
LEARNING EQUIVALENT INPUT CHANNEL MAPPINGS AND

GENERALIZED FEATURES FOR PATTERN TRANSFER

by

HOUTAN RAHMANIAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2013

Copyright c© by HOUTAN RAHMANIAN 2013

All Rights Reserved

To Baha’i Students in Iran who are denied to access university-level education solely

because of their beliefs.

Acknowledgements

First and foremost, I would like to greatly thank my supervising professor Dr.

Manfred Huber for his continuous guidance, support, encouragement, and motivating

during my graduate studies. I appreciate his invaluable advice during my Masters

program, his vast knowledge in different fields, and his compassionate way to guide

me in my research works. I cannot imagine finishing this thesis without his effective

supervision.

Next, I would like to thank Dr. Gergely Zaruba for his help in the process of

the development and testing of pressure sensing floor. I am also grateful to him for

dedicating his time and energy to serve on my committee.

In addition, I wish to thank my professor Dr. Vassilis Athitsos for his productive

courses I have taken, his interest in my research, and for taking time out of his busy

schedule to serve on my committee.

I would also like to extend my highest appreciation to all my instructors in my

undergraduate studies in the Baha’i Institute for Higher Education (BIHE). They

voluntarily risked their own life to teach me in Iran, where I was deprived access

to higher education only because of my beliefs. I will never forget their dedication

to educate young people, and I hope I can do the same for the next generation of

oppressed youth.

Last but not the least, I must express my deepest gratitude to my parents,

Changiz and Nesa, without whom obtaining this degree would have been totally

impossible for me. I would also appreciate my sisters and brother’s support and

iv

interest in my research, and their comments about it. My whole family has encouraged

and inspired me during all my life. I am so fortunate to have them all.

July 17, 2013

v

Abstract

LEARNING EQUIVALENT INPUT CHANNEL MAPPINGS AND

GENERALIZED FEATURES FOR PATTERN TRANSFER

HOUTAN RAHMANIAN, M.S.

The University of Texas at Arlington, 2013

Supervising Professor: Manfred Huber

In many real-world modeling applications, it is necessary to detect the origin of

the patterns of the input data in addition to finding the patterns themselves. Having

the input data generated by a systematically organized set of input channels (e.g.

data from sensors, or variables) is very common in these applications. In addition,

these input channels might also be of the same type. Therefore, the same pattern

might be observed on different sets of input channels of the data, while it is caused

by the same source in different localities.

Sparse coding is a very powerful method for learning high-level patterns (i.e.

high-level features) from raw data input. It is capable of learning an overcomplete

basis which has the capacity to capture robust and discriminative patterns within

the data. However, like many other feature learning algorithms, it is unable to de-

tect identical features or stimuli on different sets of input channels. In this work, we

propose a novel method to build general features that can be applicable to different

sets of channels. This succinct representational model will express the stimuli inde-

pendent of the locality in which they appeared. Simultaneously, different equivalent

vi

localities (equivalent channel sets) will be detected. As a result, when a feature is

recognized on a channel set it can be transferred to the other equivalent channel sets.

This enables the method to model and represent a pattern on localities where it has

never been observed before.

vii

Table of Contents

Acknowledgements . iv

Abstract . vi

List of Illustrations . x

List of Tables . xi

Chapter Page

1. Introduction and Related Work . 1

1.1 Introduction . 1

1.2 Related Work . 4

2. Technical Background . 8

2.1 Transfer Learning . 8

2.2 Sparse Coding . 9

2.2.1 Learning Features: Lagrange Dual 12

2.2.2 Learning Coefficients: Feature-Sign Search Algorithm 13

2.3 Hierarchical Clustering . 14

2.3.1 Agglomerative Hierarchical Clustering 17

3. Framework . 19

3.1 Feature Learning Component . 21

3.2 Feature Generalizer Component . 22

3.2.1 Clustering Subcomponent . 22

3.3 Evaluation Methodology . 26

3.3.1 Simple Modeling Evaluation 26

3.3.2 Knowledge Transfer Modeling Evaluation 28

viii

4. Experiments and Results . 30

4.1 Modeling without Knowledge Transfer 30

4.1.1 Pressure Sensing Floor . 30

4.1.2 Human Motion . 34

4.2 Modeling with Knowledge Transfer 37

4.2.1 Pressure Sensing Floor Simulator 37

5. Conclusion and Future Work . 41

5.1 Conclusion . 41

5.2 Future Work . 41

Appendix A. Core Implementation Components 43

References . 49

Biographical Information . 51

ix

List of Illustrations

Figure Page

1.1 Concept of an autoencoder . 6

2.1 Transfer Learning . 9

2.2 Learning curves with and without knowledge transfer 10

2.3 A sample hierarchical cluster tree in hierarchical clustering algorithm 16

3.1 The overall schema of the proposed framework 20

4.1 Pressure sensing floor (SmartFloor) . 31

4.2 The placement of the pressure sensors under the floor 32

4.3 The learned local features of the pressure sensing floor 33

4.4 The features of the pressure sensing floor after channel-remapping from

the generalized features . 35

4.5 The original data and the reconstructed human motion data for two

actions in the database: (a) Balancing on one leg, (b) Jumping in place.

The first row of each figure displays the original human motion data and

the second row displays the reconstructed data using channel-remapped

generalized feature . 36

4.6 The placement of pressure sensors in the simulator 37

4.7 The 16 local features that is learned from training data 39

x

List of Tables

Table Page

3.1 A sample of the process of superset generation in equivalent channel

mapping repository . 25

4.1 A sample generalized feature learned from the pressure sensing floor . 34

xi

Chapter 1

Introduction and Related Work

1.1 Introduction

There is an increasing need for data modeling and prediction in real-world ap-

plications. Data modeling and prediction is usually performed by extracting patterns

or features from raw data inputs. In many of these applications, it is necessary to find

the source and detect the patterns of the input data. On many occasions, the input

data is generated by a systematically arranged set of input channels which might also

be of common types (such as in the case of weather data, data from a traffic network,

etc.). As a result, the source of the data can cause the same effect (i.e. the same

pattern) on different input channels of the data.

In many cases, obtaining more data is expensive, difficult, time-consuming, or

sometimes even impossible and the available data sets are often incomplete. Because

of this data insufficiency, it would be impossible for the data to include all the existing

patterns on every feasible set of input channels. Thus, using a method that requires

less data is a great advantage. To address this in the context of ever increasing

numbers of channels in such applications as sensor networks [1], and to be able to

fully utilize the predictive power of patterns mined form data, a succinct transferable

general model is needed to be able to represent these stimuli on different sets of

channels.

Feature learning, in general, is the process of finding brief representations of

stimuli or features in unlabeled data. These features will be found such that they can

model as much variation in the raw data as possible and at the same time concisely

1

express the raw data. These features show how the data coming from the input

channels are changing and relating together. Feature learning in raw input data and

modeling the data using those patterns (instead of raw data) is a useful method for

representing data and for improving its use in the learning process. When the features

are found, data D can be transferred from raw data space into the feature space. If

B is a linear feature basis matrix then

D′ = BTD

would be the data in feature space. The derived data D′ can then be fed into arbitrary

learning or data modeling algorithms. This will often improve the performance of the

learning or modeling algorithm. Moreover, if domain knowledge is included in the

process of feature learning, the performance of the learning method can be improved

even further.

Many methods have been proposed for learning features from arbitrary raw

input data. When the number of raw input channels increases, however, a limitation

arises in all of the existing algorithms. They all lack the ability to generalize patterns

across modalities. In other words, they fail to find a general pattern that is applicable

to different channel mappings. Modality or locality of a feature is defined as a set of

channels that usually perform together to form a feature. After all, data can have

identical or very similar stimuli appearing on different channel sets. This fact is more

common and easily comprehensible on sensory input data, where the same object

or event causes the same pattern on different sets of sensory input channels. All of

the existing methods, however, are inadequate at detectecting the same stimulus or

feature if it appears on different channel sets.

2

In this thesis, we propose a method to generalize patterns over modalities or

channel sets by finding the same stimulus or feature over different channel sets. For

this purpose, the proposed method breaks down the features into the pattern itself

and the locality or the modality mappings in which the pattern appears. In other

words, to represent a stimulus, our method creates generalized features and a group

of equivalent channel sets in which the generalized feature can appear. This results in

a concise representational model which, in addition, provides a number of capabilities

for transferring and predicting data. In particular, this model leads to a representation

in which data can be transferable to other channel sets and which can be applied to

any systematic data. Its main advantage is that a pattern can be detected or predicted

on input channel sets where the feature has never appeared in the training data. For

example, if feature f1 is observed on channel sets set1, set2, set3 and feature f2 is only

observed on set1, then the method can also represent or predict f2 on set2 and set3

in future data.

The proposed method uses the sparse coding algorithm to find local features.

Then, it uses a hierarchical clustering algorithm to cluster these features into groups.

Next, it generalizes the features and captures the corresponding channel mappings.

The method also creates collections of channel sets. A collection of channel set con-

tains channel sets which are mutually equivalent to each other. Later on, the method

expands each generalized feature in all the channel sets that are equivalent to the

ones in which the feature has been originally observed. To show the applicability of

our framework, we applied it to two different experimental models: pressure sensor

data, and human motion data.

This thesis is organized as follows: The remainder of this chapter covers the

related work dealing with feature learning algorithms. Chapter 2 provides the back-

ground information, concepts, and formulation about feature learning with sparse

3

coding, feature-sign algorithm, agglomerative hierarchical clustering, and transfer

learning. Chapter 3 discusses our framework, the proposed method, and its building

components. Chapter 4 demonstrates the performance of the proposed method on

two experimental models. Finally, Chapter 5 discusses the conclusion and the possible

future work.

1.2 Related Work

Many different methods have been introduced for learning features from arbi-

trary raw input data. In this section, we briefly discuss the following algorithms which

are closely related to the method used in this work: Principle component analysis,

Independent component analysis, and Autoencoder.

Principle component analysis (PCA) [2] [3] is a common method for extracting

features from data with high dimension. PCA’s first use is to reduce dimensionality

of highly correlated variables while keeping as much data variation as possible. PCA

uses orthogonal transformation to convert correlated raw data into an uncorrelated

feature basis of the data represented by the principal components of the data. Each

of these principle components is a linear combination of input channels. The principle

components are ordered so that the first few components explain the most variation

in the raw input. Principal components can be calculated by applying singular value

decomposition (SVD) on the matrix of the raw data or by applying eigenvalue decom-

position on the matrix of data covariance [3]. The number of principal components

(i.e. features) can never exceed the number of input channels. As a result, the PCA

algorithm is unable to learn an overcomplete basis of features (i.e. having more fea-

tures than the number of input channels which helps to achieve more stable, more

robust, and more compact decomposition). On the other hand, since each principal

component tries to cover as much as data variation as it can, principal components

4

are very likely to contain several patterns or stimuli. Thus, PCA is not a suitable

method when the separation of the patterns is desired.

The Sparse PCA algorithm [4] is a modified version of PCA which aims to

generate sparse principal components. Sparse PCA accomplishes that by adding a

constraint or penalty for the number of nonzero coefficients. Therefore, Sparse PCA

is more likely to extract separated patterns in principal components. The sparse

principal components also make the resulting features easier to interpret for humans.

Many different methods have been proposed to calculate Sparse PCA. Jolliffe et al.

[4] present a LASSO-based method for calculating sparse coefficients. Hein et al. [5]

propose an inverse power method for nonlinear eigenproblems to solve Sparse PCA.

Zou et al. [6] formulate Sparse PCA as a regression-type problem with an elastic net

regularization that can be solved. Again, all of these methods are unable to learn an

overcomplete basis.

Independent component analysis (ICA) [7] [8] is another feature learning method.

It assumes that data of input channels are a mixture of underlying independent

sources that can not be measured directly (i.e. latent variables). As a matter of

fact, ICA expects a data channel such as ch1 to be a linear mixture of k independent

sources I1, I2, ..., Ik:

ch1 = a1I1 + a2I2 + ...+ akIk

The ICA algorithm splits the raw input signals into its independent building subcom-

ponents (I1...k). In other words, ICA separates the sources of the input. However, it

fails to do so if the number of sources is larger than the number of input channels.

That means ICA, like PCA and Sparse PCA, suffers from the limitation that it can

not find more features than the dimensionality of the input data. This limitation of

the number of features makes the features less specific. In this condition, the features

5

try to explain as much data as they can. As a result, a feature may represent the

effect of several stimuli which is not desired in the case of interest in the separation

of sources.

The autoencoder algorithm [9] is another feature learning method that uses

multilayer neural networks to reconstruct input data. This process leads the hidden

layer to learn features of the input data. Assume x1, x2, ..., xn are n input channels.

Autoencoder assigns these inputs to both input and desired output of a multilayer

neural network. Therefore, in the learning process (e.g. back-propagation algorithm)

of the neural network, neurons of the hidden layer learn m features f1, f2, ..., fm so

that they can reconstruct the input in the output layer. Figure 1.1 shows a simple

autoencoder neural network.

Figure 1.1: Concept of an autoencoder

6

Since there is no constraint on m, the autoencoder, unlike PCA and ICA, can

learn an overcomplete basis of features. This provides the autoencoder the ability to

have more specific features. Expanding on this, the sparse coding algorithm [10] is

another feature learning algorithm which finds a basis that enables it to express the

data using sparse coefficients. Like autoencoders, it can learn an overcomplete basis.

Sparse coding is discussed in more detail in the next chapter.

When the number of raw features increases, however, a limitation arises in all

of the discussed algorithms. They all lack the ability to generalize patterns across

modalities. In other words, they fail to find a general pattern that is applicable to

different channel mappings. Modality or locality of a feature is defined as a set of

channels that usually perform together to form a feature. After all, data can have

identical or very similar stimuli appearing on different channel sets. This fact is more

common and easily comprehensible on sensory input data, where the same object or

event causes the same pattern on different sets of sensory channels. All of the above

methods however, are unable to detect the same stimulus or feature if it appears on

different channel sets.

7

Chapter 2

Technical Background

In this chapter, we introduce the concept of transfer learning, feature learn-

ing using efficient sparse coding, the feature-sign search algorithm, and hierarchical

clustering. These algorithms are later used in our proposed method.

2.1 Transfer Learning

In most data modeling or machine learning algorithms, it is usually assumed

that training data completely represents the whole feature space. In fact, they also

consider the test data or upcoming data to be from the same feature space and

distribution. However, this assumption is not always true. In real-world applications,

obtaining more training data is sometimes expensive, difficult, and even impractical.

Therefore, these applications have to use training data which do not fully represent

the feature space of their problems.

In these situation, transferring acquired knowledge from a similar or related do-

main to the current domain can improve the performance of the modeling or learning

process. Transfer learning [11] is the process of transferring knowledge to new related

domains to avoid expensive data collecting and, also using the transferred knowledge

to boost the performance. This knowledge will be used along data of the new domain

for learning as it is shown in Figure 2.1.

To evaluate the performance of the learning process, we will use the graphical

representation of the performance increase (i.e. learning curves). The knowledge

transfer ideally should cause the learning curve to have a higher start, to learn faster

8

Figure 2.1: Transfer Learning

(i.e. higher slope), and to have a better final performance (i.e. higher asymptote)

compared to a situation in which knowledge transfer has not been used[12]. Figure

2.2 displays two learning curves: one without knowledge transfer(orange), and the

learning curve for the same task by using transfer learning (black).

2.2 Sparse Coding

Sparse coding [13] is a technique for learning high-level features from the given

unlabeled training data. The goal of sparse coding is to discover features from the

data which can be used by sparse coefficients to reconstruct the data. In other words,

the sparse coding method tries to find the feature matrix F ∈ Rl×m and the sparse

coefficient matrix S ∈ Rm×n such that the input data matrix D ∈ Rl×n can be

expressed as follow:

D ≈ FS

9

Figure 2.2: Learning curves with and without knowledge transfer

Unlike all the feature learning algorithms we discussed in the previous chapter,

sparse coding can learn an overcomplete basis which means it can learn a basis with

a larger number of features than the original input dimensions [13]. This fact enables

the sparse coding algorithm to capture a large number of features in the data. This

brings with it the ability to encode the same part of the data in different ways in order

to obtain discriminative capabilities between different classes and, in particular, to

obtain patterns that reflect the signature of particular events or causes.

As mentioned, sparse coding requires coefficients to be sparse. Different func-

tions can be used as sparsity constraint functions to achieve this purpose. Below are

some of these penalty functions:

10

‖S‖1 L1 norm penalty function

(s2 + ε)
1
2 epsilonL1 penalty function

log(1 + s2) log penalty function

Among these, L1 norm is the most commonly used sparsity constraint func-

tion. The sparse coding’s goals can be achieved by solving the following optimization

problem:

argminF,S‖D − FS‖22 + α‖S‖1

subject to

∀j
∑
i

F 2
i,j � constant

where α is the trade-off constant between sparsity of the coefficients and minimum

residuals.

Lee et al. [10] proposed a method to iteratively solve this optimization problem

by dividing it into two steps: optimizing the problem over S while keeping F locked,

and optimizing over F while keeping S locked. This will reduce the non-convex

optimization problem to two convex optimization problems. The proposed method

iteratively solves these two convex optimizations.

The optimization problem over F is a least squares problem with quadratic con-

straint. It can be solved by a generic convex optimizer or by iterative gradient-based

methods, but both of these methods have shown slow execution or slow convergence.

However, in this method the optimization problem is efficiently solved using its La-

grange dual. The optimization problem over coefficients S, on the other hand, is an

L1-regularized least square problem. Lee et al. [10] suggest a new method to solve

this optimization problem using an approach called feature-sign search algorithm. In

this algorithm, the optimization for the objective of the residual and the sparsity

11

penalty , while iteratively keeping F and S constant, is proved to be strictly decreas-

ing. Therefore, it is guaranteed that the optimization problem will converge to the

global optimum in a finite number of iterations.

2.2.1 Learning Features: Lagrange Dual

Having the coefficient S constant, the optimization problem reduces to mini-

mizing:

‖D − FS‖22

subject to

∀j
∑
i

F 2
i,j � constant

This new optimization problem is a least square one with quadratic constraints, which

can be solved by its Lagrange dual. The Lagrangian is first calculated as follows:

L(B,~λ) = trace((D − FS)T (D − FS)) +
n∑

j=1

λj(
k∑

i=1

F 2
i,j − constant)

where λj >= 0 is a dual variable. The Lagrange dual can then be computed by

analytically minimizing over F.

Dual(~λ) = minFL(B,~λ)

= trace(DTD −DST (SST + Λ)−1(DST)T − constantΛ)

where

Λ = diag(~λ)

12

Next, the gradient and Hessian of the Lagrange dual are computed. The Lagrange

dual can then be optimized, and the optimal features F can be analytically achieved

in this manner:

F T = (SST + Λ)−1(XST)T

Optimizing over a basis with this approach is significantly more efficient than the

original optimization problem.

2.2.2 Learning Coefficients: Feature-Sign Search Algorithm

In the optimization process over coefficients S, while the feature F is fixed, the

optimization reduces to smaller optimization problems over individual features. If ~Fj

is a feature vector from the features matrix (basis), and ~Di and ~Si are respectively

an input vector and a sparse coefficient vector, then the optimization problem looks

like:

argmin~Si
‖ ~Di −

∑
j

~FjSi,j‖2 + α
∑
j

|Si,j|

As the above formula shows, the sparsity constraint adds the absolute value of

each coefficient |Si,j| to the cost function. If the sign of Si,j in the optimal point of

the cost function was known ahead of time, the absolute term could be replaced by

Si,j (for Si,j > 0), −Si,j (for Si,j < 0), or 0 (for Si,j = 0). Then, the problem could

be reduced to an unconstrained quadratic optimization problem.

The feature-sign search algorithm [10] guesses the sign of Si,j and substitutes the

absolute value of coefficients with Si,j, −Si,j, or 0. The feature-sign search algorithm

continuously improves its guess to reduce the cost function in a sequence of ”feature-

sign steps”. Feature-sign search algorithm keeps a set of active coefficient (i.e. nonzero

coefficient) and assumes that all the other coefficients are zero. Moreover, it saves

13

the matching sign for the active set. Then, it searches for optimal active set and

matching signs in ”feature-sign steps”. To clearly explain how this algorithm works,

the following optimization problem is substitute with the original one:

argminxf(x) ≡ ‖y − Ax‖2 + γ‖x‖1

The approach of feature-sign algorithm is as follows: having an initial active set

and their matching signs, it solves the unconstrained quadratic optimization problem.

Then, it runs an efficient discrete line search between the newly calculated solution

x̂new and the old solution to update the active set and their matching signs. Algorithm

1 illustrates how the process of updating active set and their signs θ in the feature-sign

search algorithm.

Although the initial active set and matching signs are not optimal at the be-

ginning of the algorithm, it is guaranteed that the ”feature-sign step” consistently

decreases the objective value. In fact, It is proven that the feature-sign search al-

gorithm converges to the global minimum of the cost function in a finite number of

steps [10].

2.3 Hierarchical Clustering

Clustering is an unsupervised learning method. It categorizes objects into

groups or clusters based on a defined similarity metric. The goal is to build clus-

ters such that objects of a cluster are more similar to each other than to the objects

of the other clusters. Many algorithms have been suggested for this purpose. K-means

clustering is the most popular clustering algorithm. However, its result greatly de-

pends on the number of clusters. Therefore, it usually assumes that the number of

14

Algorithm 1 The Feature-Sign Search Algorithm

Step 1:
x := ~0 , θ := ~0 , active set := {}

Step 2:

select i = argmaxi|∂‖y−Ax‖2
∂xi

| from zero coefficients of x

if ∂‖y−Ax‖2
∂xi

> γ then
θi := −1 , active set := {i} ∪ active set

else if ∂‖y−Ax‖2
∂xi

< −γ then
θi := 1 , active set := {i} ∪ active set

end if

Step 3:
x̂new := (ÂT Â)−1(ÂTy − γθ̂/2) (Analytical solution)
Execute the discrete line search between x̂ and x̂new.
Examine the objective value at x̂new and all the points where a sign changes and
renew the x̂ to the point that has the optimal objective value.

Step 4:

if ∂‖y−Ax‖2
∂xj

+ γθj = 0 for ∀xj 6= 0 then

Go to Step 3.

else if |∂‖y−Ax‖2
∂xj

| � γ for ∀xj = 0 then

Go to Step 2.
else

Return x as solution.
end if

clusters, k, is already known in advance. Then, it tries to put objects in those k

clusters such they fit into the best possible groups.

In contrast, hierarchical clustering [14] is a clustering algorithm that offers a

very flexible and non-parametric technique. It does not require the number of clusters

to be known in advance. The hierarchical clustering algorithm does not require prior

knowledge about the domain of the data. It creates a hierarchical cluster tree. In

fact, It generates a hierarchy or links between objects based on the similarity metric

and the inconsistency that an object might cause be joining a cluster. For example,

15

Figure 2.3 displays a sample of such hierarchical cluster trees for clustering 30 random

numbers based on their distance from each other.

Figure 2.3: A sample hierarchical cluster tree in hierarchical clustering algorithm

When the hierarchical cluster tree is formed, the algorithm uses a criterion to

cut off the tree and form the clusters. The algorithm needs to know how different two

clusters are. In that way, the algorithm can stop linking those two clusters if they are

more different than they are expected to be. A measure called inconsistency coefficient

is defined for each link in hierarchical cluster tree. An inconsistency coefficient of a

link is a comparison between the height of the link and the height of the links below

it. If the height of the link is approximately equal to the height of links below it, it

16

indicates that there is no specific division between the objects joined in this hierarchy

level. Otherwise, objects joined in this level are far apart each other to form a cluster.

Therefore, a common criterion for cutting off the hierarchical cluster tree is

an inconsistency threshold. That means a node and all its subnodes will arrange a

cluster when all the inconsistency coefficients of their links are less than a specified

threshold.

2.3.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering [7] is one type of hierarchical clustering

algorithms. It uses a bottom-up approach to generate the hierarchical cluster tree. It

initially puts each object in its own cluster. A similarity metric between two clusters

is then defined. After that, at each level the algorithm merges the two most similar

clusters together and forms a new cluster. Therefore, at each level the algorithm will

contain one less cluster than at the previous level. It basically builds a hierarchy of

clusters where in each level the variance within the clusters is slightly higher than

those at the level before but where there are fewer clusters. Finally, the algorithm

stops merging clusters when it reaches a defined criterion for the minimum similarity

within a cluster. Algorithm 2 clarifies how the agglomerative hierarchical clustering

algorithm works.

17

Algorithm 2 Agglomerative Hierarchical Clustering

Step 1:
Calculate the dissimilarity values between every two objects
Step 2:
Create a cluster from the two closest objects or clusters
Step 3:
Determine the dissimilarity value between new cluster and existing objects or clus-
ters.
Step 4:
Return to Step 2 unless the stopping criterion is met.

18

Chapter 3

Framework

In the proposed method, a feature learning component first learns the local

features from the raw input data. Then, the feature learning component passes the

learned local features to a feature generalizer component. The feature generalizer

component breaks down the local features into the features and the locality in which

they appear. A feature is a vector of numbers that can appear on arbitrary set of

input channels. On the other hand, a locality is an ordered set of input channels

that perform together. Different features can appear on a locality, and a feature can

appear on different localities.

After breaking down the local features to the features and their localities, a

clustering component in the feature generalizer clusters the features into groups. The

feature generalizer later analyzes each cluster to generate a generalized feature.

During the generalization process, the feature generalizer uses the locality of

clustered features to form channel mapping sets which represent where generalized

features are applicable. These channel mapping sets will be sent to the equivalent

channel mapping repository. The equivalent channel mapping repository is respon-

sible for extracting equivalent channel mappings from the submitted sets and saving

them in supersets. Extracting equivalent channel mappings enables us to transfer our

knowledge from a channel mapping to its equivalent channel mappings. In this way,

features which are learned in a specific locality are transferred to other equivalent

localities.

19

The generalized features and channel mapping supersets can later be used for

data reconstruction, modeling or prediction. In the following sections, we will explain

how each component is architected and works. However, it is important to notice that

the framework is designed to be flexible. One might use a different overcomplete fea-

ture learner component, but keep the feature generalizer the same. Also, a different

classification algorithm might be leveraged in the feature generalizer component. Fig-

ure 3.1 shows the overall schema of our proposed framework.

Figure 3.1: The overall schema of the proposed framework

20

3.1 Feature Learning Component

An efficient sparse coding algorithm [10] has been used here for local feature

learning. The ability of the sparse coding algorithm to learn an overcomplete basis

results in sparse features where, ideally, each explains a single source or stimulus.

When the local features are learned, the channels in each local feature are divided

into two sets: the Active Channel Set (ACS) and the Inactive Channel Set (ICS).

This classification is performed based on the contribution of the channels to the

feature vector size. c1, c2, ..., cn , and v1, v2, ..., vn are respectively assumed to be the

channels and the values assigned to them in feature f . If

1−
√
v21 + ...+ v2i−1 + v2i+1 + ...v2n√

v21 + ...+ v2n
> THR

where THR is the contribution threshold, then

ci ∈ ACS

otherwise

ci ∈ ICS

Since the members of the Inactive Channel Set (ICS) do not play a signif-

icant role in the feature, the algorithm then ignores their contribution to the fea-

ture. Therefore, a vector called active-channel vector can be constructed for each

feature. An active-channel vector al is defined for active channels of each feature fl.

If ~cl = {cl1 , cl2 , ..., clm} are the members of the Active Channel Set (ACS) in feature

21

fl , and ~vl = {vl1 , vl2 , ..., vlm} are the values of the feature fl in those channels, then

the active-channel vector al is defined as follows:

al = [(cl1 , vl1), (cl2 , vl2), ..., (clm , vlm)]

The active-channel vector is a simple representation for sparse features. It

should be noted that in this representation, features can have different numbers of

non-zero elements (m). Thus, the length of the active-channel vectors are not neces-

sarily equal.

3.2 Feature Generalizer Component

The feature generalizer component can be divided into its subcomponents.

The feature generalizer component contains a clustering subcomponent that clus-

ters active-channel vectors into groups. It also has a generalizing subcomponent that

generates a general feature that is applicable to different channel mappings. The fea-

ture generalizer component as a whole also communicates with the equivalent channel

mapping repository to create and use supersets of channel mapping to form general-

ized features.

3.2.1 Clustering Subcomponent

To compare each pair of active-channel vectors and collect them into clusters,

a distance measure is introduced. The distance measure should be able to find pos-

sible similar features over arbitrary channels. Thus, the distance metric between two

active-channel vectors is defined as the least square distance between all possible

permutations of their channel mappings. In other words, if the ai and aj are two

active-channel vectors, the distance between them is the minimum square distance

22

between all possible permutations of ~vi and ~vj. For example, if ~vi and ~vj are respec-

tively {4, 19, 10} and {21, 2, 8}, the distance between ai and aj is 12. The channel

mappings that result this distance are {ci1 , ci2 , ci3} and {ci2 , ci1 , ci3}

Due to possible inequality in the length of active-channel vectors, dummy zero-

valued channels are added to the shorter active-channel vector. As a result, active-

channel vectors would always be of the same size at the time of comparison.

To cluster these active-channel vectors, each pair of features is evaluated for

the distance measurement. Algorithm 3 illustrates how the distances between the

features and their minimum distance channel mappings are computed.

Algorithm 3 Distance Measurement

Require: Active-Channel Vectors a0, a1, ..., an
for all Pairs of Active-Channel Vectors (ai, aj) do

Make ~vi, ~vj the same size
for all Permutations of ~vj do

Distance =(vi1 − vj1)2 + ...+ (vim − vjm)2

if Dist(i,j) > Distance then
Dist(i,j) = Distance
Mappings(i,j) = mappings of ~ci and ~cj

end if
end for

end for
return Dist and Mappings:
Dist(i, j) = Distance between Active-Channel Vectors i, j
Mappings(i, j) = Channel mappings of Active-Channel Vectors i, j when the min-
imum distance is computed

Having obtained the distance values, the active-channel vectors will be orga-

nized into clusters. A hierarchical clustering [7] algorithm has been used for this pur-

pose. This hierarchical clustering algorithm operates with an agglomerative (bottom-

up) strategy. First, all the features are made to form their own clusters. Then two

clusters are repeatedly selected to be joined together to form a new cluster until a

23

certain stop criterion is met. To evaluate the quality of the clusters, this framework

reconstructs the data and uses the relative reconstruction error as a stop criterion for

the clustering algorithm. Merging the clusters stops when the relative reconstruction

error passes a certain threshold.

3.2.1.1 Generalizing Subcomponent

A general feature has to be clearly defined in order to explain the generaliz-

ing process. Each cluster describes a generalized feature. A generalized feature is

represented with a value-vector

V V = [v1, v2, ..., vn]

and a set of channel mappings

CM =

{[c11 , c12 , ..., c1n], [c21 , c22 , ..., c2n], ..., [cm1 , cm2 , ..., cmn]}

To represent a cluster in this form, we need to propose an approach to find

the value-vector, V V , and the set of channel mapping, CM , for the general feature.

For this purpose, a cluster prototype has been defined for each cluster. The cluster

prototype of the cluster X is an active-channel vector ai such that ai ∈ X ; where ai

has the minimum sum of distances to all other members of the cluster X. In fact, the

value-vector V V of the general feature assigned to the cluster is set to the values of

the cluster prototype. Also, the set of channel mappings CM in the general feature

assigned to the cluster is initiated to the channel mappings of all the cluster members.

After that, sets of channel mappings for each cluster will be transmitted to the

equivalent channel mapping repository unit for knowledge transfer purposes. The

24

Table 3.1: A sample of the process of superset generation in equivalent channel map-
ping repository

Transmitted Channel Mappings Generated Supersets in the Repository
{[c2, c4, c5, c6, c8], [c5, c11, c8, c7, c4], {[c2, c7, c5, c4, c6], [c2, c4, c5, c6, c8],
[c2, c7, c5, c4, c6], [c14, c7, c11, c10, cd], [c5, c11, c8, c7, c4], [c14, c7, c11, c10, cd],
[c11, c5, c8, c9, c7], [c14, c10, c11, c12, c8]} [c11, c5, c8, c9, c7], [c14, c10, c11, c12, c8],
, [c4, c8, c11, c9, c8], [c3, c11, c8, c7, c2],
{[c4, c8, c11, c9, c8], [c3, c11, c8, c7, c2], [c9, c7, c2, c4, c12], [c14, c7, c14, c10, cd]}
[c9, c7, c2, c4, c12], [c14, c7, c14, c10, cd], ,
[c2, c7, c5, c4, c6]} {[c3, c9, c10, c4, c6], [c6, c11, c1, c7, c2],
, [c8, c7, c2, c4, c12], [c10, c11, c14, c13, c1],
{[c3, c9, c10, c4, c6], [c6, c11, c1, c7, c2], [c1, c3, cd, c9, c4], [c1, c2, c3, c4, c5]
[c8, c7, c2, c4, c12], [c10, c11, c14, c13, c1], [c16, c15, c14, c13, c12]}
[c1, c3, cd, c9, c4], [c1, c2, c3, c4, c5]
[c16, c15, c14, c13, c12]}

channel mapping repository forms supersets of transmitted channel mappings by

merging equivalent channel mapping sets. Two sets of channel mappings are equiva-

lent when they share at least one exactly identical channel mapping. Table 3.1 shows

sample transmitted channel mappings and generated supersets in the equivalent chan-

nel mapping repository (cd stands for dummy channels).

The generated supersets in the equivalent channel mapping repository will be

sent to the feature generalizer. These supersets represent the interchangeable channel

mappings or localities. The feature generalizer uses these supersets to its advantage

to transfer the extracted general patterns to similar localities. As a matter of fact,

if one pattern is observed on one of the channel mappings of the superset SS, it

theoretically can be observed on other channel mappings of the superset SS as well.

Therefore, the feature generalizer uses the corresponding superset SS to replace the

initial channel mappings in CM . These new channel mappings, CMnew, in addition

to the extracted value vector V V will shape the generalized feature.

25

3.3 Evaluation Methodology

3.3.1 Simple Modeling Evaluation

We need an evaluation method to evaluate the performance of the proposed

method. This evaluation method should be able to examine how good the extracted

features are in representing the raw data, and how compact the extracted features

are. In fact, good features are expected to be general and compressed, but not too

compact that they can not represent the data.

In order to facilitate evaluation, we have defined two measures for examining the

performance of the proposed model. The first one is a representational performance

measure to evaluate the quality and the performance of the model in representing the

data. The second one is a compactness measure or generality measure to evaluate

how compressed the extracted features are.

The representational performance measure uses raw data reconstruction to ex-

ecute the evaluation. Local features are first expressed by the value vector of the

generalized feature (V V) and the existing channel mappings in that generalized fea-

ture (CM). Then, the coefficients s1, s2, ..., sn are found for the channel-remapped

general features f
(r)
1 , f

(r)
2 , ..., f

(r)
n using the feature-sign search algorithm [10]. These

coefficients are used to reconstruct the original data using the channel-remapped gen-

eral features. It should be noted that in this test, no knowledge transfer would be

used because training data and test data are the same.

The generalized features can then be examined for their performance in the

reconstructed data. The reconstruction error e can be computed as follows:

e = D −
n∑

i=1

f
(r)
i si

26

Moreover, the average reconstruction error per reading can also be computed

as follows knowing the number of input training vectors and their dimensionality:

avgE =

p∑
i=1

n∑
j=1

|dij − rij|
maxi dij −mini dij

p ∗ n

where dij is the original data, rij is the reconstructed data, p is the input row

count (# of training vectors) and, n is the dimensionality of the training vectors. The

same measure can evaluate the quality of other methods (e.g. the PCA algorithm) by

performing on the data which is reconstructed by the features of a specific method.

This reconstruction error shows how good our developed model is in representing

the data. As a matter of fact, it has been used for developing the stop criterion for

the demonstrated hierarchical clustering. The clustering algorithm stops combining

two clusters when the relative construction error passes a certain threshold:

δ(e) =
∆(e)

e
> MaxRelError

Relative error can be used as stop criterion since it basically shows that there

has been a large increase in reconstruction error caused by the combination of the

last two clusters.

On the other hand, to evaluate the compactness of the features, we have defined

a compactness measure. The number of elements that describe features has been

defined as the compactness measure. Again, this measure can evaluate different

methods. For example, the number of nonzero elements in the principal components

can be simply counted and be used as compactness measure for the PCA algorithm.

However, calculating the number of elements that are used for expressing the

features in the proposed method is more complicated. Each generalized feature, is

27

represented by a value-vector and a set of channel mappings. If the length of a

value-vector of a feature is n and its channel mappings set has m members, then

that feature can approximately be described by n ∗ (m + 1) elements: n elements to

represent the value vector, and nm elements to describe the channel mappings. It

is important to note that elements that are used for describing channels are simple

integers, therefore they can be compressed. In fact, a channel mapping element uses

less memory than a value-vector element. Since the number of the channel mappings’

elements are dominant, the memory used for the extracted features is greatly affected.

For evaluating the performance of the proposed method, this work compares the

proposed method with the PCA algorithm. To do so, principal components are used

to reconstruct the data and compute the average reconstruction error. The number

of features (principal components) used at each experiment is equal to the number of

features used in our proposed method at the same experiment. However, it should be

noted that the features in the proposed method can be applied to different localities,

while the principal components are local and therefore non-transferable.

3.3.2 Knowledge Transfer Modeling Evaluation

Evaluating the performance of the model with knowledge transfer is similar to

the simple modeling. However, the feature learning is executed on one dataset, and

evaluation is performed on another dataset. The evaluation dataset potentially can

have different features than the feature learning dataset. These different features are

ideally the same pattern in a different locality.

In this evaluation, the local features will be extracted from the training dataset.

The locality of features will then be separated from its value vector. Clusters will be

formed on the features and channel mapping sets will be transferred to the equivalent

channel mapping repository to shape supersets. Then, supersets will be transmitted

28

back to the generalizer to form generalize features in combination with clusters’ value

vectors. The generated general features will be used to reconstruct the testing dataset.

The performance of this modeling will be evaluated by the same measures introduced

for simple modeling.

29

Chapter 4

Experiments and Results

To demonstrate the applicability and ability of our framework to model and

represent the data using the channel-remapped features, we conducted experiments

for modeling with and without knowledge transfer. Experiments on modeling without

knowledge transfer are aimed at evaluating how good the data can be represented by

general features. Two experimental models have been proposed for this purpose: a

pressure sensing floor, and human motion. Experiments on modeling with knowledge

transfer, on the other hand, evaluate the performance of generalized features in the

context of transfer learning by applying them on equivalent localities. This test is

performed using a simulation on a larger pressure sensing floor.

4.1 Modeling without Knowledge Transfer

4.1.1 Pressure Sensing Floor

In order to show that our framework forms a generalized feature to represent

similar features over different channels, we have applied it on an experiment which is

known to have identical features over different channels. A 4× 7 foot floor was built,

and 16 sensors were placed under the floor. Figure 4.1 and Figure 4.2 respectively

show the pressure sensing floor (SmartFloor) and how the sensors were placed under

the floor.

Pressure sensor readings were captured from a single human subject walking on

the prototype floor under observed conditions. It is known that the sensor readings

should be formed from very similar features over different channels due to the nature of

30

Figure 4.1: Pressure sensing floor (SmartFloor)

the pressure sensory system which has identical sensor configurations (sensor spacing

and type) in different regions of the floor. The captured data contains more than

90,000 input vectors. The local features were learned from the generated data using

the sparse coding algorithm [10]. Figure 4.3 displays the learned features. It can be

observed that there are very similar features over different sensory channels due to

the location of the human subject on the floor.

These local features have been used to build generalized features. In this ex-

periment, the algorithm built 5 general features from the 19 local features extracted

by the sparse coding algorithm. Table 4.1 shows one of these general features.

31

Figure 4.2: The placement of the pressure sensors under the floor

Once the general features have been created, they can be used to reconstruct

the local features by remapping the general feature to the local channels. Figure 4.4

shows the reconstructed local features from the general features.

Then, the channel-remapped features were used to reconstruct the original sen-

sory data. The sensory data were reconstructed with a 4.35% average reconstruction

error. Once constructed, the model is also able to create or predict a local feature

in a place p1 where the feature has not been seen. This is possible by transferring

consistent channel mappings from another feature which shared the place p2 (which

also appeared in the original feature) in its channel mappings and also appeared at

p1. Given this, the local features can be applied to the new place p1 where it has not

occurred in the dataset.

To put the average reconstruction error in context, we performed the PCA algo-

rithm on the same training dataset. The number of features (principal components)

32

Figure 4.3: The learned local features of the pressure sensing floor

used here is equal to the number of features used in our proposed method. In fact, 5

principal components were used here to model data.

Our proposed method has described its general features with 100 nonzero ele-

ments. In contrast, PCA has used 80 nonzero elements to describe its features. These

principal components were then used to reconstruct the data. The data was recon-

structed with a 9.63% average reconstruction error. In comparison, our proposed

method showed much better performance with the same number of features while the

feature compression was almost equal.

33

Table 4.1: A sample generalized feature learned from the pressure sensing floor

A sample generalized feature

V alueV ector [0.064078,
0.062151,
0.907050,
0.404215,
0.059600]

ChannelMappings {[c2, c4, c5, c6, c8],
[c5, c11, c8, c7, c4],
[c2, c7, c5, c4, c6],
[c14, c7, c11, c10, cd],
[c11, c5, c8, c9, c7],
[c14, c10, c11, c12, c8]}

4.1.2 Human Motion

Humans are able to perform simple and primitive actions. They have learned

to combine these primitives simultaneously and consecutively to build more complex

actions to perform. The Human Motion Database [15][16] is a database containing a

single human subject performing 250 simple common daily actions of human beings.

This database contains some of the building blocks or primitives of human motion.

The human motion data in this database is expressed through 22 human joints. Each

joint angle is represented by separate rotations along the x, y, z coordinate axes.

Therefore, the data is 66-dimensional. Due to relative symmetry in the human body,

it is expected that there are nearly identical features in human motion data over

different channels (i.e. over different sets of joints).

We have used over 700,000 input vectors from this database and have learned

300 local features from those input vectors using the sparse coding algorithm. Local

features are then fed into our method for generalization and construction of their

34

Figure 4.4: The features of the pressure sensing floor after channel-remapping from
the generalized features

channel remapping sets. 65 generalized features were built from those 300 local fea-

tures.

The generalized features were then used to regenerate local features. The spar-

sity optimization was solved and coefficients for the generalized features were com-

puted. The original sensor data was then reconstructed using these channel-remapped

features. Figure 4.5 shows a few frames from the original and reconstructed data for

two human actions in the database.

Our method was able to reconstruct the sensory data with a 4.46% average

reconstruction error. The method is also able to predict sensor data for the situations

35

(a) Original and reconstructed human motion data of jumping

(b) Original and reconstructed human motion data of balancing on one leg

Figure 4.5: The original data and the reconstructed human motion data for two
actions in the database: (a) Balancing on one leg, (b) Jumping in place. The first row
of each figure displays the original human motion data and the second row displays
the reconstructed data using channel-remapped generalized feature

that were not part of the input data using remapping. For example, if throwing a ball

with the right hand is in the training data then the model is able to find throwing the

ball with the left hand - which does not exist in the training data - using remapping

due to a relative symmetry of the human body which can be found through channel

mappings arising in walking tasks.

36

For comparison purposes, we also executed the PCA algorithm on the human

motion dataset. 65 principal components (features) were used here for describing

the data, the same number of features used in our proposed method. Our proposed

method has described its general features with 1936 elements while PCA has used

4290 nonzero elements to describe its own features. In fact, our method used more

compressed features to represent the same data. Later, the calculated principal com-

ponents from PCA algorithm were then used to reconstruct the human motion data.

The data was reconstructed with a 2.92% average reconstruction error. In compari-

son, our proposed method represented the data in far more compressed features in a

trade-off for a small performance reduction.

4.2 Modeling with Knowledge Transfer

4.2.1 Pressure Sensing Floor Simulator

In order to evaluate the performance of our method on modeling with knowledge

transfer, a pressure sensing floor simulator is implemented. This simulator enables

us to have a higher potential for transferring a pattern to equivalent localities. That

is because the prototype of the pressure sensing floor is not large enough to have

detectable equivalent channel mapping sets.The simulator replicates a 4 × 11 foot

floor which has 30 sensors placed under it. Figure 4.6 displays what the sensor

placement looks like.

Figure 4.6: The placement of pressure sensors in the simulator

37

To capture data on this simulator, we ideally assumed that each point of pres-

sure only affects the four sensors at the corners of the tile in which the pressure point

is located. Assume pp, xp, and yp are respectively the applied pressure to the pressure

point, x-coordinate of the pressure point, and y-coordinate of it. Also assume that

d1,d2,d3,and d4 are the pressure point’s distance to the four sensor locations computed

as follow:

di =
√

(xp − xi)2 + (yp − yi)2

Then, the pressure sensory reading ri on sensors will be:

r1 =
(d2 + d3 + d4)pp
d1 + d2 + d3 + d4

r2 =
(d1 + d3 + d4)pp
d1 + d2 + d3 + d4

, ...

After that, we had two different source of pressure moving on the pressure sensing

floor: First, a synthetic device like a 4-wheel vehicle, and second, an artificial human

subject. These two sources give us two pressure profiles. The first profile and half of

the second profile is used as training data to extract the features. Thus, the training

data includes the pressure patterns of the artificial 4-wheel vehicle on the whole floor,

but it does not have any pressure data (and therefore any pressure patterns) of the

artificial human subject on half of the floor.

In this setting, our proposed method with knowledge transfer is expected to

learn the equivalent localities or channel sets using the data provided by the first

pressure profile. It is also expected to transfer the learned generalized features of the

second pressure profile to new localities where is equivalent to the localities in which

38

it is observed. Therefore, a boost in performance is anticipated when our method

uses the equivalent localities for knowledge transfer.

In the first step, feature learning component has extracted 16 local features

from the given training data. Figure 4.7 shows these 16 local features.

Figure 4.7: The 16 local features that is learned from training data

Then, after initial generalization, without knowledge transfer, 11 general fea-

tures have been formed. The evaluation on testing data with these features resulted

in 1.35% average reconstruction error. Finally, the generalization has been completed

using equivalent channel mappings for knowledge transfer. The new generalized fea-

tures were then applied to evaluate their performance on the testing set. The result

was an average reconstruction error as low as 0.9%. This shows 33% decrease in

average reconstruction error in comparison to the general features without knowledge

transfer.

Like the other two experiments, our proposed method was compared with the

PCA’s performance on the data of this experiment. Again, the PCA algorithm has

39

used 11 principal components (features) here for describing the data, the same number

of features used in our proposed method for this dataset. Our proposed method has

described its generalized features with 214 elements when no transfer knowledge was

used, and it has used 266 elements to describe its generalized features when it took

the advantage of supersets for knowledge transfer purposes. On the other hand, the

PCA algorithm has used 330 nonzero elements to describe its own features. Thus,

our method applied more compressed features to represent the same data. After that,

the calculated principal components from PCA algorithm were used to reconstruct

the data. In fact, the data was reconstructed with a 8.79% average reconstruction

error using principal components. As a result, one can see that our proposed method

represented the data by more compressed features and had much better performance

using the supersets to transfer its acquired knowledge.

As presented, by this method there is no need to have all the patterns on all

possible localities. For instance, on the pressure sensing floor we can use data obtained

in one context (i.e. cause by one source) to learn localities, then use that equivalent

localities in addition to training data of a human subject walking on a limited number

of places to form generalized features and model the way a person walks on the floor.

40

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Learning features in complex data is an important task for modeling and learn-

ing tasks in real-world situations. The generalized feature and channel-remapping

presented in this thesis provides a powerful method to construct a model for similar

features over different sets of channels or localities. This method provides a succinct

representational method to separate the stimuli from its locality and process it in-

dependent of where it happened. As a result, it provides the possibility to transfer

stimuli to other channel sets where it has not been observed yet and thus to recognize

previously unseen data patterns or to generate activities that have not previously oc-

curred. This method learns the equivalent localities and moves the extracted pattern

from one of these localities to the others. Therefore, the method enables us to model

the extracted patterns on new localities for systematic data.

5.2 Future Work

Calculating the distances between two active-channel vectors by trying arbitrary

mapping permutations of the active-channel vectors becomes computational expensive

for large size active-channel vectors. Finding another way to calculate the minimum

distances between two active-channel vectors would improve the performance of the

proposed method.

In addition, applying the modeling method with knowledge transfer ability on

real complex sensory data can ideally demonstrate the performance of the method

41

more clearly. If we have more patterns, more input channels, and complex data,

modeling with knowledge transfer should theoretically show much better results in

comparison with simple modeling methods.

42

Appendix A

Core Implementation Components

43

Generalizer without Knowledge Transfer

(SimpleGeneralizer.m)

clc;
clear all;
pars.beta = 10;
pars.noiseVar = 1;
pars.sigma = 1;
load(’HFeature.mat’);
load(’HSensorReading.mat’);
TB =B;
load(’MFeature.mat’);
load(’MSensorReading.mat’);
D = [MSensorRead; HSensorRead(1:534,:)];
B = [TB’; B’]’;
%% remove all zero pattern from the code
B =B(:,(sum(B) =0));
[dimension patternCount] = size(B);
contributionThreshold = 1e-3;
maxRelativeError = 0.01;
%% deactivate bases that are contributing less than threshold to the vector length
inactives = deactivate(B, contributionThreshold);
BP=abs(B);
BP(inactives==1)=0;
c = sum(BP =0,1)
mapping(patternCount,patternCount).ord1 = 0;
mapping(patternCount,patternCount).ord2 = 0;
distance = zeros(patternCount,patternCount);
[row col] = find(BP);
for i=1:patternCount

for j=1:patternCount
if(distance(j,i)==0)

%get the non-zero elements for column i
orderi = row(col==i);
ini = BP(orderi,i);
%get the non-zero elements for column j
orderj = row(col==j);
inj = BP(orderj,j);
% calculate the minimum distance between permutations

44

% of two vectors
[dist ord1 ord2] = MinDistance(ini, inj);
distance(i,j)= dist;
%save the permutation that gave us the minimum distance
% if the first vector is shorter than the second
nonExist = (ord1==-1);
ord1(nonExist)=1;
mapping(i,j).ord1 = orderi(ord1);
% point to dummy dimension
mapping(i,j).ord1(nonExist) = dimension+1;
%save the permutation that gave us the minimum distance
% if the second vector is shorter than the first
nonExist = (ord2==-1);
ord2(nonExist)=1;
mapping(i,j).ord2 = orderj(ord2);
%make the nonexisting element to point to a value more than
%dimension which will be filled by 0
% point to dummy dimension
mapping(i,j).ord2(nonExist) = dimension+1;

else
%it is already computed (it is symmetric)
distance(i,j)= distance(j,i);
mapping(i,j).ord1 = mapping(j,i).ord2;
mapping(i,j).ord2 = mapping(j,i).ord1;

end
fprintf(’(% d , % d) \n ’, i,j);

end
end
%%
d = squareform(distance);
Z = linkage(d);
%show the dendrogram graph
dendrogram(Z);
save(’temp2.mat’);
%%
load(’temp2.mat’);
lastError = inf;
for i=size(Z,1):-1:1

tempT = cluster(Z,’cutoff’,Z(i,3),’criterion’,’distance’);
error = ReconstructionError(tempT, BP, distance, D, mapping, pars);
if maxRelativeError >(lastError-error)/lastError && lastError >error

distanceCutOff= Z(i,3);
break;

else
lastError = error;

45

end
end
T1 = cluster(Z,’cutoff’,distanceCutOff,’criterion’,’distance’)

save(’featureWithoutTransferKnowledge.mat’);

Generalizer with Knowledge Transfer

(FullGeneralizer.m)

clear all;
load(’featureWithoutTransferKnowledge.mat’);
%% Look for identical channel mappings
active = (BP =0);
[dimension patternCount] = size(BP);
%% deactivate bases that are contributing less than threshold to the vector length
equal = zeros(patternCount);
for i=1:patternCount

for j=1:patternCount
if i =j

equal(i,j) = (sum(xor(BP(:,i),BP(:,j)))==0);
end

end
end
%% Bases from clustering
bases = BP;
clusterCount = numel(unique(T1));
clusterMeanIndex = zeros(clusterCount,1);
for i=1:clusterCount

clusterMeanIndex(i,1) = ClusterMean((T1==i), distance);
end
bases(size(bases,1)+1, :) = 0 ;
one = ones(size(bases));
one(:,clusterMeanIndex) =0;
bases(one==1) = 0;
for i=1:size(bases,2)

if clusterMeanIndex(T1(i,1)) = i
clustMean = clusterMeanIndex(T1(i,1));
bases(mapping(i,clustMean).ord1 , i) = bases(mapping(i,clustMean).ord2

, clustMean);
end

46

end
%% Bases from knowledge transfer
[row col] = find(equal);
newBases = zeros(dimension+1,1);
for i=1:size(row)

source = row(i,1);
dest = col(i,1);
destinations = find(T1 == T1(dest,1));
for j=1:size(destinations)

if destinations(j,1) =dest
temp = zeros(dimension+1,1);
temp(mapping(destinations(j,1), dest).ord1 , 1) = bases(
mapping(destinations(j,1), dest).ord2 , source);
newBases = [newBases, temp];

end
end

end
bases = [bases, newBases(:,2:size(newBases,2))];
bases = bases(1:size(bases,1)-1, :);

save(’featureWithTransferKnowledge.mat’);

Calculating the Reconstruction Error

(ReconsructionError.m)

function error = ReconstructionError(clusters, bases, distances, inputData,
dimMap, pars)
clusterCount = numel(unique(clusters));
clusterMeanIndex = zeros(clusterCount,1);
for i=1:clusterCount

clusterMeanIndex(i,1) = ClusterMean((clusters==i), distances);
end
bases(size(bases,1)+1, :) = 0 ;%%adding dummy dimension
one = ones(size(bases));
one(:,clusterMeanIndex) =0;
bases(one==1) = 0;
for i=1:size(bases,2)

if clusterMeanIndex(clusters(i,1)) = i
clustMean = clusterMeanIndex(clusters(i,1));
bases(dimMap(i,clustMean).ord1 , i) = bases(dimMap(i,clustMean).ord2

47

, clustMean);
end

end
bases = bases(1:size(bases,1)-1, :);
S= l1ls featuresign(bases, inputData’, pars.beta/pars.sigma*pars.noise var);
DD = bases*S;
error = sum(sum((DD-inputData’).2̂))/(size(DD,1)*size(DD,2));
end

48

References

[1] Y. Ma, Y. Guo, X. Tian, and M. Ghanem, “Distributed clustering-based aggre-

gation algorithm for spatial correlated sensor networks,” Sensors Journal, IEEE,

vol. 11, no. 3, pp. 641–648, 2011.

[2] I. Jolliffe, Principal component analysis, 2nd ed., ser. Springer Series in Statistics.

New York City: Springer Publishing, August 2005.

[3] L. I. Smith, “A tutorial on principal components analysis,” Cornell University,

USA, vol. 51, p. 52, 2002.

[4] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse principal component

analysis,” arXiv preprint arXiv:0909.1440, 2009.

[5] M. Hein and T. Bhler, “An inverse power method for nonlinear eigenproblems

with applications in 1-spectral clustering and sparse pca.” Advances in Neural

Information Processing Systems (NIPS), pp. 847–855, 2010.

[6] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,”

Journal of Computational and Graphical Statistics, vol. 15, no. 2, pp. 262–286,

2006.

[7] T. Hastie, R. Tibshirani, and J. Friedman, ”The Elements of Statistical Learning:

Data Mining, Inference, and Prediction.”, 2nd ed. Springer-Verlag, February

2009.

[8] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and

applications,” Neural networks, vol. 13, no. 4, pp. 411–430, June 2000.

49

[9] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science Magazine, vol. 313, no. 5786, pp. 504 – 507, 28th July

2006.

[10] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algorithms,”

Advances in Neural Information Processing Systems (NIPS), vol. 19, pp. 801–

808, 2007.

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–1359, 2010.

[12] L. Torrey and J. Shavlik, “Transfer learning,” Handbook of Research on Machine

Learning Applications. IGI Global, vol. 3, pp. 17–35, 2009.

[13] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:

A strategy employed by v1?” Vision research, vol. 37, no. 23, pp. 3311–3325,

1997.

[14] F. Murtagh, “A survey of recent advances in hierarchical clustering algorithms,”

The Computer Journal, vol. 26, no. 4, pp. 354–359, 1983.

[15] “Human motion database,” http://smile.uta.edu/hmd/, 2011, [Online; accessed

25-April-2013].

[16] G. Guerra-Filho and A. Biswas, “The human motion database: A cognitive and

parametric sampling of human motion,” Image Vision Comput., vol. 30, no. 3,

pp. 251–261, 2012.

50

Biographical Information

Houtan Rahmanian received his Bachelors degree from Baha’i Institute for

Higher Education (BIHE), in 2008. He started his Masters in Computer Science

at The University of Texas at Arlington in 2011. His current research interests are

in the area of machine learning, data mining, and computer vision. He has joined

Amazon.com, Inc. after graduation.

51

