − k−)] + (x − k+)[∆2 + 2∆(x − k+) + (x − k+)2]
)

−

dα

∆

(

(x − k+)[∆2 + 2∆(x − k+) + (x − k+)2]
)

.

By substituting ∆ = k+ − k− and simplifying we have,

Q′′ = −dα

(

(x − k+)(x − k−)2

(k+ − k−)

)

And by substituting α = 12
∆3 ,

Q′′ = 12d

(

−(x − k+)(x − k−)2

(k+ − k−)4

)

Since k− < x < −k+, (x− k+) < 0, (x− k−) > 0, and (k+ − k−) > 0 and since d > 0,

then Q′′ is always > 0, therefore Q is a convex function.

CASE II:

β1 + β2 = 0; β2 = −β1.

Thus, we need to prove that Q′′ = Q′′

1 − Q′′

2 ≥ 0. Equation (3.11) holds, and without

loss of generality we assume that ∆ = 1. Therefore,

∆ = ∆1 + ∆2 = k+ − k + k − k− = k+ − k−

∆1 = ∆ − ∆2 = k+ − k− − (k − k−) = k+ − k

∆2 = ∆ − ∆1 = k+ − k− − (k+ − k) = k − k−
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We replace ∆2 = ∆ − ∆1 in Equation (3.9),

Q1
′′ = 12

(

[5∆1 − 2∆][(x − k−)]

∆3
+

[−15∆1 + 7∆][(x − k−)2]

∆4

)

+

(

[10∆1 − 5∆][(x − k−)3]

∆5

)

. (3.16)

Similarly for Equation (3.10),

Q2
′′ = 12

(

[5∆1 − 3∆][(x − k+)]

∆3
+

[15∆1 − 8∆][(x − k+)2]

∆4

)

+

(

[10∆1 − 5∆][(x − k+)3]

∆5

)

. (3.17)

We need to prove that Q′′ ≥ 0. By plugging Equations (3.16) and (3.17) and

simplifying, the following equation can be written:

Q′′ = 12
(

(5∆1 − 2)(x − k−) + (−15∆1 + 7)(x − k−)2 + (10∆1 − 5)(x − k−)3
)

−

12
(

(5∆1 − 3)(x − k+) + (15∆1 − 8)(x − k+)2 + (10∆1 − 5)(x − k+)3
)

.

(3.18)

which can be reduced to:

Q′′ = 12(5∆1)
(

(x − k−) − 3(x − k−)2 + 2(x − k−)3 − (x − k+) − 3(x − k+)2 − 2(x − k+)3
)

+

12
(

−2(x − k−) + 7(x − k−)2 − 5(x − k−)3 + 3(x − k+) + 8(x − k+)2 + 5(x − k+)3
)

.

(3.19)

Let f = (x − k−) and (f − 1) = (x − k+), so Equation (3.19) can be represented as

follows:

Q′′ = 12(5∆1)
(

f − 3f 2 + 2f 3 − (f − 1) − 3(f − 1)2 − 2(f − 1)3
)

+

12
(

−2f + 7f 2 − 5f 3 + 3(f − 1) + 8(f − 1)2 + 5(f − 1)3
)

. (3.20)

By solving Equation (3.20) results that Q′′ = 0, therefore, Q is convex on [k−, k+].

CASE III:

β1 + β2 = 0; β2 = −β1;
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Similarly, as case II, we need to prove that Q′′ = Q′′

1 −Q′′

2 ≥ 0. Also, it is constrained

to Equation (3.13): From Equations (3.14) and (3.15), we have

Q′′ =

(

12[(x − k−)2]

∆3
−

12[(x − k−)3]

∆4

)

+

(

12[(x − k+)]

∆2
+

24[(x − k+)2]

∆3
+

12[(x − k+)3]

∆4

)

.

By replacing α = 12
∆3 we have,

Q′′ =
α

∆

(

(x − k−)2[∆ − (x − k−)] + (x − k+)[∆ + (x − k+)]2
)

By substituting ∆ = k+ − k−, we have,

Q′′ =
α

∆
(x2k+ − 2xk−k+ + k2

−
k+ − x3 +

2x2k− − xk2
−
− x2k+ + 2xk−k+ − k2

−
k+ + x3 − 2x2k− + xk2

−
). (3.21)

By solving Equation (3.21), we have that Q′′ = 0 guaranteeing convexity for Q.

CASE IV:

β1 + β2 ≥ 0; β2 > −β1; β2 = −β1 + d, where d ≥ 0.

so we need to prove that

Q′′ = β1Q
′′

1 + (−β1 + d)Q′′

2 ≥ 0.

Without loss of generality we assume that ∆ = 1. And from Equation (3.11) we

constrain

2

5
≤

∆1

∆
≤

3

5
. (3.22)

From Equation (3.18) the following equation can be written:

Q′′ = 12β1

(

(5∆1 − 2)(x − k−) + (−15∆1 + 7)(x − k−)2 + (10∆1 − 5)(x − k−)3
)

−

12β1

(

(5∆1 − 3)(x − k+) + (15∆1 − 8)(x − k+)2 + (10∆1 − 5)(x − k+)3
)

+

12d
(

(5∆1 − 3)(x − k+) + (15∆1 − 8)(x − k+)2 + (10∆1 − 5)(x − k+)3
)

.
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which can be reduced to:

Q′′ = 12d
(

(5∆1 − 3∆)(x − k+) + [15∆1 − 8∆][(x − k+)2] + [10∆1 − 5∆][(x − k+)3]
)

.

By substituting f = (x − k−) and (f − 1) = (x − k+), we have,

Q′′ = 60d(1 − f){f [(∆1 −
2

5
) + f 2(1 − 2∆1)]},

Since d ≥ 0 and 0 ≤ f ≤ 1, proving Q′′ ≥ 0 requires showing:

(∆1 −
2

5
) + f(1 − 2∆1) ≥ 0. (3.23)

Under the constraint in (Equation 3.22), the left-hand side of (Equation 3.23) is

minimized at f = 1 and ∆1 = 3
5
, at which it is equal to zero. Hence, Equation (3.23)

holds, and Q is convex on [k−, k+].

3.2 Variants of MARS

This section explains the advantages of having different variants for MARS.

MARS provides a smooth, flexible approximation to an unknown function in multiple

dimensions. Even though MARS method does not require knowing any information

about the true function, there are specific applications that assume certain behavior,

for example a cost function is known to be convex or on the other hand, a profit

function is known to be concave. Therefore, to obtain a more accurate approximation

of the function under study, it is suitable to have a statistical method that best fits

the underlying function properties.

The existing C-programming algorithm that generates the original MARS writ-

ten by Chen [28] and which includes a quintic function for smoothing the approx-

imation has been modified. First, Tsai and Chen [21] incorporated the automatic

stopping rules for the forward algorithm and then, Shih [1] created the convex MARS
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version. Now, this algorithm has been adapted to support different options to model

the function according to its properties. These options are convex vs. nonconvex and

piecewise-linear vs. smooth. These different versions of MARS can be developed by

selecting the appropriate input parameters. Table 3.1 describes the necessary settings

to develop these different MARS variants.

Table 3.1. General parameter settings to generate the variants of MARS

Variants of MARS Parameter settings

convex smooth alg3

Nonconvex piecewise-linear 0 0 0
0 0 1

Nonconvex smooth 0 1 0
0 1 1

Convex piecewise-linear 1 0 0
Convex smooth 1 1 0

3.2.1 Convex vs. Nonconvex MARS

In many optimization methods, one of the features that is required is convexity,

and such characteristic is not a typical assumption of statistical modeling methods.

An optimization problem can be simply defined as a function f(x) where the objective

can be minimization or maximization, subject to some constraints defined as x ∈ S

where, S represents the feasible region as a set in ℜn. A convex function is known

to be convex if and only if all the points that lie in the function and above are a

convex set, that is, it contains all the convex combination of its elements. A function

f : C → ℜ, where C is a convex set in ℜn, is called convex if

f(λ · x1 + (1 − λ)x2) ≥ λ · f(x1) + (1 − λ)f(x2). (3.24)
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for any x1, x2 ∈ C and 0 ≥ λ ≥ 1. The convex functions have continuity and differ-

entiability properties that are convenient for optimization methods. If the function

f is convex as well as the set S we can assure that every local minimum is a global

minimum. As in the opposite for nonconvex functions, the expectation is to have

many local minimum points. When there is a function that is known to be convex, it

is then desirable to have an approximation method that can handle convexity. Con-

vex MARS, explained in previous Sections 2.1.2 and 3.1 guarantees to estimate f̂ a

convex function allowing the use of convex optimization. On the other hand, if the

function to be estimated is known to be nonconvex, the selection of the optimiza-

tion method may be more flexible since there are many optimization approaches for

such functions. However, it is not guaranteed to find the global optimum. A non-

convex function can be estimated by using the same linear transformation for the

interaction terms (Equation 3.2) thus, the function is piecewise-linear. A nonconvex

piecewise-linear approximation may or may not select the usage of the original back-

ward algorithm depending on the overall objective. By selecting the algorithm, a less

complex structure of the function is selected to represent the model. Alternatively,

when the computational execution time is a bigger concern than the high precision

of the approximation model, then not selecting the backward algorithm may be ben-

eficial. Figure 3.5 from Shih [1] illustrates a two-way interaction term for an original

MARS approximation and for a convex MARS approximation. The nonconvexity in

the original MARS version is clearly visible while the convex MARS option eliminates

it. Figure 3.6 represents a nonconvex approximation (a) and a convex approximation

(b). The graphs were generated using different data sets coming from the same appli-

cation, where the data present some nonconvexities issues but the underlying function

is known to be convex. Convex versions of MARS force a convex fit even when the
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data are not completely convex. The nonconvex versions still represent nonconvexity

in the function.
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Figure 3.5. Two-way interaction term in (a) original MARS vs. (b) convex MARS
from Shih [1].

3.2.2 Piecewise-Linear vs. Smooth

The original MARS approximation method [18] uses a cubic function to smooth

the truncated piecewise-linear functions (Equation 2.3), which can be also represented

as follows:

[s(x − k)]+ (3.25)

The cubic function is:

C(x|s = +1, k−, k, k+) =






























0, x ≤ k−

α+(x − k−)2 + β+(x − k−)3, k− < x < k+

x − k, x ≥ k+,

(3.26)
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Figure 3.6. Nonconvex (a) vs. convex (b) approximation functions.

where,

α+ =
2k+ − 3k + k−

(k+ − k−)2
,

β+ =
−k+ + 2k − k−

(k+ − k−)3
,
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and

C(x|s = −1, k−, k, k+) =






























k − x, x ≤ k−

α−(x − k+)2 + β−(x − k+)3, k− < x < k+

0, x ≥ k+,

(3.27)

where,

α− =
(−k+ + 3k − 2k−)

(k− − k+)2
,

β− =
(k+ − 2k + k−)

(k− − k+)3
.

The cubic function has only one continuous derivative at the side knots. Chen

[23] purposes the use of a quintic function (Equations 3.6 and 3.7) for smoothing

option, assuring two continuous derivatives at the side knots. Similarly as in the case

of the quintic function, the cubic function can also suffer from nonconvexity issues if

the knots are not constrained to certain limits:

k+ − k

k+ − k−

≥
1

3
and

k − k−

k+ − k−

≥
1

3
. (3.28)

The objective of using either the cubic or the quintic routine is to provide

continuity to the multiple piecewise-linear basis functions selected to represent the

overall MARS approximation model. In this manner the final model assures a smooth

shape. The MARS variants described in this section only use the quintic function

when a smoothing procedure is required. When there is no need to smooth the

function, a piecewise-linear approximation is possible since the linear transformation

is used to select the basis functions. In a piecewise-linear approximation, only the

center knot is needed, that is:

L(x|s = +1, k, ) : (x − k)+, and
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L(x|s = −1, k, ) : (k − x)+,

Figure 3.7 represents the sum of univariate terms (a pair) using the piecewise-linear

function (a) and the quintic function (b) considering that the values of the βm coef-

ficient are β1 = β2 = 1.

The quintic and the piecewise-linear function can be used in both, convex and

nonconvex MARS versions. An optimization advantage for a function that presents

smoothness is that it can use gradient-base optimization methods. While a piecewise-

linear function permits the use of linear programming methods for optimization.

MARS variants provide more flexibility to estimate the function based on the

underlying true function and thus facilitate the optimization process. Table 3.2 shows

the different variants of MARS and the algorithms required to develop them. Non-

convex piecewise-linear uses the forward coefficient restriction (FCR) algorithm, men-

tioned in Section 2.1.2, which includes the linear transformation for the interaction

terms (Equation 3.2) but the convexity restrictions for the βm coefficients of the basis

functions are disabled. Nonconvex piecewise-linear has also the option of selecting the

original MARS backward algorithm for pruning the model. The nonconvex smooth

version is similar as nonconvex piecewise-linear, except that it uses the quintic func-

tion to provide continuity to the approximation model. Convex piecewise-linear and

convex smooth utilize the forward coefficient restriction (FCR) algorithm including

the transformation of the interaction terms to one-dimensional terms and the restric-

tion of the βm coefficients for the basis functions. Additionally, they both need the

backward iteration of pruning and refitting (BIPR) algorithm that performs the fi-

nal check for convexity on the coefficients. Convex piecewise-linear does not use any

smooth option, while convex smooth uses the quintic function previously described.
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Figure 3.7. Two-way interaction term with (a) piecewise-linear fit vs. (b) quintic fit.

Table 3.2. Variants of MARS

Variants of MARS FCR BIPR Original
Linear

transformation
Coefficients
restriction

Backward
Algorithm

Nonconvex piecewise-linear x
x x

Nonconvex smooth x
x x

Convex piecewise-linear x x x
Convex smooth x x x
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3.2.3 Piecewise-Linear MARS for Binary Variables

Original MARS can handle categorical variables by using binary variables. This

capability has been incorporated to the piecewise-linear variants of MARS. Input

variables can only take the values of −1 or +1, therefore the only possible values

for the knots are these values. For that reason when the input data involve binary

variables a smoothing option cannot be applied since the quintic function needs the

center and the side knots while the piecewise-linear function only needs the center

knot.

When the variable xv(l,m) is binary, if the sign is negative (sl,m = −1), the

only possible value for the knot is positive (kl,m = +1); alternatively, if the sign is

positive (sl,m = +1), the only possible value for the knot is negative (kl,m = −1).

This is because if the sign and the knot of the same variable have the same direction,

the denominator in the linear transformation formula (Equation 3.2) would be zero,

resulting an undefined division.

Another condition is that in a two-way interaction term one of the variables

must be continuous otherwise the interaction term is not significant. The reason

is because having a two-way interaction term that contains only binary variables is

equivalent to adding two main effects terms of binary variables.

The following proof represents this case. From the truncated linear function:

[sl,m · (xv(l,m) − kl,m)]+ (3.29)

and the linear transformation (Equation 3.2), we have:

[

φ

(

s1,m · k1,m

(s1,m · k1,m − 1)
+

s1,m · x1(1,m)

(1 − s1,mk1,m)
+

s2,m · k2,m

(s2,m · k2,m − 1)
+

s2,m · x2(2,m)

(1 − s2,mk2,m)

)]

+

=

[s1,m · (x1(1,m) − k1,m)]+ + [s2,m · (x2(2,m) − k2,m)]+

(3.30)
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For the interaction term, it is possible to have different cases:

I. x1(1,m), kl,m = −1, s1,m = +1 and x2(2,m), k2,m = +1, s2,m = −1

II. x1(1,m), kl,m = −1, s1,m = +1 and x2(2,m), k2,m = −1, s2,m = +1

III. x1(1,m), kl,m = +1, s1,m = −1 and x2(2,m), k2,m = +1, s2,m = −1

IV. x1(1,m), kl,m = +1, s1,m = −1 and x2(2,m), k2,m = −1, s2,m = +1, equivalent to I.

From Equation (3.30) and case I, we have,

[

φ
1

2
(1 + x1 + 1 − x2)

]

+

= C[(x1 + 1)+ + (1 − x2)+] (3.31)

The constant C on the right hand side of the equation is added to compensate the left

hand side and make it equivalent. The standardization of the xv(l,m) variables when

creating the MARS function is based on the midrange and half rage which guarantees

that the scaled values are always within the range of [−1, 1]. Therefore,

(x1 + 1 + 1 − x2)+ = (x1 + 1)+ + (1 − x2)+,

which we can call constant D. If φ = 1,

1

2
· D = C · D and C =

1

2
. (3.32)

Otherwise, if φ = −1,

[

−
1

2
· D

]

+

6= C · D and C =
1

2
. (3.33)

Additionally, when φ = −1 the direction that is created by the interaction term

is a flat surface at zero, which is irrelevant to the overall approximation function. The

above proof applies for the rest of the cases, thus we can conclude that an interaction

term using only binary variables is not significant.

Figure 3.8 represents an univariate pair of binary variables. Figures 3.9 and 3.10

show the directions of a two-way interaction term considering only binary variables
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when φ = +1 and when φ = −1 respectively. From these figures, it can be observed

that having only binary variables is not meaningful and that one continuous variable

must be involved in the interaction term. Figures 3.11 and 3.12 illustrate a two-way

interaction term considering one binary variable (x1) and one continuous variable (x2)

with a knot value of k2 = −0.5.

Figure 3.8. Directions for a pair of univariate terms for binary variables in piecewise-
linear MARS.

Now, in order to define if one or more binary variables should be considered

in a higher order interaction term, a similar proof was developed for a three-way
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interaction term. From the truncated linear function (Equation 3.29) and the linear

transformation (Equation 3.2), we have:
[

φ

(

s1,m · k1,m

(s1,m · k1,m − 1)
+

s1,m · x1(1,m)

(1 − s1,mk1,m)
+

s2,m · k2,m

(s2,m · k2,m − 1)
+

s2,m · x2(2,m)

(1 − s2,mk2,m)

+
s3,m · k3,m

(s3,m · k3,m − 1)
+

s3,m · x3(3,m)

(1 − s3,mk3,m)

)]

+

=

[s1,m · (x1(1,m) − k1,m)]+ + [s2,m · (x2(2,m) − k2,m)]+ + [s3,m · (x3(3,m) − k3,m)]+ (3.34)

If we let x1(1,m) and x2(2,m) be binary variables and x3(3,m) continuous with a

knot value of −1 < k3,m < 1, the following cases are possible:

I. kl,m = −1, s1,m = +1; k2,m = +1, s2,m = −1; −1 < k3,m < 1, s3,m = −1

II. kl,m = −1, s1,m = +1; k2,m = −1, s2,m = +1; −1 < k3,m < 1, s3,m = −1

III. kl,m = +1, s1,m = −1; k2,m = +1, s2,m = −1; −1 < k3,m < 1, s3,m = −1

IV. kl,m = +1, s1,m = −1; k2,m = −1, s2,m = +1; −1 < k3,m < 1, s3,m = −1,

equivalent to I.

The same cases but considering a positive sign for the continuous term (s3,m =

+1) are also possible. All cases can use positive or negative direction for the term φ.

From Equation (3.34) and case I with φ = +1, we have,
[

1

2
(x1 + 1) +

1

2
(1 − x2) +

1

1 + k3

(k3 − x3)

]

+

= [(x1 + 1)]+ + [(1 − x2)]+ + [(k3 − x3)]+

(3.35)

If the result for the continuous variable x3 in Equation 3.35 is zero, that is, if

(k3 − x3) = 0,

then the right and left hand side of Equation 3.35 are equivalent since from before

we have that (x1 + 1 + 1− x2)+ = (x1 + 1)+ + (1− x2)+ and that the constant C = 1
2

(used to compensate the left hand side).
[

1

2
(1 + x1 + 1 − x2)

]

+

= C[(x1 + 1) + (1 − x2)]+
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If the result for the continuous variable x3 in Equation 3.35 is positive that is, if

(k3 − x3) > 0,

and considering the previous proof, the Equation 3.35 can be rewritten as follows:

[

1

2
(1 + x1 + 1 − x2)

]

+

+

[

1

1 + k3

(k3 − x3)

]

+

= C[(x1 + 1) + (1 − x2)]+ + [(k3 − x3)]+

(3.36)

To simplify, let D = (x1 + 1 + 1− x2)+ = (x1 + 1)+ + (1− x2)+ and plug the value of

the constant C,

[

1

2
· D

]

+

+

[

1

1 + k3

(k3 − x3)

]

+

=
1

2
· D + [(k3 − x3)]+ (3.37)

If we compensate the left hand side of the Equation 3.37 by adding a constant E =

1
1+k3

on the right hand side, both sides are then equivalent.

[

1

2
· D

]

+

+

[

1

1 + k3

(k3 − x3)

]

+

=
1

2
· D + E · [(k3 − x3)]+ (3.38)

However if the result for the continuous variable x3 in Equation 3.35 is negative that

is, if

(k3 − x3) < 0,

the result of the left hand side is still considered in the summation while the result

in the right hand side is truncated to zero, therefore, the equation is not equivalent.

Since we have at least one case where both sides of the equation are not equiv-

alent, then we can conclude that a three-way interaction term is not the same as

summing two binary main effects and one continuous main effect. Therefore, in a

three-way interaction term or higher order only one binary variable is allowed.
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Figure 3.9. Possible directions of a two-way interaction terms with binary variables
in piecewise-linear MARS when φ = +1.
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Figure 3.10. Possible directions of a two-way interaction terms with binary variables
in piecewise-linear MARS when φ = −1.
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Figure 3.11. Possible directions of a two-way interaction terms with a binary variable
and a continuous variable with k2 = −0.5 in piecewise-linear MARS when φ = +1.
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Figure 3.12. Possible directions of a two-way interaction terms with a binary variable
and a continuous variable with k2 = −0.5 in piecewise-linear MARS when φ = −1.
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CHAPTER 4

SEQUENTIAL MARS ALGORITHMS

The purpose of sequential MARS is to obtain an accurate approximation func-

tion by slowing growing the number of sample points and sequentially updating the

approximation function. This eliminates the needs to pre-specify an adequate sam-

ple size and MARS approximation settings. As a consequence, computational effort

could be reduced and a sufficiently accurate approximation may be guaranteed. An

initial set of input data points is first employed to obtain a coarse approximation.

The number of initial data points is considered to be small. The MARS function is

fitted and the performance of the function is evaluated. Then a sequential method is

selected. The different options are:

• Sequential MARS 1 - fit a MARS function from scratch at each iteration,

• Sequential MARS 2 - update the estimated model coefficients at each iteration,

• Sequential MARS 3 - build on an existing MARS function: sum of MARS

approximations based on residuals,

• Sequential MARS 4 - build on an existing MARS function: sum of MARS

approximations,

• Sequential MARS 5 - build on an existing MARS function: one MARS approx-

imation.

Once the selected method is performed, the function is again evaluated to see

if it meets the desired requirements that are determined by the application. The

sequential MARS algorithm stops when the model considers that the data are rea-

sonable enough to represent the system. These stopping criteria will depend on the
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application. Sequential MARS can be used with different purposes, statistical or op-

timization focused. For optimization purposes, if a function needs to be estimated,

then sequential MARS can be embedded within an optimization routine. The MARS

approximation model can be used as the metamodel to approximate an objective or

other function within the optimization. This approximated function is later employed

directly in an optimization routine. An automated sequential algorithm is needed for

practical implementation within optimization. It is important to mention that the

time required for estimating the MARS function depends absolutely on the complex-

ity of the model. Some parameters, such as the maximum number of basis functions

Mmax and the number of dimensions n, are critical to determine the speed of the

algorithms. For statistical purposes, the objective is to find the approximation model

that best fits the data.

Sequential MARS has the flexibility to select any of the variants of MARS

described in Section 3.2, depending on the needs of the application. It is preferable

to use certain types of experimental designs that guarantee any partial set from the

design is able to effectively represent the sample space. The diagram in Figure 4.1

represents the general approach for sequential MARS. The sequential methods for

MARS are explained in the following sections. The methods are exemplified using

a very simple coarse approximation for the initial iteration. This approximation is

the same for all the methods. Table 4.1 displays the parameters used to generate the

MARS approximation. The input data set considers 19 dimensions and it is not scaled

p = 0. In general, the model is restricted up to three-way interactions; it employs

ASR and only uses the forward coefficient restriction (FCR) Algorithm mentioned in

Section 2.1.2, which follows the same structure as original Forward Algorithm (shown

in appendix A) except for the one-dimensional transformation for the interaction

terms previously described in Section 3.1.1. It is a nonconvex approximation, and
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it uses a piecewise-linear fit to determine the estimated model coefficients (β) (only

requires the center knot).

Table 4.1. Input parameter settings for the initial MARS approximation.

Mmax 10
Knots 5
Interactions 3
ASR 2
ASR difference 0.002
Robust 0
Robust tolerance N/A
Original Backward Algorithm 0
Convex 0
Threshold 0.00
Smooth 0

The MARS approximation ŷ(1) generated is:

ŷ(1) = β0 + β1 · B1 + β2 · B2 + β3 · B3 + β4 · B4

where,

β0 = −0.6046, β1 = −0.7125, β2 = 49.7735, β3 = 0.2023, β4 = 1.2170.

B1 = [−(x6 − 0.9187)]+,

B2 = [+(x6 − 0.9187)]+,

B3 = [−{ − · 0.9187
(− · 0.9187−1)

+ + · 0.7646
(+ · 0.7646−1)

+ − · x6

(1− − · 0.9187)
+ + · x19

(1− + · 0.7646)
}]+,

B4 = [+{ − · 0.9187
(− · 0.9187−1)

+ + · 0.7646
(+ · 0.7646−1)

+ − · x6

(1− − · 0.9187)
+ + · x19

(1− + · 0.7646)
}]+.

The MARS approximation is formed by four basis functions, a pair of univariate

terms B1 and B2 and a pair of two-way interaction terms B3 and B4. The term

β0 represents the intercept, and the βm terms represent the coefficients for their

corresponding basis function m.
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Figure 4.1. Sequential MARS approach.
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4.1 Sequential MARS 1 - Fit a MARS Function from Scratch.

Generating a new MARS approximation function from scratch is the simplest

approach. It receives new points and fits the function according to the selected input

parameters. The data points are being accumulated at each iteration and so, the

input parameters are updated. The function structure changes every time that is, the

basis functions with their corresponding parameters (coefficients βm, variables xv(l,m),

knots kl,m and directions sl,m, φm) are different once the data set is updated. The

increment in data points should be large enough to do a new fit. The approximation

function is expected to be better by increasing the complexity of the MARS structure

but still considering fewer data points.

Algorithm 4.1 describes the procedure. The input parameters for the MARS

approximation for iteration 0 are described in Table 4.1, and the generated function

is displayed at the beginning of this chapter. In this method, the MARS approxi-

mation from iteration 0 is not considered for the next iteration. Any new iteration

will represent a completely new MARS approximation function. However, the input

parameters of the previous iteration are considered for the next iteration. For exam-

ple, for iteration 1, 10 more points are added. The updated input parameters are

N = 10 + 10 = 20 points, the maximum number of basis functions also increments

to Mmax = 5 + 5 = 10 as well as the number of knots T = 5 + 3. The rest of the pa-

rameters remain the same. The Forward Coefficient Restriction (FCR) Algorithm is

performed, and a piecewise-linear fit is use to generate a new MARS approximation.

The new MARS approximation is:

ŷ(2) = β0+β1·B1+β2·B2+β3·B3+β4·B4 β5·B5+β6·B6+β7·B7+β8·B8+β9·B9+β10·B10

where,

β0 = −0.2976, β1 = −0.1005, β2 = 371.4221, β3 = 2.8405, β4 = 0.1282,

β5 = −0.1134, β6 = 0.5699, β7 = −0.0758, β8 = 0.3332, β9 = −0.8178,
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β10 = 0.0806,

B1 = [−(x10 − 0.9895)]+,

B2 = [+(x10 − 0.9895)]+,

B3 = [−{ − · 0.9895
(− · 0.9895−1)

+ − · 0.1385
(− · 0.1385−1)

+ − · x10

(1− − · 0.9895)
+ − · x9

(1− − · 0.1385)
}]+,

B4 = [+{ − · 0.9895
(− · 0.9895−1)

+ − · 0.1385
(− · 0.1385−1)

+ − · x10

(1− − · 0.9895)
+ − · x9

(1− − · 0.1385)
}]+,

B5 = [−{ − · 0.9895
(− · 0.9895−1)

+ + · 0.6400
(+ · 0.6400−1)

+ − · x10

(1− − · 0.9895)
+ + · x18

(1− + · 0.6400)
}]+,

B6 = [+{ − · 0.9895
(− · 0.9895−1)

+ + · 0.6400
(+ · 0.6400−1)

+ − · x10

(1− − · 0.9895)
+ + · x18

(1− + · 0.6400)
}]+,

B7 = [−{ − · 0.9895
(− · 0.9895−1)

+ + · 0.1385
(+ · 0.1385−1)

+ + · 0.4642
(+ · 0.4642−1)

+ − · x10

(1− − · 0.9895)
+ + · x9

(1− + · 0.1385)
+

+ · x11

(1− + · 0.4642)
}]+,

B8 = [+{ − · 0.9895
(− · 0.9895−1)

+ + · 0.1385
(+ · 0.1385−1)

+ + · 0.4642
(+ · 0.4642−1)

+ − · x10

(1− − · 0.9895)
+ + · x9

(1− + · 0.1385)
+

+ · x11

(1− + · 0.4642)
}]+,

B9 = [−{ − · 0.9895
(− · 0.9895−1)

+ − · 0.1385
(− · 0.1385−1)

+ − · 0.4555
(− · 0.4555−1)

+ − · x10

(1− − · 0.9895)
+ − · x9

(1− − · 0.1385)
+

− · x16

(1− − · 0.4555)
}]+,

B10 = [+{ − · 0.9895
(− · 0.9895−1)

+ − · 0.1385
(− · 0.1385−1)

+ − · 0.4555
(− · 0.4555−1)

+ − · x10

(1− − · 0.9895)
+ − · x9

(1− − · 0.1385)
+

− · x16

(1− − · 0.4555)
}]+.

The final approximation has a total of 10 basis functions. One pair of main

effects B1 and B2, two pairs of two-way interaction effects B3, B4 and B5, B6, and

two pairs of three-way interaction effects B7, B8 and B9, B10. Notice that the parent

term for the three-way interaction terms B7 and B8 is basis function B4. The second

split in B7 and B8 has a positive sign while its parent term has a negative sign. This is

because the three way interaction term is really using φ which is positive. Parameter

φ is only required for the last split of the basis function. For the last split term s = φ

(Section 3.1.1). Once the MARS approximation is generated, a testing data set is

used to define the quality of fit based on the mean squared error (MSE).
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This is a common approach for sequential designs; points are selected sequen-

tially and the approximation is generated from scratch. However, the objective in this

dissertation is to sequentially update the approximation. The points used for next

iterations are not selected with any particular strategy, they are just the following

consecutive points from a low-discrepancy sequence.

4.2 Sequential MARS 2 - Update the Estimated Model Coefficients.

In this sequential method, once an initial MARS function is determined, the βm

coefficients for each of the selected basis functions, as well as the intercept coefficient

β0, are updated as new data are added. The same structure is then kept for all

the possible iterations required. That is the knots, the variables and the signs are

maintained. The knots however, need to be re-standardized based on the updated

data set. The least squares equation is refitted, so that the coefficients can be updated,

as well as the lack of fit calculation to evaluate the performance of the updated MARS

approximation function. Algorithm 4.2 describes the procedure.

The input parameters for the MARS approximation for iteration 0 are described

in Table 4.1 and the generated function is displayed at the beginning of this chapter.

For iteration 1, 10 more points are added, N = 10 + 10 = 20. Since this method only

refits the βm coefficients for next iterations, there is no need to update the maximum

number of basis functions (Mmax) or the total number of eligible knots (T ). The

current function structure (basis functions) remains unchanged. Once the algorithm

reads the total points, the data matrix x (N x n input variables) is standardized for

numerical stability based on the midrange and half range from N = 20. The vector

of response variables is read and ȳ is computed. The knots from the existing MARS

approximation (iteration 0) are based on the midrange and half range from N = 10,

therefore, they need to be re-standardized based on the total number of points. In ŷ(1)
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Algorithm 4.1 Sequential MARS 1 Algorithm

MARS approximation for iteration i = 0 has been previously created.

for all i = 1, ..., i = iter iterations do

Initialize B1(x) = 1, M = 1, LOF ∗ = ∞.

while M < Mmax do

for all existing basis functions Bm, m = 0, ...,M − 1 do

if interaction order lm < Lm then

for all eligible covariates xv (v ∈ 1, ..., n) do

for all eligible knots k (k ∈ knot set for xv s.t. Bm(k) > 0) do

if new pair is formed by univariate terms regress y on:

∑M−1
i=1 Bi(x) + Bm · [−(x − k)]+ + Bm+1 · [+(x − k)]+;

if new pair is formed by interaction terms regress y on:

∑M−1
i=1 Bi(x) + Bm · [−φm · zm]+ + Bm+1 · [+φm · zm]+;

if convex, check restrictions on estimated model coefficients.

calculate lack-of-fit (LOF )

if LOF < LOF ∗ then

LOF ∗ = LOF, m∗ = m, v∗ = v, k∗ = k.

end if

end for k

end for v

end if

end for m

Add and orthonormalize basis functions BM(x) and BM+1(x), (m∗, xv∗ , k∗),

M = M + 2.

end while M

perform backward routine if required by the input parameters.

compute mean squared error (MSE) on testing data set.

end for i
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the only variables selected were x6 and x19. The midrange based on N = 10 points

for variable x6 was 23, 492.624850 and the half range was 23, 380.532050; similarly for

variable x19, the midrange was 0.059995 and the half range was 0.049995. Based on

N = 20, for variable x6, the new midrange is 26, 736.813507 and the new half range

is 26, 624.720707. For variable x19, the new midrange is 0.062360 and the new half

range is 0.052360. To obtain the actual value for the knots:

knot = (knot · half range) + midrange;

and to re-standardize based on all the points:

knot = (knot − new midrange)/new half range.

The actual knot value for variable x6 is:

knot = (0.9187 · 23, 380.532050) + 23, 492.624850 = 44, 972.31964

and the re-standardize knot value is:

knot = (44, 972.31964 − 26, 736.813507)/26, 624.720707 = 0.68490.

The actual knot value for variable x19 is:

knot = (0.7646 · 0.049995) + 0.059995 = 0.09822

and the re-standardize knot value is:

knot = (0.09822 − 0.062360)/0.052360 = 0.68489.

Note that the new standardized value for both variables turned out to be very similar.

The coefficients are updated based on the linear least-squares fit procedure as

in original MARS [18]. One popular technique for numerically performing this fit is

based on the QR decomposition (A = QR, where Q is an orthogonal matrix and R is

an upper triangular matrix) however, Friedman prefers the Cholesky decomposition

(A = LL∗, where L is a lower triangular matrix with real and positive diagonal

entries and L∗ denotes the conjugate transpose of L) because even though the QR

decomposition has superior numerical properties, the Cholesky decomposition is faster

to compute.
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Given the Nx(M +1) data matrix B, where Bij = Bj(xi) the following equation

needs to be solved for the vector of basis coefficients a:

BT Ba = BT y (4.1)

where y represents the length N vector of the response values. If the basis functions

are centered, Equation 4.1 can be written as:

V a = c (4.2)

where

Vij =
N

∑

k=1

Bj(xk)[Bi(xk) − B̄i], and (4.3)

ci =
N

∑

k=1

(yk − ȳ)Bi(xk), (4.4)

where B̄ and ȳ represents the corresponding averages over the data. The inter-

cept coefficient β0 is computed as follows:

a0 = ȳ −

M
∑

i=1

aiB̄i. (4.5)

Continuing with the existing structure from iteration 0, and following the above

equations, the updated coefficients for iteration 1 are:

β0 = 0.6698, β1 = −0.7543, β2 = −0.7228, β3 = −0.0257, β4 = −0.0522.

Once the MARS approximation is updated, a testing data set is used to define

the quality of fit based on the mean squared error (MSE).

This sequential approach is the one that requires the least computational effort

since it does not increase the complexity of the structure at each iteration. The
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purpose of refitting the estimated model coefficients is to obtain a more accurate

approximation by considering more data points. The quality of the fit might not be

as good as other approaches but it shows stability with fewer data points. Having

a simple structure might be advantageous for certain applications. For optimization

purposes, this might be the easiest to optimize.

4.3 Sequential MARS 3 - Build on an Existing MARS Function: Sum of MARS

Approximations Based on Residuals.

This approach conserves the initial MARS structure and updates the overall

fit based on new data. Once new input data points are added, the existing MARS

function is used to calculate the residuals e = y − ŷ for all the points. The residuals

then are used as the response variable for the next iteration. The updated estimated

value is the sum of the previous iteration estimated value plus the estimated value

from the updated MARS function, ŷnew = ŷ(1) + ŷ(2). In theory, this should provide a

more robust approximation since the method is trying to compensate the remaining

unexplained variability from previous iterations by updating the function using the

residuals as the response variable for new iterations. Algorithm 4.3 describes the

procedure. The following example demonstrates the method.

The input parameters for the MARS approximation for iteration 0 are de-

scribed in Table 4.1 and the generated function is displayed at the beginning of

this chapter. For iteration 1, 10 more points are added. The new parameters are

N = 10 + 10 = 20, Mmax = 5 and T = 3. Once the algorithm reads the to-

tal points, it determines the set of eligible knots. The data matrix x is standard-

ized for numerical stability based on the midrange and half range from N = 20.

The vector of response variables is read and ȳ is computed. The knots from the

existing MARS approximation (iteration 0) are based on the midrange and half
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Algorithm 4.2 Sequential MARS 2 Algorithm

MARS approximation for iteration i = 0 has been previously created.

for all i = 1, ..., iter iterations do

for all existing basis functions Bm∗ , m∗ = 1, ...,M∗ do

for all selected covariates xv∗ do

for all selected knots k∗ do

obtain actual knot value: k = (k · half range) + midrange,

re-standardize based on new N data points:

k = (k − new midrange)/new half range.

end for k

end for xv∗

end for Bm∗

for all basis functions Bm∗ do

if piecewise-linear fit then

follow Equation: 2.3

else if quintic fit then

follow Equations: 3.6 and 3.7

end if

end for Bm∗

for all βm∗ coefficients m∗ = 1, ...,M∗ do

solve Vij =
∑N

k=1 Bj(xk)[Bi(xk) − B̄i], and ci =
∑N

k=1(yk − ȳ)Bi(xk).

end for βm∗

for intercept coefficient β0 solve ȳ −
∑M

i=1 aiB̄i.

calculate lack-of-fit (LOF ).

compute mean squared error (MSE) on testing data set.

end for i
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range from N = 10, therefore, they need to be re-standardize based on the to-

tal number of points. Same as before, to obtain the actual value for the knots:

knot = (knot · half range) + midrange;

and to re-standardize based on all the points:

knot = (knot − new midrange)/new half range.

The βm coefficients need to be updated following the same procedure as in Sec-

tion 4.2. The updated exiting MARS approximation for iteration 0 is:

ŷ(1) = β0 + β1 · B1 + β2 · B2 + β3 · B3 + β4 · B4

where,

β0 = 0.6698, β1 = −0.7543, β2 = −0.7228, β3 = −0.0257, β4 = −0.0522,

B1 = [−(x6 − 0.6849)]+,

B2 = [+(x6 − 0.6849)]+,

B3 = [−{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+, and

B4 = [+{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+.

In order to generate the next MARS approximation function, the residuals

should be calculated. The vector of y responses (N = 20) needs to be evaluated using

the updated MARS approximation. This evaluation can use a piecewise-linear fit or a

smoothing routine according to the initial set of parameters to generate the function.

This example used a piecewise-linear fit. Using the information from the first input

point, the residual is calculated as follows:

y1 = −0.63537 ŷ
(1)
1 = −0.71274,

e1 = −0.63537 − (−0.71274) = 0.07737.

The same calculation is made for the total set of points. The residuals are then used

as a response y to generate the approximation for iteration 1. The new MARS ap-

proximation is: ŷ(2) = β0 + β1 · B1 + β2 · B2 + β3 · B3 + β4 · B4
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where,

β0 = −0.7193, β1 = −0.1208, β2 = 4.4431, β3 = 0.0971, β4 = 3.3969,

B1 = [−(x17 − 0.5834)]+,

B2 = [+(x17 − 0.5834)]+,

B3 = [−{ + · 0.5834
(+ · 0.5834−1)

+ + · 0.7563
(+ · 0.7563−1)

+ + · x17

(1− + · 0.5834)
+ + · x6

(1− + · 0.7563)
}]+, and

B4 = [+{ + · 0.5834
(+ · 0.5834−1)

+ + · 0.7563
(+ · 0.7563−1)

+ + · x17

(1− + · 0.5834)
+ + · x6

(1− + · 0.7563)
}]+.

The MARS approximation is formed by a pair of main effects (B1 and B2)

and a pair of two-way interaction effects (B3 and B4). There is a total of four basis

functions and only variables x6 and x17 were selected. To evaluate the testing data

set, the MARS approximation for all iterations should be used:

ŷ
(1)
1 = −0.65487 ŷ

(2)
1 = 0.07923,

ŷnew = −0.65487 + 0.07923 = −0.57564.

Mean squared error (MSE) is used to define the quality of fit. This method may be

recommended to use when the underlying function does not have a significant number

of interaction effects.

4.4 Sequential MARS 4 - Build on an Existing MARS Function: Sum of MARS

Approximations.

This sequential method is based on the same concept as sequential MARS

3. The new approximation is build on existing basis functions following a boosting

principle except that it does not use the residuals to estimate the next MARS approx-

imation. The structure of the approximation is based on adding new basis functions

at each iteration. Algorithm 4.4 describes the procedure. The following example

demonstrates the method.
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Algorithm 4.3 Sequential MARS 3 Algorithm

MARS approximation for iteration i = 0 has been previously created.

for all i = 1, ..., iter iterations do

follow Algorithm 4.2 to re-standardize selected knots k∗ and

to update βm∗ coefficients.

for all training data points y = 1, ..., N do

evaluate updated function ŷ(i)(x) = β0 +
∑M

m=1 βmxm, and

calculate residuals e = y − ŷ(i).

end for y

follow Algorithm 4.1 to generate new MARS approximation function using resid-

uals as the response e = y,

evaluate testing data set using MARS approximations from i − 1, ..., iter,

add new and existing MARS approximations ŷnew = ŷ(1) + ŷ(2)+, , ŷ(iter+1).

compute mean squared error (MSE) on testing data set.

end for i

The input parameters for the MARS approximation for iteration 0 are described

in Table 4.1 and the generated function is displayed at the beginning of this chapter.

For iteration 1, 10 more points are added. The updated input parameters are N =

10 + 10 = 20, Mmax = 5 and T = 3. Once the algorithm reads the total points, it

determines the set of eligible knots. For this sequential approach, the initial knots

(from iteration 0) are fixed for the rest of the iterations, allowing the ability to only

use the initial set of eligible knots or to add more knots in the next iterations.

The MARS procedure to select the knots is represented in Algorithm 4.5. Note:

this method only applies for setting central knots that is, using a piecewise-linear

fit. If one requires smoothing the function, side knots are needed and they are set
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Algorithm 4.4 Sequential MARS 4 Algorithm

MARS approximation for iteration i = 0 has been previously created.

for all i = 1, ..., iter iterations do

define the set of new eligible knots (Ti),

save the set of total eligible knots (total knots = Ti + Ti−1) for next iteration

[i + 1].

follow Algorithm 4.2 to re-standardize selected knots k∗

save updated MARS approximation ŷ(i−1)(x) = β0 +
∑M

m=1 βmxm.

follow Algorithm 4.1 to generate new MARS approximation function based on

new N data points, new Mmax and total knots,

save new MARS approximation ŷ(i)(x) = β0 +
∑M

m=1 βmxm.

add new and existing MARS approximations ŷnew = ŷ(1) + ŷ(2)+, , ŷ(iter+1).

follow Algorithm 4.2 to update βm∗ coefficients.

compute mean squared error (MSE) on testing data set.

end for i

differently. Therefore this sequential approach is limited to use in the MARS variants

that require a piecewise-linear fit only.

The procedure is illustrated in the following example. Assume there are N = 10

initial input points for each variable i and a total of variables n = 3. The input points

are not required to be in any particular order (Table 4.2), and the number of desired

knots is T0 = T = 5.

The algorithm sorts the points in ascending order (xval) and counts the number

of levels (p) for each variable i. If the minimum number of levels for any variable is

fewer than the desired number of knots, then T is set p− 2 knots. The sorted points

are shown in Table 4.3. Note that for variable i = 1 the input points coincide to be in
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Table 4.2. Initial input points for variables i = 1, ..., n, N = 10.

Index i = 1 Index i = 2 Index i = 3
1 92.17 1 145.61 1 1274.60
2 2,966.61 2 45,557.34 2 200,350.61
3 5,841.06 3 31,970.15 3 398,790.60
4 8,738.50 4 59,217.19 4 597,866.60
5 11,589.95 5 63,722.03 5 279,853.81
6 14,487.39 6 18,310.30 6 80,777.80
7 17,338.85 7 41,052.50 7 518,363.41
8 20,236.29 8 13,805.46 8 319,287.40
9 23,087.74 9 68,299.54 9 557,797.00
10 25,985.18 10 22,887.80 10 438,860.21

ascending order. Additionally, all variables have the same number of levels (p = 10),

but this is not always the case. Following Algorithm 4.5, the index for the selected

knots for variable i = 1 is defined as follows:

knotspace = (10 − 1)/5 = 1.8,

firstknot = 1.8/2 = 0.9,

knotidx = 0.9, knot[1][1] = xval[1][0.9 + 0.5].idx = xval[1][2].idx,

knotidx increments at each iteration:

knotidx = 0.9 + 1.8, knot[1][2] = xval[1][2.7 + 0.5] = xval[1][4]

knotidx = 2.7 + 1.8, knot[1][3] = xval[1][4.5 + 0.5] = xval[1][6]

knotidx = 4.5 + 1.8, knot[1][4] = xval[1][6.3 + 0.5] = xval[1][7]

knotidx = 6.3 + 1.8, knot[1][5] = xval[1][8.1 + 0.5] = xval[1][9].

For this example the index for the selected knots for the three variables is the

same since the number of levels is the same and the number of knots is constant across

variables. Also, note that the algorithm never selects the extreme points (minimum

and maximum). In this case, the distribution of knots is uneven since knot t3 is ad-
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jacent to knot t4. If p[i] mod 2 = 0 and T mod 2 > 0 the knots are asymmetrically

distributed over the number of levels of the variable.

Table 4.3. Selected knots for variables i = 1, ..., n.

Order
for knot Index i = 1 Index i = 2 Index i = 3

1 1 92.17 1 145.61 1 1,274.60
t1 = 2 2 2,966.61 8 13,805.46 6 80,777.80

3 3 5,841.06 6 18,310.30 2 200,350.61
t2 = 4 4 8,738.50 10 22,887.80 5 279,853.81

5 5 11,589.95 3 31,970.15 8 319,287.40
t3 = 6 6 14,487.39 7 41,052.50 3 398,790.60
t4 = 7 7 17,338.85 2 45,557.34 10 438,860.21

8 8 20,236.29 4 59,217.19 7 518,363.41
t5 = 9 9 23,087.74 5 63,722.03 9 557,797.00

10 10 25,985.18 9 68,299.54 4 597,866.61

To add more knots, the following procedure is performed. Continuing with the

example, 10 new points are added for the new MARS approximation, N = 20 and 3

additional knots (T1 = 3) are required to be added; the total number of knots is T =

T0+T1 = 8. The number of levels p for each variable i is counted. The number of levels

for variable i = 1 is p = 18, while the number of levels for variables i = 2 and i = 3 is

p = 20. The median is calculated with the purpose to determine how many existing

knots are located above the median and below the median. The medians for each

variable are: median[1]=18,787.57, median[2]=34,258.90 and median [3]=299,570.61.

Table 4.4 shows the new points already sorted with their corresponding index. There

is a horizontal line for each vector that represents the break point according to the

median. Average and midpoint were also considered to use, behaving similarly as the

median when the data are normally distributed however, when the data are skewed

the breakpoint cannot be even. By using the median, a balanced number of knots
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Algorithm 4.5 Algorithm for setting knots

for all i = 1, ..., n variables do

knotspace = p[i] − 1/T ;

firstknot = knotspace/2;

knotidx = firstknot;

for all t = 1, ..., T knots do

knot[i][t] = xval[i][knotidx + 0.5];

Note: [knotidx + 0.5] is rounded up to the nearest integer.

knotidx+ = knotspace;

end for

end for

above and below the break point is guaranteed. For variable i = 1, the number of

knots previously selected that are above the median is part1 = 4 and below part2 = 1;

similarly for variable i = 2, part1 = 2 and part2 = 3 and for variable i = 3, part1 = 2

and part2 = 3. Algorithm 4.6 determines how many new knots need to be added

above (t1) and below (t2) the median. For variable i = 1, t1 = 0 and t2 = 3, for

variable i = 2, t1 = 2 and t2 = 1 and for variable i = 3, t1 = 2 and t2 = 1. Then the

existing knots are temporarily removed from the vector of points for each variable in

order to select the new candidates for knots and avoid overlapping with existing ones.

In the same manner as before, the algorithm sorts the points in ascending order and

counts the number of levels p for each variable i. The number of levels for variable

i = 1 after removing existing knots is p = 13, while the number of levels for variables

i = 2 and i = 3 is p = 15. Also, if the minimum number of levels for any variable

is fewer than the desired number of knots, then T1 is set p − 2 knots. The next step

is to divide p for each variable, half space1 = p/2 and half space2 = p − half space1.
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Note: half space1 is rounded down to the nearest integer. Now, the same procedure

described in Algorithm 4.5 is performed for half space1 and half space2, except that

for half space2, knotidx has to be initialized as knotidx = half space1. There should

be a need to assign new knots in order to perform Algorithm 4.5 that is, the number

of new knots required above the median needs to be greater than zero t1 > 0 for

half space1 and similarly the number of new knots required below the median needs

to be greater than zero t2 > 0 for half space2. Table 4.4 shows the existing knots

(which are the same as in Table 4.3) highlighted in yellow and the preliminary new

knots highlighted in blue. For variable i = 1, the distribution of the existing and new

knots seems to be the optimal since the new knots have not adjacency with existing

knots. Nevertheless, this is not the case for variables i = 2 and i = 3. Consequently,

an additional routine needs to be performed.

Once the new preliminary knots have been defined, the vector of points for

each variable is classified. That is, if point[i][j] (i = 1, ...i = n and j = 1, ..., j = p)

is equal to existing knot then point[i][j] = 1; if point[i][j] is equal to new preliminary

knot then point[i][j] = 2; if point[i][j] is not equal to any existing or new preliminary

knot then point[i][j] = 0; Algorithm 4.7 counts the space (number of points) between

existing knots (point[i][j] = 1) and reassigns the new preliminary knots. Essentially,

the same logic for assigning knots described in Algorithm 4.5 is now performed for

each space. It also identifies the final eligible knot as point[i][j] = 1, so at the end,

any point with a value of 1 is a selected candidate knot. Table 4.5 displays the final

set of knots, the values highlighted in magenta color represent the knots that needed

to be relocated from the preliminary selection (Table 4.4). Now the knots are better

distributed along the vector of points. Adjacency within the initial selected knots

(yellow) cannot be avoided since the purpose of the algorithm is to maintain the

initial set for future iterations.
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Algorithm 4.6 Algorithm for assigning number of new knots.

Initialize T = 8, T1 = 3, half1 = T/2 = 4, half2 = T − half1 = 4.

Note: half1 is rounded down to the nearest integer.

for all i = 1, ..., n variables do

if part1[i] < half1 then

t1[i] = half1 − part1[i];

if t1[i] > T1 then

t1[i] = T1;

else if then

t1[i] = 0;

end if

end if

if part2[i] < half2 then

t2[i] = half2 − part2[i];

if t2[i] > T1 then

t2[i] = T1;

else if then

t2[i] = 0;

end if

end if

end for
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Algorithm 4.7 Algorithm to determine the final set of knots.

Initialize space=0, knots=0.

for all i = 1, ..., n variables do

number = 1;

for all j = 1, ..., p[i] number of levels do

if point[i][j] = 1 then

m = j, space = m − number.

if space > 0 then

for all g = number − 1, ...,m points do

if point[i][g] = 2 then

knots+ = 1;

point[i][g] = 0;

end if

end for

end if

if knots > 0 then

relocate new knots following Algorithm 4.5

end if

knots= 0;

number = m + 1;

end if

end for

space =0;

knots =0;

end for
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Table 4.4. Existing knots (yellow) and preliminary new selected knots (blue) for
variables i = 1, ..., n, N = 20.

Order Order Order
for knot Index i = 1 for knot Index i = 2 for knot Index i = 3

1 1 92.17 1 1 145.61 1 1 1,274.60
2 17 101.36 2 17 232.80 2 17 2,801.06
3 2 2,966.61 3 13 4,686.78 3 12 41,026.20
4 18 2,975.81 4 12 9,227.96 4 6 80,777.80
5 3 5,841.06 5 8 13,805.46 5 15 120,847.41
6 4 8,738.50 6 6 18,310.30 6 11 160,281.00
7 5 11,589.95 7 10 22,887.80 7 2 200,350.61
8 6 14,487.39 8 15 27,392.65 8 18 201,622.67
9 7 17,388.85 9 3 31,970.15 9 16 239,784.20
10 8 20,236.29 10 19 32,042.81 10 5 279,853.81
11 9 23,087.74 11 11 36,474.99 11 8 319,287.40
12 10 25,985.18 12 7 41,052.50 12 13 359,357.01
13 11 28,836.63 13 2 45,557.34 13 3 398,790.60
14 12 31,734.07 14 18 45,630.00 14 19 400,062.65
15 13 34,585.52 15 14 50,134.84 15 10 438,860.21
16 14 37,482.97 16 16 54,639.69 16 14 478,293.80
17 15 40,334.42 17 4 59,217.19 17 7 518,363.41
18 16 43,231.86 18 20 59,289.85 18 9 557,797.00

19 5 63,722.03 19 4 597,866.61
20 9 68,299.54 20 20 599,138.66

After setting the knots, the data matrix x is standardized for numerical stability

based on the midrange and half range from N = 20. The vector of response variables

is read and ȳ is computed. The knots from the existing MARS approximation (itera-

tion 0) are based on the midrange and half range from N = 10, therefore, they need

to be re-standardize based on the total number of points. As before, to obtain the

actual value for the knots, calculate:

knot = (knot · half range) + midrange;

and re-standardize based on all the points:

knot = (knot − new midrange)/new half range.

The βm coefficients do not need to be updated at this point since, they will be defined
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Table 4.5. Final knots selection. Existing knots (yellow), preliminary new selected
knots (blue) and knots that needed to be relocated (magenta) for variables i = 1, ..., n,
N = 20.

Order Order Order
for knot Index i = 1 for knot Index i = 2 for knot Index i = 3

1 1 92.17 1 1 145.61 1 1 1,274.60
2 17 101.36 2 17 232.80 2 17 2,801.06
3 2 2,966.61 3 13 4,686.78 3 12 41,026.20
4 18 2,975.81 4 12 9,227.96 4 6 80,777.80
5 3 5,841.06 5 8 13,805.46 5 15 120,847.41
6 4 8,738.50 6 6 18,310.30 6 11 160,281.00
7 5 11,589.95 7 10 22,887.80 7 2 200,350.61
8 6 14,487.39 8 15 27,392.65 8 18 201,622.67
9 7 17,388.85 9 3 31,970.15 9 16 239,784.20
10 8 20,236.29 10 19 32,042.81 10 5 279,853.81
11 9 23,087.74 11 11 36,474.99 11 8 319,287.40
12 10 25,985.18 12 7 41,052.50 12 13 359,357.01
13 11 28,836.63 13 2 45,557.34 13 3 398,790.60
14 12 31,734.07 14 18 45,630.00 14 19 400,062.65
15 13 34,585.52 15 14 50,134.84 15 10 438,860.21
16 14 37,482.97 16 16 54,639.69 16 14 478,293.80
17 15 40,334.42 17 4 59,217.19 17 7 518,363.41
18 16 43,231.86 18 20 59,289.85 18 9 557,797.00

19 5 63,722.03 19 4 597,866.61
20 9 68,299.54 20 20 599,138.66

based on the complete new MARS approximation that is, including the existing (four)

and new basis functions. The new approximation (ŷ(2)) is now generated. The follow-

ing is the MARS approximation function: ŷ(2) = β0 +β1 ·B1 +β2 ·B2 +β3 ·B3 +β4 ·B4

where,

β0 = 0.1288, β1 = 0.8992, β2 = 2.7123, β3 = 14.0846, β4 = −1.0776,

B1 = [−(x17 − 0.4819)]+,

B2 = [+(x17 − 0.4819)]+,

B3 = [−{ − · 0.4819
(− · 0.4819−1)

+ − · 0.9875
(− · 0.9875−1)

+ − · x17

(1− − · 0.9875)
+ − · x18

(1− − · 0.9875)
}]+, and
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B4 = [+{ − · 0.4819
(− · 0.4819−1)

+ − · 0.9875
(− · 0.9875−1)

+ − · x17

(1− − · 0.9875)
+ − · x18

(1− − · 0.9875)
}]+.

The new MARS approximation is formed by four basis functions, a pair of uni-

variate terms B1 and B2 and a pair of 2-way interaction terms B3 and B4. The term

β0 represents the intercept term and the βm terms represent the coefficients for their

corresponding basis function m. Now ŷ(1) and ŷ(2) are added together. The index

for the new MARS approximation starts from the last number of basis function from

existing MARS approximation plus one.

ŷ = ŷ(1) + ŷ(2) = β0 +β1 ·B1 +β2 ·B2 +β3 ·B3 +β4 ·B4 +β5 ·B5+β6 ·B6+β7 ·B7+β8 ·B8

where,

β0 = −0.6046 (from ŷ(1)) + β0 = 0.1288 (from ŷ(2)),

β1 = −0.7125, , β2 = 49.7735, β3 = 0.2023, β4 = 1.2170,

β5 = 0.8992, β6 = 2.7123, β7 = 14.0846, β8 = −1.0776,

B1 = [−(x6 − 0.6849)]+,

B2 = [+(x6 − 0.6849)]+,

B3 = [−{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+,

B4 = [+{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ −1 · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+,

B5 = [−(x17 − 0.4819)]+,

B6 = [+(x17 − 0.4819)]+,

B7 = [−{ − · 0.4819
(− · 0.4819−1)

+ − · 0.9875
(− · 0.9875−1)

+ − · x17

(1− − · 0.9875)
+ − · x18

(1− − · 0.9875)
}]+,

B8 = [+{ − · 0.4819
(− · 0.4819−1)

+ − · 0.9875
(− · 0.9875−1)

+ − · x17

(1− − · 0.9875)
+ − · x18

(1− − · 0.9875)
}]+.

The βm coefficients are now updated following the same procedure as in Sec-

tion 4.2. The updated coefficients are:

β0 = −0.0328, β1 = 0.0031, β2 = 0.5986, β3 = 0.0739, β4 = 0.2367,

β5 = 1.0545, β6 = 2.6505, β7 = 14.4165, β8 = −1.2453.
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The final approximation has four main effects and four interaction effects. The

refit of coefficients was based on a piecewise-linear fit. After finishing the MARS

approximation, a testing data set is used to define the quality of fit based on the mean

squared error (MSE). As sequential MARS 3, this method may be recommended to

use when the underlying function does not have a significant number of interaction

effects.

4.5 Sequential MARS 5 - Build on an Existing MARS Function: One MARS Ap-

proximation.

This sequential approach allows adding more basis functions as in the sequential

MARS 4 method (Section 4.4). The difference is that this method allows forming

interaction terms on existing basis functions. That is, the new input data points

can generate main effects, new interaction effects or interaction effects on existing

basis functions. The selected knots for the initial basis functions are also possible

candidates for the new basis functions. The following Algorithm 4.8 explains the

routine to create the MARS approximation. The following example demonstrates the

method.

As in previous methods, the input parameters for the MARS approximation

for iteration 0 are described in Table 4.1 and the generated function is displayed

at the beginning of this chapter. For iteration 1, 10 more points are added. The

updated input parameters are N = 10 + 10 = 20, Mmax = 10 and T = 3. Once

the algorithm reads the total points, it determines the set of eligible knots. Similar

to sequential MARS 4, the initial knots (from iteration 0) are fixed for the rest of

the iterations, allowing the ability to only use the initial selected candidate knots or

to add more knots in the next iterations. The method for setting knots previously

defined is also employed in this approach. Algorithm 4.5 is used to set the initial set
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of knots, Algorithms 4.6 and 4.7 are used if new knots are required to be set. Note

that as in sequential MARS 4 method, this approach is limited to use in the MARS

variants that require piecewise-linear fit only. After setting the knots, the data matrix

x is standardized for numerical stability based on the midrange and half range from

N = 20. The vector of response variables is read and ȳ is computed. The knots

from the existing MARS approximation (iteration 0) are based on the midrange and

half range from N = 10, therefore, they need to be re-standardize based on the total

number of points. As before, to obtain the actual value for the knots, calculate:

knot = (knot · half range) + midrange;

and re-standardize based on all the points:

knot = (knot − new midrange)/new half range.

The βm coefficients need to be updated following the same procedure described as in

Section 4.2. The updated exiting MARS approximation for iteration 0 is:

ŷ(1) = β0 + β1 · B1 + β2 · B2 + β3 · B3 + β4 · B4

where,

β0 = 0.6698, β1 = −0.7543, β2 = −0.7228, β3 = −0.0257, β4 = −0.0522,

B1 = [−(x6 − 0.6849)]+,

B2 = [+(x6 − 0.6849)]+,

B3 = [−{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+, and

B4 = [+{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+.

In order to generate the next MARS approximation (iteration 1), the Forward

Coefficient Restriction (FCR) Algorithm which selects all potential basis functions

needs to be initialized that is, all existing main and interaction terms need to be con-

sidered. Basically, it assigns the information of the existing MARS approximation to

the forward algorithm format. The basis functions need to be orthonormalized that

is, check if they are linearly independent and normalize them. After performing the
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tasks described, the new MARS approximations results as follow:

ŷ(1) = β0+β1·B1+β2·B2+β3·B3+β4·B4 β5·B5+β6·B6+β7·B7+β8·B8+β9·B9+β10·B10

where,

β0 = −0.7765, β1 = 0.2850, β2 = −2.1301, β3 = 0.1003, β4 = −0.0251,

β5 = 11.5752, β6 = −0.1113, β7 = 0.1223, β8 = 0.8831, β9 = −0.0019,

β10 = −0.2193,

B1 = [−(x6 − 0.6849)]+,

B2 = [+(x6 − 0.6849)]+,

B3 = [−{ − · 0.6849
(− · 0.6849−1)

+ + · 0.6849
(+ · 0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+,

B4 = [+{ −·0.6849
(−·0.6849−1)

+ +·0.6849
(+·0.6849−1)

+ − · x6

(1− − · 0.6849)
+ + · x19

(1− + · 0.6849)
}]+,

B5 = [−({ − · 0.6849
(− · 0.6849−1)

+ − · 0.4819
(− · 0.4819−1)

+ − · x6

(1− − · 0.6849)
+ − · x17

(1− − · 0.4819)
}]+,

B6 = [+{ − · 0.6849
(− · 0.6849−1)

+ − · 0.4819
(− · 0.4819−1)

+ − · x6

(1− − · 0.6849)
+ − · x17

(1− − · 0.4819)
}]+,

B7 = [−{ − · 0.6849
(− · 0.6849−1)

+ + · 0.4819
(+ · 0.4819−1)

+ − · 0.4819
(− · 0.4819−1)

+ − · x6

(1− − · 0.6849)
+ + · x17

(1− + · 0.4819)
+

− · x18

(1− − · −0.8252)
}]+,

B8 = [+{ − · 0.6849
(− · 0.6849−1)

+ + · 0.4819
(+ · 0.4819−1)

+ − · 0.4819
(− · 0.4819−1)

+ − · x6

(1− − · 0.6849)
+ + · x17

(1− + · 0.4819)
+

− · x18

(1− − · −0.8252)
}]+,

B9 = [+{ − · 0.6849
(− · 0.6849−1)

+ − · 0.6849
(− · 0.6849−1)

+ − · −0.9949
(− · −0.9949−1)

+ − · x6

(1− − · 0.6849)
+ − · x19

(1− − · 0.6849)
+

− · x3

(1− − · −0.9949)
}]+, and

B10 = [−{ − · 0.6849
(− · 0.6849−1)

+ − · 0.6849
(− · 0.6849−1)

+ − · −0.9949
(− · −0.9949−1)

+ − · x6

(1− − · 0.6849)
+ − · x19

(1− − · 0.6849)
+

− · x3

(1− − · −0.9949)
}]+.

The final approximation has the two initial main effects B1 and B2, and the two

initial two-way interaction effects B3 and B4. New interaction terms were formed,

one pair of two-way interaction effects B5 and B6 having as a parent term B1; and

two pairs of three-way interaction effects. B7 and B8 having as a parent term B6;

and B9 and B10 having as a parent term B3. The new basis function has a total
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of 10 basis functions. Note that for the second iteration the maximum number of

basis functions was Mmax = 5 and it actually added 6 basis functions, this is because

the number of selected basis functions for the first iteration was only 4 and the total

number of basis functions for the new approximation was Mmax = 10. Also, for the

three-way interaction terms, the second split has the opposite sign from the two-way

interaction parent term. For example the second split for basis function B7 has a

positive sign while its parent term B6 has a negative sign. This is because the three

way interaction term is really using φ which is positive. The term φ is only required

for the last split of the basis function, for the last split term s = φ (Section 3.1.1).

The refit of coefficients was based on a piecewise-linear fit. After finishing the MARS

approximation, a testing data set is used to define the quality of fit based on the

mean squared error (MSE).

Opposite to sequential MARS 3 and 4, this method can be used when the

underlying function is known to have a significant number of interaction effects. This

approach is the most comparable with sequential MARS 1, they both allow forming

new interaction terms, however sequential MARS 5 is forced to maintain the basis

functions from previous iterations as well as the eligible knots.
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Algorithm 4.8 Sequential MARS 5 Algorithm

MARS approximation for iteration i = 0 has been previously created.

for all i = 1, ..., iter iterations do

define the set of new eligible knots (Ti),

save the set of total eligible knots (total knots = Ti + Ti−1) for next iteration

[i + 1].

follow Algorithm 4.2 to re-standardize selected knots k∗ and

to update βm∗ coefficients.

for all Bm∗ = 1, ...,M∗ do

Add and orthonormalize basis function BM(x), (m∗, xv∗ , k∗).

end for Bm∗

initialize B1(x) = Bm∗ + 1, M = M∗ + 1, LOF ∗ = LOF .

follow Algorithm 4.1 to generate new MARS approximation function based on

new N , Mmax and total knots,

compute mean squared error (MSE) on testing data set.

end for i
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CHAPTER 5

CASE STUDIES

5.1 Inventory Forecasting Problem

5.1.1 Convex MARS

Convex MARS was previously tested by Shih [1] on four-dimensional and nine-

dimensional inventory forecasting stochastic dynamic programming (SDP) problems.

Such application was initially studied by Chen [23] where a detailed explanation can

be found. A brief description is given below.

The objective of the SDP is to minimize costs over T time periods which is

represented by the following formulation:

min
u1,...,uT

E{

T
∑

t=1

ct(xt, ut, ǫt)} (5.1)

s.t. xt+1 = f(xt, ut, ǫt) for t = 1, ..., T − 1 and

(xt, ut) ∈ Γt for t = 1, ..., T.

The cost function involves holding and backorder costs for each item, xt represents

the state vector which considers the inventory level of each item and its forecasted

demand at the beginning of time period t, ut represents the decision vector which is the

amount of a particular item ordered in period t, ǫt is the stochastic component, xt+1 is

determined by the transition function f(·) which involves the change in the forecast

for a particular period from the mean demand for that period and Γt represents

capacity constraints.

86



The future value function provides the optimal cost to operate the system from

period t through T as a function of the state vector xt. This is written in summation

form as:

Ft(xt) = min
u1,...,uT

E
T

∑

τ=t

cτ (xτ , uτ , ǫτ )

s.t. xτ+1 = f(xτ , uτ , ǫτ ) for τ = t, ..., T − 1 and

(xτ , uτ ) ∈ Γτ for τ = 1, ..., T.

In theory the optimal value function is known to be convex, therefore convex

MARS is applied to fit the data in the last time period of the three-period inventory

forecasting SDP.

5.1.1.1 Four-dimensional Inventory Forecasting Problem

The four covariates for this problem represent two different products and their

corresponding demand forecast. An orthogonal array (OA) of strength three (d = 3)

and levels p = 5 was created, resulting N = pd = 125 discretization points. The

response variable represents the actual cost value from the last stage in the dynamic

program. Original MARS, convex MARS with τ = 0 and convex MARS with τ > 0

models were generated considering a maximum number of basis functions of Mmax =

100 and were restricted up to three-way interactions. Three of the models used the

automatic stopping rule (ASR) (Tsai and Chen [21]). Original MARS only used

the forward algorithm. The threshold was defined based on the strategy proposed

by Shih [1] described in Section 2.1.2. The threshold used represents 6.43% of the

largest absolute coefficient of the original MARS function which is 357.61. Table 5.1

shows the parameters considered for each of the models.
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Table 5.1. Parameter settings for the versions of MARS on the four-dimensional
inventory forecasting problem.

Original MARS Convex MARS (τ = 0) Convex MARS (τ > 0)
Mmax 100
Knots 3

Interactions 3
ASR 2

ASR difference 0.02
Robust 1 0 0

Robust tolerance 0.3 N/A N/A
Threshold N/A 0.00 23.00

A validation data set of 100 points with a mean of 137.47 was used to test

the performance of the models. Figure 5.1 shows the boxplots of the absolute error

defined by |y − f̂ |, where y is the actual cost and f̂ is the estimated cost obtained

from the approximation model.

5.1.1.2 Nine-dimensional Inventory Forecasting Problem

The nine covariates for this problem represent three different products and two

demand forecasts for each of them. An orthogonal array (OA) of strength three

(d = 3) and levels p = 11 was created, resulting N = pd = 1, 331 discretization

points. The response variable represents the actual cost value from the last stage

in the dynamic program. Original MARS, convex MARS with τ = 0 and convex

MARS with τ > 0 models were generated considering a maximum number of basis

function of Mmax = 300 and were restricted up to three-way interactions. Three of

the models used the automatic stopping rule (ASR) (Tsai and Chen [21]). Original

MARS only used the forward algorithm. The threshold used represents 2.35% of the

largest absolute coefficient of the original MARS function which is 1,399.32. Table 5.2

shows the parameters considered for each of the models.
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Figure 5.1. Four-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 100 points: (1) MARS, (2) Convex MARS (τ = 0), (3)
Convex MARS (τ > 0).

Table 5.2. Parameter settings for the versions of MARS on the nine-dimensional
inventory forecasting problem.

Original MARS Convex MARS (τ = 0) Convex MARS (τ > 0)
Mmax 300
Knots 9

Interactions 3
ASR 2

ASR difference 0.02
Robust 1 0 0

Robust tolerance 0.3 N/A N/A
Threshold N/A 0.00 31.50

A validation data set of 1,000 points with a mean of 376.33 was used to test

the performance of the models. Figure 5.2 shows the boxplots of the absolute error

which is defined in the same way as previously described.

For the four and nine dimensional cases, the performance of convex MARS is

comparable to the original MARS model. From Figure 5.1, it can be observed that the
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Figure 5.2. Nine-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 1000 points: (1) MARS, (2) Convex MARS (τ = 0), (3)
Convex MARS (τ > 0).

median of the absolute error of the convex MARS model is higher than the original

MARS, and the median of the absolute error using a threshold (convex MARS with

τ > 0) is slightly lower than the original MARS indicating a better fit. However,

the convex versions guarantee convexity which is the purpose of the method. From

Figure 5.2, the median of the absolute error for the convex versions is slightly higher

than the median of the original MARS, but it is important to consider that they are

comparable and more importantly, the models assure convexity.

Another benefit of the convex MARS models is that the complexity of the

models is reduced compared to the original MARS, i.e. the number of selected basis

functions is smaller. For example, the original MARS model for the four-dimensional

case selected 39 basis functions while the convex MARS with τ = 0 model only

selected 10 basis functions. The convex MARS with τ > 0 model selected 18, which

is also significantly smaller. For the nine-dimensional case, 45 basis functions were
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selected for the original MARS model while the convex MARS with τ = 0 model

selected 17 basis functions and the convex MARS with τ > 0 model selected 15 basis

functions.

In theory, for a true underlying additive convex function, original MARS can

create a convex approximation, but it may use a mix of convex and nonconvex univari-

ate pairs, adding unnecessary complexity to the model. Tables 5.3 and 5.4 contain the

details of the main effect terms of the original MARS function for the four-dimensional

and nine-dimensional inventory forecasting problems respectively. From the tables,

it can be observed that there are positive and negative βm coefficients for unpaired

basis functions and positive and negative sum of βm coefficients for pair basis func-

tions. For example in Table 5.3, the unpaired basis function m = 11, has a positive

coefficient, while the unpaired basis function m = 18 has a negative coefficient. Basis

function m = 1 and m = 2 form a pair and the sum of their coefficients is positive.

In the same manner, basis function m = 27 and m = 28 form a pair but the sum of

the coefficients is negative. Similarly, for the nine-dimensional case in Table 5.4, the

unpaired basis function m = 41 has a positive coefficient however, in this case there

are not unpaired basis functions with a negative coefficient. Basis function m = 3

and m = 4 form a pair and the sum of their coefficients is positive. In the same man-

ner, basis function m = 1 and m = 2 form a pair but the sum of the coefficients is

negative. Convex MARS guarantees convexity selecting only the convex terms. Con-

sequently the number of terms for original MARS will likely be higher than convex

MARS because, convex MARS is more efficient in selecting the final basis functions.

Table 5.5 shows different values for the threshold that were tested for both

the four-dimensional and the nine-dimensional inventory forecasting problems. They

were defined based on various percentages of the maximum absolute coefficient of the

original MARS approximation function. For the four-dimensional case, the minimum
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Table 5.3. Main effect terms of the original MARS function for the four-dimensional
inventory forecasting problem.

m βm sl,m xv(l,m) k−

l,m kl,m k+
l,m

1 198.0000 -1 2 -0.25 0.00 0.38
2 14.6411 1 2 -0.25 0.00 0.50
3 120.9767 -1 1 -0.25 0.00 0.25
4 20.5489 1 1 -0.25 0.00 0.25
11 291.1943 -1 2 -0.75 -0.50 -0.25
18 -20.9203 -1 1 0.25 0.50 0.75
27 0.7903 -1 4 -0.50 0.00 0.50
28 -11.5013 1 4 -0.50 0.00 0.50
33 102.8038 -1 1 -0.75 -0.50 -0.25

Table 5.4. Main effect terms of the original MARS function for the nine-dimensional
inventory forecasting problem.

m βm sl,m xv(l,m) k−

l,m kl,m k+
l,m

1 154.2599 -1 2 -0.30 0.40 0.50
2 -216.7826 1 2 0.25 0.40 0.50
3 391.2438 -1 1 -0.50 0.00 0.50
4 -210.2493 1 1 -0.50 0.00 0.50
5 213.9986 -1 3 -0.50 0.00 0.50
6 47.3307 1 3 -0.50 0.00 0.50
7 -39.3492 -1 5 -0.50 0.00 0.50
8 104.4757 1 5 -0.50 0.00 0.50
9 -26.7381 -1 4 -0.60 -0.20 0.40
10 96.2213 1 4 -0.60 -0.20 0.40
23 -34.8271 -1 6 -0.50 0.00 0.50
24 17.4784 1 6 -0.50 0.00 0.50
41 264.6705 -1 2 0.50 0.60 0.75

value for the median absolute error was obtained in a range of 8.39% to 10.00%.

For the nine-dimensional case, the minimum value for the median absolute error was

obtained in a range of 1.12% to 1.49%.

To extend the performance tests of the proposed method, random noise was

added to the data sets of the two different cases, four and nine dimensions. The
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Table 5.5. Comparison of various threshold values based on different percentages
of the maximum absolute coefficient from original MARS. Median absolute error is
reported.

Four-dimensional Nine- dimensional
Percentage Threshold Median Percentage Threshold Median

2.00 7.15 7.19 1.12 15.00 8.68
5.00 17.88 7.19 1.49 20.00 8.68
5.59 20.00 6.89 1.57 21.00 8.94
5.87 21.00 7.07 1.61 21.5 8.94
6.00 21.45 7.07 1.72 23.00 9.07
6.43 23.00 7.07 1.87 25.00 20.46
7.00 25.03 7.07 2.00 26.78 20.46
8.00 28.60 7.07 2.24 30.00 11.10
8.39 30.00 6.23 2.61 35.00 39.79
9.00 32.18 6.23 5.00 66.96 37.20
9.79 35.00 6.23 8.00 107.14 37.63
10.00 35.76 6.23 10.00 133.93 35.58

random noise was generated following a normal distribution considering a coefficient

of variation (CV) of 0.01, 0.05 and 0.10, adjusting the standard deviation with their

corresponding mean (CV = σ
µ
) for both, training and testing data sets. Figures 5.3

to 5.8 show the boxplots of the absolute error for all the cases.

The percentages shown in Table 5.5 were also tested in order to define the

threshold for convex MARS that yields the best result, in this case the minimum

median absolute error (Tables 5.6 and 5.7). For the 4-dimensional case using the data

set with noise based on CV=0.01, the threshold that gives the best result is between

6.43% and 9.00% of the largest absolute coefficient from the original MARS function

(297.32). The median absolute error varies from a range of 90.46 to 91.04. This

percentage range is comparable to the percentage range (8.39% to 10.00%) that gives

the best result using the original data (Table 5.5). For the data set with noise based on

CV=0.05, the percentage that gives the best result is 2.00% from the largest absolute
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coefficient from the original MARS function (412.02) and the median absolute error

varies from 90.61 to 90.83. For the data set with noise based on CV=0.10, the

percentage range that provides the best result is from 6.00% to 6.43% from the largest

absolute coefficient from the original MARS function (647.04), and the median varies

from 92.94 to 96.47.

Table 5.6. Four-dimensional case. Comparison of various threshold values based on
different percentages of the maximum absolute coefficient from original MARS tested
in data sets containing random noise. Median absolute error is reported.

CV=0.01 CV=0.05 CV=0.10
Percentage Threshold Median Threshold Median Threshold Median

2.00 5.95 91.04 8.24 90.61 12.94 93.13
5.00 14.87 91.04 20.60 90.62 32.35 93.13
5.59 16.62 91.04 23.03 90.62 36.17 96.47
5.87 17.45 91.04 24.19 90.62 37.98 96.47
6.00 17.84 91.04 24.72 90.62 38.82 92.94
6.43 19.12 90.46 26.49 90.62 41.60 92.94
7.00 20.81 90.46 28.84 90.62 45.29 96.13
8.00 23.79 90.46 32.96 90.62 51.76 96.06
8.39 24.95 90.46 34.57 90.62 54.29 96.06
9.00 26.76 90.46 37.08 90.62 58.23 96.06
9.79 29.11 90.73 40.34 90.83 63.35 95.79
10.00 29.73 90.73 41.20 90.83 64.70 95.79

For the 9-dimensional case (Table 5.7), using the data set with noise based on

CV=0.01, the threshold that gives the best result is 1.87% from the largest absolute

coefficient of the original MARS function (1,306.82) and the median absolute error

varies from 32.30 to 56.11. This percentage is comparable to the percentage range

(1.12% to 1.49%) that gives the best threshold using the original data (Table 5.5). For

the data set with noise based on CV=0.05, the percentage from the largest absolute

coefficient from the original MARS function (440.98) that gives the best result is
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from 7.00% to 7.14%, and the median absolute error varies from 32.77 to 37.66 (this

percentage is not shown in Table 5.7). For the data set with noise based on CV=0.10

the percentage from the largest absolute coefficient from the original MARS function

(495.86) that gives the best result is 8.00%, varying from 43.52 to 47.70. The boxplots

for the convex MARS with τ > 0 from Figures 5.3 to 5.8 used the threshold that yields

the best result.

Table 5.7. Nine-dimensional case. Comparison of various threshold values based on
different percentages of the maximum absolute coefficient from original MARS tested
in data sets containing random noise. Median absolute error is reported.

CV=0.01 CV=0.05 CV=0.10
Percentage Threshold Median Threshold Median Threshold Median

1.12 14.64 36.50 4.94 37.40 5.55 43.55
1.49 19.47 36.50 6.57 37.40 7.39 43.55
1.57 20.52 36.50 6.92 37.40 7.79 43.55
1.61 21.04 36.50 7.10 37.40 7.98 43.55
1.72 22.48 36.50 7.58 37.40 8.53 43.55
1.87 24.44 32.30 8.25 37.40 9.27 43.55
2.00 26.14 32.91 8.82 37.40 9.92 43.55
2.24 29.27 36.50 9.88 37.40 11.11 43.55
2.61 34.11 46.95 11.51 37.40 12.94 43.55
5.00 65.34 41.09 22.05 37.40 24.79 43.55
8.00 104.55 46.52 35.28 37.66 39.67 43.52
10.00 130.68 56.11 44.10 37.66 49.59 47.70

5.1.1.3 Conclusions

Figure 5.9 and Figure 5.10 show the median absolute error for original MARS,

convex MARS with τ = 0 and convex MARS with τ > 0 for the different data sets for

the four-dimensional and nine-dimensional cases respectively. Table 5.8 and Table 5.9

contain the numerical results.
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Table 5.8. Median of the absolute error (four-dimensional case).

Original data CV=0.01 CV=0.05 CV=0.10
Original MARS 8.19 94.63 91.44 95.00

Convex MARS with τ = 0 12.22 90.83 91.82 153.59
Convex MARS with τ > 0 7.07 90.46 90.61 92.94

Table 5.9. Median of the absolute error (nine-dimensional case).

Original data CV=0.01 CV=0.05 CV=0.10
Original MARS 7.97 31.94 34.24 40.02

Convex MARS with τ = 0 8.68 36.50 37.40 43.55
Convex MARS with τ > 0 10.65 32.30 32.77 43.52

Overall, the results of convex MARS with τ = 0 and convex MARS with τ > 0

are comparable to the original MARS method. However, by restricting the selection

of basis functions with a threshold greater than zero (convex MARS with τ > 0)

the accuracy of the approximation model is higher. For the four-dimensional case,

all the medians from the convex MARS with τ > 0 models are lower than the me-

dians from the original MARS models. This is not the case for the medians from

the convex MARS without threshold (τ = 0), since only the median with data con-

sidering CV=0.01 for the random noise is lower than the original MARS. For the

nine-dimensional case, almost all the medians from original MARS models are lower

than the medians from convex MARS with τ = 0 and convex MARS with τ > 0 ex-

cept for the median of convex MARS with τ > 0 using the data considering CV=0.05

for the random noise. However, the convex MARS with τ = 0 and convex MARS with

τ > 0 models guarantee convexity. And for this inventory forecasting SDP applica-

tion convexity must be assured to obtain the global optimum. The strategy to select

the best threshold is still under research, the convex MARS approximation function

could be very sensitive to the threshold value, significantly affecting the results. Hav-

96



ing a threshold too high might force the convex MARS algorithms [1] to select very

few basis functions degrading the quality of fit of the function. In contrast, if the

threshold is too low, the results might not be the best. In terms of CPU time, all the

tested MARS runs required less than 5 seconds on a Quad 3.00-GHz 8GB RAM Dell

Precision Workstation.
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Figure 5.3. Four-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 100 points. Data sets include random noise, CV=0.01:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

5.1.2 MARS Variants

The SDP inventory forecasting problem for four and nine dimensions was also

applied to the different variants of MARS explained in Section 3.2. The different

variants are:

1. Original MARS

2. Nonconvex piecewise-linear
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Figure 5.4. Four-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 100 points. Data sets include random noise, CV=0.05:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

3. Nonconvex piecewise-linear using original backward algorithm

4. Nonconvex smooth

5. Nonconvex smooth using original backward algorithm

6. Convex piecewise-linear

7. Convex smooth

The parameters used to generate the different models are described in Ta-

bles 5.10 and 5.11 for the four and nine dimensional cases respectively. The threshold

used was the percentage that provided the best results based on Table 5.5 (τ = 30

for the four dimensional case and τ = 15 for the nine dimensional case).

Figures 5.11 and 5.12 illustrate the boxplots for the different MARS models

for the four and nine dimensional cases respectively. Tables 5.12 and 5.13 show the

numerical results for the boxplots.
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Figure 5.5. Four-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 100 points. Data sets include random noise, CV=0.10:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

Table 5.10. Parameter settings for MARS variants on the four-dimensional inventory
forecasting problem.

1 2 3 4 5 6 7
Mmax 100
Knots 3
Interactions 3
ASR 2
ASR difference 0.02
Robust 1 0 0 0 0 0 0
Robust tolerance 0.3 N/A N/A N/A N/A N/A N/A
Original backward algorithm 0 0 1 0 1 N/A N/A
Convex N/A 0 0 0 0 1 1
Threshold N/A N/A N/A N/A N/A 30.00 30.00
Smooth 0 0 0 1 1 0 1

5.1.2.1 Conclusions

For both cases, four and nine dimensions, the performance of MARS variants

is comparable to original MARS. However, a comparison between the nonconvex and
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Figure 5.6. Nine-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 1000 points. Data sets include random noise, CV=0.01:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

Table 5.11. Parameter settings for MARS variants on the nine-dimensional inventory
forecasting problem.

1 2 3 4 5 6 7
Mmax 300
Knots 9
Interactions 3
ASR 2
ASR difference 0.02
Robust 1 0 0 0 0 0 0
Robust tolerance 0.3 N/A N/A N/A N/A N/A N/A
Original backward algorithm 0 0 1 0 1 N/A N/A
Convex N/A 0 0 0 0 1 1
Threshold N/A N/A N/A N/A N/A 15.00 15.00
Smooth 0 0 0 1 1 0 1

convex models might not be fair since the accuracy of the prediction model depends

on the input data and the properties of the underlying function. In this case, the

data and the underlying function are known to be convex, therefore there is probably
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Figure 5.7. Nine-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 1000 points. Data sets include random noise, CV=0.05:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

no benefit to force a convex approximation. The advantage of using the original

backward algorithm in the nonconvex models is that, it can reduce the complexity

of the model and still have a good fit. The purpose of MARS variants is to provide

more flexibility to estimate the function according to the properties of the underlying

true function.

Table 5.12. MARS variants absolute error boxplot numerical results on the four-
dimensional inventory forecasting problem.

MARS variants 1 2 3 4 5 6 7
Maximum 36.34 34.91 48.05 25.82 41.12 37.71 33.00

3rd Quartile 16.85 13.86 15.18 10.98 13.54 11.08 11.04
Median 8.19 4.94 8.65 6.02 6.32 5.88 6.23

1st Quartile 3.89 1.80 3.89 3.63 3.17 2.66 2.56
Minimum 0.07 0.24 0.04 0.13 0.24 0.12 0.03
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Figure 5.8. Nine-dimensional inventory forecasting problem. Comparison of boxplots
based on a validation set of 1000 points. Data sets include random noise, CV=0.10:
(1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

Table 5.13. MARS variants absolute error boxplot numerical results on the nine-
dimensional inventory forecasting problem.

MARS variants 1 2 3 4 5 6 7
Maximum 60.94 58.61 58.61 54.84 54.84 56.03 51.78

3rd Quartile 15.14 15.40 15.40 14.78 14.78 16.03 15.61
Median 7.97 7.80 7.80 8.15 8.15 8.93 8.68

1st Quartile 3.52 3.57 3.57 3.74 3.74 4.60 4.26
Minimum 0.00 0.01 0.01 0.00 0.00 0.04 0.01

5.2 Safety System Design of Automotive Vehicle: Nonconvex Piecewise-Linear MARS

with Binary Variables

The objective of this case of study is to optimize a flexible statistical function

to minimize the impact of an automotive crash. This section is only focused on the

development of the statistical model. The full data design contains:

• 33 input variables (10 categorical and 23 continuous)
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Figure 5.9. Four-dimensional inventory forecasting problem. Comparison of median
absolute error from different data sets (original and with noise, CV=0.01, CV=0.05
and CV=0.10). (1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

• 51 output variables (the objective and 50 constraints)

• 200 data points for training and 1,249 data points for testing.

Table 5.14 contains the description of each variable and the minimum and maximum

values for the training and testing data sets, along with the number of levels.

From Table 5.14, it can be observed that there are seven categorical variables

with levels p = 2, these are flag variables x3, x4, x5, x6, x7, x8, x9. There are three

categorical variables with p > 2, x1 (p = 4), x22 (p = 3) and x33 (p = 3); for these

cases the variable will be represented by p − 1 binary variables (dummy variables).

The levels for continuous variables varies from p = 2 to p = 7. A discrepancy exists

between the two data sets training and testing, regarding the number of levels and

the range of variables. There are several variables that are missing at least one level

in the training data, this could possibly lead to a poor fit for the testing set. The total

number of input variables is 37, including two dummy variables for x1, one dummy

variable for x22 and one for x33.
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Figure 5.10. Nine-dimensional inventory forecasting problem. Comparison of median
absolute error from different data sets (original and with noise, CV=0.01, CV=0.05
and CV=0.10). (1) MARS, (2) Convex MARS (τ = 0), (3) Convex MARS (τ > 0).

SAS software was used to generate multiple linear regression models to analyze

the behavior of the data. Table 5.15 shows the R-squared for each model; y1 repre-

sents the model for the objective variable while the rest of the responses represent

the models for the constraints. The column curvature shows an indication to use a

nonlinear model based on the residual plots if it exists.

From Table 5.15, 10 models appear to have some curvature, meaning that a

linear model might not be the best option to represent the function, suggesting the

usage of a flexible model instead. Original MARS might be an option since one of

its main advantages is the ability to handle curvature. However, to facilitate the

optimization process, the piecewise-linear version of MARS is recommended. The R-

squared should improve for these cases. For the models that do not show curvature,

there are many that have a low R-squared (R-sq < 0.70). Consequently, a deeper

study of the data design needs to be conducted. Figure 5.13 displays the residual

plots for the cases that show curvature.
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Figure 5.11. Four-dimensional inventory forecasting problem. Comparison of box-
plots based on a validation set of 100 points. (1) Original MARS, (2) Nonconvex
piecewise-linear, (3) Nonconvex piecewise-linear using original backward algorithm,
(4) Nonconvex smooth, (5) Nonconvex smooth using original backward algorithm, (6)
Convex piecewise-linear (τ > 0) and (7) Convex smooth (τ > 0).

The input data were generated from a deterministic genetic algorithm. To see if

correlation exists between the input variables, the variance inflation factor (VIF) was

calculated. This index measures how much the variance of an estimated regression

coefficient is increased because of collinearity. A common criterion to determine if

multicollinearity is high is if VIF > 5. However, in an orthogonal (uncorrelated)

experimental design, the VIF is equal to 1. From Table 5.16 it can be stated that the

regressors have low variance inflation. The highest VIF value is 1.81054 for variable

x22c (dummy variable), but it is still considered low. Therefore, there is no strong

multicollinearity between regressors.

An indicator to see if the data come from a good design is to review the minimum

distance between the points in the design space and compare the result with the

minimum distance between points coming from robust designs. Sobol and Latin
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Figure 5.12. Nine-dimensional inventory forecasting problem. Comparison of box-
plots based on a validation set of 100 points. (1) Original MARS, (2) Nonconvex
piecewise-linear, (3) Nonconvex piecewise-linear using original backward algorithm,
(4) Nonconvex smooth, (5) Nonconvex smooth using original backward algorithm, (6)
Convex piecewise-linear (τ > 0) and (7) Convex smooth (τ > 0).

Hypercube (LHD) designs are considered low-discrepancy sequences. Thus, three

different designs were created considering 37 variables and 200 points and a design

range of [0.0001,0.9999]. Table 5.17 shows the minimum distance between points from

the original data, Sobol design, LHD and Uniform design.

From Table 5.17, it is clear that the minimum distance between points in the

original data is significantly low in comparison with any of the other designs. This

means that the 200 input data points are not well spread out in the space and they

might not be covering the whole region under study. This explains the lack of accuracy

of a linear model for many of the models (Table 5.15). As an alternative, different

data sets were created using the existing data (200 points for testing and 1,249 points

for training) with the purpose to see if they could better represent the region under
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Figure 5.13. Residual plots of the models that showed curvature of the automotive
vehicle case.
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Table 5.14. Description and details of the input variables of the automotive vehicle
case.

Training data set Testing data set
ID Variable description Levels Min Max Levels Min Max

x1 PAB Shape 4 1 4 4 1 4
x2 PAB Size 7 -0.1 0.9 13 -0.2 1
x3 Buckle pretensioner flag 2 0 1 2 0 1
x4 Retractor pretensioner flag 2 0 1 2 0 1
x5 Adaptive belt load limiter flag 2 0 1 2 0 1
x6 Crash locking tongue flag 2 0 1 2 0 1
x7 Knee airbag flag 2 0 1 2 0 1
x8 Passenger airbag adapt vent flag 2 0 1 2 0 1
x9 Heel stopper flag 2 0 1 2 0 1
x10 Buckle pretensioner pull in (m) 3 0.06 0.1 3 0.06 0.1
x11 Buckle pretensioner time to fire (s) 2 0.008 0.013 2 0.008 0.013
x12 Retractor pretensioner pull in (m) 2 0.06 0.08 3 0.06 0.1
x13 Retractor pretensioner time to fire (s) 2 0.008 0.013 2 0.008 0.013
x14 Retractor torsion bar force level 4 2000 2800 6 2000 3000
x15 Retractor torsion bar force level 4 2000 3200 4 2000 3200
x16 Retractor torsion bar displacement interval 3 0.05 0.2 6 0.05 0.3
x17 Retractor torsion bar displacement interval 3 0.05 0.3 6 0.05 0.3
x18 Knee airbag time to fire (s) 2 0.013 0.2 2 0.013 0.2
x19 Knee airbag inflator power 3 0.75 1.5 4 0.75 1.5
x20 Knee airbag vent size (mm) 2 0 15 2 0 15
x21 Passenger airbag lower tether length (mm) 2 0.4 0.52 3 0.4 0.52
x22 Passenger airbag lower tether location 3 1 4 4 1 4
x23 Passenger airbag time to fire (s) 2 0.01 0.013 2 0.01 0.013
x24 Passenger airbag Z-Scale 6 0.8 1.15 9 0.8 1.2
x25 Passenger airbag adaptive vent size (mm) 4 40 120 5 40 120
x26 Passenger airbag time to fire (s) 5 0.02 0.08 10 0.01 0.1
x27 Passenger airbag time to fire (s) 5 0.02 0.08 10 0.01 0.1
x28 Passenger airbag time to fire (s) 4 0.04 0.1 5 0.02 0.1
x29 Passenger airbag time to fire (s) 3 0.02 0.08 5 0.02 0.1
x30 Passenger airbag fixed vent size (mm) 3 40 70 5 40 80
x31 Passenger airbag inflator power 3 0.8 1.2 5 0.8 1.2
x32 Passenger airbag upper tether length (mm) 2 0.4 0.52 3 0.4 0.52
x33 Passenger airbag upper tether location 3 2 4 4 1 4

study. First, based on the information from Table 5.14, 78 points were selected from

the testing data set assuring that all the missing levels were present. These 78 points

were added to the original 200 points, having a total of 278 points for training. The
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Table 5.15. R-squared of the multiple linear regression models of the automotive
vehicle case.

ID Response variable name Curvature R-sq ID Response variable name Curvature R-sq

y1 Obj pb05 RRS 0.7771 y27 constr pb50 HIC 0.7222
y2 constr far50 ChestD 0.5735 y28 constr pb50 Head IP min 0.8508
y3 constr far50 ChestG 0.3797 y29 constr pb50 NeckFzMax 0.5842
y4 constr far50 Chest IP min Yes 0.7572 y30 constr pb50 NeckFzMin 0.6575
y5 constr far50 FemurL Yes 0.6520 y31 constr pb50 Nij 0.6330
y6 constr far50 FemurR Yes 0.7043 y32 constr pu05 ChestD 0.4454
y7 constr far50 HIC 0.4811 y33 constr pu05 ChestG 0.8401
y8 constr far50 Head IP min 0.7845 y34 constr pu05 Chest IP min 0.8803
y9 constr far50 NeckFzMax Yes 0.6279 y35 constr pu05 FemurL 0.5596
y10 constr far50 NeckFzMin 0.5591 y36 constr pu05 FemurR 0.5691
y11 constr far50 Nij Yes 0.7191 y37 constr pu05 HIC 0.8071
y12 constr pb05 ChestD 0.9444 y38 constr pu05 Head IP min 0.8982
y13 constr pb05 ChestG 0.8499 y39 constr pu05 NeckFzMax 0.6210
y14 constr pb05 Chest IP min 0.9742 y40 constr pu05 NeckFzMin 0.8027
y15 constr pb05 FemurL Yes 0.9746 y41 constr pu05 Nij 0.6222
y16 constr pb05 FemurR 0.8697 y42 constr pu50 ChestD Yes 0.7207
y17 constr pb05 HIC Yes 0.6117 y43 constr pu50 ChestG 0.6611
y18 constr pb05 Head IP min 0.8216 y44 constr pu50 Chest IP min Yes 0.9039
y19 constr pb05 NeckFzMax 0.8955 y45 constr pu50 FemurL 0.9349
y20 constr pb05 NeckFzMin 0.8434 y46 constr pu50 FemurR 0.9364
y21 constr pb05 Nij 0.8368 y47 constr pu50 HIC 0.6182
y22 constr pb50 ChestD Yes 0.7593 y48 constr pu50 Head IP min 0.9075
y23 constr pb50 ChestG 0.5197 y49 constr pu50 NeckFzMax 0.6073
y24 constr pb50 Chest IP min 0.7118 y50 constr pu50 NeckFzMin 0.7084
y25 constr pb50 FemurL 0.8613 y51 constr pu50 Nij 0.6923
y26 constr pb50 FemurR 0.8428

rest of the points (1,171) were considered for testing. Although the training data set

has all the levels, it is still a small number of points for training comparing the number

of points for testing therefore, 722 additional points removed from the testing data

were added, having a total of 1,000 points for training and 449 for testing. Other data

combination was made by simply switching the training and testing data sets that is,

considering 1,249 points for training and 200 for testing. Three different designs were

created for each of the data sets considering 39 variables and the number of training
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Table 5.16. Variance inflation factor of the regressors of the automotive vehicle case.

Variable VIF Variable VIF
x1a 1.08363 x18 1.21475
x1b 1.12087 x19 1.35574
x1c 1.59217 x20 1.42988
x2 1.10652 x21 1.09646
x3 1.38955 x22a 1.52556
x4 1.13043 x22c 1.81054
x5 1.18911 x23 1.11020
x6 1.28648 x24 1.12729
x7 1.11912 x25 1.08684
x8 1.11431 x26 1.28156
x9 1.11877 x27 1.12230
x10 1.31817 x28 1.46902
x11 1.12850 x29 1.20569
x12 1.09621 x30 1.14706
x13 1.33493 x31 1.35961
x14 1.15499 x32 1.11227
x15 1.12874 x33b 1.45680
x16 1.23094 x33c 1.11986
x17 1.08639

Table 5.17. Minimum distance measures between design points.

Original
data Sobol LHD Uniform

0.1000 1.5517 1.6392 1.5255

points for each of them. Considering a design range of [0.0001, 0.9999]. Table 5.18

shows the minimum distance between points from the original data, Sobol design,

LHD and Uniform design for each of the data sets.

From Table 5.18, it can be stated that the design for any of the new data sets is

a good design since the minimum distance between points is very small in comparison

to any of the other designs. This results as a limitation for this case of study since

the statistical models created with any of the data sets will lack accuracy.
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Table 5.18. Minimum distance measures between design points for different input
data sets.

Data Original
sets data Sobol LHD Uniform

278-1171 0.0833 1.6022 1.6040 1.5246
1000-449 0.0833 1.4209 1.4208 1.4007
1249-200 0.0000 1.4033 1.4311 1.3928

Continuing with the original data set (200 points for testing and 1,249 points

for training) stepwise linear regression models and piecewise-linear MARS models

were generated. The same procedure was followed for one of the described data sets

(1,000 points for training and 449 points for testing) which considers the total number

of variables (39). First the multiple linear regression models were created and the

residual plots were analyzed to examine for possible existing curvature. In the same

manner, stepwise linear regression models and piecewise-linear MARS models were

generated. Tables 5.19 and 5.20 indicates the models that have curvature and the

R-squared for the approximation models for the two different data sets.

The parameters used to create the piecewise-linear MARS approximations for

the two data sets varies from model to model. However, all of them are restricted up

to two-way interactions. Three-way interaction was also tested but did not improve

the fit of models in most of the cases. Another limitation is that the number of knots

T for the binary variables (p = 2) is only one as described in Section 3.2.3. For the

continuous variables, the number of knots is constant across all of them, since it is

set based on the minimum number of levels for any dimension, T = p − 2. In this

case, T = 1 since the minimum number of levels is p = 3 (Table 5.14). To define

the maximum number of basis function Mmax, different models were tested based

on a trial and error approach and the one selected was the one that provides the
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Table 5.19. Stepwise linear and MARS approximation models for two different data
sets (1).

200 input points 1000 input points
Stepwise Piecewise Stepwise Piecewise
Linear Linear Linear Linear

ID Curvature Regression MARS Curvature Regression MARS
y1 0.7742 0.6998
y2 0.5681 0.6220
y3 0.3723 0.6332
y4 Yes 0.7538 0.7812 Yes 0.6584 0.7878
y5 Yes 0.6457 0.9176 Yes 0.6795 0.8785
y6 Yes 0.7015 0.9317 Yes 0.6666 0.8671
y7 0.4728 0.1408
y8 0.7831 0.7162
y9 Yes 0.6227 0.7291 0.3695
y10 0.5542 0.3349
y11 Yes 0.7172 0.7063 0.3689
y12 0.9438 0.9436
y13 0.8488 0.5540
y14 0.9739 0.9646
y15 Yes 0.9741 0.9826 0.7116
y16 0.8661 0.4749
y17 Yes 0.6044 0.7976 Yes 0.7120 0.8794
y18 0.8196 0.7176
y19 0.8937 0.6734
y20 0.8403 0.6129
y21 0.8348 0.5990
y22 Yes 0.7562 0.7767 Yes 0.8188 0.9107
y23 0.5143 0.3915
y24 0.7088 0.6701
y25 0.8582 Yes 0.7986 0.9242
y26 0.8418 Yes 0.8224 0.9363

best R-squared for the testing data. For the data set of 200 points, the maximum

number of selected basis functions was 10 and the minimum was 6. The R-squared

for the training data varies from 0.7063 to 0.9826, however the R-squared for testing

data was very poor, the maximum R-squared was 0.5046 while the minimum was
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Table 5.20. Stepwise linear and MARS approximation models for two different data
sets (2).

200 input points 1000 input points
Stepwise Piecewise Stepwise Piecewise
Linear Linear Linear Linear

ID Curvature Regression MARS Curvature Regression MARS
y27 0.7203 0.3034
y28 0.8483 0.7924
y29 0.5822 Yes 0.6054 0.7682
y30 0.6535 0.3006
y31 0.6287 0.4150
y32 0.4373 0.2444
y33 0.8376 0.2403
y34 0.8795 0.7635
y35 0.5538 0.2615
y36 0.5607 0.4517
y37 0.8060 0.4740
y38 0.8965 0.7948
y39 0.6175 0.3980
y40 0.8003 0.5198
y41 0.6192 0.4593
y42 Yes 0.7175 0.8185 0.3967
y43 0.6566 0.3738
y44 Yes 0.9020 0.9389 0.7546
y45 0.9337 Yes 0.8748 0.9424
y46 0.9358 Yes 0.8605 0.9383
y47 0.6129 0.5179
y48 0.9051 0.8665
y49 0.6023 0.3980
y50 0.7027 0.3261
y51 0.6842 0.4314

-1.4110. A negative occurs when the model prediction is worse than just using the

average response as the prediction. This can happen when the data for training and

testing do not come from the same population. If the training data set is poorly

designed, then it will not be representative of the predictor space, and it may not

represent the same population as the testing data set. By looking at the formula
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R2 = 1 − SSE
SST

if the sum of squares of residuals (SSE) is larger than the total sum

of squares (SST) the ratio would be greater than one, yielding a negative R-squared.

For the data set of 1,000 points, the maximum number of selected basis functions was

52 and the minimum was 15. The R-squared for the training data varies from 0.7682

to 0.9424. For the testing data set the R-squared varies from 0.6561 to 0.9147. This

perhaps is an indication that the 449 testing points are representative of the 1,000

training points. However, comparing the R-squared for training of the stepwise linear

regression models, there are more models with lower R-squared (R-sq < 0.70) using

the 1,000 points than using the 200 points. Additionally, some of the models seem

to behave differently according to the input points, as is the case of the model for

variable y9 which showed curvature in the first data set but not in the second data

set.

5.2.0.2 Conclusions

Since it was proved that the input data come from a poor design, the results for

the statistical model might not be reliable. However, for the purpose of optimization,

the models that are recommended are the ones generated from the 200 input points,

since the quality of fit of the training data set shows better results than the quality

of fit of the models generated from the 1,000 input points, although this data set is

missing two levels (37 variables instead of the 39).

5.3 Air Quality Problem

Air quality refers to the state of the air around us. The quality of the air is

measured by the concentration of different pollutants during certain periods of time.

The United States Environmental Protection Agency (EPA) considers ozone as one
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of these pollutants. Ozone is a molecule formed by three oxygen atoms (O3). It is

formed naturally in the ozone layer from atmospheric oxygen by electrical discharge

to ultraviolet radiation, and it is also produced on the lower atmosphere by the

photochemical reaction of certain pollutants. The protective ozone or good ozone is

the one formed in the upper atmosphere and the harmful ozone or the bad ozone is the

one formed in the lower atmosphere. Ozone pollution can be defined then as the high

concentration of ozone at the ground level. Ground-level ozone is highly corrosive and

can lead to serious health damage; it is also a risk factor for the environment. It is

created by a complex series of reactions involving nitrogen oxides (NOx = NO+NO2)

and volatile organic compounds (V OCs) in the presence of high temperatures and

sunlight. The primary sources of NOx are power plants, automobiles and industries.

V OCs are also emitted by cars and industries but they have also a natural source,

which is the vegetation. Ozone controls then seek to reduce V OCs and NOx.

The following is a quote from Yang et al. ([2]): “Complex 3-D air quality pho-

tochemical models (e.g., Urban Airshed Model, U.S. EPA 1990; Comprehensive Air

quality Model, http://www.camx.com/) have been developed to simulate air pollu-

tion emissions, chemical reactions, and atmospheric transport, in order to predict

ozone concentrations and help government decision-makers evaluate control strate-

gies”. Other studies on ozone pollution control include Seinfeld and Kyan [97], Tri-

jonis [98] and Loughlin et al. [99]. More recently, Yang et al. [100], [2] and Sule et

al. [101]. Yang, et al. suggested a Decision-Making Framework (DMF) that searches

for dynamic and targeted control policies to reduce ozone pollution. To quote Yang

et al. ([2]): “This approach requires a lower total reduction of emissions than cur-

rent control strategies based on trial and error approach typically employed by state

government decisions-makers”.
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The next section describes in more detail the DMF strategy and focuses on the

importance of applying sequential MARS algorithms in such application.

5.3.1 Sequential MARS

The objective of the DMF is to help decision-makers evaluate critical factors for

reducing ozone emissions in order to achieve the EPA ozone standard in a more cost-

effectively manner than other approaches. In order for the DMF to search for emission

reduction control strategies, a comprehensive 3-D air chemistry photochemical model

is used. The framework utilizes a rigorous continuous-state stochastic dynamic pro-

gramming (SDP) formulation (Chen [23]) and employs mining and metamodeling

tools to develop a computationally-efficient representation of the relevant ozone air

chemistry. The approach consists on different steps. It first identifies the potential

SDP state variables, decision variables and time stages, that are then used to define

the desired SDP cost objectives and constraints. The framework then identifies the

key state and decision variables using the comprehensive air chemistry photochemical

model, and it ultimately estimates the SDP state transition equations. This task hap-

pens in the element called Atmospheric Chemistry Module. And it is considered to be

the most critical task for the DMF. Finally, the SDP method brings all components

together and solves for an optimal reduction policy.

The DMF prototype concentrated on an Atlanta case study for the ozone

episode (eight-hour average exceeding 0.08 parts per million (ppm)) during the time

period from July 29 to August 1, 1987, which is considered to be one of the worst on

record to date. It is important to mention that Atlanta is NOx limited, which means

that targeting V OCs emissions is not effective. Hence, the focus on this study is on

NOx emissions. It is assumed that the cost function for reduction of emissions at

each source is convex and has a monotonic increment. The SDP can be formulated
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following the Equation 5.1 in Section 5.1.1. The objective for the ozone pollution SDP

is to minimize the cost of avoiding ozone episodes. The state variables xi at a given

time potentially include concentrations of ozone, NOx, and V OC at various spatial

locations across the metropolitan Atlanta region. Similarly, the decision variables ut

potentially include emissions of NOx and V OC at various locations and times over

the course of the day. The transition functions ft(·) represent the ozone pollution

air chemistry. A photochemical air quality model such as the Urban Airshed Model

(UAM, EPA, 1990) can be used to calculate transitions; however this simulation is

computationally intensive. Yang et al. [100] studied mining and metamodeling tools

to incorporate a more efficient approach into the SDP optimization. The Atmo-

spheric Chemistry Module consists of three main phases, initialization, mining and

metamodeling. The objective is to find the relationship between emissions and ozone

from the comprehensive air chemistry photochemical model output by means of sta-

tistical methods from data mining and computer experiments. The details of the

Atmospheric Chemistry Module are given in [100]. Basically, the challenge is to do a

dimension reduction and to create appropriate experimental designs to fit the chosen

approximation method, i.e. metamodel. After successfully reducing the dimensions

of the SDP system which initially consists of more than 500 variables, the number of

required state variables for stages 1 through 4 is 17, 25, 23 and 19 respectively. Yang

et al. [100], [2] employed an experimental design based on a low-discrepancy sequence

to discretize the continuous SDP state space and multivariate adaptive regression

splines (MARS) approximations of the continuous SDP future value function. Yang

et al. used sets of 2,000 points from a Sobol sequence. MARS models were fitted

using ASR and robust MARS (Tsai and Chen [21]). The maximum number of basis

functions was Mmax = 2, 000, the number of eligible knots was set to T = 35 and

it was restricted up to two-way interactions. Backward MARS algorithm was not
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used for generating the models and the quintic function (Equations 3.6 and 3.7) for

smoothing the approximation model was employed. Table 5.21 from [2] shows the

number of selected basis functions by the MARS models and the computational times

for each stage.

Table 5.21. MARS results for approximating the SDP future value functions and
corresponding computational times.

Number of basis functions Running time
Stage selected by MARS (hh:mm:ss)

1 1,754 41:08:28
2 1,089 13:44:33
3 120 0:18:55
4 290 0:31:03

Overall, the results obtained from the DMF suggest that it is much more cost-

effective to target reductions by time and location, and that dynamic controls might

be beneficial.

As it is demonstrated in this air quality case study, the usage of design and

analysis of computer experiments (DACE) plays an important role when trying to

analyze this type of complex systems. However, the computational effort and time

is still a concern for researches. The goal of using sequential MARS approaches is

to reduce this computational time and efficiently represent the system. The rest of

this section will be focused on the application of sequential MARS algorithms on the

data extracted from the last stage of the SDP problem. The name for the 19 state

variables for the last stage is in Table 5.22 along with their minimum and maximum

values. From the Sobol sequence, the first consecutive 1,800 points were considered

as a training data and the rest of the points, 200 were considered as testing data. The
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different five algorithms described in Chapter 4 were applied and fitted to the data.

All the algorithms started with 50 initial data points for the first iteration. They were

then incremented by 50 more points at each iteration. The initial maximum number

of basis functions was Mmax = 40 and they incremented by ten more basis function at

each iteration. The number of eligible knots was T = 10 except for sequential MARS

5 that used T = 1 for the first iteration. The input parameters change through the

iterations based on the sequential MARS algorithm used. To evaluate the performance

of these methods, 15 iterations (from 0 to 14) were performed for each of them. To

measure the quality of fit, the mean squared error (MSE) was calculated for each

iteration for each method. Note that the response variable was first standardized.

The general and constant input parameters used for the approximations are shown in

Table 5.23. Tables 5.24 to 5.28 show the results of the air quality application for each

sequential MARS approach. The tables contain the changing input parameters for

all the iterations that is, the number of input data points N , the maximum number

of basis functions Mmax and the number of eligible knots T . They also have the

cumulative number of candidate knots, the number of selected basis functions and

the MSE for each iteration.

5.3.1.1 Conclusions

Figure 5.14 shows the mean squared error for the different methods for every

iteration. Sequential MARS 1 fits the data from scratch at every iteration, so every

time it defines a new set of eligible knots. Sequential MARS 2 simply refits the

βm coefficients at every iteration, therefore the number of basis functions and knots

are unchanged. Sequential MARS 3 generates a new MARS approximation using

the residuals as a response, consequently the method defines also a set of eligible

knots for every iteration. Sequential MARS 4 adds the functions generated from each
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Table 5.22. State variables for the last stage of the air quality SDP problem.

ID Variable Minimum Maximum
1 sq1 4p1 92.17 44,611.59
2 sq2 4p1 145.61 72,804.38
3 sq3 3p1 1,274.60 634,756.10
4 sq3 4p1 234.35 117,176.80
5 sq1 4p2 77.54 38,767.54
6 sq2 4p2 112.09 56,046.38
7 sq3 2p2 446.19 223,096.30
8 sq3 4p2 186.57 93,189.53
9 sq1 4p3 79.59 39,796.90
10 sq3 2p3 454.66 227,330.00
11 sq3 3p3 997.87 498,932.70
12 sq4 2p3 81.16 40,578.75
13 pt5p2 91.55 45,774.93
14 pt3p3 302.28 151,142.30
15 pt4p3 312.12 156,057.50
16 pt6p3 103.57 51,733.89
17 cyM3p3 0.01 0.12
18 skM3p3 0.01 0.12
19 tkM3p3 0.01 0.12

Table 5.23. General and constant input parameters for sequential MARS approaches.

Interactions 3
ASR 2
ASR difference 0.002
Robust 0
Robust tolerance N/A
Original backward algorithm 0
Convex 0
Threshold 0.00
Smooth 0

iteration, but the eligible knots for previous iterations are used for any future iteration.

Sequential MARS 5 maintains the existing basis functions and allows interaction
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Table 5.24. Sequential MARS 1 applied to the last stage of the SDP air quality
problem.

Data Input parameters Candidate Selected
Iteration points Mmax T knots basis functions MSE

0 50 40 10 10 34 0.8997
1 100 50 10 10 40 0.8952
2 150 60 10 10 46 1.1495
3 200 70 10 10 51 0.3599
4 250 80 10 10 57 0.5902
5 300 90 10 10 62 0.3630
6 350 100 10 10 68 1.3843
7 400 110 10 10 73 0.2263
8 450 120 10 10 79 0.3194
9 500 130 10 10 84 0.1468
10 550 140 10 10 88 0.1030
11 600 150 10 10 93 0.1516
12 650 160 10 10 99 0.0544
13 700 170 10 10 104 0.1290
14 750 180 10 10 109 0.0896

effects with them, along with new main and interaction effects. It also follows the

same structure for the knots as sequential MARS 4. Any previous eligible set of knots

is used in the next iteration.

From the figure, it can be observed that sequential MARS 1 shows more in-

stability through the iterations however, the MSE for the last iteration is very low

(0.0896). For sequential MARS 2, the MSE result stabilizes at an earlier iteration,

however the method cannot reach the accuracy level of sequential MARS 1. This

implies that by increasing the model complexity, a better approximation model can

be generated. Sequential MARS 3 and sequential MARS 4 in theory should be per-

forming similarly, since they are based on a boosting approach, which guarantees a

more robust approximation. Both methods show stability with few data points, but

neither of the methods can reach the accuracy level of sequential MARS 1 at iteration
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Table 5.25. Sequential MARS 2 applied to the last stage of the SDP air quality
problem.

Data Input parameters Candidate Selected
Iteration points Mmax T knots basis functions MSE

0 50 40 10 10 34 0.8997
1 100 - - - - 0.5734
2 150 - - - - 0.5479
3 200 - - - - 0.5619
4 250 - - - - 0.4989
5 300 - - - - 0.4905
6 350 - - - - 0.4733
7 400 - - - - 0.4350
8 450 - - - - 0.4349
9 500 - - - - 0.4153
10 550 - - - - 0.4190
11 600 - - - - 0.4164
12 650 - - - - 0.4125
13 700 - - - - 0.4178
14 750 - - - - 0.4291

14. And between these two approaches, sequential MARS 4 seems to perform better

than sequential MARS 3 since the MSE values are lower in general. This may have

occurred because of the number of candidate knots it had for selecting the final set.

In this case, sequential MARS 4 had a total of 38 candidate knots while sequential

MARS 3 had 150 candidate knots. Having many knots may not be beneficial. These

results show that the number of candidate knots for each dimension is an important

parameter that can affect the accuracy of the approximation function. The number of

selected knots for the last approximation function (iteration 14) was 40 in sequential

MARS 4 and 87 in sequential MARS 3. Sequential MARS 3 in this case had higher

probability to select more knots since the method is based on the summation of small

approximation functions and each of them had different eligible knots. Sequential

MARS 1 and MARS 2 had only 10 candidate knots. The number of selected knots at
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Table 5.26. Sequential MARS 3 applied to the last stage of the SDP air quality
problem. Note: the cumulative number of candidate knots is the number of candidate
knots from previous iterations plus the current number of eligible knots; however, to
generate the approximation function at each iteration only 10 knots were candidates
to choose from.

Data Input parameters Candidate Selected
Iteration points Mmax T knots basis functions MSE

0 50 40 10 10 34 0.8997
1 100 50 10 20 44 0.7563
2 150 60 10 30 54 0.5628
3 200 70 10 40 64 0.5772
4 250 80 10 50 72 0.5133
5 300 90 10 60 81 0.4542
6 350 100 10 70 90 0.3898
7 400 110 10 80 100 0.3537
8 450 120 10 90 109 0.3507
9 500 130 10 100 119 0.3560
10 550 140 10 110 128 0.3246
11 600 150 10 120 137 0.2362
12 650 160 10 130 147 0.2118
13 700 170 10 140 157 0.2004
14 750 180 10 150 166 0.2047

iteration 14 in sequential MARS 1 was 72 while in sequential MARS 2 was only 19.

Other results for sequential MARS 3 and sequential MARS 4 are shown in Table 5.29

using a smaller number of knots, a total of 15 candidate knots for sequential MARS 3

and a total of 10 candidate knots for sequential MARS 4. The number of data points

N and maximum number of basis function Mmax is the same as before. Both methods

show comparable results, however sequential MARS 4 provides slightly better results

using a smaller number of knots. In the case of sequential MARS 3, the results in

Table 5.26 are slightly better. The cumulative number of candidate knots (15) is

significantly smaller than the one previously used (150), however there is no flexibil-

ity for selecting the knots at each iteration since the eligible knots is T = 1. Other
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Table 5.27. Sequential MARS 4 applied to the last stage of the SDP air quality
problem.

Data Input parameters Candidate Selected
Iteration points Mmax T knots basis functions MSE

0 50 40 10 10 34 0.8997
1 100 50 2 12 44 0.7698
2 150 60 2 14 54 0.4671
3 200 70 2 16 63 0.3482
4 250 80 2 18 73 0.2526
5 300 90 2 20 83 0.2426
6 350 100 2 22 93 0.2396
7 400 110 2 24 103 0.2300
8 450 120 2 26 113 0.2221
9 500 130 2 28 123 0.2194
10 550 140 2 30 133 0.1968
11 600 150 2 32 143 0.1933
12 650 160 2 34 153 0.1912
13 700 170 2 36 163 0.1967
14 750 180 2 38 173 0.2059

combination of parameters should be tested keeping a small cumulative number of

knots but allowing more flexibility for the eligible knots at each iteration. Similarly,

for sequential MARS 5, different runs were tested adding the flexibility to choose

from more knots. Approach 1 used up to 80 candidate knots and the results were

reasonable but not better than sequential MARS 1, 3 or 4 (Tables 5.24, 5.26 and

5.27. Conversely, approach 2 used only 10 candidate knots but these knots were the

same through all the iterations, and the results did not improve. Table 5.30 shows

these preliminary results for sequential MARS 5. The number of data points N and

maximum number of basis function Mmax are the same as before. Finally, the input

parameters that mimicked sequential MARS 1 the best were the ones shown in Ta-

ble 5.28, where one knot was added at each iteration until the set of candidate knots

was 10. A total of 87 knots were selected in the final approximation (iteration 14).
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Table 5.28. Sequential MARS 5 applied to the last stage of the SDP air quality
problem.

Data Input parameters Candidate Selected
Iteration points Mmax T knots basis functions MSE

0 50 40 1 1 36 1.2551
1 100 50 1 2 44 0.7725
2 150 60 1 3 54 0.5770
3 200 70 1 4 62 0.4280
4 250 80 1 5 71 0.1995
5 300 90 1 6 80 0.2157
6 350 100 1 7 90 0.2259
7 400 110 1 8 100 0.1860
8 450 120 1 9 110 0.1564
9 500 130 1 10 120 0.1303
10 550 140 0 10 130 0.1144
11 600 150 0 10 140 0.0954
12 650 160 0 10 150 0.0902
13 700 170 0 10 160 0.0822
14 750 180 0 10 170 0.0823

Sequential MARS 5 is probably the most similar method to sequential MARS 1, with

the difference being that sequential MARS 5 is forced to have the previous selected

basis functions, as well as the previous eligible knots. The results in Figure 5.14 show

that the best result over all the methods for iteration 14 is the one obtained from

sequential MARS 5 (0.0823) which is slightly better than sequential MARS 1. The

MSE values for sequential MARS 5 also seem to be more stable.

Figure 5.15 shows the values of the future value function of the last stage of

the SDP of the variables cyM3p3 (maximum ozone level at Conyers during period

3) and skM3p3 (maximum ozone level at South DeKalb during period 3), the rest

of the variables were fixed using their median value (from Yang et al.). Similarly,

Figure 5.16 illustrates the future value function of these two variables, except using

the MARS approximation function generated by sequential MARS 1 at iteration 14.
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Table 5.29. Other results for sequential MARS 3 and 4 applied to the last stage of
the SDP air quality problem.

Sequential MARS 3 Sequential MARS 4
Selected Selected

Candidate basis Candidate basis
T knots functions MSE T knots functions MSE
1 1 36 1.2551 1 1 36 1.2551
1 2 46 0.5385 1 2 46 0.4961
1 3 56 0.4826 1 3 56 0.4569
1 4 65 0.3969 1 4 66 0.3247
1 5 75 0.4253 1 5 76 0.3013
1 6 85 0.3953 1 6 86 0.2807
1 7 95 0.3547 1 7 96 0.2622
1 8 105 0.3520 1 8 106 0.1998
1 9 115 0.3524 1 9 116 0.1865
1 10 125 0.3277 1 10 126 0.1831
1 11 135 0.3241 0 10 136 0.1882
1 12 145 0.3105 0 10 146 0.1879
1 13 155 0.2738 0 10 156 0.1832
1 14 165 0.2815 0 10 166 0.1650
1 15 169 0.2770 0 10 176 0.1622

It is observed that they are comparable, however, the presence of non-convexities in

Figure 5.16 is visible.

The challenge with the sequential approaches is the selection of the input pa-

rameters. This will probably depend a lot on the application, but right now the way to

define them is based on a trial and error strategy. Regardless of the possible difficulty

for defining the best set of input parameters, this approach seems to be very promising

for complex systems that are computationally intensive to solve. For the last stage of

the air quality SDP problem, the sequential methods show reasonable results by only

using less than half of the total input data points (750 out of 1,800), reaching an MSE

of 0.0823. For reference, if considering all the data input points N = 1, 800, a maxi-

mum number of basis functions of Mmax = 390, a total of eligible knots of T = 35 and
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Table 5.30. Preliminary results for sequential MARS 5 applied to the last stage of
the SDP air quality problem.

Approach 1 Approach 2
Selected Selected

Candidate basis Candidate basis
T knots functions MSE T knots functions MSE
10 10 34 0.8997 10 10 34 0.8997
5 15 44 28.0180 0 10 42 0.7288
5 20 53 1.0999 0 10 55 0.8806
5 25 63 2.0984 0 10 62 2.5116
5 30 71 0.6477 0 10 71 2.2843
5 35 80 0.5763 0 10 89 1.3469
5 40 90 0.4674 0 10 99 1.2413
5 45 100 0.5267 0 10 109 1.1361
5 50 110 0.6056 0 10 119 1.3689
5 55 120 0.3070 0 10 129 1.3554
5 60 130 0.2898 0 10 139 1.1006
5 65 140 0.3383 0 10 149 1.1358
5 70 150 0.2656 0 10 159 1.0219
5 75 160 0.2427 0 10 169 1.0111
5 80 170 0.2218 0 10 179 1.0349

considering also the general input parameters shown in Table 5.23, the MSE reached

is of 0.0346 selecting a total of 214 basis functions including main effects, two and

three-way interactions effects. All of the MARS sequential approaches have two and

three-way interaction effects in their last MARS approximation. Table 5.31 shows the

cumulative computational times for the sequential approaches executed on a Quad

3.00-GHz 8GB RAM Dell Precision Workstation. The sequential MARS approach

that takes the longest cumulative time is obviously sequential MARS 1 since it has to

build all the basis functions in every iteration. On the other hand, the approach that

takes the least amount of time is sequential MARS 2. Sequential MARS 3 and 4 are

very competitive taking only few seconds and sequential MARS 5 takes significantly

more time than sequential MARS 2, 3 and 4, but much less than sequential MARS 1.

127



The MARS approximation using all the points and the input parameters mentioned

above takes 04:32:54, however if instead of T = 35, the number of knots is T = 10,

this time is reduced to 01:45:55 reaching an MSE=0.0445. In any instance, sequential

approaches are much more efficient in terms of the computational time and can still

generate a good approximation fit.

As stated before, it is assumed that the future value function of the air quality

SDP problem is convex, however the MARS approximations used to evaluate the

performance of the sequential MARS approaches are nonconvex. Convexity can be

selected as the input setting for any of the approaches, however a final check should

be added to guarantee convexity. This will consist of performing the BIPR algorithm

at the end of each MARS approximation.

Table 5.31. Cumulative computational times (hr:min:sec) for sequential MARS ap-
proaches applied to the last stage of the SDP air quality problem.

Sequential Sequential Sequential Sequential Sequential
Iteration MARS 1 MARS 2 MARS 3 MARS 4 MARS 5

1 0:00:01 0:00:01 0:00:01 0:00:01 0:00:00
2 0:00:03 0:00:01 0:00:01 0:00:01 0:00:00
3 0:00:08 0:00:01 0:00:01 0:00:01 0:00:02
4 0:00:15 0:00:01 0:00:01 0:00:01 0:00:05
5 0:00:29 0:00:01 0:00:02 0:00:02 0:00:13
6 0:00:52 0:00:01 0:00:02 0:00:02 0:00:25
7 0:01:29 0:00:01 0:00:02 0:00:03 0:00:47
8 0:02:18 0:00:01 0:00:02 0:00:03 0:01:19
9 0:03:23 0:00:01 0:00:03 0:00:04 0:02:05
10 0:04:52 0:00:01 0:00:03 0:00:05 0:03:09
11 0:07:10 0:00:01 0:00:03 0:00:06 0:04:29
12 0:10:08 0:00:01 0:00:04 0:00:08 0:06:12
13 0:14:15 0:00:01 0:00:04 0:00:09 0:08:20
14 0:18:21 0:00:01 0:00:05 0:00:11 0:10:55
15 0:24:50 0:00:01 0:00:06 0:00:13 0:14:00
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Figure 5.14. MSE results from the different sequential MARS algorithms.

5.3.2 Convex MARS Applied in Dynamic Programming

In this section, the same air quality application described in Section 5.3.1 is

studied with the purpose of applying convex MARS. As it is already known, the future

value function is in theory convex, therefore it is favorable to use an approximation

method that can handle convexity. Original MARS cannot guarantee convexity due

to the structure of the interaction terms in the basis functions. As can be observed

from Figure 5.16, the estimated future value function shows some non-convexities,

and this complicates the optimization process.

The data extracted from the last SDP stage are slightly different from Yang’s

work since Ariyajunya [3] refined the framework. Particularly, he focused on the
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Figure 5.15. Last period of the air quality SDP optimal value function from Yang et
al. [2].

modeling phase for the transition function. The transition functions represent how

the state of the system evolves from the time of the current stage to time of the next

stage. From the Equation 5.1 the transition function is:

xt+1 = ft(xt, ut, ǫ). (5.2)

The equation represents the dynamics of the system as a function of the state

variables (xt) at time t, the decision variables ut and uncertainty ǫ. In this application

the transition function is unknown. Ariyajunya [3] proposed different types of state

transition metamodels for the Atlanta case.
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Figure 5.16. Last period of the air quality SDP optimal solution value function
estimated by sequential MARS 1 (iteration 14) (Table 5.24).

As mentioned before, the DACE approach based SDP uses experimental de-

sign and statistical models to approximate the value function. An ideal experimental

design (orthogonal) will not be appropriate to use when the variables are correlated

and the Atlanta case is known to have a multicollinear state space. Therefore, one

of the types of metamodels studied by Ariyajunya addresses the multicollinearity be-

tween ozone concentrations at different times. Multicollinearity is measured by the

variance inflation factor (VIF) from a regression model. Ariyajunya considers low

multicollinearity if VIF is less than 4 and high multicollinearity if VIF is greater

than 10. He tested the case with high VIF’s which does not address multicollinearity

allowing high VIF metamodels and the case with low VIF’s which address multi-

collinearity by carefully crafting regression models to obtain low VIF metamodels.
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The procedure consists basically on identifying those models with high VIF values

(VIF > 4) and correct them by removing some of the high correlated predictors,

refitting and re-evaluating the models. Additionally, if predictors are not significant

based on their p-value, models should be also corrected by using stepwise regres-

sion to select only statistically significant predictors (significance level of 0.05). The

SDP method first used a backward solution to approximate the future value func-

tion starting from the last stage and moving backward until all stages are solved,

and a forward SDP re-optimization in a “real-time” simulation to re-solve for the

optimal decisions. Ariyajunya followed the work of Yang et al. and utilized also a

low-discrepancy sequence by Sobol of 2,000 points to discretize the space. At each

design point, a nonlinear programming method was used to solve for an optimal so-

lution, and a commercial optimization Fortran library (NAG E04) was used as the

optimization module for solving the SDP. At each stage, the solution of the back-

ward SDP is the MARS approximation of the future value function. To address the

potential for local optima, multiple starting points can be used for the optimization

module, this increases the chance of getting close to the global optimal cost. See [3]

for results when using multiple starting point for the optimal cost.

Table 5.32 from [3] shows the number of selected basis functions by the MARS

models and the computational times for each stage. These results were generated

using the low VIF metamodels approach for the state transition functions and the

backward solution of the SDP only. It used two starting points (midpoint and lower

bound) and an additional ten random points within the ranges for computational rea-

sons. The negative MARS approximation values were truncated to zero since having

a negative cost is not realistic. The common parameters for the MARS approximation

used for each stage were N = 2, 000, Mmax = 2, 000 and T = 35. It uses the ASR

and is restricted to two-way interaction terms. Backward MARS algorithm was not
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used for generating the models and the quintic function (Equations 3.6 and 3.7) for

smoothing the approximation model was employed.

Table 5.32. MARS results for approximating the SDP future value functions and
corresponding computational times.

Number of basis functions Running time
Stage selected by MARS (hh:mm:ss)

1 394 0:53:31
2 1,853 50:09:49
3 104 0:02:47
4 90 0:02:30

Using the low VIF metamodels tends to require lower emission reduction than

using other metamodels, also the computational effort for solving the SDP is less.

See [3] for more detailed results. This approach developed by Ariyajunya seems to

be accurate for predicting the maximum ozone level, however since original MARS is

used to approximate the future value function, the nonconvexity issue is still present.

Convex MARS has been applied to the last stage of the SDP. The strategy

for defining the threshold (τ) in convex MARS is still under study. The approach

described in Section 2.1.2 was tested, but the results were not very satisfactory. In

particular, the BIPR algorithm removes too many basis functions that do not satisfy

the convexity constraint. This can lead to a poor MARS model fit. The maximum

absolute coefficient from the original MARS model is 111,225.4729. This original

MARS model comes from Ariyajunya’s SDP approach but using one starting point

(midpoint). This MARS model has also 90 basis functions. Different percentages

were tried but since the threshold was highly strict, the final approximation model

ended up with very few basis functions. Table 5.33 shows the threshold used, the
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changing parameters, the number of basis functions in the forward algorithm and the

final number of basis functions. It also indicates if the final approximation is convex

or not. All the approximations were generated using a total number of eligible knots

of T = 35 and up to two-way interactions.

Table 5.33. Results using different thresholds (τ) for modeling the last stage of the
SDP air quality problem.

Basis functions
ASR in forward Selected

% τ Mmax ASR difference algorithm basis function Convex
1 1,113 2,000 2 0.0002 92 7 yes

500 - N/A 269 66 no
2 2,225 2,000 2 0.0001 100 13 yes

500 - N/A 269 67 no
3 3,337 2,000 2 0.0001 85 5 no

500 - N/A 269 68 no
5 5,562 500 - N/A 269 65 no

As it is observed in Table 5.33 none of the values used for threshold provided a

good approximation, since a lot of the basis functions were removed. Also, nonconvex

approximations are possible in the convex MARS method. This happens because once

the BIPR algorithm is performed, the βm coefficients are refitted and a second pass on

the BIRP is executed. If any of the sum of the coefficients for pair or unpaired selected

basis functions does not satisfy the convexity restriction, then the final approximation

is nonconvex.

Other different random, but much lower, values were tested. Finally a threshold

value managed to work well. This threshold value range is between 182 and 240.

Using Mmax = 2, 000 and ASR (ASR difference= 0.0002), the forward algorithm has

a total of 64 basis functions, and the final model remains with 51 basis functions.
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If using a threshold value τ = 181, the number of basis functions in the forward

algorithm was 64 and the number of basis functions selected in the final model was

8. Similarly, if the threshold value τ = 241, the number of basis functions in the

forward algorithm was 76, and the number of basis functions selected in the final

model was 7. Another approach to determine the threshold was then derived. Taking

into consideration also the original MARS function, now the average (µ) of the sum

of the coefficients either pair or unpaired of only the univariate terms (main effects)

is calculated along with its standard deviation (σ). Then the coefficient of variation

is calculated (CV = σ
µ
). A percentage is selected and then the threshold is calculated

as follows, τ = percentage · µ

CV
). The criterion to select the percentage is not yet

defined. But for this case, the taget is to find a percentage that provides the value

of the best threshold previously obtained (182 ≤ τ ≤ 240). The following represents

the threshold calculation for the last stage SDP MARS approximation model:

µ = 2, 972.59, σ = 17, 010.32, CV = 5.72,

if percentage= 0.351, then the threshold is τ = 182.33, if percentage= 0.463, then

the threshold is τ = 240.51. The percentage range for determining the threshold is

then 0.351 ≤ % ≤ 0.463. Following the same procedure but using the median instead

of the average, the calculations are as follows:

median = 3, 218.11, σ = 17, 010.32, σ
median

= 5.29,

if percentage= 0.30, then the threshold is τ = 182.65, if percentage= 0.395, then

the threshold is τ = 240.48. The percentage range for determining the threshold is

then 0.30 ≤ % ≤ 0.395. This approach is probably more robust than the previous

one tested (Section 2.1.2) since it involves a measure of central tendency and its

dispersion.

In order to test the performance of this proposed approach, the same calcula-

tions were computed for the four- and nine-dimensional inventory forecasting problem
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described in Section 5.1. The target value for the threshold considered was τ = 30 for

the four-dimensional case and τ = 15 for the nine dimensional case. These threshold

values were the ones that yielded the best results in the original data (without noise)

(see Table 5.5 in Section 5.1.1). Tables 5.34 and 5.35 show the results. The estimated

threshold value (τ̂) is comparable with the target threshold value (τ). However, sim-

ilarly as in the air quality case, the approach using the median seems to be closer to

the target value. More cases should be tested in order to define a rule to determine

the percentage, but the objective is to have it nearly constant.

Table 5.34. Calculating the threshold value using the proposed approach based on
the mean for the inventory forecasting case.

τ µ σ CV = σ
µ

% τ̂ = % · µ

CV

Four-dimensional 30 119.42 122.96 1.03 0.25 29.00
Nine-dimensional 15 108.82 130.06 1.20 0.25 22.76

Table 5.35. Calculating the threshold value using the proposed approach based on
the median for the inventory forecasting case.

τ median σ CV = σ
median

% τ̂ = % · median
CV

Four-dimensional 30 122.16 122.96 1.01 0.30 36.41
Nine-dimensional 15 69.48 130.06 1.87 0.30 11.14

Figure 5.17 shows the values of the future value function of the last stage of

the SDP of the variables cyM3p3 (maximum ozone level at Conyers during period

3) and skM3p3 (maximum ozone level at South DeKalb during period 3); the rest

of the variables were fixed using their median value (from Ariyajunya). Similarly,

Figure 5.18 illustrates the future value function of these two variables but using the
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convex MARS approximation function. The approximation plot is comparable with

the future value function. It is worth mentioning that the metamodels developed

by Yang et al. have a slightly different set of state variables than the metamodels

developed by Ariyajunya. The number of state variables for stages 1 through 4 is

16, 23, 21 and 19 respectively. The last stage which is the one studied here, has

the same dimensions than before, and the variables used for generating the future

value function plots are present in both metamodels (Yang et al. and Ariyajunya).

However, Table 5.22 should not be considered here since the variables might be the

same but the ranges are different.
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Figure 5.17. Last period of the air quality SDP optimal value function from Ariya-
junya [3].
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Figure 5.18. Last period of the air quality SDP optimal solution value function
estimated by convex MARS.

5.3.2.1 Conclusions

Modeling the air quality value function with convex MARS is ideal since in

theory the true function is convex. This will also facilitates the optimization process

by being able to find a global optimal solution. However some difficulties have been

faced in the attempt of doing this. One is finding the threshold that leads to a good

approximation. This final approach seems to be promising but more tests should be

performed. The other difficulty is that the approximations could be nonconvex as it

was seen in Table 5.33; this might be happening because the data are nonconvex. A

way to adapt convex MARS method to data that are nonconvex should be explored

in the future. Another alternative is to model the future value function using the
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nonconvex piecewise linear version of MARS and optimize it using the proposed

method by Martinez et al. [102] which guarantees global optimization.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Multivariate adaptive regression splines (MARS) is a non-interpolating and

flexible regression method that can provide a good approximation globally and can

sufficiently capture the shape of any function. MARS structure has data-driven ca-

pability, and it excludes the non-important variables. Additionally, one of its most

important properties, is that MARS is flexible in its structure, but it can still be

restricted to satisfy certain structural properties.

The developed MARS variants have basically the same original search algo-

rithm, except that the interaction basis functions are reconstructed by a linear trans-

formation. Convex MARS variants differ from the nonconvex variants, since the

selection of the basis functions is restricted to a nonnegative sum of coefficients. The

primary objective is to provide more flexibility to the modeling process by enabling

specification of properties of the approximation model based on the properties of

the true function. And if later, this is desired to be optimized, a more appropriate

optimization process can be selected based on the properties of the function approxi-

mation. There are basically four different variants of MARS, convex piecewise-linear,

convex with the smoothing option, nonconvex piecewise-linear and nonconvex with

the smoothing option. These last two have the additional option to select the original

backward algorithm if desired. The MARS variants were tested using the inventory

forecasting case study with four and nine dimensions. The value function for this

case is known to be convex, therefore each of the MARS variants should be evaluated

using more case studies.
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MARS variants that can handle binary variables are those who require a piecewise-

linear fit only, since the only possible values for the knots are -1 and 1 and the quintic

function for smoothing routine requires also side knots. If desired, one could adapt

the algorithm to enable a quintic fit for those functions with continuous variables

and leave the piecewise-linear fit for those basis functions with at least one binary

variable. Although this is possible to do, it is difficult to say if this will be beneficial

for the approximation.

A limitation that can easily be addressed is the number of eligible knots for each

variable. As for now, the algorithm has this number constant across the variables.

The user defines the number of desired eligible knots, however if this number is greater

than the minimum number of levels of the input variables, then it is set to a lower

value. This limits the flexibility of selecting more knots. However if the number of

knots is set individually this problem can disappear.

Sequential MARS enables the capability of updating the approximation func-

tion once new data are received. This approach can be used in dynamic programming

applications where the objective or other functions need to be estimated. The advan-

tage is to reduce the computational effort by using fewer data points than a complete

experimental design.

There are five different alternatives to choose which are:

• Sequential MARS 1 - fit a MARS function from scratch at each iteration,

• Sequential MARS 2 - update the estimated model coefficients at each iteration,

• Sequential MARS 3 - build on an existing MARS function: Sum of MARS

approximations based on residuals,

• Sequential MARS 4 - build on an existing MARS function: Sum of MARS

approximations,
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• Sequential MARS 5 - build on an existing MARS function: One MARS approx-

imation.

Sequential MARS 1, 3 and 5 should not have any issue performing the different

MARS variants. However, sequential MARS 4 and 5 cannot perform the MARS

variants that require the smoothing routine. These methods keep the previous eligible

knots for any future iteration and have the option to select more or just keep the initial

set. The algorithm described in this dissertation to choose new knots is specifically

for the center knots, therefore the quintic fit could not be made since it requires the

side knots. This, however, is something to consider as future work since it should be

possible to also select new side knots and maintain the existing ones.

Sequential MARS was tested in the data extracted from the last stage of the

SDP air quality problem showing satisfactory results. However, in this case study, in

theory, the future value function is convex, but the approximation functions within

the sequential approaches are nonconvex. The task of checking and maintaining

convexity requires performing the BIPR algorithm and removing those basis functions

that violate the convexity constraint. The ability to do this within the sequential

approaches is an issue of future work. For convex MARS in the SDP air quality,

one big issue is a way to determine the threshold on the sum of coefficients. An

alternative way was proposed that seems to be promising, however more tests should

be performed. Additionally, convex MARS for nonconvex data should be explored.

Another concern about the sequential approaches is the setting of the input

parameters. This is application-dependant but general guidance still needs to be

defined. Studies of more case studies could reveal better guidance.

Finally, the sequential approaches can be applied in optimization problems, such

as SDP or surrogate optimization, where a function needs to be estimated. Therefore

it will be ideal to embed the different options into an optimization routine. Although
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the proposed sequential framework enables combinations of the sequential approaches

(see Figure 4.1), this has not been implemented. Future work can develop an appro-

priate approach to enable combinations, especially within optimization problems.
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APPENDIX A

MARS ALGORITHMS
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Figures A.1 and A.2 show the original forward and backward algorithms for

MARS.

Figure A.1. Original MARS Forward Algorithm.
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Figure A.2. Original MARS Backward Algorithm.
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Algorithm A.1 Convex MARS Interaction Transformation Algorithm (CIT)

z = (φm / (1−φm * kLm,m) * (xv(Lm,m) − kLm,m)).

for all (l = 1, 2, . . .,Lm − 1) do

if sl,m==1 then

z += (xv(l,m) − kl,m)/(1−kl,m).

else if sl,m==−1 then

z −= (xv(l,m) − kl,m)/(1+kl,m).

end if

end for

return z.
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Algorithm A.2 Convex MARS Forward Coefficient Restriction Algorithm (FCR)
Initialize M = 1, maxIA = maximum # input variables in an interaction.

while (m < Mmax) do

LOF* = ∞.

for all m = 0, . . .,M − 1 do

if basis function m involves fewer than maxIA input variables then

for all v = 1 to n do

if v /∈ basis function m then

for all k = 1 to K do

for all candidate non-zero basis functions do

if (coefficient > 0 or threshold from an unpaired basis function) ∪ (sum

of coefficients > 0 or threshold from a pair of basis functions) then

Calculate lack-of-fit LOF.

if LOF < LOF* then

LOF* = LOF. Save m∗, v∗, k∗, φm∗.

end if

end if nonnegative

end for candidate basis functions

end for k

end if v

end for v

end if

end for m

Add basis functions (m∗, v∗, k∗, φm∗), M+=2.

Orthonormalize new basis functions.

end while
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Algorithm A.3 Convex MARS backward Iteration of Pruning and Refitting Algo-

rithm (BIPR)

Initialize the full set of m basis functions.

while not convex do

for all basis functions ⊆ current set (i = m,m − 1, . . . , 1) do

if negative coefficient ∩ unpaired then

Drop i-th basis function.

m = m − 1.

else if negative sum of coefficients for a pair then

Drop one of the pair of basis functions (i-th and i + 1-th ).

m = m − 1.

else if negative coefficients for each of a pair then

Drop the pair of basis functions (i-th and i + 1-th ).

m = m − 2.

end if

Refit convex MARS model if any basis functions have been dropped.

end for

end while
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